Science.gov

Sample records for non-conventional olfactory receptor

  1. Expression and evolutionary divergence of the non-conventional olfactory receptor in four species of fig wasp associated with one species of fig

    PubMed Central

    Lu, Bin; Wang, Nina; Xiao, Jinhua; Xu, Yongyu; Murphy, Robert W; Huang, Dawei

    2009-01-01

    Background The interactions of fig wasps and their host figs provide a model for investigating co-evolution. Fig wasps have specialized morphological characters and lifestyles thought to be adaptations to living in the fig's syconium. Although these aspects of natural history are well documented, the genetic mechanism(s) underlying these changes remain(s) unknown. Fig wasp olfaction is the key to host-specificity. The Or83b gene class, an unusual member of olfactory receptor family, plays a critical role in enabling the function of conventional olfactory receptors. Four Or83b orthologous genes from one pollinator (PFW) (Ceratosolen solmsi) and three non-pollinator fig wasps (NPFWs) (Apocrypta bakeri, Philotrypesis pilosa and Philotrypesis sp.) associated with one species of fig (Ficus hispida) can be used to better understand the molecular mechanism underlying the fig wasp's adaptation to its host. We made a comparison of spatial tissue-specific expression patterns and substitution rates of one orthologous gene in these fig wasps and sought evidence for selection pressures. Results A newly identified Or83b orthologous gene was named Or2. Expressions of Or2 were restricted to the heads of all wingless male fig wasps, which usually live in the dark cavity of a fig throughout their life cycle. However, expressions were widely detected in the antennae, legs and abdomens of all female fig wasps that fly from one fig to another for oviposition, and secondarily pollination. Weak expression was also observed in the thorax of PFWs. Compared with NPFWs, the Or2 gene in C. solmsi had an elevated rate of substitutions and lower codon usage. Analyses using Tajima's D, Fu and Li's D* and F* tests indicated a non-neutral pattern of nucleotide variation in all fig wasps. Unlike in NPFWs, this non-neutral pattern was also observed for synonymous sites of Or2 within PFWs. Conclusion The sex- and species-specific expression patterns of Or2 genes detected beyond the known primary

  2. Evolution of insect olfactory receptors

    PubMed Central

    Missbach, Christine; Dweck, Hany KM; Vogel, Heiko; Vilcinskas, Andreas; Stensmyr, Marcus C; Hansson, Bill S; Grosse-Wilde, Ewald

    2014-01-01

    The olfactory sense detects a plethora of behaviorally relevant odor molecules; gene families involved in olfaction exhibit high diversity in different animal phyla. Insects detect volatile molecules using olfactory (OR) or ionotropic receptors (IR) and in some cases gustatory receptors (GRs). While IRs are expressed in olfactory organs across Protostomia, ORs have been hypothesized to be an adaptation to a terrestrial insect lifestyle. We investigated the olfactory system of the primary wingless bristletail Lepismachilis y-signata (Archaeognatha), the firebrat Thermobia domestica (Zygentoma) and the neopteran leaf insect Phyllium siccifolium (Phasmatodea). ORs and the olfactory coreceptor (Orco) are with very high probability lacking in Lepismachilis; in Thermobia we have identified three Orco candidates, and in Phyllium a fully developed OR/Orco-based system. We suggest that ORs did not arise as an adaptation to a terrestrial lifestyle, but evolved later in insect evolution, with Orco being present before the appearance of ORs. DOI: http://dx.doi.org/10.7554/eLife.02115.001 PMID:24670956

  3. Pharmacology of mammalian olfactory receptors.

    PubMed

    Smith, Richard S; Peterlin, Zita; Araneda, Ricardo C

    2013-01-01

    Mammalian species have evolved a large and diverse number of odorant receptors (ORs). These proteins comprise the largest family of G-protein-coupled receptors (GPCRs) known, amounting to ~1,000-different receptors in the rodent. From the perspective of olfactory coding, the availability of such a vast number of chemosensory receptors poses several fascinating questions; in addition, such a large repertoire provides an attractive biological model to study ligand-receptor interactions. The limited functional expression of these receptors in heterologous systems, however, has greatly hampered attempts to deorphanize them. We have employed a successful approach that combines electrophysiological and imaging techniques to analyze the response profiles of single sensory neurons. Our approach has enabled us to characterize the "odor space" of a population of native aldehyde receptors and the molecular range of a genetically engineered receptor, OR-I7.

  4. Olfactory receptor gene expression in tiger salamander olfactory epithelium.

    PubMed

    Marchand, James E; Yang, Xinhai; Chikaraishi, Dona; Krieger, Jurgen; Breer, Heinz; Kauer, John S

    2004-06-28

    Physiological studies of odor-elicited responses from the olfactory epithelium and bulb in the tiger salamander, Ambystoma tigrinum, have elucidated a number of features of olfactory coding that appear to be conserved across several vertebrate species. This animal model has provided an accessible in vivo system for observing individual and ensemble olfactory responses to odorant stimulation using biochemical, neurophysiological, and behavioral assays. In this paper we have complemented these studies by characterizing 35 candidate odorant receptor genes. These receptor sequences are similar to those of the large families of olfactory receptors found in mammals and fish. In situ hybridization, using RNA probes to 20 of these sequences, demonstrates differential distributions of labeled cells across the extent and within the depth of the olfactory epithelium. The distributions of cells labeled with probes to different receptors show spatially restricted patterns that are generally localized to different degrees in medial-lateral and anterior-posterior directions. The patterns of receptor expression in the ventral olfactory epithelium (OE) are mirrored in the dorsal OE. We present a hypothesis as to how the sensory neuron populations expressing different receptor types responding to a particular odorant may relate to the distribution patterns of epithelial and bulbar responses previously characterized using single-unit and voltage-sensitive dye recording methods.

  5. Profiling of Olfactory Receptor Gene Expression in Whole Human Olfactory Mucosa

    PubMed Central

    Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E.; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  6. Trace amine-associated receptors are olfactory receptors in vertebrates.

    PubMed

    Liberles, Stephen D

    2009-07-01

    The mammalian nose is a powerful chemosensor, capable of detecting and distinguishing a myriad of chemicals. Sensory neurons in the olfactory epithelium contain two types of chemosensory G protein-coupled receptors (GPCRs): odorant receptors (ORs), which are encoded by the largest gene family in mammals, and trace amine-associated receptors (TAARs), a smaller family of receptors distantly related to biogenic amine receptors. Do TAARs play a specialized role in olfaction distinct from that of ORs? Genes encoding TAARs are found in diverse vertebrates, from fish to mice to humans. Like OR genes, each Taar gene defines a unique population of canonical sensory neurons dispersed in a single zone of the olfactory epithelium. Ligands for mouse TAARs include a number of volatile amines, several of which are natural constituents of mouse urine, a rich source of rodent social cues. One chemical, 2-phenylethylamine, is reported to be enriched in the urine of stressed animals, and two others, trimethylamine and isoamylamine, are enriched in male versus female urine. Furthermore, isoamylamine has been proposed to be a pheromone that induces puberty acceleration in young female mice. These data raise the possibility that some TAARs are pheromone receptors in the nose, a hypothesis consistent with recent data suggesting that the olfactory epithelium contains dedicated pheromone receptors, separate from pheromone receptors in the vomeronasal organ. Future experiments will clarify the roles of TAARs in olfaction.

  7. The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility

    PubMed Central

    2011-01-01

    Background Our objective was to study the pattern of olfactory receptor expression within the dorsal and ventral regions of the mouse olfactory epithelium. We hypothesized that olfactory receptors were distributed based on the chemical properties of their ligands: e.g. receptors for polar, hydrophilic and weakly volatile odorants would be present in the dorsal region of olfactory epithelium; while receptors for non-polar, more volatile odorants would be distributed to the ventral region. To test our hypothesis, we used micro-transplantation of cilia-enriched plasma membranes derived from dorsal or ventral regions of the olfactory epithelium into Xenopus oocytes for electrophysiological characterization against a panel of 100 odorants. Findings Odorants detected by ORs from the dorsal and ventral regions showed overlap in volatility and water solubility. We did not find evidence for a correlation between the solubility and volatility of odorants and the functional expression of olfactory receptors in the dorsal or ventral region of the olfactory epithelia. Conclusions No simple clustering or relationship between chemical properties of odorants could be associated with the different regions of the olfactory epithelium. These results suggest that the location of ORs within the epithelium is not organized based on the physico-chemical properties of their ligands. PMID:21548958

  8. The Odorant Receptor-Dependent Role of Olfactory Marker Protein in Olfactory Receptor Neurons

    PubMed Central

    Dibattista, Michele

    2016-01-01

    Olfactory receptor neurons (ORNs) in the nasal cavity detect and transduce odorants into action potentials to be conveyed to the olfactory bulb. Odorants are delivered to ORNs via the inhaled air at breathing frequencies that can vary from 2 to 10 Hz in the mouse. Thus olfactory transduction should occur at sufficient speed such that it can accommodate repetitive and frequent stimulation. Activation of odorant receptors (ORs) leads to adenylyl cyclase III activation, cAMP increase, and opening of cyclic nucleotide-gated channels. This makes the kinetic regulation of cAMP one of the important determinants for the response time course. We addressed the dynamic regulation of cAMP during the odorant response and examined how basal levels of cAMP are controlled. The latter is particularly relevant as basal cAMP depends on the basal activity of the expressed OR and thus varies across ORNs. We found that olfactory marker protein (OMP), a protein expressed in mature ORNs, controls both basal and odorant-induced cAMP levels in an OR-dependent manner. Lack of OMP increases basal cAMP, thus abolishing differences in basal cAMP levels between ORNs expressing different ORs. Moreover, OMP speeds up signal transduction for ORNs to better synchronize their output with high-frequency stimulation and to perceive brief stimuli. Last, OMP also steepens the dose–response relation to improve concentration coding although at the cost of losing responses to weak stimuli. We conclude that OMP plays a key regulatory role in ORN physiology by controlling multiple facets of the odorant response. SIGNIFICANCE STATEMENT Odorant receptors (ORs) form the largest family of G-protein-coupled receptors in mammals and are expressed in olfactory receptor neurons (ORNs). In this paper we show how the olfactory system ensures that monogenic expression of ORs dictates the response profile and the basal noise of ORNs. Olfactory marker protein (OMP), a protein long known to be expressed in mature ORNs

  9. Unitary response of mouse olfactory receptor neurons

    PubMed Central

    Ben-Chaim, Yair; Cheng, Melody M.; Yau, King-Wai

    2011-01-01

    The sense of smell begins with odorant molecules binding to membrane receptors on the cilia of olfactory receptor neurons (ORNs), thereby activating a G protein, Golf, and the downstream effector enzyme, an adenylyl cyclase (ACIII). Recently, we have found in amphibian ORNs that an odorant-binding event has a low probability of activating sensory transduction at all; even when successful, the resulting unitary response apparently involves a single active Gαolf–ACIII molecular complex. This low amplification is in contrast to rod phototransduction in vision, the best-quantified G-protein signaling pathway, where each photoisomerized rhodopsin molecule is well known to produce substantial amplification by activating many G-protein, and hence effector-enzyme, molecules. We have now carried out similar experiments on mouse ORNs, which offer, additionally, the advantage of genetics. Indeed, we found the same low probability of transduction, based on the unitary olfactory response having a fairly constant amplitude and similar kinetics across different odorants and randomly encountered ORNs. Also, consistent with our picture, the unitary response of Gαolf+/− ORNs was similar to WT in amplitude, although their Gαolf-protein expression was only half of normal. Finally, from the action potential firing, we estimated that ≤19 odorant-binding events successfully triggering transduction in a WT mouse ORN will lead to signaling to the brain. PMID:21187398

  10. Spatial pattern of receptor expression in the olfactory epithelium.

    PubMed Central

    Nef, P; Hermans-Borgmeyer, I; Artières-Pin, H; Beasley, L; Dionne, V E; Heinemann, S F

    1992-01-01

    A PCR-based strategy for amplifying putative receptors involved in murine olfaction was employed to isolate a member (OR3) of the seven-transmembrane-domain receptor superfamily. During development, the first cells that express OR3 appear adjacent to the wall of the telencephalic vesicle at embryonic day 10. The OR3 receptor is uniquely expressed in a subset of olfactory cells that have a characteristic bilateral symmetry in the adult olfactory epithelium. This receptor and its specific pattern of expression may serve a functional role in odor coding or, alternatively, may play a role in the development of the olfactory system. Images PMID:1384038

  11. The Evolution of Mammalian Olfactory Receptor Genes

    PubMed Central

    Issel-Tarver, L.; Rine, J.

    1997-01-01

    We performed a comparative study of four subfamilies of olfactory receptor genes first identified in the dog to assess changes in the gene family during mammalian evolution, and to begin linking the dog genetic map to that of humans. The human subfamilies were localized to chromosomes 7, 11, and 19. The two subfamilies that were tightly linked in the dog genome were also tightly linked in the human genome. The four subfamilies were compared in human (primate), horse (perissodactyl), and a variety of artiodactyls and carnivores. Some changes in gene number were detected, but overall subfamily size appeared to have been established before the divergence of these mammals 60-100 million years ago. PMID:9017400

  12. Application of artificial neural networks on mosquito Olfactory Receptor Neurons for an olfactory biosensor.

    PubMed

    Bachtiar, Luqman R; Unsworth, Charles P; Newcomb, Richard D

    2013-01-01

    Various odorants such as carbon dioxide (CO2) and 1-octen-3-ol, underlie the host-seeking behaviors of the major malaria vector Anopheles Gambiae. Highlighted by the olfactory processing strength of the mosquito, such a powerful olfactory sense could serve as the sensors of an artificial olfactory biosensor. In this work, we use the firing rates of the A. Gambiae mosquito Olfactory Receptor Neurons (ORNs), to train an Artificial Neural Network (ANN) for the classification of volatile odorants into their known chemical classes and assess their suitability for an olfactory biosensor. With the implementation of bootstrapping, a more representative result was obtained wherein we demonstrate the training of a hybrid ANN consisting of an array of Multi-Layer Perceptrons (MLPs) with optimal number of hidden neurons. The ANN system was able to correctly class 90.1% of the previously unseen odorants, thus demonstrating very strong evidence for the use of A. Gambiae olfactory receptors coupled with an ANN as an olfactory biosensor.

  13. Olfactory sensations produced by high-energy photon irradiation of the olfactory receptor mucosa in humans

    SciTech Connect

    Sagar, S.M.; Thomas, R.J.; Loverock, L.T.; Spittle, M.F. )

    1991-04-01

    During irradiation of volumes that incorporate the olfactory system, a proportion of patients have complained of a pungent smell. A retrospective study was carried out to determine the prevalence of this side-effect. A questionnaire was sent to 40 patients whose treatment volumes included the olfactory region and also to a control group treated away from this region. The irradiated tumor volumes included the frontal lobe, whole brain, nasopharynx, pituitary fossa, and maxillary antrum. Of the 25 patients who replied, 60% experienced odorous symptoms during irradiation. They described the odor as unpleasant and consistent with ozone. Stimulation of olfactory receptors is considered to be caused by the radiochemical formation of ozone and free radicals in the mucus overlying the olfactory mucosa.

  14. High-throughput Analysis of Mammalian Olfactory Receptors: Measurement of Receptor Activation via Luciferase Activity

    PubMed Central

    Trimmer, Casey; Snyder, Lindsey L.; Mainland, Joel D.

    2014-01-01

    Odorants create unique and overlapping patterns of olfactory receptor activation, allowing a family of approximately 1,000 murine and 400 human receptors to recognize thousands of odorants. Odorant ligands have been published for fewer than 6% of human receptors1-11. This lack of data is due in part to difficulties functionally expressing these receptors in heterologous systems. Here, we describe a method for expressing the majority of the olfactory receptor family in Hana3A cells, followed by high-throughput assessment of olfactory receptor activation using a luciferase reporter assay. This assay can be used to (1) screen panels of odorants against panels of olfactory receptors; (2) confirm odorant/receptor interaction via dose response curves; and (3) compare receptor activation levels among receptor variants. In our sample data, 328 olfactory receptors were screened against 26 odorants. Odorant/receptor pairs with varying response scores were selected and tested in dose response. These data indicate that a screen is an effective method to enrich for odorant/receptor pairs that will pass a dose response experiment, i.e. receptors that have a bona fide response to an odorant. Therefore, this high-throughput luciferase assay is an effective method to characterize olfactory receptors—an essential step toward a model of odor coding in the mammalian olfactory system. PMID:24961834

  15. Olfactory receptors are displayed on dog mature sperm cells

    PubMed Central

    1993-01-01

    Olfactory receptors constitute a huge family of structurally related G protein-coupled receptors, with up to a thousand members expected. We have shown previously that genes belonging to this family were expressed in the male germ line from both dog and human. The functional significance of this unexpected site of expression was further investigated in the present study. We demonstrate that a few dog genes representative of various subfamilies of olfactory receptors are expressed essentially in testis, with little or no expression in olfactory mucosa. Other randomly selected members of the family show the expected site of expression, restricted to the olfactory system. Antibodies were generated against the deduced amino acid sequence of the most abundantly expressed olfactory receptor gene in dog testis. The purified serum was able to detect the gene product (DTMT receptor) in late round and elongated spermatids, as well as in the cytoplasmic droplet that characterizes the maturation of dog sperm cells, and on the tail midpiece of mature spermatozoa. Western blotting further confirmed the presence of a 40-kD immunoreactive protein in the membrane of mature sperm cells. Altogether , these results demonstrate that the main expression site of a subset of the large olfactory receptor gene family is not olfactory mucosa but testis. This expression correlates with the presence of the corresponding protein during sperm cell maturation, and on mature sperm cells. The pattern of expression is consistent with a role as sensor for unidentified chemicals possibly involved in the control of mammalian sperm maturation, migration, and/or fertilization. PMID:8253843

  16. Deep Sequencing of the Murine Olfactory Receptor Neuron Transcriptome

    PubMed Central

    Kanageswaran, Ninthujah; Demond, Marilen; Nagel, Maximilian; Schreiner, Benjamin S. P.; Baumgart, Sabrina; Scholz, Paul; Altmüller, Janine; Becker, Christian; Doerner, Julia F.; Conrad, Heike; Oberland, Sonja; Wetzel, Christian H.; Neuhaus, Eva M.; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation. PMID:25590618

  17. Olfactory Ionotropic Receptors in Mosquito Aedes albopictus (Diptera: Culicidae).

    PubMed

    Chen, Qian; Man, Yahui; Li, Jianyong; Pei, Di; Wu, Wenjian

    2017-03-28

    Ionotropic glutamate receptors (iGluRs) are a conserved family of ligand-gated ion channels that primarily function to mediate neuronal communication at synapses. A variant subfamily of iGluRs, the ionotropic receptors (IRs), was recently identified in insects and proved with the function in odorant recognition. Ionotropic receptors participate in a distinct olfactory signaling pathway that is independent of olfactory receptors activity. In the present study, we identify 102 putative IR genes, dubbed as AalbIr genes, in mosquito Aedes albopictus (Skuse) by in silico comparative sequence analysis. Among AalbIr genes, 19 show expression in the female antenna by RT-PCR. These putative olfactory AalbIRs share four conservative hydrophobic domains of amino acids, similar to the transmembrane and ion channel pore regions found in conventional iGluRs. To determine the potential function of these olfactory AalbIRs in host-seeking, we compared their transcript expression levels in the antennae of blood-fed females with that of non-blood-fed females by quantitative real-time RT-PCR. Three AalbIr genes showed downregulation when the mosquito finished a bloodmeal. These results may help to improve our understanding of the IR-mediated olfactory signaling in mosquitoes.

  18. Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila

    PubMed Central

    Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.

    2015-01-01

    The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118

  19. Zebrafish olfactory receptor ORA1 recognizes a putative reproductive pheromone

    PubMed Central

    Ahuja, Gaurav; Korsching, Sigrun

    2014-01-01

    Teleost v1r-related ora genes constitute a small and highly conserved olfactory receptor gene family, and their direct orthologs are present in lineages as distant as cartilaginous fishes. Recently, the first member of the ora gene family was deorphanized. ORA1 detects p-hydroxyphenylacetic acid with high sensitivity and specificity. This compound elicits olfactory-mediated oviposition behavior in adult zebrafish mating pairs, suggesting a potential function as a reproductive pheromone for pHPAA itself or a related substance. This association of an odor and its cognate receptor with an oviposition response may provide a molecular basis for studying neural circuits involved in fish reproduction. PMID:26842458

  20. Suppression of Odorant Responses by Odorants in Olfactory Receptor Cells

    NASA Astrophysics Data System (ADS)

    Kurahashi, Takashi; Lowe, Graeme; Gold, Geoffrey H.

    1994-07-01

    Odorants activate an inward current in vertebrate olfactory receptor cells. Here it is shown, in receptor cells from the newt, that odorants can also suppress this current, by a mechanism that is distinct from inhibition and adaptation. Suppression provides a simple explanation for two seemingly unrelated phenomena: the anomalously long latency of olfactory transduction and the existence of an "off response" at the end of a prolonged stimulus. Suppression may influence the perception of odorants by masking odorant responses and by sharpening the odorant specificities of single cells.

  1. Circadian Regulation of Olfactory Receptor Neurons in the Cockroach Antenna

    PubMed Central

    Saifullah, A.S.M.; Page, Terry L.

    2013-01-01

    In the cockroach, olfactory sensitivity as measured by the amplitude of the electroantennogram (EAG) is regulated by the circadian system. We wished to determine how this rhythm in antennal response was reflected in the activity of individual olfactory receptor neurons. The amplitude of the electroantennogram (EAG) and the activity of olfactory receptor neurons (ORNs) in single olfactory sensilla were recorded simultaneously for 3–5 days in constant darkness from an antenna of the cockroach Leucophaea maderae. Both EAG amplitude and the spike frequency of the ORNs exhibited circadian rhythms with peak amplitude/activity occurring in the subjective day. The phases of the rhythms were dependent on the phase of the prior light cycle and thus were entrainable by light. Ablation of the optic lobes abolished the rhythm in EAG amplitude as has been previously reported. In contrast, the rhythm in ORN response persisted following surgery. These results indicated that a circadian clock outside the optic lobes can regulate the responses of olfactory receptor neurons and further that this modulation of the ORN response is not dependent on the circadian rhythm in EAG amplitude. PMID:19346451

  2. Monoclonal antibody immunohistochemistry of degenerative and renewal patterns in rabbit olfactory receptor neurons following unilateral olfactory bulbectomy.

    PubMed

    Onoda, N

    1988-09-01

    Degeneration and regeneration of olfactory receptor neurons were studied in adult rabbits by immunohistochemical procedures following unilateral olfactory bulbectomy. Staining patterns of the olfactory receptors of the lesioned side were compared with those of the intact side in the nasal septum at various postoperative periods (12h-6 months) following lesion. Monoclonal antibodies, produced against the rabbit olfactory bulb, were used as histochemical markers. A slight decrease in the number of olfactory receptor neurons occurred at 24 h after lesion. One monoclonal antibody 112D5 stained all receptor neurons including degenerating neurons, but the other 114G12 showed a rapid decrease in immunostaining so that 114G12-positive cells disappeared within 7 days after lesion. 114G12-positive cells reappeared at 4 weeks following lesion. By 3 months, 114G12-positive cells were arranged in a plane at the apical region of the superficial compartment of the receptor cell layer, suggesting a recapitulation of development pattern of the receptor neurons. Thereafter, the number of 114G12-positive cells increased progressively and the staining pattern of the olfactory epithelium was like that of control animals by 6 months. Monoclonal antibody 114G12 is thus the first marker that is not specific to olfactory neurons and can be used to characterize certain embryonic traits during the degeneration and regeneration of the olfactory epithelium in the adult mammal.

  3. Olfactory Receptor Response to the Cockroach Sexual Attractant.

    PubMed

    Boeckh, J; Priesner, E; Schneider, D; Jacobson, M

    1963-08-23

    The recently isolated sex attractant of the female American cockroach elicits an electical response in the antennae of males, females, and mymphs of this species. These electroantennograms are known to be summated receptor (generator) potentials of many olfactory sensillae stimulated simultaneously. Many other odorous substances also elicit such responses in the cockroach antenna.

  4. Beyond modeling: all-atom olfactory receptor model simulations.

    PubMed

    Lai, Peter C; Crasto, Chiquito J

    2012-01-01

    Olfactory receptors (ORs) are a type of GTP-binding protein-coupled receptor (GPCR). These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level beyond inferences that are drawn merely from static docking. Here we have shown the specific advantages of simulating the dynamic environment associated with OR-odorant interactions. We present a rigorous protocol which ranges from the creation of a computationally derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs.

  5. Chromatin Modulatory Proteins and Olfactory Receptor Signaling in the Refinement and Maintenance of Fruitless Expression in Olfactory Receptor Neurons

    PubMed Central

    Li, Qingyun; Okuwa, Sumie; Peng, Bo; Wu, Jianni; Volkan, Pelin Cayirlioglu

    2016-01-01

    During development, sensory neurons must choose identities that allow them to detect specific signals and connect with appropriate target neurons. Ultimately, these sensory neurons will successfully integrate into appropriate neural circuits to generate defined motor outputs, or behavior. This integration requires a developmental coordination between the identity of the neuron and the identity of the circuit. The mechanisms that underlie this coordination are currently unknown. Here, we describe two modes of regulation that coordinate the sensory identities of Drosophila melanogaster olfactory receptor neurons (ORNs) involved in sex-specific behaviors with the sex-specific behavioral circuit identity marker fruitless (fru). The first mode involves a developmental program that coordinately restricts to appropriate ORNs the expression of fru and two olfactory receptors (Or47b and Ir84a) involved in sex-specific behaviors. This regulation requires the chromatin modulatory protein Alhambra (Alh). The second mode relies on the signaling from the olfactory receptors through CamK and histone acetyl transferase p300/CBP to maintain ORN-specific fru expression. Our results highlight two feed-forward regulatory mechanisms with both developmentally hardwired and olfactory receptor activity-dependent components that establish and maintain fru expression in ORNs. Such a dual mechanism of fru regulation in ORNs might be a trait of neurons driving plastic aspects of sex-specific behaviors. PMID:27093619

  6. A Renal Olfactory Receptor Aids in Kidney Glucose Handling

    PubMed Central

    Shepard, Blythe D.; Cheval, Lydie; Peterlin, Zita; Firestein, Stuart; Koepsell, Hermann; Doucet, Alain; Pluznick, Jennifer L.

    2016-01-01

    Olfactory receptors (ORs) are G protein-coupled receptors which serve important sensory functions beyond their role as odorant detectors in the olfactory epithelium. Here we describe a novel role for one of these ORs, Olfr1393, as a regulator of renal glucose handling. Olfr1393 is specifically expressed in the kidney proximal tubule, which is the site of renal glucose reabsorption. Olfr1393 knockout mice exhibit urinary glucose wasting and improved glucose tolerance, despite euglycemia and normal insulin levels. Consistent with this phenotype, Olfr1393 knockout mice have a significant decrease in luminal expression of Sglt1, a key renal glucose transporter, uncovering a novel regulatory pathway involving Olfr1393 and Sglt1. In addition, by utilizing a large scale screen of over 1400 chemicals we reveal the ligand profile of Olfr1393 for the first time, offering new insight into potential pathways of physiological regulation for this novel signaling pathway. PMID:27739476

  7. Functional analysis of an olfactory receptor in Drosophila melanogaster

    PubMed Central

    Störtkuhl, Klemens F.; Kettler, Raffael

    2001-01-01

    Fifty nine candidate olfactory receptor (Or) genes have recently been identified in Drosophila melanogaster, one of which is Or43a. In wild-type flies, Or43a is expressed at the distal edge of the third antennal segment in about 15 Or neurons. To identify ligands for the receptor we used the Gal4/UAS system to misexpress Or43a in the third antennal segment. Or43a mRNA expression in the antenna of transformed and wild-type flies was visualized by in situ hybridization with a digoxigenin-labeled probe. Electroantennogram recordings from transformed and wild-type flies were used to identify cyclohexanol, cyclohexanone, benzaldehyde, and benzyl alcohol as ligands for the Or43a. This in vivo analysis reveals functional properties of one member of the recently isolated Or family in Drosophila and will provide further insight into our understanding of olfactory coding. PMID:11481495

  8. Olfactory Receptor Subgenomes Linked with Broad Ecological Adaptations in Sauropsida.

    PubMed

    Khan, Imran; Yang, Zhikai; Maldonado, Emanuel; Li, Cai; Zhang, Guojie; Gilbert, M Thomas P; Jarvis, Erich D; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2015-11-01

    Olfactory receptors (ORs) govern a prime sensory function. Extant birds have distinct olfactory abilities, but the molecular mechanisms underlining diversification and specialization remain mostly unknown. We explored OR diversity in 48 phylogenetic and ecologically diverse birds and 2 reptiles (alligator and green sea turtle). OR subgenomes showed species- and lineage-specific variation related with ecological requirements. Overall 1,953 OR genes were identified in reptiles and 16,503 in birds. The two reptiles had larger OR gene repertoires (989 and 964 genes, respectively) than birds (182-688 genes). Overall, birds had more pseudogenes (7,855) than intact genes (1,944). The alligator had significantly more functional genes than sea turtle, likely because of distinct foraging habits. We found rapid species-specific expansion and positive selection in OR14 (detects hydrophobic compounds) in birds and in OR51 and OR52 (detect hydrophilic compounds) in sea turtle, suggestive of terrestrial and aquatic adaptations, respectively. Ecological partitioning among birds of prey, water birds, land birds, and vocal learners showed that diverse ecological factors determined olfactory ability and influenced corresponding olfactory-receptor subgenome. OR5/8/9 was expanded in predatory birds and alligator, suggesting adaptive specialization for carnivory. OR families 2/13, 51, and 52 were correlated with aquatic adaptations (water birds), OR families 6 and 10 were more pronounced in vocal-learning birds, whereas most specialized land birds had an expanded OR family 14. Olfactory bulb ratio (OBR) and OR gene repertoire were correlated. Birds that forage for prey (carnivores/piscivores) had relatively complex OBR and OR gene repertoires compared with modern birds, including passerines, perhaps due to highly developed cognitive capacities facilitating foraging innovations.

  9. [Olfactory esthesioneuroblastoma: scintigraphic expression of somatostatin receptors].

    PubMed

    García Vicente, A; García Del Castillo, E; Soriano Castrejón, A; Alonso Farto, J

    1999-10-01

    Esthesioneuroblastoma is an uncommon tumor originating in the upper nasal cavity and constitutes 3% of all intranasal neoplasms. Few references exist about the expression of somatostatin receptors in these tumors. Our case demonstrates a good correlation between the somatostatin receptor scintigraphy and magnetic resonance imaging.

  10. Penguins reduced olfactory receptor genes common to other waterbirds

    PubMed Central

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-01-01

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins. PMID:27527385

  11. Neuropeptide S facilitates mice olfactory function through activation of cognate receptor-expressing neurons in the olfactory cortex.

    PubMed

    Shao, Yu-Feng; Zhao, Peng; Dong, Chao-Yu; Li, Jing; Kong, Xiang-Pan; Wang, Hai-Liang; Dai, Li-Rong; Hou, Yi-Ping

    2013-01-01

    Neuropeptide S (NPS) is a newly identified neuromodulator located in the brainstem and regulates various biological functions by selectively activating the NPS receptors (NPSR). High level expression of NPSR mRNA in the olfactory cortex suggests that NPS-NPSR system might be involved in the regulation of olfactory function. The present study was undertaken to investigate the effects of intracerebroventricular (i.c.v.) injection of NPS or co-injection of NPSR antagonist on the olfactory behaviors, food intake, and c-Fos expression in olfactory cortex in mice. In addition, dual-immunofluorescence was employed to identify NPS-induced Fos immunereactive (-ir) neurons that also bear NPSR. NPS (0.1-1 nmol) i.c.v. injection significantly reduced the latency to find the buried food, and increased olfactory differentiation of different odors and the total sniffing time spent in olfactory habituation/dishabituation tasks. NPS facilitated olfactory ability most at the dose of 0.5 nmol, which could be blocked by co-injection of 40 nmol NPSR antagonist [D-Val(5)]NPS. NPS administration dose-dependently inhibited food intake in fasted mice. Ex-vivo c-Fos and NPSR immunohistochemistry in the olfactory cortex revealed that, as compared with vehicle-treated mice, NPS markedly enhanced c-Fos expression in the anterior olfactory nucleus (AON), piriform cortex (Pir), ventral tenia tecta (VTT), the anterior cortical amygdaloid nucleus (ACo) and lateral entorhinal cortex (LEnt). The percentage of Fos-ir neurons that also express NPSR were 88.5% and 98.1% in the AON and Pir, respectively. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the olfactory cortex, facilitates olfactory function in mice.

  12. Molecular characterization of the Aphis gossypii olfactory receptor gene families.

    PubMed

    Cao, Depan; Liu, Yang; Walker, William B; Li, Jianhong; Wang, Guirong

    2014-01-01

    The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect.

  13. An Epigenetic Signature for Monoallelic Olfactory Receptor Expression

    PubMed Central

    Magklara, Angeliki; Yen, Angela; Colquitt, Bradley M.; Clowney, E. Josephine; Allen, William; Markenscoff-Papadimitriou, Eirene; Evans, Zoe A.; Kheradpour, Pouya; Mountoufaris, George; Carey, Catriona; Barnea, Gilad; Kellis, Manolis; Lomvardas, Stavros

    2011-01-01

    SUMMARY Constitutive heterochromatin is traditionally viewed as the static form of heterochromatin that silences pericentromeric and telomeric repeats in a cell cycle and differentiation independent manner. Here, we show that in the mouse olfactory epithelium, olfactory receptor (OR) genes are marked, in a highly dynamic fashion, with the molecular hallmarks of constitutive heterochromatin, H3K9me3 and H4K20me3. The cell-type and developmentally dependent deposition of these marks along the OR clusters is, most likely, reversed during the process of OR choice to allow for monogenic and monoallelic OR expression. In contrast to the current view of OR choice, our data suggest that OR silencing takes place before OR expression, indicating that it is not the product of an OR-elicited feedback signal. This suggests a new role for chromatin-mediated silencing as the molecular foundation upon which singular and stochastic selection can be applied. PMID:21529909

  14. Beyond Modeling: All-Atom Olfactory Receptor Model Simulations

    PubMed Central

    Lai, Peter C.; Crasto, Chiquito J.

    2012-01-01

    Olfactory receptors (ORs) are a type of GTP-binding protein-coupled receptor (GPCR). These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level beyond inferences that are drawn merely from static docking. Here we have shown the specific advantages of simulating the dynamic environment associated with OR-odorant interactions. We present a rigorous protocol which ranges from the creation of a computationally derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs. PMID:22563330

  15. Ca2+-permeable AMPA receptors in mouse olfactory bulb astrocytes

    PubMed Central

    Droste, Damian; Seifert, Gerald; Seddar, Laura; Jädtke, Oliver; Steinhäuser, Christian; Lohr, Christian

    2017-01-01

    Ca2+ signaling in astrocytes is considered to be mainly mediated by metabotropic receptors linked to intracellular Ca2+ release. However, recent studies demonstrate a significant contribution of Ca2+ influx to spontaneous and evoked Ca2+ signaling in astrocytes, suggesting that Ca2+ influx might account for astrocytic Ca2+ signaling to a greater extent than previously thought. Here, we investigated AMPA-evoked Ca2+ influx into olfactory bulb astrocytes in mouse brain slices using Fluo-4 and GCaMP6s, respectively. Bath application of AMPA evoked Ca2+ transients in periglomerular astrocytes that persisted after neuronal transmitter release was inhibited by tetrodotoxin and bafilomycin A1. Withdrawal of external Ca2+ suppressed AMPA-evoked Ca2+ transients, whereas depletion of Ca2+ stores had no effect. Both Ca2+ transients and inward currents induced by AMPA receptor activation were partly reduced by Naspm, a blocker of Ca2+-permeable AMPA receptors lacking the GluA2 subunit. Antibody staining revealed a strong expression of GluA1 and GluA4 and a weak expression of GluA2 in periglomerular astrocytes. Our results indicate that Naspm-sensitive, Ca2+-permeable AMPA receptors contribute to Ca2+ signaling in periglomerular astrocytes in the olfactory bulb. PMID:28322255

  16. SNP genotypes of olfactory receptor genes associated with olfactory ability in German Shepherd dogs.

    PubMed

    Yang, M; Geng, G-J; Zhang, W; Cui, L; Zhang, H-X; Zheng, J-L

    2016-04-01

    To find out the relationship between SNP genotypes of canine olfactory receptor genes and olfactory ability, 28 males and 20 females from German Shepherd dogs in police service were scored by odor detection tests and analyzed using the Beckman GenomeLab SNPstream. The representative 22 SNP loci from the exonic regions of 12 olfactory receptor genes were investigated, and three kinds of odor (human, ice drug and trinitrotoluene) were detected. The results showed that the SNP genotypes at the OR10H1-like:c.632C>T, OR10H1-like:c.770A>T, OR2K2-like:c.518G>A, OR4C11-like:c.511T>G and OR4C11-like:c.692G>A loci had a statistically significant effect on the scenting abilities (P < 0.001). The kind of odor influenced the performances of the dogs (P < 0.001). In addition, there were interactions between genotype and the kind of odor at the following loci: OR10H1-like:c.632C>T, OR10H1-like:c.770A>T, OR4C11-like:c.511T>G and OR4C11-like:c.692G>A (P < 0.001). The dogs with genotype CC at the OR10H1-like:c.632C>T, genotype AA at the OR10H1-like:c.770A>T, genotype TT at the OR4C11-like:c.511T>G and genotype GG at the OR4C11-like:c.692G>A loci did better at detecting the ice drug. We concluded that there was linkage between certain SNP genotypes and the olfactory ability of dogs and that SNP genotypes might be useful in determining dogs' scenting potential.

  17. Molecular Cooperativity Governs Diverse and Monoallelic Olfactory Receptor Expression

    NASA Astrophysics Data System (ADS)

    Xing, Jianhua; Tian, Xiaojun; Zhang, Hang; Sannerud, Jens

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at organism level the types of expressed ORs need to be maximized. The molecular mechanism of this Nobel-Prize winning puzzle remains unresolved after decades of extensive studies. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and proposed an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic and enhancer competition coupled to a negative feedback loop. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression. The model is validated by several experimental results, and particularly underscores cooperativity and synergy as a general design principle of multi-objective optimization in biology. The work is supported by the NIGMS/DMS Mathematical Biology program.

  18. Differential Contributions of Olfactory Receptor Neurons in a Drosophila Olfactory Circuit

    PubMed Central

    Newquist, Gunnar; Novenschi, Alexandra; Kohler, Donovan

    2016-01-01

    Abstract The ability of an animal to detect, discriminate, and respond to odors depends on the functions of its olfactory receptor neurons (ORNs). The extent to which each ORN, upon activation, contributes to chemotaxis is not well understood. We hypothesized that strong activation of each ORN elicits a different behavioral response in the Drosophila melanogaster larva by differentially affecting the composition of its navigational behavior. To test this hypothesis, we exposed Drosophila larvae to specific odorants to analyze the effect of individual ORN activity on chemotaxis. We used two different behavioral paradigms to analyze the chemotaxis response of larvae to odorants. When tested with five different odorants that elicit strong physiological responses from single ORNs, larval behavioral responses toward each odorant differed in the strength of attraction as well as in the composition of discrete navigational elements, such as runs and turns. Further, behavioral responses to odorants did not correlate with either the strength of odor gradients tested or the sensitivity of each ORN to its cognate odorant. Finally, we provide evidence that wild-type larvae with all ORNs intact exhibit higher behavioral variance than mutant larvae that have only a single pair of functional ORNs. We conclude that individual ORNs contribute differently to the olfactory circuit that instructs chemotactic responses. Our results, along with recent studies from other groups, suggest that ORNs are functionally nonequivalent units. These results have implications for understanding peripheral odor coding. PMID:27570823

  19. Diverse systems for pheromone perception: multiple receptor families in two olfactory systems.

    PubMed

    Hagino-Yamagishi, Kimiko

    2008-12-01

    Traditionally, the olfactory epithelium is considered to recognize conventional odors, while the vomeronasal organ detects pheromones. However, recent advances suggest that vertebrate pheromones can also be detected by the olfactory epithelium. In the vomeronasal organ and the olfactory epithelium, structurally distinct multiple receptor families are expressed. In rodents, two of these receptor families, V1R and V2R, are expressed specifically in the vomeronasal organ and detect pheromones and pheromone candidates. A newly isolated trace amine-associated receptor detects some of the putative pheromones in the mouse olfactory epithelium. In addition, distinct second-messenger pathways and neural circuits are used for pheromone perception mediated by each receptor family. Furthermore, the function of these receptor families in these olfactory organs appears to differ among various vertebrate species. The systems for pheromone perception in vertebrates are far more complex than previously predicted.

  20. Expression Profile of Ectopic Olfactory Receptors Determined by Deep Sequencing

    PubMed Central

    Flegel, Caroline; Manteniotis, Stavros; Osthold, Sandra; Hatt, Hanns; Gisselmann, Günter

    2013-01-01

    Olfactory receptors (ORs) provide the molecular basis for the detection of volatile odorant molecules by olfactory sensory neurons. The OR supergene family encodes G-protein coupled proteins that belong to the seven-transmembrane-domain receptor family. It was initially postulated that ORs are exclusively expressed in the olfactory epithelium. However, recent studies have demonstrated ectopic expression of some ORs in a variety of other tissues. In the present study, we conducted a comprehensive expression analysis of ORs using an extended panel of human tissues. This analysis made use of recent dramatic technical developments of the so-called Next Generation Sequencing (NGS) technique, which encouraged us to use open access data for the first comprehensive RNA-Seq expression analysis of ectopically expressed ORs in multiple human tissues. We analyzed mRNA-Seq data obtained by Illumina sequencing of 16 human tissues available from Illumina Body Map project 2.0 and from an additional study of OR expression in testis. At least some ORs were expressed in all the tissues analyzed. In several tissues, we could detect broadly expressed ORs such as OR2W3 and OR51E1. We also identified ORs that showed exclusive expression in one investigated tissue, such as OR4N4 in testis. For some ORs, the coding exon was found to be part of a transcript of upstream genes. In total, 111 of 400 OR genes were expressed with an FPKM (fragments per kilobase of exon per million fragments mapped) higher than 0.1 in at least one tissue. For several ORs, mRNA expression was verified by RT-PCR. Our results support the idea that ORs are broadly expressed in a variety of tissues and provide the basis for further functional studies. PMID:23405139

  1. Tonic and Phasic Receptor Neurons in the Vertebrate Olfactory Epithelium

    PubMed Central

    Madrid, Rodolfo; Sanhueza, Magdalena; Alvarez, Osvaldo; Bacigalupo, Juan

    2003-01-01

    Olfactory receptor neurons (ORNs) respond to odorants with characteristic patterns of action potentials that are relevant for odor coding. Prolonged odorant exposures revealed three populations of dissociated toad ORNs, which were mimicked by depolarizing currents: tonic (TN, displaying sustained firing, 49% of 102 cells), phasic (PN, exhibiting brief action potential trains, 36%) and intermediate neurons (IN, generating trains longer than PN, 15%). We studied the biophysical properties underlying the differences between TNs and PNs, the most extreme cases among ORNs. TNs and PNs possessed similar membrane capacitances (∼4 pF), but they differed in resting potential (−82 versus −64 mV), input resistance (4.2 versus 2.9 GΩ) and unspecific current, Iu (TNs: 0 < Iu ≤ 1 pA/pF; and PNs: Iu > 1 pA/pF). Firing behavior did not correlate with differences in voltage-gated conductances. We developed a mathematical model that accurately simulates tonic and phasic patterns. Whole cell recordings from rat ORNs in fragments (∼4 mm2) of olfactory epithelium showed that such a tissue normally contains tonic and phasic receptor neurons, suggesting that this feature is common across a wide range of vertebrates. Our findings show that the individual passive electrical properties can govern the firing patterns of ORNs. PMID:12770919

  2. Making scent of the presence and local translation of odorant receptor mRNAs in olfactory axons.

    PubMed

    Dubacq, Caroline; Fouquet, Coralie; Trembleau, Alain

    2014-03-01

    Rodents contain in their genome more than 1000 functional odorant receptor genes, which are specifically expressed by the olfactory sensory neurons projecting from the olfactory epithelium to the olfactory bulb. Strong evidence for the presence and local translation of odorant receptor mRNAs in the axon of olfactory sensory neurons was obtained, but no function has been assigned to these axonal mRNAs yet. The aim of this review is to discuss the evidence for the presence and local translation of odorant receptor mRNAs in olfactory sensory axons, and to speculate on their possible function in the wiring of the mouse olfactory sensory projections.

  3. The mannose receptor is expressed by olfactory ensheathing cells in the rat olfactory bulb.

    PubMed

    Carvalho, Litia A; Nobrega, Alberto F; Soares, Igor D P; Carvalho, Sergio L; Allodi, Silvana; Baetas-da-Cruz, Wagner; Cavalcante, Leny A

    2013-12-01

    Complex carbohydrate structures are essential molecules of infectious bacteria, parasites, and host cells and are involved in cell signaling associated with immune responses, glycoprotein homeostasis, and cell migration. The uptake of mannose-tailed glycans is usually carried out by professional phagocytes to trigger MHC class I- and MHC class II-restricted antigen presentation or, alternatively, to end inflammation. We have detected the mannose receptor (MR) in cultured olfactory ensheathing cells (OECs), so we investigated by flow cytometry whether recently dissociated cells of the olfactory bulb (OB) nerve fiber layer (ONL) could bind a mannosylated ligand (fluorescein conjugate of mannosyl bovine serum albumin; Man/BSA-FITC) in a specific manner. In addition, we estimated the relative proportion of ONL OECs, microglia, and astrocytes, tagged by 2'3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), by the B4 isolectin of Griffonia simplicifonia (IB4), and by glial fibrillary acidic protein (GFAP), respectively, that were Man/BSA-FITC(+) . We also determined by histochemistry and/or immunohistochemistry whether Man/BSA-FITC or an anti-MR antibody (anti-C-terminal MR peptide; anti-cMR) labeled OECs and/or parenchymal microglia. In addition, we confirmed by Western blot with the K1K2 (against the entire MR molecule) antibody that a band of about 180 kDA is expressed in the OB. Our findings are compatible with a prospective sentinel role of OECs against pathogens of the upper airways and/or damage-associated glycidic patterns as well as with homeostasis of OB mannosylated glycoproteins.

  4. Olfactory Bulb Glomerular NMDA Receptors Mediate Olfactory Nerve Potentiation and Odor Preference Learning in the Neonate Rat

    PubMed Central

    Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular dishinhibtion also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABAA receptor agonist. A glomerular GABAA receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning. PMID:22496886

  5. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat.

    PubMed

    Lethbridge, Rebecca; Hou, Qinlong; Harley, Carolyn W; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A) receptor agonist. A glomerular GABA(A) receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.

  6. Computational Approaches for Decoding Select Odorant-Olfactory Receptor Interactions Using Mini-Virtual Screening

    PubMed Central

    Harini, K.; Sowdhamini, Ramanathan

    2015-01-01

    Olfactory receptors (ORs) belong to the class A G-Protein Coupled Receptor superfamily of proteins. Unlike G-Protein Coupled Receptors, ORs exhibit a combinatorial response to odors/ligands. ORs display an affinity towards a range of odor molecules rather than binding to a specific set of ligands and conversely a single odorant molecule may bind to a number of olfactory receptors with varying affinities. The diversity in odor recognition is linked to the highly variable transmembrane domains of these receptors. The purpose of this study is to decode the odor-olfactory receptor interactions using in silico docking studies. In this study, a ligand (odor molecules) dataset of 125 molecules was used to carry out in silico docking using the GLIDE docking tool (SCHRODINGER Inc Pvt LTD). Previous studies, with smaller datasets of ligands, have shown that orthologous olfactory receptors respond to similarly-tuned ligands, but are dramatically different in their efficacy and potency. Ligand docking results were applied on homologous pairs (with varying sequence identity) of ORs from human and mouse genomes and ligand binding residues and the ligand profile differed among such related olfactory receptor sequences. This study revealed that homologous sequences with high sequence identity need not bind to the same/ similar ligand with a given affinity. A ligand profile has been obtained for each of the 20 receptors in this analysis which will be useful for expression and mutation studies on these receptors. PMID:26221959

  7. Databases in SenseLab for the Genomics, Protemics, and Function of Olfactory Receptors

    PubMed Central

    Marenco, Luis N.; Bahl, Gautam; Hyland, Lorra; Shi, Jing; Wang, Rixin; Lai, Peter C.; Miller, Perry L.; Shepherd, Gordon M.; Crasto, Chiquito J.

    2013-01-01

    We present here, the salient aspects of three databases: Olfactory Receptor Database (ORDB) is a repository of genomics and proteomics information of ORs; OdorDB stores information related to odorous compounds, specifically identitying those that have been shown to interact with olfactory rectors; and OdorModelDB disseminates information related to computational models of olfactory receptors (ORs). The data stored among these databases is integrated. Presented in this chapter are descriptions of these resources, which are part of the SenseLab suite of databases, a discussion of the computational infrastructure that enhances the efficacy of information storage, retrieval, dissemination, and automated data population from external sources. PMID:23585030

  8. fMRI study of the role of glutamate NMDA receptor in the olfactory adaptation in rats: Insights into cellular and molecular mechanisms of olfactory adaptation.

    PubMed

    Zhao, Fuqiang; Wang, Xiaohai; Zariwala, Hatim A; Uslaner, Jason M; Houghton, Andrea K; Evelhoch, Jeffrey L; Hostetler, Eric; Winkelmann, Christopher T; Hines, Catherine D G

    2017-02-03

    Olfactory adaptation, characterized by attenuation of response to repeated odor stimulations or continuous odor exposure, is an intrinsic feature of olfactory processing. Adaptation can be induced by either "synaptic depression" due to depletion of neurotransmitters, or "enhanced inhibition" onto principle neurons by local inhibitory interneurons in olfactory structures. It is not clear which mechanism plays a major role in olfactory adaptation. More importantly, molecular sources of enhanced inhibition have not been identified. In this study, olfactory responses to either repeated 40-s stimulations with interstimulus intervals (ISI) of 140-s or 30-min, or a single prolonged 200-s stimulus were measured by fMRI in different naïve rats. Olfactory adaptations in the olfactory bulb (OB), anterior olfactory nucleus (AON), and piriform cortex (PC) were observed only with repeated 40-s odor stimulations, and no olfactory adaptations were detected during the prolonged 200-s stimulation. Interestingly, in responses to repeated 40-s odor stimulations in the PC, the first odor stimulation induced positive activations, and odor stimulations under adapted condition induced negative activations. The negative activations suggest that "sparse coding" and "global inhibition" are the characteristics of olfactory processing in PC, and the global inhibition manifests only under an adapted condition, not a naïve condition. Further, we found that these adaptations were NMDA receptor dependent; an NMDA receptor antagonist (MK801) blocked the adaptations. Based on the mechanism that glutamate NMDA receptor plays a role in the inhibition onto principle neurons by interneurons, our data suggest that the olfactory adaptations are caused by enhanced inhibition from interneurons. Combined with the necessity of the interruption of odor stimulation to observe the adaptations, the molecular source for the enhanced inhibition is most likely an increased glutamate release from presynaptic

  9. Amino Acid- vs. Peptide-Odorants: Responses of Individual Olfactory Receptor Neurons in an Aquatic Species

    PubMed Central

    Hassenklöver, Thomas; Pallesen, Lars P.; Schild, Detlev; Manzini, Ivan

    2012-01-01

    Amino acids are widely used waterborne olfactory stimuli proposed to serve as cues in the search for food. In natural waters the main source of amino acids is the decomposition of proteins. But this process also produces a variety of small peptides as intermediate cleavage products. In the present study we tested whether amino acids actually are the natural and adequate stimuli for the olfactory receptors they bind to. Alternatively, these olfactory receptors could be peptide receptors which also bind amino acids though at lower affinity. Employing calcium imaging in acute slices of the main olfactory epithelium of the fully aquatic larvae of Xenopus laevis we show that amino acids, and not peptides, are more effective waterborne odorants. PMID:23300867

  10. Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems.

    PubMed

    Corin, Karolina; Baaske, Philipp; Ravel, Deepali B; Song, Junyao; Brown, Emily; Wang, Xiaoqiang; Wienken, Christoph J; Jerabek-Willemsen, Moran; Duhr, Stefan; Luo, Yuan; Braun, Dieter; Zhang, Shuguang

    2011-01-01

    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.

  11. Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb

    PubMed Central

    Ma, Jie; Lowe, Graeme

    2007-01-01

    Glomeruli are functional units of the olfactory bulb responsible for early processing of odor information encoded by single olfactory receptor genes. Glomerular neural circuitry includes numerous external tufted (ET) cells whose rhythmic burst firing may mediate synchronization of bulbar activity with the inhalation cycle. Bursting is entrained by glutamatergic input from olfactory nerve terminals, so specific properties of ionotropic glutamate receptors on ET cells are likely to be important determinants of olfactory processing. Particularly intriguing is recent evidence that α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors of juxta-glomerular neurons may permeate calcium. This could provide a novel pathway for regulating ET cell signaling. We tested the hypothesis that ET cells express functional calcium-permeable AMPA receptors. In rat olfactory bulb slices, excitatory postsynaptic currents (EPSCs) in ET cells were evoked by olfactory nerve shock, and by uncaging glutamate. We found attenuation of AMPA/kainate EPSCs by 1-naphthyl acetyl-spermine (NAS), an open-channel blocker specific for calcium permeable AMPA receptors. Cyclothiazide strongly potentiated EPSCs, indicating a major contribution from AMPA receptors. The current-voltage (I-V) relation of uncaging EPSCs showed weak inward rectification which was lost after > ~ 10 min of whole-cell dialysis, and was absent in NAS. In kainate-stimulated slices, Co2+ ions permeated cells of the glomerular layer. Large AMPA EPSCs were accompanied by fluorescence signals in fluo-4 loaded cells, suggesting calcium permeation. Depolarizing pulses evoked slow tail currents with pharmacology consistent with involvement of calcium permeable AMPA autoreceptors. Tail currents were abolished by Cd2+ and NBQX, and were sensitive to NAS block. Glutamate autoreceptors were confirmed by uncaging intracellular calcium to evoke a large inward current. Our results provide evidence that calcium permeable AMPA

  12. Low Expression in Xenopus Oocytes and Unusual Functional Properties of α1β2γ2 GABAA Receptors with Non-Conventional Subunit Arrangement

    PubMed Central

    Baur, Roland; Sigel, Erwin

    2017-01-01

    The major subunit isoform of GABAA receptors is α1β2γ2. The subunits are thought to surround an ion pore with the counterclockwise arrangement α1γ2β2α1β2 as seen from the outside of the neuron. These receptors have two agonist sites and one high affinity drug binding site specific for benzodiazepines. Recently, this receptor was postulated to assume alternative subunit stoichiometries and arrangements resulting in only one agonist site and one or even two sites for benzodiazepines. In order to force a defined subunit arrangement we expressed a combination of triple and dual concatenated subunits. Here we report that these unconventional receptors express only small current amplitudes in Xenopus oocytes. We determined agonist properties and modulation by diazepam of two of these receptors that resulted in currents large enough for a characterization, that is, β2-α1-γ2/α1-γ2 and β2-α1-γ2/β2-γ2. The first pentamer predicted to have two benzodiazepine binding sites shows similar response to diazepam as the standard receptor. As expected for both receptors with a single predicted agonist site the concentration response curves for GABA were characterized by a Hill coefficient < 1. β2-α1-γ2/β2-γ2 displayed a mM apparent GABA affinity for channel opening instead of the expected μM affinity. Based on their subunit and binding site stoichiometry, that contradicts all previous observations, their unusual functional properties and their very low expression levels in oocytes, we consider it unlikely that these unconventional receptors are expressed in neurons to an appreciable extent. PMID:28114407

  13. Functional asymmetries in cockroach ON and OFF olfactory receptor neurons.

    PubMed

    Burgstaller, Maria; Tichy, Harald

    2011-02-01

    The ON and OFF olfactory receptor neurons (ORNs) on the antenna of the American cockroach respond to the same changes in the concentration of the odor of lemon oil, but in the opposite direction. The same jump in concentration raises impulse frequency in the ON and lowers it in the OFF ORN and, conversely, the same concentration drop raises impulse frequency in the OFF and lowers it in the ON ORN. When the new concentration level is maintained, it becomes a background concentration and affects the responses of the ON and OFF ORNs to superimposed changes. Raising the background concentration decreases both the ON-ORN's response to concentration jumps and the OFF-ORN's response to concentration drops. In addition, the slopes of the functions approximating the relationship of impulse frequency to concentration changes become flatter for both types of ORNs as the background concentration rises. The progressively compressed scaling optimizes the detection of concentration changes in the low concentration range. The loss of information caused by the lower differential sensitivity in the high concentration range is partially compensated by the higher discharge rates of the OFF ORNs. The functional asymmetry of the ON and OFF ORNs, which reflects nonlinearity in the detection of changes in the concentration of the lemon oil odor, improves information transfer for decrements in the high concentration range.

  14. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa

    PubMed Central

    Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Osthold, Sandra; Veitinger, Sophie; Becker, Christian; Brockmeyer, Norbert H.; Muschol, Michael; Wennemuth, Gunther; Altmüller, Janine; Hatt, Hanns; Gisselmann, Günter

    2016-01-01

    The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs) are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicates that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa. PMID:26779489

  15. Detection of Volatile Indicators of Illicit Substances by the Olfactory Receptors of Drosophila melanogaster

    PubMed Central

    Marshall, Brenton; Warr, Coral G.

    2010-01-01

    Insects can detect a large range of odors with a numerically simple olfactory system that delivers high sensitivity and accurate discrimination. Therefore, insect olfactory receptors hold great promise as biosensors for detection of volatile organic chemicals in a range of applications. The array of olfactory receptor neurons of Drosophila melanogaster is rapidly becoming the best-characterized natural nose. We have investigated the suitability of Drosophila receptors as detectors for volatiles with applications in law enforcement, emergency response, and security. We first characterized responses of the majority of olfactory neuron types to a set of diagnostic odorants. Being thus able to correctly identify neurons, we then screened for responses from 38 different types of neurons to 35 agents. We identified 13 neuron types with responses to 13 agents. As individual Drosophila receptor genes have been mapped to neuron types, we can infer which genes confer responsiveness to the neurons. The responses were confirmed for one receptor by expressing it in a nonresponsive neuron. The fly olfactory system is mainly adapted to detect volatiles from fermenting fruits. However, our findings establish that volatiles associated with illicit substances, many of which are of nonnatural origin, are also detected by Drosophila receptors. PMID:20530374

  16. The human olfactory receptor 17-40: requisites for fitting into the binding pocket.

    PubMed

    Anselmi, Cecilia; Buonocore, Anna; Centini, Marisanna; Facino, Roberto Maffei; Hatt, Hanns

    2011-06-01

    To gain structural insight on the interactions between odorants and the human olfactory receptor, we did homology modelling of the receptor structure, followed by molecular docking simulation with ligands. Molecular dynamics simulation on the structures resulting from docking served to estimate the binding free energy of the various odorant families. A correlation with the odorous properties of the ligands is proposed. We also investigated which residues were involved in the binding of a set of properly synthesised ligands and which were required for fitting inside the binding pocket. Olfactive stimulation of the olfactory receptor with odorous molecules was also investigated, using calcium imaging or electrophysiological recordings.

  17. Modulatory Effects of Sex Steroids Progesterone and Estradiol on Odorant Evoked Responses in Olfactory Receptor Neurons

    PubMed Central

    Scholz, Paul; Mohrhardt, Julia; Gisselmann, Günter; Hatt, Hanns

    2016-01-01

    The influence of the sex steroid hormones progesterone and estradiol on physiology and behavior during menstrual cycles and pregnancy is well known. Several studies indicate that olfactory performance changes with cyclically fluctuating steroid hormone levels in females. Knowledge of the exact mechanisms behind how female sex steroids modulate olfactory signaling is limited. A number of different known genomic and non-genomic actions that are mediated by progesterone and estradiol via interactions with different receptors may be responsible for this modulation. Next generation sequencing-based RNA-Seq transcriptome data from the murine olfactory epithelium (OE) and olfactory receptor neurons (ORNs) revealed the expression of several membrane progestin receptors and the estradiol receptor Gpr30. These receptors are known to mediate rapid non-genomic effects through interactions with G proteins. RT-PCR and immunohistochemical staining results provide evidence for progestin and estradiol receptors in the ORNs. These data support the hypothesis that steroid hormones are capable of modulating the odorant-evoked activity of ORNs. Here, we validated this hypothesis through the investigation of steroid hormone effects by submerged electro-olfactogram and whole cell patch-clamp recordings of ORNs. For the first time, we demonstrate that the sex steroid hormones progesterone and estradiol decrease odorant-evoked signals in the OE and ORNs of mice at low nanomolar concentrations. Thus, both of these sex steroids can rapidly modulate the odor responsiveness of ORNs through membrane progestin receptors and the estradiol receptor Gpr30. PMID:27494699

  18. Olfactory Receptor Gene Polymorphisms and Nonallergic Vasomotor Rhinitis

    PubMed Central

    Bernstein, Jonathan A.; Zhang, Ge; Jin, Li; Abbott, Carol; Nebert, Daniel W.

    2009-01-01

    We sought a genotype-phenotype association: between single-nucleotide polymorphisms (SNPs) in olfactory receptor (OR) genes from the two largest OR gene clusters and odor-triggered nonallergic vasomotor rhinitis (nVMR). In the initial pedigree screen, using transmission disequilibrium test (TDT) analysis, six SNPs showed “significant” p-values between 0.0449 and 0.0043. In a second case-control population, the previously identified six SNPs did not re-emerge, whereas four new SNPs showed p-values between 0.0490 and 0.0001. Combining both studies, none of the SNPs in the TDT analysis survived the Bonferroni correction. In the population study, one SNP showed an empirical p-value of 0.0066 by shuffling cases and controls with 105 replicates; however, the p-value for this SNP was 0.83 in the pedigree study. This study emphasizes that underpowered studies having p-values between <0.05 and 0.0001 should be regarded as inconclusive and require further replication before concluding the study is “informative.” However, we believe that our hypothesis that an association between OR genotypes and the nVMR phenotype remains feasible. Future studies using either a genomewide association study of all OR gene-pseudogene regions throughout the genome—at the current recommended density of 2.5 to 5 kb per tag SNP—or studies incorporating microarray analyses of the entire “OR genome” in well-characterized nVMR patients are required. PMID:18446592

  19. Evidence for increased olfactory receptor gene repertoire size in two nocturnal bird species with well-developed olfactory ability

    PubMed Central

    Steiger, Silke S; Fidler, Andrew E; Kempenaers, Bart

    2009-01-01

    Background In vertebrates, the molecular basis of the sense of smell is encoded by members of a large gene family, namely olfactory receptor (OR) genes. Both the total number of OR genes and the proportion of intact OR genes in a genome may indicate the importance of the sense of smell for an animal. There is behavioral, physiological, and anatomical evidence that some bird species, in particular nocturnal birds, have a well developed sense of smell. Therefore, we hypothesized that nocturnal birds with good olfactory abilities have evolved (i) more OR genes and (ii) more intact OR genes than closely related and presumably less 'olfaction-dependent' day-active avian taxa. Results We used both non-radioactive Southern hybridization and PCR with degenerate primers to investigate whether two nocturnal bird species that are known to rely on olfactory cues, the brown kiwi (Apteryx australis) and the kakapo (Strigops habroptilus), have evolved a larger OR gene repertoire than their day-active, closest living relatives (for kiwi the emu Dromaius novaehollandiae, rhea Rhea americana, and ostrich Struthio camelus and for kakapo the kaka Nestor meridionalis and kea Nestor notabilis). We show that the nocturnal birds did not have a significantly higher proportion of intact OR genes. However, the estimated total number of OR genes was larger in the two nocturnal birds than in their relatives. Conclusion Our results suggest that ecological niche adaptations such as daily activity patterns may have shaped avian OR gene repertoires. PMID:19467156

  20. Drosophila olfactory receptors as classifiers for volatiles from disparate real world applications.

    PubMed

    Nowotny, Thomas; de Bruyne, Marien; Berna, Amalia Z; Warr, Coral G; Trowell, Stephen C

    2014-10-14

    Olfactory receptors evolved to provide animals with ecologically and behaviourally relevant information. The resulting extreme sensitivity and discrimination has proven useful to humans, who have therefore co-opted some animals' sense of smell. One aim of machine olfaction research is to replace the use of animal noses and one avenue of such research aims to incorporate olfactory receptors into artificial noses. Here, we investigate how well the olfactory receptors of the fruit fly, Drosophila melanogaster, perform in classifying volatile odourants that they would not normally encounter. We collected a large number of in vivo recordings from individual Drosophila olfactory receptor neurons in response to an ecologically relevant set of 36 chemicals related to wine ('wine set') and an ecologically irrelevant set of 35 chemicals related to chemical hazards ('industrial set'), each chemical at a single concentration. Resampled response sets were used to classify the chemicals against all others within each set, using a standard linear support vector machine classifier and a wrapper approach. Drosophila receptors appear highly capable of distinguishing chemicals that they have not evolved to process. In contrast to previous work with metal oxide sensors, Drosophila receptors achieved the best recognition accuracy if the outputs of all 20 receptor types were used.

  1. Induction of an Olfactory Memory by the Activation of a Metabotropic Glutamate Receptor

    NASA Astrophysics Data System (ADS)

    Kaba, Hideto; Hayashi, Yasunori; Higuchi, Takashi; Nakanishi, Shigetada

    1994-07-01

    Female mice form an olfactory memory of male pheromones at mating; exposure to the pheromones of a strange male after that mating will block pregnancy. The formation of this memory is mediated by the accessory olfactory system, in which an increase in norepinephrine after mating reduces inhibitory transmission of γ-aminobutyric acid from the granule cells to the mitral cells. This study shows that the activation of mGluR2, a metabotropic glutamate receptor that suppresses the γ-aminobutyric acid inhibition of the mitral cells, permits the formation of a specific olfactory memory without the occurrence of mating by infusion of mGluR2 agonists into the female's accessory olfactory bulb. This memory faithfully reflects the memory formed at mating.

  2. GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb.

    PubMed

    Wellis, D P; Kauer, J S

    1993-09-01

    1. Whole-cell patch clamp and optical recording techniques were applied to the same in vitro salamander olfactory bulb preparations to study the postsynaptic responses of single mitral/tufted cells in the context of the surrounding neural activity in which they are embedded. Mitral/tufted cells were identified by intracellular filling with biocytin. 2. Single mitral/tufted cells were under a tonic GABAA receptor-mediated inhibitory influence as revealed by the recording of bicuculline methiodide (BMI)/picrotoxin-sensitive inhibitory postsynaptic currents (IPSCs) in symmetrical chloride conditions at a holding potential of -70 mV. Depolarizing voltage steps (100 ms) applied to single cells or electrical stimulation of the olfactory nerve or medial olfactory tract evoked a prolonged increase in the frequency of GABAergic IPSCs. 3. The frequency of spontaneous and driven IPSCs was reduced with application of the glutamate receptor antagonists 6-cyano-2,3-dihydroxy-7-nitro-quionoxaline (CNQX) or 2-amino-5-phosphonopentanoic acid (AP5) whereas olfactory nerve- or medial olfactory tract-driven IPSC frequency was enhanced with removal of bathing Mg2+, indicating that GABAergic interneurones were driven by mitral/tufted cells at both non-NMDA and NMDA receptors. 4. Olfactory nerve or medial olfactory tract stimulation evoked widely distributed changes in fluorescence in preparations stained with the voltage-sensitive dye RH414. The optical response predominantly consisted of a decrease in fluorescence, indicative of depolarization. The presence of the dye did not obviously affect mitral/tufted cell postsynaptic responses. 5. BMI enhanced the amplitude and duration of optical signals related to depolarization within the bulb and in regions central to the bulb. In the presence of BMI, depolarizing activity appeared to spread hundreds of micrometres into regions of the bulb not activated in control conditions showing explicitly that GABAA receptors in the bulb participate in

  3. An odorant-suppressed Cl- conductance in lobster olfactory receptor cells.

    PubMed

    Doolin, R E; Zhainazarov, A B; Ache, B W

    2001-07-01

    Odorants evoke an outward current in cultured lobster olfactory receptor neurons voltage clamped at -60 mV. The reversal potential of the outward current is independent of the reversal potential of potassium, but shifts with imposed changes in the reversal potential of chloride. The slope of the current-voltage relationship is negative, suggesting that the current is mediated by the odorant suppressing a steady-state conductance. Anthracene-9-carboxylic acid, a specific chloride channel blocker, reversibly inhibits the steady-state conductance. Local application of odorants to the outer dendrites evokes a hyperpolarizing receptor potential in lobster olfactory receptor neurons current-clamped at -70 mV in situ. Consistent with the current characterized in the cultured cells, hyperpolarizing receptor potentials in some cells are voltage sensitive, blocked by anthracene-9-carboxylic acid and associated with a decrease in membrane conductance. These results support the hypothesis that odorants suppress a steady-state chloride conductance in lobster olfactory receptor neurons. Evidence that the chloride conductance can coexist with a 4-aminopyridine-blockable potassium conductance reported earlier in these cells suggests that two distinct mechanisms can mediate odorant-evoked inhibition in lobster olfactory receptor neurons.

  4. Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice

    PubMed Central

    Sharma, Ruchira; Ishimaru, Yoshiro; Davison, Ian; Ikegami, Kentaro; Chien, Ming-Shan; You, Helena; Chi, Quiyi; Kubota, Momoka; Yohda, Masafumi; Ehlers, Michael; Matsunami, Hiroaki

    2017-01-01

    Each of the olfactory sensory neurons (OSNs) chooses to express a single G protein-coupled olfactory receptor (OR) from a pool of hundreds. Here, we show the receptor transporting protein (RTP) family members play a dual role in both normal OR trafficking and determining OR gene choice probabilities. Rtp1 and Rtp2 double knockout mice (RTP1,2DKO) show OR trafficking defects and decreased OSN activation. Surprisingly, we discovered a small subset of the ORs are expressed in larger numbers of OSNs despite the presence of fewer total OSNs in RTP1,2DKO. Unlike typical ORs, some overrepresented ORs show robust cell surface expression in heterologous cells without the co-expression of RTPs. We present a model in which developing OSNs exhibit unstable OR expression until they choose to express an OR that exits the ER or undergo cell death. Our study sheds light on the new link between OR protein trafficking and OR transcriptional regulation. DOI: http://dx.doi.org/10.7554/eLife.21895.001 PMID:28262096

  5. Epigenetic regulation of olfactory receptor gene expression by the Myb–MuvB/dREAM complex

    PubMed Central

    Sim, Choon Kiat; Perry, Sarah; Tharadra, Sana Khalid; Lipsick, Joseph S.; Ray, Anandasankar

    2012-01-01

    In both mammals and insects, an olfactory neuron will usually select a single olfactory receptor and repress remaining members of large receptor families. Here we show that a conserved multiprotein complex, Myb–MuvB (MMB)/dREAM, plays an important role in mediating neuron-specific expression of the carbon dioxide (CO2) receptor genes (Gr63a/Gr21a) in Drosophila. Activity of Myb in the complex is required for expression of Gr63a/Gr21a and acts in opposition to the histone methyltransferase Su(var)3-9. Consistent with this, we observed repressive dimethylated H3K9 modifications at the receptor gene loci, suggesting a mechanism for silencing receptor gene expression. Conversely, other complex members, Mip120 (Myb-interacting protein 120) and E2F2, are required for repression of Gr63a in inappropriate neurons. Misexpression in mutants is accompanied by an increase in the H3K4me3 mark of active chromatin at the receptor gene locus. Nuclei of CO2 receptor-expressing neurons contain reduced levels of the repressive subunit Mip120 compared with surrounding neurons and increased levels of Myb, suggesting that activity of the complex can be regulated in a cell-specific manner. Our evidence suggests a model in which olfactory receptors are regulated epigenetically and the MMB/dREAM complex plays a critical role in specifying, maintaining, and modulating the receptor-to-neuron map. PMID:23105004

  6. Positive Allosteric Modulation of Insect Olfactory Receptor Function by ORco Agonists

    PubMed Central

    Tsitoura, Panagiota; Iatrou, Kostas

    2016-01-01

    Insect olfactory receptors (ORs) are heteromeric ligand-gated cation channels composed of a common olfactory receptor subunit (ORco) and a variable subunit (ORx) of as yet unknown structures and undetermined stoichiometries. In this study, we examined the allosteric modulation exerted on Anopheles gambiae heteromeric ORx/ORco olfactory receptors in vitro by a specific class of ORco agonists (OAs) comprising ORcoRAM2 and VUAA1. High OA concentrations produced stronger functional responses in cells expressing heteromeric receptor channels relative to cells expressing ORco alone. These OA-induced responses of ORx/ORco channels were also notably much stronger than those obtained upon administration of ORx-specific ligands to the same receptors. Most importantly, small concentrations of OAs were found to act as strong potentiators of ORx/ORco function, increasing dramatically both the efficacy and potency of ORx-specific odorants. These results suggest that insect heteromeric ORs are highly dynamic complexes adopting different conformations that change in a concerted fashion as a result of the interplay between the subunits of the oligomeric assemblies, and that allosteric modulation may constitute an important element in the modulation and fining tuning of olfactory reception function. PMID:28018173

  7. Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning.

    PubMed

    Devore, Sasha; de Almeida, Licurgo; Linster, Christiane

    2014-08-20

    The olfactory bulb (OB) and piriform cortex receive dense cholinergic projections from the basal forebrain. Cholinergic modulation within the piriform cortex has long been proposed to serve important functions in olfactory learning and memory. We here investigate how olfactory discrimination learning is regulated by cholinergic modulation of the OB inputs to the piriform cortex. We examined rats' performance on a two-alternative choice odor discrimination task following local, bilateral blockade of cholinergic nicotinic and/or muscarinic receptors in the OB. Results demonstrate that acquisition, but not recall, of novel discrimination problems is impaired following blockade of OB cholinergic receptors, although the relative contribution of muscarinic and nicotinic receptors depends on task difficulty. Blocking muscarinic receptors impairs learning for nearly all odor sets, whereas blocking nicotinic receptors only affects performance for perceptually similar odors. This pattern of behavioral effects is consistent with predictions from a model of cholinergic modulation in the OB and piriform cortex (de Almeida et al., 2013). Model simulations suggest that muscarinic and nicotinic receptors may serve complementary roles in regulating coherence and sparseness of the OB network output, which in turn differentially regulate the strength and overlap in cortical odor representations. Overall, our results suggest that muscarinic receptor blockade results in a bona fide learning impairment that may arise because cortical neurons are activated less often. Behavioral impairment following nicotinic receptor blockade may not be due to the inability of the cortex to learn, but rather arises because the cortex is unable to resolve highly overlapping input patterns.

  8. Dialing Up an Embryo: Are Olfactory Receptors Digits in a Developmental Code?

    ERIC Educational Resources Information Center

    Travis, John

    1998-01-01

    Scientist William J. Dreyer has hypothesized that the cell surface proteins in the nose that detect odors also help assemble embryos. These olfactory receptors and related proteins act as identifiers, much like the last few digits of a telephone number, that help cells to find their intended neighbors in a developing embryo. Discusses the research…

  9. X-ray fluorescence microscopy of olfactory receptor neurons

    NASA Astrophysics Data System (ADS)

    Dučić, T.; Breunig, E.; Schild, D.; Herbst, J.; Nováková, E.; Susini, J.; Tucoulu, R.; Salditt, T.

    2009-09-01

    We report a x-ray fluorescence microscopy study of cells and tissues from the olfactory system of Xenopus laevis. In this experiment we focus on sample preparation and experimental issues, and present first results of fluorescence maps of the elemental distribution of Cl, K, Ca, P, S and Na both in individual isolated neural cells and in cross-sections of the same tissue.

  10. Positive selection moments identify potential functional residues in human olfactory receptors

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Weisinger-Lewin, Y.; Lancet, D.; Shepherd, G. M.

    1996-01-01

    Correlated mutation analysis and molecular models of olfactory receptors have provided evidence that residues in the transmembrane domains form a binding pocket for odor ligands. As an independent test of these results, we have calculated positive selection moments for the alpha-helical sixth transmembrane domain (TM6) of human olfactory receptors. The moments can be used to identify residues that have been preferentially affected by positive selection and are thus likely to interact with odor ligands. The results suggest that residue 622, which is commonly a serine or threonine, could form critical H-bonds. In some receptors a dual-serine subsite, formed by residues 622 and 625, could bind hydroxyl determinants on odor ligands. The potential importance of these residues is further supported by site-directed mutagenesis in the beta-adrenergic receptor. The findings should be of practical value for future physiological studies, binding assays, and site-directed mutagenesis.

  11. Ultrastructural localization of 5'AMP odorant receptor sites on the dendrites of olfactory receptor neurons of the spiny lobster.

    PubMed

    Blaustein, D N; Simmons, R B; Burgess, M F; Derby, C D; Nishikawa, M; Olson, K S

    1993-07-01

    A unique probe--biotinylated adenosine-5'-monophosphate (5'AMP-biotin)--was used in transmission electron microscopic (TEM) studies to localize 5'AMP odorant binding sites on the dendrites of olfactory receptor neurons in the aesthetasc sensilla of the spiny lobster, Panulirus argus. This probe is capable of both binding to and exciting 5'AMP-sensitive olfactory receptor neurons, as revealed through biochemical and electrophysiological assays. TEM studies showed that 5'AMP-biotin binding sites are distributed along the entire dendritic region that is exposed to odorants, including the transitional zone (between the inner and outer dendritic segments, including the ciliary segment) and all of the outer dendritic segment. The density of 5'AMP binding sites per micron2 of membrane is similar along the length of the olfactory dendrite. However, the relative number of 5'AMP-biotin binding sites per micron2 of sensillar area diminishes in the distal 30% of the aesthetasc due to a decrease in the amount of dendritic membrane in that region. The distribution of these 5'AMP binding sites is therefore much more extensive than that of enzymes that inactivate 5'AMP--5'ectonucleotidase/phosphatase--which are restricted to the transitional zone (Gleeson et al., 1991). Taken together, these results suggest that 5'AMP-biotin is labeling 5'AMP-specific olfactory receptor sites that are located along the entire outer dendritic segment and that can be coupled to olfactory transduction. This study represents the first in situ localization of specific olfactory receptor sites using a specific, functionally defined ligand.

  12. Southern pine beetle: Olfactory receptor and behavior discrimination of enantiomers of the attractant pheromone frontalin

    SciTech Connect

    Payne, T.L.; Berisford, C.W.; Blum, M.S.; Dickens, J.C.; Hedden, R.L.; Mori, K.; Richerson, J.V.; Vite, J.P.; West, J.R.

    1982-05-01

    In a laboratory and field bioassays, the response of Dendroctonus frontalis was significantly greater to the mixture of (1S,55R)-(-)-frontalin and alpha-pinene than to (1R,5S)-(+)-frontalin and alpha-pinene. Electrophysiologrical studies revealed that antennal olfactory receptor cells were significantly more responsive to (1S,5R)-(-)-frontalin than to 1R,5S)-(+) -frontalin. Both enanitiomers stimulated the same olfactory cells which suggests that each cell possesses at least two types of enanitomer-specific acceptors.

  13. High-speed odor transduction and pulse tracking by insect olfactory receptor neurons

    PubMed Central

    Szyszka, Paul; Gerkin, Richard C.; Galizia, C. Giovanni; Smith, Brian H.

    2014-01-01

    Sensory systems encode both the static quality of a stimulus (e.g., color or shape) and its kinetics (e.g., speed and direction). The limits with which stimulus kinetics can be resolved are well understood in vision, audition, and somatosensation. However, the maximum temporal resolution of olfactory systems has not been accurately determined. Here, we probe the limits of temporal resolution in insect olfaction by delivering high frequency odor pulses and measuring sensory responses in the antennae. We show that transduction times and pulse tracking capabilities of olfactory receptor neurons are faster than previously reported. Once an odorant arrives at the boundary layer of the antenna, odor transduction can occur within less than 2 ms and fluctuating odor stimuli can be resolved at frequencies more than 100 Hz. Thus, insect olfactory receptor neurons can track stimuli of very short duration, as occur when their antennae encounter narrow filaments in an odor plume. These results provide a new upper bound to the kinetics of odor tracking in insect olfactory receptor neurons and to the latency of initial transduction events in olfaction. PMID:25385618

  14. The Membrane Proteome of Sensory Cilia to the Depth of Olfactory Receptors*

    PubMed Central

    Kuhlmann, Katja; Tschapek, Astrid; Wiese, Heike; Eisenacher, Martin; Meyer, Helmut E.; Hatt, Hanns H.; Oeljeklaus, Silke; Warscheid, Bettina

    2014-01-01

    In the nasal cavity, the nonmotile cilium of olfactory sensory neurons (OSNs) constitutes the chemosensory interface between the ambient environment and the brain. The unique sensory organelle facilitates odor detection for which it includes all necessary components of initial and downstream olfactory signal transduction. In addition to its function in olfaction, a more universal role in modulating different signaling pathways is implicated, for example, in neurogenesis, apoptosis, and neural regeneration. To further extend our knowledge about this multifunctional signaling organelle, it is of high importance to establish a most detailed proteome map of the ciliary membrane compartment down to the level of transmembrane receptors. We detached cilia from mouse olfactory epithelia via Ca2+/K+ shock followed by the enrichment of ciliary membrane proteins at alkaline pH, and we identified a total of 4,403 proteins by gel-based and gel-free methods in conjunction with high resolution LC/MS. This study is the first to report the detection of 62 native olfactory receptor proteins and to provide evidence for their heterogeneous expression at the protein level. Quantitative data evaluation revealed four ciliary membrane-associated candidate proteins (the annexins ANXA1, ANXA2, ANXA5, and S100A5) with a suggested function in the regulation of olfactory signal transduction, and their presence in ciliary structures was confirmed by immunohistochemistry. Moreover, we corroborated the ciliary localization of the potassium-dependent Na+/Ca2+ exchanger (NCKX) 4 and the plasma membrane Ca2+-ATPase 1 (PMCA1) involved in olfactory signal termination, and we detected for the first time NCKX2 in olfactory cilia. Through comparison with transcriptome data specific for mature, ciliated OSNs, we finally delineated the membrane ciliome of OSNs. The membrane proteome of olfactory cilia established here is the most complete today, thus allowing us to pave new avenues for the study of diverse

  15. Olfactory epithelium biosensor: odor discrimination of receptor neurons from a bio-hybrid sensing system.

    PubMed

    Liu, Qingjun; Hu, Ning; Zhang, Fenni; Zhang, Diming; Hsia, K Jimmy; Wang, Ping

    2012-12-01

    Bio-hybrid systems provide an opportunity for integrating a living bio-active unit and a proper biosensing system, to employ the unique properties of the bio-active unit. The biological olfactory system can sense and identify thousands of trace odors. The purpose of this study is to combine olfactory epithelium with microelectrode array (MEA) to establish an olfactory epithelium-MEA hybrid system to record the odor-induced electrophysiological activities of the tissue. In our experiments, extracellular potential of olfactory receptor neurons in intact epithelium were measured in the presence of ethyl ether, acetic acid, butanedione, and acetone, respectively. After the odor-induced response signals were analyzed in the time and frequency domain, the temporal characteristics of response signals were extracted. We found that olfactory epithelium-MEA hybrid system can reflect the in vitro odor information of different signal characteristics and firing modes in vitro. The bio-hybrid sensing system can represent a useful instrument to sense and detect the odorant molecules with well recognizing patterns. With the development of sensor technology, bio-hybrid systems will represent emerging and promising platforms for wide applications, ranging from health care to environmental monitoring.

  16. Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors

    PubMed Central

    Saven, Jeffery G.; Matsunami, Hiroaki; Eckenhoff, Roderic G.

    2015-01-01

    Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered non-responding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug. PMID:25829447

  17. Non-classical amine recognition evolved in a large clade of olfactory receptors

    PubMed Central

    Li, Qian; Tachie-Baffour, Yaw; Liu, Zhikai; Baldwin, Maude W; Kruse, Andrew C; Liberles, Stephen D

    2015-01-01

    Biogenic amines are important signaling molecules, and the structural basis for their recognition by G Protein-Coupled Receptors (GPCRs) is well understood. Amines are also potent odors, with some activating olfactory trace amine-associated receptors (TAARs). Here, we report that teleost TAARs evolved a new way to recognize amines in a non-classical orientation. Chemical screens de-orphaned eleven zebrafish TAARs, with agonists including serotonin, histamine, tryptamine, 2-phenylethylamine, putrescine, and agmatine. Receptors from different clades contact ligands through aspartates on transmembrane α-helices III (canonical Asp3.32) or V (non-canonical Asp5.42), and diamine receptors contain both aspartates. Non-classical monoamine recognition evolved in two steps: an ancestral TAAR acquired Asp5.42, gaining diamine sensitivity, and subsequently lost Asp3.32. Through this transformation, the fish olfactory system dramatically expanded its capacity to detect amines, ecologically significant aquatic odors. The evolution of a second, alternative solution for amine detection by olfactory receptors highlights the tremendous structural versatility intrinsic to GPCRs. DOI: http://dx.doi.org/10.7554/eLife.10441.001 PMID:26519734

  18. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease

    PubMed Central

    Ferrer, Isidro; Garcia-Esparcia, Paula; Carmona, Margarita; Carro, Eva; Aronica, Eleonora; Kovacs, Gabor G.; Grison, Alice; Gustincich, Stefano

    2016-01-01

    Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain. PMID:27458372

  19. High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation

    PubMed Central

    Clowney, E. Josephine; Magklara, Angeliki; Colquitt, Bradley M.; Pathak, Nidhi; Lane, Robert P.; Lomvardas, Stavros

    2011-01-01

    The olfactory receptor (OR) genes are the largest mammalian gene family and are expressed in a monogenic and monoallelic fashion in olfactory neurons. Using a high-throughput approach, we mapped the transcription start sites of 1085 of the 1400 murine OR genes and performed computational analysis that revealed potential transcription factor binding sites shared by the majority of these promoters. Our analysis produced a hierarchical model for OR promoter recognition in which unusually high AT content, a unique epigenetic signature, and a stereotypically positioned O/E site distinguish OR promoters from the rest of the murine promoters. Our computations revealed an intriguing correlation between promoter AT content and evolutionary plasticity, as the most AT-rich promoters regulate rapidly evolving gene families. Within the AT-rich promoter category the position of the TATA-box does not correlate with the transcription start site. Instead, a spike in GC composition might define the exact location of the TSS, introducing the concept of “genomic contrast” in transcriptional regulation. Finally, our experiments show that genomic neighborhood rather than promoter sequence correlates with the probability of different OR genes to be expressed in the same olfactory cell. PMID:21705439

  20. Expression of ionotropic receptors in terrestrial hermit crab's olfactory sensory neurons

    PubMed Central

    Groh-Lunow, Katrin C.; Getahun, Merid N.; Grosse-Wilde, Ewald; Hansson, Bill S.

    2015-01-01

    Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs) as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs) has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs. PMID:25698921

  1. ORDB, HORDE, ODORactor and other on-line knowledge resources of olfactory receptor-odorant interactions

    PubMed Central

    Marenco, Luis; Wang, Rixin; McDougal, Robert; Olender, Tsviya; Twik, Michal; Bruford, Elspeth; Liu, Xinyi; Zhang, Jian; Lancet, Doron; Shepherd, Gordon; Crasto, Chiquito

    2016-01-01

    We present here an exploration of the evolution of three well-established, web-based resources dedicated to the dissemination of information related to olfactory receptors (ORs) and their functional ligands, odorants. These resources are: the Olfactory Receptor Database (ORDB), the Human Olfactory Data Explorer (HORDE) and ODORactor. ORDB is a repository of genomic and proteomic information related to ORs and other chemosensory receptors, such as taste and pheromone receptors. Three companion databases closely integrated with ORDB are OdorDB, ORModelDB and OdorMapDB; these resources are part of the SenseLab suite of databases (http://senselab.med.yale.edu). HORDE (http://genome.weizmann.ac.il/horde/) is a semi-automatically populated database of the OR repertoires of human and several mammals. ODORactor (http://mdl.shsmu.edu.cn/ODORactor/) provides information related to OR-odorant interactions from the perspective of the odorant. All three resources are connected to each other via web-links. Database URL: http://senselab.med.yale.edu; http://genome.weizmann.ac.il/horde/; http://mdl.shsmu.edu.cn/ODORactor/ PMID:27694208

  2. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    DTIC Science & Technology

    2014-10-01

    Award Number: W81XWH-12-1-0582 TITLE: Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s...Annual 3. DATES COVERED 25 Sep 2013 - 24 Sep 2014 4. TITLE AND SUBTITLE Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury...SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a risk factor for subsequent development of Alzheimer’s disease (AD). Abnormal tau

  3. Expression of Coxsackie-Adenovirus receptor (CAR) in the developing mouse olfactory system.

    PubMed

    Venkatraman, Giri; Behrens, Maik; Pyrski, Martina; Margolis, Frank L

    2005-09-01

    Interest in manipulating gene expression in olfactory sensory neurons (OSNs) has led to the use of adenoviruses (AdV) as gene delivery vectors. OSNs are the first order neurons in the olfactory system and the initial site of odor detection. They are highly susceptible to adenovirus infection although the mechanism is poorly understood. The Coxsackie-Adenovirus receptor (CAR) and members of the integrin family have been implicated in the process of AdV infection in various systems. Multiple serotypes of AdV efficiently bind to the CAR, leading to entry and infection of the host cell by a mechanism that can also involve integrins. Cell lines that do not express CAR are relatively resistant, but not completely immune to AdV infection, suggesting that other mechanisms participate in mediating AdV attachment and entry. Using in situ hybridization and western blot analyses, we show that OSNs and olfactory bulbs (OB) of mice express abundant CAR mRNA at embryonic and neonatal stages, with progressive diminution during postnatal development. By contrast to the olfactory epithelium (OE), CAR mRNA is still present in the adult mouse OB. Furthermore, despite a similar postnatal decline, CAR protein expression in the OE and OB of mice continues into adulthood. Our results suggest that the robust AdV infection observed in the postnatal olfactory system is mediated by CAR and that expression of even small amounts of CAR protein as seen in the adult rodent, permits efficient AdV infection and entry. CAR is an immunoglobulin domain-containing protein that bears homology to cell-adhesion molecules suggesting the possibility that it may participate in organization of the developing olfactory system.

  4. Molecular profiling of activated olfactory neurons identifies odorant receptors for odors in vivo

    PubMed Central

    Jiang, Yue; Gong, Naihua Natalie; Hu, Xiaoyang Serene; Ni, Mengjue Jessica; Pasi, Radhika

    2015-01-01

    The mammalian olfactory system uses a large family of odorant receptors to detect and discriminate amongst a myriad of volatile odor molecules. Understanding odor coding requires comprehensive mapping between odorant receptors and corresponding odors. Here we present high–throughput in vivo identification of odorant receptor repertoires responding to odorants, using phosphorylated ribosome immunoprecipitation of mRNA from olfactory epithelium of odor–stimulated mice followed by RNA–Seq. This approach screens the endogenously expressed odorant receptors against an odor in one set of experiments, using awake and freely behaving mice. In combination with validations in a heterologous system, we identify sets of odorant receptors for two odorants, acetophenone and 2,5–dihydro–2,4,5–trimethylthiazoline (TMT), encompassing 69 odorant receptor–odorant pairs. We also identified shared amino acid residues specific to the acetophenone or TMT receptors, and developed models to predict receptor activation by acetophenone. This study provides a means to understand the combinatorial coding of odors in vivo. PMID:26322927

  5. Comparison of research methods for functional characterization of insect olfactory receptors

    PubMed Central

    Wang, Bing; Liu, Yang; He, Kang; Wang, Guirong

    2016-01-01

    Insect olfactory receptors (ORs) in the peripheral olfactory system play an important role detecting elements of information from the environment. At present, various approaches are used for deorphanizing of ORs in insect. In this study, we compared methods for functional analysis of ORs in vitro and in vivo taking the candidate pheromone receptor OR13 of Helicoverpa assulta (HassOR13) as the object of our experiments. We found that the natural system was more sensitive than those utilizing transgenic Drosophila. The two-electrode voltage-clamp recording is more suitable for functional screening of large numbers of ORs, while the in vivo transgenic Drosophila system could prove more accurate to further validate the function of a specific OR. We also found that, among the different solvents used to dissolve pheromones and odorants, hexane offered good reproducibility and high sensitivity. Finally, the function of ORs was indirectly confirmed in transgenic Drosophila, showing that odor-activation of ORs-expressing olfactory receptor neurons (ORNs) can mediate behavioral choices. In summary, our results compare advantages and drawbacks of different approaches, thus helping in the choice of the method most suitable, in each specific situation, for deorphanizing insect ORs. PMID:27633402

  6. Odor-evoked gene regulation and visualization in olfactory receptor neurons

    PubMed Central

    Bennett, Mosi K.; Kulaga, Heather M.; Reed, Randall R.

    2010-01-01

    Odorant-evoked activity contributes to olfactory epithelium organization and axon targeting. We examined the consequences on gene expression of a genetic disruption of the channel responsible for olfactory transduction. Genes encoding calcium-binding EF-hand motifs, were among the most highly regulated transcripts consistent with the central role of Ca2+ influx in neuronal depolarization. Several genes encoding integral membrane proteins are also highly regulated. One gene, Lrrc3b, was regulated more than 10-fold by odorant activity. Changes in expression occur within thirty minutes and are maintained for several hours. In genetic disruptions of Lrrc3b, a Lrrc3b-promoter-driven reporter adopts the activity-regulated expression of the endogenous gene. Individual olfactory glomeruli have a wide spectrum of activity levels that can be modulated by altering odor exposure. The Lrrc3b reporter mouse permits direct assessment of activity in identified glomeruli. In stable odorant environments, activity-regulated proteins provide a characteristic signature that is correlated with the olfactory receptor they express. PMID:20080187

  7. Investigation of Surfaces after Non Conventional Machining

    NASA Astrophysics Data System (ADS)

    Micietova, Anna; Neslusan, Miroslav; Cillikova, Maria

    2016-12-01

    This paper deals with analysis of surface integrity of steel after electro discharge machining (EDM), water jet machining, (WJM) laser beam machining (LBM) and plasma beam machining (PBM). The paper discusses surface integrity expressed in surface roughness, sample precision expressed in perpendicularity deviation as well as stress state. This study also demonstrates influence of the various non-conventional methods on structure transformations and reports about sensitivity of the different non-conventional methods of machining with regard to variable thickness of machined samples.

  8. Evolution of olfactory receptor in oriental fruit fly Dacus dorsalis

    PubMed Central

    Metcalf, Robert L.; Metcalf, Esther R.; Mitchell, W. C.; Lee, Lena W. Y.

    1979-01-01

    Male oriental fruit flies (Dacus dorsalis) from colonies in Taiwan and Hawaii were evaluated for limit of response to various analogues of methyl eugenol. The results are interpreted in terms of the geometry and allosteric requirements of the antennal receptor that triggers the characteristic methyl eugenol reflex. This receptor has evolved for complementarity to all portions of the methyl eugenol molecule and responds only to ortho-substituted benzenes with adjacent oxygen atoms or isoelectronic equivalents. Substantial differences in responses of Taiwan and Hawaiian D. dorsalis suggest that perceptible evolution of the receptor protein has occurred during the past 50 years. A plausible scheme for the coevolution of dacini flies with plants containing phenylpropionoid essential oils is outlined. Images PMID:16592640

  9. Modulation by cyclic GMP of the odour sensitivity of vertebrate olfactory receptor cells

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1996-01-01

    Recent evidence has indicated a significant role for the cGMP second messenger system in vertebrate olfactory transduction but no clear functions have been identified for cGMP so far. Here, we have examined the effects of 8-Br-cGMP and carbon monoxide (CO) on odour responses of salamander olfactory receptor neurons using perforated patch recordings. We report that 8-Br-cGMP strongly down-regulates the odour sensitivity of the cells, with a K1/2 of 460 nM. This adaptation-like effect can be mimicked by CO, an activator of soluble guanylyl cyclase, with a K1/2 of 1 microM. Sensitivity modulation is achieved through a regulatory chain of events in which cGMP stimulates a persistent background current due to the activation of cyclic nucleotide-gated channels. This in turn leads to sustained Ca2+ entry providing a negative feedback signal. One consequence of the Ca2+ entry is a shift to the right of the stimulus-response curve and a reduction in saturating odour currents. Together, these two effects can reduce the sensory generator current by up to twenty-fold. Thus, cGMP functions to control the gain of the G-protein coupled cAMP pathway. Another consequence of the action of cGMP is a marked prolongation of the odour response kinetics. The effects of CO/cGMP are long-lasting and can continue for minutes. Hence, we propose that cGMP helps to prevent saturation of the cell's response by adjusting the operational range of the cAMP cascade and contributes to olfactory adaptation by decreasing the sensitivity of olfactory receptor cells to repeated odour stimuli.

  10. Defining an olfactory receptor function in airway smooth muscle cells

    PubMed Central

    Aisenberg, William H.; Huang, Jessie; Zhu, Wanqu; Rajkumar, Premraj; Cruz, Randy; Santhanam, Lakshmi; Natarajan, Niranjana; Yong, Hwan Mee; De Santiago, Breann; Oh, Jung Jin; Yoon, A-Rum; Panettieri, Reynold A.; Homann, Oliver; Sullivan, John K.; Liggett, Stephen B.; Pluznick, Jennifer L.; An, Steven S.

    2016-01-01

    Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (Golf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma. PMID:27905542

  11. Defining an olfactory receptor function in airway smooth muscle cells.

    PubMed

    Aisenberg, William H; Huang, Jessie; Zhu, Wanqu; Rajkumar, Premraj; Cruz, Randy; Santhanam, Lakshmi; Natarajan, Niranjana; Yong, Hwan Mee; De Santiago, Breann; Oh, Jung Jin; Yoon, A-Rum; Panettieri, Reynold A; Homann, Oliver; Sullivan, John K; Liggett, Stephen B; Pluznick, Jennifer L; An, Steven S

    2016-12-01

    Pathways that control, or can be exploited to alter, the increase in airway smooth muscle (ASM) mass and cellular remodeling that occur in asthma are not well defined. Here we report the expression of odorant receptors (ORs) belonging to the superfamily of G-protein coupled receptors (GPCRs), as well as the canonical olfaction machinery (Golf and AC3) in the smooth muscle of human bronchi. In primary cultures of isolated human ASM, we identified mRNA expression for multiple ORs. Strikingly, OR51E2 was the most highly enriched OR transcript mapped to the human olfactome in lung-resident cells. In a heterologous expression system, OR51E2 trafficked readily to the cell surface and showed ligand selectivity and sensitivity to the short chain fatty acids (SCFAs) acetate and propionate. These endogenous metabolic byproducts of the gut microbiota slowed the rate of cytoskeletal remodeling, as well as the proliferation of human ASM cells. These cellular responses in vitro were found in ASM from non-asthmatics and asthmatics, and were absent in OR51E2-deleted primary human ASM. These results demonstrate a novel chemo-mechanical signaling network in the ASM and serve as a proof-of-concept that a specific receptor of the gut-lung axis can be targeted to treat airflow obstruction in asthma.

  12. Expression of olfactory receptors in different life stages and life histories of wild Atlantic salmon (Salmo salar).

    PubMed

    Johnstone, K A; Lubieniecki, K P; Koop, B F; Davidson, W S

    2011-10-01

    It has been hypothesized that salmonids use olfactory cues to return to their natal rivers and streams. However, the key components of the molecular pathway involved in imprinting and homing are still unknown. If odorants are involved in salmon homing migration, then olfactory receptors should play a critical role in the dissipation of information from the environment to the fish. Therefore, we examined the expression profiles of a suite of genes encoding olfactory receptors and other olfactory-related genes in the olfactory rosettes of different life stages in two anadromous and one non-anadromous wild Atlantic salmon populations from Newfoundland, Canada. We identified seven differentially expressed OlfC genes in juvenile anadromous salmon compared to returning adults in both populations of anadromous Atlantic salmon. The salmon from the Campbellton River had an additional 10 genes that were differentially expressed in juveniles compared to returning adults. There was no statistically significant difference in gene expression of any of the genes in the non-anadromous population (P < 0.01). The function of the OlfC gene products is not clear, but they are predicted to be amino acid receptors. Other studies have suggested that salmon use amino acids for imprinting and homing. This study, the first to examine the expression of olfactory-related genes in wild North American Atlantic salmon, has identified seven OlfC genes that may be involved in the imprinting and homeward migration of anadromous Atlantic salmon.

  13. QM/MM Model of the Mouse Olfactory Receptor MOR244-3 Validated by Site-Directed Mutagenesis Experiments

    PubMed Central

    Sekharan, Sivakumar; Ertem, Mehmed Z.; Zhuang, Hanyi; Block, Eric; Matsunami, Hiroaki; Zhang, Ruina; Wei, Jennifer N.; Pan, Yi; Batista, Victor S.

    2014-01-01

    Understanding structure/function relationships of olfactory receptors is challenging due to the lack of x-ray structural models. Here, we introduce a QM/MM model of the mouse olfactory receptor MOR244-3, responsive to organosulfur odorants such as (methylthio)methanethiol. The binding site consists of a copper ion bound to the heteroatoms of amino-acid residues H105, C109, and N202. The model is consistent with site-directed mutagenesis experiments and biochemical measurements of the receptor activation, and thus provides a valuable framework for further studies of the sense of smell at the molecular level. PMID:25185561

  14. Supersensitive detection and discrimination of enantiomers by dorsal olfactory receptors: evidence for hierarchical odour coding.

    PubMed

    Sato, Takaaki; Kobayakawa, Reiko; Kobayakawa, Ko; Emura, Makoto; Itohara, Shigeyoshi; Kizumi, Miwako; Hamana, Hiroshi; Tsuboi, Akio; Hirono, Junzo

    2015-09-11

    Enantiomeric pairs of mirror-image molecular structures are difficult to resolve by instrumental analyses. The human olfactory system, however, discriminates (-)-wine lactone from its (+)-form rapidly within seconds. To gain insight into receptor coding of enantiomers, we compared behavioural detection and discrimination thresholds of wild-type mice with those of ΔD mice in which all dorsal olfactory receptors are genetically ablated. Surprisingly, wild-type mice displayed an exquisite "supersensitivity" to enantiomeric pairs of wine lactones and carvones. They were capable of supersensitive discrimination of enantiomers, consistent with their high detection sensitivity. In contrast, ΔD mice showed selective major loss of sensitivity to the (+)-enantiomers. The resulting 10(8)-fold differential sensitivity of ΔD mice to (-)- vs. (+)-wine lactone matched that observed in humans. This suggests that humans lack highly sensitive orthologous dorsal receptors for the (+)-enantiomer, similarly to ΔD mice. Moreover, ΔD mice showed >10(10)-fold reductions in enantiomer discrimination sensitivity compared to wild-type mice. ΔD mice detected one or both of the (-)- and (+)-enantiomers over a wide concentration range, but were unable to discriminate them. This "enantiomer odour discrimination paradox" indicates that the most sensitive dorsal receptors play a critical role in hierarchical odour coding for enantiomer identification.

  15. Supersensitive detection and discrimination of enantiomers by dorsal olfactory receptors: evidence for hierarchical odour coding

    PubMed Central

    Sato, Takaaki; Kobayakawa, Reiko; Kobayakawa, Ko; Emura, Makoto; Itohara, Shigeyoshi; Kizumi, Miwako; Hamana, Hiroshi; Tsuboi, Akio; Hirono, Junzo

    2015-01-01

    Enantiomeric pairs of mirror-image molecular structures are difficult to resolve by instrumental analyses. The human olfactory system, however, discriminates (−)-wine lactone from its (+)-form rapidly within seconds. To gain insight into receptor coding of enantiomers, we compared behavioural detection and discrimination thresholds of wild-type mice with those of ΔD mice in which all dorsal olfactory receptors are genetically ablated. Surprisingly, wild-type mice displayed an exquisite “supersensitivity” to enantiomeric pairs of wine lactones and carvones. They were capable of supersensitive discrimination of enantiomers, consistent with their high detection sensitivity. In contrast, ΔD mice showed selective major loss of sensitivity to the (+)-enantiomers. The resulting 108-fold differential sensitivity of ΔD mice to (−)- vs. (+)-wine lactone matched that observed in humans. This suggests that humans lack highly sensitive orthologous dorsal receptors for the (+)-enantiomer, similarly to ΔD mice. Moreover, ΔD mice showed >1010-fold reductions in enantiomer discrimination sensitivity compared to wild-type mice. ΔD mice detected one or both of the (−)- and (+)-enantiomers over a wide concentration range, but were unable to discriminate them. This “enantiomer odour discrimination paradox” indicates that the most sensitive dorsal receptors play a critical role in hierarchical odour coding for enantiomer identification. PMID:26361056

  16. The Rate of Concentration Change and How It Determines the Resolving Power of Olfactory Receptor Neurons

    PubMed Central

    Tichy, Harald; Hellwig, Maria; Zopf, Lydia M.

    2016-01-01

    The response characteristics of olfactory receptor neurons (ORNs) and their corollary, the differential sensitivity and the resolving power, are fundamental to understand olfactory coding and the information extracted from a fluctuating olfactory signal. Previous work has focused on the temporal resolution of odor pulses presented for very brief periods at varying concentrations. The time course of the odor pulses as a stimulus parameter has not been considered. The present study investigated the precision of the ON and OFF ORNs on the antennae of the cockroach to discriminate increments and decrements of continuously rising and falling odor concentrations. Stimulation consisted of ramp-like upward and downward concentration changes in a trapezoid fashion. By varying ramp steepness, we examined the effect of the rate of concentration change. Both ORNs were clearly dependent on continuously rising and falling odor concentrations. As the rate of upward and downward concentration changes increases, differential sensitivity improves. Since the scatter of responses around the stimulus-response functions also increases, the resolving power for concentration increments and decrements deteriorates. Thus, the slower the rate of concentration change, the higher the precision in differentiating small concentration changes. Intuitively, the inverse relationship between the rate of concentration change and the resolving power is not surprising because accuracy requires time. A high degree of precision at slow concentration rates enables the cockroach to use information about the onset and offset slopes of odor pulses in addition to the pulse height to encode the spatial-temporal structure of turbulent odor plumes. PMID:28082912

  17. Odorant receptors regulate the final glomerular coalescence of olfactory sensory neuron axons

    PubMed Central

    Rodriguez-Gil, Diego J.; Bartel, Dianna L.; Jaspers, Austin W.; Mobley, Arie S.; Imamura, Fumiaki; Greer, Charles A.

    2015-01-01

    Odorant receptors (OR) are strongly implicated in coalescence of olfactory sensory neuron (OSN) axons and the formation of olfactory bulb (OB) glomeruli. However, when ORs are first expressed relative to basal cell division and OSN axon extension is unknown. We developed an in vivo fate-mapping strategy that enabled us to follow OSN maturation and axon extension beginning at basal cell division. In parallel, we mapped the molecular development of OSNs beginning at basal cell division, including the onset of OR expression. Our data show that ORs are first expressed around 4 d following basal cell division, 24 h after OSN axons have reached the OB. Over the next 6+ days the OSN axons navigate the OB nerve layer and ultimately coalesce in glomeruli. These data provide a previously unidentified perspective on the role of ORs in homophilic OSN axon adhesion and lead us to propose a new model dividing axon extension into two phases. Phase I is OR-independent and accounts for up to 50% of the time during which axons approach the OB and begin navigating the olfactory nerve layer. Phase II is OR-dependent and concludes as OSN axons coalesce in glomeruli. PMID:25902488

  18. Modification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster

    PubMed Central

    Tachibana, Shin-Ichiro; Touhara, Kazushige; Ejima, Aki

    2015-01-01

    A male-specific component, 11-cis-vaccenyl acetate (cVA) works as an anti-aphrodisiac pheromone in Drosophila melanogaster. The presence of cVA on a male suppresses the courtship motivation of other males and contributes to suppression of male-male homosexual courtship, while the absence of cVA on a female stimulates the sexual motivation of nearby males and enhances the male-female interaction. However, little is known how a male distinguishes the presence or absence of cVA on a target fly from either self-produced cVA or secondhand cVA from other males in the vicinity. In this study, we demonstrate that male flies have keen sensitivity to cVA; therefore, the presence of another male in the area reduces courtship toward a female. This reduced level of sexual motivation, however, could be overcome by pretest odor exposure via olfactory habituation to cVA. Real-time imaging of cVA-responsive sensory neurons using the neural activity sensor revealed that prolonged exposure to cVA decreased the levels of cVA responses in the primary olfactory center. Pharmacological and genetic screening revealed that signal transduction via GABAA receptors contributed to this olfactory habituation. We also found that the habituation experience increased the copulation success of wild-type males in a group. In contrast, transgenic males, in which GABA input in a small subset of local neurons was blocked by RNAi, failed to acquire the sexual advantage conferred by habituation. Thus, we illustrate a novel phenomenon in which olfactory habituation positively affects sexual capability in a competitive environment. PMID:26252206

  19. How does your kidney smell? Emerging roles for olfactory receptors in renal function.

    PubMed

    Shepard, Blythe D; Pluznick, Jennifer L

    2016-05-01

    Olfactory receptors (ORs) are chemosensors that are responsible for one's sense of smell. In addition to this specialized role in the nose, recent evidence suggests that ORs are also found in a variety of additional tissues including the kidney. As this list of renal ORs continues to expand, it is becoming clear that they play important roles in renal and whole-body physiology, including a novel role in blood pressure regulation. In this review, we highlight important considerations that are crucial when studying ORs and present the current literature on renal ORs and their emerging relevance in maintaining renal function.

  20. Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish

    PubMed Central

    1984-01-01

    Electrophysiological experiments indicate that olfactory receptors of the channel catfish, Ictalurus punctatus, contain different receptor sites for the acidic (A), basic (B), and neutral amino acids; further, at least two partially interacting neutral sites exist, one for the hydrophilic neutral amino acids containing short side chains (SCN), and the second for the hydrophobic amino acids containing long side chains (LCN). The extent of cross-adaptation was determined by comparing the electro-olfactogram (EOG) responses to 20 "test" amino acids during continuous bathing of the olfactory mucosa with water only (control) to those during each of the eight "adapting" amino acid regimes. Both the adapting and test amino acids were adjusted in concentrations to provide approximately equal response magnitudes in the unadapted state. Under all eight adapting regimes, the test EOG responses were reduced from those obtained in the unadapted state, but substantial quantitative differences resulted, depending upon the molecular structure of the adapting stimulus. Analyses of the patterns of EOG responses to the test stimuli identified and characterized the respective "transduction processes," a term used to describe membrane events initiated by a particular subset of amino acid stimuli that are intricately linked to the origin of the olfactory receptor potential. Only when the stimulus compounds interact with different transduction processes are the stimuli assumed to bind to different membrane "sites." Four relatively independent L-alpha-amino acid transduction processes (and thus at least four binding sites) identified in this report include: (a) the A process for aspartic and glutamic acids; (b) the B process for arginine and lysine; (c) the SCN process for glycine, alanine, serine, glutamine, and possibly cysteine; (d) the LCN process for methionine, ethionine, valine, norvaline, leucine, norleucine, glutamic acid-gamma-methyl ester, histidine, phenylalanine, and also

  1. Non-conventional mesons at PANDA

    NASA Astrophysics Data System (ADS)

    Giacosa, Francesco

    2015-04-01

    Non-conventional mesons, such as glueballs and tetraquarks, will be in the focus of the PANDA experiment at the FAIR facility. In this lecture we recall the basic properties of QCD and describe some features of unconventional states. We focus on the search of the not-yet discovered glueballs and the use of the extended Linear Sigma Model for this purpose, and on the already discovered but not-yet understood X, Y, Z states.

  2. Allosteric Modulation of GABAA Receptors by an Anilino Enaminone in an Olfactory Center of the Mouse Brain

    PubMed Central

    Heinbockel, Thomas; Wang, Ze-Jun; Jackson-Ayotunde, Patrice L.

    2014-01-01

    In an ongoing effort to identify novel drugs that can be used as neurotherapeutic compounds, we have focused on anilino enaminones as potential anticonvulsant agents. Enaminones are organic compounds containing a conjugated system of an amine, an alkene and a ketone. Here, we review the effects of a small library of anilino enaminones on neuronal activity. Our experimental approach employs an olfactory bulb brain slice preparation using whole-cell patch-clamp recording from mitral cells in the main olfactory bulb. The main olfactory bulb is a key integrative center in the olfactory pathway. Mitral cells are the principal output neurons of the main olfactory bulb, receiving olfactory receptor neuron input at their dendrites within glomeruli, and projecting glutamatergic axons through the lateral olfactory tract to the olfactory cortex. The compounds tested are known to be effective in attenuating pentylenetetrazol (PTZ) induced convulsions in rodent models. One compound in particular, KRS-5Me-4-OCF3, evokes potent inhibition of mitral cell activity. Experiments aimed at understanding the cellular mechanism underlying the inhibitory effect revealed that KRS-5Me-4-OCF3 shifts the concentration-response curve for GABA to the left. KRS-5Me-4-OCF3 enhances GABA affinity and acts as a positive allosteric modulator of GABAA receptors. Application of a benzodiazepine site antagonist blocks the effect of KRS-5Me-4-OCF3 indicating that KRS-5Me-4-OCF3 binds at the classical benzodiazepine site to exert its pharmacological action. This anilino enaminone KRS-5Me-4-OCF3 emerges as a candidate for clinical use as an anticonvulsant agent in the battle against epileptic seizures. PMID:25525715

  3. Interactions of odorants with olfactory receptors and receptor neurons match the perceptual dynamics observed for woody and fruity odorant mixtures.

    PubMed

    Chaput, M A; El Mountassir, F; Atanasova, B; Thomas-Danguin, T; Le Bon, A M; Perrut, A; Ferry, B; Duchamp-Viret, P

    2012-02-01

    The present study aimed to create a direct bridge between observations on peripheral and central responses to odorant mixtures and their components. Three experiments were performed using mixtures of fruity (isoamyl acetate; ISO) and woody (whiskey lactone; WL) odorants known to contribute to some of the major notes in Burgundy red wine. These experiments consisted of (i) calcium imaging of human embryonic kidney cells (HEK293T) transfected with olfactory receptors (ORs); (ii) single-unit electrophysiological recordings from olfactory receptor neurons (ORNs) and analyses of electro-olfactogram (EOG) responses in the rat nose in vivo; and (iii) psychophysical measurements of the perceived intensity of the mixtures as rated by human subjects. The calcium imaging and electrophysiological results revealed that ISO and WL can act simultaneously on single ORs or ORNs and confirm that receptor responses to mixtures are not the result of a simple sum of the effects of the individual mixture compounds. The addition of WL to ISO principally suppressed the ORN activation induced by ISO alone and was found to enhance this activation in a subset of cases. In the human studies, the addition of high concentrations of WL to ISO decreased the perceived intensity of the ISO. In contrast, the addition of low concentrations of WL enhanced the perceived intensity of the fruity note (ISO) in this mixture, as it enhanced EOG responses in ORNs. Thus, both OR and ORN responses to ISO + WL mixtures faithfully reflected perceptual response changes, so the odour mixture information is set up after the peripheral stage of the olfactory system.

  4. Olfactory discrimination varies in mice with different levels of α7-nicotinic acetylcholine receptor expression

    PubMed Central

    Hellier, Jennifer L.; Arevalo, Nicole L.; Blatner, Megan J.; Dang, An K.; Clevenger, Amy C.; Adams, Catherine E.; Restrepo, Diego

    2010-01-01

    Previous studies have shown that schizophrenics have decreased expression of α7-nicotinic acetylcholine (α7) receptors in the hippocampus and other brain regions, paranoid delusions, disorganized speech, deficits in auditory gating (i.e., inability to inhibit neuronal responses to repetitive auditory stimuli), and difficulties in odor discrimination and detection. Here we use mice with decreased α7 expression that also show a deficit in auditory gating to determine if these mice have similar deficits in olfaction. In the adult mouse olfactory bulb (OB), α7 expression localizes in the glomerular layer; however, the functional role of α7 is unknown. We show that inbred mouse strains (i.e., C3H and C57) with varying α7 expression (e.g., α7 wild-type [α7+/+], α7 heterozygous knock-out [α7+/−] and α7 homozygous knockout mice [α7−/−]) significantly differ in odor discrimination and detection of chemically related odorant pairs. Using [125I] α-bungarotoxin (α-BGT) autoradiography, α7 expression was measured in the OB. As previously demonstrated, α-BGT binding was localized to the glomerular layer. Significantly more expression of α7 was observed in C57 α7+/+ mice compared to C3H α7+/+ mice. Furthermore, C57 α7+/+ mice were able to detect a significantly lower concentration of an odor in a mixture compared to C3H α7+/+ mice. Both C57 and C3H α7+/+ mice discriminated between chemically related odorants sooner than α7+/− or α7−/− mice. These data suggest that α7-nicotinic-receptors contribute strongly to olfactory discrimination and detection in mice and may be one of the mechanisms producing olfactory dysfunction in schizophrenics. PMID:20713028

  5. The relation between stimulus and response in olfactory receptor cells of the tiger salamander.

    PubMed Central

    Firestein, S; Picco, C; Menini, A

    1993-01-01

    1. Olfactory receptor cells were isolated from the adult tiger salamander Ambystoma tigrinum and the current in response to odorant stimuli was measured with the whole-cell voltage-clamp technique while odorants at known concentrations were rapidly applied for controlled exposure times. 2. Three odorants, cineole, isoamyl acetate and acetophenone, were first applied at 5 x 10(-4) M. Out of forty-nine cells tested, 53% responded to one odorant only, 22% to two odorants and 25% to all three odorants. 3. The amplitude of the current in response to a given odorant concentration was found to be dependent on the duration of the odorant stimulus and reached a saturating peak value at 1.2 s of stimulus duration. 4. The current measured at the peak of the response for odorant steps of 1.2 s as a function of odorant concentration was well described by the Hill equation for the three odorants with Hill coefficients higher than 1 and K1/2 (odorant concentration needed to activate half the maximal current) ranging from 3 x 10(-6) to 9 x 10(-5) M. 5. It is concluded that olfactory receptor cells are broadly tuned and have a low apparent affinity for odorants, integrate stimulus information over time, and have a narrow dynamic range. PMID:8254501

  6. Purinergic Receptor Antagonists Inhibit Odorant-Induced Heat Shock Protein 25 Induction in Mouse Olfactory Epithelium

    PubMed Central

    Hegg, Colleen C.; Lucero, Mary T.

    2010-01-01

    Heat shock proteins (HSPs) accumulate in cells exposed to a variety of physiological and environmental factors, such as heat shock, oxidative stress, toxicants, and odorants. Ischemic, stressed, and injured cells release ATP in large amounts. Our hypothesis is that noxious stimulation (in this case, strong odorant) evokes the release of ATP in the olfactory epithelium (OE). Extracellular ATP, a signal of cellular stress, induces the expression of HSPs via purinergic receptors. In the present study, in vivo odorant exposure (heptanal or r-carvone) led to a selective induction of HSP25 in glia-like sustentacular cells in the Swiss Webster mouse OE, as previously shown in rats (Carr et al., 2001). Furthermore, in vitro and in vivo administration of purinergic receptor antagonists suramin and pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) blocked the expression of HSP25 immunoreactivity in sustentacular cells. ATP released by acutely injured cells could act as an early signal of cell and tissue damage, causing HSP expression and initiating a stress signaling cascade to protect against further damage. Sustentacular cells have a high capacity to detoxify xenobiotics and thereby protect the olfactory epithelium from airborne pollutants. Thus, the robust, rapid induction of HSPs in sustentacular cells may help maintain the integrity of the OE during exposure to toxicants. PMID:16206165

  7. Underlying mathematics in diversification of human olfactory receptors in different loci.

    PubMed

    Hassan, Sk Sarif; Choudhury, Pabitra Pal; Goswami, Arunava

    2013-12-01

    As per conservative estimate, approximately 51-105 Olfactory Receptors (ORs) loci are present in human genome occurring in clusters. These clusters are apparently unevenly spread as mosaics over 21 pairs of human chromosomes. Olfactory Receptor (OR) gene families which are thought to have expanded for the need to provide recognition capability for a huge number of pure and complex odorants, form the largest known multigene family in the human genome. Recent studies have shown that 388 full length and 414 OR pseudo-genes are present in these OR genomic clusters. In this paper, the authors report a classification method for all human ORs based on their sequential quantitative information like presence of poly strings of nucleotides bases, long range correlation and so on. An L-System generated sequence has been taken as an input into a star-model of specific subfamily members and resultant sequence has been mapped to a specific OR based on the classification scheme using fractal parameters like Hurst exponent and fractal dimensions.

  8. Anatomical and molecular consequences of Unilateral Naris Closure on two populations of olfactory sensory neurons expressing defined odorant receptors.

    PubMed

    Molinas, Adrien; Aoudé, Imad; Soubeyre, Vanessa; Tazir, Bassim; Cadiou, Hervé; Grosmaitre, Xavier

    2016-07-28

    Mammalian olfactory sensory neurons (OSNs), the primary elements of the olfactory system, are located in the olfactory epithelium lining the nasal cavity. Exposed to the environment, their lifespan is short. Consequently, OSNs are regularly regenerated and several reports show that activity strongly modulates their development and regeneration: the peripheral olfactory system can adjust to the amount of stimulus through compensatory mechanisms. Unilateral naris occlusion (UNO) was frequently used to investigate this mechanism at the entire epithelium level. However, there is little data regarding the effects of UNO at the cellular level, especially on individual neuronal populations expressing a defined odorant receptor. Here, using UNO during the first three postnatal weeks, we analyzed the anatomical and molecular consequences of sensory deprivation in OSNs populations expressing the MOR23 and M71 receptors. The density of MOR23-expressing neurons is decreased in the closed side while UNO does not affect the density of M71-expressing neurons. Using Real Time qPCR on isolated neurons, we observed that UNO modulates the transcript levels for transduction pathway proteins (odorant receptors, CNGA2, PDE1c). The transcripts modulated by UNO will differ between populations depending on the receptor expressed. These results suggest that sensory deprivation will have different effects on different OSNs' populations. As a consequence, early experience will shape the functional properties of OSNs differently depending on the type of odorant receptor they express.

  9. Olfactory receptor cells on the cockroach antennae: responses to the direction and rate of change in food odour concentration.

    PubMed

    Hinterwirth, Armin; Zeiner, Reinhard; Tichy, Harald

    2004-06-01

    In insects, information about food odour is encoded by olfactory receptor cells with characteristic response spectra, located in several types of cuticular sensilla. Within short, hair-like sensilla on the cockroach's antenna, antagonistic pairs of olfactory receptor cells shape information inflow to the CNS by providing excitatory responses for both increases and decreases in food odour concentration. The segregation of food odour information into parallel ON and OFF responses suggests that temporal concentration changes become enhanced in the sensory output. When food odour concentration changes slowly and continuously up and down with smooth transition from one direction to another, the ON and OFF olfactory cells not only signal a succession of odour concentrations but also the rate with which odour concentration happens to be changing. Access to the values of such cues is of great use to an insect orientating to an odour source. With them they may extract concentration gradients from odour plumes.

  10. Cyclic-nucleotide–gated cation current and Ca2+-activated Cl current elicited by odorant in vertebrate olfactory receptor neurons

    PubMed Central

    Li, Rong-Chang; Ben-Chaim, Yair; Yau, King-Wai; Lin, Chih-Chun

    2016-01-01

    Olfactory transduction in vertebrate olfactory receptor neurons (ORNs) involves primarily a cAMP-signaling cascade that leads to the opening of cyclic-nucleotide–gated (CNG), nonselective cation channels. The consequent Ca2+ influx triggers adaptation but also signal amplification, the latter by opening a Ca2+-activated Cl channel (ANO2) to elicit, unusually, an inward Cl current. Hence the olfactory response has inward CNG and Cl components that are in rapid succession and not easily separable. We report here success in quantitatively separating these two currents with respect to amplitude and time course over a broad range of odorant strengths. Importantly, we found that the Cl current is the predominant component throughout the olfactory dose–response relation, down to the threshold of signaling to the brain. This observation is very surprising given a recent report by others that the olfactory-signal amplification effected by the Ca2+-activated Cl current does not influence the behavioral olfactory threshold in mice. PMID:27647918

  11. Conventional and Non-Conventional Drosophila Toll Signaling

    PubMed Central

    Lindsay, Scott A.; Wasserman, Steven A.

    2013-01-01

    The discovery of Toll in Drosophila and of the remarkable conservation in pathway composition and organization catalyzed a transformation in our understanding of innate immune recognition and response. At the center of that picture is a cascade of interactions in which specific microbial cues activate Toll receptors, which then transmit signals driving transcription factor nuclear localization and activity. Experiments gave substance to the vision of pattern recognition receptors, linked phenomena in development, gene regulation, and immunity into a coherent whole, and revealed a rich set of variations for identifying non-self and responding effectively. More recently, research in Drosophila has illuminated the positive and negative regulation of Toll activation, the organization of signaling events at and beneath membranes, the sorting of information flow, and the existence of non-conventional signaling via Toll-related receptors. Here, we provide an overview of the Toll pathway of flies and highlight these ongoing realms of research. PMID:23632253

  12. Immunochemical strategy for quantification of G-coupled olfactory receptor proteins on natural nanovesicles.

    PubMed

    Sanmartí-Espinal, Marta; Galve, Roger; Iavicoli, Patrizia; Persuy, Marie-Annick; Pajot-Augy, Edith; Marco, M-Pilar; Samitier, Josep

    2016-03-01

    Cell membrane proteins are involved in a variety of biochemical pathways and therefore constitute important targets for therapy and development of new drugs. Bioanalytical platforms and binding assays using these membrane protein receptors for drug screening or diagnostic require the construction of well-characterized liposome and lipid bilayer arrays that act as support to prevent protein denaturation during biochip processing. Quantification of the protein receptors in the lipid membrane arrays is a key issue in order to produce reproducible and well-characterized chips. Herein, we report a novel immunochemical analytical approach for the quantification of membrane proteins (i.e., G-protein-coupled receptor, GPCR) in nanovesicles (NVs). The procedure allows direct determination of tagged receptors (i.e., c-myc tag) without any previous protein purification or extraction steps. The immunochemical method is based on a microplate ELISA format and quantifies this tag on proteins embedded in NVs with detectability in the picomolar range, using protein bioconjugates as reference standards. The applicability of the method is demonstrated through the quantification of the c-myc-olfactory receptor (OR, c-myc-OR1740) in the cell membrane NVs. The reported method opens the possibility to develop well-characterized drug-screening platforms based on G-coupled proteins embedded on membranes.

  13. Ca2+-activated K+ currents regulate odor adaptation by modulating spike encoding of olfactory receptor cells.

    PubMed Central

    Kawai, Fusao

    2002-01-01

    The olfactory system is thought to accomplish odor adaptation through the ciliary transduction machinery in olfactory receptor cells (ORCs). However, ORCs that have lost their cilia can exhibit spike frequency accommodation in which the action potential frequency decreases with time despite a steady depolarizing stimulus. This raises the possibility that somatic ionic channels in ORCs might serve for odor adaptation at the level of spike encoding, because spiking responses in ORCs encode the odor information. Here I investigate the adaptational mechanism at the somatic membrane using conventional and dynamic patch-clamp recording techniques, which enable the ciliary mechanism to be bypassed. A conditioning stimulus with an odorant-induced current markedly shifted the response range of action potentials induced by the same test stimulus to higher concentrations of the odorant, indicating odor adaptation. This effect was inhibited by charybdotoxin and iberiotoxin, Ca2+-activated K+ channel blockers, suggesting that somatic Ca2+-activated K+ currents regulate odor adaptation by modulating spike encoding. I conclude that not only the ciliary machinery but also the somatic membrane currents are crucial to odor adaptation. PMID:11916858

  14. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    ERIC Educational Resources Information Center

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  15. Newly discovered olfactory receptors in epidermal keratinocytes are associated with proliferation, migration, and re-epithelialization of keratinocytes.

    PubMed

    Denda, Mitsuhiro

    2014-11-01

    Skin contains receptors for various environmental factors. In this issue of the Journal, Busse et al. cloned a new olfactory receptor, OR2AT4, in keratinocytes. They show that the activation of OR2AT4 induces phosphorylation of extracellular signal-regulated kinases and p38 mitogen-activated protein kinases, and that it accelerates wound healing. OR2AT4 may be a promising candidate as a target in clinical drug development.

  16. Cell responses to single pheromone molecules may reflect the activation kinetics of olfactory receptor molecules.

    PubMed

    Minor, A V; Kaissling, K-E

    2003-03-01

    Olfactory receptor cells of the silkmoth Bombyx mori respond to single pheromone molecules with "elementary" electrical events that appear as discrete "bumps" a few milliseconds in duration, or bursts of bumps. As revealed by simulation, one bump may result from a series of random openings of one or several ion channels, producing an average inward membrane current of 1.5 pA. The distributions of durations of bumps and of gaps between bumps in a burst can be fitted by single exponentials with time constants of 10.2 ms and 40.5 ms, respectively. The distribution of burst durations is a sum of two exponentials; the number of bumps per burst obeyed a geometric distribution (mean 3.2 bumps per burst). Accordingly the elementary events could reflect transitions among three states of the pheromone receptor molecule: the vacant receptor (state 1), the pheromone-receptor complex (state 2), and the activated complex (state 3). The calculated rate constants of the transitions between states are k(21)=7.7 s(-1), k(23)=16.8 s(-1), and k(32)=98 s(-1).

  17. Regulatory role of G9a and LSD1 in the Transcription of Olfactory Receptors during Leukaemia Cell Differentiation

    PubMed Central

    Jung, Hyeonsoo; Chae, Yun-Cheol; Kim, Ji-Young; Jeong, Oh-Seok; Kook, Hoon; Seo, Sang-Beom

    2017-01-01

    Recent studies have reported the ectopic expression of olfactory receptors (ORs) in non-olfactory tissues, however, their physiological roles were not well elucidated. ORs are expressed in and function in different types of cancers. Here, we identified that the H3K9me2 levels of several OR promoters decreased during differentiation in the HL-60, human myeloid leukaemia cell line, by all-trans-retinoic acid (ATRA). We found that the differential OR promoters H3K9me2 levels were regulated by G9a and LSD1, resulting in the decrease of ORs transcription during HL-60 differentiation. G9a and LSD1 could regulate the expression of ORs in several non-olfactory cells via the methylation and demethylation of H3K9me2. In addition, we demonstrated that knockdown of OR significantly reduced cell proliferation. Therefore, the epigenetic regulation of ORs transcription is critical for carcinogenesis. PMID:28387360

  18. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation.

    PubMed

    Pluznick, Jennifer L; Protzko, Ryan J; Gevorgyan, Haykanush; Peterlin, Zita; Sipos, Arnold; Han, Jinah; Brunet, Isabelle; Wan, La-Xiang; Rey, Federico; Wang, Tong; Firestein, Stuart J; Yanagisawa, Masashi; Gordon, Jeffrey I; Eichmann, Anne; Peti-Peterdi, Janos; Caplan, Michael J

    2013-03-12

    Olfactory receptors are G protein-coupled receptors that mediate olfactory chemosensation and serve as chemosensors in other tissues. We find that Olfr78, an olfactory receptor expressed in the kidney, responds to short chain fatty acids (SCFAs). Olfr78 is expressed in the renal juxtaglomerular apparatus, where it mediates renin secretion in response to SCFAs. In addition, both Olfr78 and G protein-coupled receptor 41 (Gpr41), another SCFA receptor, are expressed in smooth muscle cells of small resistance vessels. Propionate, a SCFA shown to induce vasodilation ex vivo, produces an acute hypotensive response in wild-type mice. This effect is differentially modulated by disruption of Olfr78 and Gpr41 expression. SCFAs are end products of fermentation by the gut microbiota and are absorbed into the circulation. Antibiotic treatment reduces the biomass of the gut microbiota and elevates blood pressure in Olfr78 knockout mice. We conclude that SCFAs produced by the gut microbiota modulate blood pressure via Olfr78 and Gpr41.

  19. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation

    PubMed Central

    Pluznick, Jennifer L.; Protzko, Ryan J.; Gevorgyan, Haykanush; Peterlin, Zita; Sipos, Arnold; Han, Jinah; Brunet, Isabelle; Wan, La-Xiang; Rey, Federico; Wang, Tong; Firestein, Stuart J.; Yanagisawa, Masashi; Gordon, Jeffrey I.; Eichmann, Anne; Peti-Peterdi, Janos; Caplan, Michael J.

    2013-01-01

    Olfactory receptors are G protein-coupled receptors that mediate olfactory chemosensation and serve as chemosensors in other tissues. We find that Olfr78, an olfactory receptor expressed in the kidney, responds to short chain fatty acids (SCFAs). Olfr78 is expressed in the renal juxtaglomerular apparatus, where it mediates renin secretion in response to SCFAs. In addition, both Olfr78 and G protein-coupled receptor 41 (Gpr41), another SCFA receptor, are expressed in smooth muscle cells of small resistance vessels. Propionate, a SCFA shown to induce vasodilation ex vivo, produces an acute hypotensive response in wild-type mice. This effect is differentially modulated by disruption of Olfr78 and Gpr41 expression. SCFAs are end products of fermentation by the gut microbiota and are absorbed into the circulation. Antibiotic treatment reduces the biomass of the gut microbiota and elevates blood pressure in Olfr78 knockout mice. We conclude that SCFAs produced by the gut microbiota modulate blood pressure via Olfr78 and Gpr41. PMID:23401498

  20. Non-conventional therapeutics for oral infections

    PubMed Central

    Allaker, Robert P; Ian Douglas, CW

    2015-01-01

    As our knowledge of host-microbial interactions within the oral cavity increases, future treatments are likely to be more targeted. For example, efforts to target a single species or key virulence factors that they produce, while maintaining the natural balance of the resident oral microbiota that acts to modulate the host immune response would be an advantage. Targeted approaches may be directed at the black-pigmented anaerobes, Porphyromonas gingivalis and Prevotella intermedia, associated with periodontitis. Such pigments provide an opportunity for targeted phototherapy with high-intensity monochromatic light. Functional inhibition approaches, including the use of enzyme inhibitors, are also being explored to control periodontitis. More general disruption of dental plaque through the use of enzymes and detergents, alone and in combination, shows much promise. The use of probiotics and prebiotics to improve gastrointestinal health has now led to an interest in using these approaches to control oral disease. More recently the potential of antimicrobial peptides and nanotechnology, through the application of nanoparticles with biocidal, anti-adhesive and delivery capabilities, has been explored. The aim of this review is to consider the current status as regards non-conventional treatment approaches for oral infections with particular emphasis on the plaque-related diseases. PMID:25668296

  1. Characterization of Squamate Olfactory Receptor Genes and Their Transcripts by the High-Throughput Sequencing Approach

    PubMed Central

    Dehara, Yuki; Hashiguchi, Yasuyuki; Matsubara, Kazumi; Yanai, Tokuma; Kubo, Masahito; Kumazawa, Yoshinori

    2012-01-01

    The olfactory receptor (OR) genes represent the largest multigene family in the genome of terrestrial vertebrates. Here, the high-throughput next-generation sequencing (NGS) approach was applied to characterization of OR gene repertoires in the green anole lizard Anolis carolinensis and the Japanese four-lined ratsnake Elaphe quadrivirgata. Tagged polymerase chain reaction (PCR) products amplified from either genomic DNA or cDNA of the two species were used for parallel pyrosequencing, assembling, and screening for errors in PCR and pyrosequencing. Starting from the lizard genomic DNA, we accurately identified 56 of 136 OR genes that were identified from its draft genome sequence. These recovered genes were broadly distributed in the phylogenetic tree of vertebrate OR genes without severe biases toward particular OR families. Ninety-six OR genes were identified from the ratsnake genomic DNA, implying that the snake has more OR gene loci than the anole lizard in response to an increased need for the acuity of olfaction. This view is supported by the estimated number of OR genes in the Burmese python's draft genome (∼280), although squamates may generally have fewer OR genes than terrestrial mammals and amphibians. The OR gene repertoire of the python seems unique in that many class I OR genes are retained. The NGS approach also allowed us to identify candidates of highly expressed and silent OR gene copies in the lizard's olfactory epithelium. The approach will facilitate efficient and parallel characterization of considerable unbiased proportions of multigene family members and their transcripts from nonmodel organisms. PMID:22511035

  2. Advances in the identification and characterization of olfactory receptors in insects.

    PubMed

    Montagné, Nicolas; de Fouchier, Arthur; Newcomb, Richard D; Jacquin-Joly, Emmanuelle

    2015-01-01

    Olfactory receptors (ORs) are the key elements of the molecular machinery responsible for the detection of odors in insects. Since their initial discovery in Drosophila melanogaster at the beginning of the twenty-first century, insect ORs have been the focus of intense research, both for fundamental knowledge of sensory systems and for their potential as novel targets for the development of products that could impact harmful behaviors of crop pests and disease vectors. In recent years, studies on insect ORs have entered the genomic era, with an ever-increasing number of OR genes being characterized every year through the sequencing of genomes and transcriptomes. With the upcoming release of genomic sequences from hundreds of insect species, the insect OR family could very well become the largest multigene family known. This extremely rapid identification of ORs in many insects is driving the necessity for the development of high-throughput technologies that will allow the identification of ligands for this unprecedented number of receptors. Moreover, such technologies will also be important for the development of agonists or antagonists that could be used in the fight against pest insects.

  3. Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons

    PubMed Central

    Zhang, Guangfan; Titlow, William B.; Biecker, Stephanie M.; Stromberg, Arnold J.

    2016-01-01

    Abstract A developmental program of epigenetic repression prepares each mammalian olfactory sensory neuron (OSN) to strongly express one allele from just one of hundreds of odorant receptor (OR) genes, but what completes this process of OR gene choice by driving the expression of this allele is incompletely understood. Conditional deletion experiments in mice demonstrate that Lhx2 is necessary for normal expression frequencies of nearly all ORs and all trace amine-associated receptors, irrespective of whether the deletion of Lhx2 is initiated in immature or mature OSNs. Given previous evidence that Lhx2 binds OR gene control elements, these findings indicate that Lhx2 is directly involved in driving OR expression. The data also support the conclusion that OR expression is necessary to allow immature OSNs to complete differentiation and become mature. In contrast to the robust effects of conditional deletion of Lhx2, the loss of Emx2 has much smaller effects and more often causes increased expression frequencies. Lhx2:Emx2 double mutants show opposing effects on Olfr15 expression that reveal independent effects of these two transcription factors. While Lhx2 is necessary for OR expression that supports OR gene choice, Emx2 can act differently; perhaps by helping to control the availability of OR genes for expression. PMID:27822500

  4. Gated currents in isolated olfactory receptor neurons of the larval tiger salamander.

    PubMed

    Firestein, S; Werblin, F S

    1987-09-01

    The electrical properties of enzymatically isolated olfactory receptor cells were studied with whole-cell patch clamp. Voltage-dependent currents could be separated into three ionic components: a transient inward sodium current, a sustained inward calcium current, and an outward potassium current. Three components of the outward current could be identified by their gating and kinetics: a calcium-dependent potassium current [IK(Ca)], a voltage-dependent potassium current [IK(V)], and a transient potassium current (Ia). Typical resting potentials were near -54 mV, and typical input resistance was 3-6 G omega. Thus, only 3 pA of injected current was required to depolarize the cell to spike threshold near -45 mV. The response to a current step consisted of either a single spike regardless of stimulus strength, or a train of less than 8 spikes, decrementing in amplitude and frequency over approximately equal to 250 msec. Thus, the receptor response cannot be finely graded with stimulus intensity.

  5. An improved bioluminescence-based signaling assay for odor sensing with a yeast expressing a chimeric olfactory receptor.

    PubMed

    Fukutani, Yosuke; Ishii, Jun; Noguchi, Keiichi; Kondo, Akihiko; Yohda, Masafumi

    2012-12-01

    The goal of this work was to improve the bioluminescence-based signaling assay system to create a practical application of a biomimetic odor sensor using an engineered yeast-expressing olfactory receptors (ORs). Using the yeast endogenous pheromone receptor (Ste2p) as a model GPCR, we determined the suitable promoters for the firefly luciferase (luc) reporter and GPCR genes. Additionally, we deleted some genes to further improve the sensitivity of the luc reporter assay. By replacing the endogenous yeast G-protein α-subunit (Gpa1p) with the olfactory-specific Gα(olf), the optimized yeast strain successfully transduced signal through both OR and yeast Ste2p. Our results will assist the development of a bioluminescence-based odor-sensing system using OR-expressing yeast.

  6. Local corticotropin releasing hormone (CRH) signals to its receptor CRHR1 during postnatal development of the mouse olfactory bulb.

    PubMed

    Garcia, Isabella; Bhullar, Paramjit K; Tepe, Burak; Ortiz-Guzman, Joshua; Huang, Longwen; Herman, Alexander M; Chaboub, Lesley; Deneen, Benjamin; Justice, Nicholas J; Arenkiel, Benjamin R

    2016-01-01

    Neuropeptides play important physiological functions during distinct behaviors such as arousal, learning, memory, and reproduction. However, the role of local, extrahypothalamic neuropeptide signaling in shaping synapse formation and neuronal plasticity in the brain is not well understood. Here, we characterize the spatiotemporal expression profile of the neuropeptide corticotropin-releasing hormone (CRH) and its receptor CRHR1 in the mouse OB throughout development. We found that CRH-expressing interneurons are present in the external plexiform layer, that its cognate receptor is expressed by granule cells, and show that both CRH and CRHR1 expression enriches in the postnatal period when olfaction becomes important towards olfactory-related behaviors. Further, we provide electrophysiological evidence that CRHR1-expressing granule cells functionally respond to CRH ligand, and that the physiological circuitry of CRHR1 knockout mice is abnormal, leading to impaired olfactory behaviors. Together, these data suggest a physiologically relevant role for local CRH signaling towards shaping the neuronal circuitry within the mouse OB.

  7. Attractiveness of fruit and flower odorants detected by olfactory receptor neurons in the fruit chafer Pachnoda marginata.

    PubMed

    Larsson, Mattias C; Stensmyr, Marcus C; Bice, Shannon B; Hansson, Bill S

    2003-05-01

    We studied the attraction of the African fruit chafer Pachnoda marginata Drury (Coleoptera: Scarabaeidae) to banana and 34 synthetic plant compounds previously shown to be detected by P. marginata olfactory receptor neurons. The behavioral studies were carried out in a two-choice olfactometer, where the attraction of beetles to lures and controls was monitored in 30-min intervals during whole days. Monitoring of the attraction over time gave additional information when comparing relative attractiveness of different compounds. Seventeen of the test compounds, primarily phenylic compounds, fruit esters, isovaleric acid, acetoin, and some floral or fruit terpenes, were attractive to P. marginata. Compounds showing no attractiveness included green leaf volatiles, lactones. and several alcohols, but also phenylic compounds and esters. One case of blend synergism was demonstrated, as well as some examples of sexual dimorphism in attraction. The significance of certain compounds and receptor neurons for olfactory-guided behavior of phytophagous scarabs is discussed.

  8. Presynaptic GABA Receptors Mediate Temporal Contrast Enhancement in Drosophila Olfactory Sensory Neurons and Modulate Odor-Driven Behavioral Kinetics

    PubMed Central

    Demir, Mahmut; Gorur-Shandilya, Srinivas; Kunst, Michael; Nitabach, Michael N.

    2016-01-01

    Contrast enhancement mediated by lateral inhibition within the nervous system enhances the detection of salient features of visual and auditory stimuli, such as spatial and temporal edges. However, it remains unclear how mechanisms for temporal contrast enhancement in the olfactory system can enhance the detection of odor plume edges during navigation. To address this question, we delivered to Drosophila melanogaster flies pulses of high odor intensity that induce sustained peripheral responses in olfactory sensory neurons (OSNs). We use optical electrophysiology to directly measure electrical responses in presynaptic terminals and demonstrate that sustained peripheral responses are temporally sharpened by the combined activity of two types of inhibitory GABA receptors to generate contrast-enhanced voltage responses in central OSN axon terminals. Furthermore, we show how these GABA receptors modulate the time course of innate behavioral responses after odor pulse termination, demonstrating an important role for temporal contrast enhancement in odor-guided navigation. PMID:27588305

  9. Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease

    DTIC Science & Technology

    2013-10-01

    Response to Traumatic Brain Injury Promotes Risk for Alzheimer’s Disease PRINCIPAL INVESTIGATOR: Giulio Maria Pasinetti MD., PhD...TITLE AND SUBTITLE Down-Regulation of Olfactory Receptors in Response to Traumatic Brain Injury 5a. CONTRACT NUMBER Promotes Risk for Alzheimer’s...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a risk factor for subsequent development of Alzheimer’s

  10. Integrated Approaches for Genome-wide Interrogation of the Druggable Non-olfactory G Protein-coupled Receptor Superfamily*

    PubMed Central

    Roth, Bryan L.; Kroeze, Wesley K.

    2015-01-01

    G-protein-coupled receptors (GPCRs) are frequent and fruitful targets for drug discovery and development, as well as being off-targets for the side effects of a variety of medications. Much of the druggable non-olfactory human GPCR-ome remains under-interrogated, and we present here various approaches that we and others have used to shine light into these previously dark corners of the human genome. PMID:26100629

  11. Insights into the olfactory system of the ectoparasite Caligus rogercresseyi: molecular characterization and gene transcription analysis of novel ionotropic receptors.

    PubMed

    Núñez-Acuña, Gustavo; Valenzuela-Muñoz, Valentina; Marambio, Jorge Pino; Wadsworth, Simon; Gallardo-Escárate, Cristian

    2014-10-01

    Although various elements of the olfactory system have been elucidated in insects, it remains practically unstudied in crustaceans at a molecular level. Among crustaceans, some species are classified as ectoparasites that impact the finfish aquaculture industry. Thus, there is an urgent need to identify and comprehend the signaling pathways used by these in host recognition. The present study, through RNA-seq and qPCR analyses, found novel transcripts involved in the olfactory system of Caligus rogercresseyi, in addition to the transcriptomic patterns expressed during different stages of salmon lice development. From a transcriptomic library generated by Illumina sequencing, contigs that annotated for ionotropic receptors and other genes implicated in the olfactory system were identified and extracted. Full length mRNA was obtained for the ionotropic glutamate receptor 25, which had 3923 bp, and for the glutamate receptor ionotropic kainate 2, which had 2737 bp. Furthermore, two other transcripts identified as glutamate receptor, ionotropic kainate 2-like were found. In silico analysis was performed for the transcription expression from different stages of development in C. rogercresseyi, and clusters according to RPKM values were constructed. Gene transcription data were validated through qPCR assays in ionotropic receptors, and showed an expression of glutamate receptor 25 associated with the copepodid stage whereas adults, especially male adults, were associated with the kainate 2 and kainate 2-like transcripts. Additionally, gene transcription analysis of the ionotropic receptors showed an overexpression in response to the presence of masking compounds and immunostimulant in salmon diets. This response correlated to a reduction in sea lice infection following in vivo challenge. Diets with masking compounds showed a decrease of lice infestation of up to 25%. This work contributes to the available knowledge on chemosensory systems in this ectoparasite, providing

  12. Toll Receptors Instruct Axon and Dendrite Targeting and Participate in Synaptic Partner Matching in a Drosophila Olfactory Circuit

    PubMed Central

    Ward, Alex; Hong, Weizhe; Favaloro, Vincenzo; Luo, Liqun

    2015-01-01

    SUMMARY Our understanding of the mechanisms that establish wiring specificity of complex neural circuits is far from complete. During Drosophila olfactory circuit assembly, axons of 50 olfactory receptor neuron (ORN) classes and dendrites of 50 projection neuron (PN) classes precisely target to 50 discrete glomeruli, forming parallel information-processing pathways. Here we show that Toll-6 and Toll-7, members of the Toll receptor family best known for functions in innate immunity and embryonic patterning, cell-autonomously instruct the targeting of specific classes of PN dendrites and ORN axons, respectively. The canonical ligands and downstream partners of Toll receptors in embryonic patterning and innate immunity are not required for the function of Toll-6/Toll-7 in wiring specificity, nor are their cytoplasmic domains. Interestingly, both Toll-6 and Toll-7 participate in synaptic partner matching between ORN axons and PN dendrites. Our investigations reveal that olfactory circuit assembly involves dynamic and long-range interactions between PN dendrites and ORN axons. PMID:25741726

  13. Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit.

    PubMed

    Ward, Alex; Hong, Weizhe; Favaloro, Vincenzo; Luo, Liqun

    2015-03-04

    Our understanding of the mechanisms that establish wiring specificity of complex neural circuits is far from complete. During Drosophila olfactory circuit assembly, axons of 50 olfactory receptor neuron (ORN) classes and dendrites of 50 projection neuron (PN) classes precisely target to 50 discrete glomeruli, forming parallel information-processing pathways. Here we show that Toll-6 and Toll-7, members of the Toll receptor family best known for functions in innate immunity and embryonic patterning, cell autonomously instruct the targeting of specific classes of PN dendrites and ORN axons, respectively. The canonical ligands and downstream partners of Toll receptors in embryonic patterning and innate immunity are not required for the function of Toll-6/Toll-7 in wiring specificity, nor are their cytoplasmic domains. Interestingly, both Toll-6 and Toll-7 participate in synaptic partner matching between ORN axons and PN dendrites. Our investigations reveal that olfactory circuit assembly involves dynamic and long-range interactions between PN dendrites and ORN axons.

  14. Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response.

    PubMed

    Martelli, Carlotta; Carlson, John R; Emonet, Thierry

    2013-04-10

    Odors elicit spatiotemporal patterns of activity in the brain. Spatial patterns arise from the specificity of the interaction between odorants and odorant receptors expressed in different olfactory receptor neurons (ORNs), but the origin of temporal patterns of activity and their role in odor coding remain unclear. We investigate how physiological aspects of ORN response and physical aspects of odor stimuli give rise to diverse responses in Drosophila ORNs. We show that odor stimuli have intrinsic dynamics that depend on odor type and strongly affect ORN response. Using linear-nonlinear modeling to remove the contribution of the stimulus dynamics from the ORN dynamics, we study the physiological properties of the response to different odorants and concentrations. For several odorants and receptor types, the ORN response dynamics normalized by the peak response are independent of stimulus intensity for a large portion of the dynamic range of the neuron. Adaptation to a background odor changes the gain and dynamic range of the response but does not affect normalized response dynamics. Stimulating ORNs with various odorants reveals significant odor-dependent delays in the ORN response functions. However, these differences can be dominated by differences in stimulus dynamics. In one case the response of one ORN to two odorants is predicted solely from measurements of the odor signals. Within a large portion of their dynamic range, ORNs can capture information about stimulus dynamics independently from intensity while introducing odor-dependent delays. How insects might use odor-specific stimulus dynamics and ORN dynamics in discrimination and navigation tasks remains an open question.

  15. Functional Role of the C-Terminal Amphipathic Helix 8 of Olfactory Receptors and Other G Protein-Coupled Receptors

    PubMed Central

    Sato, Takaaki; Kawasaki, Takashi; Mine, Shouhei; Matsumura, Hiroyoshi

    2016-01-01

    G protein-coupled receptors (GPCRs) transduce various extracellular signals, such as neurotransmitters, hormones, light, and odorous chemicals, into intracellular signals via G protein activation during neurological, cardiovascular, sensory and reproductive signaling. Common and unique features of interactions between GPCRs and specific G proteins are important for structure-based design of drugs in order to treat GPCR-related diseases. Atomic resolution structures of GPCR complexes with G proteins have revealed shared and extensive interactions between the conserved DRY motif and other residues in transmembrane domains 3 (TM3), 5 and 6, and the target G protein C-terminal region. However, the initial interactions formed between GPCRs and their specific G proteins remain unclear. Alanine scanning mutagenesis of the murine olfactory receptor S6 (mOR-S6) indicated that the N-terminal acidic residue of helix 8 of mOR-S6 is responsible for initial transient and specific interactions with chimeric Gα15_olf, resulting in a response that is 2.2-fold more rapid and 1.7-fold more robust than the interaction with Gα15. Our mutagenesis analysis indicates that the hydrophobic core buried between helix 8 and TM1–2 of mOR-S6 is important for the activation of both Gα15_olf and Gα15. This review focuses on the functional role of the C-terminal amphipathic helix 8 based on several recent GPCR studies. PMID:27869740

  16. Adaptation as a mechanism for gain control in cockroach ON and OFF olfactory receptor neurons.

    PubMed

    Burgstaller, Maria; Tichy, Harald

    2012-02-01

    In many sensory systems adaptation acts as a gain control mechanism that optimizes sensory performance by trading increased sensitivity to low stimulus intensity for decreased sensitivity to high stimulus intensity. Adaptation of insect antennal olfactory receptor neurons (ORNs) has been studied for strong odour concentrations, either pulsed or constant. Here, we report that during slowly oscillating changes in the concentration of the odour of lemon oil, the ON and OFF ORNs on the antenna of the cockroach Periplaneta americana adapt to the actual odour concentration and the rate at which concentration changes. When odour concentration oscillates rapidly with brief periods, adaptation improves gain for instantaneous odour concentration and reduces gain for the rate of concentration change. Conversely, when odour concentration oscillates slowly with long periods, adaptation increases gain for the rate of change at the expense of instantaneous concentration. Without this gain control the ON and OFF ORNs would, at brief oscillation periods, soon reach their saturation level and become insensitive to further concentration increments and decrements. At long oscillation periods, on the other hand, the cue would simply be that the discharge begins to change. Because of the high gain for the rate of change, the cockroach will receive creeping changes in odour concentration, even if they persist in one direction. Gain control permits a high degree of precision at small rates when it counts most, without sacrificing the range of detection and without extending the measuring scale.

  17. Oxygen control of breathing by an olfactory receptor activated by lactate

    PubMed Central

    Chang, Andy J.; Ortega, Fabian E.; Riegler, Johannes; Madison, Daniel V.; Krasnow, Mark A.

    2015-01-01

    Summary Animals have evolved homeostatic responses to changes in oxygen availability that act on different time scales. Although the hypoxia-inducible factor (HIF) transcriptional pathway that controls long term responses to low oxygen (hypoxia) has been established1, the pathway that mediates acute responses to hypoxia in mammals is not well understood. Here we show that the olfactory receptor Olfr78 is highly and selectively expressed in oxygen-sensitive glomus cells of the carotid body, a chemosensory organ at the carotid artery bifurcation that monitors blood oxygen and stimulates breathing within seconds when oxygen declines2. Olfr78 mutants fail to increase ventilation in hypoxia but respond normally to hypercapnia. Glomus cells are present in normal numbers and appear structurally intact, but hypoxia-induced carotid body activity is diminished. Lactate, a metabolite that rapidly accumulates in hypoxia and induces hyperventilation3–6, activates Olfr78 in heterologous expression experiments, induces calcium transients in glomus cells, and stimulates carotid sinus nerve activity through Olfr78. We propose that in addition to its role in olfaction, Olfr78 acts as a hypoxia sensor in the breathing circuit by sensing lactate produced when oxygen levels decline. PMID:26560302

  18. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells

    PubMed Central

    Kalbe, Benjamin; Knobloch, Jürgen; Schulz, Viola M.; Wecker, Christine; Schlimm, Marian; Scholz, Paul; Jansen, Fabian; Stoelben, Erich; Philippou, Stathis; Hecker, Erich; Lübbert, Hermann; Koch, Andrea; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases. PMID:27540365

  19. Regulation of cyclic nucleotide-gated channels and membrane excitability in olfactory receptor cells by carbon monoxide

    NASA Technical Reports Server (NTRS)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1995-01-01

    1. The effect of the putative neural messenger carbon monoxide (CO) and the role of the cGMP second-messenger system for olfactory signal generation was examined in isolated olfactory receptor neurons (ORNs) of the tiger salamander. 2. With the use of whole cell voltage-clamp recordings in combination with a series of ionic and pharmological tests, it is demonstrated that exogenously applied CO is a potent activator (K1/2 = 2.9 microM) of cyclic nucleotide-gated (CNG) channels previously described to mediate odor transduction. 3. Several lines of evidence suggest that CO mediates its effect through stimulation of a soluble guanylyl cyclase (sGC) leading to formation of the second-messenger cGMP. This conclusion is based on the findings that CO responses show an absolute requirement for guanosine 5'-triphosphate (GTP) in the internal solution, that no direct effect of CO on CNG currents in the absence of GTP is detectable, and that a blocker of sGC activation, LY85383 (10 microM), completely inhibits the CO response. 4. The dose-response curve for cGMP at CNG channels is used as a calibration to provide a quantitative estimate of the CO-stimulated cGMP formation. This analysis implies that CO is a potent activator of olfactory sGC. 5. Perforated patch recordings using amphotericin B demonstrate that low micromolar doses of CO effectively depolarize the membrane potential of ORNs through tonic activation of CNG channels. This effect in turn regulates excitable and adaptive properties of ORNs and modulates neuronal responsiveness. 6. These data argue for an important role of the cGMP pathway in olfactory signaling and support the idea that CO may function as a diffusible messenger in the olfactory system.

  20. Sex bias in copy number variation of olfactory receptor gene family depends on ethnicity

    PubMed Central

    Shadravan, Farideh

    2013-01-01

    Gender plays a pivotal role in the human genetic identity and is also manifested in many genetic disorders particularly mental retardation. In this study its effect on copy number variation (CNV), known to cause genetic disorders was explored. As the olfactory receptor (OR) repertoire comprises the largest human gene family, it was selected for this study, which was carried out within and between three populations, derived from 150 individuals from the 1000 Genome Project. Analysis of 3872 CNVs detected among 791 OR loci, in which 307 loci showed CNV, revealed the following novel findings: Sex bias in CNV was significantly more prevalent in uncommon than common CNV variants of OR pseudogenes, in which the male genome showed more CNVs; and in one-copy number loss compared to complete deletion of OR pseudogenes; both findings implying a more recent evolutionary role for gender. Sex bias in copy number gain was also detected. Another novel finding was that the observed sex bias was largely dependent on ethnicity and was in general absent in East Asians. Using a CNV public database for sick children (International Standard Cytogenomic Array Consortium) the application of these findings for improving clinical molecular diagnostics is discussed by showing an example of sex bias in CNV among kids with autism. Additional clinical relevance is discussed, as the most polymorphic CNV-enriched OR cluster in the human genome, located on chr 15q11.2, is found near the Prader–Willi syndrome/Angelman syndrome bi-directionally imprinted region associated with two well-known mental retardation syndromes. As olfaction represents the primitive cognition in most mammals, arguably in competition with the development of a larger brain, the extensive retention of OR pseudogenes in females of this study, might point to a parent-of-origin indirect regulatory role for OR pseudogenes in the embryonic development of human brain. Thus any perturbation in the temporal regulation of olfactory

  1. Phosphatidylinositol 4,5-bisphosphate-dependent regulation of the output in lobster olfactory receptor neurons.

    PubMed

    Bobkov, Yuriy V; Pezier, Adeline; Corey, Elizabeth A; Ache, Barry W

    2010-05-01

    Transient receptor potential (TRP) channels often play a role in sensory transduction, including chemosensory transduction. TRP channels, a common downstream target of phosphoinositide (PI) signaling, can be modulated by exogenous phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and/or diacylglycerol (DAG). Lobster olfactory receptor neurons (ORNs) express a TRP-related, non-selective, calcium/magnesium-permeable, sodium/calcium-gated cation (SGC) channel. Here we report that PIs regulate the function of the calcium-activated form of the lobster channel. Sequestering of endogenous PI(4,5)P2, either with an anti-PI(4,5)P2 antibody or by electrostatic screening with polyvalent cations, blocks the channel. Exogenous PI(3,4,5)P3 activates the channel independently of intracellular sodium and/or calcium. Exogenous non-hydrolysable DAG analogs fail to change the gating parameters of the channel, suggesting the channel is insensitive to DAG. Electrophysiological recording from lobster ORNs in situ using a panel of pharmacological tools targeting the key components of both PI and DAG metabolism (phospholipase C, phosphoinositide 4-kinase and DAG kinase) extend these findings to the intact ORN. PI(4,5)P2 depletion suppresses both the odorant-evoked discharge and whole-cell current of the cells, and does so possibly independently of DAG production. Collectively, our results argue that PIs can regulate output in lobster ORNs, at least in part through their action on the lobster SGC channel.

  2. MHC-Linked Olfactory Receptor Loci Exhibit Polymorphism and Contribute to Extended HLA/OR-Haplotypes

    PubMed Central

    Ehlers, Anke; Beck, Stephan; Forbes, Simon A.; Trowsdale, John; Volz, Armin; Younger, Ruth; Ziegler, Andreas

    2000-01-01

    Clusters of olfactory receptor (OR) genes are found on most human chromosomes. They are one of the largest mammalian multigene families. Here, we report a systematic study of polymorphism of OR genes belonging to the largest fully sequenced OR cluster. The cluster contains 36 OR genes, of which two belong to the vomeronasal 1 (V1-OR) family. The cluster is divided into a major and a minor region at the telomeric end of the HLA complex on chromosome 6. These OR genes could be involved in MHC-related mate preferences. The polymorphism screen was carried out with 13 genes from the HLA-linked OR cluster and three genes from chromosomes 7, 17, and 19 as controls. Ten human cell lines, representing 18 different chromosome 6s, were analyzed. They were from various ethnic origins and exhibited different HLA haplotypes. All OR genes tested, including those not linked to the HLA complex, were polymorphic. These polymorphisms were dispersed along the coding region and resulted in up to seven alleles for a given OR gene. Three polymorphisms resulted either in stop codons (genes hs6M1-4P, hs6M1-17) or in a 16–bp deletion (gene hs6M1-19P), possibly leading to lack of ligand recognition by the respective receptors in the cell line donors. In total, 13 HLA-linked OR haplotypes could be defined. Therefore, allelic variation appears to be a general feature of human OR genes. [The sequence data reported in this paper have been submitted to EMBL under accession nos. AC006137, AC004178, AJ132194, AL022727, AL031983, AL035402, AL035542, Z98744, CAB55431, AL050339, AL035402, AL096770, AL133267, AL121944, Z98745, AL021808, and AL021807.] PMID:11116091

  3. A General Odorant Background Affects the Coding of Pheromone Stimulus Intermittency in Specialist Olfactory Receptor Neurones

    PubMed Central

    Rouyar, Angela; Party, Virginie; Prešern, Janez; Blejec, Andrej; Renou, Michel

    2011-01-01

    In nature the aerial trace of pheromone used by male moths to find a female appears as a train of discontinuous pulses separated by gaps among a complex odorant background constituted of plant volatiles. We investigated the effect of such background odor on behavior and coding of temporal parameters of pheromone pulse trains in the pheromone olfactory receptor neurons of Spodoptera littoralis. Effects of linalool background were tested by measuring walking behavior towards a source of pheromone. While velocity and orientation index did drop when linalool was turned on, both parameters recovered back to pre-background values after 40 s with linalool still present. Photo-ionization detector was used to characterize pulse delivery by our stimulator. The photo-ionization detector signal reached 71% of maximum amplitude at 50 ms pulses and followed the stimulus period at repetition rates up to 10 pulses/s. However, at high pulse rates the concentration of the odorant did not return to base level during inter-pulse intervals. Linalool decreased the intensity and shortened the response of receptor neurons to pulses. High contrast (>10 dB) in firing rate between pulses and inter-pulse intervals was observed for 1 and 4 pulses/s, both with and without background. Significantly more neurons followed the 4 pulses/s pattern when delivered over linalool; at the same time the information content was preserved almost to the control values. Rapid recovery of behavior shows that change of perceived intensity is more important than absolute stimulus intensity. While decreasing the response intensity, background odor preserved the temporal parameters of the specific signal. PMID:22028879

  4. Mammalian olfactory receptors: molecular mechanisms of odorant detection, 3D-modeling, and structure-activity relationships.

    PubMed

    Persuy, Marie-Annick; Sanz, Guenhaël; Tromelin, Anne; Thomas-Danguin, Thierry; Gibrat, Jean-François; Pajot-Augy, Edith

    2015-01-01

    This chapter describes the main characteristics of olfactory receptor (OR) genes of vertebrates, including generation of this large multigenic family and pseudogenization. OR genes are compared in relation to evolution and among species. OR gene structure and selection of a given gene for expression in an olfactory sensory neuron (OSN) are tackled. The specificities of OR proteins, their expression, and their function are presented. The expression of OR proteins in locations other than the nasal cavity is regulated by different mechanisms, and ORs display various additional functions. A conventional olfactory signal transduction cascade is observed in OSNs, but individual ORs can also mediate different signaling pathways, through the involvement of other molecular partners and depending on the odorant ligand encountered. ORs are engaged in constitutive dimers. Ligand binding induces conformational changes in the ORs that regulate their level of activity depending on odorant dose. When present, odorant binding proteins induce an allosteric modulation of OR activity. Since no 3D structure of an OR has been yet resolved, modeling has to be performed using the closest G-protein-coupled receptor 3D structures available, to facilitate virtual ligand screening using the models. The study of odorant binding modes and affinities may infer best-bet OR ligands, to be subsequently checked experimentally. The relationship between spatial and steric features of odorants and their activity in terms of perceived odor quality are also fields of research that development of computing tools may enhance.

  5. An olfactory receptor from Apolygus lucorum (Meyer-Dur) mainly tuned to volatiles from flowering host plants.

    PubMed

    Yan, Shu-Wei; Zhang, Jin; Liu, Yang; Li, Guo-Qing; Wang, Gui-Rong

    2015-08-01

    Apolygus lucorum (Meyer-Dür) (Hemiptera: Miridae) is one of the most serious agricultural pests, feeding on a wide range of cultivated plants, including cotton, cereals and vegetables in the north of China. This insect can frequently switch between habitats and host plants over seasons and prefer plants in bloom. A. lucorum relies heavily on olfaction to locate its host plants finely discriminating different plant volatiles in the environment. Despite its economical importance, research on the olfactory system of this species has been so far very limited. In this study, we have identified and characterized an olfactory receptor which is sensitively tuned to (Z)-3-Hexenyl acetate and several flowering compounds. Besides being present in the bouquet of some flowers, these compounds are produced by plants that have suffered attacks and are supposed to act as chemical messengers between plants. This OR may play an important role in the selection of host plants.

  6. Using multilayer perceptron computation to discover ideal insect olfactory receptor combinations in the mosquito and fruit fly for an efficient electronic nose.

    PubMed

    Bachtiar, Luqman R; Unsworth, Charles P; Newcomb, Richard D

    2015-01-01

    The model organism, Drosophila melanogaster, and the mosquito Anopheles gambiae use 60 and 79 odorant receptors, respectively, to sense their olfactory world. However, a commercial "electronic nose" in the form of an insect olfactory biosensor demands very low numbers of receptors at its front end of detection due to the difficulties of receptor/sensor integration and functionalization. In this letter, we demonstrate how computation via artificial neural networks (ANNs), in the form of multilayer perceptrons (MLPs), can be successfully incorporated as the signal processing back end of the biosensor to drastically reduce the number of receptors to three while still retaining 100% performance of odorant detection to that of a full complement of receptors. In addition, we provide a detailed performance comparison between D. melanogaster and A. gambiae odorant receptors and demonstrate that A. gambiae receptors provide superior olfaction detection performance over D. melanogaster for very low receptor numbers. The results from this study present the possibility of using the computation of MLPs to discover ideal biological olfactory receptors for an olfactory biosensor device to provide maximum classification performance of unknown odorants.

  7. NanoCAGE analysis of the mouse olfactory epithelium identifies the expression of vomeronasal receptors and of proximal LINE elements

    PubMed Central

    Pascarella, Giovanni; Lazarevic, Dejan; Plessy, Charles; Bertin, Nicolas; Akalin, Altuna; Vlachouli, Christina; Simone, Roberto; Faulkner, Geoffrey J.; Zucchelli, Silvia; Kawai, Jun; Daub, Carsten O.; Hayashizaki, Yoshihide; Lenhard, Boris; Carninci, Piero; Gustincich, Stefano

    2013-01-01

    By coupling laser capture microdissection to nanoCAGE technology and next-generation sequencing we have identified the genome-wide collection of active promoters in the mouse Main Olfactory Epithelium (MOE). Transcription start sites (TSSs) for the large majority of Olfactory Receptors (ORs) have been previously mapped increasing our understanding of their promoter architecture. Here we show that in our nanoCAGE libraries of the mouse MOE we detect a large number of tags mapped in loci hosting Type-1 and Type-2 Vomeronasal Receptors genes (V1Rs and V2Rs). These loci also show a massive expression of Long Interspersed Nuclear Elements (LINEs). We have validated the expression of selected receptors detected by nanoCAGE with in situ hybridization, RT-PCR and qRT-PCR. This work extends the repertory of receptors capable of sensing chemical signals in the MOE, suggesting intriguing interplays between MOE and VNO for pheromone processing and positioning transcribed LINEs as candidate regulatory RNAs for VRs expression. PMID:24600346

  8. The divergent orphan nuclear receptor ODR-7 regulates olfactory neuron gene expression via multiple mechanisms in Caenorhabditis elegans.

    PubMed Central

    Colosimo, Marc E; Tran, Susan; Sengupta, Piali

    2003-01-01

    Nuclear receptors regulate numerous critical biological processes. The C. elegans genome is predicted to encode approximately 270 nuclear receptors of which >250 are unique to nematodes. ODR-7 is the only member of this large divergent family whose functions have been defined genetically. ODR-7 is expressed in the AWA olfactory neurons and specifies AWA sensory identity by promoting the expression of AWA-specific signaling genes and repressing the expression of an AWC-specific olfactory receptor gene. To elucidate the molecular mechanisms of action of a divergent nuclear receptor, we have identified residues and domains required for different aspects of ODR-7 function in vivo. ODR-7 utilizes an unexpected diversity of mechanisms to regulate the expression of different sets of target genes. Moreover, these mechanisms are distinct in normal and heterologous cellular contexts. The odr-7 ortholog in the closely related nematode C. briggsae can fully substitute for all ODR-7-mediated functions, indicating conservation of function across 25-120 million years of divergence. PMID:14704165

  9. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles

    PubMed Central

    Baud, Olivia; Yuan, Shuguang; Veya, Luc; Filipek, Slawomir; Vogel, Horst; Pick, Horst

    2015-01-01

    A multi-gene family of ~1000 G protein-coupled olfactory receptors (ORs) constitutes the molecular basis of mammalian olfaction. Due to the lack of structural data its remarkable capacity to detect and discriminate thousands of odorants remains poorly understood on the structural level of the receptor. Using site-directed mutagenesis we transferred ligand specificity between two functionally related ORs and thereby revealed amino acid residues of central importance for odorant recognition and discrimination of the two receptors. By exchanging two of three residues, differing at equivalent positions of the putative odorant binding site between the mouse OR paralogs Olfr73 (mOR-EG) and Olfr74 (mOR-EV), we selectively changed ligand preference but remarkably also signaling activation strength in both ORs. Computer modeling proposed structural details at atomic resolution how the very same odorant molecule might interact with different contact residues to induce different functional responses in two related receptors. Our findings provide a mechanistic explanation of how the olfactory system distinguishes different molecular aspects of a given odorant molecule, and unravel important molecular details of the combinatorial encoding of odorant identity at the OR level. PMID:26449412

  10. Pairwise comparison of orthologous olfactory receptor genes between two sympatric sibling sea kraits of the genus Laticauda in Vanuatu.

    PubMed

    Kishida, Takushi; Hayano, Azusa; Inoue-Murayama, Miho; Hikida, Tsutomu

    2013-06-01

    Olfaction-based reproductive isolation is widely observed in animals, but little is known about the genetic basis of such isolation mechanisms. Two species of sibling amphibious sea snakes, Laticauda colubrina and L. frontalis live in Vanuatu sympatrically and syntopically, but no natural hybrids have been reported. Adult females of both taxa possess distinctive lipids in the skin, and male L. frontalis distinguishes conspecific females based on olfactory cues. To shed light on the molecular basis of the evolution of olfaction-based isolation mechanisms, olfactory receptor (OR) gene repertoires of both taxa were identified using pyrosequencing-based technology, and orthologous OR gene sets were identified. Few species-specific gene duplications or species-specific gene losses were found. However, the nonsynonymous-to-synonymous substitution rate ratio was relatively higher between orthologous OR genes of L. frontalis and L. colubrina, indicating that L. frontalis and L. colubrina have evolved to possess different olfactory senses. We suggest that L. frontalis and L. colubrina have evolved allopatrically, and this may be a byproduct of the allopatric evolution, and that this dissimilarity may function as a premating isolation barrier, since L. frontalis has returned to the ancestral range (Vanuatu).

  11. Identification of vertebrate volatiles stimulating olfactory receptors on tarsus I of the tick Amblyomma variegatum Fabricius (Ixodidae). I. Receptors within the Haller's organ capsule.

    PubMed

    Steullet, P; Guerin, P M

    1994-01-01

    Gas chromatography-coupled electrophysiological recordings (GC-EL) from olfactory sensilla within the capsule of Haller's organ of the tick Amblyomma variegatum indicate the presence of a number of stimulants in rabbit and bovine odours, and in steer skin wash. Some of these stimulants were fully identified by gas chromatography-mass spectrometry analysis and by matching electrophysiological activity of synthetic analogues as: 1) hexanal, 2-heptenal, nonanal, furfural, benzaldehyde, and 2-hydroxybenzaldehyde (in all extracts); 2) heptanal, 2-, 3-, and 4-methylbenzaldehyde, and gamma-valerolactone (only in bovine and rabbit odour). Careful examination of the electrophysiological responses permit characterization of 6 receptor types: 1) a benzaldehyde receptor, 2) a 2-hydroxybenzaldehyde receptor, 3) three types of receptors responding differently to aliphatic aldehydes, and 4) a lactone receptor.

  12. Characterization of Clustered MHC-Linked Olfactory Receptor Genes in Human and Mouse

    PubMed Central

    Younger, Ruth M.; Amadou, Claire; Bethel, Graeme; Ehlers, Anke; Lindahl, Kirsten Fischer; Forbes, Simon; Horton, Roger; Milne, Sarah; Mungall, Andrew J.; Trowsdale, John; Volz, Armin; Ziegler, Andreas; Beck, Stephan

    2001-01-01

    Olfactory receptor (OR) loci frequently cluster and are present on most human chromosomes. They are members of the seven transmembrane receptor (7-TM) superfamily and, as such, are part of one of the largest mammalian multigene families, with an estimated copy number of up to 1000 ORs per haploid genome. As their name implies, ORs are known to be involved in the perception of odors and possibly also in other, nonolfaction-related, functions. Here, we report the characterization of ORs that are part of the MHC-linked OR clusters in human and mouse (partial sequence only). These clusters are of particular interest because of their possible involvement in olfaction-driven mate selection. In total, we describe 50 novel OR loci (36 human, 14 murine), making the human MHC-linked cluster the largest sequenced OR cluster in any organism so far. Comparative and phylogenetic analyses confirm the cluster to be MHC-linked but divergent in both species and allow the identification of at least one ortholog that will be useful for future regulatory and functional studies. Quantitative feature analysis shows clear evidence of duplications of blocks of OR genes and reveals the entire cluster to have a genomic environment that is very different from its neighboring regions. Based on in silico transcript analysis, we also present evidence of extensive long-distance splicing in the 5′-untranslated regions and, for the first time, of alternative splicing within the single coding exon of ORs. Taken together with our previous finding that ORs are also polymorphic, the presented data indicate that the expression, function, and evolution of these interesting genes might be more complex than previously thought. [The sequence data described in this paper have been submitted to the EMBL nucleotide data library under accession nos. Z84475, Z98744, Z98745, AL021807, AL021808, AL022723, AL022727, AL031893, AL035402, AL035542, AL050328, AL050339, AL078630, AL096770, AL121944, AL133160, and AL

  13. Human olfactory receptors: recombinant expression in the baculovirus/Sf9 insect cell system, functional characterization, and odorant identification.

    PubMed

    Matarazzo, Valéry; Ronin, Catherine

    2013-01-01

    Cell surface expression of recombinant olfactory receptors (ORs) is a major limitation in characterizing their functional nature. We have shown that the recombinant expression of a human OR, OR 17-210, in the baculovirus/Sf9 insect cell system allows this protein to be expressed at the cell surface. We used Ca(2+) imaging to demonstrate that recombinant OR 17-210 produces cellular activities upon odorant stimulation with ketones. Furthermore, this expression and functional system has been used to show that the preincubation of Human Odorant Binding Protein 2A decrease the calcium response of OR 17-210 following stimulation by acetophenone and beta ionone.

  14. Dual modulation of inward rectifier potassium currents in olfactory neuronal cells by promiscuous G protein coupling of the oxytocin receptor.

    PubMed

    Gravati, Marta; Busnelli, Marta; Bulgheroni, Elisabetta; Reversi, Alessandra; Spaiardi, Paolo; Parenti, Marco; Toselli, Mauro; Chini, Bice

    2010-09-01

    Oxytocin receptor is a seven transmembrane receptor widely expressed in the CNS that triggers G(i) or G(q) protein-mediated signaling cascades leading to the regulation of a variety of neuroendocrine and cognitive functions. We decided to investigate whether and how the promiscuous receptor/G protein coupling affects neuronal excitability. As an experimental model, we used the immortalized gonadotropin-releasing hormone-positive GN11 cell line displaying the features of immature, migrating olfactory neurons. Using RT-PCR analysis, we detected the presence of oxytocin receptors whose stimulation by oxytocin led to the accumulation of inositol phosphates and to the inhibition of cell proliferation, and the expression of several inward rectifier (IR) K+ channel subtypes. Moreover, electrophysiological and pharmacological inspections using whole-cell patch-clamp recordings evidenced that in GN11 cells, IR channel subtypes are responsive to oxytocin. In particular, we found that: (i) peptide activation of receptor either inhibited or stimulated IR conductances, and (ii) IR current inhibition was mediated by a pertussis toxin-resistant G protein presumably of the G(q/11) subtype, and by phospholipase C, whereas IR current activation was achieved via receptor coupling to a pertussis toxin-sensitive G(i/o) protein. The findings suggest that neuronal excitability might be tuned by a single peptide receptor that mediates opposing effects on distinct K+ channels through the promiscuous coupling to different G proteins.

  15. Properties of transient K+ currents and underlying single K+ channels in rat olfactory receptor neurons

    PubMed Central

    1991-01-01

    The transient potassium current, IK(t), of enzymatically dissociated rat olfactory receptor neurons was studied using patch-clamp techniques. Upon depolarization from negative holding potentials, IK(t) activated rapidly and then inactivated with a time course described by the sum of two exponential components with time constants of 22.4 and 143 ms. Single-channel analysis revealed a further small component with a time constant of several seconds. Steady-state inactivation was complete at -20 mV and completely removed at -80 mV (midpoint -45 mV). Activation was significant at -40 mV and appeared to reach a maximum conductance at +40 mV (midpoint -13 mV). Deactivation was described by the sum of two voltage-dependent exponential components. Recovery from inactivation was extraordinarily slow (50 s at -100 mV) and the underlying processes appeared complex. IK(t) was reduced by 4- aminopyridine and tetraethylammonium applied externally. Increasing the external K+ concentration ([K+]o) from 5 to 25 mM partially removed IK(t) inactivation, usually without affecting activation kinetics. The elevated [K+]o also hyperpolarized the steady-state inactivation curve by 9 mV and significantly depolarized the voltage dependence of activation. Single transient K+ channels, with conductances of 17 and 26 pS, were observed in excised patches and often appeared to be localized into large clusters. These channels were similar to IK(t) in their kinetic, pharmacological, and voltage-dependent properties and their inactivation was also subject to modulation by [K+]o. The properties of IK(t) imply a role in action potential repolarization and suggest it may also be important in modulating spike parameters during neuronal burst firing. A simple method is also presented to correct for errors in the measurement of whole-cell resistance (Ro) that can result when patch-clamping very small cells. The analysis revealed a mean corrected Ro of 26 G omega for these cells. PMID:1865174

  16. Changes in Olfactory Receptor Expression Are Correlated With Odor Exposure During Early Development in the zebrafish (Danio rerio).

    PubMed

    Calfún, Cristian; Domínguez, Calixto; Pérez-Acle, Tomás; Whitlock, Kathleen E

    2016-05-01

    We have previously shown that exposure to phenyl ethyl alcohol (PEA) causes an increase in the expression of the transcription factor otx2 in the olfactory epithelium (OE) of juvenile zebrafish, and this change is correlated with the formation of an odor memory of PEA. Here, we show that the changes in otx2 expression are specific to βPEA: exposure to αPEA did not affect otx2 expression. We identified 34 olfactory receptors (ORs) representing 16 families on 4 different chromosomes as candidates for direct regulation of OR expression via Otx2. Subsequent in silico analysis uncovered Hnf3b binding sites closely associated with Otx2 binding sites in the regions flanking the ORs. Analysis by quantitative polymerase chain reaction and RNA-seq of OR expression in developing zebrafish exposed to different isoforms of PEA showed that a subset of ORs containing both Otx2/Hnf3b binding sites were downregulated only in βPEA-exposed juveniles and this change persisted through adult life. Localization of OR expression by in situ hybridization indicates the downregulation occurs at the level of RNA and not the number of cells expressing a given receptor. Finally, analysis of immediate early gene expression in the OE did not reveal changes in c-fos expression in response to either αPEA or βPEA.

  17. Global Survey of Variation in a Human Olfactory Receptor Gene Reveals Signatures of Non-Neutral Evolution

    PubMed Central

    Gokcumen, Omer; Qureshy, Zoya; Bruguera, Elise; Savangsuksa, Aulaphan; Cobb, Matthew; Matsunami, Hiroaki

    2015-01-01

    Allelic variation at 4 loci in the human olfactory receptor gene OR7D4 is associated with perceptual variation in the sex steroid-derived odorants, androstenone, and androstadienone. Androstadienone has been linked with chemosensory identification whereas androstenone makes pork from uncastrated pigs distasteful (“boar taint”). In a sample of 2224 individuals from 43 populations, we identified 45 OR7D4 single nucleotide polymorphisms. Coalescent modeling of frequency-site-spectrum-based statistics identified significant deviation from neutrality in human OR7D4; individual populations with statistically significant deviations from neutrality include Gujarati, Beijing Han, Great Britain, Iberia, and Puerto Rico. Analysis of molecular variation values indicated statistically significant population differentiation driven mainly by the 4 alleles associated with androstenone perception variation; however, fixation values were low suggesting that genetic structure may not have played a strong role in creating these group divisions. We also studied OR7D4 in the genomes of extinct members of the human lineage: Altai Neandertal and Denisovan. No variants were identified in Altai but 2 were in Denisova, one of which is shared by modern humans and one of which is novel. A functional test of modern human and a synthesized mutant Denisova OR7D4 indicated no statistically significant difference in responses to androstenone between the 2 species. Our results suggest non-neutral evolution for an olfactory receptor gene. PMID:26072518

  18. Functional promiscuity in a mammalian chemosensory system: extensive expression of vomeronasal receptors in the main olfactory epithelium of mouse lemurs

    PubMed Central

    Hohenbrink, Philipp; Dempewolf, Silke; Zimmermann, Elke; Mundy, Nicholas I.; Radespiel, Ute

    2014-01-01

    The vomeronasal organ (VNO) is functional in most terrestrial mammals, though progressively reduced in the primate lineage, and is used for intraspecific communication and predator recognition. Vomeronasal receptor (VR) genes comprise two families of chemosensory genes (V1R and V2R) that have been considered to be specific for the VNO. However, recently a large number of VRs were reported to be expressed in the main olfactory epithelium (MOE) of mice, but there is little knowledge of the expression of these genes outside of rodents. To explore the function of VR genes in mammalian evolution, we analyzed and compared the expression of 64 V1R and 2 V2R genes in the VNO and the MOE of the gray mouse lemur (Microcebus murinus), the primate with the largest known VR repertoire. We furthermore compared expression patterns in adults of both sexes and seasons, and in an infant. A large proportion (83–97%) of the VR loci was expressed in the VNO of all individuals. The repertoire in the infant was as rich as in adults, indicating reliance on olfactory communication from early postnatal development onwards. In concordance with mice, we also detected extensive expression of VRs in the MOE, with proportions of expressed loci in individuals ranging from 29 to 45%. TRPC2, which encodes a channel protein crucial for signal transduction via VRs, was co-expressed in the MOE in all individuals indicating likely functionality of expressed VR genes in the MOE. In summary, the large VR repertoire in mouse lemurs seems to be highly functional. Given the differences in the neural pathways of MOE and VNO signals, which project to higher cortical brain centers or the limbic system, respectively, this raises the intriguing possibility that the evolution of MOE-expression of VRs enabled mouse lemurs to adaptively diversify the processing of VR-encoded olfactory information. PMID:25309343

  19. The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods.

    PubMed

    McGowen, Michael R; Clark, Clay; Gatesy, John

    2008-08-01

    The macroevolutionary transition of whales (cetaceans) from a terrestrial quadruped to an obligate aquatic form involved major changes in sensory abilities. Compared to terrestrial mammals, the olfactory system of baleen whales is dramatically reduced, and in toothed whales is completely absent. We sampled the olfactory receptor (OR) subgenomes of eight cetacean species from four families. A multigene tree of 115 newly characterized OR sequences from these eight species and published data for Bos taurus revealed a diverse array of class II OR paralogues in Cetacea. Evolution of the OR gene superfamily in toothed whales (Odontoceti) featured a multitude of independent pseudogenization events, supporting anatomical evidence that odontocetes have lost their olfactory sense. We explored the phylogenetic utility of OR pseudogenes in Cetacea, concentrating on delphinids (oceanic dolphins), the product of a rapid evolutionary radiation that has been difficult to resolve in previous studies of mitochondrial DNA sequences. Phylogenetic analyses of OR pseudogenes using both gene-tree reconciliation and supermatrix methods yielded fully resolved, consistently supported relationships among members of four delphinid subfamilies. Alternative minimizations of gene duplications, gene duplications plus gene losses, deep coalescence events, and nucleotide substitutions plus indels returned highly congruent phylogenetic hypotheses. Novel DNA sequence data for six single-copy nuclear loci and three mitochondrial genes (> 5000 aligned nucleotides) provided an independent test of the OR trees. Nucleotide substitutions and indels in OR pseudogenes showed a very low degree of homoplasy in comparison to mitochondrial DNA and, on average, provided more variation than single-copy nuclear DNA. Our results suggest that phylogenetic analysis of the large OR superfamily will be effective for resolving relationships within Cetacea whether supermatrix or gene-tree reconciliation procedures are

  20. Role of 5-HT3 receptors in basal and K(+)-evoked dopamine release from rat olfactory tubercle and striatal slices.

    PubMed Central

    Zazpe, A; Artaiz, I; Del Río, J

    1994-01-01

    1. The present study was aimed at examining the role of 5-HT3 receptors in basal and depolarization-evoked dopamine release from rat olfactory tubercle and striatal slices. [3H]-dopamine ([3H]-DA) release was measured in both brain regions and endogenous dopamine release from striatal slices was also studied. 2. The selective 5-HT3 receptor agonist 2-methyl-5-HT (0.5-10 microM) produced a concentration-dependent increase in [3H]-DA efflux evoked by K+ (20 mM) from slices of rat olfactory tubercle. 1-Phenylbiguanide (PBG) and 5-HT also increased K(+)-evoked [3H]-DA efflux. 3. 5-HT (1-100 microM) increased in a concentration-dependent manner basal [3H]-DA release from olfactory tubercle and striatal slices as well as endogenous DA release from striatal slices. The selective 5-HT3 receptor agonists 2-methyl-5-HT and 1-phenylbiguanide were weaker releasing agents. In all cases, the release was Ca2+ independent and tetrodotoxin insensitive. 4. 5-HT3 receptor antagonists such as ondansetron, granisetron and tropisetron (0.2 microM) significantly blocked the enhanced K(+)-evoked [3H]-DA efflux from rat olfactory tubercle slices induced by 2-methyl-5HT. A ten fold higher concentration of the 5-HT2 receptor antagonist ketanserin was ineffective. 5. Much higher concentrations, up to 50 microM, of the same 5-HT3 receptor antagonists did not block the increase in basal [3H]-DA release from striatal or olfactory tubercle slices induced by 5-HT or the release of endogenous DA induced by 5-HT from striatal slices.2+ off PMID:7858893

  1. Differential Octopaminergic Modulation of Olfactory Receptor Neuron Responses to Sex Pheromones in Heliothis virescens

    PubMed Central

    Hillier, N. Kirk; Kavanagh, Rhys M. B.

    2015-01-01

    Octopamine is an important neuromodulator of neural function in invertebrates. Octopamine increases male moth sensitivity to female sex pheromones, however, relatively little is known as to the role of octopamine in the female olfactory system, nor its possible effects on the reception of non-pheromone odorants. The purpose of this study was to determine relative effects of octopamine on the sensitivity of the peripheral olfactory system in male and female Heliothis virescens. Single sensillum recording was conducted in both sexes following injection with octopamine or Ringer solution, and during odorant stimulation with conspecific female sex pheromone or host plant volatiles. Results indicate that octopamine plays a significant modulatory role in female sex pheromone detection in female moths; and that male and female pheromone detection neurons share distinct pharmacological and physiological similarities in H. virescens despite sexual dimorphism at the antennal level. PMID:26650832

  2. Neonatal olfactory bulbectomy enhances locomotor activity, exploratory behavior and binding of NMDA receptors in pre-pubertal rats.

    PubMed

    Flores, G; Ibañez-Sandoval, O; Silva-Gómez, A B; Camacho-Abrego, I; Rodríguez-Moreno, A; Morales-Medina, J C

    2014-02-14

    In this study, we investigated the effect of neonatal olfactory bulbectomy (nOBX) on behavioral paradigms related to olfaction such as exploratory behavior, locomotor activity in a novel environment and social interaction. We also studied the effect of nOBX on the activity of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors during development. The behavioral effects of nOBX (postnatal day 7, PD7) were investigated in pre- (PD30) and post-pubertal (PD60) Wistar rats. NMDA receptor activity was measured with [(125)I]MK-801 in the brain regions associated with the olfactory circuitry. A significant increase in the novelty-induced locomotion was seen in the pre-pubertal nOBX rats. Although the locomotor effect was less marked than in pre-pubertal rats, the nOBX rats tested post-pubertally failed to habituate to the novel situation as quickly as the sham- and normal- controls. Pre-pubertally, the head-dipping behavior was enhanced in nOBX rats compared with sham-operated and normal controls, while normal exploratory behavior was observed between groups in adulthood. In contrast, social interaction was increased in post-pubertal animals that underwent nOBX. Both pre- and post-pubertal nOBX rats recovered olfaction. Interestingly, pre-pubertal rats showed a significant increase in the [(125)I]MK-801 binding in the piriform cortex, dorsal hippocampus, inner and outer layers of the frontal cortex and outer layer of the cingulate cortex. At post-pubertal age, no significant differences in [(125)I]MK-801 binding were observed between groups at any of the brain regions analyzed. These results suggest that nOBX produces pre-pubertal behavioral disturbances and NMDA receptor changes that are transitory with recovery of olfaction early in adulthood.

  3. Specific mesenchymal/epithelial induction of olfactory receptor, vomeronasal, and gonadotropin-releasing hormone (GnRH) neurons

    PubMed Central

    Rawson, N.E; Lischka, F. W.; Yee, K.K.; Peters, A.Z.; Tucker, E.S.; Meechan, D.W.; Zirlinger, M.; Maynard, T.M.; Burd, G.B.; Dulac, C.; Pevny, L.; LaMantia, A-S.

    2013-01-01

    We asked whether specific mesenchymal/epithelial (M/E) induction generates olfactory receptor neurons (ORNs), vomeronasal neurons (VRNs) and gonadotropin releasing hormone (GnRH) neurons—the major neuron classes associated with the olfactory epithelium (OE). To assess specificity of M/E-mediated neurogenesis, we compared the influence of frontonasal mesenchyme on frontonasal epithelium, which becomes the OE, with that of the forelimb bud. Despite differences in position, morphogenetic and cytogenic capacity, both mesenchymal tissues support neurogenesis, expression of several signaling molecules and neurogenic transcription factors in the frontonasal epithelium. Only frontonasal mesenchyme, however, supports OE-specific patterning and activity of a subset of signals and factors associated with OE differentiation. Moreover, only appropriate pairing of frontonasal epithelial and mesenchymal partners yields ORNs, VRNs, and GnRH neurons. Accordingly, the position and molecular identity of specialized frontonasal epithelia and mesenchyme early in gestation and subsequent inductive interactions, specifies the genesis and differentiation of peripheral chemosensory and neuroendocrine neurons. PMID:20503368

  4. Sensillar expression and responses of olfactory receptors reveal different peripheral coding in two Helicoverpa species using the same pheromone components

    PubMed Central

    Chang, Hetan; Guo, Mengbo; Wang, Bing; Liu, Yang; Dong, Shuanglin; Wang, Guirong

    2016-01-01

    Male moths efficiently recognize conspecific sex pheromones thanks to their highly accurate and specific olfactory system. The Heliothis/Helicoverpa species are regarded as good models for studying the perception of sex pheromones. In this study, we performed a series of experiments to investigate the peripheral mechanisms of pheromone coding in two-closely related species, Helicoverpa armigera and H. assulta. The morphology and distribution patterns of sensilla trichoidea are similar between the two species when observed at the scanning electron microscope, but their performances are different. In H. armigera, three functional types of sensilla trichoidea (A, B and C) were found to respond to different pheromone components, while in H. assulta only two types of such sensilla (A and C) could be detected. The response profiles of all types of sensilla trichoidea in the two species well matched the specificities of the pheromone receptors (PRs) expressed in the same sensilla, as measured in voltage-clamp experiments. The expressions of PRs in neighboring olfactory sensory neurons (OSNs) within the same trichoid sensillum were further confirmed by in situ hybridization. Our results show how the same pheromone components can code for different messages at the periphery of two Helicoverpa species. PMID:26744070

  5. Sequence variations at the HLA-linked olfactory receptor cluster do not influence female preferences for male odors

    PubMed Central

    Thompson, Emma E; Haller, Gabe; Pinto, Jayant M; Sun, Ying; Zelano, Bethanne; Jacob, Suma; McClintock, Martha K.; Nicolae, Dan L.; Ober, Carole

    2013-01-01

    We previously reported that paternally-inherited human leukocyte antigen (HLA) alleles are a template for women's preference for male odors (P = 0.0007). However, it has been suggested that sequence variation in a nearby olfactory receptor (OR) cluster on chromosome 6p influences smell preference. To determine if the HLA-linked OR genes contribute to previously observed HLA-mediated behaviors, we use the odor preference data from our earlier study in combination with a new resequencing study of four functional HLA-linked OR genes in the same subjects. Our results indicate that OR alleles in the genes surveyed are not in linkage disequilibrium (LD) with HLA variation and do not explain the previous findings of HLA-associated odor preference. PMID:19833159

  6. Parametric Investigations of Non-Conventional Hall Thruster

    SciTech Connect

    Raitses, Y.; Fisch, N.J.

    2001-01-12

    Hall thrusters might better scale to low power with non-conventional geometry. A 9 cm cylindrical, ceramic-channel, Hall thruster with a cusp-type magnetic field distribution has been investigated. It exhibits discharge characteristics similar to conventional coaxial Hall thrusters, but does not expose as much channel surface. Significantly, its operation is not accompanied by large amplitude discharge low frequency oscillations.

  7. On the Origin and Evolution of Vertebrate Olfactory Receptor Genes: Comparative Genome Analysis Among 23 Chordate Species

    PubMed Central

    2009-01-01

    Olfaction is a primitive sense in organisms. Both vertebrates and insects have receptors for detecting odor molecules in the environment, but the evolutionary origins of these genes are different. Among studied vertebrates, mammals have ∼1,000 olfactory receptor (OR) genes, whereas teleost fishes have much smaller (∼100) numbers of OR genes. To investigate the origin and evolution of vertebrate OR genes, I attempted to determine near-complete OR gene repertoires by searching whole-genome sequences of 14 nonmammalian chordates, including cephalochordates (amphioxus), urochordates (ascidian and larvacean), and vertebrates (sea lamprey, elephant shark, five teleost fishes, frog, lizard, and chicken), followed by a large-scale phylogenetic analysis in conjunction with mammalian OR genes identified from nine species. This analysis showed that the amphioxus has >30 vertebrate-type OR genes though it lacks distinctive olfactory organs, whereas all OR genes appear to have been lost in the urochordate lineage. Some groups of genes (θ, κ, and λ) that are phylogenetically nested within vertebrate OR genes showed few gene gains and losses, which is in sharp contrast to the evolutionary pattern of OR genes, suggesting that they are actually non-OR genes. Moreover, the analysis demonstrated a great difference in OR gene repertoires between aquatic and terrestrial vertebrates, reflecting the necessity for the detection of water-soluble and airborne odorants, respectively. However, a minor group (β) of genes that are atypically present in both aquatic and terrestrial vertebrates was also found. These findings should provide a critical foundation for further physiological, behavioral, and evolutionary studies of olfaction in various organisms. PMID:20333175

  8. A comparison of reptilian and avian olfactory receptor gene repertoires: Species-specific expansion of group γ genes in birds

    PubMed Central

    Steiger, Silke S; Kuryshev, Vladimir Y; Stensmyr, Marcus C; Kempenaers, Bart; Mueller, Jakob C

    2009-01-01

    Background The detection of odorants is mediated by olfactory receptors (ORs). ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis), and in two birds, the chicken (Gallus gallus) and the zebra finch (Taeniopygia guttata). Results We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively). We show that the green anole has a higher fraction of intact OR genes (~72%) compared with the chicken (~66%) and the zebra finch (~38%). We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively). Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group α, θ and γ genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called γ-c clade). An analysis of the selective pressure on the paralogous genes of each γ-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The γ-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group γ-c) OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. Conclusion We identified a surprisingly large number of potentially functional avian OR genes. Our data supports recent

  9. Primary Events in Olfactory Reception

    DTIC Science & Technology

    1993-01-08

    sustentacular cells and Bowman’s glands and that it is deposited in the lower mucus layer of olfactory neuroepithelium. Next, we extracted mRNA from...protrude from the dendritic tips of olfactory receptor neurons. These cilia are surrounded by a layer of mucus that lines the olfactory...neuroepithelium. Odorants that enter the nasal cavity with the inspired air partition into and diffuse through this aqueous mucus layer on their way to odorant

  10. Identification and expression analysis of an olfactory receptor gene family in green plant bug Apolygus lucorum (Meyer-Dür)

    PubMed Central

    An, Xing-Kui; Sun, Liang; Liu, Hang-Wei; Liu, Dan-Feng; Ding, Yu-Xiao; Li, Le-Mei; Zhang, Yong-Jun; Guo, Yu-Yuan

    2016-01-01

    Olfactory receptors are believed to play a central role in insects host-seeking, mating, and ovipositing. On the basis of male and female antennal transcriptome of adult Apolygus lucorum, a total of 110 candidate A. lucorum odorant receptors (AlucOR) were identified in this study including five previously annotated AlucORs. All the sequences were validated by cloning and sequencing. Tissue expression profiles analysis by RT-PCR indicated most AlucORs were antennal highly expressed genes. The qPCR measurements further revealed 40 AlucORs were significantly higher in the antennae. One AlucOR was primarily expressed in the female antennae, while nine AlucORs exhibited male-biased expression patterns. Additionally, both the RPKM value and RT-qPCR analysis showed AlucOR83 and AlucOR21 were much higher abundant in male antennae than in female antennae, suggesting their different roles in chemoreception of gender. Phylogenetic analysis of ORs from several Hemipteran species demonstrated that most AlucORs had orthologous genes, and five AlucOR-specific clades were defined. In addition, a sub-clade of potential male-based sex pheromone receptors were also identified in the phylogenetic tree of AlucORs. Our results will facilitate the functional studies of AlucORs, and thereby provide a foundation for novel pest management approaches based on these genes. PMID:27892490

  11. Expression and Vesicular Localization of Mouse Trpml3 in Stria Vascularis, Hair Cells, and Vomeronasal and Olfactory Receptor Neurons

    PubMed Central

    Flores, Emma N.; García-Añoveros, Jaime

    2013-01-01

    TRPML3 is a member of the mucolipin branch of the transient receptor potential cation channel family. A dominant missense mutation in Trpml3 (also known as Mcoln3) causes deafness and vestibular impairment characterized by stereocilia disorganization, hair cell loss, and endocochlear potential reduction. Both marginal cells of the stria vascularis and hair cells express Trpml3 mRNA. Here we used in situ hybridization, quantitative RT-qPCR, and immunohistochemistry with several antisera raised against TRPML3 to determine the expression and subcellular distribution of TRPML3 in the inner ear as well as in other sensory organs. We also use Trpml3 knockout tissues to distinguish TRPML3-specific from nonspecific immunoreactivities. We find that TRPML3 localizes to vesicles of hair cells and strial marginal cells but not to stereociliary ankle links or pillar cells, which nonspecifically react with two antisera raised against TRPML3. Upon cochlear maturation, TRPML3 protein is redistributed to perinuclear vesicles of strial marginal cells and is augmented in inner hair cells vs. outer hair cells. Mouse somato-sensory neurons, retinal neurons, and taste receptor cells do not appear to express physiologically relevant levels of TRPML3. Finally, we found that vomeronasal and olfactory sensory receptor cells do express TRPML3 mRNA and protein, which localizes to vesicles in their somas and dendrites as well as at apical den dritic knobs. PMID:21344404

  12. Testicular receptor 2, Nr2c1, is associated with stem cells in the developing olfactory epithelium and other cranial sensory and skeletal structures.

    PubMed

    Baker, Jennifer L; Wood, Bernard; Karpinski, Beverly A; LaMantia, Anthony-S; Maynard, Thomas M

    2016-01-01

    Comparative genomic analysis of the nuclear receptor family suggests that the testicular receptor 2, Nr2c1, undergoes positive selection in the human-chimpanzee clade based upon a significant increase in nonsynonymous compared to synonymous substitutions. Previous in situ analyses of Nr2c1 lacked the temporal range and spatial resolution necessary to characterize cellular expression of this gene from early to mid gestation, when many nuclear receptors are key regulators of tissue specific stem or progenitor cells. Thus, we asked whether Nr2c1 protein is associated with stem cell populations in the mid-gestation mouse embryo. Nr2c1 is robustly expressed in the developing olfactory epithelium. Its expression in the olfactory epithelium shifts from multiple progenitor classes at early stages to primarily transit amplifying cells later in olfactory epithelium development. In the early developing central nervous system, Nr2c1 is limited to the anterior telencephalon/olfactory bulb anlagen, coincident with Nestin-positive neuroepithelial stem cells. Nr2c1 is also seen in additional cranial sensory specializations including cells surrounding the mystacial vibrissae, the retinal pigment epithelium and Scarpa's ganglion. Nr2c1 was also detected in a subset of mesenchymal cells in developing teeth and cranial bones. The timing and distribution of embryonic expression suggests that Nr2c1 is primarily associated with the early genesis of mammalian cranial sensory neurons and craniofacial skeletal structures. Thus, Nr2c1 may be a candidate for mediating parallel adaptive changes in cranial neural sensory specializations such as the olfactory epithelium, retina and mystacial vibrissae and in non-neural craniofacial features including teeth.

  13. Interaction of anionic and cationic currents leads to a voltage dependence in the odor response of olfactory receptor neurons.

    PubMed

    Firestein, S; Shepherd, G M

    1995-02-01

    1. We recorded odor-induced currents from isolated olfactory receptor neurons of the land phase tiger salamander (Ambystoma tigrinum) with the whole cell patch clamp. 2. In a subset of cells the current-voltage relation for the odor-induced current showed a strong rectification with, in some cells, a negative resistance slope between about -45 and -25 mV. In these cells there was little or no odor-induced current at -55 mV, the average resting potential of olfactory neurons. 3. Depolarizing the membrane to +20 mV revealed a large outward current, and on repolarizing the membrane to -55 mV we could observe a large inward current. This current was not observed in the absence of the depolarizing step or in the absence of odor stimuli. 4. This odor-induced tail current was dependent on extracellular Ca2+ and voltage, activating with increased depolarization. The reversal potential was sensitive to the chloride equilibrium potential and it could be significantly blocked by niflumic acid, a blocker of calcium-activated chloride currents. The voltage dependence could result from either the voltage-dependent block of adenosine 3',5'-cyclic monophosphate-gated cation channels known to be activated by odorants and permeable to Ca2+, or from an inherent voltage dependence in the chloride channel gating. 5. The current appears to function as a regenerative mechanism that might increase the amplitude and duration of the odor-induced current, especially to low concentrations of stimulus.

  14. Advances in Gene Expression in Non-Conventional Yeasts

    NASA Astrophysics Data System (ADS)

    Nel, Sanet; Labuschagne, Michel; Albertyn, Jacobus

    Yeast has been a favoured lower eukaryotic system for the expression and production of recombinant proteins for both basic research and practical applications, and the demand for foreign-gene expression systems is increasing rapidly. Despite the vast amount of information on the molecular biology and physiology of Saccharomyces cerevisiae, which has consequently been the first choice as host system for recombinant protein production in the past, several limitations have been identified in this expression system. These limitations have recently been relieved by the development of expression systems in other yeast species known as ‘ non-conventional yeasts’ or ‘non-Saccharomyces ’ yeasts. With the increasing interest in the biotechnological applications of these yeasts in applied and fundamental studies and processes, the term ‘ non-conventional ’ yeast may well soon become redundant. As there is no universal expression system for heterologous protein production, it is necessary to recognize the merits and demerits of each system in order to make a right choice. This chapter will evaluate the competitive environment of non-conventional expression platforms represented by some of the best-known alternative yeasts systems including Kluyveromyces lactis, Yarrowia lipolytica, Hansenula polymorpha, Pichia pastoris and more recently, Arxula adeninivorans.

  15. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina

    NASA Astrophysics Data System (ADS)

    Ishida, Yuko; Ozaki, Mamiko

    2012-01-01

    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  16. Predicted 3D structures of olfactory receptors with details of odorant binding to OR1G1

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Kyung; Goddard, William A.

    2014-12-01

    Olfactory receptors (ORs) are responsible for mediating the sense of smell; they allow humans to recognize an enormous number of odors but the connection between binding and perception is not known. We predict the ensemble of low energy structures for the human OR1G1 (hOR1G1) and also for six other diverse ORs, using the G protein-coupled receptor Ensemble of Structures in Membrane BiLayer Environment complete sampling method that samples 13 trillion different rotations and tilts using four different templates to predict the 24 structures likely to be important in binding and activation. Our predicted most stable structures of hOR1G1 have a salt-bridge between the conserved D3.49 and K6.30 in the D(E)RY region, that we expect to be associated with an inactive form. The hOR1G1 structure also has specific interaction in transmembrane domains (TMD) 3-6 (E3.39 and H6.40), which is likely an important conformational feature for all hORs because of the 94 to 98 % conservation among all hOR sequences. Of the five ligands studied (nonanal, 9-decen-1-ol, 1-nonanol, camphor, and n-butanal), we find that the 4 expected to bind lead to similar binding energies with nonanol the strongest.

  17. The C. elegans D2-Like Dopamine Receptor DOP-3 Decreases Behavioral Sensitivity to the Olfactory Stimulus 1-Octanol

    PubMed Central

    Ezak, Meredith J.; Ferkey, Denise M.

    2010-01-01

    We previously found that dopamine signaling modulates the sensitivity of wild-type C. elegans to the aversive odorant 1-octanol. C. elegans lacking the CAT-2 tyrosine hydroxylase enzyme, which is required for dopamine biosynthesis, are hypersensitive in their behavioral avoidance of dilute concentrations of octanol. Dopamine can also modulate the context-dependent response of C. elegans lacking RGS-3 function, a negative regulator of Gα signaling. rgs-3 mutant animals are defective in their avoidance of 100% octanol when they are assayed in the absence of food (E. coli bacterial lawn), but their response is restored when they are assayed in the presence of food or exogenous dopamine. However, it is not known which receptor might be mediating dopamine's effects on octanol avoidance. Herein we describe a role for the C. elegans D2-like receptor DOP-3 in the regulation of olfactory sensitivity. We show that DOP-3 is required for the ability of food and exogenous dopamine to rescue the octanol avoidance defect of rgs-3 mutant animals. In addition, otherwise wild-type animals lacking DOP-3 function are hypersensitive to dilute octanol, reminiscent of cat-2 mutants. Furthermore, we demonstrate that DOP-3 function in the ASH sensory neurons is sufficient to rescue the hypersensitivity of dop-3 mutant animals, while dop-3 RNAi knockdown in ASH results in octanol hypersensitivity. Taken together, our data suggest that dopaminergic signaling through DOP-3 normally acts to dampen ASH signaling and behavioral sensitivity to octanol. PMID:20209143

  18. Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: two candidates for inhibitory transmission in olfactory processing.

    PubMed

    Dupuis, Julien Pierre; Bazelot, Michaël; Barbara, Guillaume Stéphane; Paute, Sandrine; Gauthier, Monique; Raymond-Delpech, Valérie

    2010-01-01

    gamma-Aminobutyric acid (GABA)-gated chloride channel receptors are abundant in the CNS, where their physiological role is to mediate fast inhibitory neurotransmission. In insects, this inhibitory transmission plays a crucial role in olfactory information processing. In an effort to understand the nature and properties of the ionotropic receptors involved in these processes in the honeybee Apis mellifera, we performed a pharmacological and molecular characterization of GABA-gated channels in the primary olfactory neuropile of the honeybee brain-the antennal lobe (AL)-using whole cell patch-clamp recordings coupled with single-cell RT-PCR. Application of GABA onto AL cells at -110 mV elicited fast inward currents, demonstrating the existence of ionotropic GABA-gated chloride channels. Molecular analysis of the GABA-responding cells revealed that both subunits RDL and LCCH3 were expressed out of the three orthologs of Drosophila melanogaster GABA-receptor subunits encoded within the honeybee genome (RDL, resistant to dieldrin; GRD, GABA/glycine-like receptor of Drosophila; LCCH3, ligand-gated chloride channel homologue 3), opening the door to possible homo- and/or heteromeric associations. The resulting receptors were activated by insect GABA-receptor agonists muscimol and CACA and blocked by antagonists fipronil, dieldrin, and picrotoxin, but not bicuculline, displaying a typical RDL-like pharmacology. Interestingly, increasing the intracellular calcium concentration potentiated GABA-elicited currents, suggesting a modulating effect of calcium on GABA receptors possibly through phosphorylation processes that remain to be determined. These results indicate that adult honeybee AL cells express typical RDL-like GABA receptors whose properties support a major role in synaptic inhibitory transmission during olfactory information processing.

  19. Bestrophin-Encoded Ca2+-Activated Cl− Channels Underlie a Current with Properties Similar to the Native Current in the Moth Spodoptera littoralis Olfactory Receptor Neurons

    PubMed Central

    Demondion, Elodie; Bozzolan, Françoise; Debernard, Stéphane; Lucas, Philippe

    2012-01-01

    Responses of insect olfactory receptor neurons (ORNs) involve an entry of Ca2+ through olfactory heterodimeric receptor complexes. In moths, the termination of ORN responses was found to strongly depend on the external Ca2+ concentration through the activation of unknown Ca2+-dependent Cl− channels. We thus investigated the molecular identity of these Cl− channels. There is compelling evidence that bestrophins form Cl− channels when expressed in heterologous systems. Here we provide evidence that antennae of the moth Spodoptera littoralis express three transcripts encoding proteins with hallmarks of bestrophins. One of these transcripts, SlitBest1b, is expressed in ORNs. The heterologous expression of SlitBest1b protein in CHO-K1 cells yielded a Ca2+-activated Cl− current that shares electrophysiological properties with the native Ca2+-activated Cl− current of ORNs. Both currents are anionic, present similar dependence on the intracellular Ca2+ concentration, partly inactivate over time, have the same anion permeability sequence, the same sequence of inhibitory efficiency of blockers, the same almost linear I–V relationships and finally both currents do not depend on the cell volume. Therefore, our data suggest that SlitBest1b is a good candidate for being a molecular component of the olfactory Ca2+-activated Cl− channel and is likely to constitute part of the insect olfactory transduction pathway. A different function (e.g. regulation of other proteins, maintenance of the anionic homeostasis in the sensillar lymph) and a different role (e.g. involvement in the olfactory system development) cannot be excluded however. PMID:23300744

  20. Evaluation of the role of g protein-coupled receptor kinase 3 in desensitization of mouse odorant receptors in a Mammalian cell line and in olfactory sensory neurons.

    PubMed

    Kato, Aya; Reisert, Johannes; Ihara, Sayoko; Yoshikawa, Keiichi; Touhara, Kazushige

    2014-11-01

    Thousands of odors are sensed and discriminated by G protein-coupled odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). G protein-coupled receptor kinases (GRKs) may have a role in desensitization of ORs. However, whether ORs are susceptible to agonist-dependent desensitization and whether GRKs affect odorant responsiveness of OSNs are currently unknown. Here we show that GRK3 attenuated the agonist responsiveness of a specific mouse odorant receptor for eugenol (mOR-EG) upon agonist pretreatment in HEK293 cells, but GRK3 did not affect the response amplitude or the recovery kinetics upon repeated agonist stimulation. We performed electrophysiological recordings of single OSNs which expressed mOR-EG and green fluorescent protein (GFP) in the presence or absence of GRK3. The kinetics and amplitude of agonist responsiveness of individual GFP-labeled mOR-EG neurons were not significantly affected by the absence of GRK3. These results indicate that the role of GRK3 in attenuating ORs responsiveness in OSNs may have been overestimated.

  1. Evaluation of the Role of G Protein-Coupled Receptor Kinase 3 in Desensitization of Mouse Odorant Receptors in a Mammalian Cell Line and in Olfactory Sensory Neurons

    PubMed Central

    Kato, Aya; Reisert, Johannes; Ihara, Sayoko; Yoshikawa, Keiichi

    2014-01-01

    Thousands of odors are sensed and discriminated by G protein-coupled odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). G protein-coupled receptor kinases (GRKs) may have a role in desensitization of ORs. However, whether ORs are susceptible to agonist-dependent desensitization and whether GRKs affect odorant responsiveness of OSNs are currently unknown. Here we show that GRK3 attenuated the agonist responsiveness of a specific mouse odorant receptor for eugenol (mOR-EG) upon agonist pretreatment in HEK293 cells, but GRK3 did not affect the response amplitude or the recovery kinetics upon repeated agonist stimulation. We performed electrophysiological recordings of single OSNs which expressed mOR-EG and green fluorescent protein (GFP) in the presence or absence of GRK3. The kinetics and amplitude of agonist responsiveness of individual GFP-labeled mOR-EG neurons were not significantly affected by the absence of GRK3. These results indicate that the role of GRK3 in attenuating ORs responsiveness in OSNs may have been overestimated. PMID:25313015

  2. A Characterization of the Manduca sexta Serotonin Receptors in the Context of Olfactory Neuromodulation

    PubMed Central

    Dacks, Andrew M.; Reale, Vincenzina; Pi, Yeli; Zhang, Wujie; Dacks, Joel B.; Nighorn, Alan J.; Evans, Peter D.

    2013-01-01

    Neuromodulation, the alteration of individual neuron response properties, has dramatic consequences for neural network function and is a phenomenon observed across all brain regions and taxa. However, the mechanisms underlying neuromodulation are made complex by the diversity of neuromodulatory receptors expressed within a neural network. In this study we begin to examine the receptor basis for serotonergic neuromodulation in the antennal lobe of Manduca sexta. To this end we cloned all four known insect serotonin receptor types from Manduca (the Ms5HTRs). We used phylogenetic analyses to classify the Ms5HTRs and to establish their relationships to other insect serotonin receptors, other insect amine receptors and the vertebrate serotonin receptors. Pharmacological assays demonstrated that each Ms5HTR was selective for serotonin over other endogenous amines and that serotonin had a similar potency at all four Ms5HTRs. The pharmacological assays also identified several agonists and antagonists of the different Ms5HTRs. Finally, we found that the Ms5HT1A receptor was expressed in a subpopulation of GABAergic local interneurons suggesting that the Ms5HTRs are likely expressed heterogeneously within the antennal lobe based on functional neuronal subtype. PMID:23922709

  3. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  4. Phosphoinositide-3-Kinase Is the Primary Mediator of Phosphoinositide-Dependent Inhibition in Mammalian Olfactory Receptor Neurons

    PubMed Central

    Ukhanov, Kirill; Corey, Elizabeth; Ache, Barry W.

    2016-01-01

    Odorants inhibit as well as excite primary olfactory receptor neurons (ORNs) in many animal species. Growing evidence suggests that inhibition of mammalian ORNs is mediated by phosphoinositide (PI) signaling through activation of phosphoinositide 3-kinase (PI3K), and that canonical adenylyl cyclase III signaling and PI3K signaling interact to provide the basis for ligand-induced selective signaling. As PI3K is known to act in concert with phospholipase C (PLC) in some cellular systems, the question arises as to whether they work together to mediate inhibitory transduction in mammalian ORNs. The present study is designed to test this hypothesis. While we establish that multiple PLC isoforms are expressed in the transduction zone of rat ORNs, that odorants can activate PLC in ORNs in situ, and that pharmacological blockade of PLC enhances the excitatory response to an odorant mixture in some ORNs in conjunction with PI3K blockade, we find that by itself PLC does not account for an inhibitory response. We conclude that PLC does not make a measurable independent contribution to odor-evoked inhibition, and that PI3K is the primary mediator of PI-dependent inhibition in mammalian ORNs. PMID:27147969

  5. Neuromodulation of olfactory sensitivity in the peripheral olfactory organs of the American cockroach, Periplaneta americana.

    PubMed

    Jung, Je Won; Kim, Jin-Hee; Pfeiffer, Rita; Ahn, Young-Joon; Page, Terry L; Kwon, Hyung Wook

    2013-01-01

    Olfactory sensitivity exhibits daily fluctuations. Several studies have suggested that the olfactory system in insects is modulated by both biogenic amines and neuropeptides. However, molecular and neural mechanisms underlying olfactory modulation in the periphery remain unclear since neuronal circuits regulating olfactory sensitivity have not been identified. Here, we investigated the structure and function of these signaling pathways in the peripheral olfactory system of the American cockroach, Periplaneta americana, utilizing in situ hybridization, qRT-PCR, and electrophysiological approaches. We showed that tachykinin was co-localized with the octopamine receptor in antennal neurons located near the antennal nerves. In addition, the tachykinin receptor was found to be expressed in most of the olfactory receptor neurons in antennae. Functionally, the effects of direct injection of tachykinin peptides, dsRNAs of tachykinin, tachykinin receptors, and octopamine receptors provided further support for the view that both octopamine and tachykinin modulate olfactory sensitivity. Taken together, these findings demonstrated that octopamine and tachykinin in antennal neurons are olfactory regulators in the periphery. We propose here the hypothesis that octopamine released from neurons in the brain regulates the release of tachykinin from the octopamine receptor neurons in antennae, which in turn modulates the olfactory sensitivity of olfactory receptor neurons, which house tachykinin receptors.

  6. Linking local circuit inhibition to olfactory behavior: a critical role for granule cells in olfactory discrimination.

    PubMed

    Strowbridge, Ben W

    2010-02-11

    In this issue of Neuron, Abraham et al. report a direct connection between inhibitory function and olfactory behavior. Using molecular methods to alter glutamate receptor subunit composition in olfactory bulb granule cells, the authors found a selective modulation in the time required for difficult, but not simple, olfactory discrimination tasks.

  7. Current recording from sensory cilia of olfactory receptor cells in situ. I. The neuronal response to cyclic nucleotides

    PubMed Central

    1991-01-01

    The olfactory mucosa of the frog was isolated, folded (the outer, ciliated side faced outward), and separately superfused with Ringers solution on each side. A small number of sensory cilia (one to three) were pulled into the orifice of a patch pipette and current was recorded from them. Fast bipolar current transients, indicating the generation of action potentials by the receptor cells, were transmitted to the pipette, mainly through the ciliary capacitance. Basal activity was near 1.5 spikes s-1. Exposure of apical membrane areas outside of the pipette to permeant analogues of cyclic nucleotides, to forskolin, and to phosphodiesterase inhibitors resulted in a dose-dependent acceleration of spike rate of all cells investigated. Values of 10-20 s- 1 were reached. These findings lend further support to the notion that cyclic nucleotides act as second messengers, which cause graded membrane depolarization and thereby a graded increase in spike rate. The stationary spike rate induced by forskolin was very regular, while phosphodiesterase inhibitors caused (in the same cell) an irregular pattern of bursts of spikes. The response of spike rate was phasic- tonic in the case of strong stimulation, even when elicited by inhibitors of phosphodiesterase or by analogues of cyclic nucleotides that are not broken down by the enzyme. Thus, one of the mechanisms contributing to desensitization appears to operate at the level of the nucleotide-induced ciliary conductance. However, desensitization at this level was slow and only partial, in contrast to results obtained with isolated, voltage-clamped receptor cells. PMID:1706755

  8. Role of a tachykinin-related peptide and its receptor in modulating the olfactory sensitivity in the oriental fruit fly, Bactrocera dorsalis (Hendel).

    PubMed

    Gui, Shun-Hua; Jiang, Hong-Bo; Xu, Li; Pei, Yu-Xia; Liu, Xiao-Qiang; Smagghe, Guy; Wang, Jin-Jun

    2017-01-01

    Insect tachykinin-related peptide (TRP), an ortholog of tachykinin in vertebrates, has been linked with regulation of diverse physiological processes, such as olfactory perception, locomotion, aggression, lipid metabolism and myotropic activity. In this study, we investigated the function of TRP (BdTRP) and its receptor (BdTRPR) in an important agricultural pest, the oriental fruit fly Bactrocera dorsalis. BdTRPR is a typical G-protein coupled-receptor (GPCR), and it could be activated by the putative BdTRP mature peptides with the effective concentrations (EC50) at the nanomolar range when expressed in Chinese hamster ovary cells. Consistent with its role as a neuromodulator, expression of BdTRP was detected in the central nervous system (CNS) of B. dorsalis, specifically in the local interneurons with cell bodies lateral to the antennal lobe. BdTRPR was found in the CNS, midgut and hindgut, but interestingly also in the antennae. To investigate the role of BdTRP and BdTRPR in olfaction behavior, adult flies were subjected to RNA interference, which led to a reduction in the antennal electrophysiological response and sensitivity to ethyl acetate in the Y-tube assay. Taken together, we demonstrate the impact of TRP/TRPR signaling on the modulation of the olfactory sensitivity in B. dorsalis. The result improve our understanding of olfactory processing in this agriculturally important pest insect.

  9. Inhibitory effect of luteolin on the odorant-induced cAMP level in HEK293 cells expressing the olfactory receptor.

    PubMed

    Yoon, Yeo Cho; Hwang, Jin-Teak; Sung, Mi-Jeong; Wang, Shuaiyu; Munkhtugs, Davaatseren; Rhyu, Mee-Ra; Park, Jae-Ho

    2012-01-01

    Luteolin is a flavonoid in many fruits and vegetables. Although luteolin has important biological functions, including antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities, little is known about the functions of luteolin in the olfactory system. Various odorants can be detected and distinguished by using several molecular processes, including the binding of odorants to odorant receptors, activation of adenylyl cyclase (AC), changes of cyclic adenosine monophosphate (cAMP) and Ca(2+) levels in olfactory sensory neurons, as well as changes in membrane potentials and the transmission of electric signals to the brain. Because AC-cAMP signal transduction plays a pivotal role in the olfactory system, we evaluated the effects of luteolin on the AC-cAMP pathway that had been stimulated by the odorant eugenol. We demonstrated that eugenol caused an upregulation of the cAMP level and the phosphorylation of phosphokinase A (PKA, a downstream target of cAMP) in human embryonic kidney 293 (HEK293) cells expressing the murine eugenol receptor. This upregulation significantly decreased in the presence of luteolin, suggesting that luteolin inhibited the odorant-induced production of cAMP and affected the downstream phosphorylation of PKA.

  10. ORA1, a Zebrafish Olfactory Receptor Ancestral to All Mammalian V1R Genes, Recognizes 4-Hydroxyphenylacetic Acid, a Putative Reproductive Pheromone

    PubMed Central

    Behrens, Maik; Frank, Oliver; Rawel, Harshadrai; Ahuja, Gaurav; Potting, Christoph; Hofmann, Thomas; Meyerhof, Wolfgang; Korsching, Sigrun

    2014-01-01

    The teleost v1r-related ora genes are a small, highly conserved olfactory receptor gene family of only six genes, whose direct orthologues can be identified in lineages as far as that of cartilaginous fish. However, no ligands for fish olfactory receptor class A related genes (ORA) had been uncovered so far. Here we have deorphanized the ORA1 receptor using heterologous expression and calcium imaging. We report that zebrafish ORA1 recognizes with high specificity and sensitivity 4-hydroxyphenylacetic acid. The carboxyl group of this compound is required in a particular distance from the aromatic ring, whereas the hydroxyl group in the para-position is not essential, but strongly enhances the binding efficacy. Low concentrations of 4-hydroxyphenylacetic acid elicit increases in oviposition frequency in zebrafish mating pairs. This effect is abolished by naris closure. We hypothesize that 4-hydroxyphenylacetic acid might function as a pheromone for reproductive behavior in zebrafish. ORA1 is ancestral to mammalian V1Rs, and its putative function as pheromone receptor is reminiscent of the role of several mammalian V1Rs as pheromone receptors. PMID:24831010

  11. Expression of a GABAB - Receptor in Olfactory Sensory Neurons of Sensilla trichodea on the Male Antenna of the Moth Heliothis virescens

    PubMed Central

    Pregitzer, Pablo; Schultze, Anna; Raming, Klaus; Breer, Heinz; Krieger, Jürgen

    2013-01-01

    In the olfactory pathway of Drosophila, a GABAB receptor mediated presynaptic gain control mechanism at the first synapse between olfactory sensory neurons (OSNs) and projection neurons has been suggested to play a critical role in setting the sensitivity and detection range of the sensory system. To approach the question if such a mechanism may be realized in the pheromone recognition system of male moths in this study attempts were made to explore if moth's pheromone-responsive cells express a GABAB- receptor. Employing a combination of genome analysis, RT-PCR experiments and screening of an antennal cDNA library we have identified a cDNA which encodes the GABAB-R1 receptor of Heliothis virescens. Moreover, based on the HvirGABAB-R1 sequence we could predict a GABAB-R1 protein from genome sequences of the silkmoth Bombyx mori. To assess whether HvirGABAB-R1 is expressed in OSNs of male antenna we performed whole-mount in situ hybridization (WM-ISH) experiments. Several HvirGABAB-R1 positive cells were visualized under long sensilla trichodea, known to contain pheromone-responsive OSNs. In parallel it was shown that cells under long trichoid hairs were labelled with pheromone receptor specific probes. In addition, the HvirGABAB-R1 specific probe also labelled several cells under shorter olfactory sensilla, but never stained cells under mechanosensory/gustatory sensilla chaetica. Together, the results indicate that a GABAB receptor is expressed in pheromone-responsive OSNs of H. virescens and suggest a presynaptic gain control mechanism in the axon terminals of these cells. PMID:23904795

  12. Velocity Map Imaging Studies of Non-Conventional Methanethiol Photochemistry

    NASA Astrophysics Data System (ADS)

    Toulson, Benjamin W.; Alaniz, Jonathan; Murray, Craig

    2014-06-01

    Velocity map imaging (VMI) in combination with state-selective resonance enhanced multiphoton ionization (REMPI) has been used to study the photodissociation dynamics of methanethiol following excitation to the first and second singlet electronically excited states. Formation of sulfur atoms, in both the singlet and triplet manifolds, is observed and can be attributed to primary dissociation of the parent molecule. We will report the nascent photofragment velocity distributions, and hence the internal energy of the methane co-fragment. Sulfur atom quantum yields are benchmarked against a known standard to evaluate the significance of this pathway. The role of non-conventional photochemical mechanisms such as roaming-mediated intersystem crossing, previously observed in methylamine photochemistry, will be discussed. James O. Thomas, Katherine E. Lower, and Craig Murray, The Journal of Physical Chemistry Letters, 2012, 3 (10), 1341-1345.

  13. Motif-based construction of a functional map for mammalian olfactory receptors.

    PubMed

    Liu, Agatha H; Zhang, Xinmin; Stolovitzky, Gustavo A; Califano, Andrea; Firestein, Stuart J

    2003-05-01

    We applied an automatic and unsupervised system to a nearly complete database of mammalian odor receptor genes. The generated motifs and gene classification were subjected to extensive and systematic downstream analysis to obtain biological insights. Two major results from this analysis were: (1) a map of sequence motifs that may correlate with function and (2) the corresponding receptor classes in which members of each class are likely to share specific functions. We have discovered motifs that have been implicated in structural integrity and posttranslational modification, as well as motifs very likely to be directly involved in ligand binding. We further propose a combinatorial molecular hypothesis, based on unique combinations of the observed motifs, that provides a foundation for understanding the generation of a large number of ligand binding sites.

  14. Decreased Level of Olfactory Receptors in Blood Cells Following Traumatic Brain Injury and Potential Association with Tauopathy

    PubMed Central

    Varghese, Merina; Yemul, Shrishailam; Dams-O'Connor, Kristen; Gordon, Wayne; Knable, Lindsay; Freire, Daniel; Haroutunian, Vahram; Pasinetti, Giulio Maria

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability among children and young adults in the United States. In this study, we explored whether changes in the gene expression profile of peripheral blood mononuclear cells (PBMC) may provide a clinically assessable “window” into the brain, reflecting molecular alterations following TBI that might contribute to the onset and progression of TBI clinical complications. We identified three olfactory receptor (OR) TBI biomarkers that are aberrantly down-regulated in PBMC specimens from TBI subjects. Down-regulation of these OR biomarkers in PBMC was correlated with the severity of brain injury and TBI-specific symptoms. A two- biomarker panel comprised of OR11H1 and OR4M1 provided the best criterion for segregating the TBI and control cases with 90% accuracy, 83.3% sensitivity, and 100% specificity. We found that the OR biomarkers are ectopically expressed in multiple brain regions, including the entorhinal-hippocampus system known to play an important role in memory formation and consolidation. Activation of OR4M1 led to attenuation of abnormal tau phosphorylation, possibly through JNK signaling pathway. Our results suggested that addition of the two-OR biomarker model to current diagnostic criteria may lead to improved TBI detection for clinical trials, and decreased expression of OR TBI biomarkers might be associated with TBI-induced tauopathy. Future studies exploring the physiological relevance of OR TBI biomarkers in the normal brain and in the brain following TBI will provide a better understanding of the biological mechanisms underlying TBI and insights into novel therapeutic targets for TBI. PMID:23241557

  15. Deorphanization and characterization of the ectopically expressed olfactory receptor OR51B5 in myelogenous leukemia cells

    PubMed Central

    Manteniotis, S; Wojcik, S; Göthert, J R; Dürig, J; Dührsen, U; Gisselmann, G; Hatt, H

    2016-01-01

    The ectopic expression of olfactory receptors (ORs) in the human body has been of major interest in the past decade. Several studies have reported the expression of ORs not only in healthy tissues such as heart, sperm or skin cells, but also in cancerous tissues of the liver, prostate or intestine. In the present study, we detected the expression of OR51B5 in the chronic myelogenous leukemia (CML) cell line K562 and in white blood cell samples of clinically diagnosed acute myelogenous leukemia (AML) patients by reverse transcription-PCR and immunocytochemical staining. The known OR51B5 ligand isononyl alcohol increased the levels of intracellular Ca2+ in both AML patient blood cells and K562 cells. With calcium imaging experiments, we characterized in greater detail the OR51B5-mediated signaling pathway. Here, we observed an involvement of adenylate cyclase and the downstream L-type and T-type calcium channels. In addition, the activation of OR51B5 leads to an inhibition of cell proliferation in K562 cells. In western blot experiments, we found that incubation with isononyl alcohol led to a reduction in p38-MAPK (mitogen-activated protein kinase) phosphorylation that might be responsible for the decreased cell proliferation. In the present study, we characterized the OR51B5-mediated signaling pathway downstream of the activation with isononyl alcohol, which leads to reduced proliferation and therefore provide a novel pharmacological target for CML and AML, the latter of which remains difficult to treat. PMID:27551504

  16. Immunization Against Specific Fragments of Neurotrophin p75 Receptor Protects Forebrain Cholinergic Neurons in the Olfactory Bulbectomized Mice

    PubMed Central

    Bobkova, Natalia; Vorobyov, Vasily; Medvinskaya, Natalia; Nesterova, Inna; Tatarnikova, Olga; Nekrasov, Pavel; Samokhin, Alexander; Deev, Alexander; Sengpiel, Frank; Koroev, Dmitry; Volpina, Olga

    2016-01-01

    Alzheimer’s disease (AD) is characterized by progressive cognitive impairment associated with marked cholinergic neuron loss and amyloid-β (Aβ) peptide accumulation in the brain. The cytotoxicity in AD is mediated, at least in part, by Aβ binding with the extracellular domain of the p75 neurotrophin receptor (p75NTR), localized predominantly in the membranes of acetylcholine-producing neurons in the basal forebrain. Hypothesizing that an open unstructured loop of p75NTR might be the effective site for Aβ binding, we have immunized both olfactory bulbectomized (OBX) and sham-operated (SO) mice (n = 82 and 49, respectively) with synthetic peptides, structurally similar to different parts of the loops, aiming to block them by specific antibodies. OBX-mice have been shown in previous studies, and confirmed in the present one, to be characterized by typical behavioral, morphological, and biochemical AD hallmarks, including cholinergic deficits in forebrain neurons. Immunization of OBX- or SO-mice with KLH conjugated fragments of p75NTR induced high titers of specific serum antibodies for each of nine chosen fragments. However, maximal protective effects on spatial memory, evaluated in a Morris water maze, and on activity of choline acetyltransferase in forebrain neurons, detected by immunoreactivity to specific antibodies, were revealed only for peptides with amino acid residue sequences of 155–164 and 167–176. We conclude that the approach based on immunological blockade of specific p75NTR sites, linked with the cytotoxicity, is a useful and effective tool for study of AD-associated mechanisms and for development of highly selective therapy of cholinergic malfunctioning in AD patients. PMID:27163825

  17. Silencing the Olfactory Co-Receptor RferOrco Reduces the Response to Pheromones in the Red Palm Weevil, Rhynchophorus ferrugineus

    PubMed Central

    Soffan, Alan; Abdelazim, Mahmoud; Shukla, Paraj; Witjaksono, Witjaksono; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    The red palm weevil (RPW, Rhynchophorus ferrugineus), one of the most widespread of all invasive insect pest species, is a major cause of severe damage to economically important palm trees. RPW exhibits behaviors very similar to those of its sympatric species, the Asian palm weevil (R. vulneratus), which is restricted geographically to the southern part of Southeast Asia. Although efficient and sustainable control of these pests remains challenging, olfactory-system disruption has been proposed as a promising approach for controlling palm weevils. Here, we report the cloning and sequencing of an olfactory co-receptor (Orco) from R. ferrugineus (RferOrco) and R. vulneratus (RvulOrco) and examine the effects of RferOrco silencing (RNAi) on odorant detection. RferOrco and RvulOrco encoding 482 amino acids showing 99.58% identity. The injection of double-stranded RNA (dsRNA) from RferOrco into R. ferrugineus pupae significantly reduced RferOrco gene expression and led to the failure of odor-stimulus detection, as confirmed through olfactometer and electroantennography (EAG) assays. These results suggest that olfactory-system disruption leading to reduced pheromone detection holds great potential for RPW pest-control strategies. PMID:27606688

  18. Silencing the Olfactory Co-Receptor RferOrco Reduces the Response to Pheromones in the Red Palm Weevil, Rhynchophorus ferrugineus.

    PubMed

    Soffan, Alan; Antony, Binu; Abdelazim, Mahmoud; Shukla, Paraj; Witjaksono, Witjaksono; Aldosari, Saleh A; Aldawood, Abdulrahman S

    2016-01-01

    The red palm weevil (RPW, Rhynchophorus ferrugineus), one of the most widespread of all invasive insect pest species, is a major cause of severe damage to economically important palm trees. RPW exhibits behaviors very similar to those of its sympatric species, the Asian palm weevil (R. vulneratus), which is restricted geographically to the southern part of Southeast Asia. Although efficient and sustainable control of these pests remains challenging, olfactory-system disruption has been proposed as a promising approach for controlling palm weevils. Here, we report the cloning and sequencing of an olfactory co-receptor (Orco) from R. ferrugineus (RferOrco) and R. vulneratus (RvulOrco) and examine the effects of RferOrco silencing (RNAi) on odorant detection. RferOrco and RvulOrco encoding 482 amino acids showing 99.58% identity. The injection of double-stranded RNA (dsRNA) from RferOrco into R. ferrugineus pupae significantly reduced RferOrco gene expression and led to the failure of odor-stimulus detection, as confirmed through olfactometer and electroantennography (EAG) assays. These results suggest that olfactory-system disruption leading to reduced pheromone detection holds great potential for RPW pest-control strategies.

  19. Mineral composition of non-conventional leafy vegetables.

    PubMed

    Barminas, J T; Charles, M; Emmanuel, D

    1998-01-01

    Six non-conventional leafy vegetables consumed largely by the rural populace of Nigeria were analyzed for mineral composition. Mineral contents appeared to be dependent on the type of vegetables. Amaranthus spinosus and Adansonia digitata leaves contained the highest level of iron (38.4 mg/100 g and 30.6 mg/100 g dw, respectively). These values are low compared to those for common Nigerian vegetables but higher than those for other food sources. All the vegetables contained high levels of calcium compared to common vegetables, thus they could be a rich source of this mineral. Microelement content of the leaves varied appreciably. Zinc content was highest in Moringa oleifera, Adansonia digitata and Cassia tora leaves (25.5 mg/100 g, 22.4 mg/100 g and 20.9 mg/100 g dw, respectively) while the manganese content was comparatively higher in Colocasia esculenta. The concentrations of the mineral elements in the vegetables per serving portion are presented and these values indicate that the local vegetables could be valuable and important contributors in the diets of the rural and urban people of Nigeria. The mean daily intake of P, Mg, Ca, Fe, Cu and Zn were lower than their recommended dietary allowances (RDAs). However, the manganese daily intake was found not to differ significantly (p = 0.05) from the RDA value.

  20. Olfactory receptors for a smell sensor: a comparative study of the electrical responses of rat I7 and human 17-40

    NASA Astrophysics Data System (ADS)

    Alfinito, E.; Millithaler, J.-F.; Reggiani, L.

    2011-12-01

    In this paper, we explore the relevant electrical properties of two olfactory receptors (ORs), one from rat, OR I7, and the other from human, OR 17-40, which are of interest for the realization of smell nanobiosensors. The investigation compares existing experiments, coming from electrochemical impedance spectroscopy, with the theoretical expectations obtained from an impedance network protein analogue, recently developed. The changes in the response due to the sensing action of the proteins are correlated with the conformational change undergone by the single protein. The satisfactory agreement between theory and experiments points to a promising development of a new class of nanobiosensors based on the electrical properties of sensing proteins.

  1. Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis

    PubMed Central

    Chang, Hetan; Liu, Yang; Yang, Ting; Pelosi, Paolo; Dong, Shuanglin; Wang, Guirong

    2015-01-01

    Sexual communication in moths offers a simplified scenario to model and investigate insect sensory perception. Both PBPs (pheromone-binding proteins) and PRs (pheromone receptors) are involved in the detection of sex pheromones, but the interplay between them still remains largely unknown. In this study, we have measured the binding affinities of the four recombinant PBPs of Chilo suppressalis (CsupPBPs) to pheromone components and analogs and characterized the six PRs using the Xenopus oocytes expression system. Interestingly, when the responses of PRs were recorded in the presence of PBPs, we measured in several combinations a dramatic increase in signals as well as in sensitivity of such combined systems. Furthermore, the discrimination ability of appropriate combinations of PRs and PBPs was improved compared with the performance of PBPs or PRs alone. Besides further supporting a role of PBPs in the pheromone detection and discrimination, our data shows for the first time that appropriate combinations of PRs and PBPs improved the discrimination ability of PBPs or PRs alone. The variety of responses measured with different pairing of PBPs and PRs indicates the complexity of the olfaction system, which, even for the relatively simple task of detecting sex pheromones, utilises a highly sophisticated combinatorial approach. PMID:26310773

  2. Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis.

    PubMed

    Chang, Hetan; Liu, Yang; Yang, Ting; Pelosi, Paolo; Dong, Shuanglin; Wang, Guirong

    2015-08-27

    Sexual communication in moths offers a simplified scenario to model and investigate insect sensory perception. Both PBPs (pheromone-binding proteins) and PRs (pheromone receptors) are involved in the detection of sex pheromones, but the interplay between them still remains largely unknown. In this study, we have measured the binding affinities of the four recombinant PBPs of Chilo suppressalis (CsupPBPs) to pheromone components and analogs and characterized the six PRs using the Xenopus oocytes expression system. Interestingly, when the responses of PRs were recorded in the presence of PBPs, we measured in several combinations a dramatic increase in signals as well as in sensitivity of such combined systems. Furthermore, the discrimination ability of appropriate combinations of PRs and PBPs was improved compared with the performance of PBPs or PRs alone. Besides further supporting a role of PBPs in the pheromone detection and discrimination, our data shows for the first time that appropriate combinations of PRs and PBPs improved the discrimination ability of PBPs or PRs alone. The variety of responses measured with different pairing of PBPs and PRs indicates the complexity of the olfaction system, which, even for the relatively simple task of detecting sex pheromones, utilises a highly sophisticated combinatorial approach.

  3. Regenerative thermal oxidation for non-conventional applications

    SciTech Connect

    Gosselin, G.; Gravel, J.J.O.

    1999-07-01

    Regenerative Thermal Oxidation has been applied by Biothermica to treat non-conventional emissions. These emissions include pollutants as VOC, COC, TRS, PAH, PCB, HCl and odors. In the kraft pulping industry, environmental requirements for reduced emissions of total reduced sulfur (TRS) and volatile organic compounds (VOC) from pulping operations are leading to incinerators of high destruction efficiency and thermal performance. The first installation in Canada of a Regenerative Thermal Oxidation (RTO) was placed in service early in 1997 at a kraft pulp mill in the province of Quebec. Tests have shown a TRS reduction of 99.6% with a thermal efficiency of 88.5% in the RTO. It can be considered the best method to comply with the new norms for TRS atmospheric emissions in the pulp and paper industry. In the primary aluminum process, a marked improvement in anode properties can be gained by preparing the paste at high temperature, followed by cooling with a water addition in an intensive mixer. However, the addition of cooling water results in a large increase in the emissions of VOC and PAH which can prejudice the process. A number of emission control processes were evaluated. An improved Regenerative Thermal Oxidation (RTO) unit was installed in a modern aluminum plant in Canada. The emissions of VOCs and PAHs from an EIRICH intensive mixer-cooler were reduced by more than 99.9% while all troublesome deposits in the fumes collection system were eliminated. This enabled the plant to remain well within the emission levels allowed by the environmental authority while enjoying considerable benefits from improved anode qualities. In the asphalt roofing industry, RTO was applied to treat the VOC and COC emissions and several units have been in operation since 1990. In the United States two units were installed in asphalt shingle plants and new features in the process show a VOC and COC reduction of 99%.

  4. The olfactory co-receptor Orco from the migratory locust (Locusta migratoria) and the desert locust (Schistocerca gregaria): identification and expression pattern.

    PubMed

    Yang, Ying; Krieger, Jürgen; Zhang, Long; Breer, Heinz

    2012-01-01

    In locusts, olfaction plays a crucial role for initiating and controlling behaviours, including food seeking and aggregation with conspecifics, which underlie the agricultural pest capacity of the animals. In this context, the molecular basis of olfaction in these insects is of particular interest. Here, we have identified genes of two orthopteran species, Locusta migratoria and Schistocera gregaria, which encode the olfactory receptor co-receptor (Orco). It was found that the sequences of LmigOrco and SgreOrco share a high degree of identity to each other and also to Orco proteins from different insect orders. The Orco-expressing cells in the antenna of S. gregaria and L. migratoria were visualized by in situ hybridization. Orco expression could be assigned to clusters of cells in sensilla basiconica and few cells in sensilla trichodea, most likely representing olfactory sensory neurons. No Orco-positive cells were detected in sensilla coeloconica and sensilla chaetica. Orco expression was found already in all nymphal stages and was verified in some other tissues which are equipped with chemosensory hairs (mouthparts, tarsi, wings). Together, the results support the notion for a decisive role of Orco in locust olfaction.

  5. Glutamate receptor antagonist infusions into the basolateral and medial amygdala reveal differential contributions to olfactory vs. context fear conditioning and expression

    PubMed Central

    Walker, David L.; Paschall, Gayla Y.; Davis, Michael

    2005-01-01

    The basolateral amygdala's involvement in fear acquisition and expression to visual and auditory stimuli is well known. The involvement of the basolateral and other amygdala areas in fear acquisition and expression to stimuli of other modalities is less certain. We evaluated the contribution of the basolateral and medial amygdala to olfactory and to context fear and fear conditioning by infusing into these areas the NMDA receptor antagonist AP5, the AMPA/kainate receptor antagonist NBQX, or vehicle prior to either odor-shock pairings or fear-potentiated startle testing. Pre-training AP5 infusions into the basolateral amygdala disrupted fear conditioning to the odor but not the context conditioned stimulus (CS). Pre-test NBQX infusions disrupted fear-potentiated startle to the odor but not context CS. Neither compound blocked fear conditioning when infused into the medial amygdala prior to training, but pre-test NBQX infusions did block fear-potentiated startle. The results confirm and extend recent findings suggesting a role for the basolateral amygdala in olfactory fear and fear conditioning, reveal an unexpected dissociation of the basolateral amygdala's involvement in discrete cue versus context fear and fear conditioning, and implicate for the first time the medial amygdala in fear-potentiated startle. PMID:15774945

  6. Lectin binding to olfactory system in a shark, Scyliorhinus canicula.

    PubMed

    Franceschini, V; Ciani, F

    1993-01-01

    Lectin histochemical studies were performed on the olfactory system of Scyliorhinus canicula to identify specific glycoconjugates on the cell surface of primary olfactory neurons. The olfactory receptor cells, the olfactory nerve fibers and their terminals in the bulbs were labelled with SBA, BSA-I and BSA-I-B4. The lectin staining patterns indicate that the membranes of small-spotted catshark olfactory neurons had glycoproteins with alpha-galactose residues. This carbohydrate moiety could be related to modulation of the cell-cell interactions in the olfactory system.

  7. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    PubMed Central

    Amchova, Petra; Kucerova, Jana; Giugliano, Valentina; Babinska, Zuzana; Zanda, Mary T.; Scherma, Maria; Dusek, Ladislav; Fadda, Paola; Micale, Vincenzo; Sulcova, Alexandra; Fratta, Walter; Fattore, Liana

    2013-01-01

    Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy (OBX) model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed altered voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 μg/kg/infusion). To this aim, olfactory-bulbectomized (OBX) and sham-operated (SHAM) Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous [fixed ratio 1 (FR-1)] schedule of reinforcement in 2 h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behavior after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5–10 mg/kg), did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg) did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2) reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens (NAc) of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive-like state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats. PMID:24688470

  8. Shh-proteoglycan interactions regulate maturation of olfactory glomerular circuitry.

    PubMed

    Persson, Laura; Witt, Rochelle M; Galligan, Meghan; Greer, Paul L; Eisner, Adriana; Pazyra-Murphy, Maria F; Datta, Sandeep R; Segal, Rosalind A

    2014-12-01

    The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (Shh(Ala/Ala)), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature Shh(Ala/Ala) mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry.

  9. Shh-Proteoglycan Interactions Regulate Maturation of Olfactory Glomerular Circuitry

    PubMed Central

    Persson, Laura; Witt, Rochelle M.; Galligan, Meghan; Greer, Paul L.; Eisner, Adriana; Pazyra-Murphy, Maria F.; Datta, Sandeep R.; Segal, Rosalind A.

    2014-01-01

    The olfactory system relies on precise circuitry connecting olfactory sensory neurons (OSNs) and appropriate relay and processing neurons of the olfactory bulb (OB). In mammals, the exact correspondence between specific olfactory receptor types and individual glomeruli enables a spatially precise map of glomerular activation that corresponds to distinct odors. However, the mechanisms that govern the establishment and maintenance of the glomerular circuitry are largely unknown. Here we show that high levels of Sonic Hedgehog (Shh) signaling at multiple sites enable refinement and maintenance of olfactory glomerular circuitry. Mice expressing a mutant version of Shh (ShhAla/Ala), with impaired binding to proteoglycan co-receptors, exhibit disproportionately small olfactory bulbs containing fewer glomeruli. Notably, in mutant animals the correspondence between individual glomeruli and specific olfactory receptors is lost, as olfactory sensory neurons expressing different olfactory receptors converge on the same glomeruli. These deficits arise at late stages in post-natal development and continue into adulthood, indicating impaired pruning of erroneous connections within the olfactory bulb. In addition, mature ShhAla/Ala mice exhibit decreased proliferation in the subventricular zone (SVZ), with particular reduction in neurogenesis of calbindin-expressing periglomerular cells. Thus, Shh interactions with proteoglycan co-receptors function at multiple locations to regulate neurogenesis and precise olfactory connectivity, thereby promoting functional neuronal circuitry. PMID:24913191

  10. Olfactory receptor neuron responses of a longhorned beetle, Tetropium fuscum (Fabr.) (Coleoptera: Cerambycidae), to pheromone, host, and non-host volatiles.

    PubMed

    MacKay, Colin A; Sweeney, Jon D; Hillier, N Kirk

    2015-12-01

    Longhorn wood-boring beetles (Coleoptera: Cerambycidae) use olfactory cues to find mates and hosts for oviposition. Tetropium fuscum (Fabr.) is an invasive longhorned wood-boring beetle originating from Europe that has been established in Nova Scotia, Canada, since at least 1990. This study used single sensillum recordings (SSR) to determine the response of olfactory receptor neurons (ORNs) in the antennal sensilla of male and female T. fuscum to different kinds of olfactory cues, namely host volatiles, non-host volatiles, the aggregation pheromone of T. fuscum (fuscumol), and an aggregation pheromone emitted by other species of longhorn beetles (3-hydroxyhexan-2-one). Each compound had been previously shown to elicit antennal activity in T. fuscum using electroantennography or had been shown to elicit behavioral activity in T. fuscum or other cerambycids. There have been very few SSR studies done on cerambycids, and ours is the first to compare response profiles of pheromone components as well as host and non-host volatiles. Based on SSR studies with other insects, we predicted we would find ORNs that responded to the pheromone alone (pheromone-specialists), as well as ORNs that responded only to host or non-host volatiles, i.e., separation of olfactory cue perception at the ORN level. Also, because male T. fuscum emerge earlier than females and are the pheromone-emitting sex, we predicted that the number of pheromone-sensitive ORNs would be greater in females than males. We found 140 ORNs housed within 97 sensilla that responded to at least one of the 13 compounds. Fuscumol-specific ORNs made up 15% (21/140) of all recordings, but contrary to our prediction, an additional 22 ORNs (16%) responded to fuscumol plus at least one other compound; in total, fuscumol elicited a response from 43/140 (31%) of ORNs with fuscumol-specific ORNs accounting for half of these. Thus, our prediction that pheromone reception would be segregated on specialist ORNs was only partially

  11. Individual olfactory perception reveals meaningful nonolfactory genetic information.

    PubMed

    Secundo, Lavi; Snitz, Kobi; Weissler, Kineret; Pinchover, Liron; Shoenfeld, Yehuda; Loewenthal, Ron; Agmon-Levin, Nancy; Frumin, Idan; Bar-Zvi, Dana; Shushan, Sagit; Sobel, Noam

    2015-07-14

    Each person expresses a potentially unique subset of ∼ 400 different olfactory receptor subtypes. Given that the receptors we express partially determine the odors we smell, it follows that each person may have a unique nose; to capture this, we devised a sensitive test of olfactory perception we termed the "olfactory fingerprint." Olfactory fingerprints relied on matrices of perceived odorant similarity derived from descriptors applied to the odorants. We initially fingerprinted 89 individuals using 28 odors and 54 descriptors. We found that each person had a unique olfactory fingerprint (P < 10(-10)), which was odor specific but descriptor independent. We could identify individuals from this pool using randomly selected sets of 7 odors and 11 descriptors alone. Extrapolating from this data, we determined that using 34 odors and 35 descriptors we could individually identify each of the 7 billion people on earth. Olfactory perception, however, fluctuates over time, calling into question our proposed perceptual readout of presumably stable genetic makeup. To test whether fingerprints remain informative despite this temporal fluctuation, building on the linkage between olfactory receptors and HLA, we hypothesized that olfactory perception may relate to HLA. We obtained olfactory fingerprints and HLA typing for 130 individuals, and found that olfactory fingerprint matching using only four odorants was significantly related to HLA matching (P < 10(-4)), such that olfactory fingerprints can save 32% of HLA tests in a population screen (P < 10(-6)). In conclusion, a precise measure of olfactory perception reveals meaningful nonolfactory genetic information.

  12. Downregulation of Fzd6 and Cthrc1 and upregulation of olfactory receptors and protocadherins by dietary beta-carotene in lungs of Bcmo1-/- mice.

    PubMed

    van Helden, Yvonne G J; Godschalk, Roger W; Heil, Sandra G; Bunschoten, Annelies; Hessel, Susanne; Amengual, Jaume; Bonet, M Luisa; von Lintig, Johannes; van Schooten, Frederik J; Keijer, Jaap

    2010-08-01

    An ongoing controversy exists on beneficial versus harmful effects of high beta-carotene (BC) intake, especially for the lung. To elucidate potential mechanisms, we studied effects of BC on lung gene expression. We used a beta-carotene 15,15'-monooxygenase 1 (Bcmo1) knockout mouse (Bcmo1(-/-)) model, unable to convert BC to retinoids, and wild-type mice (Bcmo1(+/+)) mice to dissect the effects of intact BC from effects of BC metabolites. As expected, BC supplementation resulted in a higher BC accumulation in lungs of Bcmo1(-/-) mice than in lungs of Bcmo1(+/+) mice. Whole mouse genome transcriptome analysis on lung tissue revealed that more genes were regulated in Bcmo1(-/-) mice than Bcmo1(+/+) mice upon BC supplementation. Frizzled homolog 6 (Fzd6) and collagen triple helix repeat containing 1 (Cthrc1) were significantly downregulated (fold changes -2.99 and -2.60, respectively, false discovery rate < 0.05) by BC in Bcmo1(-/-). Moreover, many olfactory receptors and many members of the protocadherin family were upregulated. Since both olfactory receptors and protocadherins have an important function in sensory nerves and Fzd6 and Cthrc1 are important in stem cell development, we hypothesize that BC might have an effect on the highly innervated pulmonary neuroendocrine cell (PNEC) cluster. PNECs are highly associated with sensory nerves and are important cells in the control of stem cells. A role for BC in the innervated PNEC cluster might be of particular importance in smoke-induced carcinogenesis since PNEC-derived lung cancer is highly associated with tobacco smoke.

  13. Laminar disorganisation of mitral cells in the olfactory bulb does not affect topographic targeting of primary olfactory axons.

    PubMed

    Royal, S J; Gambello, M J; Wynshaw-Boris, A; Key, B; Clarris, H J

    2002-04-05

    Primary olfactory neurons expressing the same odorant receptor protein typically project to topographically fixed olfactory bulb sites. While cell adhesion molecules and odorant receptors have been implicated in guidance of primary olfactory axons, the postsynaptic mitral cells may also have a role in final target selection. We have examined the effect of disorganisation of the mitral cell soma layer in mutant mice heterozygous for the beta-subunit of platelet activating factor acetylhydrolase (Lis1(-/+)) on the targeting of primary olfactory axons. Lis1(-/+) mice display abnormal lamination of neurons in the olfactory bulb. Lis1(-/+) mice were crossed with the P2-IRES-tau:LacZ line of transgenic mice that selectively expresses beta-galactosidase in primary olfactory neurons expressing the P2 odorant receptor. LacZ histochemistry revealed blue-stained P2 axons that targeted topographically fixed glomeruli in these mice in a manner similar to that observed in the parent P2-IRES-tau:LacZ line. Thus, despite the aberrant organisation of postsynaptic mitral cells in Lis1(-/+) mice, primary olfactory axons continued to converge and form glomeruli at correct sites in the olfactory bulb. Next we examined whether challenging primary olfactory axons in adult Lis(-/+) mice with regeneration would affect their ability to converge and form glomeruli. Following partial chemical ablation of the olfactory neuroepithelium with dichlobenil, primary olfactory neurons die and are replaced by newly differentiating neurons that project axons to the olfactory bulb where they converge and form glomeruli. Despite the aberrant mitral cell layer in Lis(-/+) mice, primary olfactory axons continued to converge and form glomeruli during regeneration. Together these results demonstrate that the convergence of primary olfactory axons during development and regeneration is not affected by gross perturbations to the lamination of the mitral cell layer. Thus, these results support evidence from

  14. Reduction in host-finding behaviour in fungus-infected mosquitoes is correlated with reduction in olfactory receptor neuron responsiveness

    PubMed Central

    2011-01-01

    Background Chemical insecticides against mosquitoes are a major component of malaria control worldwide. Fungal entomopathogens formulated as biopesticides and applied as insecticide residual sprays could augment current control strategies and mitigate the evolution of resistance to chemical-based insecticides. Methods Anopheles stephensi mosquitoes were exposed to Beauveria bassiana or Metarhizium acridum fungal spores and sub-lethal effects of exposure to fungal infection were studied, especially the potential for reductions in feeding and host location behaviours related to olfaction. Electrophysiological techniques, such as electroantennogram, electropalpogram and single sensillum recording techniques were then employed to investigate how fungal exposure affected the olfactory responses in mosquitoes. Results Exposure to B. bassiana caused significant mortality and reduced the propensity of mosquitoes to respond and fly to a feeding stimulus. Exposure to M. acridum spores induced a similar decline in feeding propensity, albeit more slowly than B. bassiana exposure. Reduced host-seeking responses following fungal exposure corresponded to reduced olfactory neuron responsiveness in both antennal electroantennogram and maxillary palp electropalpogram recordings. Single cell recordings from neurons on the palps confirmed that fungal-exposed behavioural non-responders exhibited significantly impaired responsiveness of neurons tuned specifically to 1-octen-3-ol and to a lesser degree, to CO2. Conclusions Fungal infection reduces the responsiveness of mosquitoes to host odour cues, both behaviourally and neuronally. These pre-lethal effects are likely to synergize with fungal-induced mortality to further reduce the capacity of mosquito populations exposed to fungal biopesticides to transmit malaria. PMID:21812944

  15. Activation of group I metabotropic glutamate receptors enhances persistent sodium current and rhythmic bursting in main olfactory bulb external tufted cells

    PubMed Central

    Ennis, Matthew

    2013-01-01

    Rhythmically bursting olfactory bulb external tufted (ET) cells are thought to play a key role in synchronizing glomerular network activity to respiratory-driven sensory input. Whereas spontaneous bursting in these cells is intrinsically generated by interplay of several voltage-dependent currents, bursting strength and frequency can be modified by local intrinsic and centrifugal synaptic input. Activation of metabotropic glutamate receptors (mGluRs) engages a calcium-dependent cation current (ICAN) that increases rhythmic bursting, but mGluRs may also modulate intrinsic mechanisms involved in bursting. Here, we used patch-clamp electrophysiology in rat olfactory bulb slices to investigate whether mGluRs modulate two key intrinsic currents involved in ET cell burst initiation: persistent sodium (INaP) and hyperpolarization-activated cation (Ih) currents. Using a BAPTA-based internal solution to block ICAN, we found that the mGluR1/5 agonist DHPG enhanced INaP but did not alter Ih. INaP enhancement consisted of increased current at membrane potentials between −60 and −50 mV and a hyperpolarizing shift in activation threshold. Both effects would be predicted to shorten the interburst interval. In agreement, DHPG modestly depolarized (∼3.5 mV) ET cells and increased burst frequency without effect on other major burst parameters. This increase was inversely proportional to the basal burst rate such that slower ET cells exhibited the largest increases. This may enable ET cells with slow intrinsic burst rates to pace with faster sniff rates. Taken with other findings, these results indicate that multiple neurotransmitter mechanisms are engaged to fine-tune rhythmic ET cell bursting to context- and state-dependent changes in sniffing frequency. PMID:24225539

  16. Concentration dependence of sodium permeation and sodium ion interactions in the cyclic AMP-gated channels of mammalian olfactory receptor neurons.

    PubMed

    Balasubramanian, S; Lynch, J W; Barry, P H

    1997-09-01

    The dependence of currents through the cyclic nucleotide-gated (CNG) channels of mammalian olfactory receptor neurons (ORNs) on the concentration of NaCl was studied in excised inside-out patches from their dendritic knobs using the patch-clamp technique. With a saturating concentration (100 microM) of adenosine 3',5'-cyclic monophosphate (cAMP), the changes in the reversal potential of macroscopic currents were studied at NaCl concentrations from 25 to 300 mM. In symmetrical NaCl solutions without the addition of divalent cations, the current-voltage relations were almost linear, reversing close to 0 mV. When the external NaCl concentration was maintained at 150 mM and the internal concentrations were varied, the reversal potentials of the cAMP-activated currents closely followed the Na+ equilibrium potential indicating that PCl/PNa approximately 0. However, at low external NaCl concentrations (< or = 100 mM) there was some significant chloride permeability. Our results further indicated that Na+ currents through these channels: (i) did not obey the independence principle; (ii) showed saturation kinetics with K(m)s in the range of 100-150 mM and (iii) displayed a lack of voltage dependence of conductance in asymmetric solutions that suggested that ion-binding sites were situated midway along the channel. Together, these characteristics indicate that the permeation properties of the olfactory CNG channels are significantly different from those of photoreceptor CNG channels.

  17. Zonal organization of the mammalian main and accessory olfactory systems.

    PubMed Central

    Mori, K; von Campenhause, H; Yoshihara, Y

    2000-01-01

    Zonal organization is one of the characteristic features observed in both main and accessory olfactory systems. In the main olfactory system, most of the odorant receptors are classified into four groups according to their zonal expression patterns in the olfactory epithelium. Each group of odorant receptors is expressed by sensory neurons distributed within one of four circumscribed zones. Olfactory sensory neurons in a given zone of the epithelium project their axons to the glomeruli in a corresponding zone of the main olfactory bulb. Glomeruli in the same zone tend to represent similar odorant receptors having similar tuning specificity to odorants. Vomeronasal receptors (or pheromone receptors) are classified into two groups in the accessory olfactory system. Each group of receptors is expressed by vomeronasal sensory neurons in either the apical or basal zone of the vomeronasal epithelium. Sensory neurons in the apical zone project their axons to the rostral zone of the accessory olfactory bulb and form synaptic connections with mitral tufted cells belonging to the rostral zone. Signals originated from basal zone sensory neurons are sent to mitral tufted cells in the caudal zone of the accessory olfactory bulb. We discuss functional implications of the zonal organization in both main and accessory olfactory systems. PMID:11205342

  18. Mechanisms of permanent loss of olfactory receptor neurons induced by the herbicide 2,6-dichlorobenzonitrile: Effects on stem cells and noninvolvement of acute induction of the inflammatory cytokine IL-6

    SciTech Connect

    Xie, Fang; Fang, Cheng; Schnittke, Nikolai; Schwob, James E.; Ding, Xinxin

    2013-11-01

    We explored the mechanisms underlying the differential effects of two olfactory toxicants, the herbicide 2,6-dichlorobenzonitrile (DCBN) and the anti-thyroid drug methimazole (MMZ), on olfactory receptor neuron (ORN) regeneration in mouse olfactory epithelium (OE). DCBN, but not MMZ, induced inflammation-like pathological changes in OE, and DCBN increased interleukin IL-6 levels in nasal-wash fluid to much greater magnitude and duration than did MMZ. At 24 h after DCBN injection, the population of horizontal basal cells (HBCs; reserve, normally quiescent OE stem cells) lining the DMM became severely depleted as some of them detached from the basal lamina, and sloughed into the nasal cavity along with the globose basal cells (GBCs; heterogeneous population of stem and progenitor cells), neurons, and sustentacular cells of the neuroepithelium. In contrast, the layer of HBCs remained intact in MMZ-treated mice, as only the mature elements of the neuroepithelium were shed. Despite the respiratory metaplasia accompanying the greater severity of the DCBN lesion, residual HBCs that survived intoxication were activated by the injury and contributed to the metaplastic respiratory epithelium, as shown by tracing their descendants in a K5CreEr{sup T2}::fl(stop)TdTomato strain of mice in which recombination causes HBCs to express TdTomato in advance of the lesion. But, contrary to published observations with MMZ, the HBCs failed to form ORNs. A role for IL-6 in suppressing ORN regeneration in DCBN-treated mice was rejected by the failure of the anti-inflammatory drug dexamethasone to prevent the subsequent respiratory metaplasia in the DMM, suggesting that other factors lead to HBC neuro-incompetence. - Highlights: • The herbicide dichlobenil (DCBN) can damage olfactory epithelium stem cells. • Another olfactory toxicant, methimazole, leaves the olfactory stem cells intact. • DCBN, but not methimazole, induces a prolonged increase in nasal IL-6 levels. • Dexamethasone

  19. Olfactory neuroblastoma

    SciTech Connect

    O'Connor, T.A.; McLean, P.; Juillard, G.J.; Parker, R.G.

    1989-06-15

    Fifteen patients with olfactory neuroblastoma were treated during the 17-year period of 1969 to 1986. Data was analyzed with respect to age at presentation, sex, presenting signs and symptoms, stage, and results of treatment. Age ranged from 4 to 67 years with the median age being 27 years. Median follow-up was 8 years. Local control was achieved in nine of nine patients or 100% with successful surgical resection, i.e., minimal residual disease, followed by postoperative radiation therapy (45 to 65 Gy) was employed. There were no distant failures when the primary site was controlled. Regional lymph node metastases were infrequent: only 13% (two of 15 patients) presented with positive nodes. Three of four patients treated initially with surgery alone had a local recurrence, two of which were successfully salvaged by combined therapy. There were four patients treated with radiation therapy alone: three had persistent disease after radiation therapy, and one patient was controlled with 65 Gy. Olfactory neuroblastoma has a propensity to recur locally when treated with surgery alone. The authors' experience suggests excellent local control can be achieved with surgery immediately followed by radiation therapy. Thus the authors recommend planned combined treatment for all resectable lesions.

  20. The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges.

    PubMed

    Masneuf-Pomarede, Isabelle; Bely, Marina; Marullo, Philippe; Albertin, Warren

    2015-01-01

    Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various studies (Hanseniaspora uvarum, Starmerella bacillaris, etc.). Along with their biotechnological use, the knowledge of these non-conventional yeasts greatly increased these last 10 years. The aim of this review is to describe the last updates and the current state-of-art of the genetics of non-conventional yeasts (including S. uvarum, T. delbrueckii, S. bacillaris, etc.). We describe how genomics and genetics tools provide new data into the population structure and biodiversity of non-conventional yeasts in winemaking environments. Future challenges will lie on the development of selection programs and/or genetic improvement of these non-conventional species. We discuss how genetics, genomics and the advances in next-generation sequencing will help the wine industry to develop the biotechnological use of non-conventional yeasts to improve the quality and differentiation of wines.

  1. The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges

    PubMed Central

    Masneuf-Pomarede, Isabelle; Bely, Marina; Marullo, Philippe; Albertin, Warren

    2016-01-01

    Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various studies (Hanseniaspora uvarum, Starmerella bacillaris, etc.). Along with their biotechnological use, the knowledge of these non-conventional yeasts greatly increased these last 10 years. The aim of this review is to describe the last updates and the current state-of-art of the genetics of non-conventional yeasts (including S. uvarum, T. delbrueckii, S. bacillaris, etc.). We describe how genomics and genetics tools provide new data into the population structure and biodiversity of non-conventional yeasts in winemaking environments. Future challenges will lie on the development of selection programs and/or genetic improvement of these non-conventional species. We discuss how genetics, genomics and the advances in next-generation sequencing will help the wine industry to develop the biotechnological use of non-conventional yeasts to improve the quality and differentiation of wines. PMID:26793188

  2. Stimulation of the Sigma-1 Receptor by DHEA Enhances Synaptic Efficacy and Neurogenesis in the Hippocampal Dentate Gyrus of Olfactory Bulbectomized Mice

    PubMed Central

    Moriguchi, Shigeki; Shinoda, Yasuharu; Yamamoto, Yui; Sasaki, Yuzuru; Miyajima, Kosuke; Tagashira, Hideaki; Fukunaga, Kohji

    2013-01-01

    Dehydroepiandrosterone (DHEA) is the most abundant neurosteroid synthesized de novo in the central nervous system. We previously reported that stimulation of the sigma-1 receptor by DHEA improves cognitive function by activating calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C and extracellular signal-regulated kinase in the hippocampus in olfactory bulbectomized (OBX) mice. Here, we asked whether DHEA enhances neurogenesis in the subgranular zone of the hippocampal dentate gyrus (DG) and improves depressive-like behaviors observed in OBX mice. Chronic treatment with DHEA at 30 or 60 mg/kg p.o. for 14 days significantly improved hippocampal LTP impaired in OBX mice concomitant with increased CaMKII autophosphorylation and GluR1 (Ser-831) phosphorylation in the DG. Chronic DHEA treatment also ameliorated depressive-like behaviors in OBX mice, as assessed by tail suspension and forced swim tests, while a single DHEA treatment had no affect. DHEA treatment also significantly increased the number of BrdU-positive neurons in the subgranular zone of the DG of OBX mice, an increase inhibited by treatment with NE-100, a sigma-1 receptor antagonist. DHEA treatment also significantly increased phosphorylation of Akt (Ser-473), Akt (Ser-308) and ERK in the DG. Furthermore, GSK-3β (Ser-9) phosphorylation increased in the DG of OBX mice possibly accounting for increased neurogenesis through Akt activation. Finally, we confirmed that DHEA treatment of OBX mice increases the number of BrdU-positive neurons co-expressing β-catenin, a downstream GSK-3βtarget. Overall, we conclude that sigma-1 receptor stimulation by DHEA ameliorates OBX-induced depressive-like behaviors by increasing neurogenesis in the DG through activation of the Akt/GSK-3β/β-catenin pathway. PMID:23593332

  3. Organization and distribution of glomeruli in the bowhead whale olfactory bulb

    PubMed Central

    Thewissen, JGM; Usip, Sharon; Suydam, Robert S.; George, John C.

    2015-01-01

    Although modern baleen whales (Mysticeti) retain a functional olfactory system that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced to a great degree. This reduction likely occurred as a selective response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain. Here we show that olfactory bulbs of bowhead whales (Balaena mysticetus) lack glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli elsewhere in the bowhead whale olfactory bulb, which is surprising given that bowhead whales possess only 80 intact olfactory receptor genes. Olfactory sensory neurons that express the same olfactory receptors in rodents generally project to two specific glomeruli in an olfactory bulb, implying an approximate 1:2 ratio of the number of olfactory receptors to the number of glomeruli. Here we show that this ratio does not apply to bowhead whales, reiterating the conceptual limits of using rodents as model organisms for understanding the initial coding of odor information among mammals. PMID:25945304

  4. Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues

    PubMed Central

    Gonzalez, Francisco; Witzgall, Peter; Walker, William B.

    2017-01-01

    Insects use chemical signals to find mates, food and oviposition sites. The main chemoreceptor gene families comprise odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). Understanding the evolution of these receptors as well as their function will assist in advancing our knowledge of how chemical stimuli are perceived and may consequently lead to the development of new insect management strategies. Tortricid moths are important pests in horticulture, forestry and agriculture around the globe. Here, we characterize chemoreceptors from the three main gene families of three economically important tortricids, based on male antennal transcriptomes using an RNA-Seq approach. We identified 49 ORs, 11 GRs and 23 IRs in the green budworm moth, Hedya nubiferana; 49 ORs, 12 GRs and 19 IRs in the beech moth, Cydia fagiglandana; and 48 ORs, 11 GRs and 19 IRs in the pea moth, Cydia nigricana. Transcript abundance estimation, phylogenetic relationships and molecular evolution rate comparisons with deorphanized receptors of Cydia pomonella allow us to hypothesize conserved functions and therefore candidate receptors for pheromones and kairomones. PMID:28150741

  5. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals

    PubMed Central

    Matsui, Atsushi; Touhara, Kazushige

    2014-01-01

    Olfactory receptors (ORs) detect odors in the environment, and OR genes constitute the largest multigene family in mammals. Numbers of OR genes vary greatly among species—reflecting the respective species' lifestyles—and this variation is caused by frequent gene gains and losses during evolution. However, whether the extent of gene gains/losses varies among individual gene lineages and what might generate such variation is unknown. To answer these questions, we used a newly developed phylogeny-based method to classify >10,000 intact OR genes from 13 placental mammal species into 781 orthologous gene groups (OGGs); we then compared the OGGs. Interestingly, African elephants had a surprisingly large repertoire (∼2000) of functional OR genes encoded in enlarged gene clusters. Additionally, OR gene lineages that experienced more gene duplication had weaker purifying selection, and Class II OR genes have evolved more dynamically than those in Class I. Some OGGs were highly expanded in a lineage-specific manner, while only three OGGs showed complete one-to-one orthology among the 13 species without any gene gains/losses. These three OGGs also exhibited highly conserved amino acid sequences; therefore, ORs in these OGGs may have physiologically important functions common to every placental mammal. This study provides a basis for inferring OR functions from evolutionary trajectory. PMID:25053675

  6. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals.

    PubMed

    Niimura, Yoshihito; Matsui, Atsushi; Touhara, Kazushige

    2014-09-01

    Olfactory receptors (ORs) detect odors in the environment, and OR genes constitute the largest multigene family in mammals. Numbers of OR genes vary greatly among species--reflecting the respective species' lifestyles--and this variation is caused by frequent gene gains and losses during evolution. However, whether the extent of gene gains/losses varies among individual gene lineages and what might generate such variation is unknown. To answer these questions, we used a newly developed phylogeny-based method to classify >10,000 intact OR genes from 13 placental mammal species into 781 orthologous gene groups (OGGs); we then compared the OGGs. Interestingly, African elephants had a surprisingly large repertoire (∼ 2000) of functional OR genes encoded in enlarged gene clusters. Additionally, OR gene lineages that experienced more gene duplication had weaker purifying selection, and Class II OR genes have evolved more dynamically than those in Class I. Some OGGs were highly expanded in a lineage-specific manner, while only three OGGs showed complete one-to-one orthology among the 13 species without any gene gains/losses. These three OGGs also exhibited highly conserved amino acid sequences; therefore, ORs in these OGGs may have physiologically important functions common to every placental mammal. This study provides a basis for inferring OR functions from evolutionary trajectory.

  7. Natural odor ligands for olfactory receptor neurons of the female mosquito Aedes aegypti: use of gas chromatography-linked single sensillum recordings.

    PubMed

    Ghaninia, Majid; Larsson, Mattias; Hansson, Bill S; Ignell, Rickard

    2008-09-01

    Female Aedes aegypti are vectors of dengue and yellow fever. Odor volatiles are the predominant cues that drive the host-seeking behavior of Ae. aegypti. Odorant molecules are detected and discriminated by olfactory receptor neurons (ORNs) housed in sensory hairs, sensilla, located on the antennae and maxillary palps. In a previous study, we used odor volatiles that are behaviorally and/or electrophysiologically active for Ae. aegypti and other mosquito species to show that antennal ORNs of female Ae. aegypti are divided into functionally different classes. In the present study, we have, for the first time, conducted gas chromatography-coupled single sensillum recordings (GC-SSR) from antennal trichoid and intermediate sensilla of female Ae. aegypti in order to screen for additional putative host attractants and repellents. We used headspace collections from biologically relevant sources, such as different human body parts (including feet, trunk regions and armpit), as well as a plant species used as a mosquito repellent, Nepeta faassenii. We found that a number of ORN types strongly responded to one or more of the biological extracts. GC-SSR recordings revealed several active components, which were subsequently identified through GC-linked mass spectrometry (GC-MS). Electrophysiologically active volatiles from human skin included heptanal, octanal, nonanal and decanal.

  8. Whole-cell recording from honeybee olfactory receptor neurons: ionic currents, membrane excitability and odourant response in developing workerbee and drone.

    PubMed

    Laurent, Stéphanie; Masson, Claudine; Jakob, Ingrid

    2002-04-01

    Whole-cell recording techniques were used to characterize ionic membrane currents and odourant responses in honeybee olfactory receptor neurons (ORNs) in primary cell culture. ORNs of workerbee (female) and drone (male) were isolated at an early stage of development before sensory axons connect to their target in the antennal lobe. The results collectively indicate that honeybee ORNs have electrical properties similar, but not necessarily identical to, those currently envisaged for ORNs of other species. Under voltage clamp at least four ionic currents could be distinguished. Inward currents were made of a fast transient, tetrodotoxin-sensitive sodium current. In some ORNs a cadmium-sensitive calcium current was detected. ORNs showed heterogeneity in their outward currents: either outward currents were made of a delayed rectifier type potassium current, which was partially blocked by tetraethyl ammonium or quinidine, or were composed of a delayed rectifier type and a transient calcium-dependent potassium current, which was cadmium-sensitive and abolished by removal of external calcium. The proportion of each of the two outward currents, however, was different within the ORNs of the two sexes suggesting a gender-specific functional heterogeneity. ORNs showed heterogeneity in action potential firing properties: depolarizing current steps elicited either one action potential or, as in most of the cells, it led to repetitive spiking. Action potentials were tetrodotoxin-sensitive suggesting they are carried by sodium. Odourant stimulation with different mixtures and pure substances evoked depolarizing receptor potentials with superimposed action potentials when spike threshold was reached. In summary, honeybee ORNs are remarkably mature at early stages in their development.

  9. On the organization of olfactory and vomeronasal cortices.

    PubMed

    Martinez-Marcos, Alino

    2009-01-12

    Classically, the olfactory and vomeronasal pathways are thought to run in parallel non-overlapping axes in the forebrain subserving different functions. The olfactory and vomeronasal epithelia project to the main and accessory olfactory bulbs (primary projections), which in turn project to different areas of the telencephalon in a non-topographic fashion (secondary projections) and so on (tertiary projections). New data indicate that projections arising from the main and accessory olfactory bulbs converge widely in the rostral basal telencephalon. In contrast, in the vomeronasal system, cloning two classes of vomeronasal receptors (V1R and V2R) has led to the distinction of two anatomically and functionally independent pathways that reach some common, but also some different, targets in the amygdala. Tertiary projections from the olfactory and vomeronasal amygdalae are directed to the ventral striatum, which thus becomes a site for processing and potential convergence of chemosensory stimuli. Functional data indicate that the olfactory and vomeronasal systems are able to detect and process volatiles (presumptive olfactory cues) as well as pheromones in both epithelia and bulbs. Collectively, these data indicate that the anatomical and functional distinction between the olfactory and vomeronasal systems should be re-evaluated. Specifically, the recipient cortex should be reorganized to include olfactory, vomeronasal (convergent and V1R and V2R specific areas) and mixed (olfactory and vomeronasal) chemosensory cortices. This new perspective could help to unravel olfactory and vomeronasal interactions in behavioral paradigms.

  10. Non-conventional methods and media for the activation and manipulation of carbon nanoforms.

    PubMed

    Vázquez, Ester; Giacalone, Francesco; Prato, Maurizio

    2014-01-07

    Very often, chemical transformations require tedious and long procedures, which, sometimes, can be avoided using alternative methods and media. New protocols, enabling us to save time and solvents, allow us also to explore new reaction profiles. This Tutorial Review focuses on the physical and chemical behavior of carbon nanoforms, CNFs (fullerenes, nanotubes, nanohorns, graphene, etc.) when non-conventional methods and techniques, such as microwave irradiation, mechano-chemistry or highly ionizing radiations are employed. In addition, the reactivity of CNFs in non-conventional media such as water, fluorinated solvents, supercritical fluids, or ionic liquids is also discussed.

  11. Damage to Olfactory Progenitor Cells Is Involved in Cigarette Smoke-Induced Olfactory Dysfunction in Mice.

    PubMed

    Ueha, Rumi; Ueha, Satoshi; Kondo, Kenji; Sakamoto, Takashi; Kikuta, Shu; Kanaya, Kaori; Nishijima, Hironobu; Matsushima, Kouji; Yamasoba, Tatsuya

    2016-03-01

    Exposure to cigarette smoke is a major cause of olfactory dysfunction. However, the underlying mechanisms by which cigarette smoke interferes with the highly regenerative olfactory nerve system remain unclear. To investigate whether cigarette smoke induces olfactory dysfunction by disrupting cell proliferation and cell survival in the olfactory epithelium (OE), we developed a mouse model of smoking that involved intranasal administration of a cigarette smoke solution (CSS). Immunohistological analyses and behavioral testing showed that CSS administration during a period of 24 days reduced the number of olfactory marker protein-positive mature olfactory receptor neurons (ORNs) in the OE and induced olfactory dysfunction. These changes coincided with a reduction in the number of SOX2(+) ORN progenitors and Ki-67(+) proliferating cells in the basal layer of the OE, an increase in the number of caspase-3(+) apoptotic cells, and an increase in the expression of mRNA for the inflammatory cytokines IL-1β and IL-6. Notably, the proliferating ORN progenitor population recovered after cessation of treatment with CSS, resulting in the subsequent restoration of mature ORN numbers and olfaction. These results suggest that SOX2(+) ORN progenitors are targets of CSS-induced impairment of the OE, and that by damaging the ORN progenitor population and increasing ORN death, CSS exposure eventually overwhelms the regenerative capacity of the epithelium, resulting in reduced numbers of mature ORNs and olfactory dysfunction.

  12. Quality Coding by Neural Populations in the Early Olfactory Pathway: Analysis Using Information Theory and Lessons for Artificial Olfactory Systems

    PubMed Central

    Fonollosa, Jordi; Gutierrez-Galvez, Agustin; Marco, Santiago

    2012-01-01

    In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble’s performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic. PMID:22719851

  13. Immunocytochemical characterisation of olfactory ensheathing cells of zebrafish

    PubMed Central

    Lazzari, Maurizio; Bettini, Simone; Franceschini, Valeria

    2014-01-01

    Continuous lifelong neurogenesis is typical of the vertebrate olfactory system. The regenerative ability of olfactory receptor neurons is dependent on the glial cell type specific to the olfactory pathway, designated ‘olfactory ensheathing cells'. Several studies to date have focused on mammalian olfactory ensheathing cells, owing to their potential roles in cell-based therapy for spinal cord injury repair. However, limited information is available regarding this glial cell type in non-mammalian vertebrates, particularly anamniotes. In the current immunocytochemical study, we analysed the features of olfactory ensheathing cells in the zebrafish, Danio rerio. Fish provide a good model for studying glial cells associated with the olfactory pathway of non-mammalian vertebrates. In particular, zebrafish has numerous valuable features that enable its use as a prime model organism for genetic, neurobiological and developmental studies, as well as toxicology and genomics research. Paraffin sections from decalcified heads of zebrafish were processed immunocytochemically to detect proteins used in the research on mammalian olfactory ensheathing cells, including glial fibrillary acid protein (GFAP), S100, neural cell adhesion molecule (NCAM), polysialylated NCAM (PSA-NCAM), vimentin (VIM), p75NTR and galactin (Gal)-1. Notably, GFAP, S100, NCAM and Gal-1 were clearly observed, whereas no vimentin staining was detected. Weak immunostaining for PSA-NCAM and p75NTR was evident. Moreover the degree of marker expression was not uniform in various tracts of the zebrafish olfactory pathway. The immunostaining patterns of the zebrafish olfactory system are distinct from those of other fish to some extent, suggesting interspecific differences. We also showed that the olfactory pathway of zebrafish expresses markers of mammalian olfactory ensheathing cells. The olfactory systems of vertebrates have similarities but there are also marked variations between them. The issue of whether

  14. Microbial Terroir in Chilean Valleys: Diversity of Non-conventional Yeast.

    PubMed

    Jara, Carla; Laurie, V Felipe; Mas, Albert; Romero, Jaime

    2016-01-01

    In this study, the presence of non-conventional yeast associated with vineyards located between latitudes 30°S and 36°S was examined, including the valleys of Limarí, Casablanca, Maipo, Colchagua, Maule, and Itata. The microbial fingerprinting in each valley was examined based on the specific quantification of yeast of enological interest. Grape-berries were sampled to evaluate the presence and load of non-conventional yeast with enological potential, such as Metschnikowia, Hanseniaspora, Torulaspora, Debaryomyces, Meyerozyma, and Rhodotorula. These yeasts were present in all vineyards studied but with varying loads depending on the valley sampled. No identical fingerprints were observed; however, similarities and differences could be observed among the microbial profiles of each valley. A co-variation in the loads of Metschnikowia and Hanseniaspora with latitude was observed, showing high loads in the Casablanca and Itata valleys, which was coincident with the higher relative humidity or rainfall of those areas. Non-conventional yeasts were also isolated and identified after sequencing molecular markers. Potentially good aromatic properties were also screened among the isolates, resulting in the selection of mostly Metschnikowia and Hanseniaspora isolates. Finally, our results suggest that microbial terroir might be affected by climatic conditions such as relative humidity and rainfall, especially impacting the load of non-conventional yeast. In this study, the microbial fingerprint for yeast in Chilean vineyards is reported for the first time revealing an opportunity to study the contribution of this assembly of microorganisms to the final product.

  15. Achievement Evaluation within a Non-Conventional Framework: Some Experiences in Physics and Humour

    ERIC Educational Resources Information Center

    Worner, C. H.; Romero, A.; Bustamante, G.

    2010-01-01

    An achievement evaluation of a non-conventional physics course for liberal arts students is presented. The theoretical ground for this course focuses on the use of humour as a teaching tool. Preliminary evidence shows that a learning process is accomplished. (Contains 1 table and 3 figures.)

  16. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  17. Microbial Terroir in Chilean Valleys: Diversity of Non-conventional Yeast

    PubMed Central

    Jara, Carla; Laurie, V. Felipe; Mas, Albert; Romero, Jaime

    2016-01-01

    In this study, the presence of non-conventional yeast associated with vineyards located between latitudes 30°S and 36°S was examined, including the valleys of Limarí, Casablanca, Maipo, Colchagua, Maule, and Itata. The microbial fingerprinting in each valley was examined based on the specific quantification of yeast of enological interest. Grape–berries were sampled to evaluate the presence and load of non-conventional yeast with enological potential, such as Metschnikowia, Hanseniaspora, Torulaspora, Debaryomyces, Meyerozyma, and Rhodotorula. These yeasts were present in all vineyards studied but with varying loads depending on the valley sampled. No identical fingerprints were observed; however, similarities and differences could be observed among the microbial profiles of each valley. A co-variation in the loads of Metschnikowia and Hanseniaspora with latitude was observed, showing high loads in the Casablanca and Itata valleys, which was coincident with the higher relative humidity or rainfall of those areas. Non-conventional yeasts were also isolated and identified after sequencing molecular markers. Potentially good aromatic properties were also screened among the isolates, resulting in the selection of mostly Metschnikowia and Hanseniaspora isolates. Finally, our results suggest that microbial terroir might be affected by climatic conditions such as relative humidity and rainfall, especially impacting the load of non-conventional yeast. In this study, the microbial fingerprint for yeast in Chilean vineyards is reported for the first time revealing an opportunity to study the contribution of this assembly of microorganisms to the final product. PMID:27242693

  18. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    SciTech Connect

    Durlofsky, Louis J.; Aziz, Khalid

    2001-08-23

    Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented.

  19. Calcium signals in olfactory neurons.

    PubMed

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  20. Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task.

    PubMed

    Souza, Rimenez R; Dal Bó, Silvia; de Kloet, E Ronald; Oitzl, Melly S; Carobrez, Antonio P

    2014-04-01

    There is general agreement that the substantial modification in memory and motivational states exerted by corticosteroids after a traumatic experience is mediated in complementary manner by the mineralocorticoid (MR) and glucocorticoid (GR) receptors. Here we tested the hypothesis that pharmacological manipulation of MR activity would affect behavioral strategy and information storage in an olfactory fear conditioning (OFC) task. Male Wistar rats were submitted to the OFC with different training intensities. We observed that following high intensity OFC acquisition, a set of defensive coping strategies, which includes avoidance and risk assessment behaviors, was elicited when subjects were exposed to the conditioned stimulus (CS) 48 h later. In addition, following either OFC acquisition or retrieval (CS-I test) a profound corticosterone secretion was also detected. Systemic administration of the MR antagonist spironolactone altered the behavioral coping style irrespective the antagonist was administered 60 min prior to the acquisition or before the retrieval session. Surprisingly, the MR agonist fludrocortisone given 60 min prior to acquisition or retrieval of OFC had similar effects as the antagonist. In addition, post-training administration of fludrocortisone, following a weak training procedure, facilitated the consolidation of OFC. Fludrocortisone rather than spironolactone reduced serum corticosterone levels, suggesting that, at least in part, the effects of the MR agonist may derive from additional GR-mediated HPA-axis suppression. In conclusion, the present study suggests the involvement of the MR in the fine-tuning of behavioral adaptation necessary for optimal information storage and expression, as revealed by the marked alterations in the risk assessment behavior.

  1. The olfactory bulb and the number of its glomeruli in the common marmoset (Callithrix jacchus).

    PubMed

    Moriya-Ito, Keiko; Tanaka, Ikuko; Umitsu, Yoshitomo; Ichikawa, Masumi; Tokuno, Hironobu

    2015-04-01

    The olfactory system has been well studied in mammals such as mice and rats. However, few studies have focused on characterizing this system in diurnal primates that rely on their sense of smell to a lesser extent due to their ecological environment. In the present study, we determined the histological organization of the olfactory bulb in the common marmoset (Callithrix jacchus). We then constructed 3-dimensional models of the glomeruli of the olfactory bulb, and estimated the number of glomeruli. Olfactory glomeruli are the functional units of olfactory processing, and have been investigated in detail using mice. There are approximately 1800 glomeruli in a mouse hemibulb, and olfactory sensory neurons expressing one selected olfactory receptor converge onto one or two glomeruli. Because mice have about 1000 olfactory receptor genes, it is proposed that the number of glomeruli in mammals is nearly double that of olfactory receptor genes. The common marmoset carries only about 400 intact olfactory receptor genes. The present study revealed that the number of glomeruli in a marmoset hemibulb was approximately 1500-1800. This result suggests that the number of glomeruli is not positively correlated with the number of intact olfactory receptor genes in mammals.

  2. The olfactory apparatus of the bandicoot (Isoodon macrourus): fine structure and presence of a septal olfactory organ.

    PubMed Central

    Kratzing, J E

    1978-01-01

    The structure and extent of olfactory epithelium in the bandicoot (Isoodon macrourus) were examined by light and electron microscopy. Sensory epithelium covers most of the dorsal conchae, though non-sensory epithelium lines ventrally facing scrolls. The middle conchae are partly covered by olfactory epithelium, the proportion of olfactory to ciliated respiratory epithelium increasing caudally. Ventral conchae are lined by non-sensory ciliated epithelium. The nasal septum ends short of the floor of the nasal cavity in its caudal two thirds. It is covered dorsally by olfactory epithelium. The ventral margin has rounded lateral extensions which carry the isolated strips of olfactory epithelium which form the septal olfactory organ. The fine structure of the olfactory epithelium is the same in all areas. Cell types include olfactory receptors, supporting cells, two types of basal cell and rarer pale and brush cells. There is considerable morphological variation in olfactory cells, and evidence suggestive of continuing turnover in the receptor cell population. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:640961

  3. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex

    NASA Astrophysics Data System (ADS)

    Zou, Zhihua; Horowitz, Lisa F.; Montmayeur, Jean-Pierre; Snapper, Scott; Buck, Linda B.

    2001-11-01

    The olfactory system translates myriad chemical structures into diverse odour perceptions. To gain insight into how this is accomplished, we prepared mice that coexpressed a transneuronal tracer with only one of about 1,000 different odorant receptors. The tracer travelled from nasal neurons expressing that receptor to the olfactory bulb and then to the olfactory cortex, allowing visualization of cortical neurons that receive input from a particular odorant receptor. These studies revealed a stereotyped sensory map in the olfactory cortex in which signals from a particular receptor are targeted to specific clusters of neurons. Inputs from different receptors overlap spatially and could be combined in single neurons, potentially allowing for an integration of the components of an odorant's combinatorial receptor code. Signals from the same receptor are targeted to multiple olfactory cortical areas, permitting the parallel, and perhaps differential, processing of inputs from a single receptor before delivery to the neocortex and limbic system.

  4. Anatomical specializations for enhanced olfactory sensitivity in kiwi, Apteryx mantelli.

    PubMed

    Corfield, Jeremy R; Eisthen, Heather L; Iwaniuk, Andrew N; Parsons, Stuart

    2014-01-01

    The ability to function in a nocturnal and ground-dwelling niche requires a unique set of sensory specializations. The New Zealand kiwi has shifted away from vision, instead relying on auditory and tactile stimuli to function in its environment and locate prey. Behavioral evidence suggests that kiwi also rely on their sense of smell, using olfactory cues in foraging and possibly also in communication and social interactions. Anatomical studies appear to support these observations: the olfactory bulbs and tubercles have been suggested to be large in the kiwi relative to other birds, although the extent of this enlargement is poorly understood. In this study, we examine the size of the olfactory bulbs in kiwi and compare them with 55 other bird species, including emus, ostriches, rheas, tinamous, and 2 extinct species of moa (Dinornithiformes). We also examine the cytoarchitecture of the olfactory bulbs and olfactory epithelium to determine if any neural specializations beyond size are present that would increase olfactory acuity. Kiwi were a clear outlier in our analysis, with olfactory bulbs that are proportionately larger than those of any other bird in this study. Emus, close relatives of the kiwi, also had a relative enlargement of the olfactory bulbs, possibly supporting a phylogenetic link to well-developed olfaction. The olfactory bulbs in kiwi are almost in direct contact with the olfactory epithelium, which is indeed well developed and complex, with olfactory receptor cells occupying a large percentage of the epithelium. The anatomy of the kiwi olfactory system supports an enhancement for olfactory sensitivities, which is undoubtedly associated with their unique nocturnal niche.

  5. Extraction of kiwi seed oil: Soxhlet versus four different non-conventional techniques.

    PubMed

    Cravotto, Giancarlo; Bicchi, Carlo; Mantegna, Stefano; Binello, Arianna; Tomao, Valerie; Chemat, Farid

    2011-06-01

    Kiwi seed oil has a nutritionally interesting fatty acid profile, but a rather low oxidative stability, which requires careful extraction procedures and adequate packaging and storage. For these reasons and with the aim to achieve process intensification with shorter extraction time, lower energy consumption and higher yields, four different non-conventional techniques were experimented. Kiwi seeds were extracted in hexane using classic Soxhlet as well as under power ultrasound (US), microwaves (MWs; closed vessel) and MW-integrated Soxhlet. Supercritical CO₂ was also employed and compared to the other techniques in term of yield, extraction time, fatty acid profiles and organoleptic properties. All these non-conventional techniques are fast, effective and safe. A sensory evaluation test showed the presence of off-flavours in oil samples extracted by Soxhlet and US, an indicator of partial degradation.

  6. Consumer perceptions of health care quality and the utilization of non-conventional therapy.

    PubMed

    Dunfield, J F

    1996-07-01

    In recent years health care delivery has placed increased emphasis on patient input. However, much of the research addressing patient satisfaction and quality of care suffers from inherent methodological difficulties, or an agenda determined by the provider, not the consumer. Of particular neglect has been the considerable, and often, preferential use of non-conventional therapy, recently shown to have an enormous presence within the U.S. health care system. This study employs a multidimensional scaling methodology as an explorative tool to examine, from the consumer's viewpoint, the issues that underlie the positive perception of the quality of health care delivery. Three principle dimensions are identified: personal-impersonal doctor patient relationship; scientific vs holistic approach; and the balance of control between doctor patient. Correlation of sociodemographic and broad based health care seeking data with respect to these dimensions furthers understanding of gender bias, and non-conventional therapy utilization. Suggestions for moderation of these attitudes are discussed.

  7. Differences between conventional and non-conventional MRI techniques in Parkinson’s disease

    PubMed Central

    Baglieri, Annalisa; Marino, Maria Adele; Morabito, Rosa; Di Lorenzo, Giuseppe; Bramanti, Placido; Marino, Silvia

    2013-01-01

    Summary Magnetic resonance imaging (MRI) provides an in vivo assessment of cortical and subcortical regions affected in Parkinson’s disease (PD). This review summarizes the most important conventional and non-conventional MRI techniques applied in this field. Standard neuroimaging techniques have played a marginal role in the diagnosis and follow-up of PD, essentially being used only to discriminate atypical syndromes from PD, to exclude secondary causes such as vascular lesions, and to confirm the absence of specific imaging features found in atypical parkinsonisms. However, non-conventional MRI techniques, i.e. new neuroimaging approaches such as magnetic resonance spectroscopy, diffusion tensor imaging, and functional MRI, may allow the detection of structural, functional and metabolic changes useful not only for differential diagnosis, but also for early diagnosis and outcome and treatment monitoring in PD. In addition, we illustrate the advantages of high-field MRI over lower magnetic fields, highlighting the great potential of advanced neuroimaging techniques. PMID:24125556

  8. A new dopaminergic nigro-olfactory projection.

    PubMed

    Höglinger, Günter U; Alvarez-Fischer, Daniel; Arias-Carrión, Oscar; Djufri, Miriam; Windolph, Andrea; Keber, Ursula; Borta, Andreas; Ries, Vincent; Schwarting, Rainer K W; Scheller, Dieter; Oertel, Wolfgang H

    2015-09-01

    Parkinson disease (PD) is a neurodegenerative disorder characterized by massive loss of midbrain dopaminergic neurons. Whereas onset of motor impairments reflects a rather advanced stage of the disorder, hyposmia often marks the beginning of the disease. Little is known about the role of the nigro-striatal system in olfaction under physiological conditions and the anatomical basis of hyposmia in PD. Yet, the early occurrence of olfactory dysfunction implies that pathogens such as environmental toxins could incite the disease via the olfactory system. In the present study, we demonstrate a dopaminergic innervation from neurons in the substantia nigra to the olfactory bulb by axonal tracing studies. Injection of two dopaminergic neurotoxins-1-methyl-4-phenylpyridinium and 6-hydroxydopamine-into the olfactory bulb induced a decrease in the number of dopaminergic neurons in the substantia nigra. In turn, ablation of the nigral projection led to impaired olfactory perception. Hyposmia following dopaminergic deafferentation was reversed by treatment with the D1/D2/D3 dopamine receptor agonist rotigotine. Hence, we demonstrate for the first time the existence of a direct dopaminergic projection into the olfactory bulb and identify its origin in the substantia nigra in rats. These observations may provide a neuroanatomical basis for invasion of environmental toxins into the basal ganglia and for hyposmia as frequent symptom in PD.

  9. [Olfactory sensory perception].

    PubMed

    Fuentes, Aler; Fresno, María Javiera; Santander, Hugo; Valenzuela, Saúl; Gutiérrez, Mario Felipe; Miralles, Rodolfo

    2011-03-01

    The five senses have had a fundamental importance for survival and socialization of human beings. From an evolutionary point of view the sense of smell is the oldest. This sense has a strong representation within the genome, allowing the existence of many types of receptors that allow us to capture multiple volatile odor producing molecules, sending electrical signals to higher centers to report the outside world. Several cortical areas are activated in the brain, which are interconnected to form an extensive and complex neural network, linking for example, areas involved with memory and emotions, thus giving this sense of perceptual richness. While the concept of flavor is largely related to the sense of taste, smell provides the necessary integration with the rest of the senses and higher functions. Fully understanding the sense of smell is relevant to health professionals. Knowing the characteristics of the receptors, the transduction processes and convergence of information in the higher centers involved, we can properly detect olfactory disorders in our patients.

  10. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread

    PubMed Central

    Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M.; Verstrepen, Kevin J.

    2016-01-01

    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today’s diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria. PMID:27776154

  11. Changes in the neural representation of odorants after olfactory deprivation in the adult mouse olfactory bulb.

    PubMed

    Kass, Marley D; Pottackal, Joseph; Turkel, Daniel J; McGann, John P

    2013-01-01

    Olfactory sensory deprivation during development has been shown to induce significant alterations in the neurophysiology of olfactory receptor neurons (ORNs), the primary sensory inputs to the brain's olfactory bulb. Deprivation has also been shown to alter the neurochemistry of the adult olfactory system, but the physiological consequences of these changes are poorly understood. Here we used in vivo synaptopHluorin (spH) imaging to visualize odorant-evoked neurotransmitter release from ORNs in adult transgenic mice that underwent 4 weeks of unilateral olfactory deprivation. Deprivation reduced odorant-evoked spH signals compared with sham-occluded mice. Unexpectedly, this reduction was equivalent between ORNs on the open and plugged sides. Changes in odorant selectivity of glomerular subpopulations of ORNs were also observed, but only in ORNs on the open side of deprived mice. These results suggest that naris occlusion in adult mice produces substantial changes in primary olfactory processing which may reflect not only the decrease in olfactory stimulation on the occluded side but also the alteration of response properties on the intact side. We also observed a modest effect of true sham occlusions that included noseplug insertion and removal, suggesting that conventional noseplug techniques may have physiological effects independent of deprivation per se and thus require more careful controls than has been previously appreciated.

  12. The Olfactory Receptor OR51E1 Is Present along the Gastrointestinal Tract of Pigs, Co-Localizes with Enteroendocrine Cells and Is Modulated by Intestinal Microbiota

    PubMed Central

    Priori, Davide; Colombo, Michela; Clavenzani, Paolo; Jansman, Alfons J. M.; Lallès, Jean-Paul; Trevisi, Paolo; Bosi, Paolo

    2015-01-01

    The relevance of the butyrate-sensing olfactory receptor OR51E1 for gastrointestinal (GIT) functioning has not been considered so far. We investigated in young pigs the distribution of OR51E1 along the GIT, its relation with some endocrine markers, its variation with age and after interventions affecting the gut environment and intestinal microbiota. Immuno-reactive cells for OR51E1 and chromogranin A (CgA) were counted in cardial (CA), fundic (FU), pyloric (PL) duodenal (DU), jejunal (JE), ileal (IL), cecal (CE), colonic (CO) and rectal (RE) mucosae. OR51E1 co-localization with serotonin (5HT) and peptide YY (PYY) were evaluated in PL and CO respectively. FU and PL tissues were also sampled from 84 piglets reared from sows receiving either or not oral antibiotics (amoxicillin) around parturition, and sacrificed at days 14, 21, 28 (weaning) and 42 of age. JE samples were also obtained from 12 caesarean-derived piglets that were orally associated with simple (SA) or complex (CA) microbiota in the postnatal phase, and of which on days 26–37 of age jejunal loops were perfused for 8 h with enterotoxigenic Escherichia coli F4 (ETEC), Lactobacillus amylovorus or saline (CTRL). Tissue densities of OR51E1+ cells were in decreasing order: PL=DU>FU=CA>JE=IL=CE=CO=RE. OR51E1+ cells showed an enteroendocrine nature containing gastrointestinal hormones such as PYY or 5HT. OR51E1 gene expression in PL and FU increased during and after the suckling period (p<0.05). It was marginally reduced in offspring from antibiotic-treated sows (tendency, p=0.073), vs. control. Jejunal OR51E1 gene expression was reduced in piglets early associated with SA, compared with CA, and in ETEC-perfused loops vs. CTRL (p<0.01). Our results indicate that OR51E1 is related to GIT enteroendocrine activity. Moreover age, pathogen challenge and dietary manipulations influencing the gastrointestinal luminal microenvironment significantly affect the OR51E1 gene expression in GIT tissues presumably in

  13. Identification of the western tarnished plant bug (lygus hesperus) olfactory co-receptor orco: expression profile and confirmation of atypical membrane topology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lygus hesperus (western tarnished plant bug) is an agronomically important pest species of numerous cropping systems. Similar to other insects, a critical component underlying behaviors is the perception and discrimination of olfactory cues. Consequently, the molecular basis of olfaction in this spe...

  14. Glutamate Receptor Antagonist Infusions into the Basolateral and Medial Amygdala Reveal Differential Contributions to Olfactory vs. Context Fear Conditioning and Expression

    ERIC Educational Resources Information Center

    Walker, David L.; Paschall, Gayla Y.; Davis, Michael

    2005-01-01

    The basolateral amygdala's involvement in fear acquisition and expression to visual and auditory stimuli is well known. The involvement of the basolateral and other amygdala areas in fear acquisition and expression to stimuli of other modalities is less certain. We evaluated the contribution of the basolateral and medial amygdala to olfactory and…

  15. A Screen for Genes Expressed in the Olfactory Organs of Drosophila melanogaster Identifies Genes Involved in Olfactory Behaviour

    PubMed Central

    Tunstall, Narelle E.; Herr, Anabel; de Bruyne, Marien; Warr, Coral G.

    2012-01-01

    Background For insects the sense of smell and associated olfactory-driven behaviours are essential for survival. Insects detect odorants with families of olfactory receptor proteins that are very different to those of mammals, and there are likely to be other unique genes and genetic pathways involved in the function and development of the insect olfactory system. Methodology/Principal Findings We have performed a genetic screen of a set of 505 Drosophila melanogaster gene trap insertion lines to identify novel genes expressed in the adult olfactory organs. We identified 16 lines with expression in the olfactory organs, many of which exhibited expression of the trapped genes in olfactory receptor neurons. Phenotypic analysis showed that six of the lines have decreased olfactory responses in a behavioural assay, and for one of these we showed that precise excision of the P element reverts the phenotype to wild type, confirming a role for the trapped gene in olfaction. To confirm the identity of the genes trapped in the lines we performed molecular analysis of some of the insertion sites. While for many lines the reported insertion sites were correct, we also demonstrated that for a number of lines the reported location of the element was incorrect, and in three lines there were in fact two pGT element insertions. Conclusions/Significance We identified 16 new genes expressed in the Drosophila olfactory organs, the majority in neurons, and for several of the gene trap lines demonstrated a defect in olfactory-driven behaviour. Further characterisation of these genes and their roles in olfactory system function and development will increase our understanding of how the insect olfactory system has evolved to perform the same essential function to that of mammals, but using very different molecular genetic mechanisms. PMID:22530061

  16. Organization of olfactory centres in the malaria mosquito Anopheles gambiae

    PubMed Central

    Riabinina, Olena; Task, Darya; Marr, Elizabeth; Lin, Chun-Chieh; Alford, Robert; O'Brochta, David A.; Potter, Christopher J.

    2016-01-01

    Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region. We present detailed anatomical maps of olfactory innervations in the AL and the SEZ, identifying glomeruli that may respond to human body odours or carbon dioxide. Our results pave the way for anatomical and functional neurogenetic studies of sensory processing in mosquitoes. PMID:27694947

  17. Non-Conventional Yeasts Whole Cells as Efficient Biocatalysts for the Production of Flavors and Fragrances.

    PubMed

    Forti, Luca; Di Mauro, Simone; Cramarossa, Maria Rita; Filippucci, Sara; Turchetti, Benedetta; Buzzini, Pietro

    2015-06-04

    The rising consumer requests for natural flavors and fragrances have generated great interest in the aroma industry to seek new methods to obtain fragrance and flavor compounds naturally. An alternative and attractive route for these compounds is based on bio-transformations. In this review, the application of biocatalysis by Non Conventional Yeasts (NCYs) whole cells for the production of flavor and fragrances is illustrated by a discussion of the production of different class of compounds, namely Aldehydes, Ketones and related compounds, Alcohols, Lactones, Terpenes and Terpenoids, Alkenes, and Phenols.

  18. Effects of disorder on properties of non-conventionally prepared barium titanate

    SciTech Connect

    Banerjee, A.; Sarkar, S.; Roychowdhury, A.; Das, D.

    2015-06-24

    Barium titanaten (BaTiO{sub 3}) nanoparticles were prepared by non-conventional as well as conventional solid state reaction. A better response about the grain size distribution was obtained in the former. The former was then milled to get grains of successive reduced sizes. The defects induced within the samples were studies by positron annihilation spectroscopy. The effect of defects on dielectric property of sample with finest grains was measured. Dielectric stability with temperature was increased with decreasing grain size and the peak was shifted towards the lower value due to the enhancement of grain boundary defects generated due to milling for long time.

  19. Propagation of olfactory information in Drosophila.

    PubMed

    Root, Cory M; Semmelhack, Julia L; Wong, Allan M; Flores, Jorge; Wang, Jing W

    2007-07-10

    Investigating how information propagates between layers in the olfactory system is an important step toward understanding the olfactory code. Each glomerular output projection neuron (PN) receives two sources of input: the olfactory receptor neurons (ORNs) of the same glomerulus and interneurons that innervate many glomeruli. We therefore asked how these inputs interact to produce PN output. We used receptor gene mutations to silence all of the ORNs innervating a specific glomerulus and recorded PN activity with two-photon calcium imaging and electrophysiology. We found evidence for balanced excitatory and inhibitory synaptic inputs but saw little or no response in the absence of direct ORN input. We next asked whether any transformation of activity occurs at successive layers of the antennal lobe. We found a strong link between PN firing and dendritic calcium elevation, the latter of which is tightly correlated with calcium activity in ORN axons, supporting the idea of glomerular propagation of olfactory information. Finally, we showed that odors are represented by a sparse population of PNs. Together, these results are consistent with the idea that direct receptor input provides the main excitatory drive to PNs, whereas interneurons modulate PN output. Balanced excitatory and inhibitory interneuron input may provide a mechanism to adjust PN sensitivity.

  20. The role of olfactory stimulus in adult mammalian neurogenesis.

    PubMed

    Arisi, Gabriel M; Foresti, Maira L; Mukherjee, Sanjib; Shapiro, Lee A

    2012-02-14

    Neurogenesis occurs in the adult mammalian brain in discrete regions related to olfactory sensory signaling and integration. The olfactory receptor cell population is in constant turn-over through local progenitor cells. Also, newborn neurons are added to the olfactory bulbs through a major migratory route from the subventricular zone, the rostral migratory stream. The olfactory bulbs project to different brain structures, including: piriform cortex, amygdala, entorhinal cortex, striatum and hippocampus. These structures play important roles in odor identification, feeding behavior, social interactions, reproductive behavior, behavioral reinforcement, emotional responses, learning and memory. In all of these regions neurogenesis has been described in normal and in manipulated mammalian brain. These data are reviewed in the context of a sensory-behavioral hypothesis on adult neurogenesis that olfactory input modulates neurogenesis in many different regions of the brain.

  1. Thermal control of a lidar laser system using a non-conventional ram air heat exchanger

    NASA Technical Reports Server (NTRS)

    Killough, Brian D.; Alexander, William, Jr.; Swofford, Doyle P.

    1990-01-01

    This paper describes the analysis and performance testing of a uniquely designed external heat exchanger. The heat exchanger is attached externally to an aircraft and is used to cool a laser system within the fuselage. Estimates showed insufficient cooling capacity with a conventional staggered tube array in the limited space available. Thus, a non-conventional design wes developed with larger tube and fin area exposed to the ram air to increase the heat transfer performance. The basic design consists of 28 circular finned aluminum tubes arranged in two parallel banks. Wind tunnel tests were performed to simulate air and liquid flight conditions for the non-conventional parallel bank arrangement and the conventional staggered tube arrangement. Performance comparisons of each of the two designs are presented. Test results are used in a computer model of the heat exchanger to predict the operating performance for the entire flight profile. These analyses predict significantly improved performance over the conventional design and show adequate thermal control margins.

  2. Unrest in Utopia: Israeli patients' dissatisfaction with non-conventional medicine.

    PubMed

    Fadlon, Judith

    2004-06-01

    In recent years, non-conventional medicine (NCM) has grown tremendously in popularity and economic importance. This paper explores a relatively unresearched phenomenon: patients' dissatisfaction with non-conventional medical treatment they have received. 16 out of 20 patients who had severed their contact with a large, hospital-adjacent multi-modality NCM clinic in Israel were interviewed. Two of these patients had severed their relationship with the clinic right after being referred to a certain practitioner and 18 did not keep their next appointment while in the process of treatment. The narratives through which participants understand and communicate their experience regarding dissatisfaction with NCM are organized around three main topics: independence versus paternalism, foreign versus familiar, and care versus cure. Findings illustrate the patients' views concerning the desirable doctor-patient relationship and their expectations of non-familiar treatments. Patients are characterized as "smart consumers" who place utmost importance on outcome and do not hesitate to discontinue treatment. Findings are further discussed in the context of domestication and the minimizing of cultural difference through the integration of NCM into a biomedical setting.

  3. Data quality control methodologies for large, non-conventional DC resistivity datasets

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael A.; Oldenburg, Douglas W.

    2016-12-01

    With developments in instrumentation and computational resources, the collection of large, non-conventional DC resistivity datasets has become commonplace. While the increased data content of these large datasets can significantly improve the resolution of inverse models, these datasets also present challenges for standard data quality control (QC) methodologies. Standard QC methodologies for DC resistivity datasets typically rely on our ability to decompose the dataset into 2D lines and/or reciprocal measurements. Non-conventional electrode geometries and the cost of collecting a large number of reciprocal measurements can severely limit the applicability of standard DC resistivity QC methodologies. To address these limitations, we developed a more generalized data QC methodology which utilizes statistical analysis and classification tools. The merit of this methodology is illustrated using a field dataset collected in an underground potash mine and several synthetic examples. Results from these applications show that the methodology has the ability to identify and characterize highly noise-contaminated data from a number of different sources. The flexibility of the 4-stage methodology allows it be tailored to accommodate data from any type of DC resistivity survey and the use of statistical analysis and classification tools decreases the subjectivity of the process. Although this study focuses on the applicability of this methodology for DC resistivity data, it is potentially applicable to a variety of geophysical surveys.

  4. Electronic structures of topological insulator Bi2Te3 surfaces with non-conventional terminations

    NASA Astrophysics Data System (ADS)

    Zhu, Xie-Gang; Zhang, Yun; Feng, Wei; Yuan, Bing-Kai; Liu, Qin; Qiu, Rui-Zhi; Xie, Dong-Hua; Tan, Shi-Yong; Duan, Yu; Fang, Yun; Zhang, Wen; Lai, Xin-Chun

    2016-09-01

    Topological insulators (TIs) are theoretically believed to possess robust surface states (SSs) for any surface terminations. In reality, for TIs with non-conventional terminations, the directly experimental demonstration of this argument is somehow hindered, due to the difficulties in sample preparation and lack of efficient electronic structure characterization method. Here, by using the state-of-the-art molecular beam epitaxy, we manage to prepare TI Bi2Te3 thin film with non-conventional fractional quintuple layer (FQL) termination. Scanning tunneling microscopy reveals that the as-grown Bi2Te3 thin film may not necessarily terminate at the van der Waals gap between two adjacent quintuple layers. The electronic structures of the FQL termination are studied in combination with quasi-particle interference pattern by scanning tunneling spectroscopy and SS calculations by tight binding method. Our results suggest that the topological nature of SSs be preserved on various terminations. Possible ways of achieving exotic topological SSs are also discussed.

  5. Odor preference learning and memory modify GluA1 phosphorylation and GluA1 distribution in the neonate rat olfactory bulb: testing the AMPA receptor hypothesis in an appetitive learning model.

    PubMed

    Cui, Wen; Darby-King, Andrea; Grimes, Matthew T; Howland, John G; Wang, Yu Tian; McLean, John H; Harley, Carolyn W

    2011-01-01

    An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in the neonate rat. Rat pups were given a single pairing of peppermint and 2 mg/kg isoproterenol, which produces a 24-h, but not a 48-h, peppermint preference in the 7-d-old rat pup. GluA1 PKA-dependent phosphorylation peaked 10 min after the 10-min training trial and returned to baseline within 90 min. At 24 h, GluA1 subunits did not change overall but were significantly increased in synaptoneurosomes, consistent with increased membrane insertion. Immunohistochemistry revealed a significant increase in GluA1 subunits in olfactory bulb glomeruli, the targets of olfactory nerve axons. Glomerular increases were seen at 3 and 24 h after odor exposure in trained pups, but not in control pups. GluA1 increases were not seen as early as 10 min after training and were no longer observed 48 h after training when odor preference is no longer expressed behaviorally. Thus, the pattern of increased GluA1 membrane expression closely follows the memory timeline. Further, blocking GluA1 insertion using an interference peptide derived from the carboxyl tail of the GluA1 subunit inhibited 24 h odor preference memory providing causative support for our hypothesis. PKA-mediated GluA1 phosphorylation and later GluA1 insertion could, conjointly, provide increased AMPA function to support both short-term and long-term appetitive memory.

  6. Posttraumatic olfactory dysfunction.

    PubMed

    Coelho, Daniel H; Costanzo, Richard M

    2016-04-01

    Impairment of smell may occur following injury to any portion of the olfactory tract, from nasal cavity to brain. A thorough understanding of the anatomy and pathophysiology combined with comprehensively obtained history, physical exam, olfactory testing, and neuroimaging may help to identify the mechanism of dysfunction and suggest possible treatments. Although most olfactory deficits are neuronal mediated and therefore currently unable to be corrected, promising technology may provide novel treatment options for those most affected. Until that day, patient counseling with compensatory strategies and reassurance is essential for the maintenance of safety and QoL in this unique and challenging patient population.

  7. CD36 is involved in oleic acid detection by the murine olfactory system

    PubMed Central

    Oberland, Sonja; Ackels, Tobias; Gaab, Stefanie; Pelz, Thomas; Spehr, Jennifer; Spehr, Marc; Neuhaus, Eva M.

    2015-01-01

    Olfactory signals influence food intake in a variety of species. To maximize the chances of finding a source of calories, an animal’s preference for fatty foods and triglycerides already becomes apparent during olfactory food search behavior. However, the molecular identity of both receptors and ligands mediating olfactory-dependent fatty acid recognition are, so far, undescribed. We here describe that a subset of olfactory sensory neurons expresses the fatty acid receptor CD36 and demonstrate a receptor-like localization of CD36 in olfactory cilia by STED microscopy. CD36-positive olfactory neurons share olfaction-specific transduction elements and project to numerous glomeruli in the ventral olfactory bulb. In accordance with the described roles of CD36 as fatty acid receptor or co-receptor in other sensory systems, the number of olfactory neurons responding to oleic acid, a major milk component, in Ca2+ imaging experiments is drastically reduced in young CD36 knock-out mice. Strikingly, we also observe marked age-dependent changes in CD36 localization, which is prominently present in the ciliary compartment only during the suckling period. Our results support the involvement of CD36 in fatty acid detection by the mammalian olfactory system. PMID:26441537

  8. Cellular basis for the olfactory response to nicotine.

    PubMed

    Bryant, Bruce; Xu, Jiang; Audige, Valery; Lischka, Fritz W; Rawson, Nancy E

    2010-03-17

    Smokers regulate their smoking behavior on the basis of sensory stimuli independently of the pharmacological effects of nicotine (Rose J. E., et al. (1993) Pharmacol., Biochem. Behav.44 (4), 891-900). A better understanding of sensory mechanisms underlying smoking behavior may help to develop more effective smoking alternatives. Olfactory stimulation by nicotine makes up a considerable part of the flavor of tobacco smoke, yet our understanding of the cellular mechanisms responsible for olfactory detection of nicotine remains incomplete. We used biophysical methods to characterize the nicotine sensitivity and response mechanisms of neurons from olfactory epithelium. In view of substantial differences in the olfactory receptor repertoire between rodent and human (Mombaerts P. (1999) Annu. Rev. Neurosci.22, 487-509), we studied biopsied human olfactory sensory neurons (OSNs), cultured human olfactory cells (Gomez G., et al. (2000) J. Neurosci. Res.62 (5), 737-749), and rat olfactory neurons. Rat and human OSNs responded to S(-)-nicotine with a concentration dependent influx of calcium and activation of adenylate cyclase. Some rat OSNs displayed some stereoselectivity, with neurons responding to either enantiomer alone or to both. Freshly biopsied and primary cultured human olfactory neurons were less stereoselective. Nicotinic cholinergic antagonists had no effect on the responses of rat or human OSNs to nicotine. Patch clamp recording of rat OSNs revealed a nicotine-activated, calcium-sensitive nonspecific cation channel. These results indicate that nicotine activates a canonical olfactory receptor pathway rather than nicotinic cholinergic receptors on OSNs. Further, because the nicotine-sensitive mechanisms of rodents appear generally similar to those of humans, this animal model is an appropriate one for studies of nicotine sensation.

  9. Histological and lectin histochemical studies on the olfactory mucosae of the Korean roe deer, Capreolus pygargus.

    PubMed

    Park, Changnam; Ahn, Meejung; Kim, Jeongtae; Kim, Seungjoon; Moon, Changjong; Shin, Taekyun

    2015-04-01

    The morphological features of the olfactory mucosae of Korean roe deer, Capreolus pygargus, were histologically studied using the ethmoid turbinates containing the olfactory mucosae from six roe deer (male, 2-3 years old). The ethmoid turbinates were embedded in paraffin, and histochemically evaluated in terms of the mucosal characteristics. Lectin histochemistry was performed to investigate the carbohydrate-binding specificity on the olfactory mucosa. Lectins, including Triticum vulgaris wheat germ agglutinin (WGA), Ulex europaeus agglutinin I (UEA-I), and soybean agglutinin (SBA) were used for the N-acetylglucosamine, fucose and N-acetylgalactosamine carbohydrate groups, respectively. Histologically, the olfactory mucosa, positioned mainly in the caudal roof of the nasal cavity, consisted of the olfactory epithelium and the lamina propria. The olfactory epithelium consisted of protein gene product (PGP) 9.5-positive olfactory receptor cells, galectin-3-positive supporting cells and basal cells. Bowman's glands in the lamina propria were stained by both the periodic acid Schiff reagent and alcian blue (pH 2.5). Two types of lectin, WGA and SBA, were labeled in free border, receptor cells, supporting cells and Bowman's glands, with the exception of basal cells, while UEA-I was labeled in free border, supporting cells and Bowman's glands, but not in receptor cells and basal cells, suggesting that carbohydrate terminals on the olfactory mucosae of roe deer vary depending on cell type. This is the first morphological study of the olfactory mucosa of the Korean roe deer to evaluate carbohydrate terminals in the olfactory mucosae.

  10. Acid sensing by the Drosophila olfactory system.

    PubMed

    Ai, Minrong; Min, Soohong; Grosjean, Yael; Leblanc, Charlotte; Bell, Rati; Benton, Richard; Suh, Greg S B

    2010-12-02

    The odour of acids has a distinct quality that is perceived as sharp, pungent and often irritating. How acidity is sensed and translated into an appropriate behavioural response is poorly understood. Here we describe a functionally segregated population of olfactory sensory neurons in the fruitfly, Drosophila melanogaster, that are highly selective for acidity. These olfactory sensory neurons express IR64a, a member of the recently identified ionotropic receptor (IR) family of putative olfactory receptors. In vivo calcium imaging showed that IR64a+ neurons projecting to the DC4 glomerulus in the antennal lobe are specifically activated by acids. Flies in which the function of IR64a+ neurons or the IR64a gene is disrupted had defects in acid-evoked physiological and behavioural responses, but their responses to non-acidic odorants remained unaffected. Furthermore, artificial stimulation of IR64a+ neurons elicited avoidance responses. Taken together, these results identify cellular and molecular substrates for acid detection in the Drosophila olfactory system and support a labelled-line mode of acidity coding at the periphery.

  11. Non-Conventional Applications of Computerized Tomography: Analysis of Solid Dosage Forms Produced by Pharmaceutical Industry

    NASA Astrophysics Data System (ADS)

    de Oliveira, José Martins; Germano Martins, Antonio César

    2010-05-01

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 μm was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.

  12. From nuclear structure concepts to protein folding and non-conventional drug design

    NASA Astrophysics Data System (ADS)

    Broglia, R. A.

    2006-05-01

    Some of the paradigms emerging from the study of the phenomena of phase transitions in finite many-body systems, like e.g. the atomic nuclues, can be used at profit to solve the protein folding problem (how does a linear sequence of amino acids, immersed in the solvent, code for a unique, biological active, three dimensional native structure of the protein?), within the framework of simple (although not oversimplified) models. Also to design non-conventional drugs which do not create resistance (do not induce mutations in the virus or bacteria expressing the protein). The application of these concepts to the design of inhibitors of the HIV-1-PR, an enzyme which plays a central role in the life cycle of the HIV virus will be illustrated in terms of all-atom simulations and in vitro experimental results.

  13. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    PubMed

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future.

  14. Opportunities for utilization of non-conventional energy sources for biomass pretreatment.

    PubMed

    Singh, Rawel; Krishna, Bhavya B; Kumar, Jitendra; Bhaskar, Thallada

    2016-01-01

    The increasing concerns over the depletion of fossil resources and its associated geo-political issues have driven the entire world to move toward sustainable forms of energy. Pretreatment is the first step in any biochemical conversion process for the production of valuable fuels/chemicals from lignocellulosic biomass to eliminate the lignin and produce fermentable sugars by hydrolysis. Conventional techniques have several limitations which can be addressed by using them in tandem with non-conventional methods for biomass pretreatment. Electron beam and γ (gamma)-irradiation, microwave and ultrasound energies have certain advantages over conventional source of energy and there is an opportunity that these energies can be exploited for biomass pretreatment.

  15. Morphology and mechanical properties relationships in non-conventional melt manipulation injection moulding techniques

    NASA Astrophysics Data System (ADS)

    Kouyumdzhiev, Anton D.; Viana, Júlio C.

    2007-04-01

    Shear Controlled Orientation in Injection Moulding and Push-Pull Injection Moulding with abbreviations respectively SCORIM and PPIM, are two non-conventional injection moulding techniques based on the concept of in-mould shear manipulation of the melt during the solidification phase. In this work a diversity of microstructures were developed by SCORIM and PPIM by systematic variations of the processing conditions (total of 16 moulding conditions). The microstructures were observed by polarized light microscopy, being assessed the multi-laminated skin-to-core ratio. The level of molecular orientation of the skin and the relative degree of crystallinity of the core were evaluated by Wide-Angle X-ray scattering. The mechanical behaviour was assessed by flexural, tensile and fracture tests. The relationships between the morphology and the mechanical properties of the mouldings were established, regardless the processing technique, combining the results of both SCORIM and PPIM.

  16. Non-Conventional Applications of Computerized Tomography: Analysis of Solid Dosage Forms Produced by Pharmaceutical Industry

    SciTech Connect

    Martins de Oliveira, Jose Jr.; Germano Martins, Antonio Cesar

    2010-05-21

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 mum was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.

  17. Ultrastructure of the olfactory epithelium in a flatfish, barfin flounder (Verasper moseri).

    PubMed

    Nakamuta, Shoko; Nakamuta, Nobuaki; Taniguchi, Kazuyuki

    2010-06-01

    In this study, we examined the olfactory epithelium (OE) of the barfin flounder by transmission electron microscopy. As in the case of the ordinary teleost, the OE of the barfin flounder had 3 types of olfactory receptor cells (ciliated olfactory receptor cell, microvillous olfactory receptor cell and crypt cell), 3 types of supporting cells (ciliated, microvillous and crypt supporting cells) and basal cells. Each type of OE cells in the barfin flounder had similar ultrastructure to that of the ordinary teleost. Crypt cell is the third type of olfactory receptor cell unique to fish, whose function is unclear. The barfin flounder may be a suitable material to study crypt cells because it has relatively abundant crypt cells in the OE.

  18. Endocannabinoid modulation in the olfactory epithelium.

    PubMed

    Breunig, Esther; Czesnik, Dirk; Piscitelli, Fabiana; Di Marzo, Vincenzo; Manzini, Ivan; Schild, Detlev

    2010-01-01

    Appetite, food intake, and energy balance are closely linked to the endocannabinoid system in the central nervous system. Now, endocannabinoid modulation has been discovered in the peripheral olfactory system of larval Xenopus laevis. The endocannabinoid 2-AG has been shown to influence odorant-detection thresholds according to the hunger state of the animal. Hungry animals have increased 2-AG levels due to enhanced synthesis of 2-AG in sustentacular supporting cells. This renders olfactory receptor neurons, exhibiting CB1 receptors, more sensitive at detecting lower odorant concentrations, which probably helps the animal to locate food. Since taste and vision are also influenced by endocannabinoids, this kind of modulation might boost sensory inputs of food in hungry animals.

  19. Anatomy and forebrain projections of the olfactory and vomeronasal organs in axolotls (Ambystoma mexicanum).

    PubMed

    Eisthen, H L; Sengelaub, D R; Schroeder, D M; Alberts, J R

    1994-01-01

    We examined the anatomy of the nasal cavity and forebrain in the axolotl (Ambystoma mexicanum) to determine whether the olfactory and vomeronasal systems are present in this neotenic aquatic salamander. The current study was motivated by two considerations: (a) little is known of the anatomy of the vomeronasal system in aquatic vertebrates, and (b) the presence of both olfactory and vomeronasal systems in larval amphibians has broad implications for the evaluation of these systems in vertebrates. From cresyl-violet-stained sections of snouts we determined that the nasal cavity of axolotls is much like that of terrestrial salamanders. The main chamber of the nasal cavity contains an olfactory epithelium, which is confined to grooves between longitudinal ridges of connective tissue covered in a nonsensory epithelium which lacks goblet cells. Using transmission electron microscopy, we found morphologically distinct olfactory receptor cells: many receptor cells terminate in microvillar dendrites, and fewer terminate in motile cilia with the 9 + 2 microtubule array typical of vertebrate olfactory receptor cells. The ciliated and microvillar cells occur in clusters with little intermingling. Horseradish peroxidase labeling revealed that axons of the olfactory receptor cells terminate in large glomeruli in the main olfactory bulb at the rostral end of the telencephalon. Lateral to the main chamber of the nasal cavity is a diverticulum that is entirely lined with a vomeronasal epithelium containing basal cells, microvillar receptor cells, sustentacular cells that lack specialized processes on the apical surface, and large ciliated cells that may function to move fluid across the vomeronasal epithelium. Unlike the olfactory epithelium, the vomeronasal epithelium lacks Bowman's glands. Using horseradish peroxidase, we determined that the axons of the vomeronasal receptor cells project to the accessory olfactory bulb, a distinct structure dorsal and caudal to the main

  20. Application of anhydrobiosis and dehydration of yeasts for non-conventional biotechnological goals.

    PubMed

    Rapoport, Alexander; Turchetti, Benedetta; Buzzini, Pietro

    2016-06-01

    Dehydration of yeast cells causes them to enter a state of anhydrobiosis in which their metabolism is temporarily and reversibly suspended. This unique state among organisms is currently used in the production of active dry yeasts, mainly used in baking and winemaking. In recent decades non-conventional applications of yeast dehydration have been proposed for various modern biotechnologies. This mini-review briefly summarises current information on the application of dry yeasts in traditional and innovative fields. It has been shown that dry yeast preparations can be used for the efficient protection, purification and bioremediation of the environment from heavy metals. The high sorption activity of dehydrated yeasts can be used as an interesting tool in winemaking due to their effects on quality and taste. Dry yeasts are also used in agricultural animal feed. Another interesting application of yeast dehydration is as an additional stage in new methods for the stable immobilisation of microorganisms, especially in cases when biotechnologically important strains have no affinity with the carrier. Such immobilisation methods also provide a new approach for the successful conservation of yeast strains that are very sensitive to dehydration. In addition, the application of dehydration procedures opens up new possibilities for the use of yeast as a model system. Separate sections of this review also discuss possible uses of dry yeasts in biocontrol, bioprotection and biotransformations, in analytical methods as well as in some other areas.

  1. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    NASA Astrophysics Data System (ADS)

    Clerici, A.; Alimonti, G.

    2015-08-01

    In recent years there has been a world "revolution" in the field of unconventional hydrocarbon reserves, which goes by the name of "shale gas", gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also "oil shales" (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil), extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  2. Scaling-up of complex whole-cell bioconversions in conventional and non-conventional media.

    PubMed

    Marques, Marco P C; de Carvalho, Carla C C R; Cabral, Joaquim M S; Fernandes, Pedro

    2010-07-01

    The use of whole cells is becoming a more common approach in pharmaceutical and agrochemical industries in order to obtain pure compounds with fewer production steps, higher yields, and cleaner processes, as compared to those achieved with traditional strategies. Whole cells are often used as enzymes pools, in particular when multi-step reactions and/or co-factor regeneration are envisaged. Nonetheless, published information on the scale-up of such systems both in aqueous and in two-phase aqueous-organic systems is relatively scarce. The present work aims to evaluate suitable scale-up criteria in conventional and non-conventional medium for a whole-cell bioconversion that uses resting cells of Mycobacterium sp. NRRL B-3805 to cleave the side chain of beta-sitosterol, a poorly water-soluble substrate. The experiments were performed in 24-well microtiter plates and in 250 mL shaken flasks as orbital stirred systems, and in 300 mL stirred tanks as mechanically stirred systems. Results show that productivity yields were similar in all scales tested, when maintaining oxygen mass transfer coefficients constant in aqueous systems, or when maintaining constant volumetric power consumption in aqueous-organic two-phase systems.

  3. Effects of Yttrium-90 selective internal radiation therapy on non-conventional liver tumors.

    PubMed

    Kuei, Andrew; Saab, Sammy; Cho, Sung-Ki; Kee, Stephen T; Lee, Edward Wolfgang

    2015-07-21

    The liver is a common site of metastasis, with essentially all metastatic malignancies having been known to spread to the liver. Nearly half of all patients with extrahepatic primary cancer have hepatic metastases. The severe prognostic implications of hepatic metastases have made surgical resection an important first line treatment in management. However, limitations such as the presence of extrahepatic spread or poor functional hepatic reserve exclude the majority of patients as surgical candidates, leaving chemotherapy and locoregional therapies as next best options. Selective internal radiation therapy (SIRT) is a form of catheter-based locoregional cancer treatment modality for unresectable tumors, involving trans-arterial injection of microspheres embedded with a radio-isotope Yttrium-90. The therapeutic radiation dose is selectively delivered as the microspheres permanently embed themselves within the tumor vascular bed. Use of SIRT has been conventionally aimed at treating primary hepatic tumors (hepatocellular carcinoma) or colorectal and neuroendocrine metastases. Numerous reviews are available for these tumor types. However, little is known or reviewed on non-colorectal or non-neuroendocrine primaries. Therefore, the aim of this paper is to systematically review the current literature to evaluate the effects of Yttrium-90 radioembolization on non-conventional liver tumors including those secondary to breast cancer, cholangiocarcinoma, ocular and percutaneous melanoma, pancreatic cancer, renal cell carcinoma, and lung cancer.

  4. Encoding olfactory signals via multiple chemosensory systems.

    PubMed

    Ma, Minghong

    2007-01-01

    Most animals have evolved multiple olfactory systems to detect general odors as well as social cues. The sophistication and interaction of these systems permit precise detection of food, danger, and mates, all crucial elements for survival. In most mammals, the nose contains two well described chemosensory apparatuses (the main olfactory epithelium and the vomeronasal organ), each of which comprises several subtypes of sensory neurons expressing distinct receptors and signal transduction machineries. In many species (e.g., rodents), the nasal cavity also includes two spatially segregated clusters of neurons forming the septal organ of Masera and the Grueneberg ganglion. Results of recent studies suggest that these chemosensory systems perceive diverse but overlapping olfactory cues and that some neurons may even detect the pressure changes carried by the airflow. This review provides an update on how chemosensory neurons transduce chemical (and possibly mechanical) stimuli into electrical signals, and what information each system brings into the brain. Future investigation will focus on the specific ligands that each system detects with a behavioral context and the processing networks that each system involves in the brain. Such studies will lead to a better understanding of how the multiple olfactory systems, acting in concert, offer a complete representation of the chemical world.

  5. Acetylcholine and Olfactory Perceptual Learning

    ERIC Educational Resources Information Center

    Wilson, Donald A.; Fletcher, Max L.; Sullivan, Regina M.

    2004-01-01

    Olfactory perceptual learning is a relatively long-term, learned increase in perceptual acuity, and has been described in both humans and animals. Data from recent electrophysiological studies have indicated that olfactory perceptual learning may be correlated with changes in odorant receptive fields of neurons in the olfactory bulb and piriform…

  6. Elements of olfactory reception in adult Drosophila melanogaster.

    PubMed

    Martin, Fernando; Boto, Tamara; Gomez-Diaz, Carolina; Alcorta, Esther

    2013-09-01

    The olfactory system of Drosophila has become an attractive and simple model to investigate olfaction because it follows the same organizational principles of vertebrates, and the results can be directly applied to other insects with economic and sanitary relevance. Here, we review the structural elements of the Drosophila olfactory reception organs at the level of the cells and molecules involved. This article is intended to reflect the structural basis underlying the functional variability of the detection of an olfactory universe composed of thousands of odors. At the genetic level, we further detail the genes and transcription factors (TF) that determine the structural variability. The fly's olfactory receptor organs are the third antennal segments and the maxillary palps, which are covered with sensory hairs called sensilla. These sensilla house the odorant receptor neurons (ORNs) that express one or few odorant receptors in a stereotyped pattern regulated by combinations of TF. Also, perireceptor events, such as odor molecules transport to their receptors, are carried out by odorant binding proteins. In addition, the rapid odorant inactivation to preclude saturation of the system occurs by biotransformation and detoxification enzymes. These additional events take place in the lymph that surrounds the ORNs. We include some data on ionotropic and metabotropic olfactory transduction, although this issue is still under debate in Drosophila.

  7. Localization of α1-2 Fucose Glycan in the Mouse Olfactory Pathway.

    PubMed

    Kondoh, Daisuke; Kamikawa, Akihiro; Sasaki, Motoki; Kitamura, Nobuo

    2017-01-01

    Glycoconjugates in the olfactory system play critical roles in neuronal formation, and α1-2 fucose (α1-2Fuc) glycan mediates neurite outgrowth and synaptic plasticity. Histochemical findings of α1-2Fuc glycan in the mouse olfactory system detected using Ulex europaeus agglutinin-I (UEA-I) vary. This study histochemically assessed the main olfactory and vomeronasal pathways in male and female ICR and C57BL/6J mice aged 3-4 months using UEA-I. Ulex europaeus agglutinin-I reacted with most receptor cells arranged mainly at the basal region of the olfactory epithelium. The olfactory nerve layer and glomerular layer of the main olfactory bulb were speckled with positive UEA-I staining, and positive fibers were scattered from the glomerular to the internal plexiform layer. The lateral olfactory tract and rostral migratory stream were also positive for UEA-I. We identified superficial short-axon cells, interneurons of the external plexiform layer, external, middle and internal tufted cells, mitral cells and granule cells as the origins of the UEA-I-positive fibers in the main olfactory bulb. The anterior olfactory nucleus, anterior piriform cortex and olfactory tubercle were negative for UEA-I. Most receptor cells in the vomeronasal epithelium and most glomeruli of the accessory olfactory bulb were positive for UEA-I. Our findings indicated that α1-2Fuc glycan is located within the primary and secondary, but not the ternary, pathways of the main olfactory system, in local circuits of the main olfactory bulb and within the primary, but not secondary, pathway of the vomeronasal system.

  8. Effects of N-methyl-D-aspartate glutamate receptor antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice: characterization by optical, field potential and patch clamp recordings.

    PubMed

    Sugai, T; Onoda, N

    2005-01-01

    To characterize the role of N-methyl-d-aspartate glutamate receptors in oscillations induced by a single electrical stimulation of the vomeronasal nerve layer, optical, field potential and patch clamp recordings were carried out in guinea-pig accessory olfactory bulb slice preparations. Bath application of the N-methyl-D-aspartate receptor antagonists, 2-amino-5-phosphonovaleric acid or MK-801, produced an increase in frequency of oscillating waves (oscillation) in external plexiform and mitral cell layers. The removal of Mg2+ from perfusate abolished oscillations, while subsequent application of 2-amino-5-phosphonovaleric acid or MK-801 restored oscillations. Vomeronasal nerve layer-evoked postsynaptic currents were analyzed by whole-cell clamp recordings from mitral and granule cells. A long-lasting excitatory postsynaptic current and periodic inhibitory postsynaptic currents, which were superimposed on the long excitatory postsynaptic current, were observed in mitral cells. The frequency of the periodic inhibitory postsynaptic currents correlated with the frequency of oscillations observed in the optical and field potential recordings. Furthermore, periodic inhibitory postsynaptic currents were blocked by puff application of bicuculline to the external plexiform layer/mitral cell layer, where mitral cells make dendrodendritic synapses with granule cells. In addition, puff application of the non-N-methyl-D-aspartate antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, to the external plexiform layer/mitral cell layer suppressed an early phase of periodic inhibitory postsynaptic currents (membrane oscillation), whereas 2-amino-5-phosphonovaleric acid suppressed the late phase of periodic inhibitory postsynaptic currents. These data indicate that periodic excitatory postsynaptic currents of granule cells induce relevantly periodic inhibitory postsynaptic currents in mitral cells via dendrodendritic synapses and suggest that feedback inhibition regulates generation of

  9. Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee.

    PubMed

    Farooqui, Tahira; Robinson, Kellie; Vaessin, Harald; Smith, Brian H

    2003-06-15

    Processing of olfactory information in the antennal lobes of insects and olfactory bulbs of vertebrates is modulated by centrifugal inputs that represent reinforcing events. Octopamine release by one such pathway in the honeybee antennal lobe modulates olfactory processing in relation to nectar (sucrose) reinforcement. To test more specifically what role octopamine plays in the antennal lobe, we used two treatments to disrupt an octopamine receptor from Apis mellifera brain (AmOAR) function: (1) an OAR antagonist, mianserin, was used to block receptor function, and (2) AmOAR double-stranded RNA was used to silence receptor expression. Both treatments inhibited olfactory acquisition and recall, but they did not disrupt odor discrimination. These results suggest that octopamine mediates consolidation of a component of olfactory memory at this early processing stage in the antennal lobe. Furthermore, after consolidation, octopamine release becomes essential for recall, which suggests that the modulatory circuits become incorporated as essential components of neural representations that activate odor memory.

  10. Non-conventional Yeast Species for Lowering Ethanol Content of Wines

    PubMed Central

    Ciani, Maurizio; Morales, Pilar; Comitini, Francesca; Tronchoni, Jordi; Canonico, Laura; Curiel, José A.; Oro, Lucia; Rodrigues, Alda J.; Gonzalez, Ramon

    2016-01-01

    Rising sugar content in grape must, and the concomitant increase in alcohol levels in wine, are some of the main challenges affecting the winemaking industry nowadays. Among the several alternative solutions currently under study, the use of non-conventional yeasts during fermentation holds good promise for contributing to relieve this problem. Non-Saccharomyces wine yeast species comprise a high number or species, so encompassing a wider physiological diversity than Saccharomyces cerevisiae. Indeed, the current oenological interest of these microorganisms was initially triggered by their potential positive contribution to the sensorial complexity of quality wines, through the production of aroma and other sensory-active compounds. This diversity also involves ethanol yield on sugar, one of the most invariant metabolic traits of S. cerevisiae. This review gathers recent research on non-Saccharomyces yeasts, aiming to produce wines with lower alcohol content than those from pure Saccharomyces starters. Critical aspects discussed include the selection of suitable yeast strains (considering there is a noticeable intra-species diversity for ethanol yield, as shown for other fermentation traits), identification of key environmental parameters influencing ethanol yields (including the use of controlled oxygenation conditions), and managing mixed fermentations, by either the sequential or simultaneous inoculation of S. cerevisiae and non-Saccharomyces starter cultures. The feasibility, at the industrial level, of using non-Saccharomyces yeasts for reducing alcohol levels in wine will require an improved understanding of the metabolism of these alternative yeast species, as well as of the interactions between different yeast starters during the fermentation of grape must. PMID:27199967

  11. Direct transport of inhaled xylene and its metabolites from the olfactory mucosa to the glomeruli of the olfactory bulbs

    SciTech Connect

    Lewis, J.L.; Dahl, A.R.; Kracko, D.A.

    1994-11-01

    The olfactory epithelium is a unique tissue in that single receptor neurons have dendrites in contact with the external environment at the nasal airway, and axon terminals that penetrate the cribriform plate and synapse in the olfactory bulb. The Central Nervous System (CNS) is protected from systematically circulating toxicants by a blood-brain barrier primarily composed of tight junctions between endothelial cells in cerebral vessels and a high metabolic capacity within these cells. No such barrier has yet been defined to protect the CNS from inhaled toxicants. Because all inhalants do not seem to access the CNS directly, a nose-brain barrier seems plausible. The purpose of the work described here is to determine whether or not a nose-brain barrier exists and to define its components. Although such a barrier is likely to be multi-faceted, the present work focuses only on the importance of gross histologic and metabolic characteristics of the olfactory epithelium in olfactory transport.

  12. Olfactory perception, cognition, and dysfunction in humans.

    PubMed

    Stevenson, Richard J

    2013-05-01

    The main functions of olfaction relate to finding food, avoiding predators and disease, and social communication. Its role in detecting food has resulted in a unique dual mode sensory system. Environmental odorants are 'smelled' via the external nostrils, while volatile chemicals in food-detected by the same receptors-arrive via the nasopharynx, contributing to flavor. This arrangement allows the brain to link the consequences of eating with a food's odor, and then later to use this information in the search for food. Recognizing an odorant-a food, mate, or predator-requires the detection of complex chemical blends against a noisy chemical background. The brain solves this problem in two ways. First, by rapid adaptation to background odorants so that new odorants stand out. Second, by pattern matching the neural representation of an odorant to prior olfactory experiences. This account is consistent with olfactory sensory physiology, anatomy, and psychology. Odor perception, and its products, may be subject to further processing-olfactory cognition. While olfactory cognition has features in common with visual or auditory cognition, several aspects are unique, and even those that are common may be instantiated in different ways. These differences can be productively used to evaluate the generality of models of cognition and consciousness. Finally, the olfactory system can breakdown, and this may be predictive of the onset of neurodegenerative conditions such as Alzheimer's, as well as having prognostic value in other disorders such as schizophrenia. WIREs Cogn Sci 2013, 4:273-284. doi: 10.1002/wcs.1224 For further resources related to this article, please visit the WIREs website.

  13. Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis.

    PubMed

    Frontera, Jimena Laura; Cervino, Ailen Soledad; Jungblut, Lucas David; Paz, Dante Agustín

    2015-03-01

    Olfactory epithelium has the capability to continuously regenerate olfactory receptor neurons throughout life. Adult neurogenesis results from proliferation and differentiation of neural stem cells, and consequently, olfactory neuroepithelium offers an excellent opportunity to study neural regeneration and the factors involved in the maintenance and regeneration of all their cell types. We analyzed the expression of BDNF in the olfactory system under normal physiological conditions as well as during a massive regeneration induced by chemical destruction of the olfactory epithelium in Xenopus laevis larvae. We described the expression and presence of BDNF in the olfactory epithelium and bulb. In normal physiological conditions, sustentacular (glial) cells and a few scattered basal (stem) cells express BDNF in the olfactory epithelium as well as the granular cells in the olfactory bulb. Moreover, during massive regeneration, we demonstrated a drastic increase in basal cells expressing BDNF as well as an increase in BDNF in the olfactory bulb and nerve. Together these results suggest an important role of BDNF in the maintenance and regeneration of the olfactory system.

  14. The Seductive Power of an Innovation: Enrolling Non-Conventional Actors in a Drip Irrigation Community in Morocco

    ERIC Educational Resources Information Center

    Benouniche, Maya; Errahj, Mostafa; Kuper, Marcel

    2016-01-01

    Purpose: The aim of this study was to analyze the motivations of non-conventional innovation actors to engage in innovation processes, how their involvement changed the technology and their own social-professional status, and to analyze their role in the diffusion of the innovation. Design/methodology/approach: We studied the innovation process of…

  15. OLFACTORY FUNCTIONS AT THE INTERSECTION BETWEEN ENVIRONMENTAL EXPOSURE TO MANGANESE AND PARKINSONISM

    PubMed Central

    Zoni, Silvia; Bonetti, Giulia; Lucchini, Roberto

    2012-01-01

    The olfactory function can be affected by occupational and environmental exposure to various neurotoxicants that can be transported through the olfactory pathway. Olfactory impairment is a highly recurrent non-motor dysfunction in Parkinson’s disease and is considered an early predictive sign of neurodegeneration. Changes in olfactory perception may be caused by a dopaminergic dysregulation, possibly related to changes at the level of dopamine receptors. Manganese is an essential element that can become neurotoxic in various conditions inducing an overload in the organism. Being actively transported through the olfactory tract, manganese can cause impairment of olfactory function and motor coordination in different age groups like children and elderly. Odor and motor changes are interrelated and may be caused by a Mn-induced dopaminergic dysregulation affecting both functions. Given these findings, further research is imperative on the possible role of manganese exposure as a pathogenetic factor for Parkinsonism. PMID:22664337

  16. Olfactory and solitary chemosensory cells: two different chemosensory systems in the nasal cavity of the American alligator, Alligator mississippiensis

    PubMed Central

    Hansen, Anne

    2007-01-01

    Background The nasal cavity of all vertebrates houses multiple chemosensors, either innervated by the Ist (olfactory) or the Vth (trigeminal) cranial nerve. Various types of receptor cells are present, either segregated in different compartments (e.g. in rodents) or mingled in one epithelium (e.g. fish). In addition, solitary chemosensory cells have been reported for several species. Alligators which seek their prey both above and under water have only one nasal compartment. Information about their olfactory epithelium is limited. Since alligators seem to detect both volatile and water-soluble odour cues, I tested whether different sensory cell types are present in the olfactory epithelium. Results Electron microscopy and immunocytochemistry were used to examine the sensory epithelium of the nasal cavity of the American alligator. Almost the entire nasal cavity is lined with olfactory (sensory) epithelium. Two types of olfactory sensory neurons are present. Both types bear cilia as well as microvilli at their apical endings and express the typical markers for olfactory neurons. The density of these olfactory neurons varies along the nasal cavity. In addition, solitary chemosensory cells innervated by trigeminal nerve fibres, are intermingled with olfactory sensory neurons. Solitary chemosensory cells express components of the PLC-transduction cascade found in solitary chemosensory cells in rodents. Conclusion The nasal cavity of the American alligator contains two different chemosensory systems incorporated in the same sensory epithelium: the olfactory system proper and solitary chemosensory cells. The olfactory system contains two morphological distinct types of ciliated olfactory receptor neurons. PMID:17683564

  17. Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice.

    PubMed

    Moriguchi, Shigeki; Yamamoto, Yui; Ikuno, Tatsuya; Fukunaga, Kohji

    2011-06-01

    Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK.

  18. Divisive normalization in olfactory population codes

    PubMed Central

    Olsen, Shawn R; Bhandawat, Vikas; Wilson, Rachel Irene

    2010-01-01

    In many regions of the visual system, the activity of a neuron is normalized by the activity of other neurons in the same region. Here we show that a similar normalization occurs during olfactory processing in the Drosophila antennal lobe. We exploit the orderly anatomy of this circuit to independently manipulate feedforward and lateral input to second-order projection neurons (PNs). Lateral inhibition increases the level of feedforward input needed to drive PNs to saturation, and this normalization scales with the total activity of the olfactory receptor neuron (ORN) population. Increasing total ORN activity also makes PN responses more transient. Strikingly, a model with just two variables (feedforward and total ORN activity) accurately predicts PN odor responses. Finally, we show that discrimination by a linear decoder is facilitated by two complementary transformations: the saturating transformation intrinsic to each processing channel boosts weak signals, while normalization helps equalize responses to different stimuli. PMID:20435004

  19. Effects of odor stimulation on antidromic spikes in olfactory sensory neurons.

    PubMed

    Scott, John W; Sherrill, Lisa

    2008-12-01

    Spikes were evoked in rat olfactory sensory neuron (OSN) populations by electrical stimulation of the olfactory bulb nerve layer in pentobarbital anesthetized rats. The latencies and recording positions for these compound spikes showed that they originated in olfactory epithelium. Dual simultaneous recordings indicated conduction velocities in the C-fiber range, around 0.5 m/s. These spikes are concluded to arise from antidromically activated olfactory sensory neurons. Electrical stimulation at 5 Hz was used to track changes in the size and latency of the antidromic compound population spike during the odor response. Strong odorant stimuli suppressed the spike size and prolonged its latency. The latency was prolonged throughout long odor stimuli, indicating continued activation of olfactory receptor neuron axons. The amounts of spike suppression and latency change were strongly correlated with the electroolfactogram (EOG) peak size evoked at the same site across odorants and across stimulus intensities. We conclude that the curve of antidromic spike suppression gives a reasonable representation of spiking activity in olfactory sensory neurons driven by odorants and that the correlation of peak spike suppression with the peak EOG shows the accuracy of the EOG as an estimate of intracellular potential in the population of olfactory sensory neurons. In addition, these results have important implications about traffic in olfactory nerve bundles. We did not observe multiple peaks corresponding to stimulated and unstimulated receptor neurons. This suggests synchronization of spikes in olfactory nerve, perhaps by ephaptic interactions. The long-lasting effect on spike latency shows that action potentials continue in the nerve throughout the duration of an odor stimulus in spite of many reports of depolarization block in olfactory receptor neuron cell bodies. Finally, strong odor stimulation caused almost complete block of antidromic spikes. This indicates that a very

  20. Glomerular interactions in olfactory processing channels of the antennal lobes

    PubMed Central

    Heinbockel, Thomas; Shields, Vonnie D. C.; Reisenman, Carolina E.

    2014-01-01

    An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination. PMID:23893248

  1. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities

    PubMed Central

    Grimaud, Julien

    2016-01-01

    For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. PMID:27194792

  2. Assessment of neuronal maturation and acquisition of functional competence in the developing zebrafish olfactory system.

    PubMed

    Sakata, Yoko; Olson, Jared K; Michel, William C

    2003-01-01

    Olfactory coding at the level of the olfactory bulb is thought to depend upon an ensemble response of mitral cells receiving input from chemotopically-organized projections of olfactory sensory neurons and regulated by lateral inhibitory circuits. Immunocytochemical methods are described to metabolically classify neurons in the developing zebrafish olfactory system based on the relative concentrations of taurine, glutamate, GABA (and potentially other small biogenic amines) and a small guanidium-based cation, agmatine, which labels NMDA-sensitive cells by permeating through active ionotropic glutamate receptor channels. Using metabolic profiling in conjunction with activity dependent labeling we demonstrate that neuronal differentiation in the developing olfactory bulb, as assessed by acquisition of a mature neurochemical profile, and sensitivity to an ionotropic glutamate receptor agonist, NMDA, occurs during the second day of development. This experimental approach is likely to be useful in studies concerned with the development of glutamatergic signaling pathways.

  3. Olfactory toxicity in fishes.

    PubMed

    Tierney, Keith B; Baldwin, David H; Hara, Toshiaki J; Ross, Peter S; Scholz, Nathaniel L; Kennedy, Christopher J

    2010-01-21

    Olfaction conveys critical environmental information to fishes, enabling activities such as mating, locating food, discriminating kin, avoiding predators and homing. All of these behaviors can be impaired or lost as a result of exposure to toxic contaminants in surface waters. Historically, teleost olfaction studies have focused on behavioral responses to anthropogenic contaminants (e.g., avoidance). More recently, there has been a shift towards understanding the underlying mechanisms and functional significance of contaminant-mediated changes in fish olfaction. This includes a consideration of how contaminants affect the olfactory nervous system and, by extension, the downstream physiological and behavioral processes that together comprise a normal response to naturally occurring stimuli (e.g., reproductive priming or releasing pheromones). Numerous studies spanning several species have shown that ecologically relevant exposures to common pollutants such as metals and pesticides can interfere with fish olfaction and disrupt life history processes that determine individual survival and reproductive success. This represents one of the pathways by which toxic chemicals in aquatic habitats may increasingly contribute to the decline and at-risk status of many commercially and ecologically important fish stocks. Despite our emerging understanding of the threats that pollution poses for chemical communication in aquatic communities, many research challenges remain. These include: (1) the determination of specific mechanisms of toxicity in the fish olfactory sensory epithelium; (2) an understanding of the impacts of complex chemical mixtures; (3) the capacity to assess olfactory toxicity in fish in situ; (4) the impacts of toxins on olfactory-mediated behaviors that are still poorly understood for many fish species; and (5) the connections between sublethal effects on individual fish and the long-term viability of wild populations. This review summarizes and integrates

  4. Recent Trend in Development of Olfactory Displays

    NASA Astrophysics Data System (ADS)

    Yanagida, Yasuyuki

    An olfactory display is a device that generates scented air with desired concentration of aroma, and delivers it to the user's olfactory organ. In this article, the nature of olfaction is briefly described from the view point of how to configure olfactory displays. Next, component technologies to compose olfactory displays, i.e., making scents and delivering scents, are categorized. Several existing olfactory display systems are introduced to show the current status of research and development of olfactory displays.

  5. Recovery of olfactory function after bilateral bulbectomy.

    PubMed

    Wright, J W; Harding, J W

    1982-04-16

    Mice were trained to discriminate between scented and unscented air. After olfactory bulbs were removed, discrimination was lost, but returned with the formation of synaptic connections between regenerated primary olfactory neurons and the cortex of the forebrain. The acquisition of a second olfactory-mediated task by long-term bulbectomized mice and controls was indistinguishable. The results emphasize the plasticity of the nervous system, correlate the presence of neural connections between olfactory mucosa and forebrain with the recovery of olfactory function, suggest that olfactory-mediated memory resides at least in part outside the olfactory bulbs, and demonstrate that the bulbs are not required for the acquisition of olfactory tasks.

  6. Differential Muscarinic Modulation in the Olfactory Bulb

    PubMed Central

    Smith, Richard S.; Hu, Ruilong; DeSouza, Andre; Eberly, Christian L.; Krahe, Krista; Chan, Wilson

    2015-01-01

    Neuromodulation of olfactory circuits by acetylcholine (ACh) plays an important role in odor discrimination and learning. Early processing of chemosensory signals occurs in two functionally and anatomically distinct regions, the main and accessory olfactory bulbs (MOB and AOB), which receive extensive cholinergic input from the basal forebrain. Here, we explore the regulation of AOB and MOB circuits by ACh, and how cholinergic modulation influences olfactory-mediated behaviors in mice. Surprisingly, despite the presence of a conserved circuit, activation of muscarinic ACh receptors revealed marked differences in cholinergic modulation of output neurons: excitation in the AOB and inhibition in the MOB. Granule cells (GCs), the most abundant intrinsic neuron in the OB, also exhibited a complex muscarinic response. While GCs in the AOB were excited, MOB GCs exhibited a dual muscarinic action in the form of a hyperpolarization and an increase in excitability uncovered by cell depolarization. Furthermore, ACh influenced the input–output relationship of mitral cells in the AOB and MOB differently showing a net effect on gain in mitral cells of the MOB, but not in the AOB. Interestingly, despite the striking differences in neuromodulatory actions on output neurons, chemogenetic inhibition of cholinergic neurons produced similar perturbations in olfactory behaviors mediated by these two regions. Decreasing ACh in the OB disrupted the natural discrimination of molecularly related odors and the natural investigation of odors associated with social behaviors. Thus, the distinct neuromodulation by ACh in these circuits could underlie different solutions to the processing of general odors and semiochemicals, and the diverse olfactory behaviors they trigger. SIGNIFICANCE STATEMENT State-dependent cholinergic modulation of brain circuits is critical for several high-level cognitive functions, including attention and memory. Here, we provide new evidence that cholinergic

  7. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis

    PubMed Central

    Wang, Yinliang; Chen, Qi; Zhao, Hanbo; Ren, Bingzhong

    2016-01-01

    The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7

  8. Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group

    PubMed Central

    Lavagnino, Nicolás; Serra, François; Arbiza, Leonardo; Dopazo, Hernán; Hasson, Esteban

    2012-01-01

    Previous comparative genomic studies of genes involved in olfactory behavior in Drosophila focused only on particular gene families such as odorant receptor and/or odorant binding proteins. However, olfactory behavior has a complex genetic architecture that is orchestrated by many interacting genes. In this paper, we present a comparative genomic study of olfactory behavior in Drosophila including an extended set of genes known to affect olfactory behavior. We took advantage of the recent burst of whole genome sequences and the development of powerful statistical tools to analyze genomic data and test evolutionary and functional hypotheses of olfactory genes in the six species of the Drosophila melanogaster species group for which whole genome sequences are available. Our study reveals widespread purifying selection and limited incidence of positive selection on olfactory genes. We show that the pace of evolution of olfactory genes is mostly independent of the life cycle stage, and of the number of life cycle stages, in which they participate in olfaction. However, we detected a relationship between evolutionary rates and the position that the gene products occupy in the olfactory system, genes occupying central positions tend to be more constrained than peripheral genes. Finally, we demonstrate that specialization to one host does not seem to be associated with bursts of adaptive evolution in olfactory genes in D. sechellia and D. erecta, the two specialists species analyzed, but rather different lineages have idiosyncratic evolutionary histories in which both historical and ecological factors have been involved. PMID:22346339

  9. Effects of cadmium on olfactory mediated behaviors and molecular biomarkers in coho salmon (Oncorhynchus kisutch)

    PubMed Central

    Williams, Chase R.; Gallagher, Evan P.

    2013-01-01

    The olfactory system of salmonids is sensitive to the adverse effects of metals such as copper and cadmium. In the current study, we analyzed olfactory-mediated alarm responses, epithelial injury and recovery, and a suite of olfactory molecular biomarkers encoding genes critical in maintaining olfactory function in juvenile coho salmon receiving acute exposures to cadmium (Cd). The molecular biomarkers analyzed included four G-protein coupled receptors (GPCRs) representing the two major classes of odorant receptors (salmon olfactory receptor sorb and vomeronasal receptors svra, svrb, and gpr27), as well as markers of neurite outgrowth (nrn1) and antioxidant responses to metals, including heme oxygenase 1 (hmox1), and peroxiredoxin 1 (prdx1). Coho received acute (8–168 hr) exposures to 3.7 ppb and 347 ppb Cd, and a subset of fish was analyzed following a 16-day depuration. Coho exposed to 347 ppb Cd over 48 hrs exhibited a reduction in freeze responses, and an extensive loss of olfaction accompanied by histological injury to the olfactory epithelium. The olfactory injury in coho exposed to 347 ppb Cd was accompanied at the gene level by significant decreases in expression of the olfactory GPCRs and increased expression of hmox1. Persistent behavioral deficits, histological injury and altered expression of a subset of olfactory biomarkers were still evident in Cd-exposed coho following a 16-day depuration in clean water. Exposure to 3.7 ppb Cd also resulted in reduced freeze responses and histological changes to the olfactory epithelium within 48 hrs of Cd exposure, although the extent of olfactory injury was less severe than observed for fish in the high dose Cd group. Furthermore adverse behavioral effects were present in some coho receiving the low dose of Cd following a 16-day depuration. In summary, acute exposures to environmental levels of Cd can cause olfactory injury in coho salmon that may persist following depuration. Mechanism-based biomarkers of

  10. Functional Specialization of Olfactory Glomeruli in a Moth

    NASA Astrophysics Data System (ADS)

    Hansson, Bill S.; Ljungberg, Hakan; Hallberg, Eric; Lofstedt, Christer

    1992-05-01

    The specific function of the glomerular structures present in the antennal lobes or olfactory bulbs of organisms ranging from insects to humans has been obscure because of limitations in neuronal marking methods. By tracing individual neurons in the moth Agrotis segetum, it was determined that physiologically distinct types of pheromone receptor neurons project axons to different regions of the macroglomerular complex (MGC). Each glomerulus making up the MGC has a specific functional identity, initially processing information about one specific pheromone component. This indicates that, at least through the first stage of synapses, olfactory information moves through labeled lines.

  11. Olfactory illusions: where are they?

    PubMed

    Stevenson, Richard J

    2011-12-01

    It has been suggested that there maybe no olfactory illusions. This manuscript examines this claim and argues that it arises because olfactory illusions are not typically accompanied by an awareness of their illusory nature. To demonstrate that olfactory illusions do occur, the relevant empirical literature is reviewed, by examining instances of where the same stimulus results in different percepts, and of where different stimuli result in the same percept. The final part of the manuscript evaluates the evidence favoring the existence of olfactory illusions, and then examines why they may not typically be accompanied by awareness. Three contributory mechanisms are discussed, relating to difficulty of verification and paucity of olfactory knowledge, the role of change blindness, and restricted access consciousness in this sense.

  12. An overview of odorant-binding protein functions in insect peripheral olfactory reception.

    PubMed

    Fan, J; Francis, F; Liu, Y; Chen, J L; Cheng, D F

    2011-12-08

    Insect olfactory perception involves many aspects of insect life, and can directly or indirectly evoke either individual or group behaviors. Insect olfactory receptors and odorant-binding proteins (OBPs) are considered to be crucial to insect-specific and -sensitive olfaction. Although the mechanisms of interaction between OBPs or OBP/ligand complex with olfactory receptors are still not well understood, it has been shown that many OBPs contribute to insect olfactory perception at various levels. Some of these are numerous and divergent members in OBP family; expression in the olfactory organ at high concentration; a variety of combinational patterns between different OBPs and ligands, but exclusive affinity for one OBP to specific binding ligands; complicated interactions between OBP/ligand complex and transmembrane proteins (olfactory receptors or sensory neuron membrane proteins). First, we review OBPs' ligand-binding property based on OBP structural research and ligand-binding test; then, we review current progress around the points cited above to show the role of such proteins in insect olfactory signal transmission; finally, we discuss applications based on insect OBP research.

  13. Neural map formation in the mouse olfactory system.

    PubMed

    Takeuchi, Haruki; Sakano, Hitoshi

    2014-08-01

    In the mouse olfactory system, odorants are detected by ~1,000 different odorant receptors (ORs) produced by olfactory sensory neurons (OSNs). Each OSN expresses only one functional OR species, which is referred to as the "one neuron-one receptor" rule. Furthermore, OSN axons bearing the same OR converge to a specific projection site in the olfactory bulb (OB) forming a glomerular structure, i.e., the "one glomerulus-one receptor" rule. Based on these basic rules, binding signals of odorants detected by OSNs are converted to topographic information of activated glomeruli in the OB. During development, the glomerular map is formed by the combination of two genetically programmed processes: one is OR-independent projection along the dorsal-ventral axis, and the other is OR-dependent projection along the anterior-posterior axis. The map is further refined in an activity-dependent manner during the neonatal period. Here, we summarize recent progress of neural map formation in the mouse olfactory system.

  14. [Eosinophilic colitis. A report of two cases with non conventional treatment].

    PubMed

    Rosas Vargas, Miguel A; Moncayo Coello, Vivian; García Cárdenas, Eustorgio; Valencia Mayoral, Pedro; Sienra Monge, Juan José Luis; del Río Navarro, Blanca E

    2004-01-01

    Eosinophilic colitis is a rare entity of unknown etiology characterized by diarrhea, abdominal pain, and gastrointestinal bleeding. Diagnosis includes histopathological infiltration of more than 20 eosinophils in colon. It is frequently associated with milk hypersensitivity and, less usual, with other foods and increased IgE. Histopthological appearance of eosinophil mediators has been observed in the gut. It is sometimes related to the degree of infiltration of eosinophils in the gut as well as to the disease severity. There is not an established treatment for this entity, although systemic steroids have been used with certain efficacy. However, there is a recurrence of the symptoms when the therapy stops, besides the well known side effects of the long-term use of steroids. Cromolyn inhibits mast cell degranulation and prevents liberation of mediators. It is successful in certain cases, specially the severe ones. However, it is not available for its use in our country. Ketotifen, as last resource in our patients with bad response to habitual treatment and restriction diet, was used. Although its use is controversial, we consider that stabilizing mast cell membrane with subsequent inhibition of degranulation and recruitment of eosinophils to sites of inflammation, would also restrain histamine liberation and blockage of H1 receptors, which would diminish local damage induced by eosinophils. Nonetheless ketotifen mechanism of action is unknown, our patients improved after treatment with this drug.

  15. Neuroblast long-term cell cultures from human fetal olfactory epithelium respond to odors.

    PubMed

    Vannelli, G B; Ensoli, F; Zonefrati, R; Kubota, Y; Arcangeli, A; Becchetti, A; Camici, G; Barni, T; Thiele, C J; Balboni, G C

    1995-06-01

    Primary cell cultures from human fetal olfactory neuroepithelium have been isolated, cloned, and propagated in continuous in vitro culture for approximately 1 year. The two clones we report here synthesize both neuronal proteins and olfactory-specific markers as well as the putative olfactory neurotransmitter, carnosine. In addition, patchclamp experiments reveal that these cells are electrically excitable. Following exposure to a panel of aromatic chemicals one of the cell cultures shows a specific increase in intracellular cAMP, indicating that some degree of functional maturity is expressed in vitro. The results suggest that these cells originate from the "stem cell" compartment that gives rise to mature olfactory receptor neurons. These long-term cell cultures represent models that will be useful in studying the mechanism(s) of olfaction and the regulation of olfactory neurogenesis and differentiation.

  16. Ultrastructural characterisation of the olfactory mucosa of the armadillo Dasypus hybridus (Dasypodidae, Xenarthra)

    PubMed Central

    FERRARI, C. C.; CARMANCHAHI, P. D.; ALDANA MARCOS, H. J.; AFFANNI, J. M.

    2000-01-01

    The ultrastructure of the olfactory mucosa of the armadillo Dasypus hybridus was studied. A comparison with the olfactory mucosa of another armadillo (Chaetophractus villosus) was made. The olfactory mucosa of D. hybridus shows many features which are similar to those of other mammals. Interestingly, it differs from the olfactory mucosa of the armadillo C. villosus. A suggestion is made that these differences may be due to differences in the digging habits of these species. In Dasypus, the supporting cells (SCs) showed dense vacuoles, multivesicular bodies and lysosome-like bodies probably related with the endocytotic system. The SCs show a dense network of SER presumably associated with xenobiotic mechanisms. The olfactory receptor neurons exhibit lysosome-like bodies and multivesicular bodies in their perikarya. These organelles suggest the presence of an endocytotic system. Duct cells of Bowman's glands exhibit secretory activities. Bowman's glands are compound-branched tubulo-acinar mixed glands with merocrine secretory mechanisms. PMID:10739023

  17. Environmental Toxicants-Induced Immune Responses in the Olfactory Mucosa

    PubMed Central

    Imamura, Fumiaki; Hasegawa-Ishii, Sanae

    2016-01-01

    Olfactory sensory neurons (OSNs) are the receptor cells for the sense of smell. Although cell bodies are located in the olfactory mucosa (OM) of the nasal cavity, OSN axons directly project to the olfactory bulb (OB) that is a component of the central nervous system (CNS). Because of this direct and short connection from this peripheral tissue to the CNS, the olfactory system has attracted attention as a port-of-entry for environmental toxicants that may cause neurological dysfunction. Selected viruses can enter the OB via the OM and directly affect the CNS. On the other hand, environmental toxicants may induce inflammatory responses in the OM, including infiltration of immune cells and production of inflammatory cytokines. In addition, these inflammatory responses cause the loss of OSNs that are then replaced with newly generated OSNs that re-connect to the OB after inflammation has subsided. It is now known that immune cells and cytokines in the OM play important roles in both degeneration and regeneration of OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction between nervous and immune systems in the periphery significantly affects the structure, neuronal circuitry, and immunological status of the CNS. The mechanisms by which immune cells regulate OSN loss and the generation of new OSNs are, however, largely unknown. To help develop a better understanding of the mechanisms involved, we have provided a review of key research that has investigated how the immune response in the OM affects the pathophysiology of OSNs. PMID:27867383

  18. From chemical neuroanatomy to an understanding of the olfactory system.

    PubMed

    Oboti, L; Peretto, P; Marchis, S De; Fasolo, A

    2011-10-19

    The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.

  19. Phylogenic Studies on the Olfactory System in Vertebrates

    PubMed Central

    TANIGUCHI, Kazuyuki; TANIGUCHI, Kazumi

    2014-01-01

    ABSTRACT The olfactory receptor organs and their primary centers are classified into several types. The receptor organs are divided into fish-type olfactory epithelium (OE), mammal-type OE, middle chamber epithelium (MCE), lower chamber epithelium (LCE), recess epithelium, septal olfactory organ of Masera (SO), mammal-type vomeronasal organ (VNO) and snake-type VNO. The fish-type OE is observed in flatfish and lungfish, while the mammal-type OE is observed in amphibians, reptiles, birds and mammals. The MCE and LCE are unique to Xenopus and turtles, respectively. The recess epithelium is unique to lungfish. The SO is observed only in mammals. The mammal-type VNO is widely observed in amphibians, lizards and mammals, while the snake-type VNO is unique to snakes. The VNO itself is absent in turtles and birds. The mammal-type OE, MCE, LCE and recess epithelium seem to be descendants of the fish-type OE that is derived from the putative primitive OE. The VNO may be derived from the recess epithelium or fish-type OE and differentiate into the mammal-type VNO and snake-type VNO. The primary olfactory centers are divided into mammal-type main olfactory bulbs (MOB), fish-type MOB and mammal-type accessory olfactory bulbs (AOB). The mammal-type MOB first appears in amphibians and succeeds to reptiles, birds and mammals. The fish-type MOB, which is unique to fish, may be the ancestor of the mammal-type MOB. The mammal-type AOB is observed in amphibians, lizards, snakes and mammals and may be the remnant of the fish-type MOB. PMID:24531771

  20. Ecological adaptation determines functional mammalian olfactory subgenomes

    PubMed Central

    Hayden, Sara; Bekaert, Michaël; Crider, Tess A.; Mariani, Stefano; Murphy, William J.; Teeling, Emma C.

    2010-01-01

    The ability to smell is governed by the largest gene family in mammalian genomes, the olfactory receptor (OR) genes. Although these genes are well annotated in the finished human and mouse genomes, we still do not understand which receptors bind specific odorants or how they fully function. Previous comparative studies have been taxonomically limited and mostly focused on the percentage of OR pseudogenes within species. No study has investigated the adaptive changes of functional OR gene families across phylogenetically and ecologically diverse mammals. To determine the extent to which OR gene repertoires have been influenced by habitat, sensory specialization, and other ecological traits, to better understand the functional importance of specific OR gene families and thus the odorants they bind, we compared the functional OR gene repertoires from 50 mammalian genomes. We amplified more than 2000 OR genes in aquatic, semi-aquatic, and flying mammals and coupled these data with 48,000 OR genes from mostly terrestrial mammals, extracted from genomic projects. Phylogenomic, Bayesian assignment, and principle component analyses partitioned species by ecotype (aquatic, semi-aquatic, terrestrial, flying) rather than phylogenetic relatedness, and identified OR families important for each habitat. Functional OR gene repertoires were reduced independently in the multiple origins of aquatic mammals and were significantly divergent in bats. We reject recent neutralist views of olfactory subgenome evolution and correlate specific OR gene families with physiological requirements, a preliminary step toward unraveling the relationship between specific odors and respective OR gene families. PMID:19952139

  1. Cxcl12/Cxcr4 chemokine signaling is required for placode assembly and sensory axon pathfinding in the zebrafish olfactory system.

    PubMed

    Miyasaka, Nobuhiko; Knaut, Holger; Yoshihara, Yoshihiro

    2007-07-01

    Positioning neurons in the right places and wiring axons to the appropriate targets are essential events for establishment of neural circuits. In the zebrafish olfactory system, precursors of olfactory sensory neurons (OSNs) assemble into a compact cluster to form the olfactory placode. Subsequently, OSNs differentiate and extend their axons to the presumptive olfactory bulb with high precision. In this study, we aim to elucidate the molecular mechanism underlying these two developmental processes. cxcr4b, encoding a chemokine receptor, is expressed in the migrating olfactory placodal precursors, and cxcl12a (SDF-1a), encoding a ligand for Cxcr4b, is expressed in the abutting anterior neural plate. The expression of cxcr4b persists in the olfactory placode at the initial phase of OSN axon pathfinding. At this time, cxcl12a is expressed along the placode-telencephalon border and at the anterior tip of the telencephalon, prefiguring the route and target of OSN axons, respectively. Interfering with Cxcl12a/Cxcr4b signaling perturbs the assembly of the olfactory placode, resulting in the appearance of ventrally displaced olfactory neurons. Moreover, OSN axons frequently fail to exit the olfactory placode and accumulate near the placode-telencephalon border in the absence of Cxcr4b-mediated signaling. These data indicate that chemokine signaling contributes to both the olfactory placode assembly and the OSN axon pathfinding in zebrafish.

  2. Lectin cytochemical localisation of glycoconjugates in the olfactory system of the lizards Lacerta viridis and Podarcis sicula.

    PubMed

    Franceschini, V; Lazzari, M; Ciani, F

    2000-07-01

    To investigate the presence of defined carbohydrate moieties on the cell surface of the olfactory and vomeronasal receptor cells and the projections of the latter into the olfactory bulbs, a lectin binding study was performed on the olfactory system of the lizards: Lacerta viridis and Podarcis sicula. Both lizards showed a high lectin binding for N-acetyl-glucosamine in the sensory neurons. The lectin binding patterns in Lacerta indicated that the main olfactory system possessed a moderate density of N-acetyl-galactosamine residues and detectable levels of galactose ones. The vomeronasal system on the other hand contained a high density of N-acetyl-galactosamine moieties and a moderate density of glucosamine ones. In Podarcis the main olfactory system and vomeronasal organ contained respectively detectable and moderate levels of galactose residues. The expression of specific glycoconjugates may be associated with outgrowth, guidance and fasciculation of olfactory and vomeronasal axons.

  3. Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons.

    PubMed

    Li, H S; Chen, J H; Wu, W; Fagaly, T; Zhou, L; Yuan, W; Dupuis, S; Jiang, Z H; Nash, W; Gick, C; Ornitz, D M; Wu, J Y; Rao, Y

    1999-03-19

    The olfactory bulb plays a central role in olfactory information processing through its connections with both peripheral and cortical structures. Axons projecting from the olfactory bulb to the telencephalon are guided by a repulsive activity in the septum. The molecular nature of the repellent is not known. We report here the isolation of vertebrate homologs of the Drosophila slit gene and show that Slit protein binds to the transmembrane protein Roundabout (Robo). Slit is expressed in the septum whereas Robo is expressed in the olfactory bulb. Functionally, Slit acts as a chemorepellent for olfactory bulb axons. These results establish a ligand-receptor relationship between two molecules important for neural development, suggest a role for Slit in olfactory bulb axon guidance, and reveal the existence of a new family of axon guidance molecules.

  4. Calcium-activated chloride currents in olfactory sensory neurons from mice lacking bestrophin-2.

    PubMed

    Pifferi, Simone; Dibattista, Michele; Sagheddu, Claudia; Boccaccio, Anna; Al Qteishat, Ahmed; Ghirardi, Filippo; Tirindelli, Roberto; Menini, Anna

    2009-09-01

    Olfactory sensory neurons use a chloride-based signal amplification mechanism to detect odorants. The binding of odorants to receptors in the cilia of olfactory sensory neurons activates a transduction cascade that involves the opening of cyclic nucleotide-gated channels and the entry of Ca(2+) into the cilia. Ca(2+) activates a Cl(-) current that produces an efflux of Cl(-) ions and amplifies the depolarization. The molecular identity of Ca(2+)-activated Cl(-) channels is still elusive, although some bestrophins have been shown to function as Ca(2+)-activated Cl(-) channels when expressed in heterologous systems. In the olfactory epithelium, bestrophin-2 (Best2) has been indicated as a candidate for being a molecular component of the olfactory Ca(2+)-activated Cl(-) channel. In this study, we have analysed mice lacking Best2. We compared the electrophysiological responses of the olfactory epithelium to odorant stimulation, as well as the properties of Ca(2+)-activated Cl(-) currents in wild-type (WT) and knockout (KO) mice for Best2. Our results confirm that Best2 is expressed in the cilia of olfactory sensory neurons, while odorant responses and Ca(2+)-activated Cl(-) currents were not significantly different between WT and KO mice. Thus, Best2 does not appear to be the main molecular component of the olfactory channel. Further studies are required to determine the function of Best2 in the cilia of olfactory sensory neurons.

  5. Calcium-activated chloride currents in olfactory sensory neurons from mice lacking bestrophin-2

    PubMed Central

    Pifferi, Simone; Dibattista, Michele; Sagheddu, Claudia; Boccaccio, Anna; Al Qteishat, Ahmed; Ghirardi, Filippo; Tirindelli, Roberto; Menini, Anna

    2009-01-01

    Olfactory sensory neurons use a chloride-based signal amplification mechanism to detect odorants. The binding of odorants to receptors in the cilia of olfactory sensory neurons activates a transduction cascade that involves the opening of cyclic nucleotide-gated channels and the entry of Ca2+ into the cilia. Ca2+ activates a Cl− current that produces an efflux of Cl− ions and amplifies the depolarization. The molecular identity of Ca2+-activated Cl− channels is still elusive, although some bestrophins have been shown to function as Ca2+-activated Cl− channels when expressed in heterologous systems. In the olfactory epithelium, bestrophin-2 (Best2) has been indicated as a candidate for being a molecular component of the olfactory Ca2+-activated Cl− channel. In this study, we have analysed mice lacking Best2. We compared the electrophysiological responses of the olfactory epithelium to odorant stimulation, as well as the properties of Ca2+-activated Cl− currents in wild-type (WT) and knockout (KO) mice for Best2. Our results confirm that Best2 is expressed in the cilia of olfactory sensory neurons, while odorant responses and Ca2+-activated Cl− currents were not significantly different between WT and KO mice. Thus, Best2 does not appear to be the main molecular component of the olfactory channel. Further studies are required to determine the function of Best2 in the cilia of olfactory sensory neurons. PMID:19622610

  6. Neural regeneration dynamics of Xenopus laevis olfactory epithelium after zinc sulfate-induced damage.

    PubMed

    Frontera, J L; Raices, M; Cervino, A S; Pozzi, A G; Paz, D A

    2016-11-01

    Neural stem cells (NSCs) of the olfactory epithelium (OE) are responsible for tissue maintenance and the neural regeneration after severe damage of the tissue. In the normal OE, NSCs are located in the basal layer, olfactory receptor neurons (ORNs) mainly in the middle layer, and sustentacular (SUS) cells in the most apical olfactory layer. In this work, we induced severe damage of the OE through treatment with a zinc sulfate (ZnSO4) solution directly in the medium, which resulted in the loss of ORNs and SUS cells, but retention of the basal layer. During recovery following injury, the OE exhibited increased proliferation of NSCs and rapid neural regeneration. After 24h of recovery, new ORNs and SUS cells were observed. Normal morphology and olfactory function were reached after 168h (7 days) of recovery after ZnSO4 treatment. Taken together, these data support the hypothesis that NSCs in the basal layer activate after OE injury and that these are sufficient for complete neural regeneration and olfactory function restoration. Our analysis provides histological and functional insights into the dynamics between olfactory neurogenesis and the neuronal integration into the neuronal circuitry of the olfactory bulb that restores the function of the olfactory system.

  7. Morphological study on the olfactory systems of the snapping turtle, Chelydra serpentina.

    PubMed

    Nakamuta, Nobuaki; Nakamuta, Shoko; Kato, Hideaki; Yamamoto, Yoshio

    2016-06-01

    In this study, the olfactory system of a semi-aquatic turtle, the snapping turtle, has been morphologically investigated by electron microscopy, immunohistochemistry, and lectin histochemistry. The nasal cavity of snapping turtle was divided into the upper and lower chambers, lined by the sensory epithelium containing ciliated and non-ciliated olfactory receptor neurons, respectively. Each neuron expressed both Gαolf, the α-subunit of G-proteins coupling to the odorant receptors, and Gαo, the α-subunit of G-proteins coupling to the type 2 vomeronasal receptors. The axons originating from the upper chamber epithelium projected to the ventral part of the olfactory bulb, while those from the lower chamber epithelium to the dorsal part of the olfactory bulb. Despite the identical expression of G-protein α-subunits in the olfactory receptor neurons, these two projections were clearly distinguished from each other by the differential expression of glycoconjugates. In conclusion, these data indicate the presence of two types of olfactory systems in the snapping turtle. Topographic arrangement of the upper and lower chambers and lack of the associated glands in the lower chamber epithelium suggest their possible involvement in the detection of odorants: upper chamber epithelium in the air and the lower chamber epithelium in the water.

  8. Probing Formability Improvement of Ultra-thin Ferritic Stainless Steel Bipolar Plate of PEMFC in Non-conventional Forming Process

    NASA Astrophysics Data System (ADS)

    Bong, Hyuk Jong; Barlat, Frédéric; Lee, Myoung-Gyu

    2016-08-01

    Formability increase in non-conventional forming profiles programmed in the servo-press was investigated using finite element analysis. As an application, forming experiment on a 0.15-mm-thick ferritic stainless steel sheet for a bipolar plate, a primary component of a proton exchange membrane fuel cell, was conducted. Four different forming profiles were considered to investigate the effects of forming profiles on formability and shape accuracy. The four motions included conventional V motion, holding motion, W motion, and oscillating motion. Among the four motions, the holding motion, in which the slide was held for a certain period at the bottom dead point, led to the best formability. Finite element simulations were conducted to validate the experimental results and to probe the formability improvement in the non-conventional forming profiles. A creep model to address stress relaxation effect along with tool elastic recovery was implemented using a user-material subroutine, CREEP in ABAQUS finite element software. The stress relaxation and variable contact conditions during the holding and oscillating profiles were found to be the main mechanism of formability improvement.

  9. An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction

    PubMed Central

    Hutch, Chelsea; Hillard, Cecilia J.; Jia, Cuihong; Hegg, Colleen C.

    2015-01-01

    Endocannabinoids modulate a diverse array of functions including progenitor cell proliferation in the central nervous system, and odorant detection and food intake in the mammalian central olfactory system and larval Xenopus laevis peripheral olfactory system. However, the presence and role of endocannabinoids in the peripheral olfactory epithelium has not been examined in mammals. We found the presence of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptor protein and mRNA in the olfactory epithelium. Using either immunohistochemistry or calcium imaging we localized CB1 receptors on neurons, glia like sustentacular cells, microvillous cells and progenitor-like basal cells. To examine the role of endocannabinoids, CB1 and CB2 receptor deficient (CB1−/−/CB2−/−) mice were used. The endocannabinoid 2-arachidonylglycerol (2-AG) was present at high levels in both C57BL/6 wildtype and CB1−/−/CB2−/− mice. 2-AG synthetic and degradative enzymes are expressed in wildtype mice. A small but significant decrease in basal cell and olfactory sensory neuron numbers was observed in CB1−/−/CB2−/− mice compared to wildtype mice. The decrease in olfactory sensory neurons did not translate to impairment in olfactory-mediated behaviors assessed by the buried food test and habituation/dishabituation test. Collectively, these data indicate the presence of an endocannabinoid system in the mouse olfactory epithelium. However, unlike in tadpoles, endocannabinoids do not modulate olfaction. Further investigation on the role of endocannabinoids in progenitor cell function in the olfactory epithelium is warranted. PMID:26037800

  10. Intermittency Coding in the Primary Olfactory System: A Neural Substrate for Olfactory Scene Analysis

    PubMed Central

    Park, Il Memming; Bobkov, Yuriy V.; Ache, Barry W.

    2014-01-01

    The spatial and temporal characteristics of the visual and acoustic sensory input are indispensable attributes for animals to perform scene analysis. In contrast, research in olfaction has focused almost exclusively on how the nervous system analyzes the quality and quantity of the sensory signal and largely ignored the spatiotemporal dimension especially in longer time scales. Yet, detailed analyses of the turbulent, intermittent structure of water- and air-borne odor plumes strongly suggest that spatio-temporal information in longer time scales can provide major cues for olfactory scene analysis for animals. We show that a bursting subset of primary olfactory receptor neurons (bORNs) in lobster has the unexpected capacity to encode the temporal properties of intermittent odor signals. Each bORN is tuned to a specific range of stimulus intervals, and collectively bORNs can instantaneously encode a wide spectrum of intermittencies. Our theory argues for the existence of a novel peripheral mechanism for encoding the temporal pattern of odor that potentially serves as a neural substrate for olfactory scene analysis. PMID:24431452

  11. An olfactory cocktail party: figure-ground segregation of odorants in rodents.

    PubMed

    Rokni, Dan; Hemmelder, Vivian; Kapoor, Vikrant; Murthy, Venkatesh N

    2014-09-01

    In odorant-rich environments, animals must be able to detect specific odorants of interest against variable backgrounds. However, studies have found that both humans and rodents are poor at analyzing the components of odorant mixtures, suggesting that olfaction is a synthetic sense in which mixtures are perceived holistically. We found that mice could be easily trained to detect target odorants embedded in unpredictable and variable mixtures. To relate the behavioral performance to neural representation, we imaged the responses of olfactory bulb glomeruli to individual odors in mice expressing the Ca(2+) indicator GCaMP3 in olfactory receptor neurons. The difficulty of segregating the target from the background depended strongly on the extent of overlap between the glomerular responses to target and background odors. Our study indicates that the olfactory system has powerful analytic abilities that are constrained by the limits of combinatorial neural representation of odorants at the level of the olfactory receptors.

  12. Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli

    PubMed Central

    Ubeda-Bañon, Isabel; Novejarque, Amparo; Mohedano-Moriano, Alicia; Pro-Sistiaga, Palma; de la Rosa-Prieto, Carlos; Insausti, Ricardo; Martinez-Garcia, Fernando; Lanuza, Enrique; Martinez-Marcos, Alino

    2007-01-01

    Background Vertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb. The main projections of the olfactory bulb are directed to the olfactory cortex and olfactory amygdala (the anterior and posterolateral cortical amygdalae). The posterolateral cortical amygdaloid nucleus mainly projects to other amygdaloid nuclei; other seemingly minor outputs are directed to the ventral striatum, in particular to the olfactory tubercle and the islands of Calleja. Results Although the olfactory projections have been previously described in the literature, injection of dextran-amines into the rat main olfactory bulb was performed with the aim of delimiting the olfactory tubercle and posterolateral cortical amygdaloid nucleus in our own material. Injection of dextran-amines into the posterolateral cortical amygdaloid nucleus of rats resulted in anterograde labeling in the ventral striatum, in particular in the core of the nucleus accumbens, and in the medial olfactory tubercle including some islands of Calleja and the cell bridges across the ventral pallidum. Injections of Fluoro-Gold into the ventral striatum were performed to allow retrograde confirmation of these projections. Conclusion The present results extend previous descriptions of the posterolateral cortical amygdaloid nucleus efferent projections, which are mainly directed to the core of the nucleus accumbens and the medial olfactory tubercle. Our data indicate that the projection to the core of the nucleus accumbens arises from layer III; the projection to the olfactory tubercle arises from layer II and is much more robust than previously thought. This latter projection is directed to the medial olfactory tubercle including the corresponding islands of Calleja, an area recently described as critical node for the neural circuit of addiction to some stimulant drugs of abuse. PMID:18047654

  13. NKp46+CD3+ cells - a novel non-conventional T-cell subset in cattle exhibiting both NK cell and T-cell features

    PubMed Central

    Connelley, Timothy K.; Longhi, Cassandra; Burrells, Alison; Degnan, Kathryn; Hope, Jayne; Allan, Alasdair; Hammond, John A.; Storset, Anne K.; Morrison, W. Ivan

    2014-01-01

    The NKp46 receptor demonstrates a high degree of lineage-specificity, being expressed almost exclusively in natural killer cells. Previous studies have demonstrated NKp46 expression by T-cells, but NKp46+CD3+ cells are rare and almost universally associated with NKp46 acquisition by T-cells following stimulation. In this study we demonstrate the existence of a population of NKp46+CD3+ cells resident in normal bovine PBMC which include cells of both the αβ TCR+ and γδ TCR+ lineages and is present at a frequency of 0.1-1.7%. NKp46+CD3+ cells express transcripts for a broad repertoire of both natural killer (NKR) and T-cell receptors (TCR) and also the CD3ζ, DAP10 and FcεR1γ but not DAP12 adaptor proteins. In vitro functional analysis of NKp46+CD3+ cells confirm that NKp46, CD16 and CD3 signalling pathways are all functionally competent and capable of mediating-re-direct cytolysis. However, only CD3 cross-ligation elicits IFN-γ release. NKp46+CD3+ cells exhibit cytotoxic activity against autologous Theileria parva infected cells in vitro and during in vivo challenge with this parasite an expansion of NKp46+CD3+ cells was observed in some animals, indicating the cells have the potential to act as an anti-pathogen effector population. The results presented herein identifies and describes a novel non-conventional NKp46+CD3+ T-cell subset that is phenotypically and functionally distinct from conventional NK and T-cells. The ability to exploit both NKR and TCR suggests these cells may fill a functional niche at the interface of innate and adaptive immune responses. PMID:24639352

  14. Olfactory dysfunction in Parkinson's disease.

    PubMed Central

    Hawkes, C H; Shephard, B C; Daniel, S E

    1997-01-01

    OBJECTIVE: To evaluate olfactory function in Parkinson's disease. METHODS: A standardised odour identification test was used, together with an evoked potential assessment with hydrogen sulphide. In addition, histological analysis was performed on the olfactory bulbs of cadavers who died from Parkinson's disease. RESULTS: Over 70% of patients studied (71 of 96) were outside the 95% limit of normal on the identification test in an age matched sample and there was an unusual pattern of selective loss to certain odours, not hitherto described. The evoked potentials were significantly delayed but of comparable amplitude to a control matched population. Of the 73 patients studied only 37 had a technically satisfactory record containing a clear response to both gases and of these, 12 were delayed. For H2S there was more delay on stimulating the right nostril than the left. Some patients with normal smell identification test scores had delayed evoked potentials. In the pathological examination of olfactory bulbs from eight brains, changes characteristic of Parkinson's disease (Lewy bodies) were seen in every olfactory bulb, particularly in the anterior olfactory nucleus, and were sufficiently distinct to allow a presumptive diagnosis of Parkinson's disease. CONCLUSIONS: Olfactory damage in Parkinson's disease is consistent and severe and may provide an important clue to the aetiology of the disease. Images PMID:9153598

  15. Morphological and molecular features of the mammalian olfactory sensory neuron axons: What makes these axons so special?

    PubMed

    Nedelec, Stéphane; Dubacq, Caroline; Trembleau, Alain

    2005-03-01

    The main organization and gross morphology of the mammalian olfactory primary pathway, from the olfactory epithelium to the olfactory bulb, has been initially characterized using classical anatomical and ultrastructural approaches. During the last fifteen years, essentially thanks to the cloning of the odorant receptor genes, and to the characterization of a number of molecules expressed by the olfactory sensory neuron axons and their environment, significant new insights have been gained into the understanding of the development and adult functioning of this system. In the course of these genetic, biochemical and neuroanatomical studies, however, several molecular and structural features were uncovered that appear somehow to be unique to these axons. For example, these axons express odorant receptors in their terminal segment, and transport several mRNA species and at least two transcription factors. In the present paper, we review these unusual structural and molecular features and speculate about their possible functions in the development and maintenance of the olfactory system.

  16. Understanding smell--the olfactory stimulus problem.

    PubMed

    Auffarth, Benjamin

    2013-09-01

    The main problem with sensory processing is the difficulty in relating sensory input to physiological responses and perception. This is especially problematic at higher levels of processing, where complex cues elicit highly specific responses. In olfaction, this relationship is particularly obfuscated by the difficulty of characterizing stimulus statistics and perception. The core questions in olfaction are hence the so-called stimulus problem, which refers to the understanding of the stimulus, and the structure-activity and structure-odor relationships, which refer to the molecular basis of smell. It is widely accepted that the recognition of odorants by receptors is governed by the detection of physico-chemical properties and that the physical space is highly complex. Not surprisingly, ideas differ about how odor stimuli should be classified and about the very nature of information that the brain extracts from odors. Even though there are many measures for smell, there is none that accurately describes all aspects of it. Here, we summarize recent developments in the understanding of olfaction. We argue that an approach to olfactory function where information processing is emphasized could contribute to a high degree to our understanding of smell as a perceptual phenomenon emerging from neural computations. Further, we argue that combined analysis of the stimulus, biology, physiology, and behavior and perception can provide new insights into olfactory function. We hope that the reader can use this review as a competent guide and overview of research activities in olfactory physiology, psychophysics, computation, and psychology. We propose avenues for research, particularly in the systematic characterization of receptive fields and of perception.

  17. Farnesol-Detecting Olfactory Neurons in Drosophila

    PubMed Central

    Ronderos, David S.; Lin, Chun-Chieh; Potter, Christopher J.

    2014-01-01

    We set out to deorphanize a subset of putative Drosophila odorant receptors expressed in trichoid sensilla using a transgenic in vivo misexpression approach. We identified farnesol as a potent and specific activator for the orphan odorant receptor Or83c. Farnesol is an intermediate in juvenile hormone biosynthesis, but is also produced by ripe citrus fruit peels. Here, we show that farnesol stimulates robust activation of Or83c-expressing olfactory neurons, even at high dilutions. The CD36 homolog Snmp1 is required for normal farnesol response kinetics. The neurons expressing Or83c are found in a subset of poorly characterized intermediate sensilla. We show that these neurons mediate attraction behavior to low concentrations of farnesol and that Or83c receptor mutants are defective for this behavior. Or83c neurons innervate the DC3 glomerulus in the antennal lobe and projection neurons relaying information from this glomerulus to higher brain centers target a region of the lateral horn previously implicated in pheromone perception. Our findings identify a sensitive, narrowly tuned receptor that mediates attraction behavior to farnesol and demonstrates an effective approach to deorphanizing odorant receptors expressed in neurons located in intermediate and trichoid sensilla that may not function in the classical “empty basiconic neuron” system. PMID:24623773

  18. Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis.

    PubMed

    Cao, Depan; Liu, Yang; Wei, Jinjin; Liao, Xinyan; Walker, William B; Li, Jianhong; Wang, Guirong

    2014-01-01

    Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by multiple proteins in the antenna, especially the odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, we identified the olfactory gene repertoire of the rice stem borer, Chilo suppressalis, an economically important agricultural pest, which inflicts great damage to the rice yield in south and east part of Asia, especially in Southern China. By Illumina sequencing of male and female antennal transcriptomes, we identified 47 odorant receptors, 20 ionotropic receptors, 26 odorant binding proteins, 21 chemosensory proteins and 2 sensory neuron membrane proteins. Our findings make it possible for future research of the olfactory system of C. suppressalis at the molecular level.

  19. Anticancer effects of an oncolytic parvovirus combined with non-conventional therapeutics on pancreatic carcinoma cell lines.

    PubMed

    Raykov, Z; Georgieva, P B; Angelova, A; Galabov, A S; Rommelaere, J

    2009-01-01

    Standard therapies such as surgery and chemotherapy offer only minimal improvement in pancreatic cancer. However, the viruses killing cancer cells and substances like some antibiotics and phytoalexins with anticancer potential may represent a candidate non-conventional mean of cancer treatment in the future. In this study, the effect of infection with oncolytic H-1 parvovirus (H-1PV) combined with antibiotic norfloxacin (NFX) or phytoalexin resveratrol on the survival of cell lines Panc-1 and BxPC3 derived from human pancreatic carcinoma was tested. Whereas H-1PV with NFX exerted a synergistic effect, H-1PV with resveratrol resulted in an additive effect only. All the effects were partial, but they were more pronounced in Panc-1 compared to BxPC3 cells.

  20. Looking for a Person-Centered Medicine: Non Conventional Medicine in the Conventional European and Italian Setting

    PubMed Central

    Roberti di Sarsina, Paolo; Iseppato, Ilaria

    2011-01-01

    In Italy, the use of non conventional medicines (NCMs) is spreading among people as in the rest of Europe. Sales of alternative remedies are growing, and likewise the number of medical doctors (MDs) who practise NCM/complementary and alternative medicine (CAM). However, in Italy as in other countries of the European Union, at the present time the juridical/legal status of NCM/CAM is not well established, mainly due to the lack of any national law regulating NCM/CAM professional training, practice and public supply and the absence of government-promoted scientific research in this field. This is an obstacle to safeguarding the patient's interests and freedom of choice, especially now that dissatisfaction with biomedicine is inclining more and more people to look for a holistic and patient-centered form of medicine. PMID:19505973

  1. The sox gene Dichaete is expressed in local interneurons and functions in development of the Drosophila adult olfactory circuit.

    PubMed

    Melnattur, Krishna V; Berdnik, Daniela; Rusan, Zeid; Ferreira, Christopher J; Nambu, John R

    2013-02-01

    In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry.

  2. A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior

    PubMed Central

    Root, Cory M.; Masuyama, Kaoru; Green, David S.; Enell, Lina E.; Nässel, Dick R.; Lee, Chi-Hon; Wang, Jing W.

    2008-01-01

    Early sensory processing can play a critical role in sensing environmental cues. We have investigated the physiological and behavioral function of gain control at the first synapse of olfactory processing in Drosophila. We report that olfactory receptor neurons (ORNs) express the GABAB receptor (GABABR) and its expression expands the dynamic range of ORN synaptic transmission that is preserved in projection neuron responses. Strikingly, we find that different ORN channels have unique baseline levels of GABABR expression. ORNs that sense the aversive odorant CO2 do not express GABABRs nor exhibit any presynaptic inhibition. In contrast, pheromone-sensing ORNs express a high level of GABABRs and exhibit strong presynaptic inhibition. Furthermore, a behavioral significance of presynaptic inhibition was revealed by a courtship behavior in which pheromone-dependent mate localization is impaired in flies that lack GABABRs in specific ORNs. Together, these findings indicate that different olfactory receptor channels may employ heterogeneous presynaptic gain control as a mechanism to allow an animal’s innate behavioral responses to match its ecological needs. PMID:18667158

  3. Gross anatomy and histology of the olfactory rosette of the shark Heptranchias perlo.

    PubMed

    Ferrando, Sara; Gallus, Lorenzo; Amaroli, Andrea; Gambardella, Chiara; Waryani, Baradi; Di Blasi, Davide; Vacchi, Marino

    2017-02-17

    Sharks belonging to the family Hexanchidae have six or seven gill slits, unlike all other elasmobranchs, which have five gill slits. Their olfactory organs have a round shape, which is common for holocephalans, but not for elasmobranchs. Thus, the shape of the olfactory organ represents a further, less striking, peculiarity of this family among elasmobranchs. Despite that, the microscopic anatomy and histology of the olfactory organ have not yet been studied in any species of this family. Here, an anatomical and histological description of the olfactory organ of the sharpnose sevengill shark Heptranchias perlo is given. The organ is a rosette, with a central raphe and 31-34 primary lamellae, which bear secondary lamellae with a more or less branched shape. The elastic connective capsule which envelops the olfactory rosette possibly changes its shape along with water influx. In the olfactory epithelium, the supporting cells also have a secretory function, while no specialized mucous cells are visible; regarding this feature the olfactory epithelium of H. perlo differs from that of other chondrichthyan species. The immunohistochemical investigation of the sensory epithelium shows the absence of immunoreactivity for Gαolf in receptor neurons, which confirms previous observations in Chondrichthyes.

  4. Odor Memory Stability after Reinnervation of the Olfactory Bulb

    PubMed Central

    Blanco-Hernández, Eduardo; Valle-Leija, Pablo; Zomosa-Signoret, Viviana; Drucker-Colín, René; Vidaltamayo, Román

    2012-01-01

    The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP). Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain. PMID:23071557

  5. Signal processing inspired from the olfactory bulb for electronic noses

    NASA Astrophysics Data System (ADS)

    Jing, Ya-Qi; Meng, Qing-Hao; Qi, Pei-Feng; Zeng, Ming; Liu, Ying-Jie

    2017-01-01

    A bio-inspired signal processing method is proposed for electronic noses (e-noses). The proposed method contains an olfactory bulb model and a feature generation step. The structure of the olfactory bulb model is similar to the anatomical structure of mammals’ olfactory bulb. It consists of olfactory receptor neurons, mitral cells, granule cells, periglomerular cells, and short axon cells. This model uses gas sensors’ original response curves and transforms them to neuron spiking series no matter what kind the response curve is. This largely simplifies the follow-up feature generation step. Recurrence quantification analysis is employed to perform feature generation and the five most important features are selected. Finally, in order to verify the performance of the proposed method, seven kinds of Chinese liquors are tested and three classification methods are used to classify them. The experimental results demonstrate that the proposed method has a higher classification rate (99.05%) and also a steadier performance with the change of sensor number and types than the classic one.

  6. The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input.

    PubMed

    He, Chao; Altshuler-Keylin, Svetlana; Daniel, David; L'Etoile, Noelle D; O'Halloran, Damien

    2016-10-06

    In mammals, olfactory subsystems have been shown to express seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-one-neuron pattern, whereas in Caenorhabditis elegans, olfactory sensory neurons express multiple G-protein coupled odorant receptors per olfactory sensory neuron. In both mammalian and C. elegans olfactory sensory neurons (OSNs), the process of olfactory adaptation begins within the OSN; this process of negative feedback within the mammalian OSN has been well described in mammals and enables activated OSNs to desensitize their response cell autonomously while attending to odors detected by separate OSNs. However, the mechanism that enables C. elegans to adapt to one odor and attend to another odor sensed by the same olfactory sensory neuron remains unclear. We found that the cyclic nucleotide gated channel subunit CNG-1 is required to promote cross adaptation responses between distinct olfactory cues. This change in sensitivity to a pair of odorants after persistent stimulation by just one of these odors is modulated by the internal nutritional state of the animal, and we find that this response is maintained across a diverse range of food sources for C. elegans. We also reveal that CNG-1 integrates food related cues for exploratory motor output, revealing that CNG-1 functions in multiple capacities to link nutritional information with behavioral output. Our data describes a novel model whereby CNG channels can integrate the coincidence detection of appetitive and olfactory information to set olfactory preferences and instruct behavioral outputs.

  7. Paraneoplastic syndromes in olfactory neuroblastoma

    PubMed Central

    Gabrych, Anna; Czapiewski, Piotr; Sworczak, Krzysztof

    2015-01-01

    Olfactory neuroblastoma (ONB) is a rare malignant neoplasm of sinonasal tract, derived from olfactory epithelium. Unilateral nasal obstruction, epistaxis, sinusitis, and headaches are common symptoms. Olfactory neuroblastoma shows neuroendocrine differentiation and similarly to other neuroendocrine tumors can produce several types of peptic substances and hormones. Excess production of these substances can be responsible for different types of endocrinological paraneoplastic syndromes (PNS). Moreover, besides endocrinological, in ONB may also occur neurological PNS, caused by immune cross-reactivity between tumor and normal host tissues in the nervous system. Paraneoplastic syndromes in ONB include: syndrome of inappropriate ADH secretion (SIADH), ectopic ACTH syndrome (EAS), humoral hypercalcemia of malignancy (HHM), hypertension due to catecholamine secretion by tumor, opsoclonus-myoclonus-ataxia (OMA) and paraneoplastic cerebellar degeneration. Paraneoplastic syndromes in ONB tend to have atypical features, therefore diagnosis may be difficult. In this review, we described initial symptoms, patterns of presentation, treatment and outcome of paraneoplastic syndromes in ONB, reported in the literature. PMID:26199564

  8. Olfactory epithelium in the olfactory recess: a case study in new world leaf-nosed bats.

    PubMed

    Eiting, Thomas P; Smith, Timothy D; Dumont, Elizabeth R

    2014-11-01

    The olfactory recess (OR) is a restricted space at the back of the nasal fossa in many mammals that is thought to improve olfactory function. Mammals that have an olfactory recess are usually described as keen-scented, while those that do not are typically thought of as less reliant on olfaction. However, the presence of an olfactory recess is not a binary trait. Many mammal families have members that vary substantially in the size and complexity of the olfactory recess. There is also variation in the amount of olfactory epithelium (OE) that is housed in the olfactory recess. Among New World leaf-nosed bats (family Phyllostomidae), species vary by over an order of magnitude in how much of their total OE lies within the OR. Does this variation relate to previously documented neuroanatomical proxies for olfactory reliance? Using data from 12 species of phyllostomid bats, we addressed the hypothesis that the amount of OE within the OR relates to a species' dependence on olfaction, as measured by two commonly used neuroanatomical metrics, the size of the olfactory bulb, and the number of glomeruli in the olfactory bulb, which are the first processing units within the olfactory signal cascade. We found that the percentage of OE within the OR does not relate to either measure of olfactory "ability." This suggests that olfactory reliance is not reflected in the size of the olfactory recess. We explore other roles that the olfactory recess may play.

  9. Role of olfactory bulb serotonin in olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae).

    PubMed

    Ganesh, Ambigapathy; Bogdanowicz, Wieslaw; Haupt, Moritz; Marimuthu, Ganapathy; Rajan, Koilmani Emmanuvel

    2010-09-17

    The role of olfactory bulb (OB) serotonin [5-hydroxytryptamine (5-HT)] in olfactory learning and memory was tested in the greater short-nosed fruit bat, Cynopterus sphinx (family Pteropodidae). Graded concentrations (25, 40, and 60microg) of 5,7-dihydroxytryptamine (5,7-DHT) or saline were injected into the OB of bats one day before training to the novel odor. In a behavioral test, 5,7-DHT (60microg) injected bats made significantly fewer feeding attempts and bouts when compared to saline-injected bats during learning and in the memory test. Subsequent biochemical analysis showed that 5-HT level was effectively depleted in the OB of 5,7-DHT injected bats. To test odor-induced 5-HT mediated changes in 5-HT receptors and second messenger cascade in the OB, we examined the expression of 5-HT receptors and mitogen-activated protein kinase (MAPK)/Erk cascade after training to the novel odor. We found that odor stimulation up-regulated the expression of 5-HT(1A) receptor, Erk1 and Creb1 mRNA, and phosphorylation of ERK1 and CREB1. Odor stimulation failed to induce expression in 5-HT-depleted bats, which is similar to control bats and significantly low compared to saline-treated bats. Together these data revealed that the level of 5-HT in the OB may regulate olfactory learning and memory in C. sphinx through Erk and CREB.

  10. A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb

    PubMed Central

    Li, Guoshi; Cleland, Thomas A.

    2013-01-01

    Cholinergic inputs from the basal forebrain regulate multiple olfactory bulb (OB) functions including odor discrimination, perceptual learning, and short term memory. Previous studies have shown that nicotinic cholinergic receptor activation sharpens mitral cell chemoreceptive fields, likely via intraglomerular circuitry. Muscarinic cholinergic activation is less well understood, though muscarinic receptors are implicated in olfactory learning and in the regulation of synchronized oscillatory dynamics in hippocampus and cortex. To understand the mechanisms underlying cholinergic neuromodulation in OB, we developed a biophysical model of the OB neuronal network including both glomerular layer and external plexiform layer (EPL) computations and incorporating both nicotinic and muscarinic neuromodulatory effects. Our simulations show how nicotinic activation within glomerular circuits sharpens mitral cell chemoreceptive fields, even in the absence of EPL circuitry, but does not facilitate intrinsic oscillations or spike synchronization. In contrast, muscarinic receptor activation increases mitral cell spike synchronization and field oscillatory power by potentiating granule cell excitability and lateral inhibitory interactions within the EPL, but has little effect on mitral cell firing rates and hence will not sharpen olfactory representations under a rate metric. These results are consistent with the theory that EPL interactions regulate the timing, rather than the existence, of mitral cell action potentials, and perform their computations with respect to a spike timing-based metric. This general model suggests that the roles of nicotinic and muscarinic receptors in olfactory bulb are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations. PMID:23407960

  11. Short-term effect of caffeine on olfactory function in hyposmic patients.

    PubMed

    Meusel, Thomas; Albinus, Janine; Welge-Luessen, Antje; Hähner, Antje; Hummel, Thomas

    2016-08-01

    The purpose of this study was to investigate the potential effects of caffeine in patients with olfactory loss. The suggested mechanisms of action consist in the non-selective blocking of adenosine receptors as well as inhibition of the phospodiesterase. Olfactory function was tested twice in 76 hyposmic patients either because of URTI or because of sinunasal causes. For definition of hyposmia and for later assessment of phenyl ethyl alcohol odor threshold, and odor discrimination the Sniffin Sticks data test was used. Using a double-blinded design, the participants were divided into two groups: one received a cup of espresso with caffeine (65 mg/cup), the other a cup of espresso without caffeine (placebo). Before and approximately 45 min after espresso consumption olfactory function was assessed. Across all participants, in comparison to placebo there was no significant effect of caffeine on olfactory function, regardless whether it was caused by an acute infection of the upper respiratory tract or sinunasal disease. These results indicate that-under the current conditions-the phosphodiesterase-inhibitor/adenosine-receptor agonist caffeine has little or no short-term effect on olfactory function in patients with olfactory loss.

  12. Predicting the response of olfactory sensory neurons to odor mixtures from single odor response

    PubMed Central

    Marasco, Addolorata; De Paris, Alessandro; Migliore, Michele

    2016-01-01

    The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific olfactory receptor responses by manipulating mixtures in a mathematically predictable manner. This result is general and applies, independently of the number of odor components, to any olfactory sensory neuron type with a response curve that can be represented as a sigmoidal function of the odor concentration. PMID:27053070

  13. Predicting the response of olfactory sensory neurons to odor mixtures from single odor response

    NASA Astrophysics Data System (ADS)

    Marasco, Addolorata; de Paris, Alessandro; Migliore, Michele

    2016-04-01

    The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific olfactory receptor responses by manipulating mixtures in a mathematically predictable manner. This result is general and applies, independently of the number of odor components, to any olfactory sensory neuron type with a response curve that can be represented as a sigmoidal function of the odor concentration.

  14. The importance of the olfactory sense in the human behavior and evolution

    PubMed Central

    Mella, C; Georgescu, M; Perederco, C

    2009-01-01

    Not long ago it was believed that the human olfactory sense had a low importance, a vision which turned into the exploration of the environment. Recent studies have shown that, despite the weak representation of the olfactory receptor common in other species too, the cortical areas of integration of the olfactory sensations are very large and have important interconnections with memory, language, and neuro–vegetative areas. In humans, olfaction has a small contribution in identifying objects or other people, but plays an important social and emotional part. People learn to love or to hate certain foods or objects only by appreciating their odor and this proved to be a very important economic factor. The most significant role of olfactory signals in humans appears to be the modulation of their behavior and interpersonal relationships, of their affiliation to certain groups or social classes, having a major influence in their tastes and personality. PMID:20108540

  15. An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons.

    PubMed

    Bulfone, A; Wang, F; Hevner, R; Anderson, S; Cutforth, T; Chen, S; Meneses, J; Pedersen, R; Axel, R; Rubenstein, J L

    1998-12-01

    Olfactory sensory neurons expressing a given odorant receptor project to two topographically fixed glomeruli in the olfactory bulb. We have examined the contribution of different cell types in the olfactory bulb to the establishment of this topographic map. Mice with a homozygous deficiency in Tbr-1 lack most projection neurons, whereas mice with a homozygous deficiency in Dlx-1 and Dlx-2 lack most GABAergic interneurons. Mice bearing a P2-IRES-tau-lacZ allele and deficient in either Tbr-1 or Dlx-1/Dlx-2 reveal the convergence of axons to one medial and one lateral site at positions analogous to those observed in wild-type mice. These observations suggest that the establishment of a topographic map is not dependent upon cues provided by, or synapse formation with, the major neuronal cell types in the olfactory bulb.

  16. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    PubMed

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range.

  17. Defatted algal biomass as a non-conventional low-cost adsorbent: surface characterization and methylene blue adsorption characteristics.

    PubMed

    Sarat Chandra, T; Mudliar, S N; Vidyashankar, S; Mukherji, S; Sarada, R; Krishnamurthi, K; Chauhan, V S

    2015-05-01

    The present study investigates the use of defatted algal biomass (DAB) as a non-conventional low cost adsorbent. The maximum adsorption capacity of biomass (raw, defatted and sulfuric acid pretreated DAB) was determined by liquid phase adsorption studies in batch mode for the removal of methylene blue present at various concentrations (1, 2, 3, 4, and 5 mg L(-1)) from aqueous solutions. The data was well fitted with Langmuir and Freundlich isotherms. The maximum adsorption capacity for raw, defatted and sulfuric acid pretreated DAB was found to be 6.0, 7.73 and 7.80 mg g(-1), respectively. The specific surface area of raw, defatted and sulfuric acid pretreated DAB was estimated to be 14.70, 18.94, and 19.10 m(2) g(-1), respectively. To evaluate the kinetic mechanism that controls the adsorption process, pseudo-first order, pseudo-second order, intraparticle diffusion and particle diffusion has been tested. The data fitted quite well with pseudo-second order kinetic model.

  18. Looking beyond Saccharomyces: the potential of non-conventional yeast species for desirable traits in bioethanol fermentation.

    PubMed

    Radecka, Dorota; Mukherjee, Vaskar; Mateo, Raquel Quintilla; Stojiljkovic, Marija; Foulquié-Moreno, María R; Thevelein, Johan M

    2015-09-01

    Saccharomyces cerevisiae has been used for millennia in the production of food and beverages and is by far the most studied yeast species. Currently, it is also the most used microorganism in the production of first-generation bioethanol from sugar or starch crops. Second-generation bioethanol, on the other hand, is produced from lignocellulosic feedstocks that are pretreated and hydrolyzed to obtain monomeric sugars, mainly D-glucose, D-xylose and L-arabinose. Recently, S. cerevisiae recombinant strains capable of fermenting pentose sugars have been generated. However, the pretreatment of the biomass results in hydrolysates with high osmolarity and high concentrations of inhibitors. These compounds negatively influence the fermentation process. Therefore, robust strains with high stress tolerance are required. Up to now, more than 2000 yeast species have been described and some of these could provide a solution to these limitations because of their high tolerance to the most predominant stress conditions present in a second-generation bioethanol reactor. In this review, we will summarize what is known about the non-conventional yeast species showing unusual tolerance to these stresses, namely Zygosaccharomyces rouxii (osmotolerance), Kluyveromyces marxianus and Ogataea (Hansenula) polymorpha (thermotolerance), Dekkera bruxellensis (ethanol tolerance), Pichia kudriavzevii (furan derivatives tolerance) and Z. bailii (acetic acid tolerance).

  19. The Forgotten Virulence Factor: The 'non-conventional' Hemolysin TlyA And Its Role in Helicobacter pylori Infection.

    PubMed

    Javadi, Mohammad Bagher; Katzenmeier, Gerd

    2016-12-01

    Helicobacter pylori is a human-specific Gram-negative pathogenic bacterium which colonizes the gastric mucosal layer in the stomach causing diseases such as peptic ulcer, adenocarcinoma, and gastric lymphoma. It is estimated that approximately half of the world's population is infected with H. pylori making it the most intensively characterized microbial pathogen up to now. Hemolysis has been suggested to significantly contribute to colonization of the stomach and disease progression by H. pylori. In a number of earlier studies, TlyA was characterized as a putative pore-forming cytolysin. Although a few observations in the literature suggest a role for TlyA as significant virulence factor of H. pylori, the molecular and structural characterization of this protein is much curtailed at present. Given the intensive characterization of numerous H. pylori virulence factors over the past decade, surprisingly little information exists for the TlyA toxin and its significance for pathogenesis. This review provides a brief overview on microbial hemolysis and its role for pathogenesis and discusses recent research efforts aimed at an improved understanding of the role of the 'non-conventional' hemolysin and its associated RNA methyltransferase TlyA from H. pylori.

  20. Optimization of the magnetic horn for the nuSTORM non-conventional neutrino beam using the genetic algorithm

    SciTech Connect

    Liu, A.; Bross, A.; Neuffer, D.

    2015-05-28

    This paper describes the strategy for optimizing the magnetic horn for the neutrinos from STORed Muons (nuSTORM) facility. The nuSTORM magnetic horn is the primary collection device for the secondary particles generated by bombarding a solid target with 120 GeV protons. As a consequence of the non-conventional beamline designed for nuSTORM, the requirements on the horn are different from those for a conventional neutrino beamline. At nuSTORM, muons decay while circulating in the storage ring, and the detectors are placed downstream of the production straight so as to be exposed to the neutrinos from muon decay. nuSTORM aims at precisely measuring the neutrino cross sections, and providing a definitive statement about the existence of sterile neutrinos. The nuSTORM horn aims at focusing the pions into a certain phase space so that more muons from pion decay can be accepted by the decay ring. The paper demonstrates a numerical method that was developed to optimize the horn design to gain higher neutrino flux from the circulating muons. A Genetic Algorithm (GA) was applied to the simultaneous optimization of the two objectives in this study. In conclusion, the application of the technique discussed in this paper is not limited to either the nuSTORM facility or muon based facilities, but can be used for other neutrino facilities that use magnetic horns as collection devices.

  1. Optimization of the magnetic horn for the nuSTORM non-conventional neutrino beam using the genetic algorithm

    DOE PAGES

    Liu, A.; Bross, A.; Neuffer, D.

    2015-05-28

    This paper describes the strategy for optimizing the magnetic horn for the neutrinos from STORed Muons (nuSTORM) facility. The nuSTORM magnetic horn is the primary collection device for the secondary particles generated by bombarding a solid target with 120 GeV protons. As a consequence of the non-conventional beamline designed for nuSTORM, the requirements on the horn are different from those for a conventional neutrino beamline. At nuSTORM, muons decay while circulating in the storage ring, and the detectors are placed downstream of the production straight so as to be exposed to the neutrinos from muon decay. nuSTORM aims at preciselymore » measuring the neutrino cross sections, and providing a definitive statement about the existence of sterile neutrinos. The nuSTORM horn aims at focusing the pions into a certain phase space so that more muons from pion decay can be accepted by the decay ring. The paper demonstrates a numerical method that was developed to optimize the horn design to gain higher neutrino flux from the circulating muons. A Genetic Algorithm (GA) was applied to the simultaneous optimization of the two objectives in this study. In conclusion, the application of the technique discussed in this paper is not limited to either the nuSTORM facility or muon based facilities, but can be used for other neutrino facilities that use magnetic horns as collection devices.« less

  2. Production and economic performance of F1-crossbred dairy cattle fed non-conventional protein supplements in Zimbabwe.

    PubMed

    Gusha, Jacob; Manyuchi, Clive Rolex; Imbayarwo-Chikosi, Venancio Edward; Hamandishe, Vimbayi Rangaridzo; Katsande, Simbarashe; Zvinorova, Plaxedis Ivy

    2014-01-01

    The effects of supplementing crossbred cows with non-conventional protein sources on dry matter intake, milk yield parameters and economic returns were investigated. Twenty-five lactating F1 Holstein-Mashona crossbreds averaging 115 ± 24 days in milk were used. Five treatments, total mixed ration (TMR), urea-treated maize stover, untreated maize stover, Macroptilium atropurpureum (Siratro) hay and veld hay, were randomly assigned to cows and replicated five times in a completely randomised design. Nutrient composition, intake, milk yield and economic returns were determined. M. atropurpureum hay, urea-treated maize stover and TMR had equal crude protein content. Daily dry matter intake and yield differed significantly among the treatment diets (P < 0.05). Cows on TMR, urea-treated maize stover and M. atropurpureum consumed more (P < 0.05) than cows on untreated maize stover and veld hay. Supplementing with TMR, urea-treated maize stover and M. atropurpureum hay increased (P < 0.05) milk yields. Mean daily milk yield was highest for cows supplemented with urea-treated maize stover. Percent fat, protein and total solids in milk from cows fed urea-treated stover compared favourably to that of milk for cows supplemented with TMR. Income over supplement cost was highest for cows supplemented with M. atropurpureum hay and urea-treated maize stover. Urea-treated maize stover and M. atropurpureum can therefore be used as a replacer protein supplements for dairy cattle in Zimbabwe.

  3. Immunocytochemical characterisation of ensheathing glia in the olfactory and vomeronasal systems of Ambystoma mexicanum (Caudata: Ambystomatidae).

    PubMed

    Lazzari, Maurizio; Bettini, Simone; Franceschini, Valeria

    2016-03-01

    The olfactory and vomeronasal systems of vertebrates are characterised by neurogenesis occurring throughout life. The regenerative ability of olfactory receptor neurons relies on specific glial cells, the olfactory and vomeronasal axon-surrounding cells. Numerous studies have examined mammalian olfactory ensheathing cells which are considered potential candidates for spinal cord injury repair using cell-based therapy. With regard to non-mammalian vertebrates, limited information is available on these glial cells in fish, and there is no information on them in terrestrial anamniotes, the amphibians. In the present research, we studied the immunocytochemical characteristics of axon-surrounding cells in Ambystoma mexicanum. Urodeles have relatively simple olfactory and vomeronasal systems, and represent a good model for studying ensheathing cells in extant representatives of basal tetrapods. Sections from the decalcified heads of A. mexicanum were immunocytochemically processed for the detection of proteins used in research on mammalian olfactory-ensheathing cells. S100, GFAP and NCAM were clearly observed. p75NTR, Gal-1 and PSA-NCAM showed weak staining. No vimentin immunopositivity was observed. The corresponding areas of the olfactory and vomeronasal pathways displayed the same staining characteristics, with the exception of Gal-1, p75NTR and PSA-NCAM in the mucosae. The degree of marker expression was not uniform throughout the sensory pathways. In contrast to fish, both olfactory and vomeronasal nerves displayed uniform staining intensity. This study showed that some markers for mammalian and fish-ensheathing glia are also applicable in urodeles. The olfactory systems of vertebrates show similarities, and also clear dissimilarities. Further investigations are required to ascertain the functional significance of these regional and interspecific differences.

  4. Selective neuroinhibitory effects of taurine in slices of rat main olfactory bulb.

    PubMed

    Belluzzi, O; Puopolo, M; Benedusi, M; Kratskin, I

    2004-01-01

    Taurine is abundant in the main olfactory bulb, exceeding glutamate and GABA in concentration. In whole-cell patch-clamp recordings in rat olfactory bulb slices, taurine inhibited principal neurons, mitral and tufted cells. In these cells, taurine decreased the input resistance and caused a shift of the membrane potential toward the chloride equilibrium potential. The taurine actions were sustained under the blockade of transmitter release and were reversible and dose-dependent. At a concentration of 5 mM, typically used in this study, taurine showed 90% of its maximal effect. GABA(A) antagonists, bicuculline and picrotoxin, blocked the taurine actions, whereas the glycine receptor antagonist strychnine and GABA(B) antagonists, CGP 55845A and CGP 35348, were ineffective. These findings are consistent with taurine directly activating GABA(A) receptors and inducing chloride conductance. Taurine had no effect on periglomerular and granule interneurons. The subunit composition of GABA(A) receptors in these cells, differing from those in mitral and tufted cells, may account for taurine insensitivity of the interneurons. Taurine suppressed olfactory nerve-evoked monosynaptic responses of mitral and tufted cells while chloride conductance was blocked. This action was mimicked by the GABA(B) agonist baclofen and abolished by CGP 55845A; CGP 35348, which primarily blocks postsynaptic GABA(B) receptors, was ineffective. The taurine effect most likely was due to GABA(B) receptor-mediated inhibition of presynaptic glutamate release. Neither taurine nor baclofen affected responses of periglomerular cells. The lack of a baclofen effect implies that functional GABA(B) receptors are absent from olfactory nerve terminals that contact periglomerular cells. These results indicate that taurine decreases the excitability of mitral and tufted cells and their responses to olfactory nerve stimulation without influencing periglomerular and granule cells. Selective effects of taurine in the

  5. Early survival factor deprivation in the olfactory epithelium enhances activity-driven survival

    PubMed Central

    François, Adrien; Laziz, Iman; Rimbaud, Stéphanie; Grebert, Denise; Durieux, Didier; Pajot-Augy, Edith; Meunier, Nicolas

    2013-01-01

    The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs). However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226). We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population toward detection of environmental odorants. PMID:24399931

  6. Early survival factor deprivation in the olfactory epithelium enhances activity-driven survival.

    PubMed

    François, Adrien; Laziz, Iman; Rimbaud, Stéphanie; Grebert, Denise; Durieux, Didier; Pajot-Augy, Edith; Meunier, Nicolas

    2013-01-01

    The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs). However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226). We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population toward detection of environmental odorants.

  7. Inactivation of the olfactory marker protein (OMP) gene in river dolphins and other odontocete cetaceans.

    PubMed

    Springer, Mark S; Gatesy, John

    2017-04-01

    Various toothed whales (Odontoceti) are unique among mammals in lacking olfactory bulbs as adults and are thought to be anosmic (lacking the olfactory sense). At the molecular level, toothed whales have high percentages of pseudogenic olfactory receptor genes, but species that have been investigated to date retain an intact copy of the olfactory marker protein gene (OMP), which is highly expressed in olfactory receptor neurons and may regulate the temporal resolution of olfactory responses. One hypothesis for the retention of intact OMP in diverse odontocete lineages is that this gene is pleiotropic with additional functions that are unrelated to olfaction. Recent expression studies provide some support for this hypothesis. Here, we report OMP sequences for representatives of all extant cetacean families and provide the first molecular evidence for inactivation of this gene in vertebrates. Specifically, OMP exhibits independent inactivating mutations in six different odontocete lineages: four river dolphin genera (Platanista, Lipotes, Pontoporia, Inia), sperm whale (Physeter), and harbor porpoise (Phocoena). These results suggest that the only essential role of OMP that is maintained by natural selection is in olfaction, although a non-olfactory role for OMP cannot be ruled out for lineages that retain an intact copy of this gene. Available genome sequences from cetaceans and close outgroups provide evidence of inactivating mutations in two additional genes (CNGA2, CNGA4), which imply further pseudogenization events in the olfactory cascade of odontocetes. Selection analyses demonstrate that evolutionary constraints on all three genes (OMP, CNGA2, CNGA4) have been greatly reduced in Odontoceti, but retain a signature of purifying selection on the stem Cetacea branch and in Mysticeti (baleen whales). This pattern is compatible with the 'echolocation-priority' hypothesis for the evolution of OMP, which posits that negative selection was maintained in the common

  8. Gene Expression Profiles of Main Olfactory Epithelium in Adenylyl Cyclase 3 Knockout Mice

    PubMed Central

    Wang, Zhenshan; Zhou, Yanfen; Luo, Yingtao; Zhang, Jing; Zhai, Yunpeng; Yang, Dong; Zhang, Zhe; Li, Yongchao; Storm, Daniel R.; Ma, Runlin Z.

    2015-01-01

    Adenylyl Cyclase 3 (AC3) plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE). In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3−/−) and wild-type (AC3+/+) mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3−/− mice was significantly altered, compared to AC3+/+ mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3−/− and AC3+/+ mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE. PMID:26633363

  9. Olfactory subsystems in the honeybee: sensory supply and sex specificity.

    PubMed

    Kropf, Jan; Kelber, Christina; Bieringer, Kathrin; Rössler, Wolfgang

    2014-09-01

    The antennae of honeybee (Apis mellifera) workers and drones differ in various aspects. One striking difference is the presence of Sensilla basiconica in (female) workers and their absence in (male) drones. We investigate the axonal projection patterns of olfactory receptor neurons (ORNs) housed in S. basiconica in honeybee workers by using selective anterograde labeling with fluorescent tracers and confocal-microscopy analysis of axonal projections in antennal lobe glomeruli. Axons of S. basiconica-associated ORNs preferentially projected into a specific glomerular cluster in the antennal lobe, namely the sensory input-tract three (T3) cluster. T3-associated glomeruli had previously been shown to be innervated by uniglomerular projection (output) neurons of the medial antennal lobe tract (mALT). As the number of T3 glomeruli is reduced in drones, we wished to determine whether this was associated with the reduction of glomeruli innervated by medial-tract projection neurons. We retrogradely traced mALT projection neurons in drones and counted the innervated glomeruli. The number of mALT-associated glomeruli was strongly reduced in drones compared with workers. The preferential projections of S. basiconica-associated ORNs in T3 glomeruli together with the reduction of mALT-associated glomeruli support the presence of a female (worker)-specific olfactory subsystem that is partly innervated by ORNs from S. basiconica and is associated with the T3 cluster of glomeruli and mALT projection neurons. We propose that this olfactory subsystem supports parallel olfactory processing related to worker-specific olfactory tasks such as the coding of colony odors, colony pheromones and/or odorants associated with foraging on floral resources.

  10. Hypothyroidism Affects Olfactory Evoked Potentials.

    PubMed

    Świdziński, Teodor; Linkowska-Świdzińska, Kamila; Czerniejewska-Wolska, Hanna; Wiskirska-Woźnica, Bożena; Owecki, Maciej; Głowacka, Maria Danuta; Frankowska, Anna; Łącka, Katarzyna; Glapiński, Mariusz; Maciejewska-Szaniec, Zofia; Świdziński, Piotr

    Background. Objective electrophysiological methods for investigations of the organ of smell consist in recordings of olfactory cortex responses to specific, time restricted odor stimuli. In hypothyroidism have impaired sense of smell. Material and Methods. Two groups: control of 31 healthy subjects and study group of 21 with hypothyroidism. The inclusion criterion for the study group was the TSH range from 3.54 to 110 μIU/mL. Aim. Assessment of the latency time of evoked responses from the olfactory nerve N1 and the trigeminal nerve N5 using two smells of mint and anise in hypothyroidism. Results. The smell perception in subjective olfactory tests was normal in 85% of the hypothyroid group. Differences were noticed in the objective tests. The detailed intergroup analysis of latency times of recorded cortical responses PN5 and PN1 performed by means between the groups of patients with overt clinical hypothyroidism versus subclinical hypothyroidism demonstrated a significant difference (p < 0.05) whereas no such differences were found between the control group versus subclinical hypothyroidism group (p > 0.05). Conclusion. We can conclude that registration of cortex potentials at irritation of olfactory and trigeminal nerves offers possibilities for using this method as an objective indicator of hypothyroidism severity and prognostic process factor.

  11. Hypothyroidism Affects Olfactory Evoked Potentials

    PubMed Central

    Świdziński, Teodor; Czerniejewska-Wolska, Hanna; Wiskirska-Woźnica, Bożena; Owecki, Maciej; Głowacka, Maria Danuta; Frankowska, Anna; Łącka, Katarzyna; Glapiński, Mariusz; Maciejewska-Szaniec, Zofia; Świdziński, Piotr

    2016-01-01

    Background. Objective electrophysiological methods for investigations of the organ of smell consist in recordings of olfactory cortex responses to specific, time restricted odor stimuli. In hypothyroidism have impaired sense of smell. Material and Methods. Two groups: control of 31 healthy subjects and study group of 21 with hypothyroidism. The inclusion criterion for the study group was the TSH range from 3.54 to 110 μIU/mL. Aim. Assessment of the latency time of evoked responses from the olfactory nerve N1 and the trigeminal nerve N5 using two smells of mint and anise in hypothyroidism. Results. The smell perception in subjective olfactory tests was normal in 85% of the hypothyroid group. Differences were noticed in the objective tests. The detailed intergroup analysis of latency times of recorded cortical responses PN5 and PN1 performed by means between the groups of patients with overt clinical hypothyroidism versus subclinical hypothyroidism demonstrated a significant difference (p < 0.05) whereas no such differences were found between the control group versus subclinical hypothyroidism group (p > 0.05). Conclusion. We can conclude that registration of cortex potentials at irritation of olfactory and trigeminal nerves offers possibilities for using this method as an objective indicator of hypothyroidism severity and prognostic process factor. PMID:27656655

  12. Effects of Caffeine on Olfactory Learning in Crickets.

    PubMed

    Sugimachi, Seigo; Matsumoto, Yukihisa; Mizunami, Makoto; Okada, Jiro

    2016-10-01

    Caffeine is a plant-derived alkaloid that is generally known as a central nervous system (CNS) stimulant. In order to examine the effects of caffeine on higher CNS functions in insects, we used an appetitive olfactory learning paradigm for the cricket Gryllus bimaculatus. Crickets can form significant long-term memories (LTMs) after repetitive training sessions, during which they associate a conditioned stimulus (CS: odor) with an unconditioned stimulus (US: reward). Administration of hemolymphal injections of caffeine established LTM after only single-trial conditioning over a wide range of caffeine dosages (1.6 µµg/kg to 39 mg/kg). We investigated the physiological mechanisms underlying this enhancement of olfactory learning performance pharmacologically, focusing on three major physiological roles of caffeine: 1) inhibition of phosphodiesterase (PDE), 2) agonism of ryanodine receptors, and 3) antagonism of adenosine receptors. Application of drugs relevant to these actions resulted in significant effects on LTM formation. These results suggest that externally applied caffeine enhances LTM formation in insect olfactory learning via multiple cellular mechanisms.

  13. Uncoupling stimulus specificity and glomerular position in the mouse olfactory system

    PubMed Central

    Zhang, Jingji; Huang, Guangzhe; Dewan, Adam; Feinstein, Paul; Bozza, Thomas

    2012-01-01

    Sensory information is often mapped systematically in the brain with neighboring neurons responding to similar stimulus features. The olfactory system represents chemical information as spatial and temporal activity patterns across glomeruli in the olfactory bulb. However, the degree to which chemical features are mapped systematically in the glomerular array has remained controversial. Here, we test the hypothesis that the dual roles of odorant receptors, in axon guidance and odor detection, can serve as a mechanism to map olfactory inputs with respect to their function. We compared the relationship between response specificity and glomerular formation in genetically-defined olfactory sensory neurons expressing variant odorant receptors. We find that sensory neurons with the same odor response profile can be mapped to different regions of the bulb, and that neurons with different response profiles can be mapped to the same glomeruli. Our data demonstrate that the two functions of odorant receptors can be uncoupled, indicating that the mechanisms that map olfactory sensory inputs to glomeruli do so without regard to stimulus specificity. PMID:22926192

  14. Olfactory Ensheathing Cells Express α7 Integrin to Mediate Their Migration on Laminin

    PubMed Central

    Ingram, Norianne T.; Khankan, Rana R.; Phelps, Patricia E.

    2016-01-01

    The unique glia located in the olfactory system, called olfactory ensheathing cells (OECs), are implicated as an attractive choice for transplantation therapy following spinal cord injury because of their pro-regenerative characteristics. Adult OECs are thought to improve functional recovery and regeneration after injury by secreting neurotrophic factors and making cell-to-cell contacts with regenerating processes, but the mechanisms are not well understood. We show first that α7 integrin, a laminin receptor, is highly expressed at the protein level by OECs throughout the olfactory system, i.e., in the olfactory mucosa, olfactory nerve, and olfactory nerve layer of the olfactory bulb. Then we asked if OECs use the α7 integrin receptor directly to promote neurite outgrowth on permissive and neutral substrates, in vitro. We co-cultured α7+/+ and α7lacZ/lacZ postnatal cerebral cortical neurons with α7+/+ or α7lacZ/lacZ OECs and found that genotype did not effect the ability of OECs to enhance neurite outgrowth by direct contact. Loss of α7 integrin did however significantly decrease the motility of adult OECs in transwell experiments. Twice as many α7+/+ OECs migrated through laminin-coated transwells compared to α7+/+ OECs on poly-L-lysine (PLL). This is in contrast to α7lacZ/lacZ OECs, which showed no migratory preference for laminin substrate over PLL. These results demonstrate that OECs express α7 integrin, and that laminin and its α7 integrin receptor contribute to adult OEC migration in vitro and perhaps also in vivo. PMID:27078717

  15. Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes.

    PubMed

    Busch, Verónica M; Loosli, Fréderic; Santagapita, Patricio R; Buera, M Pilar; Stoll, Serge

    2015-11-01

    The physicochemical characteristics of hematite nanoparticles related to their size, surface area and reactivity make them useful for many applications, as well as suitable models to study aggregation kinetics. For several applications (such as remediation of contaminated groundwater) it is crucial to maintain the stability of hematite nanoparticle suspensions in order to assure their arrival to the target place. The use of biopolymers has been proposed as a suitable environmentally friendly option to avoid nanoparticle aggregation and assure their stability. The aim of the present work was to investigate the formation of complexes between hematite nanoparticles and a non-conventional galactomannan (vinal gum--VG) obtained from Prosopis ruscifolia in order to promote hematite nanoparticle coating with a green biopolymer. Zeta potential and size of hematite nanoparticles, VG dispersions and the stability of their mixtures were investigated, as well as the influence of the biopolymer concentration and preparation method. DLS and nanoparticle tracking analysis techniques were used for determining the size and the zeta-potential of the suspensions. VG showed a polydispersed size distribution (300-475 nm Z-average diameter, 0.65 Pdi) and a negative zeta potential (between -1 and -12 mV for pH2 and 12, respectively). The aggregation of hematite nanoparticles (3.3 mg/L) was induced by the addition of VG at lower concentrations than 2mg/L (pH5.5). On the other hand, hematite nanoparticles were stabilized at concentrations of VG higher than 2 mg/L. Several phenomena between hematite nanoparticles and VG were involved: steric effects, electrostatic interactions, charge neutralization, charge inversion and polymer bridging. The process of complexation between hematite nanoparticles and the biopolymer was strongly influenced by the preparation protocols. It was concluded that the aggregation, dispersion, and stability of hematite nanoparticles depended on biopolymer

  16. Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes.

    PubMed

    Agouborde, Lina; Navia, Rodrigo

    2009-08-15

    Zinc and copper removal from aqueous solutions using brine sediments (industrial residue), sawdust (agricultural residue) and the mixture of both materials has been researched through batch and column tests. Brine sediments were found to be mainly constituted by halite and calcite, while its main cations exchangeable were sodium, calcium, magnesium and potassium. In sawdust the main exchangeable cations detected were calcium, magnesium, sodium and potassium. FT-IR spectra of sawdust and brine sediment-sawdust mixture showed that brine sediments produced important changes in carboxylic, alcoholic and phenolic groups present in the sawdust. The maximum zinc adsorption capacity was found to be 4.85, 2.58 and 5.59 mg/g using an adsorbent/solution ratio of 1/40, for brine sediments, sawdust and the mixture, respectively. For copper, the maximum adsorption capacity was found to be 4.69, 2.31 and 4.33 mg/g, using adsorbent/solution ratios of 1/40, for brine sediments, sawdust and the mixture, respectively. Maximum copper adsorption capacity of the mixture, on the contrary to zinc adsorption, was lightly inferior to maximum adsorption capacity obtained in brine sediments. Adsorption isotherms data adjusted better to the Langmuir model. Additionally, columns reached the saturation point at 690 min for zinc and 360 min for copper. The main mechanism involved in the removal of both metals may be the ionic exchange between sodium and calcium ions present in brine sediments and H(+) present in functional groups of sawdust. The use of brine sediments, sawdust and their mixture, presents an interesting option both, for wastewater decontamination (as a possible non-conventional sorbent for the removal of heavy metals) and as a waste recycling option.

  17. Development of a commercial cigarette "market map" comparison methodology for evaluating new or non-conventional cigarettes.

    PubMed

    Counts, M E; Hsu, F S; Tewes, F J

    2006-12-01

    A "market map" comparison methodology for cigarette smoke chemistry yields is presented. Federal Trade Commission machine-method smoke chemistry was determined for a range of filtered cigarettes from the US marketplace. These data were used to develop illustrative market maps for each smoke constituent as analytical tools for comparing new or non-conventional cigarettes to a sampling of the broader range of marketplace cigarettes. Each market map contained best-estimate "market-means," showing the relationship between commercial cigarette constituent and tar yields, and yield "market ranges" defined by prediction intervals. These market map means and ranges are the basis for comparing new cigarette smoke yields to those of conventional cigarettes. The potential utility of market maps for evaluating differences in smoke chemistry was demonstrated with 1R4F and 2R4F Kentucky reference cigarettes, an Accord cigarette, and an Advance cigarette. Conventional cigarette tobacco nicotine, nitrate, soluble ammonia, and tobacco specific nitrosamine levels are reported. Differences among conventional cigarette constituent yields at similar tar levels were explained in part by the chemical composition range of those cigarette tobaccos. The study also included a comparison of smoke constituent yields and in vitro smoke cytotoxicity and mutagenicity assay results for the 1R4F Kentucky reference cigarette and its replacement 2R4F. Significant smoke yield differences were noted for lead, NNK, and NNN. The majority of their smoke constituent yields were within the market range developed from the sampled conventional cigarettes. Within the sensitivity and specificity of the in vitro bioassays used, smoke toxic activity differences for the two reference cigarettes were not statistically significant. These results add to the limited information available for the 2R4F reference cigarette.

  18. Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb.

    PubMed

    Mohedano-Moriano, Alicia; Pro-Sistiaga, Palma; Ubeda-Bañón, Isabel; Crespo, Carlos; Insausti, Ricardo; Martinez-Marcos, Alino

    2007-04-01

    Apically and basally located receptor neurons in the vomeronasal sensory epithelium express G(i2 alpha)- and G(o alpha)-proteins, V1R and V2R vomeronasal receptors, project to the anterior and posterior accessory olfactory bulb and respond to different stimuli, respectively. The extent to which secondary projections from the two portions of the accessory olfactory bulb are convergent in the vomeronasal amygdala is controversial. This issue is addressed by using anterograde and retrograde tract-tracing methods in rats including electron microscopy. Injections of dextran-amines, Fluoro Gold, cholera toxin-B subunit and Fast Blue were delivered to the anterior and posterior accessory olfactory bulb, bed nucleus of the stria terminalis, dorsal anterior amygdala and bed nucleus of the accessory olfactory tract/anteroventral medial amygdaloid nucleus. We have demonstrated that, apart from common vomeronasal-recipient areas, only the anterior accessory olfactory bulb projects to the bed nucleus of the stria terminalis, medial division, posteromedial part, and only the posterior accessory olfactory bulb projects to the dorsal anterior amygdala and deep cell layers of the bed nucleus of the accessory olfactory tract and the anteroventral medial amygdaloid nucleus. These results provide evidence that, excluding areas of convergence, the V1R and V2R vomeronasal pathways project to specific areas of the amygdala. These two vomeronasal subsystems are therefore anatomically and functionally separated in the telencephalon.

  19. Calmodulin as a downstream gene of octopamine-OAR α1 signalling mediates olfactory attraction in gregarious locusts.

    PubMed

    Xu, L; Li, L; Yang, P; Ma, Z

    2017-02-01

    The migratory locust (Locusta migratoria) shows aggregative traits in nymph marching bands and swarm formations through mutual olfactory attraction of conspecifics. However, olfactory preference in different nymph stages in gregarious locusts is not sufficiently explored. In this study, we found that the nymph olfactory preference for gregarious volatiles exhibited obvious variations at different developmental stages. The gregarious locusts show attractive response to conspecific volatiles from the third stadium. Transcriptome comparison between third- and fourth-stadium nymphs showed that the G protein-coupled receptor (GPCR) pathways are significantly enriched. Amongst the genes present in GPCR pathways, the expression level of calmodulin in locust brains significantly increased from the third- to the fourth-stadium nymphs. Amongst the four octopamine receptors (OARs) belonging to the GPCR family, only OAR α1 showed similar expression patterns to those of calmodulin, and knockdown of OAR α1 reduced the expression level of calmodulin. RNA interference of calmodulin decreased locomotion and induced the loss of olfactory attraction in gregarious locusts. Moreover, the activation of OAR α1 in calmodulin-knockdown locusts did not induce olfactory attraction of the nymphs to gregarious volatiles. Thus, calmodulin as a downstream gene of octopamine-OAR α1 (OA-OAR α1) signalling mediates olfactory attraction in gregarious locusts. Overall, this study provides novel insights into the mechanism of OA-OAR α1 signalling involved in olfactory attraction of gregarious locusts.

  20. Distinct Evolutionary Patterns between Chemoreceptors of 2 Vertebrate Olfactory Systems and the Differential Tuning Hypothesis

    PubMed Central

    Grus, Wendy E.

    2008-01-01

    Most tetrapod vertebrates have 2 olfactory systems, the main olfactory system (MOS) and the vomeronasal system (VNS). According to the dual olfactory hypothesis, the MOS detects environmental odorants, whereas the VNS recognizes intraspecific pheromonal cues. However, this strict functional distinction has been blurred by recent reports that both systems can perceive both types of signals. Studies of a limited number of receptors suggest that MOS receptors are broadly tuned generalists, whereas VNS receptors are narrowly tuned specialists. However, whether this distinction applies to all MOS and VNS receptors remains unknown. The differential tuning hypothesis predicts that generalist MOS receptors detect an overlapping set of ligands and thus are more likely to be conserved over evolutionary time than specialist VNS receptors, which would evolve in a more lineage-specific manner. Here we test this prediction for all olfactory chemoreceptors by examining the evolutionary patterns of MOS-expressed odorant receptors (ORs) and trace amine–associated receptors (TAARs) and VNS-expressed vomeronasal type 1 receptors (V1Rs) and vomeronasal type 2 receptors (V2Rs) in 7 tetrapods (mouse, rat, dog, opossum, platypus, chicken, and frog). The phylogenies of V1Rs and V2Rs show abundant lineage-specific gene gains/losses and virtually no one-to-one orthologs between species. Opposite patterns are found for ORs and TAARs. Analysis of functional data and ligand-binding sites of ORs confirms that paralogous chemoreceptors are more likely than orthologs to have different ligands and that functional divergence between paralogous chemoreceptors is established relatively quickly following gene duplication. Together, these results strongly suggest that the functional profile of the VNS chemoreceptor repertoire evolves much faster than that of the MOS chemoreceptor repertoire and that the differential tuning hypothesis applies to the majority, if not all, of MOS and VNS receptors. PMID

  1. Olfactory dysfunction, olfactory bulb pathology and urban air pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Osnaya, Norma; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Herritt, Lou; Brooks, Diane; Keefe, Sheyla; Palacios-Moreno, Juan; Villarreal-Calderon, Rodolfo; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Delgado-Chávez, Ricardo; Aiello-Mora, Mario; Maronpot, Robert R.; Doty, Richard L

    2010-01-01

    Mexico City (MC) residents are exposed to severe air pollution and exhibit olfactory bulb inflammation. We compared the olfactory function of individuals living under conditions of extreme air pollution to that of controls from a relatively clean environment and explore associations between olfaction scores, apolipoprotein E (APOE) status, and pollution exposure. The olfactory bulbs (OBs) of 35 MC and 9 controls 20.8 ± 8.5 y were assessed by light and electron microscopy. The University of Pennsylvania Smell Identification Test (UPSIT) was administered to 62 MC / 25 controls 21.2 ±2.7 y. MC subjects had significantly lower UPSIT scores: 34.24 ± 0.42 versus controls 35.76 ± 0.40, p=0.03. Olfaction deficits were present in 35.5% MC and 12% of controls. MC APOE ε 4 carriers failed 2.4 ± 0.54 items in the 10-item smell identification scale from the UPSIT related to Alzheimer's disease, while APOE 2/3 and 3/3 subjects failed 1.36 ± 0.16 items, p = 0.01. MC residents exhibited OB endothelial hyperplasia, neuronal accumulation of particles (2/35), and immunoreactivity to beta amyloid βA42 (29/35) and/or α-synuclein (4/35) in neurons, glial cells and/or blood vessels. Ultrafine particles were present in OBs endothelial cytoplasm and basement membranes. Control OBs were unremarkable. Air pollution exposure is associated with olfactory dysfunction and OB pathology, APOE 4 may confer greater susceptibility to such abnormalities, and ultrafine particles could play a key role in the OB pathology. This study contributes to our understanding of the influences of air pollution on olfaction and its potential contribution to neurodegeneration. PMID:19297138

  2. Finding Multiple Internal Rates of Return for a Project with Non-Conventional Cash Flows: Utilizing Popular Financial/Graphing Calculators and Spreadsheet Software

    ERIC Educational Resources Information Center

    Chen, Jeng-Hong

    2008-01-01

    This study demonstrates that a popular graphing calculator among students, TI-83 Plus, has a powerful function to draw the NPV profile and find the accurate multiple IRRs for a project with non-conventional cash flows. However, finance textbooks or related supplementary materials do not provide students instructions for this part. The detailed…

  3. Histological and lectin histochemical studies on the olfactory and respiratory mucosae of the sheep.

    PubMed

    Ibrahim, Dalia; Nakamuta, Nobuaki; Taniguchi, Kazumi; Yamamoto, Yoshio; Taniguchi, Kazuyuki

    2014-03-01

    The olfactory and respiratory mucosae of the Corriedale sheep were examined using lectin histochemistry in order to clarify the histochemical and glycohistochemical differences between these two tissues. The olfactory epithelium was stained with 13 lectins out of 21 lectins examined, while the respiratory epithelium was positive to 16 lectins. The free border of both of the olfactory and respiratory epithelia was stained with 12 lectins: Wheat germ agglutinin (WGA), succinylated-wheat germ agglutinin (s-WGA), Lycopersicon esculentum lectin (LEL), Solanum tuberosum lectin (STL), Datura stramonium lectin (DSL), Soybean agglutinin (SBA), Bandeiraea simplicifolia lectin-I (BSL-I), Ricinus communis agglutinin-I (RCA-120), Erythrina cristagalli lectin (ECL), Concanavalin A (Con A), Phaseolus vulgaris agglutinin-E (PHA-E) and Phaseolus vulgaris agglutinin-L (PHA-L). The associated glands of the olfactory mucosa, Bowman's glands, were stained with 13 lectins. While both the goblet cells and mucous nasal glands were stained with 8 lectins; five of them (WGA, s-WGA, STL, Vicia villosa agglutinin (VVA) and ECL) were mutually positive among the Bowman's glands, mucous nasal glands and the goblet cells. These findings indicate that the glycohistochemical characteristics of the free borders of both olfactory and respiratory epithelia are similar to each other, suggesting that secretions from the Bowman's glands and those of the goblet cells and mucous nasal glands are partially exchanged between the surface of two epithelia to contribute the functions of the respiratory epithelium and the olfactory receptor cells, respectively.

  4. Olfactory transduction pathways in the Senegalese sole Solea senegalensis.

    PubMed

    Velez, Z; Hubbard, P C; Barata, E N; Canário, A V M

    2013-09-01

    This study tested whether differences in sensitivity between the upper and lower olfactory epithelia of Solea senegalensis are associated with different odorant receptors and transduction pathways, using the electro-olfactogram. Receptor mechanisms were assessed by cross-adaptation with amino acids (L-cysteine, L-phenylalanine and 1-methyl-L-tryptophan) and bile acids (taurocholic acid and cholic acid). This suggested that relatively specific receptors exist for 1-methyl-L-tryptophan and L-phenylalanine (food-related odorants) in the lower epithelium, and for taurocholic acid (conspecific-derived odorant) in the upper. Inhibition by U73122 [a phospholipase C (PLC) inhibitor] suggested that olfactory responses to amino acids were mediated mostly, but not entirely, by PLC-mediated transduction (IC50 ; 15-55 nM), whereas bile acid responses were mediated by both PLC and adenylate cyclase-cyclic adenosine monophosphate (AC-cAMP) (using SQ-22536; an AC inhibitor). Simultaneous application of both drugs rarely inhibited responses completely, suggesting possible involvement of non-PLC and non-AC mediated mechanisms. For aromatic amino acids and bile acids, there were differences in the contribution of each transduction pathway (PLC, AC and non-PLC and non-AC) between the two epithelia. These results suggest that differences in sensitivity of the two epithelia are associated with differences in odorant receptors and transduction mechanisms.

  5. Does iron deficiency anemia affect olfactory function?

    PubMed

    Dinc, Mehmet Emre; Dalgic, Abdullah; Ulusoy, Seckin; Dizdar, Denizhan; Develioglu, Omer; Topak, Murat

    2016-07-01

    Conclusion This study found a negative effect of IDA on olfactory function. IDA leads to a reduction in olfactory function, and decreases in hemoglobin levels result in further reduction in olfactory function. Objective This study examined the effects of iron-deficiency anemia (IDA) on olfactory function. Method The study enrolled 50 IDA patients and 50 healthy subjects. Olfactory function was evaluated using the Sniffin' Sticks olfactory test. The diagnosis of IDA was made according to World Health Organization (WHO) criteria. Results Patients with IDA had a significantly lower threshold, discrimination, and identification (TDI) value, and a lower threshold compared with the control group. However, there were no significant differences between the groups in terms of smell selectivity values.

  6. Olfactory neuroblastoma: A case report

    PubMed Central

    USLU, GONCA HANEDAN; CANYILMAZ, EMINE; ZENGIN, AHMET YASAR; MUNGAN, SEVDEGUL; YONEY, ADNAN; BAHADIR, OSMAN; GOCMEZ, HUSEYIN

    2015-01-01

    Olfactory neuroblastoma (ON) is a rare type of malignant neoplasm originating from the olfactory neuroepithelial cells of the nasal cavity. ON is also known as esthesioneuroblastoma or neuroendocrine carcinoma. The malignancy accounts for <3% of tumors originating in the nasal cavity. Through the nasal cavity, ON may infiltrate the sinuses, the orbit and the cranium. The tumor is characterized by a pattern of slow growth and local recurrences. Treatment options are surgical excision or surgery combined with a radiotherapy (RT) and/or chemotherapy combination treatment. The present study reports the case of a 69-year-old patient with a mass in the nasal cavity who was treated by combined surgical excision and RT. The literature for ON and the treatment of the tumor are also discussed. PMID:26788185

  7. Role of Centrifugal Projections to the Olfactory Bulb in Olfactory Processing

    ERIC Educational Resources Information Center

    Kiselycznyk, Carly L.; Zhang, Steven; Linster, Christine

    2006-01-01

    While there is evidence that feedback projections from cortical and neuromodulatory structures to the olfactory bulb are crucial for maintaining the oscillatory dynamics of olfactory bulb processing, it is not clear how changes in dynamics are related to odor perception. Using electrical lesions of the olfactory peduncle, sparing output from the…

  8. Chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhynchus mykiss) exposed to copper: Neurophysiological and histological effects on the olfactory system

    SciTech Connect

    Hansen, J.A.; Rose, J.D.; Jenkins, R.A.; Gerow, K.G.; Bergman, H.L.

    1999-09-01

    Olfactory epithelial structure and olfactory bulb neurophysiological responses were measured in chinook salmon and rainbow trout in response to 25 to 300 {micro}g copper (Cu)/L. Using confocal laser scanning microscopy, the number of olfactory receptors was significantly reduced in chinook salmon exposed to {ge}50 {micro}g Cu/L and in rainbow trout exposed to {ge}200 {micro}g cu/L for 1 h. The number of receptors was significantly reduced in both species following exposure to 25 {micro}g Cu/L for 4 h. Transmission electron microscopy of olfactory epithelial tissue indicated that the loss of receptors was from cellular necrosis. Olfactory bulk electroencephalogram (EEG) responses to 10{sup {minus}3} M L-serine were initially reduced by all Cu concentrations but were virtually eliminated in chinook salmon exposed to {ge}50 {micro}g Cu/L and in rainbow trout exposed to {ge}200 {micro}g Cu/L within 1 h of exposure. Following Cu exposure, EEG response recovery rates were slower in fish exposed to higher Cu concentrations. The higher sensitivity of the chinook salmon olfactory system to Cu-induced histological damage and neurophysiological impairment parallels the relative species sensitivity observed in behavioral avoidance experiments. This difference in species sensitivity may reduce the survival and reproductive potential of chinook salmon compared with that of rainbow trout in Cu-contaminated waters.

  9. [Olfactory perception and learning in the honey bee (Apis mellifera): calcium imaging in the antenna lobe].

    PubMed

    Sandoz, Jean-Christophe

    2003-01-01

    Honey bees are a key-model in the study of learning and memory, because they show considerable learning abilities, their brain is well described and is accessible to a wide range of physiological recordings and treatments. We use in vivo calcium imaging to study olfactory perception in the bee brain, and combine this method to appetitive olfactory conditioning to unravel the neural substrates of olfactory learning. Odours are detected by receptor neurons on the antennae. Each receptor neuron projects to the first-order neuropile of the olfactory pathway, the antennal lobe, connecting to projection neurons in one of its 160 functional units, the glomeruli. In calcium imaging experiments, each odour elicits a particular activity pattern of antennal lobe glomeruli, according to a code conserved between individuals. The antennal lobe is also a site where the olfactory memory is formed. Using optical imaging, two studies have shown modulations of odour representation in the antennal lobe after learning, with different effects depending on the type of conditioning used. While simple differential conditioning (A + B- training) showed an increased calcium response to the reinforced odour, side-specific conditioning (A + B-/B + A- training) decorrelated the calcium responses of odours between brain sides. This difference may owe to the formation of different memories, which will be addressed in future work. By specifically staining antennal lobe neuronal subpopulations, we hope to be able in the future to study synaptic plasticity in the honey bee.

  10. Neuropeptide Y enhances olfactory mucosa responses to odorant in hungry rats.

    PubMed

    Negroni, Julia; Meunier, Nicolas; Monnerie, Régine; Salesse, Roland; Baly, Christine; Caillol, Monique; Congar, Patrice

    2012-01-01

    Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM). Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG) recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes.

  11. Neuropeptide Y Enhances Olfactory Mucosa Responses to Odorant in Hungry Rats

    PubMed Central

    Negroni, Julia; Meunier, Nicolas; Monnerie, Régine; Salesse, Roland; Baly, Christine; Caillol, Monique; Congar, Patrice

    2012-01-01

    Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evoked by a food-related odorant in hungry axolotls. We have recently demonstrated that another nutritional cue, insulin, modulates the odorant responses of the rat olfactory mucosa (OM). Therefore, the aim of the present study was to investigate the potential effect of NPY on rat OM responses to odorants, in relation to the animal's nutritional state. We measured the potential NPY modulation of OM responses to odorant, using electro-olfactogram (EOG) recordings, in fed and fasted adult rats. NPY application significantly and transiently increased EOG amplitudes in fasted but not in fed rats. The effects of specific NPY-receptor agonists were similarly quantified, showing that NPY operated mainly through Y1 receptors. These receptors appeared as heterogeneously expressed by olfactory neurons in the OM, and western blot analysis showed that they were overexpressed in fasted rats. These data provide the first evidence that NPY modulates the initial events of odorant detection in the rat OM. Because this modulation depends on the nutritional status of the animal, and is ascribed to NPY, the most potent orexigenic peptide in the central nervous system, it evidences a strong supplementary physiological link between olfaction and nutritional processes. PMID:23024812

  12. A novel olfactory pathway is essential for fast and efficient blood-feeding in mosquitoes

    PubMed Central

    Won Jung, Je; Baeck, Seung-Jae; Perumalsamy, Haribalan; Hansson, Bill S.; Ahn, Young-Joon; Kwon, Hyung Wook

    2015-01-01

    In mosquitoes, precise and efficient finding of a host animal is crucial for survival. One of the poorly understood aspects of mosquito blood-feeding behavior is how these insects target an optimal site in order to penetrate the skin and blood vessels without alerting the host animal. Here we provide new findings that a piercing structure of the mouthpart of the mosquitoes, the stylet, is an essential apparatus for the stage in blood feeding. Indeed, the stylet possesses a number of sensory hairs located at the tip of the stylet. These hairs house olfactory receptor neurons that express two conventional olfactory receptors of Aedes aegypti (AaOrs), AaOr8 and AaOr49, together with the odorant co-receptor (AaOrco). In vivo calcium imaging using transfected cell lines demonstrated that AaOr8 and AaOr49 were activated by volatile compounds present in blood. Inhibition of gene expression of these AaOrs delayed blood feeding behaviors of the mosquito. Taken together, we identified olfactory receptor neurons in the stylet involved in mosquito blood feeding behaviors, which in turn indicates that olfactory perception in the stylet is necessary and sufficient for mosquitoes to find host blood in order to rapidly acquire blood meals from a host animal. PMID:26306800

  13. Viral disruption of olfactory progenitors is exacerbated in allergic mice.

    PubMed

    Ueha, R; Mukherjee, S; Ueha, S; de Almeida Nagata, D E; Sakamoto, T; Kondo, K; Yamasoba, T; Lukacs, N W; Kunkel, S L

    2014-09-01

    Upper airway viral infection in patients with airway allergy often exacerbates olfactory dysfunction, but the mechanism for this exacerbation remains unclear. Here, we examined the effects of respiratory syncytial virus (RSV) infection, in the presence or absence of airway allergy, on olfactory receptor neurons (ORNs) and their progenitors in mice. Immunohistological analyses revealed that cockroach allergen (CRA)-induced airway allergy alone did not affect the number of OMP(+) mature ORNs and SOX2(+) ORN progenitors. Intranasal RSV line 19 infection in allergy-free mice resulted in a transient decrease in SOX2(+) ORN progenitors without affecting OMP(+) ORNs. In contrast, the RSV-induced decrease in SOX2(+) ORN progenitors was exacerbated and prolonged in allergic mice, which resulted in eventual loss of OMP(+) ORNs. In the allergic mice, reduction of RSV in the olfactory epithelium was delayed as compared with allergy-free mice. These results suggest that ORN progenitors were impaired by RSV infection and that airway allergy exacerbated damage to ORN progenitors by reducing viral clearance.

  14. Olfactory modulation by dopamine in the context of aversive learning

    PubMed Central

    Riffell, Jeffrey A.; Martin, Joshua P.; Gage, Stephanie L.; Nighorn, Alan J.

    2012-01-01

    The need to detect and process sensory cues varies in different behavioral contexts. Plasticity in sensory coding can be achieved by the context-specific release of neuromodulators in restricted brain areas. The context of aversion triggers the release of dopamine in the insect brain, yet the effects of dopamine on sensory coding are unknown. In this study, we characterize the morphology of dopaminergic neurons that innervate each of the antennal lobes (ALs; the first synaptic neuropils of the olfactory system) of the moth Manduca sexta and demonstrate with electrophysiology that dopamine enhances odor-evoked responses of the majority of AL neurons while reducing the responses of a small minority. Because dopamine release in higher brain areas mediates aversive learning we developed a naturalistic, ecologically inspired aversive learning paradigm in which an innately appetitive host plant floral odor is paired with a mimic of the aversive nectar of herbivorized host plants. This pairing resulted in a decrease in feeding behavior that was blocked when dopamine receptor antagonists were injected directly into the ALs. These results suggest that a transient dopaminergic enhancement of sensory output from the AL contributes to the formation of aversive memories. We propose a model of olfactory modulation in which specific contexts trigger the release of different neuromodulators in the AL to increase olfactory output to downstream areas of processing. PMID:22552185

  15. Neurotropic effect of exogenous L-carnosine in cultured slices of the olfactory cortex from rat brain.

    PubMed

    Khama-Murad, A X; Pavlinova, L I; Mokrushin, A A

    2008-07-01

    Incubation of cultured slices of the olfactory cortex from rat brain with L-carnosine in concentrations of 50, 250, and 500 M induced activation of glutamatergic and GABAB-ergic mechanisms and facilitated long-term posttetanic potentiation. The effect of L-carnosine is mediated by its effect on AMPA- and NMDA-related glutamatergic receptors and on inhibitory GABAB receptors.

  16. Odor Preference Learning and Memory Modify GluA1 Phosphorylation and GluA1 Distribution in the Neonate Rat Olfactory Bulb: Testing the AMPA Receptor Hypothesis in an Appetitive Learning Model

    ERIC Educational Resources Information Center

    Cui, Wen; Darby-King, Andrea; Grimes, Matthew T.; Howland, John G.; Wang, Yu Tian; McLean, John H.; Harley, Carolyn W.

    2011-01-01

    An increase in synaptic AMPA receptors is hypothesized to mediate learning and memory. AMPA receptor increases have been reported in aversive learning models, although it is not clear if they are seen with memory maintenance. Here we examine AMPA receptor changes in a cAMP/PKA/CREB-dependent appetitive learning model: odor preference learning in…

  17. How to escape from Haller's rule: Olfactory system complexity in small and large Trichogramma evanescens parasitic wasps.

    PubMed

    van der Woude, Emma; Smid, Hans M

    2016-06-15

    While Haller's rule states that small animals have relatively larger brains, minute Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae) parasitic wasps scale brain size linearly with body size. This linear brain scaling allows them to decrease brain size beyond the predictions of Haller's rule, and is facilitated by phenotypic plasticity in brain size. In the present study we addressed whether this plasticity resulted in adaptations to the complexity of the morphology of the olfactory system of small and large T. evanescens. We used confocal laser scanning microscopy to compare size and number of glomeruli in the antennal lobe in the brain, and scanning electron microscopy to compare length and number of olfactory sensilla on the antennae. The results show a similar level of complexity of the olfactory system morphology of small and large wasps. Wasps with a similar genotype but very different brain and body size have similarly sized olfactory sensilla and most of them occur in equal numbers on the antennae. Small and large wasps also have a similar number of glomeruli in the antennal lobe. Glomeruli in small brains are, however, smaller in both absolute and relative volume. These similarities between small and large wasps may indicate that plasticity in brain size does not require plasticity in the gross morphology of the olfactory system. It may be vital for wasps of all sizes to have a large number of olfactory receptor types, to maintain olfactory precision in their search for suitable hosts, and consequently maintain their reproductive success and Darwinian fitness.

  18. Immunohistochemical localization and biochemical changes in catalase and superoxide dismutase during metamorphosis in the olfactory system of frog Microhyla ornata.

    PubMed

    Gaupale, Tekchand C; Londhe, Jayant; Ghaskadbi, Saroj; Subhedar, N K; Bhargava, Shobha

    2012-02-01

    Amphibian metamorphosis is characterized by rapid tissue remodeling and drastic changes in the body structure and function. Like other organs, olfactory system also undergoes a dramatic rearrangement as the animal experiences transition from aquatic to terrestrial habitat. Reactive oxygen species (ROS) are known to play an important role during anuran metamorphosis and role of antioxidant enzymes like catalase and superoxide dismutase (SOD) are believed to play a major role in these processes. Therefore, we hypothesize that antioxidant enzymes in the olfactory system may undergo changes that reflect metamorphic processes. Immunohistochemical study revealed the presence of catalase and SOD in the olfactory receptor neurons and also granular reaction in olfactory epithelium of medial diverticulum during metamorphosis. Catalase and SOD immunoreactivity were seen in the epithelium of lateral diverticulum, vomeronasal organ as metamorphosis proceeds and in the apical lining of olfactory epithelium of adult frog. Biochemical study showed that catalase activity gradually increases in the olfactory system from metamorphic stage 40-46 and adult, while SOD activity decreases from stage 40 to 46 and increases in adult. Thus, the localization and relative levels of catalase and SOD during metamorphosis in the olfactory system suggests that these enzymes may be involved in protection from oxidative damage.

  19. Olfactory epithelium changes in germfree mice

    PubMed Central

    François, Adrien; Grebert, Denise; Rhimi, Moez; Mariadassou, Mahendra; Naudon, Laurent; Rabot, Sylvie; Meunier, Nicolas

    2016-01-01

    Intestinal epithelium development is dramatically impaired in germfree rodents, but the consequences of the absence of microbiota have been overlooked in other epithelia. In the present study, we present the first description of the bacterial communities associated with the olfactory epithelium and explored differences in olfactory epithelium characteristics between germfree and conventional, specific pathogen-free, mice. While the anatomy of the olfactory epithelium was not significantly different, we observed a thinner olfactory cilia layer along with a decreased cellular turn-over in germfree mice. Using electro-olfactogram, we recorded the responses of olfactory sensitive neuronal populations to various odorant stimulations. We observed a global increase in the amplitude of responses to odorants in germfree mice as well as altered responses kinetics. These changes were associated with a decreased transcription of most olfactory transduction actors and of olfactory xenobiotic metabolising enzymes. Overall, we present here the first evidence that the microbiota modulates the physiology of olfactory epithelium. As olfaction is a major sensory modality for most animal species, the microbiota may have an important impact on animal physiology and behaviour through olfaction alteration. PMID:27089944

  20. Reduction of the number of new cells reaching olfactory bulbs impairs olfactory perception in the adult opossum.

    PubMed

    Grabiec, Marta; Turlejski, Kris; Djavadian, Rouzanna

    2009-01-01

    In adult mammals cells generated in the subventricular zone (SVZ) migrate to olfactory bulbs (OB). Functional significance of this continuous neurogenesis is not clear. We injected opossums (Monodelphis domestica) for seven consecutive days with a 5HT(1A) agonist (8-OH-DPAT or buspirone) or its antagonist WAY100635. One hour after each of these injections bromodeoxyuridine (BrdU) a marker of dividing cells was also injected. Two months later, when newly generated neurons settled in the OB and matured the ability of these opossums to detect hidden food by olfactory cues was tested. Afterwards, numbers of BrdU-labeled cell nuclei in their OB were counted and a phenotype of labeled cells established. In all groups investigated the majority of new cells differentiated into neurons (55-76%) and a lower proportion into astroglia (6-12%). Numbers of BrdU-labeled cells differed depending on the applied treatment: both agonists of the 5HT(1A) receptor increased these numbers, while its antagonist decreased them. The increased number of new OB interneurons did not change the time required for finding all three food items and therefore did not improve the opossums' performance in this test of the olfactory perception. However, opossums that had the reduced number of new generated OB cells searched longer for each food item and in consequence took three times longer to find all three crickets, than did opossums from other groups. In conclusion, lower numbers of new neurons in the opossums OB correlated with their worse behavioral performance in a test based on olfactory perception.

  1. The Styryl Dye FM1-43 Suppresses Odorant Responses in a Subset of Olfactory Neurons by Blocking Cyclic Nucleotide-gated (CNG) Channels*

    PubMed Central

    Breunig, Esther; Kludt, Eugen; Czesnik, Dirk; Schild, Detlev

    2011-01-01

    Many olfactory receptor neurons use a cAMP-dependent transduction mechanism to transduce odorants into depolarizations. This signaling cascade is characterized by a sequence of two currents: a cation current through cyclic nucleotide-gated channels followed by a chloride current through calcium-activated chloride channels. To date, it is not possible to interfere with these generator channels under physiological conditions with potent and specific blockers. In this study we identified the styryl dye FM1-43 as a potent blocker of native olfactory cyclic nucleotide-gated channels. Furthermore, we characterized this substance to stain olfactory receptor neurons that are endowed with cAMP-dependent transduction. This allows optical differentiation and pharmacological interference with olfactory receptor neurons at the level of the signal transduction. PMID:21646359

  2. Do Farmers Using Conventional and Non-Conventional Systems of Agriculture Have Different Perceptions of the Diversity of Wild Birds? Implications for Conservation.

    PubMed

    Silva-Andrade, Horasa Lima; de Andrade, Luciano Pires; Muniz, Lauana Souza; Telino-Júnior, Wallace Rodrigues; Albuquerque, Ulysses Paulino; Lyra-Neves, Rachel Maria

    2016-01-01

    Farmers' perceptions of birds' interactions with agricultural production systems are fundamental to species conservation efforts. In the present study, we evaluated the perceptions of birds held by farmers who engage in conventional and non-conventional agricultural production processes and the implications of potential differences in these perceptions on species conservation. To accomplish this, data were collected using questionnaires, semi-structured interviews, and other complementary sources of information gathered from 191 farmers in northeastern Brazil. Although some similarities were identified among the farmers in their perceptions and local ecological knowledge (LEK) of birds, differences existed between the conventional and non-conventional farmers in their attitudes toward, conflicts with, and usage of bird species. Compared to the conventional farmers, the non-conventional farmers could identify more bird species, possessed more favorable attitudes toward birds, and engaged in practices more beneficial to the conservation of avifauna. The perceptions that were identified were related to the type of agriculture practiced, and such perceptions may affect the conservation of bird species. Therefore, the adoption of certain agricultural practices has important implications for conservation. Our results indicate the need for investment in public policies, programs and actions that account for farmers' knowledge and perceptions. Such investments will contribute to the development and adoption of practices supporting wild bird conservation in agricultural areas.

  3. Do Farmers Using Conventional and Non-Conventional Systems of Agriculture Have Different Perceptions of the Diversity of Wild Birds? Implications for Conservation

    PubMed Central

    de Andrade, Luciano Pires; Muniz, Lauana Souza; Telino-Júnior, Wallace Rodrigues; Albuquerque, Ulysses Paulino; Lyra-Neves, Rachel Maria

    2016-01-01

    Farmers’ perceptions of birds’ interactions with agricultural production systems are fundamental to species conservation efforts. In the present study, we evaluated the perceptions of birds held by farmers who engage in conventional and non-conventional agricultural production processes and the implications of potential differences in these perceptions on species conservation. To accomplish this, data were collected using questionnaires, semi-structured interviews, and other complementary sources of information gathered from 191 farmers in northeastern Brazil. Although some similarities were identified among the farmers in their perceptions and local ecological knowledge (LEK) of birds, differences existed between the conventional and non-conventional farmers in their attitudes toward, conflicts with, and usage of bird species. Compared to the conventional farmers, the non-conventional farmers could identify more bird species, possessed more favorable attitudes toward birds, and engaged in practices more beneficial to the conservation of avifauna. The perceptions that were identified were related to the type of agriculture practiced, and such perceptions may affect the conservation of bird species. Therefore, the adoption of certain agricultural practices has important implications for conservation. Our results indicate the need for investment in public policies, programs and actions that account for farmers’ knowledge and perceptions. Such investments will contribute to the development and adoption of practices supporting wild bird conservation in agricultural areas. PMID:27243222

  4. Histochemical and ultrastructural analyses of the lubrication systems in the olfactory organs of soft-shelled turtle

    PubMed Central

    NAKAMUTA, Shoko; YOKOSUKA, Makoto; TANIGUCHI, Kazumi; YAMAMOTO, Yoshio; NAKAMUTA, Nobuaki

    2016-01-01

    In general, the nasal cavity of turtles is divided into two chambers: the upper chamber, lined with the olfactory epithelium containing ciliated olfactory receptor cells, and the lower chamber, lined with the vomeronasal epithelium containing microvillous receptor cells. In the nasal cavity of soft-shelled turtles, however, differences between the upper and lower chamber epithelia are unclear due to the presence of ciliated receptor cells in both epithelia. In the olfactory organ of vertebrates, the surface of sensory epithelium is covered with secretory products of associated glands and supporting cells, playing important roles in the olfaction by dissolving odorants and transporting them to the olfactory receptors. Here, the associated glands and supporting cells in the olfactory organ of soft-shelled turtles were analyzed histochemically and ultrastructurally. The upper chamber epithelium possessed associated glands, constituted by cells containing serous secretory granules; whereas, the lower chamber epithelium did not. In the upper chamber epithelium, secretory granules filled the supranuclear region of supporting cells, while most of the granules were distributed near the free border of supporting cells in the lower chamber epithelium. The secretory granules in the supporting cells of both epithelia were seromucous, but alcian blue stained them differently from each other. In addition, distinct expression of carbohydrates was suggested by the differences in lectin binding. These data indicate the quantitative and qualitative differences in the secretory properties between the upper and lower chamber epithelia, suggesting their distinct roles in the olfaction. PMID:26782135

  5. CD36 is expressed in a defined subpopulation of neurons in the olfactory epithelium

    PubMed Central

    Xavier, André Machado; Ludwig, Raissa Guimarães; Nagai, Maíra Harume; de Almeida, Tiago Jonas; Watanabe, Hebe Mizuno; Hirata, Marcio Yukio; Rosenstock, Tatiana Rosado; Papes, Fabio; Malnic, Bettina; Glezer, Isaias

    2016-01-01

    The sensory neurons in the olfactory epithelium (OSNs) are equipped with a large repertoire of olfactory receptors and the associated signal transduction machinery. In addition to the canonical OSNs, which express odorant receptors (ORs), the epithelium contains specialized subpopulations of sensory neurons that can detect specific information from environmental cues and relay it to relevant neuronal circuitries. Here we describe a subpopulation of mature OSNs in the main olfactory epithelium (MOE) which expresses CD36, a multifunctional receptor involved in a series of biological processes, including sensory perception of lipid ligands. The Cd36 expressing neurons coexpress markers of mature OSNs and are dispersed throughout the MOE. Unlike several ORs analyzed in our study, we found frequent coexpression of the OR Olfr287 in these neurons, suggesting that only a specific set of ORs may be coexpressed with CD36 in OSNs. We also show that CD36 is expressed in the cilia of OSNs, indicating a possible role in odorant detection. CD36-deficient mice display no signs of gross changes in the organization of the olfactory epithelium, but show impaired preference for a lipid mixture odor. Our results show that CD36-expressing neurons represent a distinct population of OSNs, which may have specific functions in olfaction. PMID:27145700

  6. A Closer Look at Acid-Base Olfactory Titrations

    ERIC Educational Resources Information Center

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  7. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device. (a) Identification. An olfactory test device is used to determine whether an olfactory loss is present. The device... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Olfactory test device. 874.1600 Section...

  8. 21 CFR 874.1600 - Olfactory test device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1600 Olfactory test device. (a) Identification. An olfactory test device is used to determine whether an olfactory loss is present. The device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Olfactory test device. 874.1600 Section...

  9. Detection of Olfactory Dysfunction Using Olfactory Event Related Potentials in Young Patients with Multiple Sclerosis

    PubMed Central

    Caminiti, Fabrizia; De Salvo, Simona; De Cola, Maria Cristina; Russo, Margherita; Bramanti, Placido; Marino, Silvia; Ciurleo, Rosella

    2014-01-01

    Background Several studies reported olfactory dysfunction in patients with multiple sclerosis. The estimate of the incidence of olfactory deficits in multiple sclerosis is uncertain; this may arise from different testing methods that may be influenced by patients' response bias and clinical, demographic and cognitive features. Aims To evaluate objectively the olfactory function using Olfactory Event Related Potentials. Materials and Methods We tested the olfactory function of 30 patients with relapsing remitting multiple sclerosis (mean age of 36.03±6.96 years) and of 30 age, sex and smoking–habit matched healthy controls by using olfactory potentials. A selective and controlled stimulation of the olfactory system to elicit the olfactory event related potentials was achieved by a computer-controlled olfactometer linked directly with electroencephalograph. Relationships between olfactory potential results and patients' clinical characteristics, such as gender, disability status score, disease-modifying therapy, and disease duration, were evaluated. Results Seven of 30 patients did not show olfactory event related potentials. Sixteen of remaining 23 patients had a mean value of amplitude significantly lower than control group (p<0.01). The presence/absence of olfactory event related potentials was associated with dichotomous expanded disability status scale (p = 0.0433), as well as inversely correlated with the disease duration (r = −0.3641, p = 0.0479). Conclusion Unbiased olfactory dysfunction of different severity found in multiple sclerosis patients suggests an organic impairment which could be related to neuroinflammatory and/or neurodegenerative processes of olfactory networks, supporting the recent findings on neurophysiopathology of disease. PMID:25047369

  10. Drosophila Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated Olfactory Circuit

    PubMed Central

    Ebrahim, Shimaa A. M.; Dweck, Hany K. M.; Stökl, Johannes; Hofferberth, John E.; Trona, Federica; Weniger, Kerstin; Rybak, Jürgen; Seki, Yoichi; Stensmyr, Marcus C.; Sachse, Silke; Hansson, Bill S.; Knaden, Markus

    2015-01-01

    Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps. This avoidance is mediated via a highly specific olfactory sensory neuron (OSN) type. While the larval OSN expresses the olfactory receptor Or49a and is tuned to the Leptopilina odor iridomyrmecin, the adult expresses both Or49a and Or85f and in addition detects the wasp odors actinidine and nepetalactol. The information is transferred via projection neurons to a specific part of the lateral horn known to be involved in mediating avoidance. Drosophila has thus developed a dedicated circuit to detect a life-threatening enemy based on the smell of its semiochemicals. Such an enemy-detecting olfactory circuit has earlier only been characterized in mice and nematodes. PMID:26674493

  11. Leucine-Rich Repeat Transmembrane Proteins Instruct Discrete Dendrite Targeting in an Olfactory Map

    PubMed Central

    Hong, Weizhe; Zhu, Haitao; Potter, Christopher J.; Barsh, Gabrielle; Kurusu, Mitsuhiko; Zinn, Kai; Luo, Liqun

    2010-01-01

    Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at ∼50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a 3-dimensional discrete neural map are unclear. Here we show that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) is differentially expressed in different classes of PNs. Loss- and gain-of-function studies indicate that Caps instructs the segregation of Caps-positive and negative PN dendrites to discrete glomerular targets. Moreover, Caps does not mediate homophilic interactions and regulates PN dendrite targeting independent of pre-synaptic ORNs. The closely related protein Tartan plays a partially redundant function with Capricious. These LRR proteins are likely part of a combinatorial cell-surface code that instructs discrete olfactory map formation. PMID:19915565

  12. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map.

    PubMed

    Hong, Weizhe; Zhu, Haitao; Potter, Christopher J; Barsh, Gabrielle; Kurusu, Mitsuhiko; Zinn, Kai; Luo, Liqun

    2009-12-01

    Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at approximately 50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a three-dimensional discrete neural map are unclear. We found that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) was differentially expressed in different classes of PNs. Loss-of-function and gain-of-function studies indicated that Caps instructs the segregation of Caps-positive and Caps-negative PN dendrites to discrete glomerular targets. Moreover, Caps-mediated PN dendrite targeting was independent of presynaptic ORNs and did not involve homophilic interactions. The closely related protein Tartan was partially redundant with Caps. These LRR proteins are probably part of a combinatorial cell-surface code that instructs discrete olfactory map formation.

  13. Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation

    PubMed Central

    Jefferis, Gregory S.X.E.; Potter, Christopher J.; Chan, Alexander M.; Marin, Elizabeth C.; Rohlfing, Torsten; Maurer, Calvin R.; Luo, Liqun

    2007-01-01

    Summary In Drosophila, ∼50 classes of olfactory receptor neurons (ORNs) send axons to 50 corresponding glomeruli in the antennal lobe. Uniglomerular projection neurons (PNs) relay olfactory information to the mushroom body (MB) and lateral horn (LH). Here, we combine single-cell labeling and image registration to create high-resolution, quantitative maps of the MB and LH for 35 input PN channels and several groups of LH neurons. We find (1) PN inputs to the MB are stereotyped as previously shown for the LH; (2) PN partners of ORNs from different sensillar groups are clustered in the LH; (3) fruit odors are represented mostly in the posterior-dorsal LH, whereas candidate pheromone-responsive PNs project to the anterior-ventral LH; (4) dendrites of single LH neurons each overlap with specific subsets of PN axons. Our results suggest that the LH is organized according to biological values of olfactory input. PMID:17382886

  14. Disruption of Aedes aegypti Olfactory System Development through Chitosan/siRNA Nanoparticle Targeting of semaphorin-1a

    PubMed Central

    Mysore, Keshava; Flannery, Ellen M.; Tomchaney, Michael; Severson, David W.; Duman-Scheel, Molly

    2013-01-01

    Despite the devastating impact of mosquito-borne illnesses on human health, surprisingly little is known about mosquito developmental biology, including development of the olfactory system, a tissue of vector importance. Analysis of mosquito olfactory developmental genetics has been hindered by a lack of means to target specific genes during the development of this sensory system. In this investigation, chitosan/siRNA nanoparticles were used to target semaphorin-1a (sema1a) during olfactory system development in the dengue and yellow fever vector mosquito Aedes aegypti. Immunohistochemical analyses and anterograde tracing of antennal sensory neurons, which were used to track the progression of olfactory development in this species, revealed antennal lobe defects in sema1a knockdown fourth instar larvae. These findings, which correlated with a larval odorant tracking behavioral phenotype, identified previously unreported roles for Sema1a in the developing insect larval olfactory system. Analysis of sema1a knockdown pupae also revealed a number of olfactory phenotypes, including olfactory receptor neuron targeting and projection neuron defects coincident with a collapse in the structure and shape of the antennal lobe and individual glomeruli. This study, which is to our knowledge the first functional genetic analysis of insect olfactory development outside of D. melanogaster, identified critical roles for Sema1a during Ae. aegypti larval and pupal olfactory development and advocates the use of chitosan/siRNA nanoparticles as an effective means of targeting genes during post-embryonic Ae. aegypti development. Use of siRNA nanoparticle methodology to understand sensory developmental genetics in mosquitoes will provide insight into the evolutionary conservation and divergence of key developmental genes which could be exploited in the development of both common and species-specific means for intervention. PMID:23696908

  15. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    SciTech Connect

    Zhou Jun; Chen Peihua; Liu Qingjun; Wang Ping; Yang Wei

    2009-05-23

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  16. Olfactory Mechanisms for Discovery of Odorants to Reduce Insect-Host Contact.

    PubMed

    Clark, Jonathan T; Ray, Anandasankar

    2016-09-01

    Insects have developed highly sophisticated and sensitive olfactory systems to find animal or plant hosts for feeding. Some insects vector pathogens that cause diseases in hundreds of millions of people and destroy billions of dollars of food products every year. There is great interest, therefore, in understanding how the insect olfactory system can be manipulated to reduce their contact with hosts. Here, we review recent advances in our understanding of insect olfactory detection mechanisms, which may serve as a foundation for designing insect control programs based on manipulation of their behaviors by using odorants. Because every insect species has a unique set of olfactory receptors and olfactory-mediated behaviors, we focus primarily on general principles of odor detection that potentially apply to most insects. While these mechanisms have emerged from studies on model systems for study of insect olfaction, such as Drosophila melanogaster, they provide a foundation for discovery of odorants to repel vector insects or reduce their host-seeking behavior.

  17. Flash Photolysis of Caged Compounds in the Cilia of Olfactory Sensory Neurons

    PubMed Central

    Boccaccio, Anna; Sagheddu, Claudia; Menini, Anna

    2011-01-01

    Photolysis of caged compounds allows the production of rapid and localized increases in the concentration of various physiologically active compounds1. Caged compounds are molecules made physiologically inactive by a chemical cage that can be broken by a flash of ultraviolet light. Here, we show how to obtain patch-clamp recordings combined with photolysis of caged compounds for the study of olfactory transduction in dissociated mouse olfactory sensory neurons. The process of olfactory transduction (Figure 1) takes place in the cilia of olfactory sensory neurons, where odorant binding to receptors leads to the increase of cAMP that opens cyclic nucleotide-gated (CNG) channels2. Ca entry through CNG channels activates Ca-activated Cl channels. We show how to dissociate neurons from the mouse olfactory epithelium3 and how to activate CNG channels or Ca-activated Cl channels by photolysis of caged cAMP4 or caged Ca5. We use a flash lamp6,7 to apply ultraviolet flashes to the ciliary region to uncage cAMP or Ca while patch-clamp recordings are taken to measure the current in the whole-cell voltage-clamp configuration8-11. PMID:22064384

  18. Flash photolysis of caged compounds in the cilia of olfactory sensory neurons.

    PubMed

    Boccaccio, Anna; Sagheddu, Claudia; Menini, Anna

    2011-10-29

    Photolysis of caged compounds allows the production of rapid and localized increases in the concentration of various physiologically active compounds. Caged compounds are molecules made physiologically inactive by a chemical cage that can be broken by a flash of ultraviolet light. Here, we show how to obtain patch-clamp recordings combined with photolysis of caged compounds for the study of olfactory transduction in dissociated mouse olfactory sensory neurons. The process of olfactory transduction (Figure 1) takes place in the cilia of olfactory sensory neurons, where odorant binding to receptors leads to the increase of cAMP that opens cyclic nucleotide-gated (CNG) channels. Ca entry through CNG channels activates Ca-activated Cl channels. We show how to dissociate neurons from the mouse olfactory epithelium and how to activate CNG channels or Ca-activated Cl channels by photolysis of caged cAMP or caged Ca. We use a flash lamp to apply ultraviolet flashes to the ciliary region to uncage cAMP or Ca while patch-clamp recordings are taken to measure the current in the whole-cell voltage-clamp configuration.

  19. Vasoactive intestinal polypeptide mediates circadian rhythms in mammalian olfactory bulb and olfaction.

    PubMed

    Miller, Jae-Eun Kang; Granados-Fuentes, Daniel; Wang, Thomas; Marpegan, Luciano; Holy, Timothy E; Herzog, Erik D

    2014-04-23

    Accumulating evidence suggests that the olfactory bulbs (OBs) function as an independent circadian system regulating daily rhythms in olfactory performance. However, the cells and signals in the olfactory system that generate and coordinate these circadian rhythms are unknown. Using real-time imaging of gene expression, we found that the isolated olfactory epithelium and OB, but not the piriform cortex, express similar, sustained circadian rhythms in PERIOD2 (PER2). In vivo, PER2 expression in the OB of mice is circadian, approximately doubling with a peak around subjective dusk. Furthermore, mice exhibit circadian rhythms in odor detection performance with a peak at approximately subjective dusk. We also found that circadian rhythms in gene expression and odor detection performance require vasoactive intestinal polypeptide (VIP) or its receptor VPAC2R. VIP is expressed, in a circadian manner, in interneurons in the external plexiform and periglomerular layers, whereas VPAC2R is expressed in mitral and external tufted cells in the OB. Together, these results indicate that VIP signaling modulates the output from the OB to maintain circadian rhythms in the mammalian olfactory system.

  20. Channel properties of the splicing isoforms of the olfactory calcium-activated chloride channel Anoctamin 2.

    PubMed

    Ponissery Saidu, Samsudeen; Stephan, Aaron B; Talaga, Anna K; Zhao, Haiqing; Reisert, Johannes

    2013-06-01

    Anoctamin (ANO)2 (or TMEM16B) forms a cell membrane Ca(2+)-activated Cl(-) channel that is present in cilia of olfactory receptor neurons, vomeronasal microvilli, and photoreceptor synaptic terminals. Alternative splicing of Ano2 transcripts generates multiple variants with the olfactory variants skipping exon 14 and having alternative splicing of exon 4. In the present study, 5' rapid amplification of cDNA ends analysis was conducted to characterize the 5' end of olfactory Ano2 transcripts, which showed that the most abundant Ano2 transcripts in the olfactory epithelium contain a novel starting exon that encodes a translation initiation site, whereas transcripts of the publically available sequence variant, which has an alternative and longer 5' end, were present in lower abundance. With two alternative starting exons and alternative splicing of exon 4, four olfactory ANO2 isoforms are thus possible. Patch-clamp experiments in transfected HEK293T cells expressing these isoforms showed that N-terminal sequences affect Ca(2+) sensitivity and that the exon 4-encoded sequence is required to form functional channels. Coexpression of the two predominant isoforms, one with and one without the exon 4 sequence, as well as coexpression of the two rarer isoforms showed alterations in channel properties, indicating that different isoforms interact with each other. Furthermore, channel properties observed from the coexpression of the predominant isoforms better recapitulated the native channel properties, suggesting that the native channel may be composed of two or more splicing isoforms acting as subunits that together shape the channel properties.

  1. Tonic and stimulus-evoked nitric oxide production in the mouse olfactory bulb

    PubMed Central

    Lowe, Graeme; Buerk, Donald G.; Ma, Jie; Gelperin, Alan

    2008-01-01

    Nitric oxide (NO) has been long assumed to play a key role in mammalian olfaction. This was based largely on circumstantial evidence, i.e. prominent staining for nitric oxide synthase (NOS) and cyclic GMP or soluble guanylyl cyclase, an effector enzyme activated by NO, in local interneurons of the olfactory bulb. Here we employ innovative custom-fabricated NO micro-sensors to obtain the first direct, time-resolved measurements of NO signaling in the olfactory bulb. In 400 μm thick mouse olfactory bulb slices, we detected a steady average basal level of 87 nM NO in the extracellular space of mitral or granule cell layers. This NO ‘tone’ was sensitive to NOS substrate manipulation (200 μM L-arginine, 2 mM L-NAME) and Mg2+ modulation of NMDA receptor conductance. Electrical stimulation of olfactory nerve fibers evoked transient (peak at 10 s) increments in NO levels 90 – 100 nM above baseline. In the anesthetized mouse, NO micro-sensors inserted into the granule cell layer detected NO transients averaging 55 nM in amplitude and peaking at 3.4 sec after onset of a 5 sec odorant stimulation. These findings suggest dual roles for NO signaling in the olfactory bulb – tonic inhibitory control of principal neurons, and regulation of circuit dynamics during odor information processing. PMID:18407420

  2. Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs.

    PubMed

    Scholz, Paul; Mohrhardt, Julia; Jansen, Fabian; Kalbe, Benjamin; Haering, Claudia; Klasen, Katharina; Hatt, Hanns; Osterloh, Sabrina

    2016-01-01

    It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl(-) efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca(2+) from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.

  3. Selectivity of odorant receptors in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect olfactory receptors (ORs) detect chemical signals, shape neuronal physiology and regulate behavior. Although ORs have been categorized as generalists and specialists based on their ligand spectrum, both electrophysiological studies and recent pharmacological investigations show that ORs spec...

  4. Functional morphology of the olfactory organ of the tongue sole, Cynoglossus semilaevis

    NASA Astrophysics Data System (ADS)

    Ma, Aijun; Wang, Xin'an

    2010-03-01

    The morphology and structure of the olfactory organ of Cynoglossus semilaevis Günther are described. The oval olfactory sacs on both sides differ in size and in the number of lamellae, with those on the abocular side having smaller sacs and fewer lamellae than those on the ocular side. On the ocular side, the average ratio of sac length to eye diameter is 2.1 (i.e.>1) with an average of 91 lamellae, while on the abocular side, the values were 1.7 (i.e.>1) and 69, respectively. In addition, the surface morphology varies in different parts of the lamella. The frontal part, near the anterior nostril, is a non-sensory margin with cilia-free epidermal cells. Within this is an internal ciliated sensory area, which is intercalated with ciliated receptor cells and a few ciliated non-sensory cells. Additionally, some dense ciliated non-sensory cells make up a non-sensory area, which also contains cilia-free epidermal cells distributed in patches. In the rear of the olfactory sac near the posterior nostril, the lamellae differ in morphology from those of the frontal olfactory sac but are similar in having few ciliated receptor cells. In other words, the surface of the lamellae in the rear part of the olfactory sac is mainly non-sensory. At present, four types of lamellae (I, II, III and IV) have been recognized in relation to the pattern of the sensory epithelium. In this study, the frontal and rear lamellae resembled types I and IV, respectively, but are referred to as types I' and IV' because they are slightly less developed. Data on the ratio of length of lamellae to eye diameter, number of lamellae and the type of surface pattern of the lamellae show that the development of the olfactory system of C. semilaevis facilitates prey capture.

  5. Interglomerular Connectivity within the Canonical and GC-D/Necklace Olfactory Subsystems

    PubMed Central

    Puche, Adam C.; Munger, Steven D.

    2016-01-01

    The mammalian main olfactory system contains several subsystems that differ not only in the receptors they express and the glomerular targets they innervate within the main olfactory bulb (MOB), but also in the strategies they use to process odor information. The canonical main olfactory system employs a combinatorial coding strategy that represents odorant identity as a pattern of glomerular activity. By contrast, the "GC-D/necklace" olfactory subsystem—formed by olfactory sensory neurons expressing the receptor guanylyl cyclase GC-D and their target necklace glomeruli (NGs) encircling the caudal MOB—is critical for the detection of a small number of semiochemicals that promote the acquisition of food preferences. The formation of these socially-transmitted food preferences requires the animal to integrate information about two types of olfactory stimuli: these specialized social chemosignals and the food odors themselves. However, the neural mechanisms with which the GC-D/necklace subsystem processes this information are unclear. We used stimulus-induced increases in intrinsic fluorescence signals to map functional circuitry associated with NGs and canonical glomeruli (CGs) in the MOB. As expected, CG-associated activity spread laterally through both the glomerular and external plexiform layers associated with activated glomeruli. Activation of CGs or NGs resulted in activity spread between the two types of glomeruli; there was no evidence of preferential connectivity between individual necklace glomeruli. These results support previous anatomical findings that suggest the canonical and GC-D/necklace subsystems are functionally connected and may integrate general odor and semiochemical information in the MOB. PMID:27902696

  6. Microvillous cells expressing IP3R3 in the olfactory epithelium of mice

    PubMed Central

    Hegg, Colleen C.; Jia, Cuihong; Chick, Wallace S.; Restrepo, Diego; Hansen, Anne

    2015-01-01

    Microvillous cells of the main olfactory epithelium have been described variously as primary olfactory neurons, secondary chemosensory cells, or non-sensory cells. Here we generated an IP3R3tm1(tauGFP) mouse in which the coding region for a fusion protein of tau and green fluorescent protein (tauGFP) replaces the first exon of the Itpr3 gene. We provide immunohistochemical and functional characterization of the cells expressing IP3 receptor type 3 in the olfactory epithelium. Since we determined that these cells bear microvilli at their apex, we call these cells IP3R3 MV cells. The cell body of these IP3R3 MV cells lies in the upper third of the main olfactory epithelium; a long thick basal process projects towards the base of the epithelium without penetrating the basal lamina. Retrograde labeling and unilateral bulbectomy corroborated that these IP3R3 MV cells do not extend axons to the olfactory bulb and therefore are not olfactory sensory neurons. The immunohistochemical features of the IP3R3 MV cell varied suggesting either developmental stages or the existence of subsets of these cells. Thus, for example, subsets of the IP3R3 MV cells make contact with substance P fibers or express the purinergic receptor P2X3. In addition, in recordings of intracellular calcium, these cells respond to ATP and substance P as well as to a variety of odors. The characterization of IP3R3 MV cells as non-neuronal chemoresponsive cells helps explain the differing descriptions of microvillous cells in the literature. PMID:20958798

  7. [Odor sensing system and olfactory display].

    PubMed

    Nakamoto, Takamichi

    2014-01-01

    In this review, an odor sensing system and an olfactory display are introduced into people in pharmacy. An odor sensing system consists of an array of sensors with partially overlapping specificities and pattern recognition technique. One of examples of odor sensing systems is a halitosis sensor which quantifies the mixture composition of three volatile sulfide compounds. A halitosis sensor was realized using a preconcentrator to raise sensitivity and an electrochemical sensor array to suppress the influence of humidity. Partial least squares (PLS) method was used to quantify the mixture composition. The experiment reveals that the sufficient accuracy was obtained. Moreover, the olfactory display, which present scents to human noses, is explained. A multi-component olfactory display enables the presentation of a variety of smells. The two types of multi-component olfactory display are described. The first one uses many solenoid valves with high speed switching. The valve ON frequency determines the concentration of the corresponding odor component. The latter one consists of miniaturized liquid pumps and a surface acoustic wave (SAW) atomizer. It enables the wearable olfactory display without smell persistence. Finally, the application of the olfactory display is demonstrated. Virtual ice cream shop with scents was made as a content of interactive art. People can enjoy harmony among vision, audition and olfaction. In conclusion, both odor sensing system and olfactory display can contribute to the field of human health care.

  8. Olfactory Behavioral Testing in the Adult Mouse

    PubMed Central

    M. Witt, Rochelle; M. Galligan, Meghan; R. Despinoy, Jennifer; Segal, Rosalind

    2009-01-01

    The rodent olfactory system is of increasing interest to scientists, studied, in part, in systems biology because of its stereotyped, yet accessible circuitry. In addition, this area's unique ability to generate new neurons throughout an organism's lifetime makes it an attractive system for developmental and regenerative biologists alike. Such interest necessitates a means for a quick, yet reliable assessment of olfactory function. Many tests of olfactory ability are complex, variable or not specifically designed for mice. Also, some tests are sensitive to memory deficits as well as defects in olfactory abilities, confounding obtained results. Here, we describe a simple battery of tests designed to identify defects in olfactory sensitivity and preference. First, an initial general health assessment allows for the identification of animals suitable for further testing. Second, mice are exposed to various dilutions of scents to ascertain whether there is a threshold difference. Third, mice are presented with various scents, both attractive and aversive, that allow for the assessment of olfactory preference. These simple studies should make the initial characterization of olfactory behavior accessible for labs of varied resources and expertise. PMID:19229182

  9. Olfactory behavioral testing in the adult mouse.

    PubMed

    Witt, Rochelle M; Galligan, Meghan M; Despinoy, Jennifer R; Segal, Rosalind

    2009-01-28

    The rodent olfactory system is of increasing interest to scientists, studied, in part, in systems biology because of its stereotyped, yet accessible circuitry. In addition, this area's unique ability to generate new neurons throughout an organism's lifetime makes it an attractive system for developmental and regenerative biologists alike. Such interest necessitates a means for a quick, yet reliable assessment of olfactory function. Many tests of olfactory ability are complex, variable or not specifically designed for mice. Also, some tests are sensitive to memory deficits as well as defects in olfactory abilities, confounding obtained results. Here, we describe a simple battery of tests designed to identify defects in olfactory sensitivity and preference. First, an initial general health assessment allows for the identification of animals suitable for further testing. Second, mice are exposed to various dilutions of scents to ascertain whether there is a threshold difference. Third, mice are presented with various scents, both attractive and aversive, that allow for the assessment of olfactory preference. These simple studies should make the initial characterization of olfactory behavior accessible for labs of varied resources and expertise.

  10. Information processing in the mammalian olfactory system.

    PubMed

    Lledo, Pierre-Marie; Gheusi, Gilles; Vincent, Jean-Didier

    2005-01-01

    Recently, modern neuroscience has made considerable progress in understanding how the brain perceives, discriminates, and recognizes odorant molecules. This growing knowledge took over when the sense of smell was no longer considered only as a matter for poetry or the perfume industry. Over the last decades, chemical senses captured the attention of scientists who started to investigate the different stages of olfactory pathways. Distinct fields such as genetic, biochemistry, cellular biology, neurophysiology, and behavior have contributed to provide a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. So far, the combination of these approaches has been most effective at the cellular level, but there are already signs, and even greater hope, that the same is gradually happening at the systems level. This review summarizes the current ideas concerning the cellular mechanisms and organizational strategies used by the olfactory system to process olfactory information. We present findings that exemplified the high degree of olfactory plasticity, with special emphasis on the first central relay of the olfactory system. Recent observations supporting the necessity of such plasticity for adult brain functions are also discussed. Due to space constraints, this review focuses mainly on the olfactory systems of vertebrates, and primarily those of mammals.

  11. Nested expression domains for odorant receptors in zebrafish olfactory epithelium

    PubMed Central

    Weth, Franco; Nadler, Walter; Korsching, Sigrun

    1996-01-01

    The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system. PMID:8917589

  12. Olfactory impairment in the rotenone model of Parkinson’s disease is associated with bulbar dopaminergic D2 activity after REM sleep deprivation

    PubMed Central

    Rodrigues, Lais S.; Targa, Adriano D. S.; Noseda, Ana Carolina D.; Aurich, Mariana F.; Da Cunha, Cláudio; Lima, Marcelo M. S.

    2014-01-01

    Olfactory and rapid eye movement (REM) sleep deficits are commonly found in untreated subjects with a recent diagnosis of Parkinson’s disease (PD). Additionally, different studies report declines in olfactory performance during a short period of sleep deprivation. Mechanisms underlying these clinical manifestations are poorly understood, and impairment of dopamine (DA) neurotransmission in the olfactory bulb and the nigrostriatal pathway may have important roles in olfaction and REM sleep disturbances. Therefore, we hypothesized that modulation of the dopaminergic D2 receptors in the olfactory bulb could provide a more comprehensive understanding of the olfactory deficits in PD and REM sleep deprivation (REMSD). We decided to investigate the olfactory, neurochemical, and histological alterations generated through the administration of piribedil (a selective D2 agonist) or raclopride (a selective D2 antagonist) within the glomerular layer of the olfactory bulb, in rats subjected to intranigral rotenone and REMSD. Our findings provide evidence of the occurrence of a negative correlation (r = −0.52, P = 0.04) between the number of periglomerular TH-ir neurons and the bulbar levels of DA in the rotenone, but not sham, groups. A significant positive correlation (r = 0.34, P = 0.03) was observed between nigrostriatal DA levels and olfactory discrimination index (DI) for the sham groups, indicating that increased DA levels in the substantia nigra pars compacta (SNpc) are associated with enhanced olfactory discrimination performance. Also, increased levels in bulbar and striatal DA were induced by piribedil in the rotenone control and rotenone REMSD groups, consistent with reductions in the DI. The present evidence reinforce the idea that DA produced by periglomerular neurons, particularly the bulbar dopaminergic D2 receptors, is an essential participant in olfactory discrimination processes, as the SNpc, and the striatum. PMID:25520618

  13. Olfactory deposition of inhaled nanoparticles in humans

    PubMed Central

    Garcia, Guilherme J. M.; Schroeter, Jeffry D.; Kimbell, Julia S.

    2016-01-01

    Context Inhaled nanoparticles can migrate to the brain via the olfactory bulb, as demonstrated in experiments in several animal species. This route of exposure may be the mechanism behind the correlation between air pollution and human neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Objectives This manuscript aims to (1) estimate the dose of inhaled nanoparticles that deposit in the human olfactory epithelium during nasal breathing at rest and (2) compare the olfactory dose in humans with our earlier dose estimates for rats. Materials and methods An anatomically-accurate model of the human nasal cavity was developed based on computed tomography scans. The deposition of 1–100 nm particles in the whole nasal cavity and its olfactory region were estimated via computational fluid dynamics (CFD) simulations. Our CFD methods were validated by comparing our numerical predictions for whole-nose deposition with experimental data and previous CFD studies in the literature. Results In humans, olfactory dose of inhaled nanoparticles is highest for 1–2 nm particles with approximately 1% of inhaled particles depositing in the olfactory region. As particle size grows to 100 nm, olfactory deposition decreases to 0.01% of inhaled particles. Discussion and conclusion Our results suggest that the percentage of inhaled particles that deposit in the olfactory region is lower in humans than in rats. However, olfactory dose per unit surface area is estimated to be higher in humans due to their larger minute volume. These dose estimates are important for risk assessment and dose-response studies investigating the neurotoxicity of inhaled nanoparticles. PMID:26194036

  14. Evolution of Acid-Sensing Olfactory Circuits in Drosophilids.

    PubMed

    Prieto-Godino, Lucia L; Rytz, Raphael; Cruchet, Steeve; Bargeton, Benoîte; Abuin, Liliane; Silbering, Ana F; Ruta, Vanessa; Dal Peraro, Matteo; Benton, Richard

    2017-02-08

    Animals adapt their behaviors to specific ecological niches, but the genetic and cellular basis of nervous system evolution is poorly understood. We have compared the olfactory circuits of the specialist Drosophila sechellia-which feeds exclusively on Morinda citrifolia fruit-with its generalist cousins D. melanogaster and D. simulans. We show that D. sechellia exhibits derived odor-evoked attraction and physiological sensitivity to the abundant Morinda volatile hexanoic acid and characterize how the responsible sensory receptor (the variant ionotropic glutamate receptor IR75b) and attraction-mediating circuit have evolved. A single amino acid change in IR75b is sufficient to recode it as a hexanoic acid detector. Expanded representation of this sensory pathway in the brain relies on additional changes in the IR75b promoter and trans-acting loci. By contrast, higher-order circuit adaptations are not apparent, suggesting conserved central processing. Our work links olfactory ecology to structural and regulatory genetic changes influencing nervous system anatomy and function.

  15. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose

    NASA Astrophysics Data System (ADS)

    Persaud, Krishna; Dodd, George

    1982-09-01

    Olfaction exhibits both high sensitivity for odours and high discrimination between them1. We suggest that to make fine discriminations between complex odorant mixtures containing varying ratios of odorants without the necessity for highly specialized peripheral receptors, the olfactory systems makes use of feature detection using broadly tuned receptor cells organized in a convergent neurone pathway. As a test of this hypothesis we have constructed an electronic nose using semiconductor transducers and incorporating design features suggested by our proposal. We report here that this device can reproducibly discriminate between a wide variety of odours, and its properties show that discrimination in an olfactory system could be achieved without the use of highly specific receptors.

  16. Unraveling Cajal's view of the olfactory system

    PubMed Central

    Figueres-Oñate, María; Gutiérrez, Yolanda; López-Mascaraque, Laura

    2014-01-01

    The olfactory system has a highly regular organization of interconnected synaptic circuits from the periphery. It is therefore an excellent model for understanding general principles about how the brain processes information. Cajal revealed the basic cell types and their interconnections at the end of the XIX century. Since his original descriptions, the observation and analysis of the olfactory system and its components represents a major topic in neuroscience studies, providing important insights into the neural mechanisms. In this review, we will highlight the importance of Cajal contributions and his legacy to the actual knowledge of the olfactory system. PMID:25071462

  17. Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius

    PubMed Central

    Liu, Feng; Chen, Zhou; Liu, Nannan

    2017-01-01

    As one of the most notorious ectoparasites, bed bugs rely heavily on human or animal blood sources for survival, mating and reproduction. Chemoreception, mediated by the odorant receptors on the membrane of olfactory sensory neurons, plays a vital role in their host seeking and risk aversion processes. We investigated the responses of odorant receptors to a large spectrum of semiochemicals, including human odorants and plant-released volatiles and found that strong responses were sparse; aldehydes/ketones were the most efficient stimuli, while carboxylic acids and aliphatics/aromatics were comparatively less effective in eliciting responses from bed bug odorant receptors. In bed bugs, both the odorant identity and concentrations play important roles in determining the strength of these responses. The odor space constructed based on the responses from all the odorant receptors tested revealed that odorants within the same chemical group are widely dispersed while odorants from different groups are intermingled, suggesting the complexity of odorant encoding in the bed bug odorant receptors. This study provides a comprehensive picture of the olfactory coding mechanisms of bed bugs that will ultimately contribute to the design and development of novel olfactory-based strategies to reduce both the biting nuisance and disease transmission from bed bugs. PMID:28383033

  18. Molecular Basis of Olfactory Chemoreception in the Common Bed Bug, Cimex lectularius.

    PubMed

    Liu, Feng; Chen, Zhou; Liu, Nannan

    2017-04-06

    As one of the most notorious ectoparasites, bed bugs rely heavily on human or animal blood sources for survival, mating and reproduction. Chemoreception, mediated by the odorant receptors on the membrane of olfactory sensory neurons, plays a vital role in their host seeking and risk aversion processes. We investigated the responses of odorant receptors to a large spectrum of semiochemicals, including human odorants and plant-released volatiles and found that strong responses were sparse; aldehydes/ketones were the most efficient stimuli, while carboxylic acids and aliphatics/aromatics were comparatively less effective in eliciting responses from bed bug odorant receptors. In bed bugs, both the odorant identity and concentrations play important roles in determining the strength of these responses. The odor space constructed based on the responses from all the odorant receptors tested revealed that odorants within the same chemical group are widely dispersed while odorants from different groups are intermingled, suggesting the complexity of odorant encoding in the bed bug odorant receptors. This study provides a comprehensive picture of the olfactory coding mechanisms of bed bugs that will ultimately contribute to the design and development of novel olfactory-based strategies to reduce both the biting nuisance and disease transmission from bed bugs.

  19. Timberol® Inhibits TAAR5-Mediated Responses to Trimethylamine and Influences the Olfactory Threshold in Humans

    PubMed Central

    Wallrabenstein, Ivonne; Singer, Marco; Panten, Johannes; Hatt, Hanns; Gisselmann, Günter

    2015-01-01

    In mice, trace amine-associated receptors (TAARs) are interspersed in the olfactory epithelium and constitute a chemosensory subsystem that is highly specific for detecting volatile amines. Humans possess six putative functional TAAR genes. Human TAAR5 (hTAAR5) is highly expressed in the olfactory mucosa and was shown to be specifically activated by trimethylamine. In this study, we were challenged to uncover an effective blocker substance for trimethylamine-induced hTAAR5 activation. To monitor blocking effects, we recombinantly expressed hTAAR5 and employed a commonly used Cre-luciferase reporter gene assay. Among all tested potential blocker substances, Timberol®, an amber-woody fragrance, is able to inhibit the trimethylamine-induced hTAAR5 activation up to 96%. Moreover, human psychophysical data showed that the presence of Timberol® increases the olfactory detection threshold for the characteristic fishy odor of trimethylamine by almost one order of magnitude. In conclusion, our results show that among tested receptors Timberol® is a specific and potent antagonist for the hTAAR5-mediated response to trimethylamine in a heterologous system. Furthermore, our data concerning the observed shift of the olfactory detection threshold in vivo implicate that hTAAR5 or other receptors that may be inhibited by Timberol® could be involved in the high affinity olfactory perception of trimethylamine in humans. PMID:26684881

  20. Identification of Putative Olfactory Genes from the Oriental Fruit Moth Grapholita molesta via an Antennal Transcriptome Analysis

    PubMed Central

    Li, Yiping; Wu, Junxiang

    2015-01-01

    Background The oriental fruit moth, Grapholita molesta, is an extremely important oligophagous pest species of stone and pome fruits throughout the world. As a host-switching species, adult moths, especially females, depend on olfactory cues to a large extent in locating host plants, finding mates, and selecting oviposition sites. The identification of olfactory genes can facilitate investigation on mechanisms for chemical communications. Methodology/Principal Finding We generated transcriptome of female antennae of G.molesta using the next-generation sequencing technique, and assembled transcripts from RNA-seq reads using Trinity, SOAPdenovo-trans and Abyss-trans assemblers. We identified 124 putative olfactory genes. Among the identified olfactory genes, 118 were novel to this species, including 28 transcripts encoding for odorant binding proteins, 17 chemosensory proteins, 48 odorant receptors, four gustatory receptors, 24 ionotropic receptors, two sensory neuron membrane proteins, and one odor degrading enzyme. The identified genes were further confirmed through semi-quantitative reverse transcription PCR for transcripts coding for 26 OBPs and 17 CSPs. OBP transcripts showed an obvious antenna bias, whereas CSP transcripts were detected in different tissues. Conclusion Antennal transcriptome data derived from the oriental fruit moth constituted an abundant molecular resource for the identification of genes potentially involved in the olfaction process of the species. This study provides a foundation for future research on the molecules involved in olfactory recognition of this insect pest, and in particular, the feasibility of using semiochemicals to control this pest. PMID:26540284

  1. The Peripheral Olfactory Repertoire of the Lightbrown Apple Moth, Epiphyas postvittana

    PubMed Central

    Thrimawithana, Amali H.; Crowhurst, Ross N.; Newcomb, Richard D.

    2015-01-01

    The lightbrown apple moth, Epiphyas postvittana is an increasingly global pest of horticultural crops. Like other moths, E. postvittana relies on olfactory cues to locate mates and oviposition sites. To detect these cues, moths have evolved families of genes encoding elements of the peripheral olfactory reception system, including odor carriers, receptors and degrading enzymes. Here we undertake a transcriptomic approach to identify members of these families expressed in the adult antennae of E. postvittana, describing open reading frames encoding 34 odorant binding proteins, 13 chemosensory proteins, 70 odorant receptors, 19 ionotropic receptors, nine gustatory receptors, two sensory neuron membrane proteins, 27 carboxylesterases, 20 glutathione-S-transferases, 49 cytochrome p450s and 18 takeout proteins. For the odorant receptors, quantitative RT-PCR corroborated RNAseq count data on steady state transcript levels. Of the eight odorant receptors that group phylogenetically with pheromone receptors from other moths, two displayed significant male-biased expression patterns, one displayed significant female-biased expression pattern and five were expressed equally in the antennae of both sexes. In addition, we found two male-biased odorant receptors that did not group with previously described pheromone receptors. This suite of olfaction-related genes provides a substantial resource for the functional characterization of this signal transduction system and the development of odor-mediated control strategies for horticultural pests. PMID:26017144

  2. Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: multiple orexin signalling pathways.

    PubMed

    Gorojankina, Tatiana; Grébert, Denise; Salesse, Roland; Tanfin, Zahra; Caillol, Monique

    2007-06-07

    Orexins A and B (OxA and OxB) are multifunctional neuropeptides implicated in the regulation of energy metabolism, wakefulness but also in a broad range of motivated behaviours. They signal through two G-protein-coupled receptors: orexin receptor 1 and 2 (Ox1R and Ox2R). The orexins and their receptors are present at all levels of the rat olfactory system: epithelium, bulb, piriform cortex but their signalling mechanisms remain unknown. We have studied orexins signal transduction pathways in the rat olfactory mucosa (OM) and in the Odora cell line derived from olfactory sensory neurons and heterologously expressing Ox1R or Ox2R. We have demonstrated by western blot and RT-PCR that multiple components of adenylyl cyclase (AC) and phospholipase C (PLC) signalling pathways were identical in OM and Odora cells. OxA and OxB induced a weak increase in IP3 in OM; they induced a significant rise in cAMP and IP3 in Odora transfected cells, suggesting the activation of AC and PLC pathways. Both OxA and OxB induced intracellular calcium elevation and transient activation of MAP kinases (ERK42/44) in Odora/Ox1R and Odora/Ox2R cells. These results suggest the existence of multiple orexins signalling pathways in Odora cells and probably in OM, corresponding to different possible roles of these peptides.

  3. Apoptosis induced by prolonged exposure to odorants in cultured cells from rat olfactory epithelium.

    PubMed

    Brauchi, Sebastian; Cea, Christian; Farias, Jorge G; Bacigalupo, Juan; Reyes, Juan G

    2006-08-04

    Multicellular organisms undergo programmed cell death (PCD) as a mechanism for tissue remodeling during development and tissue renewal throughout adult life. Overdose of some neuronal receptor agonists like glutamate can trigger a PCD process termed excitotoxicity in neurons of the central nervous system. Calcium has an important role in PCD processes, especially in excitotoxicity. Since the normal turnover of olfactory receptor neurons (ORNs) relies, at least in part, on an apoptotic mechanism and odor transduction in ORNs involves an increase in intracellular Ca2+ concentration ([Ca2+]i), we investigated the possibility that long-term exposures to odorants could trigger an excitotoxic process in olfactory epithelial cells (EC). We used single-cell [Ca2+]i determinations and fluorescence microscopy techniques to study the effects of sustained odorant exposures in olfactory EC in primary culture. Induction of PCD was evaluated successively by three independent criteria: (1) measurements of DNA fragmentation, (2) translocation of phosphatidylserine to the external leaflet of the plasma membrane, and (3) caspase-3 activation. Our results support the notion of an odorant-induced PCD in olfactory EC. This odorant-induced PCD was prevented by LY83583, an odorant response inhibitor, suggesting that ORNs are the main epithelial cell population undergoing odorant-induced PCD.

  4. Extremely Sparse Olfactory Inputs Are Sufficient to Mediate Innate Aversion in Drosophila

    PubMed Central

    Gao, Xiaojing J.; Clandinin, Thomas R.; Luo, Liqun

    2015-01-01

    Innate attraction and aversion to odorants are observed throughout the animal kingdom, but how olfactory circuits encode such valences is not well understood, despite extensive anatomical and functional knowledge. In Drosophila melanogaster, ~50 types of olfactory receptor neurons (ORNs) each express a unique receptor gene, and relay information to a cognate type of projection neurons (PNs). To examine the extent to which the population activity of ORNs is required for olfactory behavior, we developed a genetic strategy to block all ORN outputs, and then to restore output in specific types. Unlike attraction, aversion was unaffected by simultaneous silencing of many ORNs, and even single ORN types previously shown to convey neutral valence sufficed to mediate aversion. Thus, aversion may rely on specific activity patterns in individual ORNs rather than the number or identity of activated ORNs. ORN activity is relayed into the brain by downstream circuits, with excitatory PNs (ePN) representing a major output. We found that silencing the majority of ePNs did not affect aversion, even when ePNs directly downstream of single restored ORN types were silenced. Our data demonstrate the robustness of olfactory aversion, and suggest that its circuit mechanism is qualitatively different from attraction. PMID:25927233

  5. Development of a glial network in the olfactory nerve: role of calcium and neuronal activity.

    PubMed

    Koussa, Mounir A; Tolbert, Leslie P; Oland, Lynne A

    2010-11-01

    In adult olfactory nerves of mammals and moths, a network of glial cells ensheathes small bundles of olfactory receptor axons. In the developing antennal nerve (AN) of the moth Manduca sexta, the axons of olfactory receptor neurons (ORNs) migrate from the olfactory sensory epithelium toward the antennal lobe. Here we explore developmental interactions between ORN axons and AN glial cells. During early stages in AN glial-cell migration, glial cells are highly dye coupled, dividing glia are readily found in the nerve and AN glial cells label strongly for glutamine synthetase. By the end of this period, dye-coupling is rare, glial proliferation has ceased, glutamine synthetase labeling is absent, and glial processes have begun to extend to enwrap bundles of axons, a process that continues throughout the remainder of metamorphic development. Whole-cell and perforated-patch recordings in vivo from AN glia at different stages of network formation revealed two potassium currents and an R-like calcium current. Chronic in vivo exposure to the R-type channel blocker SNX-482 halted or greatly reduced AN glial migration. Chronically blocking spontaneous Na-dependent activity by injection of tetrodotoxin reduced the glial calcium current implicating an activity-dependent interaction between ORNs and glial cells in the development of glial calcium currents.

  6. Identification and expression pattern of candidate olfactory genes in Chrysoperla sinica by antennal transcriptome analysis.

    PubMed

    Li, Zhao-Qun; Zhang, Shuai; Luo, Jun-Yu; Wang, Si-Bao; Wang, Chun-Yi; Lv, Li-Min; Dong, Shuang-Lin; Cui, Jin-Jie

    2015-09-01

    Chrysoperla sinica is one of the most prominent natural enemies of many agricultural pests. Host seeking in insects is strongly mediated by olfaction. Understanding the sophisticated olfactory system of insect antennae is crucial for studying the physiological bases of olfaction and could also help enhance the effectiveness of C. sinica in biological control. Obtaining olfactory genes is a research priority for investigating the olfactory system in this species. However, no olfaction sequence information is available for C. sinica. Consequently, we sequenced female- and male-antennae transcriptome of C. sinica. Many candidate chemosensory genes were identified, including 12 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 37 odorant receptors (ORs), and 64 ionotropic receptors from C. sinica. The expression patterns of 12 OBPs, 19 CSPs and 37 ORs were determined by RT-PCR, and demonstrated antennae-dominantly expression of most OBP and OR genes. Our finding provided large scale genes for further investigation on the olfactory system of C. sinica at the molecular level.

  7. Modeling Olfactory Bulb Evolution through Primate Phylogeny

    PubMed Central

    Heritage, Steven

    2014-01-01

    Adaptive characterizations of primates have usually included a reduction in olfactory sensitivity. However, this inference of derivation and directionality assumes an ancestral state of olfaction, usually by comparison to a group of extant non-primate mammals. Thus, the accuracy of the inference depends on the assumed ancestral state. Here I present a phylogenetic model of continuous trait evolution that reconstructs olfactory bulb volumes for ancestral nodes of primates and mammal outgroups. Parent-daughter comparisons suggest that, relative to the ancestral euarchontan, the crown-primate node is plesiomorphic and that derived reduction in olfactory sensitivity is an attribute of the haplorhine lineage. The model also suggests a derived increase in olfactory sensitivity at the strepsirrhine node. This oppositional diversification of the strepsirrhine and haplorhine lineages from an intermediate and non-derived ancestor is inconsistent with a characterization of graded reduction through primate evolution. PMID:25426851

  8. The Pig Olfactory Brain: A Primer

    PubMed Central

    Feldman, Sanford; Osterberg, Stephen K.

    2016-01-01

    Despite the fact that pigs are reputed to have excellent olfactory abilities, few studies have examined regions of the pig brain involved in the sense of smell. The present study provides an overview of the olfactory bulb, anterior olfactory nucleus, and piriform cortex of adult pigs using several approaches. Nissl, myelin, and Golgi stains were used to produce a general overview of the organization of the regions and confocal microscopy was employed to examine 1) projection neurons, 2) GABAergic local circuit neurons that express somatostatin, parvalbumin, vasoactive intestinal polypeptide, or calretinin, 3) neuromodulatory fibers (cholinergic and serotonergic), and 4) glia (astrocytes and microglia). The findings revealed that pig olfactory structures are quite large, highly organized and follow the general patterns observed in mammals. PMID:26936231

  9. A multisensory network for olfactory processing

    PubMed Central

    Maier, Joost X.; Blankenship, Meredith L.; Li, Jennifer X.; Katz, Donald B.

    2015-01-01

    Summary Primary gustatory cortex (GC) is connected (both mono- and poly-synaptically) to primary olfactory (piriform) cortex (PC)—connections that might be hypothesized to underlie the construction of a “flavor” percept when both gustatory and olfactory stimuli are present. Here, we use multi-site electrophysiology and optical inhibition of GC neurons (GCx, produced via infection with ArchT) to demonstrate that, indeed, during gustatory stimulation, taste-selective information is transmitted from GC to PC. We go on to show that these connections impact olfactory processing even in the absence of gustatory stimulation: GCx alters PC responses to olfactory stimuli presented alone, enhancing some and eliminating others, despite leaving the path from nasal epithelium to PC intact. Finally, we show the functional importance of this latter phenomenon, demonstrating that GCx renders rats unable to properly recognize odor stimuli. This sequence of findings suggests that sensory processing may be more intrinsically integrative than previously thought. PMID:26441351

  10. 17β-estradiol enhances memory duration in the main olfactory bulb in CD-1 mice.

    PubMed

    Dillon, T Samuel; Fox, Laura C; Han, Crystal; Linster, Christiane

    2013-12-01

    Rodents rely heavily on odor detection, discrimination, and memory to locate food, find mates, care for pups, and avoid predators. Estrogens have been shown to increase memory retention in rodents performing spatial memory and object placement tasks. Here we evaluate the extent to which 17β-estradiol modulates memory formation and duration in the olfactory system. Adult CD-1 mice were gonadectomized and given either systemic 17β-estradiol replacement, local 17β-estradiol in the main olfactory bulb, or no replacement. Before performing the behavioral task the mice were given saline or PHTPP (an estrogen receptor β [ER-β] antagonist) via bilateral infusion into the main olfactory bulb. As the beta-type estrogen receptor (ER-β) is more abundant than the alpha-type estrogen receptor in the murine main olfactory bulb, the current study focuses on 17β-estradiol and its interactions with ERβ. Habituation, a simple, nonassociative learning task in which an animal is exposed to the same odor over successive presentations, was used to evaluate the animals' ability to detect odors and form an olfactory memory. To evaluate memory duration, we added a final trial of intertrial interval time (30 or 60 min) in which we presented the habituated odor. Neither surgical nor drug manipulation affected the ability of mice to detect or habituate to an odor. After habituation, gonadectomized 17β-estradiol-treated mice retained memory of an odor for 30 min, whereas non-estradiol-treated, 17β-estradiol+ERβ antagonist (PHTPP), and untreated male mice did not remember an odor 30 min after habituation. The results show that both systemic and local bulbar infusions of 17β-estradiol enhance odor memory duration in mice.

  11. Dimorphic olfactory lobes in the arthropoda.

    PubMed

    Strausfeld, Nicholas; Reisenman, Carolina E

    2009-07-01

    Specialized olfactory lobe glomeruli relating to sexual or caste differences have been observed in at least five orders of insects, suggesting an early appearance of this trait in insect evolution. Dimorphism is not limited to nocturnal species, but occurs even in insects that are known to use vision for courtship. Other than a single description, there is no evidence for similar structures occurring in the Crustacea, suggesting that the evolution of dimorphic olfactory systems may typify terrestrial arthropods.

  12. Cladistic Analysis of Olfactory and Vomeronasal Systems

    PubMed Central

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2010-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies’ view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical “cortex.” We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses. PMID:21290004

  13. Cladistic analysis of olfactory and vomeronasal systems.

    PubMed

    Ubeda-Bañon, Isabel; Pro-Sistiaga, Palma; Mohedano-Moriano, Alicia; Saiz-Sanchez, Daniel; de la Rosa-Prieto, Carlos; Gutierrez-Castellanos, Nicolás; Lanuza, Enrique; Martinez-Garcia, Fernando; Martinez-Marcos, Alino

    2011-01-01

    Most tetrapods possess two nasal organs for detecting chemicals in their environment, which are the sensory detectors of the olfactory and vomeronasal systems. The seventies' view that the olfactory system was only devoted to sense volatiles, whereas the vomeronasal system was exclusively specialized for pheromone detection was challenged by accumulating data showing deep anatomical and functional interrelationships between both systems. In addition, the assumption that the vomeronasal system appeared as an adaptation to terrestrial life is being questioned as well. The aim of the present work is to use a comparative strategy to gain insight in our understanding of the evolution of chemical "cortex." We have analyzed the organization of the olfactory and vomeronasal cortices of reptiles, marsupials, and placental mammals and we have compared our findings with data from other taxa in order to better understand the evolutionary history of the nasal sensory systems in vertebrates. The olfactory and vomeronsasal cortices have been re-investigated in garter snakes (Thamnophis sirtalis), short-tailed opossums (Monodelphis domestica), and rats (Rattus norvegicus) by tracing the efferents of the main and accessory olfactory bulbs using injections of neuroanatomical anterograde tracers (dextran-amines). In snakes, the medial olfactory tract is quite evident, whereas the main vomeronasal-recipient structure, the nucleus sphaericus is a folded cortical-like structure, located at the caudal edge of the amygdala. In marsupials, which are acallosal mammals, the rhinal fissure is relatively dorsal and the olfactory and vomeronasal cortices relatively expanded. Placental mammals, like marsupials, show partially overlapping olfactory and vomeronasal projections in the rostral basal telencephalon. These data raise the interesting question of how the telencephalon has been re-organized in different groups according to the biological relevance of chemical senses.

  14. Pericentrin, a centrosomal protein related to microcephalic primordial dwarfism, is required for olfactory cilia assembly in mice.

    PubMed

    Miyoshi, Ko; Kasahara, Kyosuke; Miyazaki, Ikuko; Shimizu, Shoko; Taniguchi, Manabu; Matsuzaki, Shinsuke; Tohyama, Masaya; Asanuma, Masato

    2009-10-01

    The Drosophila pericentrin-like protein has been shown to be essential for the formation of the sensory cilia of chemosensory and mechanosensory neurons by mutant analysis in flies, while the in vivo function of pericentrin, a well-studied mammalian centrosomal protein related to microcephalic primordial dwarfism, has been unclear. To determine whether pericentrin is required for ciliogenesis in mammals, we generated and analyzed mice with a hypomorphic mutation of Pcnt encoding the mouse pericentrin. Immunofluorescence analysis demonstrated that olfactory cilia of chemosensory neurons in the nasal olfactory epithelium were malformed in the homozygous mutant mice. On the other hand, the assembly of motile and primary cilia of non-neuronal epithelial cells and the formation of sperm flagella were not affected in the Pcnt-mutant mice. The defective assembly of olfactory cilia in the mutant was apparent from birth. The mutant animals displayed reduced olfactory performance in agreement with the compromised assembly of olfactory cilia. Our findings suggest that pericentrin is essential for the assembly of chemosensory cilia of olfactory receptor neurons, but it is not globally required for cilia formation in mammals.

  15. Olfactory processing in a changing brain.

    PubMed

    Lledo, Pierre-Marie; Gheusi, Gilles

    2003-09-15

    The perception of odorant molecules provides the essential information that allows animals to explore their surrounding. We describe here how the external world of scents may sculpt the activity of the first central relay of the olfactory system, i.e., the olfactory bulb. This structure is one of the few brain areas to continuously replace one of its neuronal populations: the local GABAergic interneurons. How the newly generated neurons integrate into a pre-existing neural network and how basic olfactory functions are maintained when a large percentage of neurons are subjected to continuous renewal, are important questions that have recently received new insights. Furthermore, we shall see how the adult neurogenesis is specifically subjected to experience-dependent modulation. In particular, we shall describe the sensitivity of the bulbar neurogenesis to the activity level of sensory inputs from the olfactory epithelium and, in turn, how this neurogenesis may adjust the neural network functioning to optimize odor information processing. Finally, we shall discuss the behavioral consequences of the bulbar neurogenesis and how it may be appropriate for the sense of smell. By maintaining a constitutive turnover of bulbar interneurons subjected to modulation by environmental cues, we propose that adult ongoing neurogenesis in the olfactory bulb is associated with improved olfactory memory. These recent findings not only provide new fuel for the molecular and cellular bases of sensory perception but should also shed light onto cellular bases of learning and memory.

  16. Custom-made, selective laser sintering (SLS) blade implants as a non-conventional solution for the prosthetic rehabilitation of extremely atrophied posterior mandible.

    PubMed

    Mangano, F; Bazzoli, M; Tettamanti, L; Farronato, D; Maineri, M; Macchi, A; Mangano, C

    2013-09-01

    The treatment of severely atrophied posterior mandibles with standard-diameter root-form implants may present a challenge. Bone reconstructive surgery represents the treatment of choice; however, it may not be accepted by some patients for economic reasons or due to higher morbidity. Computer-aided design/computer-aided manufacturing (CAD/CAM) technologies have recently opened new frontiers in biomedical applications. Selective laser sintering (SLS) is a CAD/CAM technique that allows the fabrication of complex three-dimensional (3D) structures created by computer-generated image-based design techniques. The aim of this study is to present a protocol for the manufacture and clinical use of custom-made SLS titanium blade implants as a non-conventional therapeutic treatment for the prosthetic rehabilitation of extremely atrophied posterior mandibles. Computed tomography datasets of five patients were transferred to a specific reconstruction software, where a 3D projection of the atrophied mandible was obtained, and custom-made endosseous blade implants were designed. The custom-made implants were fabricated with SLS technique, placed in the extremely atrophied posterior (<4 mm width) mandible, and immediately restored with fixed partial restorations. After 2 years of loading, all implants were in function, showing a good esthetic integration. Blade implants can be fabricated on an individual basis as a custom-designed device. This non-conventional approach may represent an option for restoring the atrophied posterior mandible of elderly patients.

  17. Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

    PubMed Central

    Zhao, Hao; Yang, Bao-lin; Liu, Zeng-xu; Yu, Qing; Zhang, Wen-jun; Yuan, Keng; Zeng, Hui-hong; Zhu, Gao-chun; Liu, De-ming; Li, Qing

    2015-01-01

    Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs) remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L4–5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L4–5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain. PMID:26487865

  18. Modulation by octopamine of olfactory responses to nonpheromone odorants in the cockroach, Periplaneta americana L.

    PubMed

    Zhukovskaya, Marianna I

    2012-06-01

    Olfactory receptor cells in insects are modulated by neurohormones. Recordings from cockroach olfactory sensilla showed that a subset of sensory neurons increase their responses to selected nonpheromone odorants after octopamine application. With octopamine application, recordings demonstrated increased firing rates by the short but not the long alcohol-sensitive sensilla to the nonpheromone volatile, hexan-1-ol. Within the same sensillum, individual receptor cells are shown to be modulated independently from each other, indicating that the octopamine receptors reside in the receptor not in the accessory cells. A uniform decrease in the amplitude of electroantennogram, which is odorant independent, is suggested to reflect the rise in octopamine concentration in the antennal hemolymph. Perception of general odorants measured as behavioral responses changed qualitatively under octopamine treatment: namely, repulsive hexan-1-ol became neutral, whereas neutral eucalyptol became attractive. Octopamine induced a change in male behavioral responses to general odors that were essentially the same as in the state of sexual arousal. Our findings suggest that sensitivity to odors having different biological significances is modulated selectively at the peripheral as well as other levels of olfactory processing.

  19. Olfactory systems and neural circuits that modulate predator odor fear

    PubMed Central

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not cl