Science.gov

Sample records for non-destructive compositional analysis

  1. Non-destructive compositional analysis of historic organ reed pipes

    NASA Astrophysics Data System (ADS)

    Manescu, A.; Fiori, F.; Giuliani, A.; Kardjilov, N.; Kasztovszky, Z.; Rustichelli, F.; Straumal, B.

    2008-03-01

    In order to be able to reproduce historic organ reed pipes, a bulk non-destructive chemical composition analysis was performed on the tongues and shallots, focusing mainly on the ratio between copper and zinc and on the presence of lead. Prompt gamma activation analysis results allowed us to observe for the first time that the ratio between the two main components of the brass alloy changed from Cu:Zn = 3:1 for the old tongues and shallots to Cu:Zn = 2:1 around the middle of the 18th century, which is typical also for the modern alloys offered to the organ builders nowadays. We also discovered that the Pb content in the old historic brass alloy diminished until the middle of 18th century when the brass alloy became mainly Pb free. The non-uniform lead distribution inside one of the shallots obtained from a prompt gamma activation analysis (PGAA) experiment was studied by neutron tomography. It gave us a three-dimensonal (3D) distribution of the lead inclusions inside the shallots. The lead particles are concentrated towards the base of the shallot.

  2. Non-Destructive Evaluation of Aerospace Composites

    DTIC Science & Technology

    2009-03-01

    Master of Science in Materials Science Jeremy D. Johnson, BS Captain, USAF March 2009 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED...non-destructive material evaluation (NDE) were used to inspect various forms of damage commonly found in aerospace fiberglass composites: voids...ultrasound, and flash IR thermography were analyzed for the detection of defects. Test results and analysis of each NDE method’s capabilities

  3. Non-destructive evaluation of composites

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1996-01-01

    The composite materials have been used in aerospace industries for quite some time. Several non-destructive evaluation (NDE) methods have been developed to inspect composites in order to detect flaws, matrix cracking, and delamination. These methods include ultrasonics, acoustic emission, shearography, thermography, X-ray, and digital image correlation. The NDE Branch of Marshall Space Flight Center has recently acquired a thermal imaging NDE system. The same system has been used at NASA Langley Research Center for detecting disbonds. In order to compare different NDE methods, three carbon/carbon composite panels were used for experiment using ultrasonic C-scan, shearography, and thermography methods. These panels have teflon inserts to simulate the delamination between plies in a composite panel. All three methods have successfully located the insert. The experiment and results are presented in the following sections.

  4. Depth resolved compositional analysis of aluminium oxide thin film using non-destructive soft x-ray reflectivity technique

    NASA Astrophysics Data System (ADS)

    Sinha, Mangalika; Modi, Mohammed H.

    2017-10-01

    In-depth compositional analysis of 240 Å thick aluminium oxide thin film has been carried out using soft x-ray reflectivity (SXR) and x-ray photoelectron spectroscopy technique (XPS). The compositional details of the film is estimated by modelling the optical index profile obtained from the SXR measurements over 60-200 Å wavelength region. The SXR measurements are carried out at Indus-1 reflectivity beamline. The method suggests that the principal film region is comprised of Al2O3 and AlOx (x = 1.6) phases whereas the interface region comprised of SiO2 and AlOx (x = 1.6) mixture. The soft x-ray reflectivity technique combined with XPS measurements explains the compositional details of principal layer. Since the interface region cannot be analyzed with the XPS technique in a non-destructive manner in such a case the SXR technique is a powerful tool for nondestructive compositional analysis of interface region.

  5. Low Frequency Electrical and Magnetic Methods for Non-Destructive Analysis of Fiber Dispersion in Fiber Reinforced Cementitious Composites: An Overview

    PubMed Central

    Faifer, Marco; Ferrara, Liberato; Ottoboni, Roberto; Toscani, Sergio

    2013-01-01

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective. PMID:23337334

  6. Low frequency electrical and magnetic methods for non-destructive analysis of fiber dispersion in fiber reinforced cementitious composites: an overview.

    PubMed

    Faifer, Marco; Ferrara, Liberato; Ottoboni, Roberto; Toscani, Sergio

    2013-01-21

    Non-destructive analysis of fiber dispersion in structural elements made of Fiber Reinforced Concrete (FRC) and Fiber Reinforced Cementitious Composites (FRCCs) plays a significant role in the framework of quality control and performance prediction. In this paper, the research activity of the authors in the aforementioned field all over the last lustrum will be reviewed. A method based on the measurement of the inductance of a probe to be placed on the specimen will be presented and its progressive development will be described. Obtained correlation with actual fiber dispersion, as checked by means of destructive methods, as well as with the mechanical performance of the composite will also be presented, in an attempt to address the significance of the method from an engineering application perspective.

  7. Non-destructive investigation of thermoplastic reinforced composites

    SciTech Connect

    Hassen, Ahmed; Taheri, Hossein; Vaidya, Uday

    2016-05-09

    This paper studies various manufacturing defects in glass fiber/Polypropylene (PP) composite parts and their methods of detection. Foreign Object Inclusion (FOI) of different shapes, sizes, and materials were placed in a glass fiber/PP panel made by compression molding. The paper aims to characterize the fiber orientation and fiber related defects such as fiber waviness in the composite specimen. Comprehensive investigation for different Non Destructive Evaluation (NDE) techniques, namely X-ray radiography and Ultrasonic Testing (UT) techniques to trace and characterize the embedded defects and the composite texture are presented. Conventional X-ray radiography successfully identified the fiber orientation in two dimension (2-D) plane; however, information for the sample depth was not captured. The radiography techniques showed low relative errors for the defect size measurements (maximum error was below 9.5%) when compared to the ultrasonic techniques. Ultrasonic techniques were able to map all the embedded artificial defects. Phase Array (PA) ultrasonic technique was able to precisely locate the FOI in the glass fiber/PP specimen. Nerveless, the shape and size of the defects were not accurately determined due to the high signal attenuation and distortion characteristics of the E-glass fiber.

  8. Non-destructive investigation of thermoplastic reinforced composites

    SciTech Connect

    Hassen, Ahmed; Taheri, Hossein; Vaidya, Uday

    2016-05-09

    This paper studies various manufacturing defects in glass fiber/Polypropylene (PP) composite parts and their methods of detection. Foreign Object Inclusion (FOI) of different shapes, sizes, and materials were placed in a glass fiber/PP panel made by compression molding. The paper aims to characterize the fiber orientation and fiber related defects such as fiber waviness in the composite specimen. Comprehensive investigation for different Non Destructive Evaluation (NDE) techniques, namely X-ray radiography and Ultrasonic Testing (UT) techniques to trace and characterize the embedded defects and the composite texture are presented. Conventional X-ray radiography successfully identified the fiber orientation in two dimension (2-D) plane; however, information for the sample depth was not captured. The radiography techniques showed low relative errors for the defect size measurements (maximum error was below 9.5%) when compared to the ultrasonic techniques. Ultrasonic techniques were able to map all the embedded artificial defects. Phase Array (PA) ultrasonic technique was able to precisely locate the FOI in the glass fiber/PP specimen. Nerveless, the shape and size of the defects were not accurately determined due to the high signal attenuation and distortion characteristics of the E-glass fiber.

  9. Non-destructive investigation of thermoplastic reinforced composites

    DOE PAGES

    Hassen, Ahmed; Taheri, Hossein; Vaidya, Uday

    2016-05-09

    This paper studies various manufacturing defects in glass fiber/Polypropylene (PP) composite parts and their methods of detection. Foreign Object Inclusion (FOI) of different shapes, sizes, and materials were placed in a glass fiber/PP panel made by compression molding. The paper aims to characterize the fiber orientation and fiber related defects such as fiber waviness in the composite specimen. Comprehensive investigation for different Non Destructive Evaluation (NDE) techniques, namely X-ray radiography and Ultrasonic Testing (UT) techniques to trace and characterize the embedded defects and the composite texture are presented. Conventional X-ray radiography successfully identified the fiber orientation in two dimension (2-D)more » plane; however, information for the sample depth was not captured. The radiography techniques showed low relative errors for the defect size measurements (maximum error was below 9.5%) when compared to the ultrasonic techniques. Ultrasonic techniques were able to map all the embedded artificial defects. Phase Array (PA) ultrasonic technique was able to precisely locate the FOI in the glass fiber/PP specimen. Nerveless, the shape and size of the defects were not accurately determined due to the high signal attenuation and distortion characteristics of the E-glass fiber.« less

  10. Non-destructive microstructural analysis with depth resolution

    NASA Astrophysics Data System (ADS)

    Zolotoyabko, E.; Quintana, J. P.

    2003-01-01

    A depth-sensitive X-ray diffraction technique has been developed with the aim of studying microstructural modifications in inhomogeneous polycrystalline materials. In that method, diffraction profiles are measured at different X-ray energies varied by small steps. X-rays at higher energies probe deeper layers of material. Depth-resolved structural information is retrieved by comparing energy-dependent diffraction profiles. The method provides non-destructive depth profiling of the preferred orientation, grain size, microstrain fluctuations and residual strains. This technique is applied to the characterization of seashells. Similarly, energy-variable X-ray diffraction can be used for the non-destructive characterization of different laminated structures and composite materials.

  11. Non destructive testing of works of art by terahertz analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, Jean-Luc; Metayer, Jean-Jacques; Mouhoubi, Kamel; Detalle, Vincent

    2013-11-01

    Improvements in technologies and the growing security needs in airport terminals lead to the development of non destructive testing devices using terahertz waves. Indeed, these waves have the advantage of being, on one hand, relatively penetrating. They also have the asset of not being ionizing. It is thus potentially an interesting contribution in the non destructive testing field. With the help of the VISIOM Company, the possibilities of this new industrial analysis method in assisting the restoration of works of art were then approached. The results obtained within this framework are presented here and compared with those obtained by infrared thermography. The results obtained show first that the THZ method, like the stimulated infrared thermography allows the detection of delamination located in murals paintings or in marquetries. They show then that the THZ method seems to allow detecting defects located relatively deeply (10 mm) and defects potentially concealed by other defects. It is an advantage compared to the stimulated infra-red thermography which does not make it possible to obtain these results. Furthermore, they show that the method does not seem sensitive to the various pigments constituting the pictorial layer, to the presence of a layer of "Japan paper" and to the presence of a layer of whitewash. It is not the case of the stimulated infrared thermography. It is another advantage of the THZ method. Finally, they show that the THZ method is limited in the detection of low-size defects. It is a disadvantage compared to the stimulated infrared thermography.

  12. Non-destructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy

    PubMed Central

    McGoverin, Cushla M.; Hanifi, Arash; Palukuru, Uday P.; Yousefi, Farzad; Glenn, Padraig B. M.; Shockley, Michael; Spencer, Richard G.; Pleshko, Nancy

    2016-01-01

    Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a non-destructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes non-destructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm−1, R = 0.68, p = 0.03), proteoglycan (at 4310 cm−1, R = 0.82, p = 0.007), and collagen (at 4610 cm−1, R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a non-destructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications. PMID:26817457

  13. Non Destructive Analysis of Fsw Welds using Ultrasonic Signal Analysis

    NASA Astrophysics Data System (ADS)

    Pavan Kumar, T.; Prabhakar Reddy, P.

    2017-08-01

    Friction Stir Welding is an evolving metal joining technique and is mostly used in joining materials which cannot be easily joined by other available welding techniques. It is a technique which can be used for welding dissimilar materials also. The strength of the weld joint is determined by the way in which these material are mixing with each other, since we are not using any filler material for the welding process the intermixing has a significant importance. The complication with the friction stir welding process is that there are many process parameters which effect this intermixing process such as tool geometry, rotating speed of the tool, transverse speed etc., In this study an attempt is made to compare the material flow and weld quality of various weldments by changing the parameters. Ultrasonic signal Analysis is used to characterize the microstructure of the weldments. use of ultrasonic waves is a non destructive, accurate and fast way of characterization of microstructure. In this method the relationship between the ultrasonic measured parameters and microstructures are evaluated using background echo and backscattered signal process techniques. The ultrasonic velocity and attenuation measurements are dependent on the elastic modulus and any change in the microstructure is reflected in the ultrasonic velocity. An insight into material flow is essential to determine the quality of the weld. Hence an attempt is made in this study to know the relationship between tool geometry and the pattern of material flow and resulting weld quality the experiments are conducted to weld dissimilar aluminum alloys and the weldments are characterized using and ultra Sonic signal processing. Characterization is also done using Scanning Electron Microscopy. It is observed that there is a good correlation between the ultrasonic signal processing results and Scanning Electron Microscopy on the observed precipitates. Tensile tests and hardness tests are conducted on the

  14. Computed tomography for non-destructive evaluation of composites: Applications and correlations

    NASA Technical Reports Server (NTRS)

    Goldberg, B.; Hediger, L.; Noel, E.

    1985-01-01

    The state-of-the-art fabrication techniques for composite materials are such that stringent species-specific acceptance criteria must be generated to insure product reliability. Non-destructive evaluation techniques including computed tomography (CT), X-ray radiography (RT), and ultrasonic scanning (UT) are investigated and compared to determine their applicability and limitations to graphite epoxy, carbon-carbon, and carbon-phenolic materials. While the techniques appear complementary, CT is shown to provide significant, heretofore unattainable data. Finally, a correlation of NDE techniques to destructive analysis is presented.

  15. Non-destructive dielectric assessment of water permeation in composite structures

    SciTech Connect

    Boinard, P.; Boinard, E.; Pethrick, R.A.; Banks, W.M.; Crane, R.L.

    2000-07-01

    Over the last ten years, the application of high frequency dielectric spectroscopy techniques for the assessment of composite structures has been investigated. Novel approaches to assess non-destructively the evolution during ageing of adhesively bonded carbon fiber reinforced plastic (CFRP) structures and bulk glass fiber reinforced plastic (GRP) structures are presented in this paper and the results are critically assessed. The applicability and limitations of dielectric measurements, in both frequency and time domain, to the monitoring of water ingress at 30 C and 60 C are examined. The correlation between gravimetric and high frequency dielectric spectroscopy data demonstrates the suitability of the techniques regarding the assessment of water uptake in composites structures and illustrates its potential as a non-destructive evaluation (NDE) technique. The dielectric time domain response (TDR) study of adhesively bonded structures indicates a new way to assess such structures. The approach for frequency domain analysis of bulk GRP using a coaxial probe technique indicates the potential portability of the technique for in-situ measurements.

  16. Non-destructive evaluation of composite materials using ultrasound

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1984-01-01

    Investigation of the nondestructive evaluation of advanced composite-laminates is summarized. Indices derived from the measurement of fundamental acoustic parameters are used in order to quantitatively estimate the local material properties of the laminate. The following sections describe ongoing studies of phase insensitive attenuation measurements, and discuss several phenomena which influences the previously reported technique of polar backscatter. A simple and effective programmable gate circuit designed for use in estimating attenuation from backscatter is described.

  17. Non-destructive NIR FT Raman analysis of plants

    NASA Astrophysics Data System (ADS)

    Schrader, B.; Klump, H. H.; Schenzel, K.; Schulz, H.

    1999-10-01

    Non-destructive analyses of animal and plant cells and tissues by 'classical' Raman spectroscopy with excitation in the visible range have not been possible since the samples are destroyed photochemically or their fluorescence conceals the Raman spectra completely. When excited with the Nd:YAG laser line at 1064 nm fluorescence-free Raman spectra of animal or plant cells and tissues can be recorded without special preparation. In this paper we concentrate on plants and its constituents: essential oils, natural dyes, flavors, spices, alkaloids and fibers can be characterized. The spectra allow the observation of biochemical processes, to observe the distribution of natural products, application to taxonomy, optimizing plant breeding, the harvesting time and control of food—everything non-destructively in living plants!

  18. Non-destructive testing of composite materials using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Yakovlev, Egor V.; Zaytsev, Kirill I.; Chernomyrdin, Nikita V.; Gavdush, Arsenii A.; Zotov, Arsen K.; Nikonovich, Maxim Y.; Yurchenko, Stanislav O.

    2016-04-01

    Development of novel methods for non-destructive evaluation of composite materials (CMs) at manufacturing and operational stages remains challenging problem of applied physics, optics and material science. In this paper, we have considered the ability to use the terahertz (THz) time-domain spectroscopy (TDS) for non-destructive evaluation of CMs. By combining the TDS technique with appropriate methods of solving the inverse ill-posed problems, we have shown that TDS could be applied for CM testing. At first, we have demonstrated that TDS could be used to control the polymerization process and, as a consequence, the CM binder curing. Secondary, we have shown the ability to detect the internal defects (non-impregnated voids) inside the CMs via the TDS-based THz time-of-flight tomography. Thereby, the results of our study allow highlighting the prospective of non-destructive evaluation of CMs using the TDS.

  19. Non-destructive testing of composite materials by means of active thermography-based tools

    NASA Astrophysics Data System (ADS)

    Lizaranzu, Miguel; Lario, Alberto; Chiminelli, Agustín; Amenabar, Ibán

    2015-07-01

    Infrared analysis tools are nowadays widely used for the non-destructive testing of components made up in composite materials, belonging to many different industrial sectors. Being a non-contact method, its capability for the inspection of large areas in short periods of time justifies the great number of works and technical studies that can be found in this field. The growing interest in the technique is also supported by the development, during recent years, of increasingly powerful equipment and data analysis tools. In order to establish a base of knowledge to assist defect identification in real components inspections, the design and manufacturing of inspection samples including controlled defects, is a frequently used strategy. This paper deals with the analysis, by means of transient active thermography, of a set of inspection patterns made out of different composite materials and configurations that can be found in the wind turbine blade manufacturing industry. The design and manufacturing of these patterns are described, including different types of representative defects, stack configurations and composite manufacturing techniques. Reference samples are then inspected by means of active thermography analysis tools and the results obtained are discussed.

  20. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts

    PubMed Central

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-01

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO2-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car’s base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts. PMID:28788464

  1. Non-Destructive Thermography Analysis of Impact Damage on Large-Scale CFRP Automotive Parts.

    PubMed

    Maier, Alexander; Schmidt, Roland; Oswald-Tranta, Beate; Schledjewski, Ralf

    2014-01-14

    Laminated composites are increasingly used in aeronautics and the wind energy industry, as well as in the automotive industry. In these applications, the construction and processing need to fulfill the highest requirements regarding weight and mechanical properties. Environmental issues, like fuel consumption and CO₂-footprint, set new challenges in producing lightweight parts that meet the highly monitored standards for these branches. In the automotive industry, one main aspect of construction is the impact behavior of structural parts. To verify the quality of parts made from composite materials with little effort, cost and time, non-destructive test methods are increasingly used. A highly recommended non-destructive testing method is thermography analysis. In this work, a prototype for a car's base plate was produced by using vacuum infusion. For research work, testing specimens were produced with the same multi-layer build up as the prototypes. These specimens were charged with defined loads in impact tests to simulate the effect of stone chips. Afterwards, the impacted specimens were investigated with thermography analysis. The research results in that work will help to understand the possible fields of application and the usage of thermography analysis as the first quick and economic failure detection method for automotive parts.

  2. Non-destructive Evaluation of Bonds Between Fiberglass Composite and Metal

    NASA Technical Reports Server (NTRS)

    Zhao, Selina; Sonta, Kestutis; Perey, Daniel F.; Cramer, K. E.; Berger, Libby

    2015-01-01

    To assess the integrity and reliability of an adhesive joint in an automotive composite component, several non-destructive evaluation (NDE) methodologies are correlated to lap shear bond strengths. A glass-fabric-reinforced composite structure was bonded to a metallic structure with a two-part epoxy adhesive. Samples were subsequently cut and tested in shear, and flaws were found in some areas. This study aims to develop a reliable and portable NDE system for service-level adhesive inspection in the automotive industry. The results of the experimental investigation using several NDE methods are presented and discussed. Fiberglass-to-metal bonding is the ideal configuration for NDE via thermography using excitation with induction heating, due to the conductive metal and non-conductive glass-fiber-reinforced composites. Excitation can be either by a research-grade induction heater of highly defined frequency and intensity, or by a service-level heater, such as would be used for sealing windshields in a body shop. The thermographs thus produced can be captured via a high-resolution infrared camera, with principal component analysis and 2D spatial Laplacian processing. Alternatively, the thermographs can be captured by low resolution thermochromic microencapsulated liquid crystal film imaging, which needs no post-processing and can be very inexpensive. These samples were also examined with phased-array ultrasound. The NDE methods are compared to the lap shear values and to each other for approximate cost, accuracy, and time and level of expertise needed.

  3. Enhancing the bandwidth of piezoelectric composite transducers for air-coupled non-destructive evaluation.

    PubMed

    Banks, Robert; O'Leary, Richard L; Hayward, Gordon

    2017-03-01

    This paper details the development of a novel method for increasing the operational bandwidth of piezocomposites without the need for lossy backing material, the aim being to increase fractional bandwith by geometrical design. Removing the need for lossy backing materials, should in turn increase the transmit efficiency in the desired direction of propagation. Finite element analysis has been employed to determine the mode of operation of the new piezocomposite devices and shows good correlation with that derived experimentally. Through a series of practical and analytical methods it has been shown that additional thickness mode resonances can be introduced into the structure by a simple machining process. The shaped composites described in this paper offer increased operational bandwidth. A simple example of a two step thickness design is described to validate and illustrate the principle. A more complex conical design is presented that illustrates a possible tenfold increase in bandwidth from 30kHz to 300kHz, operating in air without backing. An illustration of the applicability of this type of transducer technology for frequency agile guided mode non-destructive evaluation is then presented.

  4. Non-destructive analysis and identification of jade by PIXE

    NASA Astrophysics Data System (ADS)

    Cheng, H. S.; Zhang, Z. Q.; Zhang, B.; Yang, F. J.

    2004-06-01

    This paper reports the experimental results of identifying jade by proton induced X-ray emission (PIXE) technique. It is found that the jade can be classified, according to the chemical composition determined by PIXE. The experimental results can differentiate ancient Chinese jade works of art from fakes if the material is the same.

  5. Non Destructive Defect Detection by Spectral Density Analysis

    PubMed Central

    Krejcar, Ondrej; Frischer, Robert

    2011-01-01

    The potential nondestructive diagnostics of solid objects is discussed in this article. The whole process is accomplished by consecutive steps involving software analysis of the vibration power spectrum (eventually acoustic emissions) created during the normal operation of the diagnosed device or under unexpected situations. Another option is to create an artificial pulse, which can help us to determine the actual state of the diagnosed device. The main idea of this method is based on the analysis of the current power spectrum density of the received signal and its postprocessing in the Matlab environment with a following sample comparison in the Statistica software environment. The last step, which is comparison of samples, is the most important, because it is possible to determine the status of the examined object at a given time. Nowadays samples are compared only visually, but this method can’t produce good results. Further the presented filter can choose relevant data from a huge group of data, which originate from applying FFT (Fast Fourier Transform). On the other hand, using this approach they can be subjected to analysis with the assistance of a neural network. If correct and high-quality starting data are provided to the initial network, we are able to analyze other samples and state in which condition a certain object is. The success rate of this approximation, based on our testing of the solution, is now 85.7%. With further improvement of the filter, it could be even greater. Finally it is possible to detect defective conditions or upcoming limiting states of examined objects/materials by using only one device which contains HW and SW parts. This kind of detection can provide significant financial savings in certain cases (such as continuous casting of iron where it could save hundreds of thousands of USD). PMID:22163742

  6. Comparative analysis of non-destructive methods to control fissile materials in large-size containers

    NASA Astrophysics Data System (ADS)

    Batyaev, V. F.; Sklyarov, S. V.

    2017-09-01

    The analysis of various non-destructive methods to control fissile materials (FM) in large-size containers filled with radioactive waste (RAW) has been carried out. The difficulty of applying passive gamma-neutron monitoring FM in large containers filled with concreted RAW is shown. Selection of an active non-destructive assay technique depends on the container contents; and in case of a concrete or iron matrix with very low activity and low activity RAW the neutron radiation method appears to be more preferable as compared with the photonuclear one. Note to the reader: the pdf file has been changed on September 22, 2017.

  7. Novel, non-destructive cereal quality analysis: potential for triticale.

    PubMed

    Manley, Marena

    2014-01-01

    Near infrared (NIR) spectroscopy, NIR hyperspectral imaging and X-ray computed technology (XCT) can each in its own way contribute to the effective analysis of whole grain triticale. With NIR spectroscopy only giving an average result, NIR hyperspectral imaging gives spatial as well as spectral information of a sample. Chemical information as well as the localisation of the chemical compounds is thus obtained. XCT advanced on these two techniques in that it allows three dimensional (3D) visualisation of the internal structure of a sample. The availability of X-ray microcomputed tomography (microCT) instruments and now also nanoCT instruments allow high resolution images of the microstructure of samples to be obtained. These techniques, reviewed in this paper, can be used in association, each with their own advantages and disadvantages, to most effectively analyse whole grain triticale.

  8. Non-destructive digital imaging in poplar allows detailed analysis of adventitious rooting dynamics

    Treesearch

    R.J. Kodrzycki; R.B. Michaels; A.L. Friend; R.S. Zalesny; Ch.P. Mawata; D.W. McDonald

    2008-01-01

    The dynamics of root formation are difficult to observe directly over time without disturbing the rooting environment. A novel system for a non-destructive, non-invasive root analysis (RootViz FS, Phenotype Screening Corp.) was evaluated for its ability to analyze root formation from cuttings over a 32 day period in three poplar genotypes (DN70, P. Deltoides x...

  9. Non-destructive analysis of coins using high-energy PIXE

    NASA Astrophysics Data System (ADS)

    Denker, A.; Opitz-Coutureau, J.; Griesser, M.; Denk, R.; Winter, H.

    2004-11-01

    At the Ionenstrahllabor (ion beam laboratory) a great variety of ions with variable energies up to several MeV/u can be produced. Performing proton induced X-ray emission (PIXE) with protons of 68 MeV, heavy elements can be detected via the K X-rays in addition to their L X-rays. The large proton range and the small absorption coefficients for the K X-rays result in an analysable depth of several millimeters. The L-K line intensity ratio yields further information on the composition of the objects. The objects of the study were so-called "Wiener Pfennige" found in Tulln, Austria. The "hoard of Tulln" contains about 11 000 of these silver coins which were strongly corroded and agglomerated to a single block. After the restoration non-destructive analysis should provide information about the elemental composition. The goal was to show the evolution of the copper content of the coins and the verification of the actual coin classification.

  10. PANDA—A novel instrument for non-destructive sample analysis

    NASA Astrophysics Data System (ADS)

    Turunen, Jani; Peräjärvi, Kari; Pöllänen, Roy; Toivonen, Harri

    2010-01-01

    An instrument known as PANDA (Particles And Non-Destructive Analysis) for non-destructive sample analysis has been designed and built at the Finnish Radiation and Nuclear Safety Authority (STUK). In PANDA the measurement techniques and instruments designed for the basic research are applied to the analysis of environmental samples. PANDA has two vacuum chambers, one for loading samples and the other for measurements. In the measurement chamber there are two individual measurement positions. Currently the first one hosts an HPGe gamma detector and a position-sensitive alpha detector. The second measurement position is intended for precise characterization of found particles. PANDA's data are recorded in event mode and events are timestamped. In the present article the technical design of PANDA is presented in detail. In addition, its performance using depleted uranium particles and an air filter is demonstrated.

  11. Non-destructive testing of satellite nozzles made of carbon fibre ceramic matrix composite, C/SiC

    SciTech Connect

    Rebelo Kornmeier, J. Hofmann, M.; Schmidt, S.

    2007-10-15

    Carbon fibre ceramic matrix composite materials, C/SiC, are excellent candidates as lightweight structural materials for high performance hot structures such as in aerospace applications. Satellite nozzles are manufactured from C/SiC, using, for instance, the Liquid Polymer Infiltration (LPI) process. In this article the applicability of different non-destructive analysis methods for the characterisation of C/SiC components will be discussed. By using synchrotron and neutron tomography it is possible to characterise the C/SiC material in each desired location or orientation. Synchrotron radiation using tomography on small samples with a resolution of 1.4 {mu}m, i.e. the fibre scale, was used to characterise three dimensionally fibre orientation and integrity, matrix homogeneity and dimensions and distributions of micro pores. Neutron radiation tomography with a resolution of about 300 {mu}m was used to analyse the over-all C/SiC satellite nozzle component with respect to the fibre content. The special solder connection of a C/SiC satellite nozzle to a metallic ring was also successfully analysed by neutron tomography. In addition, the residual stress state of a temperature tested satellite nozzle was analysed non-destructively in depth by neutron diffraction. The results revealed almost zero stress for the principal directions, radial, axial and tangential, which can be considered to be the principal directions.

  12. Destructive and Non-Destructive Analysis Techniques for Failure Detection of QFN Packages

    NASA Astrophysics Data System (ADS)

    Adhila, M. N.; Wedianti, S.; Suhaimi, W. S. W. M.; Aishah, I.

    2010-03-01

    One of the latest developments in packaging technology is the QFN (Quad Flat Non-Lead) packages, which is both a chip scale package and plastic encapsulated package with lead pad at the bottom. In this paper, different type of commercial QFN single die packages were characterized by using destructive and non-destructive techniques. Non-destructive techniques such as Scanning Acoustic Microscope (SAM) and X-Ray analysis were used to observe package cracking, delamination and other failure mode. Application of SAM include detection of delaminations between lead frame, die face, paddle, heat sink, cracks and plastic encapsulant. In comparison to other techniques, SAM is sensitive to detect beneath the surface of devices which would be inaccessible otherwise by both conventional optical and electron microscopy inspection methods. Destructive technique such as Field Emission Electron Microscopy (FESEM) was implemented to address the failures of the QFN single die packages such as die cracking, lifted ball bonds and other failure mode.

  13. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    NASA Astrophysics Data System (ADS)

    Boubenia, R.; Rosenkrantz, E.; Despetis, F.; P, P.; Ferrandis, J.-Y.

    2016-03-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten).

  14. Depth-dependent non-destructive analysis of thin overlayers using total-reflection-angle X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Shibata, Noriyoshi; Okubo, Soichiro; Yonemitsu, Kyoko

    1996-07-01

    Electron-beam excited X-ray chemical analysis with very small angle condition has been applied to measure thin overlayers on substrates. Relations between the fluorescent X-ray intensity and the emission angle is investigated based on a model. It is demonstrated that the emission-angle dependence of the X-ray intensity is sensitively reflected by film thickness and layer structure. The calculations agreed well with experiments for thin Au and Pd multilayers on Si substrate. The results show that this method is applicable to a non-destructive depth profiling of chemical compositions.

  15. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    oxygen isotope composition of ambient CO2. This non-destructive approach was tested through laboratory incubations of air-dried soils that were re-wetted with water of known isotopic composition. Performance was assessed by comparing estimates of the soil water oxygen isotope composition derived from open chamber flux measurements with those measured in the irrigation water and soil water extracted following incubations. The influence of soil pH and bovine carbonic anhydrase additions on these estimates was also investigated. Coherent values were found between the soil water composition estimates obtained from the dual steady state approach and those measured for irrigation waters. Estimates of carbonic anhydrase activity made using this approach also reflected well artificial increases to the concentration of carbonic anhydrase and indicated that this activity was sensitive to soil pH.

  16. Non-destructive Testing by Infrared Thermography Under Random Excitation and ARMA Analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, J. L.; Nicolas, J. L.; Candoré, J. C.; Detalle, V.

    2012-11-01

    Photothermal thermography is a non-destructive testing (NDT) method, which has many applications in the field of control and characterization of thin materials. This technique is usually implemented under CW or flash excitation. Such excitations are not adapted for control of fragile materials or for multi-frequency analysis. To allow these analyses, in this article, the use of a new control mode is proposed: infrared thermography under random excitation and auto regressive moving average analysis. First, the principle of this NDT method is presented. Then, the method is shown to permit detection, with low energy constraints, of detachments situated in mural paintings.

  17. Non destructive FTIR-photoacoustic spectroscopy studies on carbon fiber reinforced polyimide composite and water diffusion in epoxy resin

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Ravikumar

    Photo-acoustic (PA) detection is a non-destructive, non-disruptive mode of sample analysis. The principle of PA detection is monitoring the change in thermal properties of the material as a result of optical absorption. The ability to use with any incident radiation source makes it an attractive technique to study molecular excitations, vibrations and defects in any sample. Given the need for non-destructive analysis, the tool can be employed to study plethora of samples ranging from organic to inorganic. In the polymeric domain, there is a significant need for studying samples non-destructively with the architecture intact. For instance, molecular characterization in carbon fiber reinforced polymer, chemical diffusion in polymer resin/membrane and particulate/fillers incorporated thermosets suffer in characterization due to sample make-up. These samples are affected by opacity and thickness, which make them a very difficult set-up to study using conventional spectroscopic tools. We have employed PA mode of detection in tandem with a FTIR source to study the molecular vibrations to get an understanding of the systems considered. The first part of the work involved employing PA spectroscopy to study the curing in carbon fiber reinforced polymer (CFRP). Phenyl-ethynyl terminated oligoamic acid impregnated composite system was studied. The curing of composite and resin was monitored using PAS and compared with Transmission FTIR on resin and dynamic scanning calorimetry (DSC). The composite showed two distinct reactions as a function of thermal treatment. (1) Imidization at low temperatures due to cyclo-dehydration and (2) at high temperatures, crosslinking due to ethynyl addition reaction. Composite exhibited enhanced curing trends compared to neat resin. Our results indicate that the thermal conductivity of the carbon fiber might play a role in heat transfer facilitating the reaction. The activation energy was found to be 23kcal/mol for the crosslinking step. The

  18. Non-destructive analysis of didymium and praseodymium molybdate crystals using energy dispersive X-ray fluorescence technique

    NASA Astrophysics Data System (ADS)

    Bhat, C. K.; Joseph, Daisy; Pandita, Sanjay; Kotru, P. N.

    2016-08-01

    Analysis of didymium (Di) and praseodymium molybdate crystals were carried out using energy dispersive X-ray fluorescence (EDXRF). The assigned empirical chemical formulae of the composites were tested and verified by the EDXRF technique by estimating experimental major elemental concentration ratios. On the Basis of these ratios, the established formulae for some of the composite materials have been verified and suggestions made for their refinement. Non-destructive technique used in this analysis enables to retain the original crystal samples and makes rapid simultaneous scan of major elements such as La, Pr, Ned and Mo as well as impurities such as Ce. Absence of samarium(Sm) in the spectrum during analysis of didymium molybdate crystals indicated an incomplete growth of mixed rare earth single crystal. These crystals (e.g.,Di) are shown to be of modified stoichiometry with Ce as trace impurity.

  19. Non-destructive staging of barley reproductive development for molecular analysis based upon external morphology.

    PubMed

    Gómez, José Fernández; Wilson, Zoe A

    2012-06-01

    A prerequisite to study the molecular genetic pathways of pollen and anther development is an accurate staging system for reproductive development. However in barley, floret formation occurs mainly within the pseudostem, which makes the observation of floret development and access to the floret particularly difficult without dissecting the plant. Thus selecting stages for molecular analysis cannot be done non-destructively. A staging method has therefore been developed for barley in order to define the relationship between readily detectable growth points and reproductive development, to provide a clear key to enable accurate selection of reproductive material. Initial staging followed the traditional Zadoks decimal system, with minor adaptations to stages 31-34 and stage 37. The later stages, from 37 onward, were replaced by growth staging based upon the last flag elongation (LFE) and the position occupied by the spike within the pseudostem. Spike size could be readily predicted by using the staging system incorporating Zadoks stages 31-37, supplemented with substages and by LFE staging to improve accuracy. The different spike sizes, as well as the LFE stages, showed a clear relationship to events occurring within the anther, as confirmed by light microscopy of the anthers. The defined relationship between spike size and development to anther development now makes possible the accurate prediction of anther and pollen progression by external staging. This, therefore, provides a mechanism for non-destructive selection of material for analysis that is critical for the molecular characterization of genes in anther and pollen development.

  20. Optimization of ISOCS Parameters for Quantitative Non-Destructive Analysis of Uranium in Bulk Form

    NASA Astrophysics Data System (ADS)

    Kutniy, D.; Vanzha, S.; Mikhaylov, V.; Belkin, F.

    2011-12-01

    Quantitative calculation of the isotopic masses of fissionable U and Pu is important for forensic analysis of nuclear materials. γ-spectrometry is the most commonly applied tool for qualitative detection and analysis of key radionuclides in nuclear materials. Relative isotopic measurement of U and Pu may be obtained from γ-spectra through application of special software such as MGAU (Multi-Group Analysis for Uranium, LLNL) or FRAM (Fixed-Energy Response Function Analysis with Multiple Efficiency, LANL). If the concentration of U/Pu in the matrix is unknown, however, isotopic masses cannot be calculated. At present, active neutron interrogation is the only practical alternative for non-destructive quantification of fissionable isotopes of U and Pu. An active well coincidence counter (AWCC), an alternative for analyses of uranium materials, has the following disadvantages: 1) The detection of small quantities (≤100 g) of 235U is not possible in many models; 2) Representative standards that capture the geometry, density and chemical composition of the analyzed unknown are required for precise analysis; and 3) Specimen size is severely restricted by the size of the measuring chamber. These problems may be addressed using modified γ-spectrometry techniques based on a coaxial HPGe-detector and ISOCS software (In Situ Object Counting System software, Canberra). We present data testing a new gamma-spectrometry method uniting actinide detection with commonly utilized software, modified for application in determining the masses of the fissionable isotopes in unknown samples of nuclear materials. The ISOCS software, widely used in radiation monitoring, calculates the detector efficiency curve in a specified geometry and range of photon energies. In describing the geometry of the source-detector, it is necessary to clearly describe the distance between the source and the detector, the material and the thickness of the walls of the container, as well as material, density

  1. Non-destructive electron microscopy imaging and analysis of biological samples with graphene coating

    NASA Astrophysics Data System (ADS)

    Park, Jong Bo; Kim, Yong-Jin; Kim, Seong-Min; Yoo, Je Min; Kim, Youngsoo; Gorbachev, Roman; Barbolina, I. I.; Kim, Sang Jin; Kang, Sangmin; Yoon, Myung-Han; Cho, Sung-Pyo; Novoselov, Konstantin S.; Hong, Byung Hee

    2016-12-01

    In electron microscopy (EM), charging of non-conductive biological samples by focused electron beams hinders their high-resolution imaging. Gold or platinum coatings have been commonly used to prevent such sample charging, but it disables further quantitative and qualitative chemical analyses such as energy dispersive spectroscopy (EDS). Here we report that graphene-coating on biological samples enables non-destructive high-resolution imaging by EM as well as chemical analysis by EDS, utilizing graphene’s transparency to electron beams, high conductivity, outstanding mechanical strength and flexibility. We believe that the graphene-coated imaging and analysis would provide us a new opportunity to explore various biological phenomena unseen before due to the limitation in sample preparation and image resolution, which will broaden our understanding on the life mechanism of various living organisms.

  2. Portable generator-based XRF instrument for non-destructive analysis at crime scenes

    NASA Astrophysics Data System (ADS)

    Schweitzer, Jeffrey S.; Trombka, Jacob I.; Floyd, Samuel; Selavka, Carl; Zeosky, Gerald; Gahn, Norman; McClanahan, Timothy; Burbine, Thomas

    2005-12-01

    Unattended and remote detection systems find applications in space exploration, telemedicine, teleforensics, homeland security and nuclear non-proliferation programs. The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals investigate crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ, together with state and local forensic laboratories. A general-purpose X-ray fluorescence system has been built for non-destructive analyses of trace and invisible material at crime scenes. This portable instrument is based on a generator that can operate to 60 kV and a Schottky CdTe detector. The instrument has been shown to be successful for the analysis of gunshot residue and a number of bodily fluids at crime scenes.

  3. NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS: PRINCIPLE AND RESULTS.

    SciTech Connect

    WIELOPOLSKI, L.; MITRA, S.; HENDREY, G.; ROGERS, H.; TORBERT, A.; PRIOR, S.

    2003-05-05

    Global warming is promoted by anthropogenic CO{sub 2} emissions into the atmosphere, while at the same time it is partially mitigated by carbon sequestration by terrestrial ecosystems. However, improvement in the understanding and monitoring of below ground carbon processes is essential for evaluating strategies for carbon sequestration including quantification of carbon stores for credits. A system for non-destructive in situ carbon monitoring in soil, based on inelastic neutron scattering (INS), is described. The system can be operated in stationary or scanning mode and measures soil to depth of approximately 30 cm. There is a good agreement between results obtained from INS and standard chemical analysis of soil cores collected from the same study site.

  4. Magnetic Microcalorimeter Gamma Detectors for High-Precision Non-Destructive Analysis

    SciTech Connect

    Friedrich, Stephan; Bates, Cameron; Pereverzev, Sergey

    2014-10-03

    Cryogenic gamma (γ) detectors with operating temperatures of ~0.1 K offer 10× better energy resolution than conventional high-purity germanium detectors that are currently used for non-destructive analysis (NDA) of nuclear materials. This can greatly increase the accuracy of NDA, especially at low-energies where gamma rays often have similar energies and cannot be resolved by Ge detectors. Among the different cryogenic detector types, Magnetic Micro-Calorimeters (MMCs) have the potential of faster count rates and better linearity. High linearity is essential to add spectra from different pixels in detector arrays that are needed for high sensitivity. MMC gamma detectors measure the energy of absorbed gamma rays form the resulting change in magnetization of an erbium-doped gold (Au:Er) sensor. The signal is read out with a SQUID preamplifier and processed digitally with room temperature electronics (see inset figure 2). The objective of this project is to develop ultra-high energy resolution γ-detectors based on magnetic micro-calorimeters (MMCs) for accurate non-destructive isotope analysis (NDA). Since MMCs, like other cryogenic γ-detector technologies with operating temperatures <0.1 K, are intrinsically slow and have to be small for high resolution, special emphasis will be placed on questions that determine sensitivity and the potential for scaling to arrays. Objectives for FY14 were therefore to fabricate an improved version of MMC γ-detectors and test their energy resolution, maximum count rate, readout noise, crosstalk between pixels and linearity.

  5. Complementary use of the Raman and XRF techniques for non-destructive analysis of historical paint layers

    NASA Astrophysics Data System (ADS)

    Sawczak, M.; Kamińska, A.; Rabczuk, G.; Ferretti, M.; Jendrzejewski, R.; Śliwiński, G.

    2009-03-01

    The portable XRF spectrometer has been applied in situ for the non-destructive elemental mapping of the pigment components of the XV c. mural painting and frescos of the Little Christopher chamber in the Main Town Hall of Gdańsk, Poland. For a sufficiently large data collection the principal component analysis (PCA) was applied in order to associate the most intense lines of the elements Ca, Cu, Fe, Pb, and Hg in the XRF spectra with the palette of colors: white, brown, green, blue, red, yellow, and black observed in the painting. This allowed to limit the number of extractions of the micro-samples for the complementary Raman measurements thus assuring the practically non-destructive character of the entire analysis. The reliable identification of the pigment compositions was based on coincidence of the XRF, PCA and the Raman results which confirmed the presence of the chalk, malachite, azurite, red lead, mars red, mars yellow and candle black in the historical paints, except of the carbon-based black pigment being out of the XRF detection range. Different hues of the green paint were specified and the variety of the red and brown ones was ascribed to compositions of the Pb- and Fe-based red pigments (Fe 2O 3 and Pb 3O 4) with addition of the vermilion (HgS) and carbon black, in agreement with literature. The traces of elements: Ba and Sr, Sb and Mo, and also Cd, were ascribed to the impurities of Ca, those of some ochre pigments, and to the soluble Cd salts, respectively.

  6. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  7. Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis.

    PubMed

    Liu, Jinxia; Cao, Yue; Wang, Qiu; Pan, Wenjuan; Ma, Fei; Liu, Changhong; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2016-01-01

    Water-injected beef has aroused public concern as a major food-safety issue in meat products. In the study, the potential of multispectral imaging analysis in the visible and near-infrared (405-970 nm) regions was evaluated for identifying water-injected beef. A multispectral vision system was used to acquire images of beef injected with up to 21% content of water, and partial least squares regression (PLSR) algorithm was employed to establish prediction model, leading to quantitative estimations of actual water increase with a correlation coefficient (r) of 0.923. Subsequently, an optimized model was achieved by integrating spectral data with feature information extracted from ordinary RGB data, yielding better predictions (r = 0.946). Moreover, the prediction equation was transferred to each pixel within the images for visualizing the distribution of actual water increase. These results demonstrate the capability of multispectral imaging technology as a rapid and non-destructive tool for the identification of water-injected beef.

  8. Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy

    PubMed Central

    Tate, Jim; Moens, Luc

    2006-01-01

    Raman spectroscopy is a versatile technique that has frequently been applied for the investigation of art objects. By using mobile Raman instrumentation it is possible to investigate the artworks without the need for sampling. This work evaluates the use of a dedicated mobile spectrometer for the investigation of a range of museum objects in museums in Scotland, including antique Egyptian sarcophagi, a panel painting, painted surfaces on paper and textile, and the painted lid and soundboard of an early keyboard instrument. The investigations of these artefacts illustrate some analytical challenges that arise when analysing museum objects, including fluorescing varnish layers, ambient sunlight, large dimensions of artefacts and the need to handle fragile objects with care. Analysis of the musical instrument (the Mar virginals) was undertaken in the exhibition gallery, while on display, which meant that interaction with the public and health and safety issues had to be taken into account. Experimental set-up for the non-destructive Raman spectroscopic investigation of a textile banner in the National Museums of Scotland PMID:16953310

  9. Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy.

    PubMed

    Vandenabeele, Peter; Tate, Jim; Moens, Luc

    2007-02-01

    Raman spectroscopy is a versatile technique that has frequently been applied for the investigation of art objects. By using mobile Raman instrumentation it is possible to investigate the artworks without the need for sampling. This work evaluates the use of a dedicated mobile spectrometer for the investigation of a range of museum objects in museums in Scotland, including antique Egyptian sarcophagi, a panel painting, painted surfaces on paper and textile, and the painted lid and soundboard of an early keyboard instrument. The investigations of these artefacts illustrate some analytical challenges that arise when analysing museum objects, including fluorescing varnish layers, ambient sunlight, large dimensions of artefacts and the need to handle fragile objects with care. Analysis of the musical instrument (the Mar virginals) was undertaken in the exhibition gallery, while on display, which meant that interaction with the public and health and safety issues had to be taken into account. Experimental set-up for the non-destructive Raman spectroscopic investigation of a textile banner in the National Museums of Scotland.

  10. Statistical Degradation Models for Reliability Analysis in Non-Destructive Testing

    NASA Astrophysics Data System (ADS)

    Chetvertakova, E. S.; Chimitova, E. V.

    2017-04-01

    In this paper, we consider the application of the statistical degradation models for reliability analysis in non-destructive testing. Such models enable to estimate the reliability function (the dependence of non-failure probability on time) for the fixed critical level using the information of the degradation paths of tested items. The most widely used models are the gamma and Wiener degradation models, in which the gamma or normal distributions are assumed as the distribution of degradation increments, respectively. Using the computer simulation technique, we have analysed the accuracy of the reliability estimates, obtained for considered models. The number of increments can be enlarged by increasing the sample size (the number of tested items) or by increasing the frequency of measuring degradation. It has been shown, that the sample size has a greater influence on the accuracy of the reliability estimates in comparison with the measuring frequency. Moreover, it has been shown that another important factor, influencing the accuracy of reliability estimation, is the duration of observing degradation process.

  11. Non-Destructive Quantification of Plastic Deformation in Steel: Employing X-Ray Diffraction Peak Broadening Analysis

    DTIC Science & Technology

    2013-09-01

    residual stress); dislocation density has proven to be a particularly elusive quantity to evaluate non-destructively. Dislocation density provides...a methodology for evaluating plastic deformation in ferromagnetic steel alloys. An overview of the principles of XRD, how the crystallographic...This, together with elastic strain / residual stress analysis, would enable better evaluation of the current state of health of steel structures and

  12. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.

    PubMed

    Manley, Marena

    2014-12-21

    Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as

  13. Novel application of X-ray fluorescence microscopy (XFM) for the non-destructive micro-elemental analysis of natural mineral pigments on Aboriginal Australian objects.

    PubMed

    Popelka-Filcoff, Rachel S; Lenehan, Claire E; Lombi, Enzo; Donner, Erica; Howard, Daryl L; de Jonge, Martin D; Paterson, David; Walshe, Keryn; Pring, Allan

    2016-06-07

    This manuscript presents the first non-destructive synchrotron micro-X-ray fluorescence study of natural mineral pigments on Aboriginal Australian objects. Our results demonstrate the advantage of XFM (X-ray fluorescence microscopy) of Aboriginal Australian objects for optimum sensitivity, elemental analysis, micron-resolution mapping of pigment areas and the method also has the advantage of being non-destructive to the cultural heritage objects. Estimates of pigment thickness can be calculated. In addition, based on the elemental maps of the pigments, further conclusions can be drawn on the composition and mixtures and uses of natural mineral pigments and whether the objects were made using traditional or modern methods and materials. This manuscript highlights the results of this first application of XFM to investigate complex mineral pigments used on Aboriginal Australian objects.

  14. 3D thermography in non-destructive testing of composite structures

    NASA Astrophysics Data System (ADS)

    Hellstein, Piotr; Szwedo, Mariusz

    2016-12-01

    The combination of 3D scanners and infrared cameras has lead to the introduction of 3D thermography. Such analysis produces results in the form of three-dimensional thermograms, where the temperatures are mapped on a 3D model reconstruction of the inspected object. All work in the field of 3D thermography focused on its utility in passive thermography inspections. The authors propose a new real-time 3D temperature mapping method, which for the first time can be applied to active thermography analyses. All steps required to utilise 3D thermography are discussed, starting from acquisition of three-dimensional and infrared data, going through image processing and scene reconstruction, finishing with thermal projection and ray-tracing visualisation techniques. The application of the developed method was tested during diagnosis of several industrial composite structures—boats, planes and wind turbine blades.

  15. Quantitative non-destructive evaluation of composite materials based on ultrasonic parameters

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1987-01-01

    Research into the nondestructive evaluation of advanced reinforced composite laminates is summarized. The applicability of the Framers-Kronig equations to the nondestructive evaluation of composite materials is described.

  16. Application of Barkhausen noise and ferromagnetic hysteresis for magnetic non-destructive evaluation of multiphase composites and structures

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, Neelam; Kypris, Orfeas; Nlebedim, Cajetan; Jiles, David

    2015-03-01

    Composite ferromagnetic materials with multiple magnetic phases are increasingly being used in applications such as magnetic data storage, magnetic sensors and actuators and exchange-spring magnets. These materials occur in single or multiphase conditions and can undergo phase changes over time or during processing. For these materials, we examine the interrelation between ferromagnetic hysteresis, Barkhausen noise and the material microstructure. We observe that the presence of a second phase in these materials can be detected with the help of Barkhausen noise signals due to the occurrence of additional peaks in the magnetization envelope. This behavior in the magnetic response can serve as a tool for non-destructive evaluation of ferromagnetic materials for which phase constitution and phase changes affect the structural performance.

  17. Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing

    PubMed Central

    Capriotti, Margherita; Kim, Hyungsuk E.; Lanza di Scalea, Francesco; Kim, Hyonny

    2017-01-01

    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers. PMID:28772976

  18. Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by Energy-Resolved Neutron Imaging

    PubMed Central

    Tremsin, Anton S.; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S.; Vogel, Sven C.

    2017-01-01

    Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5–10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity. PMID:28102285

  19. Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by Energy-Resolved Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S.; Vogel, Sven C.

    2017-01-01

    Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5–10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity.

  20. Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by Energy-Resolved Neutron Imaging.

    PubMed

    Tremsin, Anton S; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S; Vogel, Sven C

    2017-01-19

    Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5-10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity.

  1. [The Non-Destructive Analysis of Some Ancient Jade Artifacts Unearthed from Henan Province by a Variety of Optical Techniques].

    PubMed

    Wang, Kai; Dong, Jun-qing; Zhao, Hong-xia; Gan, Fu-xi; Hu, Yong-qing; Pan, Wen-quan

    2015-09-01

    A total of 14 pieces of ancient jade artifact unearthed from Henan Province were non-destructively analyzed by means of a portable X-ray fluorescence spectrometer (pXRF), laser Raman spectroscopy (portable and mobile) and optical coherence tomography (OCT) technology, comprehensively. The raw materials of ancient jade artifacts could be determined accurately through the combination of pXRF and portable Raman spectrometer in a short time. With the advantages of small size and easy-operation, these two instruments are suitable to in situ non-destructive analysis of ancient jade artifacts. The results of the pXRF shows that these ancient jade artifacts can be divided into 6 categories such as rich in Si Al K, rich in Ca, rich in Si Ca, rich in Si Mg, rich in Si, rich in Ca P. Their main phases have been successfully identified by the portable Raman spectrometer. In the lab, the mobile confocal laser Raman spectrometer, which help us find the Raman vibration peak of [OH] in the tremolite jade, is used to make up the disadvantages of the portable Raman spectrometer such as lower spectral resolution, lower accuracy and narrower measuring range. We can use the OCT to analyze the transparency, fiber fineness and inclusion etc. of the jade artifacts. The confocal laser Raman spectroscopy combined with OCT is used to analyze 2 containing inclusion of tremolite jade samples. OCT image can visually display the distribution characteristics of the inclusion in these 2 samples. Confocal laser Raman spectroscopy can accurately locate the sample surface of inclusion, then we can observe the micro morphology and analyze its phase. The results show that the black inclusion is graphite. This work is very significant to study the geographical origin of jade. Through the study we find, the use of pXRF, laser Raman spectroscopy (portable and mobile) and OCT can be achieved on the identification and analysis of cultural relic's phase composition and texture feature and meet the basic

  2. Non-destructive analysis of extracellular matrix development in cardiovascular tissue-engineered constructs.

    PubMed

    Tuemen, M; Nguyen, D V A; Raffius, J; Flanagan, T C; Dietrich, M; Frese, J; Schmitz-Rode, T; Jockenhoevel, S

    2013-05-01

    In the field of tissue engineering, there is an increasing demand for non-destructive methods to quantify the synthesis of extracellular matrix (ECM) components such as collagens, elastin or sulphated glycosaminoglycans (sGAGs) in vitro as a quality control before clinical use. In this study, procollagen I carboxyterminal peptide (PICP), procollagen III aminoterminal peptide (PIIINP), tropoelastin and sGAGs are investigated for their potential use as non-destructive markers in culture medium of statically cultivated cell-seeded fibrin gels. Measurement of PICP as marker for type I collagen synthesis, and PIIINP as marker of type III collagen turnover, correlated well with the hydroxyproline content of the fibrin gels, with a Pearson correlation coefficient of 0.98 and 0.97, respectively. The measurement of tropoelastin as marker of elastin synthesis correlated with the amount of elastin retained in fibrin gels with a Pearson correlation coefficient of 0.99. sGAGs were retained in fibrin gels, but were not detectable in culture medium at any time of measurement. In conclusion, this study demonstrates the potential of PICP and tropoelastin as non-destructive culture medium markers for collagen and elastin synthesis. To our knowledge, this is the first study in cardiovascular tissue engineering investigating the whole of here proposed biomarkers of ECM synthesis to monitor the maturation process of developing tissue non-invasively, but for comprehensive assessment of ECM development, these biomarkers need to be investigated in further studies, employing dynamic cultivation conditions and more complex tissue constructs.

  3. Quantitative non-destructive evaluation of porous composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1987-01-01

    Porosity in composite media using ultrasonic waves is characterized. The derivation of local approximations to the Kramers-Kronig relations are presented and it is shown that they may also be applicable to systems that could conceivably exhibit considerable dispersion such as composite laminates containing porosity.

  4. Method and apparatus for non-destructive evaluation of composite materials with cloth surface impressions

    NASA Technical Reports Server (NTRS)

    Madras, Eric I. (Inventor)

    1995-01-01

    A method and related apparatus for nondestructive evaluation of composite materials by determination of the quantity known as Integrated Polar Backscatter, which avoids errors caused by surface texture left by cloth impressions by identifying frequency ranges associated with peaks in a power spectrum for the backscattered signal, and removing such frequency ranges from the calculation of Integrated Polar Backscatter for all scan sites on the composite material is presented.

  5. Quantitative non-destructive evaluation of composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1986-01-01

    The application and interpretation of specific ultrasonic nondestructive evaluation techniques are studied. The Kramers-Kronig or generalized dispersion relationships are applied to nondestructive techniques. Progress was made on an improved determination of material properties of composites inferred from elastic constant measurements.

  6. In-process, non-destructive, dynamic testing of high-speed polymer composite rotors

    NASA Astrophysics Data System (ADS)

    Kuschmierz, Robert; Filippatos, Angelos; Günther, Philipp; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgen; Fischer, Andreas

    2015-03-01

    Polymer composite rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency and lifetime, as well as allowing for higher dynamic loads. However, due to the complexity of the composite materials an in-process measurement system is required. This allows for monitoring the evolution of damages under dynamic loads, for testing and predicting the structural integrity of composite rotors in process. In rotor design, it can be used for calibrating and improving models, simulating the dynamic behaviour of polymer composite rotors. The measurement system is to work non-invasive, offer micron uncertainty, as well as a high measurement rate of several tens of kHz. Furthermore, it must be applicable at high surface speeds and under technical vacuum. In order to fulfil these demands a novel laser distance measurement system was developed. It provides the angle resolved measurement of the biaxial deformation of a fibre-reinforced polymer composite rotor with micron uncertainty at surface speeds of more than 300 m/s. Furthermore, a simulation procedure combining a finite element model and a damage mechanics model is applied. A comparison of the measured data and the numerically calculated data is performed to validate the simulation towards rotor expansion. This validating procedure can be used for a model calibration in the future. The simulation procedure could be used to investigate different damage-test cases of the rotor, in order to define its structural behaviour without further experiments.

  7. Non-destructive evaluation of delamination growth in glass fiber composites using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Groves, Roger M.; Benedictus, Rinze

    2014-03-01

    Based on low coherence interferometry, a robust optical coherence tomography (OCT) system has been built. The system was used to monitor the growth of a delamination between the middle layers of a glass fiber composite under a static loading. Firstly specimens of the material used for the spar webs in wind turbines were prepared with an interlaminar crack from free edges. Then they were statically loaded by a customized tensile test stage to extend the delamination length and simultaneously scanned by the OCT system. To process the acquired data, an optimized signal processing algorithm was developed. The cross-sectional images clearly show the microstructure and the crack within the specimen. The 3D crack profiles show the application of OCT to determine the evolution of the crack structure inside the composite material during the propagation of the delamination, for the first time to the best of our knowledge.

  8. Relationship between non-destructive OCT evaluation of resins composites and bond strength in a cavity

    NASA Astrophysics Data System (ADS)

    Bakhsh, T. A.; Sadr, A.; Shimada, Y.; Khunkar, S.; Tagami, J.; Sumi, Y.

    2012-01-01

    Objectives: Formation of microgaps under the composite restorations due to polymerization stress and other causes compromise the adhesion to the dental substrate and restoration durability. However, the relationship between cavity adaptation and bond strength is not clear. In this paper, we introduce a new testing method to assess cavity adaptation by swept-source optical coherence tomography (SS-OCT) and microtensile bond strength (MTBS) in the same class-I cavity. Methods: Round class-I cavities 3 mm in diameter and 1.5 mm in depth were prepared on 10 human premolars. After application of Tokuyama Bond Force adhesive, the cavities were filled by one of the two techniques; incremental technique using Estelite Sigma Quick universal composite or flowable lining using Palfique Estelite LV with bulk filling using the universal composite. Ten serial B-scan images were obtained throughout each cavity by SS-OCT. Significant peaks in the signal intensity were detected at the bonded interface of the cavity floor and to compare the different filling techniques. The specimens were later cut into beams (0.7x0.7 mm) and tested to measure MTBS at the cavity floor. Results: Flowable lining followed by bulk filling was inferior in terms of cavity adaptation and MTBS compared to the incremental technique (p<0.05, t-test). The adaptation (gap free cavity floor) and MTBS followed similar trends in both groups. Conclusion: Quantitative assessment of dental restorations by OCT can provide additional information on the performance and effectiveness of dental composites and restoration techniques. This study was supported by Global Center of Excellence, Tokyo Medical and Dental University and King Abdulaziz University.

  9. Quantitative non-destructive evaluation of porous composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1988-01-01

    Two complementary ultrasonic techniques for characterizing porosity in fiber-reinforced composite laminates are evaluated. Five uniaxial graphite-fiber/epoxy-matrix composites having a range of 1 to 8 percent volume fraction of solid glass inclusions to model porosity were investigated. In one technique, signal loss was measured in transmission mode and slope of attenuation, obtained from the first order coefficient of a two-parameter polynomial fit about the center frequency of the useful bandwidth, was used as the ultrasonic parameter to characterize the porosity. The results of these transmission mode measurements displayed a good correlation between the volume fraction of porosity and the slope of attenuation. Integrated polar backscatter was used as a second ultrasonic parameter for the characterization of the porosity in these samples. A single transducer insonified the samples and measured the resulting backscatter at a polar angle of 30 deg with respect to the normal of the sample surface with the azimuthal angles centered at 0 deg with respect to the fiber orientation (i.e., along the fibers). Integrated polar backscatter also displayed good correlation with the volume fraction of porosity.

  10. Quantitative non-destructive evaluation of composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1984-01-01

    The size, shape, and orientation of damage correlates well between the polar backscatter technique and the deply technique. There is good quantitative correlation between the areas of damage indicated by the two techniques. These results suggest that the polar backscatter technique is sensitive to specific orientations of damage. The polar backscatter technique provides a good qualitative image of the size and shape of the largest zone of damage in each of the principal orientations. A quantitative estimate of the extent of these largest damage zones is obtained from the polar backscatter technique. The selective sensitivity of polar backscatter provides a useful tool for further studies of the mechanisms of impact damage in graphite fiber reinforced composite laminates.

  11. Non-destructive testing of composite materials used in military applications by eddy current thermography method

    NASA Astrophysics Data System (ADS)

    Swiderski, Waldemar

    2016-10-01

    Eddy current thermography is a new NDT-technique for the detection of cracks in electro conductive materials. It combines the well-established inspection techniques of eddy current testing and thermography. The technique uses induced eddy currents to heat the sample being tested and defect detection is based on the changes of induced eddy currents flows revealed by thermal visualization captured by an infrared camera. The advantage of this method is to use the high performance of eddy current testing that eliminates the known problem of the edge effect. Especially for components of complex geometry this is an important factor which may overcome the increased expense for inspection set-up. The paper presents the possibility of applying eddy current thermography method for detecting defects in ballistic covers made of carbon fiber reinforced composites used in the construction of military vehicles.

  12. Non-destructive analysis for the investigation of decomposition phenomena of historical manuscripts and prints

    NASA Astrophysics Data System (ADS)

    Faubel, Werner; Staub, Susanne; Simon, Rolf; Heissler, Stefan; Pataki, Andrea; Banik, Gerhard

    2007-07-01

    As a contribution to the increasing efforts to preserve cultural heritage, historical books as well as illuminated manuscripts endangered by corrosive writing and printing materials or destructive coloring matters, non-destructive analytical methods are highly desirable enabling an in-situ examination of the surface status of an object. The development and application of a novel combination of non-destructive analytic methods based on (a) synchrotron radiation induced micro-X-ray fluorescence (SR-μXRF) and (b) Fourier transform infrared (FTIR) microscope allows to investigate the state as well as the effectiveness of conservation procedures for historical manuscripts. Examples of measurements include (1) an iron gall ink manuscript of a historical memo on legal land description of the year 1769, (2) an original hand colored herbal of the years 1536/38 from the Senckenbergische Bibliothek, Frankfurt, and (3) the incunabula Johannes von Saaz: "Der Ackermann aus Boehmen" fated from 1463 and printed by Albrecht Pfister, Bamberg, owned by the Herzog August Bibliothek, Wolfenbuettel.

  13. In-process, non-destructive multimodal dynamic testing of high-speed composite rotors

    NASA Astrophysics Data System (ADS)

    Kuschmierz, Robert; Filippatos, Angelos; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgern W.; Fischer, Andreas

    2014-03-01

    Fibre reinforced plastic (FRP) rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency, lifetime and loading limits. Due to complex rotor structures, high anisotropy and non-linear behavior of FRP under dynamic loads, an in-process measurement system is necessary to monitor and to investigate the evolution of damages under real operation conditions. A non-invasive, optical laser Doppler distance sensor measurement system is applied to determine the biaxial deformation of a bladed FRP rotor with micron uncertainty as well as the tangential blade vibrations at surface speeds above 300 m/s. The laser Doppler distance sensor is applicable under vacuum conditions. Measurements at varying loading conditions are used to determine elastic and plastic deformations. Furthermore they allow to determine hysteresis, fatigue, Eigenfrequency shifts and loading limits. The deformation measurements show a highly anisotropic and nonlinear behavior and offer a deeper understanding of the damage evolution in FRP rotors. The experimental results are used to validate and to calibrate a simulation model of the deformation. The simulation combines finite element analysis and a damage mechanics model. The combination of simulation and measurement system enables the monitoring and prediction of damage evolutions of FRP rotors in process.

  14. Non-destructive assessment of polycyclic aromatic hydrocarbon (PAH) exposure by fluorimetric analysis of crab urine.

    PubMed

    Koenig, Samuel; Savage, Candida; Kim, Jonathan P

    2008-12-01

    The detection of urinary polycyclic aromatic hydrocarbon (PAH) metabolites by fluorescence spectrophotometry is particularly effective as a practical means to assess PAH exposure in decapod crabs. However, the practical application of this technique has thus far only been tested for the European shore crab (Carcinus maenas) and only a few field studies have been conducted in heavily polluted areas. The present study evaluated the adaptability of this method as a rapid, cost-effective and non-destructive biomonitoring tool for the New Zealand crab species, Macrophthalmus hirtipes (stalk-eyed mud crab). A field gradient could be detected among the sites and different input sources of PAH contamination could be discerned through the differentiation of pyrogenic and petrogenic PAH signatures. The present study shows that the fluorescence screening method is sensitive to relatively low levels of PAH contamination and more broadly applicable to smaller crab species than C. maenas, for which the technique was developed.

  15. Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes

    NASA Astrophysics Data System (ADS)

    Bartošová, Alica; Blinová, Lenka; Sirotiak, Maroš; Michalíková, Anna

    2017-06-01

    The degradation of the environment which is due to the discharge of polluting wastewater from industrial sources poses a real problem in several countries. Textile industries use large volumes of water in their operations, discharging thus large volume of wastewater into the environment, most of which is untreated. The wastewater contains a variety of chemicals from various stages of process operations, including desizing, scouring, bleaching and dyeing. The main purpose of this paper is to introduce Infrared Spectrometry with Fourier transformation as a non-destructive method for study, identifation and rapid determination of selected representatives of cationic (Methylene Blue), azo (Congo Red, Eriochrome Black T) and nitroso (Naphthol Green B) dyes. In conjunction with the ATR technique, FTIR offers a reliable detection method of dyes without extraction by other dangerous substances. Spectral interpretation of dye spectra revealed valuable information about the identification and characterization of each group of dyes.

  16. MCNP ESTIMATE OF THE SAMPLED VOLUME IN A NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS.

    SciTech Connect

    WIELOPOLSKI, L.; DIOSZEGI, I.; MITRA, S.

    2004-05-03

    Global warming, promoted by anthropogenic CO{sub 2} emission into the atmosphere, is partially mitigated by the photosynthesis processes of the terrestrial echo systems that act as atmospheric CO{sub 2} scrubbers and sequester carbon in soil. Switching from till to no till soils management practices in agriculture further augments this process. Carbon sequestration is also advanced by putting forward a carbon ''credit'' system whereby these can be traded between CO{sub 2} producers and sequesters. Implementation of carbon ''credit'' trade will be further promulgated by recent development of a non-destructive in situ carbon monitoring system based on inelastic neutron scattering (INS). Volumes and depth distributions defined by the 0.1, 1.0, 10, 50, and 90 percent neutron isofluxes, from a point source located at either 5 or 30 cm above the surface, were estimated using Monte Carlo calculations.

  17. Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis

    PubMed Central

    Her, Shiuh-Chuan; Lin, Sheng-Tung

    2014-01-01

    Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875

  18. Flat nose low velocity drop-weight impact response of carbon fibre composites using non-destructive damage detection techniques

    NASA Astrophysics Data System (ADS)

    Farooq, Umar; Myler, Peter

    2015-03-01

    This work is mainly concerned with the nondestructive post-impact damage evaluation of carbon fibre reinforced laminated composite panels subject to low velocity drop-weight impact by flat and round nose impactors. Quasi-isotropic laminates consisting of eight-, sixteen-, and twenty-four plies were impacted by flat and round nose impactors at different velocity levels. Load-time history data were recorded and plotted to correlate loaddrop as damage level to the impactor nose profiles. Test produced data, non-destructive damage detection techniques: visual, ultrasonic, and eddy- current, and computer simulations were utilised to identify and quantify status of the impact induced damage. To evaluate damage in relatively thick laminates (consisting of 24-Ply), the damage ratios and deflection quantities were correlated to the corresponding impactor nose profiles. Damage induced by the flat nose impactor to thick laminates was compared against the data produced by the round nose impactor. Results show that relatively thin laminates were largely affected by the impactor nose. Reasonable difference was observed in damage caused by flat and round impactor nose profiles to thick laminates impacted at relatively higher velocity impacts. Resultswere compared and validated against simulation produced data.

  19. Recent advances in rapid and non-destructive determination of fat content and fatty acids composition of muscle foods.

    PubMed

    Tao, Feifei; Ngadi, Michael

    2017-01-24

    Conventional methods for determining fat content and fatty acids (FAs) composition are generally based on the solvent extraction and gas chromatography techniques, respectively, which are time-consuming, laborious, destructive to samples and require use of hazard solvents. These disadvantages make them impossible for large-scale detection or being applied to the production line of meat factories. In this context, the great necessity of developing rapid and non-destructive techniques for fat and FAs analyses has been highlighted. Measurement techniques based on near-infrared spectroscopy, Raman spectroscopy, nuclear magnetic resonance and hyperspectral imaging have provided interesting and promising results for fat and FAs prediction in varieties of foods. Thus, the goal of this article is to give an overview of the current research progress in application of the four important techniques for fat and FAs analyses of muscle foods, which consist of pork, beef, lamb, chicken meat, fish and fish oil. The measurement techniques are described in terms of their working principles, features and application advantages. Research advances for these techniques for specific food are summarized in detail and the factors influencing their modeling results are discussed. Perspectives on the current situation, future trends and challenges associated with the measurement techniques are also discussed.

  20. An experimental study of non-destructive testing on glass fibre reinforced polymer composites after high velocity impact event

    NASA Astrophysics Data System (ADS)

    Razali, N.; Sultan, M. T. H.; Cardona, F.

    2016-10-01

    A non-destructive testing method on Glass Fibre Reinforced Polymer (GFRP) after high velocity impact event using single stage gas gun (SSGG) is presented. Specimens of C- type and E-type fibreglass reinforcement, which were fabricated with 6mm, 8mm, 10mm and 12mm thicknesses and size 100 mm x 100 mm, were subjected to a high velocity impact with three types of bullets: conical, hemispherical and blunt at various gas gun pressure levels from 6 bar to 60 bar. Visual observation techniques using a lab microscope were used to determine the infringed damage by looking at the crack zone. Dye penetrants were used to inspect the area of damage, and to evaluate internal and external damages on the specimens after impact. The results from visual analysis of the impacted test laminates were discussed and presented. It was found that the impact damage started with induced delamination, fibre cracking and then failure, simultaneously with matrix cracking and breakage, and finally followed by the fibres pulled out. C-type experienced more damaged areas compared to E-type of GFRP.

  1. Analysis of non-destructive current simulators of flux compression generators

    NASA Astrophysics Data System (ADS)

    O'Connor, K. A.; Curry, R. D.

    2014-06-01

    Development and evaluation of power conditioning systems and high power microwave components often used with flux compression generators (FCGs) requires repeated testing and characterization. In an effort to minimize the cost and time required for testing with explosive generators, non-destructive simulators of an FCG's output current have been developed. Flux compression generators and simulators of FCGs are unique pulsed power sources in that the current waveform exhibits a quasi-exponential increasing rate at which the current rises. Accurately reproducing the quasi-exponential current waveform of a FCG can be important in designing electroexplosive opening switches and other power conditioning components that are dependent on the integral of current action and the rate of energy dissipation. Three versions of FCG simulators have been developed that include an inductive network with decreasing impedance in time. A primary difference between these simulators is the voltage source driving them. It is shown that a capacitor-inductor-capacitor network driving a constant or decreasing inductive load can produce the desired high-order derivatives of the load current to replicate a quasi-exponential waveform. The operation of the FCG simulators is reviewed and described mathematically for the first time to aid in the design of new simulators. Experimental and calculated results of two recent simulators are reported with recommendations for future designs.

  2. Analysis of non-destructive current simulators of flux compression generators.

    PubMed

    O'Connor, K A; Curry, R D

    2014-06-01

    Development and evaluation of power conditioning systems and high power microwave components often used with flux compression generators (FCGs) requires repeated testing and characterization. In an effort to minimize the cost and time required for testing with explosive generators, non-destructive simulators of an FCG's output current have been developed. Flux compression generators and simulators of FCGs are unique pulsed power sources in that the current waveform exhibits a quasi-exponential increasing rate at which the current rises. Accurately reproducing the quasi-exponential current waveform of a FCG can be important in designing electroexplosive opening switches and other power conditioning components that are dependent on the integral of current action and the rate of energy dissipation. Three versions of FCG simulators have been developed that include an inductive network with decreasing impedance in time. A primary difference between these simulators is the voltage source driving them. It is shown that a capacitor-inductor-capacitor network driving a constant or decreasing inductive load can produce the desired high-order derivatives of the load current to replicate a quasi-exponential waveform. The operation of the FCG simulators is reviewed and described mathematically for the first time to aid in the design of new simulators. Experimental and calculated results of two recent simulators are reported with recommendations for future designs.

  3. From local to global analysis of defect detectability in infrared non-destructive testing

    NASA Astrophysics Data System (ADS)

    Florez-Ospina, J. F.; Benitez, H. D.

    2014-03-01

    Several image processing techniques are employed in Infrared Non-Destructive Testing (IRNDT) to enhance defect detectability. To date, there is no adequate global measurement that objectively assesses defect visibility in processed frames. In this work, a Global Signal to Noise Ratio (GSNR) that comprehensively evaluates defect detectability in processed infrared (IR) images is proposed, as well as a defect visibility measure named Infrared Image Quality Index (IRIQI) that compares the structural information of defective and sound areas. In addition, GSNR and IRIQI are validated by using the area under ROC curve (AUC). AUC quantitatively assesses defect visibility by comparing the outcomes of processing techniques to human judgements. The remarkable benefit of this global approach is that it allows one to determine the frame at which processing techniques reveals the majority of the defects by evaluating the times at which AUC curves reach their maxima. The test pieces were a Carbon-Fiber Reinforced Plastic (CFRP) sample containing delaminations and a honeycomb specimen with delaminations, skin unbonds, excessive adhesive, and crushed core.

  4. Non-destructive analysis of DU content in the NIF hohlraums

    SciTech Connect

    Gharibyan, Narek; Moody, Ken J.; Shaughnessy, Dawn A.

    2015-12-16

    The advantage of using depleted uranium (DU) hohlraums in high-yield deuterium-tritium (DT) shots at the National Ignition Facility (NIF) is addressed by Döppner, et al., in great detail [1]. This DU based hohlraum incorporates a thin layer of DU, ~7 μm thick, on the inner surface along with a thin layer of a gold coating, ~0.7 μm thick, while the outer layer is ~22 μm thick gold. A thickness measurement of the DU layer can be performed using an optical microscope where the total DU weight can be computed provided a uniform DU layer. However, the uniformity of the thickness is not constant throughout the hohlraum since CAD drawing calculations of the DU weight do not agree with the computed values from optical measurements [2]. Therefore, a non-destructive method for quantifying the DU content in hohlraums has been established by utilizing gamma-ray spectroscopy. The details of this method, along with results from several hohlraums, are presented in this report.

  5. Orthogonal projection to latent structures combined with artificial neural networks in non-destructive analysis of Ampicillin powder.

    PubMed

    Wang, Bin; Liu, Guoliang; Fei, Qiang; Zuo, Ye; Ren, YuLin

    2009-01-01

    A new method orthogonal projection to latent structures (O-PLS) combined with artificial neural networks is investigated for non-destructive determination of Ampicillin powder via near-infrared (NIR) spectroscopy. The modern NIR spectroscopy analysis technique is efficient, simple and non-destructive, which has been used in chemical analysis in diverse fields. Be a preprocessing method, O-PLS provides a way to remove systematic variation from an input data set X not correlated to the response set Y, and does not disturb the correlation between X and Y. In this paper, O-PLS pretreated spectral data was applied to establish the ANN model of Ampicillin powder, in this model, the concentration of Ampicillin as the active component was determined. The degree of approximation was employed as the selective criterion of the optimum network parameters. In order to compare the OPLS-ANN model, the calibration models that using first-derivative and second-derivative preprocessing spectra were also designed. Experimental results showed that the OPLS-ANN model was the best.

  6. Orthogonal projection to latent structures combined with artificial neural networks in non-destructive analysis of Ampicillin powder

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Liu, Guoliang; Fei, Qiang; Zuo, Ye; Ren, YuLin

    2009-01-01

    A new method orthogonal projection to latent structures (O-PLS) combined with artificial neural networks is investigated for non-destructive determination of Ampicillin powder via near-infrared (NIR) spectroscopy. The modern NIR spectroscopy analysis technique is efficient, simple and non-destructive, which has been used in chemical analysis in diverse fields. Be a preprocessing method, O-PLS provides a way to remove systematic variation from an input data set X not correlated to the response set Y, and does not disturb the correlation between X and Y. In this paper, O-PLS pretreated spectral data was applied to establish the ANN model of Ampicillin powder, in this model, the concentration of Ampicillin as the active component was determined. The degree of approximation was employed as the selective criterion of the optimum network parameters. In order to compare the OPLS-ANN model, the calibration models that using first-derivative and second-derivative preprocessing spectra were also designed. Experimental results showed that the OPLS-ANN model was the best.

  7. The Effect of Localized Damage on the Electrical Conductivity of Bare Carbon Fiber Tow and its Use as a Non-Destructive Evaluation Tool for Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Wentzel, Daniel

    2015-01-01

    Composite materials are beneficial because of their high specific strength and low weight. Safety, Destructive testing and destructive testing, Non-Destructive Testing (NDT) and Non-Destructive Evaluation (NDE). Problem: Neither NDT nor NDE can provide sufficient data to determine life expectancy or quantify the damage state of a composite material.

  8. Orthogonal projection to latent structures combined with artificial neural networks in non-destructive analysis of ebastine powder.

    PubMed

    Ibrahim, Fawzia Ahmed; Wahba, Mary Elias Kamel

    2014-01-01

    A new method orthogonal projection to latent structures (O-PLS) combined with artificial neural networks is investigated for non-destructive determination of ebastine powder via near-infrared (NIR) spectroscopy. The modern NIR spectroscopy is efficient, simple and non-destructive technique, which has been used in chemical analysis in diverse fields. Being a preprocessing method, O-PLS provides a way to remove systematic variation from an input data set X not correlated to the response set Y, and does not disturb the correlation between X and Y. In this paper, O-PLS pretreated spectral data was applied to establish the ANN model of ebastine powder, in this model, the concentration of ebastine as the active component was determined. The degree of approximation was employed as the selective criterion of the optimum network parameters. In order to compare the OPLS-ANN model, the calibration models that use first-derivative and second-derivative preprocessing spectra were also designed. Experimental results showed that the OPLS-ANN model was the best.

  9. A technical study of alloy compositions of "brass" wind musical instruments (1651-1867) utilizing non-destructive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Bacon, Alice Louise

    This thesis represents a new interdisciplinary approach to the conservation, care and curatorial study of 'brass' wind musical instruments. It attempts to combine metallurgical, chronological and historical aspects for a selection of instruments. The research consists of the systematic study of seventy-seven musical instruments, by known makers, using standardised non-destructive energy dispersive x-ray fluorescence (XRF). Such compositional data are virtually non-existent for historical 'brass' instruments in Britain and what few technical data that do exist are sporadic in quantity and quality. The development of brass instruments is interwoven with the history of brass making, but because there are a limited number of appropriate examples such links can be difficult to identify. This thesis describes the development of brass production from the cementation process to the commercial production of zinc and modern brass. Its relationship to the musical instrument industry in Britain is linked with historical evidence. It will be shown that innovation and known historical metallurgical achievements are reflected in the compositional changes of the alloys used for musical instruments. This thesis focuses on specific named brass wind musical instrument makers. This thesis sets out to investigate the extent to which a single analytical technique such as non-destructive analysis utilising XRF could be useful in the curatorial and conservation care of musical instruments. The results of the analyses revealed new aspects to the use of metals for making musical instruments. They give new information on approximate alloy compositions and, in particular, the results have shown that in the seventeenth-century in England, a ternary alloy of copper/tin/zinc was used, and that it was, perhaps, only superseded by brass (copper/zinc alloy) in the eighteenth century. It has been possible to arrange the results into a chronology of alloys particularly reflecting the change from the

  10. Confocal micro-X-ray fluorescence analysis as a new tool for the non-destructive study of the elemental distributions in pharmaceutical tablets.

    PubMed

    Mazel, Vincent; Reiche, Ina; Busignies, Virginies; Walter, Philippe; Tchoreloff, Pierre

    2011-07-15

    Chemical imaging studies of pharmaceutical tablets are currently an important emerging field in the pharmaceutical industry. Finding the distribution of the different compounds inside the tablet is an important issue for production quality control but also for counterfeit detection. Most of the currently used techniques are limited to the study of the surface of the compacts, whereas the study of the bulk requires a time-consuming sample preparation. In this paper, we present the use of 3D micro-X-ray fluorescence analysis (3D μXRF) for the non-destructive study of pharmaceutical tablets. Based on two different examples, it was shown that it was possible to measure the distribution of several inorganic elements (Zn, Fe, Ti, Mn, Cu) from the surface to a depth of several hundred microns under the surface. The X-ray absorption, depending on both matrix composition and energy, is one of the most critical factors of this analytical method while performing depth profiling or mapping. Therefore, an original method to correct the absorption, in order to accurately measure the true elemental distribution, was proposed. Moreover, by using the presence of titanium dioxide in a pharmaceutical coating, we proved that this technique is also suited to the non-destructive measurement of coating thickness.

  11. The hoard of Beçin—non-destructive analysis of the silver coins

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Schreiner, M.; Mäder, M.; Melcher, M.; Guerra, M.; Salomon, J.; Radtke, M.; Alram, M.; Schindel, N.

    2010-05-01

    We report the results of an analytical investigation on 416 silver-copper coins stemming from the Ottoman Empire (end of 16th and beginning of 17th centuries), using synchrotron micro X-ray fluorescence analysis (SRXRF). In the past, analyses had already been conducted with energy dispersive X-ray fluorescence analysis (EDXRF), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM/EDX) and proton induced X-ray emission spectroscopy (PIXE). With this combination of techniques it was possible to confirm the fineness of the coinage as well as to study the provenance of the alloy used for the coins. For the interpretation of the data statistical analysis (principal component analysis—PCA) has been performed. A definite local assignment was explored and significant clustering was obtained regarding the minor and trace elements composing the coin alloys.

  12. Acoustic emission analysis as a non-destructive test procedure for fiber compound structures

    NASA Technical Reports Server (NTRS)

    Block, J.

    1983-01-01

    The concept of acoustic emission analysis is explained in scientific terms. The detection of acoustic events, their localization, damage discrimination, and event summation curves are discussed. A block diagram of the concept of damage-free testing of fiber-reinforced synthetic materials is depicted. Prospects for application of the concept are assessed.

  13. Non-destructive evaluation of an internal adaptation of resin composite restoration with swept-source optical coherence tomography and micro-CT.

    PubMed

    Han, Seung-Hoon; Sadr, Alireza; Tagami, Junji; Park, Sung-Ho

    2016-01-01

    Swept-source optical coherence tomography (SS-OCT) and micro-CT can be useful non-destructive methods for evaluating internal adaptation. There is no comparative study evaluating the two methods in the assessment of internal adaptation in composite restoration. The purpose of this study was to compare internal adaptation measurements of SS-OCT and micro-CT. Two cylindrical cavities were created on the labial surface of twelve bovine incisors. The 24 cavities were randomly assigned to four groups of dentin adhesives: (1) three-step etch-and-rinse adhesive, (2) two-step etch-and-rinse adhesive, (3) two-step self-etch adhesive, and (4) one-step self-etch adhesive. After application, the cavities were filled with resin composite. All restorations underwent a thermocycling challenge, and then, eight SS-OCT images were taken using a Santec OCT-2000™ (Santec Co., Komaki, Japan). The internal adaptation was also evaluated using micro-CT (Skyscan, Aartselaar, Belgium). The image analysis was used to calculate the percentage of defective spot (%DS) and compare the results. The groups were compared using one-way ANOVA with Duncan analysis at the 95% significance level. The SS-OCT and micro-CT measurements were compared with a paired t-test, and the relationship was analyzed using a Pearson correlation test at the 95% significance level. The %DS results showed that Group 3≤Group 4

  14. Seismic joint analysis for non-destructive testing of asphalt and concrete slabs

    USGS Publications Warehouse

    Ryden, N.; Park, C.B.

    2005-01-01

    A seismic approach is used to estimate the thickness and elastic stiffness constants of asphalt or concrete slabs. The overall concept of the approach utilizes the robustness of the multichannel seismic method. A multichannel-equivalent data set is compiled from multiple time series recorded from multiple hammer impacts at progressively different offsets from a fixed receiver. This multichannel simulation with one receiver (MSOR) replaces the true multichannel recording in a cost-effective and convenient manner. A recorded data set is first processed to evaluate the shear wave velocity through a wave field transformation, normally used in the multichannel analysis of surface waves (MASW) method, followed by a Lambwave inversion. Then, the same data set is used to evaluate compression wave velocity from a combined processing of the first-arrival picking and a linear regression. Finally, the amplitude spectra of the time series are used to evaluate the thickness by following the concepts utilized in the Impact Echo (IE) method. Due to the powerful signal extraction capabilities ensured by the multichannel processing schemes used, the entire procedure for all three evaluations can be fully automated and results can be obtained directly in the field. A field data set is used to demonstrate the proposed approach.

  15. Non-destructive assay of EBR-II blanket elements using resonance transmission analysis.

    SciTech Connect

    Klann, R.T.; Poenitz, W.P.

    1998-09-11

    Resonance transmission analysis utilizing a faltered reactor beam was examined as a means of determining the {sup 239}Pu content in Experimental Breeder Reactor-II depleted uranium blanket elements. The technique uses cadmium and gadolinium falters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range of this resonance (0.1 eV to 0.5 ev), the total microscopic cross-section of {sup 239}Pu is significantly greater than the cross-sections of {sup 238}U and {sup 235}U. This large difference allows small changes in the {sup 239}Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and {sup 239}Pu foils indicate a significant change in response based on the {sup 239}Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of {sup 239}Pu up to approximately two weight percent.

  16. Non-destructive analysis of chlorine in fly ash cement concrete

    NASA Astrophysics Data System (ADS)

    Naqvi, A. A.; Garwan, M. A.; Nagadi, M. M.; Maslehuddin, M.; Al-Amoudi, O. S. B.; Khateeb-ur-Rehman

    2009-08-01

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022±0.007 and 0.038±0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  17. Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores

    NASA Astrophysics Data System (ADS)

    Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.

    2015-12-01

    Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture

  18. Magnetic Microcalorimeter Gamma Detectors for High-Precision Non-Destructive Analysis, FY14 Extended Annual Report

    SciTech Connect

    Friedrich, S.

    2015-02-06

    Cryogenic gamma (γ) detectors with operating temperatures of ~0.1 K or below offer 10× better energy resolution than conventional high-purity germanium detectors that are currently used for non-destructive analysis (NDA) of nuclear materials. This can greatly increase the accuracy of NDA, especially at low-energies where gamma rays often have similar energies and cannot be resolved by Ge detectors. We are developing cryogenic γ–detectors based on metallic magnetic calorimeters (MMCs), which have the potential of higher resolution, faster count rates and better linearity than other cryogenic detector technologies. High linearity is essential to add spectra from different pixels in detector arrays that are needed for high sensitivity. Here we discuss the fabrication of a new generation of MMC γ–detectors in FY2014, and the resulting improvements in energy resolution and linearity of the new design. As an example of the type of NDA that cryogenic detectors enable, we demonstrate the direct detection of Pu-242 emissions with our MMC γ–detectors in the presence of Pu-240, and show that a quantitative NDA analysis agrees with the mass spectrometry

  19. "Dry-state" surface-enhanced Raman scattering (SERS): toward non-destructive analysis of dyes on textile fibers

    NASA Astrophysics Data System (ADS)

    Zaffino, Chiara; Ngo, Hoan Thanh; Register, Janna; Bruni, Silvia; Vo-Dinh, Tuan

    2016-07-01

    In the present work, we report the proof of concept of the possibility to identify natural dyes on textiles using surface-enhanced Raman scattering (SERS) detection by means of a simple "dry-state" SERS approach, i.e., exploiting the interactions between a solid nanometallic substrate and dye molecules present on textiles, thus avoiding any extraction or necessity to remove samples. The challenges associated with instrumental constraints related to SERS analysis of bulk materials and possible contamination of artworks with metallic nanoparticles were approached. Different silver nanosubstrates, i.e., nanoislands and films obtained starting from two different metal colloids, were tested for this aim. The study also investigates different parameters associated with the synthesis of nanosubstrates influencing the enhancement of the "dry-state" SERS signals obtained. SERS spectra of anthraquinone red dyes were successfully recorded from reference wool threads using this simple approach. The results illustrate the usefulness of the practical and rapid "dry-state" SERS approach that could open new opportunities toward the non-destructive analysis of dyes in artefacts.

  20. Real time and non-destructive analysis of tablet coating thickness using acoustic microscopy and infrared diffuse reflectance spectroscopy.

    PubMed

    Bikiaris, D; Koutri, I; Alexiadis, D; Damtsios, A; Karagiannis, G

    2012-11-15

    Tablet coating thicknesses were estimated using several techniques such as weight gain and scanning electron microscopy (SEM), in comparison with acoustic microscopy and diffuse reflectance spectroscopy. Acoustic microscopy, used for the first time in such an application, is based on the physical phenomenon of ultrasound propagation through the materials and the echoes generated by their interfaces. Based on the time of flights (TOFs) of the echoes from the coating surface and the tablet, it is possible to calculate the coating thickness. In order to evaluate the accuracy and robustness of these methods, drug tablets were coated with Kollicoat SR polymer for several times, so that to prepare tablets with different coating thicknesses. Tablets with 3, 6 and 9 wt% coating material have been prepared and based on SEM micrographs it was found that the tablet coating thickness is 71.99 ± 1.2 μm, 92.5 ± 1.7 μm and 132.3 ± 2.1 μm, respectively (SEM analysis). The tablet coating thicknesses measured with acoustic microscopy and infrared diffuse reflectance spectroscopy, were in agreement with those obtained using SEM. This verifies that both techniques can be successfully applied for real time and non-destructive thickness measurements of tablet coating. Furthermore, both techniques, compared with SEM and weight gained measurements, are fast and fully automated.

  1. Non-destructive mapping of doping and structural composition of MOVPE-grown high current density resonant tunnelling diodes through photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, K. J. P.; Stevens, B. J.; Mukai, T.; Ohnishi, D.; Hogg, R. A.

    2015-05-01

    We report on photoluminescence (PL) characterisation of metal-organic vapour phase epitaxy (MOVPE) grown high current density (~700 kA/cm2) InGaAs/AlAs/InP based resonant tunnelling diodes (RTDs) for terahertz emission. The PL mapping we describe allows important information about doping level and uniformity, ternary alloy composition and uniformity, and uniformity of quantum well thickness to be deduced. PL as a function of doping concentration is studied for InGaAs test layers at low temperatures and correlated to secondary-ion mass spectroscopy (SIMS) and electrochemical capacitance-voltage (eCV) profiling to provide non-destructive mapping of doping over the wafer. For the RTD structures, we utilise eCV as a selective etch tool to identify the origin of low temperature PL emission from the quantum well (QW) and the highly doped contact layers. PL mapping of the RTD wafer at low temperatures is shown to allow the assessment of variations in InGaAs alloy composition and QW thickness. Details of the growth process are discussed and confirmed using high resolution X-ray diffraction (HRXRD) crystallography. The rapid non-destructive characterisation and wafer mapping of these structures promises a route to future growth optimisation of such structures.

  2. Raman micro-spectroscopy as a non-destructive key analysis tool in current power semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    De Biasio, M.; Kraft, M.; Geier, E.; Goller, B.; Bergmann, Ch.; Esteve, R.; Cerezuela-Barreto, M.; Lewke, D.; Schellenberger, M.; Roesner, M.

    2017-05-01

    There is a strong commercial incentive for characterizing power semiconductor devices during manufacture non-destructively. One area of concern are the stresses in the material introduced during manufacture by processes such as wafer thinning and chip separation. Raman spectroscopy can be used to measure stress in different semiconductor materials directly, non-destructively and quantitatively. Here, we describe Raman measurements on two semiconductor materials: silicon and silicon carbide. Measurements of silicon carbide are made on silicon carbide wafers; stress and material analyses of silicon are performed on: (i.) silicon wafers that had undergone different wafer thinning methods and (ii) along die sidewalls formed by mechanical and laser dicing. Our measurements demonstrate that micro-Raman spectroscopy is a feasible method for both measuring stress in thin wafers and for optimizing the thin wafer processes.

  3. The RAMANITA method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts.

    PubMed

    Smith, David C

    2005-08-01

    The "RAMANITA" method, for semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts and mathematical calculation by simultaneous equations, is published here in detail in English for the first time. It was conceived by the present writer 20 years ago for binary and ternary pyroxene and garnet systems. The mathematical description was set out in 1989, but in an abstract in an obscure French special publication. Detailed "step-by-step" calibration of two garnet ternaries, followed by their linking, in the early 1990s provided a hexary garnet database. Much later, using this garnet database, which forms part of his personal database called RAMANITA, the present writer began to develop the method by improving the terminology, automating the calculations, discussing problems and experimenting with different real chemical problems in archaeometry. Although this RAMANITA method has been very briefly mentioned in two recent books, the necessary full mathematical explanation is given only here. The method will find application in any study which requires obtaining a non-destructive semi-quantitative chemical analysis from mineral solid solutions that cannot be analysed by any destructive analytical method, in particular for archaeological, geological or extraterrestrial research projects, e.g. Recently some other workers have begun deducing chemical compositions from Raman wavenumber shifts in multivariate chemical space, but the philosophical approach is quite different.

  4. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application.

    PubMed

    Kumar, Raj; Sharma, Vishal

    2017-03-15

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).

  5. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Sharma, Vishal

    2017-03-01

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).

  6. 3D Non-destructive Imaging of Punctures in Polyethylene Composite Armor by THz Time Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palka, N.; Panowicz, R.; Ospald, F.; Beigang, R.

    2015-08-01

    An ultra-high molecular weight polyethylene composite sample totally punctured by a projectile was examined by THz TDS raster scanning method in reflection configuration. The scanning results correctly match the distribution of delaminations inside the sample, which was proven with cross-sectional and frontal views after waterjet cutting. For further analysis, a signal-processing algorithm based on the deconvolution method was developed and the modified reference signal was used to reduce disturbances. The complex refractive index of the sample was determined by transmission TDS technique and was later used for the simulation of pulse propagation by the finite difference time domain method. These simulations verified the correctness of the proposed method and showed its constraints. Using the proposed algorithm, the ambiguous raw THz image was converted into a binary 3D image of the sample, which consists only of two areas: sample—polyethylene and delamination—air. As a result, a clear image of the distribution of delaminations with their spatial extent was obtained which can be used for further comparative analysis. The limitation of the proposed method is that parts of the central area of the puncture cannot be analyzed because tilted layers deflect the incident signal.

  7. Rapid, non-destructive carbon analysis of forest soils using neutron-induced gamma-ray spectroscopy

    SciTech Connect

    Wielopolski, L.; Mitra, S.; Yanai, R. D.; Levine, C. R.; Vadeboncoeur, M. A.

    2010-08-01

    Forest soils are pivotal to understanding global carbon (C) cycling and evaluating policies for mitigating global change. However, they are very difficult to monitor because of the heterogeneity of soil characteristics, the difficulty of representative sampling, and the slow time scale of response to environmental change. Here we demonstrate that use of gamma-ray spectroscopy facilitates in situ non-destructive analysis of C and other elements in forest soils. In this approach the element-specific gamma-rays are induced by fast and thermal neutrons interacting with the nuclei of the elements present in the soil. Background gamma-rays emanating from naturally occurring radionuclides in the forest are recorded as well. We applied this approach in a mature northern hardwood forest on glacial till soils at the Bartlett Experimental Forest in New Hampshire, USA. The inelastic neutron scattering (INS) system yielded strong signals in gamma-ray counts/h, from C and other elements present in the soil matrix that included silicon, oxygen, hydrogen, iron, aluminum, manganese and potassium. The INS sensitivity for carbon was 20.656 counts h{sup -1} kg{sup -1} C m{sup -2} based on current net C gamma-ray counts and the data for the O horizon and mineral soil to a depth of 30 cm obtained from a nearby quantitative soil pit (7.35 kg C m{sup -2}). We estimate the minimum detectable change to be {approx}0.34 kg C m{sup -2}, which is {approx}5% of the current soil C content, and the minimum detectable limit to be {approx}0.23 kg C m{sup -1}. Eight % reproducibility from 11 measurements was limited, in part, by the large variability in the system counting geometry due to the uneven forest microtopography. The INS approach has the potential to revolutionize belowground monitoring of C and other elements, because the possibility of detecting a 5% change in forest soils has not been possible with destructive sampling methods.

  8. Soft X-ray emission spectroscopy study of CaF 2(film)/Si(111): non-destructive buried interface analysis

    NASA Astrophysics Data System (ADS)

    Iwami, M.; Kusaka, M.; Hirai, M.; Tagami, R.; Nakamura, H.; Watabe, H.

    1997-06-01

    A soft X-ray emission spectroscopy (SXES) study under an energetic electron irradiation is first applied to a non-destructive buried interface analysis of a CaF 2(film ˜ 40 nm)/Si(111) contact system, where the energy of primary electrons, Ep, is ≤ 5 keV. The present work has explored the usefulness of the application of the SXES method to the interface study to give rise to the following findings: the CaF 2/Si(111) interface shows rather sharp transition from the top CaF 2 to the substrate Si, there certainly is a Ca-silicide layer at the CaF 2/Si(111) interface, the thickness of the silicide layer is estimated to be less than several nm, and the e-beam excited SXES non-destructive study is very powerful to analyze a specimen with rather thick top film (> 40 nm) and thin interface layer (< several nm).

  9. Non-destructive Analysis of Oil-Contaminated Soil Core Samples by X-ray Computed Tomography and Low-Field Nuclear Magnetic Resonance Relaxometry: a Case Study

    PubMed Central

    Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu

    2010-01-01

    Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31 × 0.31 × 2 mm3. The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ∼10 μm, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M0–T2 plot, where M0 is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores. PMID:21258437

  10. Non-destructive Analysis of Oil-Contaminated Soil Core Samples by X-ray Computed Tomography and Low-Field Nuclear Magnetic Resonance Relaxometry: a Case Study.

    PubMed

    Nakashima, Yoshito; Mitsuhata, Yuji; Nishiwaki, Junko; Kawabe, Yoshishige; Utsuzawa, Shin; Jinguuji, Motoharu

    2011-01-01

    Non-destructive measurements of contaminated soil core samples are desirable prior to destructive measurements because they allow obtaining gross information from the core samples without touching harmful chemical species. Medical X-ray computed tomography (CT) and time-domain low-field nuclear magnetic resonance (NMR) relaxometry were applied to non-destructive measurements of sandy soil core samples from a real site contaminated with heavy oil. The medical CT visualized the spatial distribution of the bulk density averaged over the voxel of 0.31 × 0.31 × 2 mm(3). The obtained CT images clearly showed an increase in the bulk density with increasing depth. Coupled analysis with in situ time-domain reflectometry logging suggests that this increase is derived from an increase in the water volume fraction of soils with depth (i.e., unsaturated to saturated transition). This was confirmed by supplementary analysis using high-resolution micro-focus X-ray CT at a resolution of ∼10 μm, which directly imaged the increase in pore water with depth. NMR transverse relaxation waveforms of protons were acquired non-destructively at 2.7 MHz by the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence. The nature of viscous petroleum molecules having short transverse relaxation times (T2) compared to water molecules enabled us to distinguish the water-saturated portion from the oil-contaminated portion in the core sample using an M(0)-T2 plot, where M(0) is the initial amplitude of the CPMG signal. The present study demonstrates that non-destructive core measurements by medical X-ray CT and low-field NMR provide information on the groundwater saturation level and oil-contaminated intervals, which is useful for constructing an adequate plan for subsequent destructive laboratory measurements of cores.

  11. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites

    PubMed Central

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-01-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer. PMID:24737921

  12. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites.

    PubMed

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-03-21

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer.

  13. Non-destructive analysis of impure HEU-carbon samples using an Active Well Coincidence Counter (AWCC)

    SciTech Connect

    Hartwell, J.K.; McLaughlin, G.D.

    1998-07-01

    Highly enriched uranium-containing graphite-based material from the Los Alamos National Laboratory (LANL) is currently stored at the Idaho National Engineering and Environmental Laboratory (INEEL). Measurements to verify the uranium content of these samples are required prior to their disposition to the Y-12 facility in Tennessee. The stored materials vary significantly in their matrix purity and in their {sup 235}U content and enrichment. A set of 26 samples selected from the LANL material inventory were analyzed non-destructively using an Active Well Coincidence Counter (AWCC) calibrated versus pure UO{sub 3} standards. A correction, calculated from published data and the approximate carbon-to-uranium atom ratios of each sample, was applied for the response enhancement from the carbon matrix. In some cases this correction was as high as 30%. Eight of the 26 sample that had been analyzed in the AWCC were destructively analyzed to provide a benchmark for the non-destructive analyses. The average recovery (NDA/Destructive results) was 0.997 {+-} 0.115. One sample had a destructive result that lay outside a 3-sigma interval about the NDA result.

  14. Elemental X-ray mapping of agglutinated foraminifer tests: a non- destructive technique for determining compositional characteristics.

    USGS Publications Warehouse

    Commeau, R.F.; Reynolds, Leslie A.; Poag, C.W.

    1985-01-01

    The composition of agglutinated foraminiferal tests vary remarkably in response to local substrate characteristics, physiochemical properties of the water column and species- dependant selectivity of test components. We have employed a technique that combines a scanning electron microscope with an energy dispersive X-ray spectrometer system to identify major and minor elemental constituents of agglutinated foraminiferal walls. As a sample is bombarded with a beam of high energy electrons, X-rays are generated that are characteristic of the elements present. As a result, X- ray density maps can be produced for each of several elements present in the tests of agglutinated foraminifers. -Authors

  15. Elemental X-ray mapping of agglutinated foraminifer tests: A non- destructive technique for determining compositional characteristics.

    USGS Publications Warehouse

    Commeau, R.F.; Reynolds, Leslie A.; Poag, C.W.

    1985-01-01

    The composition of agglutinated foraminiferal tests vary remarkably in response to local substrate characteristics, physiochemical properties of the water column and species- dependant selectivity of test components. We have employed a technique that combines a scanning electron microscope with an energy dispersive X-ray spectrometer system to identify major and minor elemental constituents of agglutinated foraminiferal walls. As a sample is bombarded with a beam of high energy electrons, X-rays are generated that are characteristic of the elements present. As a result, X- ray density maps can be produced for each of several elements present in the tests of agglutinated foraminifers. 

  16. Comparative analysis on thermal non-destructive testing imagery applying Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT)

    NASA Astrophysics Data System (ADS)

    Yousefi, Bardia; Sfarra, Stefano; Ibarra Castanedo, Clemente; Maldague, Xavier P. V.

    2017-09-01

    Thermal and infrared imagery creates considerable developments in Non-Destructive Testing (NDT) area. Here, a thermography method for NDT specimens inspection is addressed by applying a technique for computation of eigen-decomposition which refers as Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT). The proposed approach uses a shorter computational alternative to estimate covariance matrix and Singular Value Decomposition (SVD) to obtain the result of Principal Component Thermography (PCT) and ultimately segments the defects in the specimens applying color based K-medoids clustering approach. The problem of computational expenses for high-dimensional thermal image acquisition is also investigated. Three types of specimens (CFRP, Plexiglas and Aluminium) have been used for comparative benchmarking. The results conclusively indicate the promising performance and demonstrate a confirmation for the outlined properties.

  17. The RAMANITA © method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts

    NASA Astrophysics Data System (ADS)

    Smith, David C.

    2005-08-01

    The "RAMANITA ©" method, for semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts and mathematical calculation by simultaneous equations, is published here in detail in English for the first time. It was conceived by the present writer 20 years ago for binary and ternary pyroxene and garnet systems. The mathematical description was set out in 1989, but in an abstract in an obscure French special publication. Detailed "step-by-step" calibration of two garnet ternaries, followed by their linking, by M. Pinet and D.C. Smith in the early 1990s provided a hexary garnet database. Much later, using this garnet database, which forms part of his personal database called RAMANITA ©, the present writer began to develop the method by improving the terminology, automating the calculations, discussing problems and experimenting with different real chemical problems in archaeometry. Although this RAMANITA © method has been very briefly mentioned in two recent books, the necessary full mathematical explanation is given only here. The method will find application in any study which requires obtaining a non-destructive semi-quantitative chemical analysis from mineral solid solutions that cannot be analysed by any destructive analytical method, in particular for archaeological, geological or extraterrestrial research projects, e.g. from gemstones or other crystalline artworks of the cultural heritage (especially by Mobile Raman Microscopy (MRM)) in situ in museums or at archaeological sites, including under water for subaquatic archaeometry; from scientifically precious mineral microinclusions (such as garnet or pyroxene within diamond); from minerals in rocks analysed in situ on planetary bodies by a rover (especially "at distance" by telescopy). Recently some other workers have begun deducing chemical compositions from Raman wavenumber shifts in multivariate chemical space, but the philosophical approach is

  18. A New Method for Non-destructive Measurement of Biomass, Growth Rates, Vertical Biomass Distribution and Dry Matter Content Based on Digital Image Analysis

    PubMed Central

    Tackenberg, Oliver

    2007-01-01

    Background and Aims Biomass is an important trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive. Thus, they do not allow the development of individual plants to be followed and they require many individuals to be cultivated for repeated measurements. Non-destructive methods do not have these limitations. Here, a non-destructive method based on digital image analysis is presented, addressing not only above-ground fresh biomass (FBM) and oven-dried biomass (DBM), but also vertical biomass distribution as well as dry matter content (DMC) and growth rates. Methods Scaled digital images of the plants silhouettes were taken for 582 individuals of 27 grass species (Poaceae). Above-ground biomass and DMC were measured using destructive methods. With image analysis software Zeiss KS 300, the projected area and the proportion of greenish pixels were calculated, and generalized linear models (GLMs) were developed with destructively measured parameters as dependent variables and parameters derived from image analysis as independent variables. A bootstrap analysis was performed to assess the number of individuals required for re-calibration of the models. Key Results The results of the developed models showed no systematic errors compared with traditionally measured values and explained most of their variance (R2 ≥ 0·85 for all models). The presented models can be directly applied to herbaceous grasses without further calibration. Applying the models to other growth forms might require a re-calibration which can be based on only 10–20 individuals for FBM or DMC and on 40–50 individuals for DBM. Conclusions The methods presented are time and cost effective compared with traditional methods, especially if development or growth rates are to be measured repeatedly. Hence, they offer an alternative way of determining biomass, especially as they are non-destructive and address not only FBM and DBM, but also vertical

  19. Geochemical evidence of multistage retrogressive failure during the 160,000ka Icod landslide from turbidite facies analysis: multidisciplinary investigative approaches using destructive and non-destructive methodologies

    NASA Astrophysics Data System (ADS)

    Hunt, James; Wynn, Russell; Masson, Doug; Croudace, Ian

    2010-05-01

    The study of modern deep-sea systems through targeted piston coring has enabled detailed investigations into the process mechanics of turbidity currents. In complex systems such as the Moroccan Turbidite System the derivation of provenance is of vital importance, since flows from different sources in this system have been found to behave differently. Early provenance studies in the Madeira Abyssal Plain found that bulk sand-fraction geochemical analysis through ICP-AES could enable successful attribution of provenance to specific turbidites alongside electron microprobe analysis (de Lange, Jarvis & Kuijpers, 1987; Pearce & Jarvis, 1992). These sources including the Moroccan siliclastic shelf, Tenerife, Las Palma, El Hierro and Madeira. ICP-AES, MC-ICP-MS and XRF have been utilised here, however these present destructive methodologies, using 0.1-5g of material >63µm. Deep-sea piston cores are also expensive to collect, and often there is not enough material to remove for analysis without compromising the core. Furthermore, routine sampling, preparation and analysis using the destructive methods stated above are undertaken at considerable cost and analytical time. The successful use of non-destructive instruments to yield quantitative geochemical has become paramount at the NOC. This presentation serves to show the successful application of the TM-1000 tabletop SEM EDS analyser, ITRAX micro-XRF analyser and the GEOTEK XYZ logger, in coincidence with traditional destructive methods. These instruments can only supply semi-quantitative data, unless correct calibration can be achieved, and will be shown here. The 160,000ka Icod landslide from Tenerife generated a 150km3 debris avalanche with a runout of 105km and a >180km3 turbidity, which will form the case study for application of these instruments. The vertically stacked subunit facies of the Icod turbidite has been attributed to generation from a multistage retrogressive failure (Wynn & Masson, 2003). Here there

  20. Non-destructive visualization of linear explosive-induced Pyroshock using phase arrayed laser-induced shock in a space launcher composite

    NASA Astrophysics Data System (ADS)

    kyeong Jang, Jae; Ryul Lee, Jung

    2015-07-01

    Separation mechanism of Space launch vehicles are used in various separation systems and pyrotechnic devices. The operation of these pyrotechnic devices generates Pyroshock that can cause failures in electronic components. The prediction of high frequency structural response, especially the shock response spectrum (SRS), is important. This paper presents a non-destructive visualization and simulation of linear explosive-induced Pyroshock using phase arrayed Laser-induced shock. The proposed method includes a laser shock test based on laser beam and filtering zone conditioning to predict the SRS of Pyroshock. A ballistic test based on linear explosive and non-contact Laser Doppler Vibrometers and a nondestructive Laser shock measurement using laser excitation and several PZT sensors, are performed using a carbon composite sandwich panel. The similarity of the SRS of the conditioned laser shock to that of the real explosive Pyroshock is evaluated with the Mean Acceleration Difference. The average of MADs over the two training points was 33.64%. And, MAD at verification point was improved to 31.99%. After that, experimentally found optimal conditions are applied to any arbitrary points in laser scanning area. Finally, it is shown that linear explosive-induced real Pyroshock wave propagation can be visualized with high similarity based on the proposed laser technology.

  1. Energy dispersive X-ray fluorescence spectroscopy/Monte Carlo simulation approach for the non-destructive analysis of corrosion patina-bearing alloys in archaeological bronzes: The case of the bowl from the Fareleira 3 site (Vidigueira, South Portugal)

    NASA Astrophysics Data System (ADS)

    Bottaini, C.; Mirão, J.; Figuereido, M.; Candeias, A.; Brunetti, A.; Schiavon, N.

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a well-known technique for non-destructive and in situ analysis of archaeological artifacts both in terms of the qualitative and quantitative elemental composition because of its rapidity and non-destructiveness. In this study EDXRF and realistic Monte Carlo simulation using the X-ray Monte Carlo (XRMC) code package have been combined to characterize a Cu-based bowl from the Iron Age burial from Fareleira 3 (Southern Portugal). The artifact displays a multilayered structure made up of three distinct layers: a) alloy substrate; b) green oxidized corrosion patina; and c) brownish carbonate soil-derived crust. To assess the reliability of Monte Carlo simulation in reproducing the composition of the bulk metal of the objects without recurring to potentially damaging patina's and crust's removal, portable EDXRF analysis was performed on cleaned and patina/crust coated areas of the artifact. Patina has been characterized by micro X-ray Diffractometry (μXRD) and Back-Scattered Scanning Electron Microscopy + Energy Dispersive Spectroscopy (BSEM + EDS). Results indicate that the EDXRF/Monte Carlo protocol is well suited when a two-layered model is considered, whereas in areas where the patina + crust surface coating is too thick, X-rays from the alloy substrate are not able to exit the sample.

  2. Development of Transmission Raman Spectroscopy towards the in line, high throughput and non-destructive quantitative analysis of pharmaceutical solid oral dose.

    PubMed

    Griffen, Julia A; Owen, Andrew W; Matousek, Pavel

    2015-01-07

    Transmission Raman spectroscopy (TRS) is a recently introduced analytical technique to pharmaceutical analysis permitting volumetric sampling by non-destructive means. Here we demonstrate experimentally, for the first time, the enhanced speed of quantification of pharmaceutical tablets by an order of magnitude compared with conventional TRS. This is achieved using an enhancing element, "photon diode", avoiding the loss of laser photons at laser coupling interface. The proof-of-concept experiments were performed on a complex mixture consisting of 5 components (3 APIs and 2 excipients) with nominal concentrations ranging between 0.4 and 89%. Acquisition times as short as 0.01 s were reached with satisfactory quantification accuracy for all the sample components. Results suggest that even faster sampling speeds would be achievable for components with stronger Raman scattering cross sections or with higher laser powers. This major improvement in speed of volumetric analysis enables high throughput deployment of TRS for in line quality control applications within the batch or continuous manufacturing process and facilitating non-destructive analysis of large fractions.

  3. Core Handling and Real-Time Non-Destructive Characterization at the Kochi Core Center: An Example of Core Analysis from the Chelungpu Fault

    NASA Astrophysics Data System (ADS)

    Lin, W.; Hirono, T.; Yeh, E.-C.; Tanikawa, W.; Soh, W.

    2007-11-01

    As an example of core analysis carried out inactive fault drilling programs, we report the procedures of core handling on the drilling site and non-destructive characterization in the laboratory. This analysis was employed onthe core samples taken from HoleBof the Taiwan Chelungpu-fault Drilling Project (TCDP), which penetrated through the active fault that slipped during the 1999 Chi-Chi, Taiwan earthquake. We show results of the non-destructive physical property measurements carried out at the Kochi Core Center (KCC), Japan. Distinct anomalies of lower bulk density and higher magnetic susceptibilitywere recognized in all three fault zones encountered in HoleB. To keep the core samples in good condition before they are used for variousanalyses is crucial. In addition, careful planning for core handlingand core analyses is necessary for successfulinvestigations. doi:10.2204/iodp.sd.s01.35.2007

  4. Grazing-incidence x-ray fluorescence analysis for non-destructive determination of In and Ga depth profiles in Cu(In,Ga)Se{sub 2} absorber films

    SciTech Connect

    Streeck, C.; Brunken, S.; Kaufmann, C. A.; Weber, A.; Schock, H.-W.; Mainz, R.; Gerlach, M.; Hönicke, P.; Lubeck, J.; Pollakowski, B.; Unterumsberger, R.; Beckhoff, B.; Herzog, C.; Kanngießer, B.

    2013-09-09

    Development of highly efficient thin film solar cells involves band gap engineering by tuning their elemental composition with depth. Here we show that grazing incidence X-ray fluorescence (GIXRF) analysis using monochromatic synchrotron radiation and well-characterized instrumentation is suitable for a non-destructive and reference-free analysis of compositional depth profiles in thin films. Variation of the incidence angle provides quantitative access to the in-depth distribution of the elements, which are retrieved from measured fluorescence intensities by modeling parameterized gradients and fitting calculated to measured fluorescence intensities. Our results show that double Ga gradients in Cu(In{sub 1−x},Ga{sub x})Se{sub 2} can be resolved by GIXRF.

  5. Non-invasive and non-destructive micro-XRF and micro-Raman analysis of a decorative wallpaper from the beginning of the 19th century.

    PubMed

    Castro, Kepa; Pérez-Alonso, Maite; Rodríguez-Laso, María Dolores; Etxebarria, Nestor; Madariaga, Juan Manuel

    2007-02-01

    Non-destructive and non-invasive micro-Raman fibre optic and micro-XRF analyses were performed to study a wallpaper from the beginning of the 19th century. The complementarity of these two non-destructive techniques is shown in this work. The analysed artwork is considered one of the most beautiful wallpapers ever manufactured according to the catalogues and books; it is known as Chasse de Compiègne, manufactured by Jacquemart, Paris, in 1812. During the analysis, an unexpected pigment was detected by both analytical techniques: lead-tin yellow type II. This pigment was used until ca. 1750, when other yellow pigments replaced it, thus it is very difficult to find it in paintings afterwards. Together with this pigment, red lead, Prussian blue, brochantite, yellow iron oxide, calcium carbonate, vermilion, carbon black of animal origin (bone black), lead white, and raw and burnt sienna were also determined by combining the analytical information provided by both techniques. A possible degradation of brochantite to antlerite is also discussed.

  6. Evaluation of the veracity of one work by the artist Di Cavalcanti through non-destructive techniques: XRF, imaging and brush stroke analysis

    NASA Astrophysics Data System (ADS)

    Kajiya, E. A. M.; Campos, P. H. O. V.; Rizzutto, M. A.; Appoloni, C. R.; Lopes, F.

    2014-02-01

    This paper presents systematic studies and analysis that contributed to the identification of the forgery of a work by the artist Emiliano Augusto Cavalcanti de Albuquerque e Melo, known as Di Cavalcanti. The use of several areas of expertise such as brush stroke analysis ("pinacologia"), applied physics, and art history resulted in an accurate diagnosis for ascertaining the authenticity of the work entitled "Violeiro" (1950). For this work we used non-destructive methods such as techniques of infrared, ultraviolet, visible and tangential light imaging combined with chemical analysis of the pigments by portable X-Ray Fluorescence (XRF) and graphic gesture analysis. Each applied method of analysis produced specific information that made possible the identification of materials and techniques employed and we concluded that this work is not consistent with patterns characteristic of the artist Di Cavalcanti.

  7. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    SciTech Connect

    Cummins, Dustin Ray; Vogel, Sven C.; Hollis, Kendall Jon; Brown, Donald William; Dombrowski, David E.

    2016-10-18

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffraction data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to

  8. Atlantis Non-destructive Testing

    NASA Image and Video Library

    2003-10-29

    In the Orbiter Processing Facility, the nose cap (foreground) removed from Atlantis (behind) waits to be shipped to the original manufacturing company, Vought in Ft. Worth, Texas, a subsidiary of Lockheed Martin, to undergo non-destructive testing such as CAT scan and thermography.

  9. Magnetically attachable stencils and the non-destructive analysis of the contribution made by the underlying matrix to cell migration.

    PubMed Central

    Ashby, William; Wikswo, John P.; Zijlstra, Andries

    2012-01-01

    Cell migration is controlled by the integration of numerous distinct components. Consequently, the analysis of cell migration is advancing towards comprehensive, multifaceted in vitro models. To accurately evaluate the contribution of an underlying substrate to cell motility in complex cellular environments we developed a migration assay using magnetically attachable stencils (MAts). When attached to a culture surface, MAts create a defined void in the cell monolayer without disrupting the cells or damaging the underlying substrate. Quantitative analysis of migration into this void reveals the substrate's contribution to migration. The magnetically-guided placement of a microfabricated stencil allows for full experimental control of the substrate on which migration is analyzed. MAts enable the evaluation of intact, defined matrix, and make it possible to analyze migration on unique surfaces such as micropatterned proteins, nano-textured surfaces, and pliable hydrogels. These studies also revealed that mechanical disruption, including the damage that occurs during scratch assays, diminishes migration and confounds the analysis of individual cell behavior. Analysis of migration on increasingly complex biomaterials reveals that the contribution of the underlying matrix depends not only on its molecular composition but also its organization and the context in which it is presented. PMID:22940214

  10. Non-destructive geochemical analysis and element mapping using bench-top μ-XRF: applications and uses for geoscience problems

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Haschke, Michael; Tagle, Roald; Storey, Michael

    2013-04-01

    X-Ray Fluorescence (XRF) has long been used to provide valuable geochemical analysis of bulk rock samples in geological studies. However, it is a destructive technique, requiring samples to be homogenised by grinding to a fine powder and formed into a compacted pellet, or fused glass disk and the resulting sample has to be completely flat for reliable analysis. Until recently, non-destructive, high spatial resolution µ- XRF analysis was possible only at specialised Synchrotron radiation facilities, where high excitation beam energies are possible and specialised X-ray focussing optical systems are available. Recently, a number of bench-top µ-XRF systems have become available, allowing easy, rapid and non-destructive geochemical analysis of various materials. We present a number of examples of how the new bench-top M4 Tornado µ-XRF system, developed by Bruker Nano, can be used to provide valuable geochemical information on geological samples. Both quantitative and qualitative (in the form of X-Ray area-maps) data can be quickly and easily acquired for a wide range of elements (as light as Na, using a vacuum), with minimal sample preparation, using an X-Ray spot size as low as 25 µm. Large specimens up to 30 cm and 5 kg in weight can be analysed due to the large sample chamber, allowing non-destructive characterisation of rare or valuable materials. This technique is particularly useful in characterising heterogeneous samples, such as drill cores, sedimentary and pyroclastic rocks containing a variety of clasts, lavas sourced from mixed and mingled magmas, mineralised samples and fossils. An obvious application is the ability to produce element maps or line-scans of minerals, allowing zoning of major and trace elements to be identified and thus informing on crystallisation histories. An application of particular interest to 40Ar/39Ar geochronologists is the ability to screen and assess the purity of mineral separates, or to characterise polished slabs for

  11. Non destructive multi elemental analysis using prompt gamma neutron activation analysis techniques: Preliminary results for concrete sample

    SciTech Connect

    Dahing, Lahasen Normanshah; Yahya, Redzuan; Yahya, Roslan; Hassan, Hearie

    2014-09-03

    In this study, principle of prompt gamma neutron activation analysis has been used as a technique to determine the elements in the sample. The system consists of collimated isotopic neutron source, Cf-252 with HPGe detector and Multichannel Analysis (MCA). Concrete with size of 10×10×10 cm{sup 3} and 15×15×15 cm{sup 3} were analysed as sample. When neutrons enter and interact with elements in the concrete, the neutron capture reaction will occur and produce characteristic prompt gamma ray of the elements. The preliminary result of this study demonstrate the major element in the concrete was determined such as Si, Mg, Ca, Al, Fe and H as well as others element, such as Cl by analysis the gamma ray lines respectively. The results obtained were compared with NAA and XRF techniques as a part of reference and validation. The potential and the capability of neutron induced prompt gamma as tool for multi elemental analysis qualitatively to identify the elements present in the concrete sample discussed.

  12. Non-Destructive Bulk Soil Analysis for a Chlorinated Compound using Prompt Gamma-Ray Neutron Activation Analysis

    SciTech Connect

    Sigg, R.A.

    1999-04-19

    A prompt gamma-ray neutron activation analysis (PGNAA) system was evaluated for the quantification of chlorinated compounds in soil. The system evaluation was divided into two phases. In phase one, the response of an n-type HPGe detector (20 percent relative efficiency) to point sources of 60Co and 152Eu was determined experimentally and used to calibrate an MCNP4a model of the detector. The refined MCNP4a detector model can predict the absolute peak detection efficiency within 7 percent in the energy range of 120 - 1400 keV. In phase two, a PGNAA system consisting of a light-water moderated 252Cf (1.06 mg) neutron source, and the shielded and collimated HPGe detector was used to collect prompt gamma-ray spectra from Savannah River Site (SRS) soil spiked with chlorine. The experimental system response was used to calculate the minimum detectable concentration of chlorine in the SRS soil for a 1800 sec. irradiation as 2200 mg/g based on the analysis of the 788 keV gamma-ray. MCNP4a was used to predict the PGNAA system response, which was accomplished by analyzing the neutron and gamma ray transport components separately. In the energy range of 788 to 6110 keV, the MCNP4a predictions were generally within 60 percent of the calculated probability of detection of a prompt gamma ray based on the experimental data.

  13. Non-destructive analysis of the conformational changes in human lens lipid and protein structures of the immature cataracts associated with glaucoma

    NASA Astrophysics Data System (ADS)

    Lin, Shan-Yang; Li, Mei-Jane; Liang, Run-Chu; Lee, Shui-Mei

    1998-09-01

    Previous study has supposed a possible mechanism of exacerbating cataract formation in cataractous human lens capsules induced by hypertension or glaucoma. To clarify the glaucoma-induced cataract formation of the eyes lens, changes in the human lens lipid and protein structures of immature cataractous patients with or without glaucoma were investigated. Two normal lenses, ten immature cataractous lenses without any complication and four immature cataractous lenses with glaucoma were used after surgical operation. Each de-capsulated human lens sample was sliced with a number 15 surgical blade. The intact nuclear lens regions were used for non-destructive analysis. The lens lipid and protein structures, as well as compositions of these lens samples, were determined using a Fourier transform infrared (FTIR) microspectroscopy with second-derivative, de-convolution and curve-fitting methods. The results indicate that the IR spectrum of glaucomatous lenses appeared as a shoulder only at 2853 cm -1, thus the composition of the symmetric CH 2 stretching band at 2853 (2852) cm -1 decreased more significantly in glaucomatous lens to only one half of that in normal and immature cataractous lenses. The composition of the asymmetric CH 3 stretching band at 2965 cm -1 for normal lens decreases markedly from 32 to 20% for immature cataractous lenses with or without glaucoma. The compositional ratio of component at 2965 cm -1 to component at 2928 (2930) cm -1 for normal lenses was about 0.702, and that ratio for cataractous lenses without glaucoma was 0.382 but for glaucomatous lenses was 0.377. The maximum peak position of amide I band for IR spectra of the normal lens, immature cataractous lenses without complications or glaucomatous lenses appeared respectively at 1632, 1630 or 1622 cm -1, assigned to β sheet structure. A marked difference in peak intensity of amide I band for the normal lenses and immature cataractous human lenses with or without glaucoma was observed. The

  14. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components.

    PubMed

    Riccardi, M; Mele, G; Pulvento, C; Lavini, A; d'Andria, R; Jacobsen, S-E

    2014-06-01

    Leaf chlorophyll content provides valuable information about physiological status of plants; it is directly linked to photosynthetic potential and primary production. In vitro assessment by wet chemical extraction is the standard method for leaf chlorophyll determination. This measurement is expensive, laborious, and time consuming. Over the years alternative methods, rapid and non-destructive, have been explored. The aim of this work was to evaluate the applicability of a fast and non-invasive field method for estimation of chlorophyll content in quinoa and amaranth leaves based on RGB components analysis of digital images acquired with a standard SLR camera. Digital images of leaves from different genotypes of quinoa and amaranth were acquired directly in the field. Mean values of each RGB component were evaluated via image analysis software and correlated to leaf chlorophyll provided by standard laboratory procedure. Single and multiple regression models using RGB color components as independent variables have been tested and validated. The performance of the proposed method was compared to that of the widely used non-destructive SPAD method. Sensitivity of the best regression models for different genotypes of quinoa and amaranth was also checked. Color data acquisition of the leaves in the field with a digital camera was quick, more effective, and lower cost than SPAD. The proposed RGB models provided better correlation (highest R (2)) and prediction (lowest RMSEP) of the true value of foliar chlorophyll content and had a lower amount of noise in the whole range of chlorophyll studied compared with SPAD and other leaf image processing based models when applied to quinoa and amaranth.

  15. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene.

    PubMed

    Virkler, Kelly; Lednev, Igor K

    2009-07-01

    Body fluid traces recovered at crime scenes are among the most important types of evidence to forensic investigators. They contain valuable DNA evidence which can identify a suspect or victim as well as exonerate an innocent individual. The first step of identifying a particular body fluid is highly important since the nature of the fluid is itself very informative to the investigation, and the destructive nature of a screening test must be considered when only a small amount of material is available. The ability to characterize an unknown stain at the scene of the crime without having to wait for results from a laboratory is another very critical step in the development of forensic body fluid analysis. Driven by the importance for forensic applications, body fluid identification methods have been extensively developed in recent years. The systematic analysis of these new developments is vital for forensic investigators to be continuously educated on possible superior techniques. Significant advances in laser technology and the development of novel light detectors have dramatically improved spectroscopic methods for molecular characterization over the last decade. The application of this novel biospectroscopy for forensic purposes opens new and exciting opportunities for the development of on-field, non-destructive, confirmatory methods for body fluid identification at a crime scene. In addition, the biospectroscopy methods are universally applicable to all body fluids unlike the majority of current techniques which are valid for individual fluids only. This article analyzes the current methods being used to identify body fluid stains including blood, semen, saliva, vaginal fluid, urine, and sweat, and also focuses on new techniques that have been developed in the last 5-6 years. In addition, the potential of new biospectroscopic techniques based on Raman and fluorescence spectroscopy is evaluated for rapid, confirmatory, non-destructive identification of a body

  16. Non-Destructive State Machine Reverse Engineering

    SciTech Connect

    Smith, Jessica L.

    2013-10-10

    Most of the integrated circuits (ICs) that are in electronic systems today are based on state machines. We are taking advantage of this to develop a hardware reverse engineering method that discovers the IC’s underlying state machine, rather than its transistors and gates. While there are other methods for destructively reverse engineering ICs or for non-destructively characterizing ICs, our method offers a fast and accurate analysis while remaining non-destructive. To do this, we present an intelligent brute-force method of exploring the logic of the IC using only the input and outputs designed into the IC - the I/O pins. From this exploration, we can apply a folding algorithm to discover the designed state machine.

  17. Analysis of polarimetric terahertz imaging for non-destructive detection of subsurface defects in wind turbine blades

    NASA Astrophysics Data System (ADS)

    Martin, Robert Warren

    During the manufacture of wind turbine blades, internal defects can form which negatively affect their structural integrity and can lead to premature failure. These defects are often not detected before the final installation of the blades onto wind turbines in the field. The purpose of this research was to investigate the advantages of using fully-polarimetric inverse synthetic aperture radar (ISAR) terahertz imaging techniques for scanning the interior structure of the wind turbine blades in order to detect and identify any defects in the blade's internal structure before the blade leaves the manufacturer. Additionally, the research has investigated the use of the Euler parameter polarimetric transformation in improving defect detection, and increasing understanding of the scattering properties of such defects. Use of an image compositing algorithm and of the Euler parameters was found to enhance defect detection.

  18. Rapid and non-destructive analysis of metallic dental restorations using X-ray fluorescence spectra and light-element sampling tools

    NASA Astrophysics Data System (ADS)

    Furuhashi, K.; Uo, M.; Kitagawa, Y.; Watari, F.

    2012-12-01

    IntroductionRecently, allergic diseases caused by dental metals have been increasing. Therefore, rapid and accurate analytical methods for the metal restorations in the oral cavities of patients are required. The purpose of this study was to develop a non-destructive extraction method for dental alloys, along with a subsequent, rapid and accurate elemental analysis. Materials and methodSamples were obtained by polishing the surfaces of metal restorations using a dental rotating tool with disposable buffs and polishing pastes. As materials for the analysis, three dental alloys were used. To compare the sampling and analysis efficiencies, two buffs and seven pastes were used. After polishing the surface of a metal restoration, the buff was analyzed using X-ray scanning analytical microscopy (XSAM). ResultsThe efficiency of the analysis was judged based on the sampling rate achieved and the absence of disturbing elements in the background in fluorescence X-ray spectra. The best results were obtained for the combination of TexMet as a buff with diamond as a paste. This combination produced a good collection efficiency and a plain background in the fluorescence X-ray spectra, resulting in a high precision of the analysis.

  19. Rhizoslides: paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis

    PubMed Central

    2014-01-01

    Background A quantitative characterization of root system architecture is currently being attempted for various reasons. Non-destructive, rapid analyses of root system architecture are difficult to perform due to the hidden nature of the root. Hence, improved methods to measure root architecture are necessary to support knowledge-based plant breeding and to analyse root growth responses to environmental changes. Here, we report on the development of a novel method to reveal growth and architecture of maize root systems. Results The method is based on the cultivation of different root types within several layers of two-dimensional, large (50 × 60 cm) plates (rhizoslides). A central plexiglass screen stabilizes the system and is covered on both sides with germination paper providing water and nutrients for the developing root, followed by a transparent cover foil to prevent the roots from falling dry and to stabilize the system. The embryonic roots grow hidden between a Plexiglas surface and paper, whereas crown roots grow visible between paper and the transparent cover. Long cultivation with good image quality up to 20 days (four fully developed leaves) was enhanced by suppressing fungi with a fungicide. Based on hyperspectral microscopy imaging, the quality of different germination papers was tested and three provided sufficient contrast to distinguish between roots and background (segmentation). Illumination, image acquisition and segmentation were optimised to facilitate efficient root image analysis. Several software packages were evaluated with regard to their precision and the time investment needed to measure root system architecture. The software 'Smart Root’ allowed precise evaluation of root development but needed substantial user interference. 'GiaRoots’ provided the best segmentation method for batch processing in combination with a good analysis of global root characteristics but overestimated root length due to thinning artefacts. 'Whin

  20. Computer vision-based analysis of foods: a non-destructive colour measurement tool to monitor quality and safety.

    PubMed

    Mogol, Burçe Ataç; Gökmen, Vural

    2014-05-01

    Computer vision-based image analysis has been widely used in food industry to monitor food quality. It allows low-cost and non-contact measurements of colour to be performed. In this paper, two computer vision-based image analysis approaches are discussed to extract mean colour or featured colour information from the digital images of foods. These types of information may be of particular importance as colour indicates certain chemical changes or physical properties in foods. As exemplified here, the mean CIE a* value or browning ratio determined by means of computer vision-based image analysis algorithms can be correlated with acrylamide content of potato chips or cookies. Or, porosity index as an important physical property of breadcrumb can be calculated easily. In this respect, computer vision-based image analysis provides a useful tool for automatic inspection of food products in a manufacturing line, and it can be actively involved in the decision-making process where rapid quality/safety evaluation is needed.

  1. Feasibility study in the application of optical signal analysis to non-destructive testing of complex structures

    NASA Technical Reports Server (NTRS)

    Baker, B.; Brown, H.

    1974-01-01

    Advantages of the large time bandwidth product of optical processing are presented. Experiments were performed to study the feasibility of the use of optical spectral analysis for detection of flaws in structural elements excited by random noise. Photographic and electronic methods of comparison of complex spectra were developed. Limitations were explored, and suggestions for further work are offered.

  2. A NEW NON-DESTRUCTIVE METHOD FOR CHEMICAL ANALYSIS OF PARTICULATE MATTER FILTERS: THE CASE OF MANGANESE AIR POLLUTION IN VALLECAMONICA (ITALY)

    PubMed Central

    Borgese, Laura; Zacco, Annalisa; Pal, Sudipto; Bontempi, Elza; Lucchini, Roberto; Zimmerman, Neil; Depero, Laura E.

    2011-01-01

    Total Reflection X-ray Fluorescence (TXRF) is a well-established technique for chemical analysis, but it is mainly employed for quality control in the electronics semiconductor industry. The capability to analyze liquid and uniformly thin solid samples makes this technique suitable for other applications, and especially in the very critical field of environmental analysis. Comparison with standard methods like Inductively Coupled Plasma (ICP) and Atomic Absorption Spectroscopy (AAS) show that TXRF is a practical, accurate, and reliable technique in occupational settings. Due to the greater sensitivity necessary in trace heavy metal detection, TXRF is also suitable for environmental chemical analysis. In this paper we show that based on appropriate standards, TXRF can be considered for non-destructive routine quantitative analysis of environmental matrices such as air filters. This work has been developed in the frame of the EU-FP6 PHIME (Public Health Impact of long-term, low-level Mixed element Exposure in susceptible population strata) Integrated Project (www.phime.org). The aim of this work was to investigate Mn air pollution in the area of Vallecamonica (Italy). PMID:21315919

  3. Fourier Transform Infrared Spectroscopy (FT-IR) and Simple Algorithm Analysis for Rapid and Non-Destructive Assessment of Developmental Cotton Fibers.

    PubMed

    Liu, Yongliang; Kim, Hee-Jin

    2017-06-22

    With cotton fiber growth or maturation, cellulose content in cotton fibers markedly increases. Traditional chemical methods have been developed to determine cellulose content, but it is time-consuming and labor-intensive, mostly owing to the slow hydrolysis process of fiber cellulose components. As one approach, the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy technique has also been utilized to monitor cotton cellulose formation, by implementing various spectral interpretation strategies of both multivariate principal component analysis (PCA) and 1-, 2- or 3-band/-variable intensity or intensity ratios. The main objective of this study was to compare the correlations between cellulose content determined by chemical analysis and ATR FT-IR spectral indices acquired by the reported procedures, among developmental Texas Marker-1 (TM-1) and immature fiber (im) mutant cotton fibers. It was observed that the R value, CIIR, and the integrated intensity of the 895 cm(-1) band exhibited strong and linear relationships with cellulose content. The results have demonstrated the suitability and utility of ATR FT-IR spectroscopy, combined with a simple algorithm analysis, in assessing cotton fiber cellulose content, maturity, and crystallinity in a manner which is rapid, routine, and non-destructive.

  4. Fourier Transform Infrared Spectroscopy (FT-IR) and Simple Algorithm Analysis for Rapid and Non-Destructive Assessment of Developmental Cotton Fibers

    PubMed Central

    Liu, Yongliang; Kim, Hee-Jin

    2017-01-01

    With cotton fiber growth or maturation, cellulose content in cotton fibers markedly increases. Traditional chemical methods have been developed to determine cellulose content, but it is time-consuming and labor-intensive, mostly owing to the slow hydrolysis process of fiber cellulose components. As one approach, the attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy technique has also been utilized to monitor cotton cellulose formation, by implementing various spectral interpretation strategies of both multivariate principal component analysis (PCA) and 1-, 2- or 3-band/-variable intensity or intensity ratios. The main objective of this study was to compare the correlations between cellulose content determined by chemical analysis and ATR FT-IR spectral indices acquired by the reported procedures, among developmental Texas Marker-1 (TM-1) and immature fiber (im) mutant cotton fibers. It was observed that the R value, CIIR, and the integrated intensity of the 895 cm−1 band exhibited strong and linear relationships with cellulose content. The results have demonstrated the suitability and utility of ATR FT-IR spectroscopy, combined with a simple algorithm analysis, in assessing cotton fiber cellulose content, maturity, and crystallinity in a manner which is rapid, routine, and non-destructive. PMID:28640185

  5. From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared

    NASA Astrophysics Data System (ADS)

    Sfarra, S.; Ibarra-Castanedo, C.; Lambiase, F.; Paoletti, D.; Di Ilio, A.; Maldague, X.

    2012-11-01

    In this work the possibility of modeling manufacturing ceramic products is analyzed through the application of transient thermography, holographic interferometry and digital speckle photography, in order to identify the subsurface defects characteristics. This integrated method could be used to understand the nature of heterogeneous materials (such as plastic, sponge simulating a void, wood, aluminum) potentially contained within ceramic materials, as well as to predict crack formation due to them. The paper presents the analysis of green ceramic tile containing defects of different types and sizes located at different depths. The finite element method is used for solving the problem of transient heat transfer occurring in experimental conditions. Unknown parameters of the numerical model (such as convective heat transfer coefficients and sample surface emissivity) were adjusted to obtain numerical simulation results as close as possible to those obtained experimentally. Similarities and differences between experimental and simulated data are analyzed and discussed. Possibilities for improving the results and further developments are proposed.

  6. Non-destructive Phenotypic Analysis of Early Stage Tree Seedling Growth Using an Automated Stereovision Imaging Method

    PubMed Central

    Montagnoli, Antonio; Terzaghi, Mattia; Fulgaro, Nicoletta; Stoew, Borys; Wipenmyr, Jan; Ilver, Dag; Rusu, Cristina; Scippa, Gabriella S.; Chiatante, Donato

    2016-01-01

    A plant phenotyping approach was applied to evaluate growth rate of containerized tree seedlings during the precultivation phase following seed germination. A simple and affordable stereo optical system was used to collect stereoscopic red–green–blue (RGB) images of seedlings at regular intervals of time. Comparative analysis of these images by means of a newly developed software enabled us to calculate (a) the increments of seedlings height and (b) the percentage greenness of seedling leaves. Comparison of these parameters with destructive biomass measurements showed that the height traits can be used to estimate seedling growth for needle-leaved plant species whereas the greenness trait can be used for broad-leaved plant species. Despite the need to adjust for plant type, growth stage and light conditions this new, cheap, rapid, and sustainable phenotyping approach can be used to study large-scale phenome variations due to genome variability and interaction with environmental factors. PMID:27840632

  7. Non destructive analysis of in-shell peanuts for moisture content using a custom built NIR spectrometer

    NASA Astrophysics Data System (ADS)

    Kandala, Chari V.; Sundaram, Jaya; Settaluri, Vijayasaradhi; Puppala, Naveen

    2011-10-01

    A Custom made NIR spectroscope was used to determine the moisture content of in-shell peanuts of two different market type peanuts namely Virginia and Valencia. Peanuts were conditioned to different moisture levels between 6 and 26 % (wet basis). Samples from the different moisture levels were separated into two groups one for calibration and the other for validation. NIR absorption spectral data from 1000 nm to 2500 nm were collected on the peanuts from the calibration and validation groups. Measurements were obtained on 30 replicates within each moisture level. Reference moisture data were developed using standard air-oven method on calibration set samples. Partial Least Square (PLS) analysis was performed on the calibration set with certain pretreatments on the measured data and models were developed using the reference moisture data. The Standard Error of Calibration (SEC) and R2 of the calibration models were computed to select the best calibration model for each of the two peanut types. Both Valencia and Virginia types gave R2 of 0.99 for the pretreated as well as for the raw spectral data. The selected models were used to predict the moisture content of peanuts in the validation sample set. Predicted moisture contents of the validation samples were compared with their air-oven moisture values determined similarly as for the calibration samples. Goodness of fit was determined based on the lowest Standard Error of Prediction (SEP) and highest R2 value obtained for the prediction models. The model, with reflectance plus normalization spectral data with an SEP of 0.74 for Valencia and 1.57 for Virginia type in-shell peanuts was selected as the best model. The corresponding R2 values were 0.98 for both peanut types.

  8. Non-destructive analysis of the two subspecies of African elephants, mammoth, hippopotamus, and sperm whale ivories by visible and short-wave near infrared spectroscopy and chemometrics.

    PubMed

    Shimoyama, Masahiko; Morimoto, Susumu; Ozaki, Yukihiro

    2004-06-01

    Visible (VIS) and short-wave near infrared (SW-NIR) spectroscopy was used for non-destructive analysis of ivories. VIS-SW-NIR (500-1000 nm) spectra were measured in situ for five kinds of ivories, that is two subspecies of African elephants, mammoth, hippopotamus, and sperm whale. Chemometrics analyses were carried out for the spectral data from 500 to 1000 nm region. The five kinds of ivories were clearly discriminated from each other on the scores plot of two principal components (PCs) obtained by principal component analysis (PCA). It was noteworthy that the ivories of the two subspecies of African elephants were discriminated by the scores of PC 1. The loadings plot for PC 1 showed that the discrimination relies on the intensity changes in bands due to collagenous proteins and water interacting with proteins. It was found that the scores plot of PC 2 is useful to distinguish between the ivories of the two subspecies of African elephants and the other ivories. We also developed a calibration model that predicted the specific gravity of five kinds of ivories from their VIS-SW-NIR spectral data using partial least squares (PLS)-1 regression. The correlation coefficient and root mean square error of cross validation (RMSECV) of this model were 0.960 and 0.037, respectively.

  9. Non-destructive analysis of ancient bimetal swords from western Asia by γ-ray radiography and X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Shizuma, Kiyoshi; Kajimoto, Tsuyoshi; Endo, Satoru; Matsugi, Kazuhiro; Arimatsu, Yui; Nojima, Hisashi

    2017-09-01

    Eight ancient bimetal swords held by Hiroshima University, Japan were analyzed non-destructively through γ-ray radiography and X-ray fluorescence (XRF). 137Cs and 60Co γ-ray irradiation sources were used to obtain transmission images of swords. A scanning radiography method using a 60Co γ-ray source was developed. XRF was used for qualitative elemental analysis of the swords. The presence of iron cores in the hilts of some swords had been observed and it was assumed that the cores were a ritual symbol or had a functional purpose. However, our work reveals that these swords were originally bronze-hilted iron swords and that the rusty blades were replaced with bronze blades to maintain the swords' commercial value as an antique. Consequently, the rest of the iron blade was left in the hilt as an iron tang. The junction of the blade and the guard was soldered and painted to match the patina color. XRF analysis clearly showed that the elemental Sn/Cu ratios of the blades and the hilts were different. These findings are useful for clarifying the later modifications of the swords and are important for interpreting Bronze Age and Iron Age history correctly.

  10. Non-Destructive Testing Scanner

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bio-Imaging Research's technology that originated in an aerospace program has come full circle with a new aerospace adaptation called the Advanced Computed Tomography Inspection System, or ACTIS. The medical version of CT scans the human body for tumors or other abnormalities, the ACTIS system finds imperfections in aerospace structures and components, such as castings, assemblies, rocket motors and nozzles. ACTIS is described by its developer as the most versatile CT scanner available for non-destructive testing applications. ACTIS is a variable geometry system. ACTIS source and detectors can be moved closer together or farther apart to optimize the geometry for different sizes of test objects. The combination of variable geometry, three sources, and focusing detectors makes ACTIS cost effective for a broad range of applications. System can scan anything from very small turbine blades to large rocket assemblies.

  11. Use of the VvMybA1 gene for non-destructive quantification of promoter activity via color histogram analysis in grapevine (Vitis vinifera) and tobacco.

    PubMed

    Li, Zhijian T; Dhekney, Sadanand A; Gray, Dennis J

    2011-10-01

    We report the development of a convenient plant-based reporter system to analyze promoters and facilitate selection of genetically engineered plants. The VvMybA1 gene of grapevine (Vitis vinifera L.) regulates the last metabolic step of anthocyanin biosynthesis and its ectopic expression leads to anthocyanin production in otherwise non-pigmented cells. To develop an anthocyanin-based quantitative reporter system, the VvMybA1 gene was isolated from V. vinifera 'Merlot' and placed under control of three promoters to test its ability to distinguish different activity levels. Promoters included a double enhanced CaMV35S (d35S) promoter, a double enhanced CsVMV (dCsVMV) promoter or a bi-directional dual promoter (BDDP), resulting in transformation vectors DAT, CAT and DEAT, respectively. These vectors were introduced into grapevine and tobacco via Agrobacterium-mediated transformation for transient and stable expression analysis. A linear relationship between the mean red brightness (MRB) and optical density (OD) values with a 0.99 regression coefficient was identified in a dilution series of anthocyanin, thus allowing the use of histogram data for non-destructive and real-time assessment of transcriptional activity. Results of histogram-based analysis of color images from transformed grapevine somatic embryos (SE) and various tissues of transgenic tobacco showed a consistent six to sevenfold promoter activity increase of DEAT over DAT. This expression increase was verified by spectroscopic measurement of anthocyanin concentrations in sepal tissue of transgenic tobacco plants. These results were congruent with previously findings of promoter activity derived from GUS fluorometric assay, thus demonstrating for the first time that the VvMybA1 gene could offer a simple, versatile and reliable plant-based alternative for quantitative promoter analysis in plants.

  12. Non-destructive identification of twisted light.

    PubMed

    Li, Pengyun; Wang, Bo; Song, Xinbing; Zhang, Xiangdong

    2016-04-01

    The non-destructive identification of the orbital angular momentum (OAM) is essential to various applications in the optical information processing. Here, we propose and demonstrate experimentally an efficient method to identify non-destructively the OAM by using a modified Mach-Zehnder interferometer. Our schemes are applicable not only to the case with integer charges, but also to optical vortices with noninteger charges. Our Letter presents the first experimental demonstration of the non-destructive identification of twisted light with integer or noninteger topological charges, which has potential applications in the OAM-based data transmission for optical communications.

  13. Combined use of the non-destructive XRF and low energy micro-XRF techniques for the analysis of silvered nummi belonging to the Treasure of Misurata (Libya)

    NASA Astrophysics Data System (ADS)

    Romano, Francesco Paolo; Garraffo, Salvatore; Pappalardo, Lighea; Rizzo, Francesca

    2013-04-01

    Roman coinage underwent a severe debasement of silver during the time and the production of plated coins became a common practice for giving the impression of a high finesses of the alloy. In 294 AD, Diocletian introduced the nummus, manufactured with the same standard in all the mints by using an internal Cu-Sn-Pb-Ag core and presenting a thin silvered patina (about 2 micron) on its surface. The silver plating of the nummi have been investigated in the past and different methods have been suggested for its manufacturing (e.g. segregation during casting, chemical treatments, mercury-silvering). However, previous analyses were focused on few samples and, consequently, this technological issue remained unresolved. In the present work, the BSC-XRF (Beam Stability Controlled -XRF) and a LE-micro-XRF portable spectrometers developed at the LANDIS laboratory of IBAM-CNR and LNS-INFN in Catania (Italy), have been applied for the in-situ analysis of the silvered nummi belonging to the Misurata Treasure (Museum of Leptis Magna, El-Khomes, Libya). The treasure is composed of 108 thousand coins manufactured in 19 Imperial mints operating in the period 294-333 AD. In order to establish if, and at what extent, the mercury-silvering was used to produce the thin Ag-patina of the nummi, the non-destructive investigation was extended to 1050 well preserved coins. Measurements allowed to explore the presence of Hg and the Hg-Ag correlation at the coin surface. The portable BSC-XRF and the LE-micro XXRF techniques are suited to approach this study. A new version of the BSC-XRF spectrometer, consisting of a compact high-intensity x-ray tube (50 kV; 4 mA) coupled to a 80 mm2 SDD detector (138 eV @ 5.9 keV), was developed for the fast determination of mercury traces in a large number of coins (measurement time is 150 seconds; MDL for Hg is 100 ppm). The investigation allowed to identify the Imperial mints and the periods where the mercury-silvering were probably used. However the BSC

  14. Non-destructive analysis of hydrogen-induced cracking of api steels using acoustic microscopy and small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Oh, S. B.; Choi, Y.; Jung, H. G.; Kho, S. W.; Lee, C. S.

    2014-12-01

    Acoustic microscopy and small-angle neutron scattering were applied to non-destructively evaluate the hydrogen-induced cracking of API steels and to find the initiation time of the crack. The API steels had equiaxed grains with about 4 to 12-μm average grain size along the rolling, sample-normal, and transverse directions. For 5 days of immersion in a sodium-acetic solution with chloride ions (NaCl: CH3COOH: H2O: FeCl2 = 50: 5: 944: 1, pH = 2.7), micro-sized cracks were not formed in the as-received specimen, but they did form in the 7% deformed specimen. Nano-sized cracks were observed in the specimen after 3 days of immersion by small-angle neutron scattering.

  15. Non-Destructive Evaluation of Materials via Ultraviolet Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pugel, Betsy

    2008-01-01

    A document discusses the use of ultraviolet spectroscopy and imaging for the non-destructive evaluation of the degree of cure, aging, and other properties of resin-based composite materials. This method can be used in air, and is portable for field use. This method operates in reflectance, absorbance, and luminescence modes. The ultraviolet source is used to illuminate a composite surface of interest. In reflectance mode, the reflected response is acquired via the imaging system or via the spectrometer. The spectra are analyzed for organic compounds (conjugated organics) and inorganic compounds (semiconducting band-edge states; luminescing defect states such as silicates, used as adhesives for composite aerospace applications; and metal oxides commonly used as thermal coating paints on a wide range of spacecraft). The spectra are compared with a database for variation in conjugation, substitution, or length of molecule (in the case of organics) or band edge position (in the case of inorganics). This approach is useful in the understanding of material quality. It lacks the precision in defining the exact chemical structure that is found in other materials analysis techniques, but it is advantageous over methods such as nuclear magnetic resonance, infrared spectroscopy, and chromatography in that it can be used in the field to assess significant changes in chemical structure that may be linked to concerns associated with weaknesses or variations in structural integrity, without disassembly of or destruction to the structure of interest.

  16. Quantitative non-destructive testing

    NASA Technical Reports Server (NTRS)

    Welch, C. S.

    1985-01-01

    The work undertaken during this period included two primary efforts. The first is a continuation of theoretical development from the previous year of models and data analyses for NDE using the Optical Thermal Infra-Red Measurement System (OPTITHIRMS) system, which involves heat injection with a laser and observation of the resulting thermal pattern with an infrared imaging system. The second is an investigation into the use of the thermoelastic effect as an effective tool for NDE. As in the past, the effort is aimed towards NDE techniques applicable to composite materials in structural applications. The theoretical development described produced several models of temperature patterns over several geometries and material types. Agreement between model data and temperature observations was obtained. A model study with one of these models investigated some fundamental difficulties with the proposed method (the primitive equation method) for obtaining diffusivity values in plates of thickness and supplied guidelines for avoiding these difficulties. A wide range of computing speeds was found among the various models, with a one-dimensional model based on Laplace's integral solution being both very fast and very accurate.

  17. A new non-destructive analysis of semiconductor heterojunctions with very thin surface layers: An application of soft x-ray spectroscopy to Si-compound (film)/Si (substrate)

    NASA Astrophysics Data System (ADS)

    Iwami, M.; Kusaka, M.; Hirai, M.; Nakamura, H.

    1990-01-01

    A non-destructive analysis of a heterointerface of Si-compound/Si (substrate) is carried out using soft X-ray spectroscopy (SXS). The method is based on the fact that the SiL2,3 valence band SXS spectrum of a Si-compound shows a clear difference from that of Si crystal. Also is utilized the fact that energetic electrons can reach deeper regions in solid with increasing primary electron energy, Ep. Surface and interface structures of a Si crystal with a Si-compound on top are clarified with changing Ep up to 4 keV.

  18. Non-destructive elemental analysis of large meteorite samples by prompt gamma-ray neutron activation analysis with the internal mono-standard method.

    PubMed

    Latif, Sk A; Oura, Y; Ebihara, M; Nakahara, H

    2013-11-01

    Prompt gamma-ray neutron activation analysis (PGNAA) using the internal mono-standard method was tested for its applicability to analyzing large solid samples including irregularly shaped meteorite samples. For evaluating the accuracy and precision of the method, large quantities of the Geological Survey of Japan standardized rock powders (JB-1a, JG-1a, and JP-1) were analyzed and 12 elements (B, Na, Mg, Al, Cl, K, Ca, Ti, Mn, Fe, Sm, and Gd) were determined by using Si as an internal standard element. Analytical results were mostly in agreement with literature values within 10 %. The precision of the method was also shown to be within 10 % (1σ) for most of these elements. The analytical procedure was then applied to four stony meteorites (Allende, Kimble County, Leedey, Lake Labyrinth) and four iron meteorites (Canyon Diablo, Toluca (Mexico), Toluca (Xiquipilco), Squaw Creek) consisting of large chunks or single slabs. For stony meteorites, major elements (Mg, Al, Si, S, Ca, and Ni), minor elements (Na and Mn) and trace element (B, Cl, K, Ti, Co, and Sm) were determined with adequate accuracy. For iron meteorites, results for the Co and Ni mass fractions determined are all consistent with corresponding literature values. After the analysis, it was confirmed that the residual radioactivity remaining in the sample after PGNAA was very low and decreased down to the background level. This study shows that PGNAA with the internal mono-standard method is highly practical for determining the elemental composition of large, irregularly shaped solid samples including meteorites.

  19. Method for non-destructive testing

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2011-08-30

    Non-destructive testing method may include providing a source material that emits positrons in response to bombardment of the source material with photons. The source material is exposed to photons. The source material is positioned adjacent the specimen, the specimen being exposed to at least some of the positrons emitted by the source material. Annihilation gamma rays emitted by the specimen are detected.

  20. PIXE (particle induced X-ray emission): A non-destructive analysis method adapted to the thin decorative coatings of antique ceramics

    NASA Astrophysics Data System (ADS)

    Leon, Y.; Sciau, Ph.; Bouquillon, A.; Pichon, L.; de Parseval, Ph.

    2012-11-01

    Recent trends in study of Greek and Roman potteries have been to develop non-abrasive methods to determine the elemental composition of their thin coatings. This paper investigates the potential of PIXE (particle induced X-ray emission) in this field. This technique has been currently used to determine the bulk elemental composition of several types of artifacts because of its fast and simultaneous ability to measure a large number of elements with good accuracy and without any damage to the sample. However, until now it has never been applied to the measurement of the composition of thin layers owing to the difficulty in limiting the depth of analysis to the layer thickness. In this paper, we show, through a comparative study of reference clay pellets and thin coatings of Terra Sigillata ceramics that reducing the energy of the particle beam the problem can be solved. The decrease of proton energy from 3 MeV (standard condition) to 1.5 MeV allowed us to limit the analyzed depth to the coating thickness without significant alteration of the results. Quantitative elemental analysis remains possible and the quality of results is similar to the one obtained from electron microprobe.

  1. Swelling of U-7Mo/Al-Si dispersion fuel plates under irradiation - Non-destructive analysis of the AFIP-1 fuel plates

    NASA Astrophysics Data System (ADS)

    Wachs, D. M.; Robinson, A. B.; Rice, F. J.; Kraft, N. C.; Taylor, S. C.; Lillo, M.; Woolstenhulme, N.; Roth, G. A.

    2016-08-01

    Extensive fuel-matrix interactions leading to plate pillowing have proven to be a significant impediment to the development of a suitable high density low-enriched uranium molybdenum alloy (U-Mo) based dispersion fuel for high power applications in research reactors. The addition of silicon to the aluminum matrix was previously demonstrated to reduce interaction layer growth in mini-plate experiments. The AFIP-1 project involved the irradiation, in-canal examination, and post-irradiation examination of two fuel plates. The irradiation of two distinct full size, flat fuel plates (one using an Al-2wt%Si matrix and the other an Al-4043 (∼4.8 wt% Si) matrix) was performed in the INL ATR reactor in 2008-2009. The irradiation conditions were: ∼250 W/cm2 peak Beginning Of Life (BOL) power, with a ∼3.5e21 f/cm3 peak burnup. The plates were successfully irradiated and did not show any pillowing at the end of the irradiation. This paper reports the results and interpretation of the in-canal and post-irradiation non-destructive examinations that were performed on these fuel plates. It further compares additional PIE results obtained on fuel plates irradiated in contemporary campaigns in order to allow a complete comparison with all results obtained under similar conditions. Except for a brief indication of accelerated swelling early in the irradiation of the Al-2Si plate, the fuel swelling is shown to evolve linearly with the fission density through the maximum burnup.

  2. Hybrid holographic non-destructive test system

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1978-01-01

    An automatic hybrid holographic non-destructive testing (HNDT) method and system capable of detecting flaws or debonds contained within certain materials are described. This system incorporates the techniques of optical holography, acoustical/optical holography and holographic correlation in determining the structural integrity of a test object. An automatic processing system including a detector and automatic data processor is used in conjunction with the three holographic techniques for correlating and interpreting the information supplied by the non-destructive systems. The automatic system also includes a sensor which directly translates an optical data format produced by the holographic techniques into electrical signals and then transmits this information to a digital computer for indicating the structural properties of the test object. The computer interprets the data gathered and determines whether further testing is necessary as well as the format of this new testing procedure.

  3. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    SciTech Connect

    Wielopolski, Lucian; Hendrey, G.; Orion, I.; Prior, S.; Rogers, H.; Runion, B.; Torbert, A.

    2004-02-01

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil

  4. FIRST 100 T NON-DESTRUCTIVE MAGNET

    SciTech Connect

    J. R. SIMS; ET AL

    1999-10-01

    The first 100 T non-destructive (100 T ND) magnet and power supplies as currently designed are described. This magnet will be installed as part of the user facility research equipment at the National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory. The 100 T ND magnet will provide a 100 T pulsed field of 5 ms duration (above 90% of full field) in a 15 mm diameter bore once per hour. Magnet operation will be non-destructive. The magnet will consist of a controlled power outer coil set which produces a 47 T platform field in a 225 mm diameter bore. Located within the outer coil set will be a 220 mm outer diameter capacitor powered insert coil. Using inertial energy storage a synchronous motor/generator will provide ac power to a set of seven ac-dc converters rated at 64 MW/80 MVA each. These converters will energize three independent coil circuits to create 170 MJ of field energy in the outer coil set at the platform field of 47 T. The insert will then be energized to produce the balance of the 100 T peak field using a 2.3 MJ, 18 kV (charged to 15 kV), 14.4 mF capacitor bank controlled with solid-state switches. The magnet will be the first of its kind and the first non-destructive, reusable 100 T pulsed magnet. The operation of the magnet will be described along with special features of its design and construction.

  5. Non destructive examination of UN / U-Si fuel pellets using neutrons (preliminary assessment)

    SciTech Connect

    Bourke, Mark Andrew; Vogel, Sven C.; Voit, Stewart Lancaster; Mcclellan, Kenneth James; Losko, Adrian S.; Tremsin, Anton

    2016-03-31

    Tomographic imaging and diffraction measurements were performed on nine pellets; four UN/ U Si composite formulations (two enrichment levels), three pure U3Si5 reference formulations (two enrichment levels) and two reject pellets with visible flaws (to qualify the technique). The U-235 enrichments ranged from 0.2 to 8.8 wt.%. The nitride/silicide composites are candidate compositions for use as Accident Tolerant Fuel (ATF). The monophase U3Si5 material was included as a reference. Pellets from the same fabrication batches will be inserted in the Advanced Test Reactor at Idaho during 2016. The goal of the Advanced Non-destructive Fuel Examination work package is the development and application of non-destructive neutron imaging and scattering techniques to ceramic and metallic nuclear fuels. Data reported in this report were collected in the LANSCE run cycle that started in September 2015 and ended in March 2016. Data analysis is ongoing; thus, this report provides a preliminary review of the measurements and provides an overview of the characterized samples.

  6. Complementary Electromagnetic Non-Destructive Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, Gui Yun; Wilson, John; Morozov, Maxim

    2011-06-01

    The use of non-destructive evaluation (NDE) for defect detection and failure prediction in structures and specimens is widespread in energy industries, aimed at ageing power plants and pipelines, material degradation, fatigue and radiation damage, etc. At present there are no suitable electromagnetic NDE methods for the measurement and characterization of material degradation, in irradiated samples in particular, which is very important and timely for the nuclear power industry in the UK. This paper reports recent developments in the field of electromagnetic (EM) NDE at Newcastle University, including pulsed eddy current (PEC), pulsed magnetic flux leakage (PMFL), magnetic Barkhausen emission (MBE) and magneto-acoustic emission (MAE). As different EM methods have different strengths, an integrative EM framework is introduced. Case studies through the second round robin tests organized by the Universal Network for Magnetic Non-Destructive Evaluation (UNMNDE), representing eighteen leading research groups worldwide in the area of electromagnetic NDE, are reported. Twelve samples with different ageing times and rolling reduction ratios were tested using different magnetic methods among the UNMNDE members. Based on the studies, the complementary characteristics of electromagnetic techniques for NDE are discussed.

  7. Characterization and comparison of defects detection limits of three ultrasonic non destructive methods

    NASA Astrophysics Data System (ADS)

    Péronnet, E.; Eyma, F.; Welemane, H.; Pescay, C.

    2010-06-01

    This work deals with the Liquid Resin Infusion (LRI) process developed within the research program “FUSelage COMPosite” of DAHER SOCATA. This manufacturing process enables the realization of complex composite structures or fuselage elements in a single phase (mono-material), which considerably reduce connections and relative difficulties. The concern here is the investigation of non destructive testing (NDT) methods that can be applied to LRI-structures in order to define their capacities for defect detection, and especially their associated critical defect size. In aviation industry, the AITM standards require the ultrasonic testing as NDT for composite materials. Therefore the aim of this work is to characterize and compare three different and complementary ultrasonic techniques on composite specimens. Such analysis allows to define the NDT application field of each method in term of defect detection.

  8. Non-destructive testing method and apparatus

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2011-10-04

    Non-destructive testing apparatus may comprise a photon source and a source material that emits positrons in response to bombardment of the source material with photons. The source material is positionable adjacent the photon source and a specimen so that when the source material is positioned adjacent the photon source it is exposed to photons produced thereby. When the source material is positioned adjacent the specimen, the specimen is exposed to at least some of the positrons emitted by the source material. A detector system positioned adjacent the specimen detects annihilation gamma rays emitted by the specimen. Another embodiment comprises a neutron source and a source material that emits positrons in response to neutron bombardment.

  9. NON-DESTRUCTIVE FLAW DETECTION APPARATUS

    DOEpatents

    Stateman, M.J.; Holloway, H.R.

    1957-12-17

    An apparatus is described for the non-destructive detection of flaws in electrical conducting articles. The particular feature of the detection apparatus is that a flaw in the front or back of the test article will not be masked by signals caused by the passage of the end and front of the article through the detection apparatus. The present invention alleviates the above problem by mounting detection coils on directly opposite sides of the test passageway so that the axes of the pickup coils are perpendicular to the axis of an energizing coil through which the article is passed. A flaw in the article will cause a change in the voltage induced in one pickup coil, but passage of the end or front of the article will not produce unequal signals. The signals are compared in appropriate electrical circuitry to actuate a recorder only when unequal signals are present, indicating the presence of a flaw.

  10. Further development of ultrasonic techniques for non-destructive evaluation based on Fourier analysis of signals from irregular and inhomogeneous structures

    NASA Technical Reports Server (NTRS)

    Miller, J. G.

    1979-01-01

    To investigate the use of Fourier analysis techniques model systems had to be designed to test some of the general properties of the interaction of sound with an inhomogeneity. The first models investigated were suspensions of solid spheres in water. These systems allowed comparison between theoretical computation of the frequency dependence of the attenuation coefficient and measurement of the attenuation coefficient over a range of frequencies. Ultrasonic scattering processes in both suspensions of hard spheres in water, and suspensions of hard spheres in polyester resin were investigated. The second model system was constructed to test the applicability of partial wave analysis to the description of an inhomogeneity in a solid, and to test the range of material properties over which the measurement systems were valid.

  11. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Gamage, I. H.; Jonker, A.; Zhang, X.; Yu, P.

    2014-01-01

    The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm-1 (carbonyl Cdbnd O ester, mainly related to lipid structure conformation), ca. 1725-1482 cm-1 (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm-1 (mainly associated with structural carbohydrate) and ca. 1180-800 cm-1 (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources

  12. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy.

    PubMed

    Gamage, I H; Jonker, A; Zhang, X; Yu, P

    2014-01-24

    The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm(-1) (carbonyl CO ester, mainly related to lipid structure conformation), ca. 1725-1482 cm(-1) (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm(-1) (mainly associated with structural carbohydrate) and ca. 1180-800 cm(-1) (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock

  13. Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Cesareo, Roberto; Ettore Gigante, Giovanni; Castellano, Alfredo

    1999-06-01

    Thermoelectrically cooled semiconductor detectors, such as Si-PIN, Si-drift, Cd1-xZnxTe and HgI 2, coupled to miniaturized low-power X-ray tubes, are well suited in portable systems for energy-dispersive X-ray fluorescence (EDXRF), analysis of archaeological samples. The Si-PIN detector is characterized by a thickness of about 300 μm, an area of about 2×3 mm 2, an energy resolution of about 200-250 eV at 5.9 keV and an entrance window of 25-75 μm. The Si-drift detector has approximately the same area and thickness, but an energy resolution of 155 eV at 5.9 keV. The efficiency of these detectors is around 100% from 4 to 10 keV, and then decreases versus energy, reaching ˜9% at 30 keV. Coupled to a miniaturized 10 kV, 0.1 mA, Ca-anode or to a miniaturized 30 kV, 0.1 mA, W-anode X-ray tubes, portable systems can be constructed, which are able to analyse K-lines of elements up to about silver, and L-lines of heavy elements. The Cd 1- xZn xTe detector has an area of 4 mm 2 and a thickness of 3 mm. It has an energy resolution of about 300 eV at 5.9 keV, and an efficiency of 100% over the whole range of X-rays. Finally the HgI 2 detector has an efficiency of about 100% in the whole range of X-rays, and an energy resolution of about 200 eV at 5.9 keV. Coupled to a small 50-60 kV, 1 mA, W-anode X-ray tube, portable systems can be constructed, for the analysis of practically all elements. These systems were applied to analysis in the field of archaeometry and in all applications for which portable systems are needed or at least useful (for example X-ray transmission measurements, X-ray microtomography and so on). Results of in-field use of these detectors and a comparison among these room temperature detectors in relation to concrete applications are presented. More specifically, concerning EDXRF analysis, ancient gold samples were analysed in Rome, in Mexico City and in Milan, ancient bronzes in Sassari, in Bologna, in Chieti and in Naples, and sulfur (due to pollution

  14. Non-destructive investigation of a time capsule using neutron radiography and X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    MacDonald, B. L.; Vanderstelt, J.; O'Meara, J.; McNeill, F. E.

    2016-01-01

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. This study applied two techniques: X-ray fluorescence and neutron radiography, for the investigation of a capped, tubular metal object recovered from an urban construction site in Gore Park, Hamilton, Canada. The site is an urban park containing a World War I commemorative monument that underwent renovation and relocation. Historical documentation suggested that the object buried underneath the monument was a time capsule containing a paper document listing the names of 1800 Canadians who died during WWI. The purpose of this study was to assess the condition of the object, and to verify if it was what the historical records purported. XRF analysis was used to characterize the elemental composition of the metal artifact, while neutron radiography revealed that its contents were congruent with historical records and remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage.

  15. Study of concrete drilling for automated non-destructive evaluation and rehabilitation system for bridge decks

    NASA Astrophysics Data System (ADS)

    Trkov, Mitja; Liu, Fei; Yi, Jingang; Baruh, Haim

    2011-04-01

    Robotic drilling is the basic process for the non-destructive rehabilitation (NDR) system in the Automated Non-destructive Evaluation and Rehabilitation System (ANDERS) for bridge decks. In this paper, we present a study and testing of a concrete drilling process that is used for robotic drilling process for bridge decks repair. We first review the ANDERS and NDR design. Then we present the experimental setup for the drilling process study. A set of testing experiments are performed considering drilling process parameters such as drill bit size, drill rotating speed, drill thrust force and types of concrete composites. Based on the experiments and analysis, we identify and find that the optimal set of drilling process parameters for the ANDERS application is 1/4-inch bit size, drill rotational speed of 1500 rpm and thrust force around 35 lbs. We also demonstrate that the monitoring of drill feeding displacement and thrust force cannot be used to detect and identify the cracks in bridge decks.

  16. Non destructive testing of soft body armor

    NASA Astrophysics Data System (ADS)

    Bhise, Karan

    Pristine bullet proof vests are extremely effective at halting pre-determined projectile threats and have saved over 3000 lives. However, the effectiveness of these vests to halt a bullet is seen to decrease over time.Owing to the importance of bullet proof vests over a period of time, tests to determine their effectiveness have been carried out on every batch of vests at the time of inception and at certain time intervals by shooting a bullet through them. A few vests from every batch are picked up and shot at to check for bullet penetration during this process while these results are extrapolated onto the other vests from the batch.One of the main issues with this method is the fact that testing a few jackets among a large set of jackets does not guarantee the safety of every jacket in the entire batch.Further the jackets that are shot-at have the possibility of undergoing substantial damage during the process thus compromising its safety rendering them unsafe for future use.As the vest penetration phenomenon is extremely complex too, there arose a need for a better testing procedure that could not only help ensure more safety, but also save time and money.The new testing procedure proposed a non-destructive evaluation of the jackets that would solve the issues previous faced in testing the vests. This would lead to the building of a portable set up which could be carried to any location to test jackets in a matter of minutes thus saving time and money.

  17. Cryogenic Storage Tank Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2010-01-01

    This slide presentation reviews the work in non-destructive evaluation (NDE) of cryogenic storage tanks. Four large cryogenic tanks, constructed in 1965 with perlite insulation in the annular regions, are of concern. The construction of the tanks, two Liquid Oxygen (LOX) and two Liquid Hydrogen (LH2), are described. The loss rate for the LOX tank at Pad A is slightly higher than that for the one at Pad B. The concerns for the LH2 tank at Pad B are that there is a significantly higher boil-off rate than that at Pad A, that there is mold growth, indicative of increased heat flow, that there is a long down-time needed for repairs, and that 3 of 5 full thermal cycles have been used on the Pad B LH2 tank. The advantages and disadvantages of thermal imaging are given. A detailed description of what is visible of the structures in the infra-red is given and views of the thermal images are included. Missing Perlite is given as the probable cause of the cold spot on the Pad B LH2 tank. There is no indications of problematic cold regions on the Pad A LH2 tank, as shown by the thermal images given in the presentation. There is definite indication of a cold region on the Pad A LOX tank. There is however concerns with thermal imaging, as thermal images can be significantly effected by environmental conditions, image differences on similar days but with different wind speeds. Other effects that must be considered include ambient temperature, humidity levels/dew, and cloud reflections

  18. Prediction of Service Life of Cordierite-Mullite Refractory Materials by Non-Destructive Methods

    SciTech Connect

    Boccaccini, D. N.; Kamseu, Elie; Cannio, M.; Romagnoli, M.; Veronesi, P.; Leonelli, C.; Volkov-Husoviae, T. D.; Dlouhy, I.; Boccaccini, A. R.

    2008-02-15

    Ultrasonic pulse velocity testing was used to perform non-destructive quality control of refractory plates used as substrates in fast firing of porcelain whitewares. The measurement of the ultrasonic velocity was used to asses the presence of internal voids or cracks originated from the manufacturing procedure. Image analysis was used to predict thermal stability of the refractory materials. Two cordierite-mullite compositions were investigated that are characterized by different microstructure morphologies and crack propagation behaviour. A brief discussion about the correlation between microstructure, crack propagation behaviour and thermal shock resistance is presented. Moreover, empirical models were developed to predict the service life of refractory plates from measured values of ultrasonic velocities in plates in the as-received state.

  19. Prediction of Service Life of Cordierite-Mullite Refractory Materials by Non-Destructive Methods

    NASA Astrophysics Data System (ADS)

    Boccaccini, D. N.; Kamseu, Elie; Volkov-Husoviæ, T. D.; Cannio, M.; Romagnoli, M.; Veronesi, P.; Dlouhy, I.; Boccaccini, A. R.; Leonelli, C.

    2008-02-01

    Ultrasonic pulse velocity testing was used to perform non-destructive quality control of refractory plates used as substrates in fast firing of porcelain whitewares. The measurement of the ultrasonic velocity was used to asses the presence of internal voids or cracks originated from the manufacturing procedure. Image analysis was used to predict thermal stability of the refractory materials. Two cordierite-mullite compositions were investigated that are characterized by different microstructure morphologies and crack propagation behaviour. A brief discussion about the correlation between microstructure, crack propagation behaviour and thermal shock resistance is presented. Moreover, empirical models were developed to predict the service life of refractory plates from measured values of ultrasonic velocities in plates in the as-received state.

  20. Non-destructive photoacoustic imaging of metal surface defects

    NASA Astrophysics Data System (ADS)

    Jeon, Seungwan; Kim, Jeesu; Yun, Jong Pil; Kim, Chulhong

    2016-11-01

    The detection of metal surface defects is important in achieving the goals of product quality enhancement and manufacturing cost reduction. Identifying the defects with visual inspection is difficult, inaccurate, and time-consuming. Thus, several inspection methods using line cameras, magnetic field, and ultrasound have been proposed. However, identifying small defects on metal surfaces remains a challenge. To deal with this problem, we propose the use of photoacoustic imaging (PAI) as a new non-destructive imaging tool to detect metal surface defects. We successfully visualized two types of cracks (i.e., unclassified and seam cracks) in metal plate samples using PAI. In addition, we successfully extracted cracked edges from height-encoded photoacoustic maximum amplitude projection images using the Laplacian of Gaussian filtering method, and then, quantified the detected edges for a statistical analysis. We concluded that PAI can be useful in detecting metal surface defects reducing the defect rate and manufacturing cost during metal production.

  1. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  2. Edward's sword? - A non-destructive study of a medieval king's sword

    SciTech Connect

    Segebade, Chr.

    2013-04-19

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  3. Non-Destructive Classification Approaches for Equilibrated Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-09-01

    In order to compare a few non-destructive classification techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Mössbauer spectroscopy.

  4. NON-DESTRUCTIVE TESTING METHODS FOR GEOTHERMAL PIPING.

    SciTech Connect

    BERNDT,M.L.

    2001-03-23

    Non-destructive testing is a key component of optimized plant inspection and maintenance programs. Risk based inspection, condition based maintenance and reliability centered maintenance systems all require detection, location and sizing of defects or flaws by non-destructive methods. Internal damage of geothermal piping by corrosion and erosion-corrosion is an ongoing problem requiring inspection and subsequent maintenance decisions to ensure safe and reliable performance. Conventional manual ultrasonic testing to determine remaining wall thickness has major limitations, particularly when damage is of a random and localized nature. Therefore, it is necessary to explore alternative non-destructive methods that offer potential benefits in terms of accurate quantification of size, shape and location of damage, probability of detection, ability to use on-line over long ranges, and economics. A review of non-destructive methods and their applicability to geothermal piping was performed. Based on this, ongoing research will concentrate on long range guided wave and dynamic methods.

  5. A Review of Non-destructive Detection for Fruit Quality

    NASA Astrophysics Data System (ADS)

    Gao, Haisheng; Zhu, Fengmei; Cai, Jinxing

    An overview of non-destructive detection in quality of post-harvest fruit was presented in this paper, and the research and application were discussed. This paper elaborated the fruit quality detection methods which were based on one of the following properties: optical properties, sonic vibration, machine vision technique, nuclear magnetic resonance (NMR), electronic noses, electrical properties, computed tomography. At last, the main problems of non-destructive detection in application were also explained.

  6. Non-destructive hyperspectral imaging of quarantined Mars Returned Samples

    NASA Astrophysics Data System (ADS)

    Simionovici, Alexandre; Viso, Michel; Beck, Pierre; Lemelle, Laurence; Westphal, Andrew; Vincze, Laszlo; Schoonjans, Tom; Fihman, Francois; Chazalnoel, Pascale; Ferroir, Tristan; Solé, Vicente Armando; Tucoulou, R.

    Introduction: In preparation for the upcoming International Mars Sample Return mission (MSR), returning samples containing potential biohazards, we have implemented a hyperspec-tral method of in-situ analysis of grains performed in BSL4 quarantine conditions, by combining several non-destructive imaging diagnostics. This allows sample transportation on optimized experimental setups, while monitoring the sample quarantine conditions. Our hyperspectral methodology was tested during analyses of meteorites [1-2] and cometary and interstellar grains from the recent NASA Stardust mission [3-6]. Synchrotron Radiation protocols: X-ray analysis methods are widely accepted as the least destructive probes of fragile, unique samples. Diffraction, X-ray fluorescence and ab-sorption micro/nano-spectroscopies were performed on chondritic test samples using focused monochromatic beams at the ESRF synchrotron in Grenoble, France. 2D maps of grain com-position down to ppm concentrations and polycrystalline structure have simultaneously been acquired, followed by X-ray absorption performed on elements of Z 26. Ideally, absorption micro-tomography can later be performed in full-beam mode to record the 3D morphology of the grain followed by fluorescence-tomography in focus-beam mode which complements this picture with a 3D elemental image of the grain. Lab-based protocols: Raman and IR-based spectroscopies have been performed in reflection mode for mineralogical imaging of the grains in the laboratory using commercial microscopes. The spatial resolution varied in the 1-10 m range. Laser limited penetration of opaque samples permits only 2D imaging of the few nanometer-thick outer layers of the grains. Mineralogical maps are now routinely acquired using Raman spectroscopy at sub-micron scales through the 3 container walls of the Martian sample holder, followed by IR few-micrometer spot measurements recording C-based and potential aqueous alteration distributions. Sample Holder: A

  7. Development of a reflectron time-of-flight mass spectrometer for non-destructive analysis of isotope ratios in irradiated B4C pellets--Test measurements on an unirradiated control rod pellet

    NASA Astrophysics Data System (ADS)

    Manoravi, P.; Joseph, M.; Sivakumar, N.

    2008-09-01

    A laser mass spectrometric facility is developed using a home-built reflectron time-of-flight mass spectrometer (RTOFMS) to analyze the boron isotopic ratio 10B/11B in the irradiated B4C pellets of the FBTR control rod. Compared to other mass spectrometry-based methods, the present method is practically non-destructive and makes it relatively easier to handle irradiated (radioactive) B4C pellets through remote operation. The results with inactive samples indicate that the method yields 10B percentage values, accurate to within ±1%.

  8. Non-Destructive Evaluation (NDE) Applications of THz Radiation

    NASA Astrophysics Data System (ADS)

    Zimdars, David

    2005-03-01

    The technology and applications of time domain terahertz (THz) imaging to non-destructive evaluation (NDE) will be discussed. THz imaging has shown great promise in 2 and 3 dimensional non-contact inspection of non-conductive materials such as plastics, foam, composites, ceramics, paper, wood and glass. THz imaging employs safe low power non-ionizing electromagnetic pulses, with lateral resolution < 200 um, and depth resolution < 50 um. THz pulses can be analyzed spectroscopically to reveal chemical content. Recently, highly integrated turn-key THz imaging systems have been introduced commercially. We will demonstrate the detection of voids and disbonds intentionally incorporated within the sprayed on foam insulation of a space shuttle external tank mock-up segments. An industrially hardened THz scanning system which has been deployed to scan the space shuttle tank with small remote transceiver will be described. Additional terahertz security imaging applications for the detection of weapons and explosives will also be discussed, as well as the application of terahertz sensors for high speed industrial process monitoring and quality control.

  9. Non-destructive provenance differentiation of prehistoric pigments by external PIXE

    NASA Astrophysics Data System (ADS)

    Beck, L.; Salomon, H.; Lahlil, S.; Lebon, M.; Odin, G. P.; Coquinot, Y.; Pichon, L.

    2012-02-01

    The elemental analysis of minerals/rocks has been often used for the determination of their geological origin. When these natural rocks were exploited by prehistoric civilizations as objects, weapons, or pigments, the composition of the minerals can provide information on the mobility, the exchanges and the interaction between groups of population. In this paper, we will present results obtained from archaeological samples of prehistoric pigments, mainly iron and manganese oxides. PIXE analysis has been applied to samples of the prehistoric cave "La grotte du Renne" in Arcy-sur-Cure, France (Chatelperronian, 38,000-34,000 BP). Because most of the archaeological objects are decorated or display some use marks, it is not possible to take samples. Consequently, we have used a non-destructive technique thanks to the external beam of AGLAE (C2RMF, Paris). In order to improve the limits of detection (LOD less than 10 ppm from Cu to Sb), a metal absorber has been placed on the X-ray detector to preferentially filter the Fe-K or Mn-K lines. Based on the quantitative analysis of major and trace elements, we have obtained groups of compositions corresponding to different geological sources. We demonstrate in this study that it is possible to extend PIXE analysis to the characterization of prehistoric pigments such as iron and manganese oxides for differentiating potential sources of pigments in archaeological contexts.

  10. Non-destructive detection of corrosion for life management

    NASA Astrophysics Data System (ADS)

    Bruce, David A.

    1995-01-01

    In recent years, aircraft operators have been driven to increased use of Non-Destructive Evaluation (NDE) to ensure airworthiness during life extensions for ageing aircraft or as an integral part of a damage tolerant lifting philosophy. Major airframe static and fatigue tests are routinely used to highlight problem areas on airframes where design limitations or changes of usage may lead to early failures. The results of such tests become progressively less reliable as the age of the airframe increases and the operating conditions diverge from those under which the tests were conducted. Increased inspection, whether by visual or other means is usually the only alternative to wholesale refurbishment or replacement of aircraft or components. Almost all of the development to date of NDE techniques for corrosion detection and characterization has been concentrated on existing airframe materials, principally Aluminum alloys and steels. The current capabilities of corrosion detection techniques will be reviewed and current research aimed at areas where there is a requirement for improved detection capability will be described. New materials, such as Polymer Matrix Composites, will experience different types of 'corrosive' deterioration. The capability of NDE methods to detect material degradation in new composite materials will be discussed. Finally, reliance on NDE, choice of NDE technique and optimal scheduling of inspections all require an assessment of the reliability of NDE methods. It will be shown that a range of NDE techniques with differing capabilities and characteristics will be required to ensure compatibility with maintenance schedules if full use is to be made of NDE for life management of structures which may be subject to corrosion.

  11. Biomarkers: Non-destructive Method for Predicting Meat Tenderization.

    PubMed

    Singh, Arashdeep; Ahluwalia, Preeti; Rafiq, Aasima; Sharma, Savita

    2015-07-06

    Meat tenderness is the primary and most important quality attribute for the consumers worldwide. Tenderness is the process of breakdown of collagen tissue in meat to make it palatable. The earlier methods of tenderness evaluation like taste panels and shear force methods are destructive, time consuming and ill suited as they requires removing a piece of steak from the carcass for performing the test. Therefore, a non-destructive method for predicting the tenderness would be more desirable. The development of a meat quality grading and guarantee system through muscle profiling research can help to meet this demand. Biomarkers have the ability to identify if an exposure has occurred. Biomarkers of the meat quality are of prime importance for meat industry, which has ability to satisfy consumers' expectations. The biomarkers so far identified have been then sorted and grouped according to their common biological functions. All of them refer to a series of biological pathways including glycolytic and oxidative energy production, cell detoxification, protease inhibition and production of Heat Shock Proteins. On this basis, a detailed analysis of these metabolic pathways helps in identifying tenderization of meat having some domains of interest. It was, therefore, stressed forward that biomarkers can be used to determine meat tenderness. This review article summarizes the uses of several biomarkers for predicting the meat tenderness.

  12. Non-destructive acoustic defect detection in drug tablets.

    PubMed

    Akseli, Ilgaz; Mani, Girindra N; Cetinkaya, Cetin

    2008-08-06

    For physical defect detection in drug tablets, a non-destructive and non-contact technique based on air coupled excitation and interferometric detection is presented. Physical properties and mechanical integrity of drug tablets can often affect their therapeutic and structural functions. The monitoring for defects and the characterization of tablet mechanical properties therefore have been of practical interest for solid oral dosage forms. The presented monitoring approach is based on the analysis of the transient vibrational responses of an acoustically excited tablet in both in temporal and spectral domains. The pulsed acoustic field exciting the tablet is generated by an air-coupled transducer. Using a laser vibrometer, the out-of-plane vibrational transient response of the tablet is detected and acquired in a non-contact manner. The physical state of the tablet is evaluated based on the spectral properties of these transient responses. In the current study, the effectiveness of three types of simple similarity measures is evaluated for their potential uses as defect detection norms, and for their potential use in quantifying the extent of tablet defect is discussed. It is found that these quantities can not only be used for identification of defective tablets, but could also provide a measure for the extent of the damage.

  13. Non-Destructive Assay of Curium Contaminated Transuranic Waste Drums

    SciTech Connect

    Foster, L.A.

    1998-11-01

    At the Plutonium Facility at Los Alamos National Laboratory, a series of non-destructive assays were performed on five transuranic waste (TRU) drums containing non-plutonium scrap metal that was potentially contaminated with weapons grade plutonium and trace quantities of curium. Typically, waste drums containing metal matrices are assayed for plutonium content using passive neutron coincidence counting techniques. The presence of trace quantities of Cm-244 prevents this type of analysis because of the strong coincidence signal created by spontaneous fission of Cm-244. To discriminate between the plutonium and curium materials present, an active neutron measurement technique was used. A Cf shuffler designed for measurement of uranium bearing materials was calibrated for plutonium in the active mode. The waste drums were then assayed for plutonium content in the shuffler using the active-mode calibration. The curium contamination levels were estimated from the difference between the active-mode measurement in the shuffler and a passive assay in a neutron coincidence counter. Far field gamma-ray measurements were made to identify additional radioactive contaminants and to corroborate the plutonium measurement results obtained from the active-mode assay. This report describes in detail the measurement process used for characterization of these waste drums. The measurement results and the estimated uncertainty will be presented.

  14. Data fusion for automated non-destructive inspection

    PubMed Central

    Brierley, N.; Tippetts, T.; Cawley, P.

    2014-01-01

    In industrial non-destructive evaluation (NDE), it is increasingly common for data acquisition to be automated, driving a recent substantial increase in the availability of data. The collected data need to be analysed, typically necessitating the painstaking manual labour of a skilled operator. Moreover, in automated NDE a region of an inspected component is typically interrogated several times, be it within a single data channel due to multiple probe passes, across several channels acquired simultaneously or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to offer an opportunity to improve the reliability of the inspection, but is not achievable in a manual analysis. This paper describes a data-fusion-based software framework providing a partial automation capability, allowing component regions to be declared defect-free to a very high probability while readily identifying defect indications, thereby optimizing the use of the operator's time. The system is designed to applicable to a wide range of automated NDE scenarios, but the processing is exemplified using the industrial ultrasonic immersion inspection of aerospace turbine discs. Results obtained for industrial datasets demonstrate an orders-of-magnitude reduction in false-call rates, for a given probability of detection, achievable using the developed software system. PMID:25002828

  15. Sensor Enhanced Armor Non Destructive Evaluation Laboratory

    DTIC Science & Technology

    2009-08-11

    multiple layers) Phased Array Ultrasonic Scanning in H20 Handheld Prototype Testing Device Embedded sensors Unclassified X-ray and mm wave image of...NDT/ NDE Laboratory Unclassified Vehicle Display Views – Healthy Armor Unclassified NDE of Transparent Materials Phased Array Ultrasound Image...Provide ultrasonic , x-ray and mmwave imaging for armor damage analysis. • Explore various NDE options to support all armor recipies Objective: • Provide

  16. Research on non-destructive testing method of silkworm cocoons based on image processing technology

    NASA Astrophysics Data System (ADS)

    Gan, Yong; Kong, Qing-hua; Wei, Li-fu

    2008-03-01

    The major studied in this dissertation is the non-destructive testing method of silkworm cocoon's quality, based on the digital image processing and photoelectricity technology. Through the images collection and the data analysis, procession and calculation of the tested silkworm cocoons with the non-destructive testing technology, internet applications automatically reckon all items of the classification indexes. Finally we can conclude the classification result and the purchase price of the silkworm cocoons. According to the domestic classification standard of the silkworm cocoons, the author investigates various testing methods of silkworm cocoons which are used or have been explored at present, and devices a non-destructive testing scheme of the silkworm cocoons based on the digital image processing and photoelectricity technology. They are dissertated about the project design of the experiment. The precisions of all the implements are demonstrated. I establish Manifold mathematic models, compare them with each other and analyze the precision with technology of databank to get the best mathematic model to figure out the weight of the dried silkworm cocoon shells. The classification methods of all the complementary items are designed well and truly. The testing method has less error and reaches an advanced level of the present domestic non-destructive testing technology of the silkworm cocoons.

  17. Long-term selection using a single trait criterion, non-destructive deformation, in White Leghorns: Effect over time on genetic parameters for traits related to egg production.

    PubMed

    Gervais, Olivier; Nirasawa, Keijiro; Vincenot, Christian E; Nagamine, Yoshitaka; Moriya, Kazuyuki

    2017-02-01

    Although non-destructive deformation is relevant for assessing eggshell strength, few long-term selection experiments are documented which use non-destructive deformation as a selection criterion. This study used restricted maximum likelihood-based methods with a four-trait animal model to analyze the effect of non-destructive deformation on egg production, egg weight and sexual maturity in a two-way selection experiment involving 17 generations of White Leghorns. In the strong shell line, corresponding to the line selected for low non-destructive deformation values, the heritability estimates were 0.496 for non-destructive deformation, 0.253 for egg production, 0.660 for egg weight and 0.446 for sexual maturity. In the weak shell line, corresponding to the line selected for high non-destructive deformation values, the heritabilities were 0.372, 0.162, 0.703 and 0.404, respectively. An asymmetric response to selection was observed for non-destructive deformation, egg production and sexual maturity, whereas egg weight decreased for both lines. Using non-destructive deformation to select for stronger eggshell had a small negative effect on egg production and sexual maturity, suggesting the need for breeding programs to balance selection between eggshell traits and egg production traits. However, the analysis of the genetic correlation between non-destructive deformation and egg weight revealed that large eggs are not associated with poor eggshell quality.

  18. Rapid, non-destructive coral paleothermometry by synchrotron XR

    NASA Astrophysics Data System (ADS)

    Tangri, N.; Mehta, A.; Marks, R.; Dunbar, R. B.

    2016-12-01

    We present advances in the use of synchrotron x-ray fluorescence (XRF) to recover climate signals from coral exoskeleton. Corals record sea surface temperature (SST), salinity, and other environmental conditions in the density and composition of their exoskeletons; in particular, SST is reflected in both the Sr/Ca ratio and the annual density banding. Synchrotron XRF has previously been used to examine the fine-scaled variability of Sr concentrations in the exoskeleton structure, but has not yet yielded any long-term SST reconstructions. Modern XRF techniques allow the detection of sub-ppm trace element concentrations and appear ideally suited to long climate reconstructions, as they are non-destructive, high-resolution (250 um) and potentially quite rapid ( 40 years of sample in 24 hours of instrument time). The low Sr content of the coral and its low change in concentration require a high brightness synchrotron source to generate a high signal-to-background ratio. However, difficulties arise from the local heterogeneity of Sr that is unrelated to environmental conditions. These variations of biological origin in Sr concentrations often mask the smaller-amplitude, annual and interannual SST signals. The challenge is to normalize the local variability in order to extract the climate signal. Other techniques have normalized against Ca, but in XRF the Ca signal is sensitive to only the surface 50 um of material, whereas the Sr signal comes from 1mm, so the values are not comparable. Instead, we normalize against density as calculated from beam transmission. We also explore the use of Rb normalization to filter out collection artifacts. Both Sr and Rb show strong annual signals and interesting departures from the density signal. Finally, we pair the XRF results with δ18O measurements to recover a convincing record of SST variation. Although challenges remain, we believe that synchrotron XRF techniques hold considerable promise to rapidly and accurately recover

  19. Non-Destructive Evaluation of Wind Turbine Blades Using an Infrared Camera

    SciTech Connect

    Beattie, A.G.; Rumsey, M.

    1998-12-17

    The use of a digital infrared as a non-destructive evaluation thermography camera (NDE) tool was ex- plored in two separate wind turbine blade fatigue tests. The fwst test was a fatigue test of part of a 13.1 meter wood-epoxy-composite blade. The second test was on a 4.25 meter pultruded fiber glass blade section driven at several mechanical resonant frequencies. The digital infrared camera can produce images of either the static temperature distribution on the surface of the specimen, or the dynamic temperature distribution that is in phase with a specific frequency on a vibrating specimen. The dynamic temperature distribution (due to thermoplastic effects) gives a measure of the sum of the principal stresses at each point on the surface. In the wood- epoxy-composite blade fatigue test, the point of ultimate failure was detected long before failure occurred. The mode shapes obtained with the digital infrared camera, from the resonant blade tests, were in very good agree- ment with the finite-element calculations. In addition, the static temperature images of the resonating blade showed two areas that contained cracks. Close-up dy- namic inf%red images of these areas showed the crack structure that agreed with subsequent dye-penetrant analysis.

  20. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-03-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  1. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    SciTech Connect

    Kiefel, Denis E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  2. NonDestructive Evaluation for Industrial & Development Applications

    SciTech Connect

    Hunter, James F.

    2016-10-12

    Provide overview of weld inspection for Non-Destructive Testing at LANL. This includes radiography (RT/DR/CR/CT for x-ray & neutron sources), ultrasonic testing (UT/PAUT), dye penetrant inspection (PT), eddy current inspection (ET) and magnetic particle testing (MT). Facilities and capabilities for weld inspection will be summarized with examples.

  3. Non-destructive methods for food texture assessment

    USDA-ARS?s Scientific Manuscript database

    Food texture is important to the successful marketing and profitability of food products. Non-destructive sensing would allow food producers and processors to inspect, sort, grade, or track individual product items, so that they can deliver consistent, superior food products to the marketplace. Over...

  4. Research Based on Optical Non-Destructive Testing of Pigment Identification.

    PubMed

    Wang, Jigang; Hao, Shengcai; Zhou, Wenhua; Qi, Xiaokun; Shi, Jilong

    2016-04-01

    Optical Non-Destructive Testing (ONDT) can be applied as penetrating elemental and structure analysis technology in the Pigments identification field. Three-dimensional video microscopy, Raman microscopy and energy dispersive X-ray fluorescence spectroscopy are employed to measure the materials based on a Qing Dynasty meticulous painting. The results revealed that the dark yellow area within the decorative patterns was presented due to the interaction of Emerald green and hematite, and the bright yellow edge area was delineated by Cu-Zn-Pb composition. The interesting thing is that an artificial synthetic ultramarine blue was checked in the painting. According to the first synthesized time of ultramarine blue and Paris green, the time limit of the painting completion can be identified. The principle of Pigment subtractive colorant and nitikaset method were employed to interpreting the results. Optical testing combined with the area of cultural relic identification can be a potential method to build an expert identification system successfully. This work also help lay the optical method groundwork for further cultural relic identification, sterilization, and preservation.

  5. Conceptual design of non-destructive, time profile monitor for femtosecond-long electron bunches

    NASA Astrophysics Data System (ADS)

    Konoplev, I. V.; Harrison, H.; Lancaster, A. J.; Taheri, F. Bakkali; Doucas, G.; Aryshev, A.; Lekomtsev, K.; Shevelev, M.; Terunuma, N.; Urakawa, J.

    2017-03-01

    The main objective of the project is to build a high resolution time-profile monitor for femtosecond electron beams, based on the spectral analysis of coherent Smith-Purcell radiation (cSPr). The monitor will be capable of determining the electron bunch time profile non-destructively and on a shot-by-shot basis. The results of recent experimental and theoretical studies are presented, and the conceptual design of the monitor is discussed.

  6. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    PubMed

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  7. Application of Non-destructive Methods of Stress-strain State at Hazardous Production Facilities

    NASA Astrophysics Data System (ADS)

    Shram, V.; Kravtsova, Ye; Selsky, A.; Bezborodov, Yu; Lysyannikova, N.; Lysyannikov, A.

    2016-06-01

    The paper deals with the sources of accidents in distillation columns, on the basis of which the most dangerous defects are detected. The analysis of the currently existing methods of non-destructive testing of the stress-strain state is performed. It is proposed to apply strain and acoustic emission techniques to continuously monitor dangerous objects, which helps prevent the possibility of accidents, as well as reduce the work.

  8. Delayed Gamma-ray Spectroscopy for Non-Destructive Assay of Nuclear Materials

    SciTech Connect

    Mozin, Vladimir; Ludewigt, Bernhard; Campbell, Luke; Favalli, Andrea; Hunt, Alan

    2014-10-09

    This project addresses the need for improved non-destructive assay techniques for quantifying the actinide composition of spent nuclear fuel and for the independent verification of declared quantities of special nuclear materials at key stages of the fuel cycle. High-energy delayed gamma-ray spectroscopy following neutron irradiation is a potential technique for directly assaying spent fuel assemblies and achieving the safeguards goal of quantifying nuclear material inventories for spent fuel handling, interim storage, reprocessing facilities, repository sites, and final disposal. Other potential applications include determination of MOX fuel composition, characterization of nuclear waste packages, and challenges in homeland security and arms control verification.

  9. Non-destructive examination system of vitreous body

    NASA Astrophysics Data System (ADS)

    Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi

    2014-04-01

    Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.

  10. Infrared Thermography for Temperature Measurement and Non-Destructive Testing

    PubMed Central

    Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.

    2014-01-01

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096

  11. Infrared thermography for temperature measurement and non-destructive testing.

    PubMed

    Usamentiaga, Rubén; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G

    2014-07-10

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed.

  12. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  13. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  14. A non-destructive DNA sampling technique for herbarium specimens.

    PubMed

    Shepherd, Lara D

    2017-01-01

    Herbarium specimens are an important source of DNA for plant research but current sampling methods require the removal of material for DNA extraction. This is undesirable for irreplaceable specimens such as rare species or type material. Here I present the first non-destructive sampling method for extracting DNA from herbarium specimens. DNA was successfully retrieved from robust leaves and/or stems of herbarium specimens up to 73 years old.

  15. Embedded Non-Destructive Evaluation for Glass Armor

    DTIC Science & Technology

    2011-12-05

    Unclassified In House NDE and Electromagnetic Compatibility Capabilities Millimeter wave Scanning Imager Phased Array Ultrasound Immersion Tank Low...DISTRIBUTION A: Approved for public release; distribution is unlimited Embedded NDE for Glass Armor Sensor Enhanced Armor- Non-Destructive...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Unclassified Armor Solutions Tested with Ultrasonics NDT/E leading to Sensor Enhanced

  16. Microwaving Blood as a Non-Destructive Technique for Haemoglobin Measurements on Microlitre Samples

    PubMed Central

    Basey-Fisher, Toby H.; Guerra, Nadia; Triulzi, Chiara; Gregory, Andrew; Hanham, Stephen M.; Stevens, Molly M.; Maier, Stefan A.; Klein, Norbert

    2016-01-01

    The non-destructive ex vivo determination of haemoglobin (Hgb) concentration offers the capability to conduct multiple red blood cell haematological measurements on a single sample, an advantage that current optical techniques are unable to offer. Here, a microwave method and device for the accurate and non-destructive determination of Hgb concentration in microlitre blood samples are described. Using broadband microwave spectroscopy, a relationship is established between the dielectric properties of murine blood and Hgb concentration that is utilized to create a technique for the determination of Hgb concentration. Subsequently, a microwave dielectric resonator-microfluidic system is implemented in the analysis of 52 murine samples with microlitre volumes and Hgb concentrations ranging from 0 to 17 g dL−1. Using the characterized relationship, independent and minimally invasive Hgb measurements are made on nine healthy mice as well as seven with mutations in the Adenomatous polyposis coli (APC) gene that leads to colorectal cancer and consequently anaemia. PMID:24002989

  17. Non-destructive measurement and monitoring of separation of charged particle micro-bunches

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Konoplev, I. V.; Lancaster, A. J.; Harrison, H.; Doucas, G.; Aryshev, A.; Shevelev, M.; Terunuma, N.; Urakawa, J.

    2017-07-01

    Micro-bunched particle beams are used for a wide range of research including wakefield-based particle acceleration and tunable sources of radiation. In all applications, accurate and non-destructive monitoring of the bunch-to-bunch separation is required. With the development of femtosecond lasers, the generation of micro-bunched beams directly from a photocathode becomes routine; however, non-destructive monitoring of the separation is still a challenge. We present the results of proof-of-principle experiments conducted at the Laser Undulator Compact X-ray accelerator measuring the distance between micro-bunches via the amplitude modulation analysis of a monochromatic radiation signal. Good agreement with theoretical predictions is shown; limitations and further improvements are discussed.

  18. Non-Destructive Testing for Control of Radioactive Waste Package

    NASA Astrophysics Data System (ADS)

    Plumeri, S.; Carrel, F.

    2015-10-01

    Characterization and control of radioactive waste packages are important issues in the management of a radioactive waste repository. Therefore, Andra performs quality control inspection on radwaste package before disposal to ensure the compliance of the radwast characteristics with Andra waste disposal specifications and to check the consistency between Andra measurements results and producer declared properties. Objectives of this quality control are: assessment and improvement of producer radwaste packages quality mastery, guarantee of the radwaste disposal safety, maintain of the public confidence. To control radiological characteristics of radwaste package, non-destructive passive methods (gamma spectrometry and neutrons counting) are commonly used. These passive methods may not be sufficient, for instance to control the mass of fissile material contained inside radwaste package. This is particularly true for large concrete hull of heterogeneous radwaste containing several actinides mixed with fission products like 137Cs. Non-destructive active methods, like measurement of photofission delayed neutrons, allow to quantify the global mass of actinides and is a promising method to quantify mass of fissile material. Andra has performed different non-destructive measurements on concrete intermediate-level short lived nuclear waste (ILW-SL) package to control its nuclear material content. These tests have allowed Andra to have a first evaluation of the performance of photofission delayed neutron measurement and to identify development needed to have a reliable method, especially for fissile material mass control in intermediate-level long lived waste package.

  19. Direct, non-destructive, and rapid evaluation of developmental cotton fibers by ATR FT-IR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Chemical, compositional, and structural differences within the fibers at different growth stages have been investigated considerably through a number of methodologies. Due to its direct, non-destructive, and rapid attribute, this study reports the utilization of attenuated total reflection Fourier t...

  20. Non-destructive Phenotyping to Identify Brachiaria Hybrids Tolerant to Waterlogging Stress under Field Conditions

    PubMed Central

    Jiménez, Juan de la Cruz; Cardoso, Juan A.; Leiva, Luisa F.; Gil, Juanita; Forero, Manuel G.; Worthington, Margaret L.; Miles, John W.; Rao, Idupulapati M.

    2017-01-01

    Brachiaria grasses are sown in tropical regions around the world, especially in the Neotropics, to improve livestock production. Waterlogging is a major constraint to the productivity and persistence of Brachiaria grasses during the rainy season. While some Brachiaria cultivars are moderately tolerant to seasonal waterlogging, none of the commercial cultivars combines superior yield potential and nutritional quality with a high level of waterlogging tolerance. The Brachiaria breeding program at the International Center for Tropical Agriculture, has been using recurrent selection for the past two decades to combine forage yield with resistance to biotic and abiotic stress factors. The main objective of this study was to test the suitability of normalized difference vegetation index (NDVI) and image-based phenotyping as non-destructive approaches to identify Brachiaria hybrids tolerant to waterlogging stress under field conditions. Nineteen promising hybrid selections from the breeding program and three commercial checks were evaluated for their tolerance to waterlogging under field conditions. The waterlogging treatment was imposed by applying and maintaining water to 3 cm above soil surface. Plant performance was determined non-destructively using proximal sensing and image-based phenotyping and also destructively via harvesting for comparison. Image analysis of projected green and dead areas, NDVI and shoot biomass were positively correlated (r ≥ 0.8). Our results indicate that image analysis and NDVI can serve as non-destructive screening approaches for the identification of Brachiaria hybrids tolerant to waterlogging stress. PMID:28243249

  1. Non-destructive Phenotyping to Identify Brachiaria Hybrids Tolerant to Waterlogging Stress under Field Conditions.

    PubMed

    Jiménez, Juan de la Cruz; Cardoso, Juan A; Leiva, Luisa F; Gil, Juanita; Forero, Manuel G; Worthington, Margaret L; Miles, John W; Rao, Idupulapati M

    2017-01-01

    Brachiaria grasses are sown in tropical regions around the world, especially in the Neotropics, to improve livestock production. Waterlogging is a major constraint to the productivity and persistence of Brachiaria grasses during the rainy season. While some Brachiaria cultivars are moderately tolerant to seasonal waterlogging, none of the commercial cultivars combines superior yield potential and nutritional quality with a high level of waterlogging tolerance. The Brachiaria breeding program at the International Center for Tropical Agriculture, has been using recurrent selection for the past two decades to combine forage yield with resistance to biotic and abiotic stress factors. The main objective of this study was to test the suitability of normalized difference vegetation index (NDVI) and image-based phenotyping as non-destructive approaches to identify Brachiaria hybrids tolerant to waterlogging stress under field conditions. Nineteen promising hybrid selections from the breeding program and three commercial checks were evaluated for their tolerance to waterlogging under field conditions. The waterlogging treatment was imposed by applying and maintaining water to 3 cm above soil surface. Plant performance was determined non-destructively using proximal sensing and image-based phenotyping and also destructively via harvesting for comparison. Image analysis of projected green and dead areas, NDVI and shoot biomass were positively correlated (r ≥ 0.8). Our results indicate that image analysis and NDVI can serve as non-destructive screening approaches for the identification of Brachiaria hybrids tolerant to waterlogging stress.

  2. Multispectral UV imaging for fast and non-destructive quality control of chemical and physical tablet attributes.

    PubMed

    Klukkert, Marten; Wu, Jian X; Rantanen, Jukka; Carstensen, Jens M; Rades, Thomas; Leopold, Claudia S

    2016-07-30

    Monitoring of tablet quality attributes in direct vicinity of the production process requires analytical techniques that allow fast, non-destructive, and accurate tablet characterization. The overall objective of this study was to investigate the applicability of multispectral UV imaging as a reliable, rapid technique for estimation of the tablet API content and tablet hardness, as well as determination of tablet intactness and the tablet surface density profile. One of the aims was to establish an image analysis approach based on multivariate image analysis and pattern recognition to evaluate the potential of UV imaging for automatized quality control of tablets with respect to their intactness and surface density profile. Various tablets of different composition and different quality regarding their API content, radial tensile strength, intactness, and surface density profile were prepared using an eccentric as well as a rotary tablet press at compression pressures from 20MPa up to 410MPa. It was found, that UV imaging can provide both, relevant information on chemical and physical tablet attributes. The tablet API content and radial tensile strength could be estimated by UV imaging combined with partial least squares analysis. Furthermore, an image analysis routine was developed and successfully applied to the UV images that provided qualitative information on physical tablet surface properties such as intactness and surface density profiles, as well as quantitative information on variations in the surface density. In conclusion, this study demonstrates that UV imaging combined with image analysis is an effective and non-destructive method to determine chemical and physical quality attributes of tablets and is a promising approach for (near) real-time monitoring of the tablet compaction process and formulation optimization purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Application of golay complementary coded excitation schemes for non-destructive testing of sandwich structures

    NASA Astrophysics Data System (ADS)

    Arora, Vanita; Mulaveesala, Ravibabu

    2017-06-01

    In recent years, InfraRed Thermography (IRT) has become a widely accepted non-destructive testing technique to evaluate the structural integrity of composite sandwich structures due to its full-field, remote, fast and in-service inspection capabilities. This paper presents a novel infrared thermographic approach named as Golay complementary coded thermal wave imaging is presented to detect disbonds in a sandwich structure having face sheets from Glass/Carbon Fibre Reinforced (GFR/CFR) laminates and core of the wooden block.

  4. Non-destructive method for determining neutron exposure

    DOEpatents

    Gold, R.; McElroy, W.N.

    1983-11-01

    A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.

  5. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    DOEpatents

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  6. Non-Destructive Inspection Methods for Propulsion Systems and Components

    DTIC Science & Technology

    1979-04-01

    Oftopulsion and Energetics Panel", et du "Consuiltant and Exchange Programm" d. 1’AGARD. RII* a pour but d’exarniner et do commenter l𔃾tat actual do l’art...Exchange Program" of AGARD. Its aim is to examine and comment on to-day’s state of the art, and the foreseeable or hoped progress of the non-destructive...should be recognised as such. These notes will therefore review and comment on the general problem, but emphaais will be on the application of minute

  7. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    PubMed

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Laser active thermography for non-destructive testing

    NASA Astrophysics Data System (ADS)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  9. Local defect resonance for sensitive non-destructive testing

    NASA Astrophysics Data System (ADS)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  10. Synthesis & Studies of New Non-Destructive Read-Out Materials for Optical Storage and Optical Switches

    DTIC Science & Technology

    2005-12-31

    studied This organic storage system, consists of two different molecular components chemically bonded to each other, a polar photochromic fulgimide...and an oxazine dye, to form a composite molecule that retains the photochromic and spectroscopic properties of each individual molecular component yet...15. NUMBER OF PAGES Optical Storage media, Non-destructive readout materials, 20 3D optical storage, Photochromic composite molecule, Optical 16

  11. Method and Apparatus for Non-Destructive Evaluation of Materials

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil J. (Inventor); Washabaugh, Andrew P. (Inventor); Lyons, Robert (Inventor); Thomas, Zachary (Inventor); Jablonski, David A. (Inventor); Martin, Christopher (Inventor)

    2015-01-01

    Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.

  12. Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Burns, Erin A.

    2004-01-01

    Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing

  13. Non Destructive Thermal Analysis and In Situ Investigation of Creep Mechanism of Graphite and Ceramic Composites using Phase-sensitive THz Imaging & Nonlinear Resonant Ultrasonic Spectroscopy

    SciTech Connect

    Zhang, XI-Cheng; Hurley, David; Redo-Scanchez, Albert

    2012-11-26

    In this project, we conducted a comprehensive study on nuclear graphite properties with terahertz (THz) imaging. Graphite samples from Idaho National Laboratory were carefully imaged by continuous wave (CW) THz. The CW THz imaging of graphite shows that the samples from different billet with different fabricating conditions have different pore size and structure. Based on this result, we then used a phase sensitive THz system to study the graphite properties. In this exploration, various graphite were studied. By imaging nuclear graphite samples in reflection mode at nine different incident polarization angles using THz time-domain spectroscopy, we find that different domain distributions and levels of porosity will introduce polarization dependence in THz reflectivity. Sample with higher density is less porous and has a smaller average domain distribution. As a consequence, it is less polarization-dependent and the polarization-dependent frequency is higher. The results also show that samples oxidized at higher temperatures tend to be more polarization dependent. The graphite from the external billet is more polarization dependent compared to that from the center billet. In addition, we performed laser-based ultrasonic measurements on these graphite samples. The denser, unoxidized samples allow surface acoustic waves to propagate more rapidly than in the samples that had already undergone oxidation. Therefore, for the oxidized samples, the denser samples show less polarization-dependence, higher polarization-dependent frequency, and allow the surface acoustic waves propagate faster.

  14. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuuki; Inoue, Hiroyuki

    2003-10-01

    The absence of non-destructive inspection techniques for illicit drugs hidden in mail envelopes has resulted in such drugs being smuggled across international borders freely. We have developed a novel basic technology for terahertz imaging, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. The spatial distributions of the targets are obtained from terahertz multispectral transillumination images, using absorption spectra measured with a tunable terahertz-wave source. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  15. The development of non destructive remote measurement method of concrete contamination

    SciTech Connect

    Stepanov, V E; Potapov, V N; Ivanov, O P

    2013-07-01

    In the frame of the decommissioning of nuclear power plants or laboratories, the penetration depth of the contamination in concrete surfaces: walls, floor, is unknown. Its knowledge requires sample analysis, that is time consuming and expensive. The main goal of the work is to define and evaluate a non-destructive measurement technique for the evaluation of the contamination depth in concrete. Estimation of accuracy of measurements for different contamination levels, time of measurement, value of natural radionuclides (NRN) concentration in concrete and background radiation dose were carried out. The type of relevant detector depends of selected limiting sensitivity, the weight and sizes of the device. (authors)

  16. Non-destructive shadowgraph imaging of ultra-cold atoms.

    PubMed

    Wigley, P B; Everitt, P J; Hardman, K S; Hush, M R; Wei, C H; Sooriyabandara, M A; Manju, P; Close, J D; Robins, N P; Kuhn, C C N

    2016-10-15

    An imaging system is presented that is capable of far-detuned non-destructive imaging of a Bose-Einstein condensate with the signal proportional to the second spatial derivative of the density. Whilst demonstrated with application to Rb85, the technique generalizes to other atomic species and is shown to be capable of a signal-to-noise of ∼25 at 1 GHz detuning with 100 in-trap images showing no observable heating or atom loss. The technique is also applied to the observation of individual trajectories of stochastic dynamics inaccessible to single shot imaging. Coupled with a fast optical phase locked loop, the system is capable of dynamically switching to resonant absorption imaging during the experiment.

  17. Non-destructive shadowgraph imaging of ultra-cold atoms

    NASA Astrophysics Data System (ADS)

    Wigley, P. B.; Everitt, P. J.; Hardman, K. S.; Hush, M. R.; Wei, C. H.; Sooriyabandara, M. A.; Manju, P.; Close, J. D.; Robins, N. P.; Kuhn, C. C. N.

    2016-10-01

    An imaging system is presented that is capable of far-detuned non-destructive imaging of a Bose-Einstein condensate with the signal proportional to the second spatial derivative of the density. Whilst demonstrated with application to $^{85}\\text{Rb}$, the technique generalizes to other atomic species and is shown to be capable of a signal to noise of ${\\sim}25$ at $1$GHz detuning with $100$ in-trap images showing no observable heating or atom loss. The technique is also applied to the observation of individual trajectories of stochastic dynamics inaccessible to single shot imaging. Coupled with a fast optical phase lock loop, the system is capable of dynamically switching to resonant absorption imaging during the experiment.

  18. Non-destructive evaluation of water ingress in photovoltaic modules

    DOEpatents

    Bora, Mihail; Kotovsky, Jack

    2017-03-07

    Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, a focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.

  19. Non-Destructive Classification Approaches for Equilbrated Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-01-01

    Classification of meteorites is most effectively carried out by petrographic and mineralogic studies of thin sections, but a rapid and accurate classification technique for the many samples collected in dense collection areas (hot and cold deserts) is of great interest. Oil immersion techniques have been used to classify a large proportion of the US Antarctic meteorite collections since the mid-1980s [1]. This approach has allowed rapid characterization of thousands of samples over time, but nonetheless utilizes a piece of the sample that has been ground to grains or a powder. In order to compare a few non-destructive techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Moessbauer spectroscopy.

  20. Non-destructive monitoring of river embankments using GPR

    NASA Astrophysics Data System (ADS)

    di Prinzio, Monica; Bittelli, Marco; Castellarin, Attilio; Rossi Pisa, Paola

    2010-05-01

    Non-destructive investigations and controls of civil structures are improving day by day, however the scientific literature reports only a few documented cases of Ground Penetrating Radar (GPR) applications to the detection of voids and discontinuities in hydraulic defense structures such as river embankments and levee systems. GPR can assist decision making in a number of fields by enhancing our knowledge of subsurface features. We applied successfully GPR to the monitoring of river levees for the detectioning of animal burrows in river levees, which may trigger levee failures by piping. The manageability and the non-invasivity of GPR have resulted to be particularly suitable for this application. First because GPR is an extensive investigation method that enables one to rapidly cover a wide area, locating voids that are difficult and costly to locate using other intrusive methods. Second, GPR returns detailed information about the possible presence of voids and discontinuities within river embankments.

  1. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    SciTech Connect

    Gajdacz, Miroslav; Pedersen, Poul L.; Mørch, Troels; Hilliard, Andrew J.; Arlt, Jan; Sherson, Jacob F.

    2013-08-15

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  2. Non-destructive diffraction enhanced imaging of seeds.

    PubMed

    Young, Lester W; Parham, Christopher; Zhong, Zhong; Chapman, Dean; Reaney, Martin J T

    2007-01-01

    Techniques that make possible the non-destructive continuous observation of plant anatomy and developmental processes provide novel insights into these phenomena. Non-destructive imaging of seeds was demonstrated using the synchrotron-based X-ray imaging technique, diffraction enhanced imaging (DEI). The seed images obtained had good contrast and definition, allowing anatomical structures and physiological events to be observed. Structures such as hypocotyl-root axes, cotyledons, seed coats, air cavities, and embryo-less Brassica napus L. seeds were readily observed using DEI. Embryo axes, scutella, pericarp furrows, coleoptiles, and roots were observable over a time-course in individual germinating Triticum aestivum L. caryopses. Novel anatomical and physiological observations were also made that would have been difficult to make continuously using other techniques. The physical principles behind DEI make it a unique imaging technique. Contrast in DEI is the result of X-ray refraction at the density differences occurring at tissue boundaries, scatter caused by regions containing ordered molecules such as cellulose fibres, and attenuation. Sectioning of samples and the infusion of stains or other contrast agents are not necessary. Furthermore, as high-energy X-rays are used (30-40 keV), little X-ray absorption occurs, resulting in low levels of radiation damage. Consequently, studies of developmental processes may be performed on individuals. Individual germinating B. napus and T. aestivum seeds were imaged at several time points without incurring any apparent radiation damage. DEI offers a unique way of examining plant anatomy, development, and physiology, and provides images that are complementary to those obtained through other techniques.

  3. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface

  4. Non-destructive sampling of rock-dwelling microbial communities using sterile adhesive tape.

    PubMed

    Cutler, Nick A; Oliver, Anna E; Viles, Heather A; Whiteley, Andrew S

    2012-12-01

    Building stone provides a habitat for an array of microorganisms, many of which have been demonstrated to have a deleterious effect on the appearance and/or structural integrity of stone masonry. It is essential to understand the composition and structure of stone-dwelling (lithobiontic) microbial communities if successful stone conservation strategies are to be applied, particularly in the face of global environmental change. Ideally, the techniques used to sample such assemblages should be non-destructive due to the sensitive conservation status of many stone buildings. This paper quantitatively assesses the performance of sterile adhesive tape as a non-destructive sampling technique and compares the results of tape sampling with an alternative, destructive, sampling method. We used DNA fingerprinting (TRFLP) to characterise the algal, fungal and bacterial communities living on a stone slab. Our results demonstrate that tape sampling may be used to collect viable quantities of microbial DNA from environmental samples. This technique is ideally suited to the sampling of microbial biofilms, particularly when these communities are dominated by green algae. It provides a good approximation of total community diversity (i.e. the aggregate diversity of epilithic and endolithic communities). Tape sampling is straightforward, rapid and cost effective. When combined with molecular analytical techniques, this sampling method has the potential to make a major contribution to efforts to understand the structure of lithobiontic microbial communities and our ability to predict the response of such communities to future environmental change.

  5. The use of non destructive biomarkers in the study of marine mammals.

    PubMed

    M Cristina Fossi And Letizia Marsili

    1997-01-01

    Marine mammals have been subject to heavy anthropogenic pressure by direct killing and chemical pollution all over the world. Most studies of contamination and biomarker responses in marine mammals have been conducted using animals killed by hunting out of a total of 12 cetacean species studied, 45 of the specimens were obtained by sacrificing the animal; out of a total of eight pinniped species studied, 40 of the specimens were obtained by killing. The development of a series of non destructive techniques to evaluate biomarker responses and residue levels is recommended for the hazard assessment and conservation of endangered species of marine mammals. Here we review the current status of the non destructive biomarker approach in marine mammals, describing the biological materials available for non destructive tests in stranded brain, liver, blood, skin, subcutaneous blubber, muscle and fur and free ranging animals blood, skin biopsy, fur and faeces and the respective biomarker techniques mixed function oxidase activity and DNA damage in skin biopsy samples; porphyrins in faeces and fur; esterases, porphyrins, clinical biochemical parameter, vitamin A and micronuclei in blood samples. Residue analysis can be carried out in the various biological materials. We also report the results of applying this methodological approach to cetaceans minke whale Balaenoptera acutorostrata, fin whale-- Balaenoptera physalus, beluga whale-- Delphinapterus leucas, short finned pilot whale-- Globicephala macrorhynchus, harbour porpoise -- Phocoena phocoena, Rissos dolphin-- Risso s Grampus griseus, Dall s porpoise-- Phocoenoides dalli dalli, melon headed whale-- Peponocephala electra, bottlenose dolphin -- Tursiops truncatus, striped dolphin-- Stenella coeruleoalba, spinner dolphin-- Stenella longirostris, killer whale-- Orcinus orca and pinnipeds northern fur seal- Callorhinus ursinus, hooded seal-- Cystophora cristata, grey seal-- Halichoerus grypus, harbour seal-- Phoca vitulina

  6. Contamination of Outer Surfaces of International Space Station Studied by Non-Destructive Techniques

    NASA Astrophysics Data System (ADS)

    Borisov, V. A.; Naumov, S. F.; Sokolova, S. P.; Kurilenok, A. O.; Skurat, V. E.; Zhigach, A. N.; Beriozkina, N. G.; Leipunsky, I. O.; Pshechenkov, P. A.; Zotova, E. S.; Volkov, I. O.; Naumkin, A. V.; Artemov, V. V.

    The aim of this work is to study non -volatile components of contamination deposits on outer surfaces of International Space Station (Russian segment) by a complex of non-destructive techniques - X-ray photoelectron spectroscopy (XPS), diffuse reflection infrared spectroscopy, scanning electron microscopy and local X-ray microanalysis (LXMA). These methods were used for investigation of 40 samples of materials and coatings after their exposure to residual atmosphere of Earth and external conditions of spacecraft. Elemental and chemical composition of surface and sub-surface layers is varied in very broad limits due to concurrence of many processes changing the sample composition. Contamination deposits contain nitrogenous components besides ubiquitous carbonaceous and siliceous components that are typical for spacecraft surface contamination.

  7. Non-destructive characterization of oriental porcelain glazes and blue underglaze pigments using μ-EDXRF, μ-Raman and VP-SEM

    NASA Astrophysics Data System (ADS)

    Coutinho, M. L.; Muralha, V. S. F.; Mirão, J.; Veiga, J. P.

    2014-03-01

    The study of ancient materials with recognized cultural and economic value is a challenge to scientists and conservators, since it is usually necessary an approach through non-destructive techniques. Difficulties in establishing a correct analytical strategy are often significantly increased by the lack of knowledge on manufacture technologies and raw materials employed combined with the diversity of decay processes that may have acted during the lifetime of the cultural artefacts. A non-destructive characterization was performed on the glaze and underglaze pigments from a group of Chinese porcelain shards dated from the late Ming Dynasty (1368-1644) excavated at the Monastery of Santa Clara- a- Velha in Coimbra (Portugal). Chemical analysis was performed using micro-energy dispersive X-ray fluorescence spectrometry (μ-EDXRF). Mineralogical characterization was achieved by Raman microscopy (μ-Raman) and observation of small-surface crystallization dark spots with a metallic lustre in areas with high pigment concentration was done by variable pressure scanning electron microscopy (VP-SEM). Cobalt aluminate was identified as the blue underglaze pigment and a comparison of blue and dark blue pigments was performed by the ratio of Co, Mn, and Fe oxides, indicating a compositional difference between the two blue tonalities. Manganese oxide compounds were also identified as colouring agents in dark blue areas and surface migration of manganese compounds was verified.

  8. Non-destructive monitoring of curing process in precast concrete

    NASA Astrophysics Data System (ADS)

    Aparicio, S.; Ranz, J.; Fernández, R.; Albert, V.; Fuente, J. V.; Hernández, M. G.

    2012-12-01

    Currently, the use of precast concrete elements has gained importance because it offers many advantages over site-cast concrete. A disadvantage of site-cast concrete is that its properties vary according to the manufacturing method, the environment and even the operator who carried out the mixing, pouring and implementation of the concrete. Precast concrete elements are manufactured in a controlled environment (typically referred to as a precast plant) and this reduces the shrinkage and creep. One of the key properties of precast concrete is the capability to gain compressive strength rapidly under the appropriate conditions. The compressive strength determines if the precast can be stripped from the form or manipulated. This parameter is measured using destructive testing over cylindrical or cubic samples. The quality control of precast is derived from the fracture suffered by these elements, resulting in a "pass or fail" evaluation. In most cases, the solution to this problem is to allow the material to cure for a few hours until it acquires sufficient strength to handle the precast element. The focus of this paper is the description of the research project "CUREND". This project aims to design a non-destructive methodology to monitor the curing process in precast concrete. The monitoring will be performed using wireless sensor networks.

  9. Method of non-destructively inspecting a curved wall portion

    DOEpatents

    Fong, James T.

    1996-01-01

    A method of non-destructively inspecting a curved wall portion of a large and thick walled vessel for a defect by computed tomography is provided. A collimated source of radiation is placed adjacent one side of the wall portion and an array of detectors for the radiation is placed on the other side adjacent the source. The radiation from the source passing through the wall portion is then detected with the detectors over a limited angle, dependent upon the curvature of the wall of the vessel, to obtain a dataset. The source and array are then coordinately moved relative to the wall portion in steps and a further dataset is obtained at each step. The plurality of datasets obtained over the limited angle is then processed to produce a tomogram of the wall portion to determine the presence of a defect therein. In a preferred embodiment, the curved wall portion has a center of curvature so that the source and the array are positioned at each step along a respective arc curved about the center. If desired, the detector array and source can be reoriented relative to a new wall portion and an inspection of the new wall portion can be easily obtained. Further, the source and detector array can be indexed in a direction perpendicular to a plane including the limited angle in a plurality of steps so that by repeating the detecting and moving steps at each index step, a three dimensional image can be created of the wall portion.

  10. Non-destructive evaluation of mechanical properties of magnetic materials

    SciTech Connect

    Kankolenski, K.P.; Hua, S.Z.; Yang, D.X.; Hicho, G.E.; Swartzendruber, L.J.; Zang, Z.; Chopra, H.D.

    2000-07-01

    A magnetic-based non-destructive evaluation (NDE) method, which employs Barkhausen effect and measurement of the hysteresis loops, is used to correlate the magnetic and mechanical properties of ultra low carbon (ULC) steel. In particular, the NDE method was used to detect small deviations from linearity that occur in the stress-strain curve well below the 0.2% offset strain, and which generally defines the yield point in materials. Results show that three parameters: jumpsum and jumpsum rate (derived from the Barkhausen spectrum), and the relative permeability (derived from the B-H loops) varies sensitively with small permanent strains, and can be related to the plastic deformation in ULC steels. Investigation of micromagnetic structure revealed that plastic deformation leaves a residual stress state in the samples; the associated magneto-elastic energy makes the favorable easy axis of magnetization in a given grain to be the one that lies closest to the tensile axis. The consequence of this realignment of domains is that wall motion becomes intergranular in nature (as opposed to intragranular in unstrained samples). As a result, the more complex grain boundaries instead of dislocations, become the dominant pinning sites for domain walls. These observations provide a microscopic interpretation of the observed changes in the measured magnetic properties.

  11. A non-destructive method for dating human remains

    USGS Publications Warehouse

    Lail, Warren K.; Sammeth, David; Mahan, Shannon; Nevins, Jason

    2013-01-01

    The skeletal remains of several Native Americans were recovered in an eroded state from a creek bank in northeastern New Mexico. Subsequently stored in a nearby museum, the remains became lost for almost 36 years. In a recent effort to repatriate the remains, it was necessary to fit them into a cultural chronology in order to determine the appropriate tribe(s) for consultation pursuant to the Native American Grave Protection and Repatriation Act (NAGPRA). Because the remains were found in an eroded context with no artifacts or funerary objects, their age was unknown. Having been asked to avoid destructive dating methods such as radiocarbon dating, the authors used Optically Stimulated Luminescence (OSL) to date the sediments embedded in the cranium. The OSL analyses yielded reliable dates between A.D. 1415 and A.D. 1495. Accordingly, we conclude that the remains were interred somewhat earlier than A.D. 1415, but no later than A.D. 1495. We believe the remains are from individuals ancestral to the Ute Mouache Band, which is now being contacted for repatriation efforts. Not only do our methods contribute to the immediate repatriation efforts, they provide archaeologists with a versatile, non-destructive, numerical dating method that can be used in many burial contexts.

  12. Non-destructive characterization of archaeological glasses by neutron tomography

    NASA Astrophysics Data System (ADS)

    Fiori, F.; Giunta, G.; Hilger, A.; Kardjilov, N.; Rustichelli, F.

    2006-11-01

    The present work is carried out in the framework of a National Italian Project, whose aim is the assessment of innovative physical non-destructive techniques applied to archaeology. Towards this end, some archaeological artefacts have been studied by our group, in collaboration with the National Museum of Altino (VE) and EniTecnologie S.p.A. The objects come from the excavations in Altino, near Venice, where at least three different historical layers are present, corresponding to ages starting from approximately VII century B.C. In particular, in this work the results of neutron tomography investigations on three I-II century A.D. glass fragments are reported. The experiments were performed at the cold neutron radiography facility CONRAD at HMI (Berlin). For the 3D tomographical reconstruction of the sample, 200 projections were collected while the sample was rotated around a defined axis. The rotation interval was 180 degrees. The results show that the technique is able to reconstruct well the structural features of the investigated objects such as, in particular, highly absorbing zones and the presence of defects in the bulk.

  13. FIRST 100 T NON-DESTRUCTIVE MAGNET OUTER COIL SET

    SciTech Connect

    J. BACON; A. BACA; ET AL

    1999-09-01

    The controlled power outer coil set of the first 100 T non-destructive (100 T ND) magnet is described. This magnet will be installed as part of the user facility research equipment at the National High Magnetic Field laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory. The 100 T ND controlled power outer coil set consists of seven nested, mechanically independent externally reinforced coils. These coils, in combination, will produce a 47 T platform field in a 225-mm diameter bore. Using inertial energy storage a synchronous motor/generator provides ac power to a set of seven ac-dc converters rated at 64 MW/80 MVA each. These converters energize three independent coil circuits to create 170 MJ of field energy in the outer coil set at the platform field of 47 T. Each coil consists of a multi-layer winding of high strength conductor supported by an external high strength stainless steel shell. Coils with the highest magnetic loads will utilize a reinforcing shell fabricated from highly cold worked 301 stainless steel strip. The autofrettage conditioning method will be used to pre-stress the coils and thereby limit conductor and reinforcement strains to the elastic range. The purpose of pre-stressing the coils is to attain a design life of 10,000 full field pulses. The operation and conditioning of the coil set will be described along with special features of its design, magnetic and structural analyses and construction.

  14. Non-destructive testing of the MEGAPIE target

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Wohlmuther, M.; Boutellier, V.; Hahl, S.; Lagotzki, A.; Leu, H.; Linder, H. P.; Schwarz, R.; Spahr, A.; Zanini, L.; Kuster, D.; Gavillet, D.; Wagner, W.

    2016-01-01

    Non-destructive testing (NDT) is one important part of the post-irradiation examination (PIE) of the MEGAPIE target. It includes visual inspection and ultrasonic measurement of the beam window of the T91 LBE container and gamma mapping of the beam window of the AlMg3 safety-container. The visual inspection showed no visible failure in the proton beam window area of the T91 LBE container. The ultrasonic measurement demonstrated no detectable change in the wall thickness of the T91 beam window, which implies no severe corrosion effect induced by flowing LBE during the four-month irradiation period. The gamma mapping provided the distribution of 22Na, a spallation product, in the proton beam window area of the AlMg3 safety-container. The result was used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. A maximum proton fluence of 1.9 × 1025 p/m2 was deduced. The corresponding displacement damage degree in the T91 beam window was 7.1 dpa.

  15. Non-destructive sub-THz CW imaging

    NASA Astrophysics Data System (ADS)

    Karpowicz, Nicholas; Zhong, Hua; Xu, Jingzhou; Lin, Kuang-I.; Hwang, Jenn-Shyong; Zhang, Xi-Cheng

    2005-03-01

    A simple, compact CW sub-THz imaging system, utilizing a 0.2 and 0.6 THz Gunn diode source is presented. A silicon beam lead diode detector and a Golay cell are used for the detection. Various results are presented, which show that the CW THz imaging modality is suitable for diverse applications, such as non-destructive testing and security. The key components of the system include the Gunn diode assembly, an optical chopper, a polyethylene lens, a detector, a lock-in amplifier, and two translation stages. The beam from the Gunn diode is focused on the sample being imaged by the polyethylene lens, the transmitted or reflected beam is measured by the detector. The energy transmitted through the sample at each point in the plane of the sample is detected. Since the system has relatively few components compared to pulsed THz imaging systems, it is less expensive and easier to design and operate, although it does not provide depth or spectral information about the sample. Since no time-delay scans take place, scanning can be done quickly compared to a time-domain system, limited by the maximum velocity of the translation stages and response of the detectors. It provides information about the macroscopic features of hidden structures within materials that are transparent to sub THz radiation, such as space shuttle insulating foam, articles of clothing, and luggage.

  16. Evaluation of Transportation Options for Intermediate Non-destructive Examinations

    SciTech Connect

    Case, Susan; Hoggard, Gary

    2013-11-01

    Idaho National Laboratory (INL) shipments of irradiated experiments from the Advanced Test Reactor (ATR) to the Hot Fuels Examination Facility (HFEF) have historically been accomplished using the General Electric Model 2000 (GE 2000) Type B shipping container. Battelle Energy Alliance (BEA) concerns regarding the future availability and leasing and handling costs associated with the GE 2000 cask have warranted an evaluation of alternative shipping options. One or more of these shipping options may be utilized to perform non-destructive examinations (NDE) such as neutron radiography and precision gamma scans of irradiated experiments at HFEF and then return the experiments to ATR for further irradiation, hereafter referred to as “intermediate NDE.” This evaluation includes transportation options for intermediate NDE using the GE 2000 cask, BEA Research Reactor (BRR) package, Dry Transfer Cubicle (DTC) insert, and the General Electric Model 100 (GE 100) cask. The GE 2000 cask is the only Type B shipping container currently in use for shipments of irradiated material (exceeding Type A quantities) from ATR to HFEF; therefore it is included as one of the four shipping options in this evaluation. Cost and schedule estimates are provided for performing neutron radiography and precision gamma scans of a five-capsule drop-in-type ATR experiment for each transportation option. All costs provided in this evaluation are rough order-of-magnitude costs based on input from knowledgeable vendor employees and individuals at INL facilities.

  17. A novel thermosonic imaging system for non-destructive testing

    NASA Astrophysics Data System (ADS)

    Willey, C. L.; Xiang, D.; Long, M.

    2017-02-01

    Thermosonic infrared (Sonic IR) imaging is a new non-destructive testing (NDT) technique that uses high-frequency sonic excitation together with infrared (IR) detection to image surface and subsurface defects. A conventional Sonic IR imaging system employs an ultrasonic welder, which is designed to operate at a single frequency. This single frequency ultrasonic source has been found to yield a "blind zone" for NDT due to the formation of standing waves inside the test piece. To overcome this limitation, a spring loaded ultrasonic transducer was used to generate the desired multi-frequency acoustic chaos in the test object [1]. The limitation of the spring loaded ultrasonic transducer is its repeatability and reproducibility for field applications. In this work, we present the development of a novel thermosonic imaging system, which is capable of exciting the ultrasonic transducer at difflerent frequencies for thermosonic NDT to overcome the limitations associated with a single frequency power source as well as the spring loaded transducer design. A comparison of experimental results will be made between the single frequency and the developed multi-frequency thermosonic NDT systems.

  18. Non-destructive evaluation of anchorage zones by ultrasonics techniques.

    PubMed

    Kharrat, M; Gaillet, L

    2015-08-01

    This work aims to evaluate the efficiency and reliability of two Non-Destructive Testing (NDT) methods for damage assessment in bridges' anchorages. The Acousto-Ultrasonic (AU) technique is compared to classical Ultrasonic Testing (UT) in terms of defect detection and structural health classification. The AU technique is firstly used on single seven-wire strands damaged by artificial defects. The effect of growing defects on the waves traveling through the strands is evaluated. Thereafter, three specimens of anchorages with unknown defects are inspected by the AU and UT techniques. Damage assessment results from both techniques are then compared. The structural health conditions of the specimens can be then classified by a damage severity criterion. Finally, a damaged anchorage socket with mastered defects is controlled by the same techniques. The UT allows the detection and localization of damaged wires. The AU technique is used to bring out the effect of defects on acoustic features by comparing a healthy and damaged anchorage sockets. It is concluded that the UT method is suitable for local and crack-like defects, whereas the AU technique enables the assessment of the global structural health of the anchorage zones.

  19. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    NASA Astrophysics Data System (ADS)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  20. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders

    PubMed Central

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Peng, Yankun; Schmidt, Walter F.; Kim, Moon S.; Chan, Diane E.

    2017-01-01

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA) and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials. PMID:28335453

  1. Non-destructive Magnetic Evaluation of Laser Weld Quality in Hot Rolled Coils

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Chakradhar, I.; Rao, K. R. C.; Rao, V. V. L.; Kaza, Marutiram

    2015-06-01

    Weld quality evaluation was conducted on laser welded thin sectsions (2 mm) of hot-rolled (HR) low-carbon steel coils during cold rolling process. The analysis revealed that the poor welds consisting of the weld defects like incomplete fusion, cluster of porosity, and large difference in hardness between the weld zone and base metal were responsible for the weld failures. Experiments were conducted by varying the welding parameters; laser power and welding speed to optimize the parameters for minimizing the weld defects. The optimized weld process parameters have helped elimination of weld defects and the results are verified with microscopy and microhardness measurements. As destructive evaluation techniques are time consuming and not always permitted in industrial applications, attempts have been made in the present investigation for the utilization of suitable non-destructive techniques for the evaluation of weld quality. Non-destructive magnetic techniques of magnetic hysteresis loop and magnetic Barkhausen emissions were used in the present investigation to establish possible correlations of magnetic properties across the weld seam with the mechanical property (microhardness) for evaluation of weld quality. It is inferred that the magnetic properties of coercivity and inverse of root mean square voltage can be effectively utilized to determine weld quality in HR steel coils.

  2. Non-destructive measurement of soil liquefaction density change by crosshole radar tomography, Treasure Island, California

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.; Ashford, Scott; Rollins, Kyle

    2000-01-01

    A ground penetrating radar (GPR) experiment at the Treasure Island Test Site [TILT] was performed to non-destructively image the soil column for changes in density prior to, and following, a liquefaction event. The intervening liquefaction was achieved by controlled blasting. A geotechnical borehole radar technique was used to acquire high-resolution 2-D radar velocity data. This method of non-destructive site characterization uses radar trans-illumination surveys through the soil column and tomographic data manipulation techniques to construct radar velocity tomograms, from which averaged void ratios can be derived at 0.25 - 0.5m pixel footprints. Tomograms of void ratio were constructed through the relation between soil porosity and dielectric constant. Both pre- and post-blast tomograms were collected and indicate that liquefaction related densification occurred at the site. Volumetric strains estimated from the tomograms correlate well with the observed settlement at the site. The 2-D imagery of void ratio can serve as high-resolution data layers for numerical site response analysis.

  3. Non-destructive on-chip cell sorting system with real-time microscopic image processing.

    PubMed

    Takahashi, Kazunori; Hattori, Akihiro; Suzuki, Ikurou; Ichiki, Takanori; Yasuda, Kenji

    2004-06-03

    Studying cell functions for cellomics studies often requires the use of purified individual cells from mixtures of various kinds of cells. We have developed a new non-destructive on-chip cell sorting system for single cell based cultivation, by exploiting the advantage of microfluidics and electrostatic force. The system consists of the following two parts: a cell sorting chip made of poly-dimethylsiloxane (PDMS) on a 0.2-mm-thick glass slide, and an image analysis system with a phase-contrast/fluorescence microscope. The unique features of our system include (i) identification of a target from sample cells is achieved by comparison of the 0.2-microm-resolution phase-contrast and fluorescence images of cells in the microchannel every 1/30 s; (ii) non-destructive sorting of target cells in a laminar flow by application of electrostatic repulsion force for removing unrequited cells from the one laminar flow to the other; (iii) the use of agar gel for electrodes in order to minimize the effect on cells by electrochemical reactions of electrodes, and (iv) pre-filter, which was fabricated within the channel for removal of dust contained in a sample solution from tissue extracts. The sorting chip is capable of continuous operation and we have purified more than ten thousand cells for cultivation without damaging them. Our design has proved to be very efficient and suitable for the routine use in cell purification experiments.

  4. Non-destructive Detection for Mold Colonies in Rice Based on Hyperspectra and GWO-SVR.

    PubMed

    Sunli, Cong; Jun, Sun; Hanping, Mao; Xiaohong, Wu; Pei, Wang; Xiaodong, Zhang

    2017-08-08

    Mold contamination of grains not only contributes to unedible food, resulting in economic losses, but also leads to mold in humans and livestock, even can be carcinogenic to them. Rice as one of the main grain varieties, if improper storage, is easily to mildew. In order to detect the total number of mold colonies in rice more accurately, a method based on hyperspectral imaging technology was investigated. In this paper, non-destructive detection for the total number of mold colonies in rice was performed from the angle of spectral analysis. The determination coefficient of 0.9621 for calibration set and 0.9511 for prediction set between the spectral data and number of mold colonies were eventually achieved by establishing the best support vector regression (SVR) model, optimised by gray wolf optimization (GWO) algorithm. The hyperspectral imaging technology combined with the optimal model (GWO-SVR) is feasible for non-destructive detection of the total number of mold colonies in rice, and so hopefully to provide a promising tool for the mold detection of other agricultural products. This article is protected by copyright. All rights reserved.

  5. Non-destructive detection of pesticide residues in cucumber using visible/near-infrared spectroscopy.

    PubMed

    Jamshidi, Bahareh; Mohajerani, Ezeddin; Jamshidi, Jamshid; Minaei, Saeid; Sharifi, Ahmad

    2015-01-01

    The feasibility of using visible/near-infrared (Vis/NIR) spectroscopy was assessed for non-destructive detection of diazinon residues in intact cucumbers. Vis/NIR spectra of diazinon solution and cucumber samples without and with different concentrations of diazinon residue were analysed at the range of 450-1000 nm. Partial least squares-discriminant analysis (PLS-DA) models were developed based on different spectral pre-processing techniques to classify cucumbers with contents of diazinon below and above the MRL as safe and unsafe samples, respectively. The best model was obtained using a first-derivative method with the lowest standard error of cross-validation (SECV = 0.366). Moreover, total percentages of correctly classified samples in calibration and prediction sets were 97.5% and 92.31%, respectively. It was concluded that Vis/NIR spectroscopy could be an appropriate, fast and non-destructive technology for safety control of intact cucumbers by the absence/presence of diazinon residues.

  6. A Spatially Offset Raman Spectroscopy Method for Non-Destructive Detection of Gelatin-Encapsulated Powders.

    PubMed

    Chao, Kuanglin; Dhakal, Sagar; Qin, Jianwei; Peng, Yankun; Schmidt, Walter F; Kim, Moon S; Chan, Diane E

    2017-03-18

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785-nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. As the offset distance was increased, the spectral contribution from the subsurface powder gradually outweighed that of the surface capsule layers, allowing for detection of the encapsulated powders. Containing mixed contributions from the powder and capsule, the SORS spectra for each sample were resolved into pure component spectra using self-modeling mixture analysis (SMA) and the corresponding components were identified using spectral information divergence values. As demonstrated here for detecting chemicals contained inside thick capsule layers, this SORS measurement technique coupled with SMA has the potential to be a reliable non-destructive method for subsurface inspection and authentication of foods, health supplements, and pharmaceutical products that are prepared or packaged with semi-transparent materials.

  7. Non-Destructive Inspection by Infrared Imaging Spectroscopy. Phase 1

    DTIC Science & Technology

    1994-10-14

    Reference 4 describes an implementation of thermal imagery for paint skip detection used in the manufacture of aluminum beverage containers. All of the...with Post Processed Thermal Image Data’, SPIE Vol. 1313, 124-133 (1990). 3. Orlove, G. ’Development of a Radiometric Model for the Detection of Plastic...Torre, W., ’ Thermographic Analysis of the Anisotropy in the Thermal Conductivity of Composite Materials’, SPIE Vol. 1467, 303-310 (1991). 12. Vavilov

  8. Template synthesis of test tube nanoparticles using non-destructive replication.

    PubMed

    Wagner, Jonathan; Yao, Jingyuan; Rodgers, David; Hinds, Bruce

    2013-03-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics, including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions, including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive 'bionanoreactors' loaded with enzymes.

  9. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    NASA Astrophysics Data System (ADS)

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  10. Non-Destructive Damping Measurement for Wafer-Level Packaged Microelectromechanical System (MEMS) Acceleration Switches

    DTIC Science & Technology

    2014-09-01

    logarithmic decrement of those amplitudes.7,8 Experiments that did not rely on resonant frequencies used capacitance measurements or pressure sensors to relate...Non-destructive Damping Measurement for Wafer- level Packaged Microelectromechanical System (MEMS) Acceleration Switches by Ryan Knight and...Laboratory Adelphi, MD 20783-1138 ARL-TR-7094 September 2014 Non-destructive Damping Measurement for Wafer- level Packaged

  11. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    USDA-ARS?s Scientific Manuscript database

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  12. Non-destructive determination of maize leaf and canopy chlorophyll content

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to develop a rapid non-destructive technique to estimate total chlorophyll (Chl) content in a maize canopy using Chl content in a single leaf. The approach was (1) to calibrate and validate a reflectance-based non-destructive technique to estimate leaf Chl in maize; (...

  13. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    SciTech Connect

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-25

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm{sup -1} to 68 cm{sup -1} to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100 Degree-Sign C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  14. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-01

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm-1 to 68 cm-1 to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100° C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  15. Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics.

    PubMed

    Santana, Felipe Bachion de; Gontijo, Lucas Caixeta; Mitsutake, Hery; Mazivila, Sarmento Júnior; Souza, Leticia Maria de; Borges Neto, Waldomiro

    2016-10-15

    Rosehip oil (Rosa eglanteria L.) is an important oil in the food, pharmaceutical and cosmetic industries. However, due to its high added value, it is liable to adulteration with other cheaper or lower quality oils. With this perspective, this work provides a new simple, fast and accurate methodology using mid-infrared (MIR) spectroscopy and partial least squares discriminant analysis (PLS-DA) as a means to discriminate authentic rosehip oil from adulterated rosehip oil containing soybean, corn and sunflower oils in different proportions. The model showed excellent sensitivity and specificity with 100% correct classification. Therefore, the developed methodology is a viable alternative for use in the laboratory and industry for standard quality analysis of rosehip oil since it is fast, accurate and non-destructive.

  16. Non-destructive infrared analyses: a method for provenance analyses of sandstones

    NASA Astrophysics Data System (ADS)

    Bowitz, Jörg; Ehling, Angela

    2008-12-01

    Infrared spectroscopy (IR spectroscopy) is commonly applied in the laboratory for mineral analyses in addition to XRD. Because such technical efforts are time and cost consuming, we present an infrared-based mobile method for non-destructive mineral and provenance analyses of sandstones. IR spectroscopy is based on activating chemical bonds. By irradiating a mineral mixture, special bonds are activated to vibrate depending on the bond energy (resonance vibration). Accordingly, the energy of the IR spectrum will be reduced thereby generating an absorption spectrum. The positions of the absorption maxima within the spectral region indicate the type of the bonds and in many cases identify minerals containing these bonds. The non-destructive reflection spectroscopy operates in the near infrared region (NIR) and can detect all common clay minerals as well as sulfates, hydroxides and carbonates. The spectra produced have been interpreted by computer using digital mineral libraries that have been especially collected for sandstones. The comparison of all results with XRD, RFA and interpretations of thin sections demonstrates impressively the accuracy and reliability of this method. Not only are different minerals detectable, but also differently ordered kaolinites and varieties of illites can be identified by the shape and size of the absorption bands. Especially clay minerals and their varieties in combination with their relative contents form the characteristic spectra of sandstones. Other components such as limonite, hematite and amorphous silica also influence the spectra. Sandstones, similar in colour and texture, often can be identified by their characteristic reflectance spectra. Reference libraries with more than 60 spectra of important German sandstones have been created to enable entirely computerized interpretations and identifications of these dimension stones. The analysis of infrared spectroscopy results is demonstrated with examples of different sandstones

  17. Two-dimensional non-destructive diagnostics for accelerators by Beam Cross section Monitor

    NASA Astrophysics Data System (ADS)

    Gavrilov, S.; Feschenko, A.; Reinhardt-Nickoulin, P.; Vasilyev, I.

    2014-01-01

    The ionization Beam Cross section Monitor (BCSM) provides non-destructive measurements of transverse beam parameters in INR RAS proton linac. Operation of the monitor is based on utilization of residual gas ionization. The monitor enables to observe position, two-dimensional beam cross section, beam profiles obtained from it and emittance ellipses reconstructed from profiles data as well as their evolution in real-time within a wide range of energies and beam intensities. The BCSM design and image processing system are described. The monitor accuracy and precision analysis and estimations of influence of the linac radiation background are discussed. The available experimental results of proton beam transverse parameters measurements at the linac exit are presented.

  18. High-resolution thermal imaging methodology for non-destructive evaluation of historic structures

    NASA Astrophysics Data System (ADS)

    Hess, Michael; Vanoni, David; Petrovic, Vid; Kuester, Falko

    2015-11-01

    This paper presents a methodology for automated, portable thermography, for the acquisition of high-resolution thermal image mosaics supporting the non-destructive evaluation of historic structures. The presented approach increases the spatial resolution of thermal surveys to a level of detail needed for building scale analysis. The integration of a robotic camera platform enables automated alignment of multiple images into a high-resolution thermal image mosaic giving a holistic view of the structure while maintaining a level of detail equaling or exceeding that of traditional spot surveys using existing cameras. Providing a digital workflow for automated data and metadata recording increases the consistency and accuracy of surveys regardless of the location or operator. An imaging workflow and instrumentation are shown for a case-study on buildings in Florence, Italy demonstrating the effectiveness of this methodology for structural diagnostics.

  19. Morphomechanics of dermis-A method for non-destructive testing of collagenous tissues.

    PubMed

    Shah, R G; Pierce, M C; Silver, F H

    2017-08-01

    Collagenous tissues store, transmit and dissipate elastic energy during mechanical deformation. In skin, mechanical energy is stored during loading and then is dissipated, which protects skin from mechanical failure. Thus, energy storage (elastic properties) and dissipation (viscous properties) are important characteristics of extracellular matrices (ECMs) that support the cyclic loading of ECMs without tissue failure. Uniaxial stress-strain measurements on decellularized human dermis have been made and compared to results of a non-destructive technique involving optical coherence tomography (OCT) combined with vibrational analysis. In addition, Poisson's ratio has been determined for tensile deformation of decellularized dermis. The modulus of decellularized dermis measured using standard tensile stress-strain tests and that determined from calculations derived from natural frequency measurements give similar results. It is also observed that Poisson's ratio for dermis is between 0.38 and 0.63 after correction for changes in volume that occur during tensile deformation. These results suggest that the assumption that dermis and other ECMs deform at constant volume is incorrect and will lead to differences in the calculated modulus by conventional tensile stress-strain measurements. It is proposed that OCT in conjunction with vibrational analysis is a convenient way to non-destructively measure the modulus of decellularized dermis, ECMs and other materials that have a positive curvature to their stress-strain curves. Tensile deformation of dermis and possibly other ECMs is associated with an increase in Poisson's ratio consistent with a model of fluid expulsion from collagen fibrils during stretching. The value of Poisson's ratio should be considered in analyzing the mechanical properties of ECMs since at least dermis appears to be compressible during tensile deformation. Fluid expression during tensile deformation may play a role in mechanotransduction in skin in a

  20. Wave field features of shallow vertical discontinuity and their application in non-destructive detection

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Luo, Y.; Chen, C.; Li, X.; Huang, Y.

    2007-01-01

    The geotechnical integrity of critical infrastructure can be seriously compromised by the presence of fractures or crevices. Non-destructive techniques to accurately detect fractures in critical infrastructure such as dams and highways could be of significant benefit to the geotechnical industry. This paper investigates the application of shallow seismic and georadar methods to the detection of a vertical discontinuity using numerical simulations. The objective is to address the kinematical analysis of a vertical discontinuity, determine the resulting wave field characteristics, and provide the basis for determining the existence of vertical discontinuities based on the recorded signals. Simulation results demonstrate that: (1) A reflection from a vertical discontinuity produces a hyperbolic feature on a seismic or georadar profile; (2) In order for a reflection from a vertical discontinuity to be produced, a reflecting horizon below the discontinuity must exist, the offset between source and receiver (x0) must be non-zero, on the same side of the vertical discontinuity; (3) The range of distances from the vertical discontinuity where a reflection event is observed is proportional to its length and to x0; (4) Should the vertical crevice (or fracture) pass through a reflecting horizon, dual hyperbolic features can be observed on the records, and this can be used as a determining factor that the vertical crevice passes through the interface; and (5) diffractions from the edges of the discontinuity can be recorded with relatively smaller amplitude than reflections and their ranges are not constrained by the length of discontinuity. If the length of discontinuity is short enough, diffractions are the dominant feature. Real-world examples show that the shallow seismic reflection method and the georadar method are capable of recording the hyperbolic feature, which can be interpreted as vertical discontinuity. Thus, these methods show some promise as effective non-destructive

  1. Non-destructive in situ mapping of macroholes, cracks and inhomogeneities of stalagmites in cave environments

    NASA Astrophysics Data System (ADS)

    Hegymegi, Erika; Gyöngy, Miklós; Bodolai, Tamás; Divós, Ferenc; Barta, Edit; Gribovszki, Katalin; Bokelmann, Götz; Hegymegi, Csaba; Lednická, Markéta; Kovács, Károly

    2016-04-01

    Intact and vulnerable, candle-stick type stalagmites can be used as prehistoric-earthquake indicators during seismic-hazard analysis of a given region, because they are old enough to survive several earthquakes. The continued intactness of the stalagmites indicates a lack of earthquakes that had the strength to destroy them. To make sure that the stalagmites are intact, we have to image their internal structure in order to estimate the steadiness more accurate and potential failure in the last few thousand years, during their evolution. These stalagmites play an important indicator role and carry fundamental information; however, legally they are strictly protected natural objects in Europe. Therefore it is impossible to examine them in the laboratory by conventional equipment such as computer tomography (CT) or X-ray, because this would require taking samples. With the presented non-destructive methods (ultrasound and acoustic tomography) we tried to detect macroholes, cracks and velocity anomalies inside the stalagmites on the mm scale in situ, in the cave. The acoustic tomography applied in the current work is an existing method in forest research. Forest researchers use it to non-destructively detect the size and location of decayed or hollow parts in the trunk and this technique is able to detect the velocity changing of wave propagation and anomalies in the stalagmites as well. The other method that we use is ultrasound imaging, which uses (and is able to calculate) the velocity of sound propagation. Here, the frequency used is much higher (typically 250 kHz to 5 MHz), which increases resolution but at the same time decreases penetration depth compared to acoustic tomography. In this latter work, through transmission and TOFD (time-of-flight-diffraction) ultrasound methods are using thickness-mode ultrasound transducers (Panametrics, Olympus). Such equipment is well-adapted to the cave environment and this is the first time that it has been used for these

  2. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T. M.; Sigloch, K.

    2011-12-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and engineering structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to analyze ultrasonic waveforms measured at the surface of Plexiglas and rock samples, and to define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  3. Robotic path planning for non-destructive testing of complex shaped surfaces

    NASA Astrophysics Data System (ADS)

    Mineo, Carmelo; Pierce, Stephen Gareth; Wright, Ben; Nicholson, Pascual Ian; Cooper, Ian

    2015-03-01

    The requirement to increase inspection speeds for non-destructive testing (NDT) of composite aerospace parts is common to many manufacturers. The prevalence of complex curved surfaces in the industry provides significant motivation for the use of 6 axis robots for deployment of NDT probes in these inspections. A new system for robot deployed ultrasonic inspection of composite aerospace components is presented. The key novelty of the approach is through the accommodation of flexible robotic trajectory planning, coordinated with the NDT data acquisition. Using a flexible approach in MATLAB, the authors have developed a high level custom toolbox that utilizes external control of an industrial 6 axis manipulator to achieve complex path planning and provide synchronization of the employed ultrasonic phase array inspection system. The developed software maintains a high level approach to the robot programming, in order to ease the programming complexity for an NDT inspection operator. Crucially the approach provides a pathway for a conditional programming approach and the capability for multiple robot control (a significant limitation in many current off-line programming applications). Ultrasonic and experimental data has been collected for the validation of the inspection technique. The path trajectory generation for a large, curved carbon-fiber-reinforced polymer (CFRP) aerofoil component has been proven and is presented. The path error relative to a raster-scan tool-path, suitable for ultrasonic phased array inspection, has been measured to be within + 2mm over the 1.6 m2 area of the component surface.

  4. Non-destructive quantification of alignment of nanorods embedded in uniaxially stretched polymer films

    NASA Astrophysics Data System (ADS)

    Stoenescu, Stefan; Truong, Vo-Van; Packirisamy, Muthukumaran

    2014-03-01

    Among several methods developed for uniaxial alignment of metallic nanorods for optical applications, alignment by film stretching consists in embedding the rods in a transparent thin film of thermoplastic polymer, followed by simultaneous heating and uniaxial stretching of the composite film. As to the quantification of the resulting alignment, it has been limited to statistical calculations based on microscopic examination, which is incomplete, subject to errors due to geometric distortions of the scanning electron microscope images and destructive, since it involves cutting of samples. In contrast, we present in this paper a non-destructive quantification of the average orientation of the rods, based on a probabilistic approach combined with numerical simulations of absorbance spectra and spectrometric characterization of the composite film. Assuming electromagnetically non-interacting rods, we consider the longitudinal absorbance peak of their ensemble to consist of the superposition of their individual spectra that we obtain by numerical simulation using the size and shape adapted dielectric function of the metal and the finite difference time domain method. The accuracy of the solution depends on the number of discretization intervals, the accuracy of the numerical simulations, and the accurate knowledge of the polydispersity of the rods. For the sake of concreteness, we used nanorods to describe the quantification steps but the method is equally valid for any dichroic particles.

  5. Non-destructive quantification of alignment of nanorods embedded in uniaxially stretched polymer films

    SciTech Connect

    Stoenescu, Stefan Packirisamy, Muthukumaran; Truong, Vo-Van

    2014-03-21

    Among several methods developed for uniaxial alignment of metallic nanorods for optical applications, alignment by film stretching consists in embedding the rods in a transparent thin film of thermoplastic polymer, followed by simultaneous heating and uniaxial stretching of the composite film. As to the quantification of the resulting alignment, it has been limited to statistical calculations based on microscopic examination, which is incomplete, subject to errors due to geometric distortions of the scanning electron microscope images and destructive, since it involves cutting of samples. In contrast, we present in this paper a non-destructive quantification of the average orientation of the rods, based on a probabilistic approach combined with numerical simulations of absorbance spectra and spectrometric characterization of the composite film. Assuming electromagnetically non-interacting rods, we consider the longitudinal absorbance peak of their ensemble to consist of the superposition of their individual spectra that we obtain by numerical simulation using the size and shape adapted dielectric function of the metal and the finite difference time domain method. The accuracy of the solution depends on the number of discretization intervals, the accuracy of the numerical simulations, and the accurate knowledge of the polydispersity of the rods. For the sake of concreteness, we used nanorods to describe the quantification steps but the method is equally valid for any dichroic particles.

  6. Thermographic non-destructive testing using inductive thermal excitation

    NASA Astrophysics Data System (ADS)

    Safai, Morteza; Georgeson, Gary; Meredith, Kimberly

    2008-03-01

    This paper describes the utilization of induced radio frequency thermal excitation in conjunction with infrared (IR) imaging for the detection of discontinuities in embedded metal conductive mesh on composite structure. An electric current is inductively generated in the conductive media of the composite using a radio frequency coil held above the surface. As the generated current moves through the composite structure, any perturbation in the current flow caused by discontinuities in the grid or highly resistive areas becomes heated slightly above the surrounding. This small temperature variation is detected in real-time by means of an IR imaging system that includes an IR camera, a computer, and imaging software. The data is depicted as a thermogram on the computer monitor, and can be analyzed using specialized system software. From the detected thermal variations, one can determine electrical conductivity characteristics of the conductive composite layer.

  7. Crime scene investigations using portable, non-destructive space exploration technology

    NASA Technical Reports Server (NTRS)

    Trombka, Jacob I.; Schweitzer, Jeffrey; Selavka, Carl; Dale, Mark; Gahn, Norman; Floyd, Samuel; Marie, James; Hobson, Maritza; Zeosky, Jerry; Martin, Ken; hide

    2002-01-01

    The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASAs) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals solve crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ programs with state and local forensic laboratories. A working group of NASA scientists and law enforcement professionals has been established to develop and implement a feasibility demonstration program. Specifically, the group has focused its efforts on identifying gunpowder and primer residue, blood, and semen at crime scenes. Non-destructive elemental composition identification methods are carried out using portable X-ray fluorescence (XRF) systems. These systems are similar to those being developed for planetary exploration programs. A breadboard model of a portable XRF system has been constructed for these tests using room temperature silicon and cadmium-zinc telluride (CZT) detectors. Preliminary tests have been completed with gunshot residue (GSR), blood-spatter and semen samples. Many of the element composition lines have been identified. Studies to determine the minimum detectable limits needed for the analyses of GSR, blood and semen in the crime scene environment have been initiated and preliminary results obtained. Furthermore, a database made up of the inorganic composition of GSR is being developed. Using data obtained from the open literature of the elemental composition of barium (Ba) and antimony (Sb) in handswipes of GSR, we believe that there may be a unique GSR signature based on the Sb to Ba ratio.

  8. Crime scene investigations using portable, non-destructive space exploration technology.

    PubMed

    Trombka, Jacob I; Schweitzer, Jeffrey; Selavka, Carl; Dale, Mark; Gahn, Norman; Floyd, Samuel; Marie, James; Hobson, Maritza; Zeosky, Jerry; Martin, Ken; McClannahan, Timothy; Solomon, Pamela; Gottschang, Elyse

    2002-09-10

    The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASAs) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals solve crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ programs with state and local forensic laboratories. A working group of NASA scientists and law enforcement professionals has been established to develop and implement a feasibility demonstration program. Specifically, the group has focused its efforts on identifying gunpowder and primer residue, blood, and semen at crime scenes. Non-destructive elemental composition identification methods are carried out using portable X-ray fluorescence (XRF) systems. These systems are similar to those being developed for planetary exploration programs. A breadboard model of a portable XRF system has been constructed for these tests using room temperature silicon and cadmium-zinc telluride (CZT) detectors. Preliminary tests have been completed with gunshot residue (GSR), blood-spatter and semen samples. Many of the element composition lines have been identified. Studies to determine the minimum detectable limits needed for the analyses of GSR, blood and semen in the crime scene environment have been initiated and preliminary results obtained. Furthermore, a database made up of the inorganic composition of GSR is being developed. Using data obtained from the open literature of the elemental composition of barium (Ba) and antimony (Sb) in handswipes of GSR, we believe that there may be a unique GSR signature based on the Sb to Ba ratio.

  9. Crime scene investigations using portable, non-destructive space exploration technology

    NASA Technical Reports Server (NTRS)

    Trombka, Jacob I.; Schweitzer, Jeffrey; Selavka, Carl; Dale, Mark; Gahn, Norman; Floyd, Samuel; Marie, James; Hobson, Maritza; Zeosky, Jerry; Martin, Ken; McClannahan, Timothy; Solomon, Pamela; Gottschang, Elyse

    2002-01-01

    The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASAs) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals solve crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ programs with state and local forensic laboratories. A working group of NASA scientists and law enforcement professionals has been established to develop and implement a feasibility demonstration program. Specifically, the group has focused its efforts on identifying gunpowder and primer residue, blood, and semen at crime scenes. Non-destructive elemental composition identification methods are carried out using portable X-ray fluorescence (XRF) systems. These systems are similar to those being developed for planetary exploration programs. A breadboard model of a portable XRF system has been constructed for these tests using room temperature silicon and cadmium-zinc telluride (CZT) detectors. Preliminary tests have been completed with gunshot residue (GSR), blood-spatter and semen samples. Many of the element composition lines have been identified. Studies to determine the minimum detectable limits needed for the analyses of GSR, blood and semen in the crime scene environment have been initiated and preliminary results obtained. Furthermore, a database made up of the inorganic composition of GSR is being developed. Using data obtained from the open literature of the elemental composition of barium (Ba) and antimony (Sb) in handswipes of GSR, we believe that there may be a unique GSR signature based on the Sb to Ba ratio.

  10. Recent advances in rapid and non-destructive assessment of meat quality using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Ngadi, Michael

    2016-05-01

    Meat is an important food item in human diet. Its production and consumption has greatly increased in the last decades with the development of economies and improvement of peoples' living standards. However, most of the traditional methods for evaluation of meat quality are time-consuming, laborious, inconsistent and destructive to samples, which make them not appropriate for a fast-paced production and processing environment. Development of innovative and non-destructive optical sensing techniques to facilitate simple, fast, and accurate evaluation of quality are attracting increasing attention in the food industry. Hyperspectral imaging is one of the promising techniques. It integrates the combined merits of imaging and spectroscopic techniques. This paper provides a comprehensive review on recent advances in evaluation of the important quality attributes of meat including color, marbling, tenderness, pH, water holding capacity, and also chemical composition attributes such as moisture content, protein content and fat content in pork, beef and lamb. In addition, the future potential applications and trends of hyperspectral imaging are also discussed in this paper.

  11. First-time observation of Mastro Giorgio masterpieces by means of non-destructive techniques

    NASA Astrophysics Data System (ADS)

    Padeletti, G.; Ingo, G. M.; Bouquillon, A.; Pages-Camagna, S.; Aucouturier, M.; Roehrs, S.; Fermo, P.

    2006-06-01

    For the first time some excellent pieces belonging to the majolica production of the great master Giorgio Andreoli from Gubbio (Central Italy) have been characterized from a chemical and structural point of view with the aim to identify the composition of both pigments and lustres. A series of particle-induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and Raman analyses have been performed on some plates coming from Museo del Palazzo dei Consoli (Gubbio) and several French museums (Louvre, Musée National de la Céramique, Musée National de la Renaissance) lustred by Giorgio Andreoli and decorated by famous majolica painters such as Francesco Xanto Avelli. The three techniques are complementary and useful in the investigation of art objects since they are non-destructive. Furthermore, the low detection limits allow the identification of all elements and compounds present, and RBS allows concentration profiling, too. It is worth noticing that the examined objects are characterized by the presence of both gold and ruby-red lustres, a peculiarity of Mastro Giorgio’s technique. The measurements by PIXE and RBS have been carried out on the AGLAE accelerator at C2RMF, Louvre Palace.

  12. Feasibility for non-destructive discrimination of natural and beryllium-diffused sapphires using Raman spectroscopy.

    PubMed

    Chang, Kyeol; Lee, Sanguk; Park, Jimin; Chung, Hoeil

    2016-03-01

    Raman spectroscopy based non-destructive discrimination between natural and beryllium-diffused (Be-diffused) sapphires has been attempted. The initial examination of Raman image acquired on a sapphire revealed that microscopic structural and compositional heterogeneity was apparent in the sample, so acquisition of spectra able to represent a whole body of sapphire rather than a localized area was necessary for a reliable discrimination. For this purpose, a wide area illumination (WAI) scheme (illumination area: 28.3mm(2)) providing a large sampling volume was employed to collect representative Raman spectra of sapphires. Upon the diffusion of Be into a sapphire, the band shift originated from varied lattice structure by substitution of Be at cation sites was observed and utilized as a valuable spectral signature for the discrimination. In the domain of principal component (PC) scores, the groups of natural and Be-diffused sapphires were identifiable with minor overlapping and the cross-validated discrimination error was 7.3% when k-Nearest Neighbor (k-NN) was used as a classifier.

  13. The use of digital image correlation for non-destructive and multi-scale damage quantification

    NASA Astrophysics Data System (ADS)

    Schwartz, Eric; Saralaya, Raghavendra; Cuadra, Jefferson; Hazeli, Kavan; Vanniamparambil, Prashanth A.; Carmi, Rami; Bartoli, Ivan; Kontsos, Antonios

    2013-04-01

    This research demonstrates the use of Digital Image Correlation (DIC) as a non-contact, non-destructive testing and evaluation (NDT and E) technique by presenting experimental results pertinent to damage monitoring and quantification in several material systems at different length scales of interest. At the microstructural level compact tension aluminum alloy specimens were tested under Mode I loading conditions using an appropriate field of view to track grain scale crack initiation and growth. The results permitted the quantification of the strain accumulation near the tip of the fatigue pre-crack, as well as the computation of the relevant crack opening displacement as a function of crack length. At the mesoscale level, damage quantification in fiber reinforced composites subject to both tensile and fatigue loading conditions was achieved by using the DIC as part of a novel integrated NDT approach combining both acoustic and thermal methods. DIC in these experiments provided spatially resolved and high accuracy strain measurements capable to track the formation of damage "hot spots" that corresponded to the sites of the ultimately visible fracture pattern, while it further allowed the correlation of mechanical parameters to thermal and acoustic features. Finally, at the macrostructural level DIC measurements were also performed and compared to traditional displacement gauges mounted on a steel deck model subject to both static and dynamic loads, as well as on masonry structures including hollow and grouted concrete walls.

  14. Non-Destructive Micro-Chemical and Micro-Luminescence Characterization of Jadeite.

    PubMed

    Mitrani Viggiano, Alejandro; Ruvalcaba Sil, José Luis; Manrique Ortega, Mayra D; Corregidor Berdasco, Victoria

    2016-12-01

    Jadeite was greatly appreciated by pre-Hispanic cultures in Mesoamerica. Despite its importance, knowledge of its mining sources was lost after the Spanish conquest. In the 1950s the only confirmed jadeite deposits in Mesoamerica were found in the Motagua River Fault (MRF), Guatemala. The aim of this study is to present a methodology that is appropriate for the study of archeological jadeite objects using non-destructive spectroscopic and micro-ion beam analysis techniques. This methodology has been applied to perform mineral, elemental, and luminescence characterization of five jadeite samples from the MRF, with white, lilac, and green colors. Fourier-transformed infrared spectroscopy and X-ray diffraction analysis confirmed the presence of jadeite, albite, and omphacite as the main mineral phases in the samples. Elemental maps using particle-induced X-ray emission (PIXE) with a nuclear microprobe and elemental concentration analysis from individual mineral grains using micro-PIXE coupled with micro-ionoluminescence (IL) allowed the detection of minor feldspar, titanite, and grossular mineral contents. Distinctive features from the mineral, elemental, and luminescence characterization have been found that allow the identification of these five jadeite samples.

  15. Numerical study of light propagation in agricultural products for non-destructive assessment of food quality

    NASA Astrophysics Data System (ADS)

    Hattori, Kiyohito; Fujii, Hiroyuki; Tatekura, Yuki; Kobayashi, Kazumichi; Watanabe, Masao

    2015-12-01

    An accurate determination of optical properties of agricultural products is crucial for non-destructive assessment of food quality. For the determination, light intensity is measured at the surface of the product; then, inverse analysis is employed based on a light propagation model such as the radiative transfer equation (RTE). The inverse analysis requires high computational loads because the light intensity is numerically calculated using the model every time the optical properties are changed. For the calculation, we propose an efficient technique by combining a numerical solution with an analytical solution of the RTE, and investigate the validity of the technique in a two-dimensional homogeneous circular medium which is regarded as a light propagation model with optical properties of kiwifruit. The proposed technique can provide accurate results of the light intensity in change of the optical properties, and the accuracy is less dependent on the boundary conditions and source-detector angles. In addition, the technique can reduce computation time compared with that for numerical calculation of the RTE. These results indicate usefulness of the proposed technique for the inverse analysis.

  16. Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (µCT).

    PubMed

    Tracy, Saoirse R; Gómez, José Fernández; Sturrock, Craig J; Wilson, Zoe A; Ferguson, Alison C

    2017-01-01

    Accurate floral staging is required to aid research into pollen and flower development, in particular male development. Pollen development is highly sensitive to stress and is critical for crop yields. Research into male development under environmental change is important to help target increased yields. This is hindered in monocots as the flower develops internally in the pseudostem. Floral staging studies therefore typically rely on destructive analysis, such as removal from the plant, fixation, staining and sectioning. This time-consuming analysis therefore prevents follow up studies and analysis past the point of the floral staging. This study focuses on using X-ray µCT scanning to allow quick and detailed non-destructive internal 3D phenotypic information to allow accurate staging of Arabidopsis thaliana L. and Barley (Hordeum vulgare L.) flowers. X-ray µCT has previously relied on fixation methods for above ground tissue, therefore two contrast agents (Lugol's iodine and Bismuth) were observed in Arabidopsis and Barley in planta to circumvent this step. 3D models and 2D slices were generated from the X-ray µCT images providing insightful information normally only available through destructive time-consuming processes such as sectioning and microscopy. Barley growth and development was also monitored over three weeks by X-ray µCT to observe flower development in situ. By measuring spike size in the developing tillers accurate non-destructive staging at the flower and anther stages could be performed; this staging was confirmed using traditional destructive microscopic analysis. The use of X-ray micro computed tomography (µCT) scanning of living plant tissue offers immense benefits for plant phenotyping, for successive developmental measurements and for accurate developmental timing for scientific measurements. Nevertheless, X-ray µCT remains underused in plant sciences, especially in above-ground organs, despite its unique potential in delivering

  17. Improving the reliability of automated non-destructive inspection

    NASA Astrophysics Data System (ADS)

    Brierley, Nick; Tippetts, Trevor; Cawley, Peter

    2012-05-01

    Advances in NDE technology have led to more automation in data acquisition, and hence an increase in the volume of data collected. The data analysis remains a mostly manual task, performed by a skilled operator. Partial automation, using software to prioritise regions of interest, could simultaneously increase inspection reliability and decrease data analysis time, by optimising the use of the operator's time. This paper outlines the work completed to date in the development of such analysis software.

  18. Litchi freshness rapid non-destructive evaluating method using electronic nose and non-linear dynamics stochastic resonance model.

    PubMed

    Ying, Xiaoguo; Liu, Wei; Hui, Guohua

    2015-01-01

    In this paper, litchi freshness rapid non-destructive evaluating method using electronic nose (e-nose) and non-linear stochastic resonance (SR) was proposed. EN responses to litchi samples were continuously detected for 6 d Principal component analysis (PCA) and non-linear stochastic resonance (SR) methods were utilized to analyze EN detection data. PCA method could not totally discriminate litchi samples, while SR signal-to-noise ratio (SNR) eigen spectrum successfully discriminated all litchi samples. Litchi freshness predictive model developed using SNR eigen values shows high predictive accuracy with regression coefficients R(2) = 0 .99396.

  19. Non-destructive Phenotyping of Lettuce Plants in Early Stages of Development with Optical Sensors

    PubMed Central

    Simko, Ivan; Hayes, Ryan J.; Furbank, Robert T.

    2016-01-01

    Rapid development of plants is important for the production of ‘baby-leaf’ lettuce that is harvested when plants reach the four- to eight-leaf stage of growth. However, environmental factors, such as high or low temperature, or elevated concentrations of salt, inhibit lettuce growth. Therefore, non-destructive evaluations of plants can provide valuable information to breeders and growers. The objective of the present study was to test the feasibility of using non-destructive phenotyping with optical sensors for the evaluations of lettuce plants in early stages of development. We performed the series of experiments to determine if hyperspectral imaging and chlorophyll fluorescence imaging can determine phenotypic changes manifested on lettuce plants subjected to the extreme temperature and salinity stress treatments. Our results indicate that top view optical sensors alone can accurately determine plant size to approximately 7 g fresh weight. Hyperspectral imaging analysis was able to detect changes in the total chlorophyll (RCC) and anthocyanin (RAC) content, while chlorophyll fluorescence imaging revealed photoinhibition and reduction of plant growth caused by the extreme growing temperatures (3 and 39°C) and salinity (100 mM NaCl). Though no significant correlation was found between Fv/Fm and decrease in plant growth due to stress when comparisons were made across multiple accessions, our results indicate that lettuce plants have a high adaptability to both low (3°C) and high (39°C) temperatures, with no permanent damage to photosynthetic apparatus and fast recovery of plants after moving them to the optimal (21°C) temperature. We have also detected a strong relationship between visual rating of the green- and red-leaf color intensity and RCC and RAC, respectively. Differences in RAC among accessions suggest that the selection for intense red color may be easier to perform at somewhat lower than the optimal temperature. This study serves as a proof of

  20. Non-destructive testing for the structures and civil infrastructures characterization

    NASA Astrophysics Data System (ADS)

    Capozzoli, L.; Rizzo, E.

    2012-04-01

    infrared thermography and sonic testing. Finally, we investigated a radiant floor by GPR (900 MHz to 2000 MHz antennas) and long-wave infrared camera. Non-destructive diagnostic techniques allow to investigate a building structure in reinforced concrete or masonry without altering the characteristics of the element investigated. For this reason, geo-electrical and electromagnetic surveys of masonry are a suitable non-destructive tool for the diagnosis of a deteriorated concrete structure. Moreover, the integration of different NDT techniques (conventional and no-conventional) is a very powerful to maximize the capabilities and to compensate for the limitations of each method.

  1. Accuracy of Non-Destructive Testing of PBRs to Estimate Fragilities

    NASA Astrophysics Data System (ADS)

    Brune, J. N.; Brune, R.; Biasi, G. P.; Anooshehpoor, R.; Purvance, M.

    2011-12-01

    Prior studies of Precariously Balanced Rocks (PBRs) have involved various methods of documenting rock shapes and fragilities. These have included non-destructive testing (NDT) methods such as photomodeling, and potentially destructive testing (PDT) such as forced tilt tests. PDT methods usually have the potential of damaging or disturbing the rock or its pedestal so that the PBR usefulness for future generations is compromised. To date we have force-tilt tested approximately 28 PBRs, and of these we believe 7 have been compromised. We suggest here that given other inherent uncertainties in the current methodologies, NDT methods are now sufficiently advanced as to be adequate for the current state of the art use for comparison with Ground Motion Prediction Equations (GMPEs) and seismic hazard maps (SHMs). Here we compare tilt-test static toppling estimates to three non-destructive methods: (1) 3-D photographic modeling (2) profile analysis assuming the rock is 2-D, and (3) expert judgments from photographs. 3-D modeling uses the commercial Photomodeler program and photographs in the field taken from numerous directions around the rock. The output polyhedral shape is analyzed in Matlab determine the center of mass and in Autocad to estimate the static overturning angle alpha. For the 2-D method we chose the photograph in profile looking perpendicular to the estimated direction of toppling. The rock is outlined as a 2-D object in Matlab. Rock dimensions, rocking points, and a vertical reference are supplied by the photo analyst to estimate the center of gravity and static force overturning angles. For the expert opinion method we used additional photographs taken from different directions to improve the estimates of the center of mass and the rocking points. We used 7 rocks for comparisons. The error in estimating tan alpha from 3-D modeling is about 0.05. For 2-D estimates an average error is about 0.1 (?). For expert opinion estimates the error is about 0.06. For

  2. Non-destructive Phenotyping of Lettuce Plants in Early Stages of Development with Optical Sensors.

    PubMed

    Simko, Ivan; Hayes, Ryan J; Furbank, Robert T

    2016-01-01

    Rapid development of plants is important for the production of 'baby-leaf' lettuce that is harvested when plants reach the four- to eight-leaf stage of growth. However, environmental factors, such as high or low temperature, or elevated concentrations of salt, inhibit lettuce growth. Therefore, non-destructive evaluations of plants can provide valuable information to breeders and growers. The objective of the present study was to test the feasibility of using non-destructive phenotyping with optical sensors for the evaluations of lettuce plants in early stages of development. We performed the series of experiments to determine if hyperspectral imaging and chlorophyll fluorescence imaging can determine phenotypic changes manifested on lettuce plants subjected to the extreme temperature and salinity stress treatments. Our results indicate that top view optical sensors alone can accurately determine plant size to approximately 7 g fresh weight. Hyperspectral imaging analysis was able to detect changes in the total chlorophyll (RCC) and anthocyanin (RAC) content, while chlorophyll fluorescence imaging revealed photoinhibition and reduction of plant growth caused by the extreme growing temperatures (3 and 39°C) and salinity (100 mM NaCl). Though no significant correlation was found between Fv/Fm and decrease in plant growth due to stress when comparisons were made across multiple accessions, our results indicate that lettuce plants have a high adaptability to both low (3°C) and high (39°C) temperatures, with no permanent damage to photosynthetic apparatus and fast recovery of plants after moving them to the optimal (21°C) temperature. We have also detected a strong relationship between visual rating of the green- and red-leaf color intensity and RCC and RAC, respectively. Differences in RAC among accessions suggest that the selection for intense red color may be easier to perform at somewhat lower than the optimal temperature. This study serves as a proof of concept

  3. Unmanned Ground Vehicle for Autonomous Non-Destructive Testing of FRP Bridge Decks

    NASA Astrophysics Data System (ADS)

    Klinkhachorn, P.; Mercer, A. Scott; Halabe, Udaya B.; GangaRao, Hota V. S.

    2007-03-01

    Current non-destructive techniques for defect analysis of FRP bridge decks have a narrow scope. These techniques are very good at detecting certain types of defects but are not robust enough to detect all defects by themselves. For example, infrared thermography (IRT) can detect air filled defects and Ground Penetrating Radar (GPR) is good at detecting water filled ones. These technologies can be combined to create a more robust defect detection scheme. To accomplish this, an Unmanned Ground Vehicle (UGV) has been designed that incorporates both IR and GPR analysis to create a comprehensive defect map of a bridge deck. The UGV autonomously surveys the deck surface and acquires data. The UGV has two 1.5 GHz ground coupled GPR antennas that are mounted on the front of the UGV to collect GPR data. It also incorporates an active heating source and a radiometric IR camera to capture IR images of the deck, even in less than ideal weather scenarios such as cold cloudy days. The UGV is designed so that it can collect data in an assembly line fashion. It moves in 1 foot increments. When moving, it collects GPR data from the two antennas. When it stops it heats a section of the deck. The next time it stops to heat a section, the IR camera is analyzing the preheated deck section while preparing for the next section. Because the data is being continually collected using this method, the UGV can survey the entire deck in an efficient and timely manner.

  4. Inconsistency in 9 mm bullets measured with non-destructive X-ray computed tomography.

    PubMed

    Kumar, Jagadeesha; Landheer, Dirk; Barnes-Warden, Jane; Fenne, Paul; Attridge, Alex; Williams, Mark A

    2012-01-10

    Fundamental to any ballistic armour standard is the reference projectile that is to be defeated. Typically, for certification, consistency of bullets is assumed. Therefore, practical variations in bullet jacket dimensions can have far reaching consequences. Traditionally, internal dimensions could only be analysed by cutting bullets which rules out any subsequent ballistic assessment. Therefore, the use of a non-destructive X-ray computed tomography (CT) method is explored in this paper. A set of 10 bullets (9 mm DM11) was taken for analysing both intra and inter bullet jacket thickness variation. CT measurements of jacket thickness were validated with high resolution scanning electron microscope (SEM) images. An image based analysis methodology has been developed to extract the jacket thickness map and the centre of gravity. Thickness variations of the order of 200 μm were found commonly across all the bullets along the length and an angular variation of up to 100 μm was found in a few bullets. Jacket thickness and centre of gravity were also calculated for the same bullets after impact and the variations between the pre- and post-impacted bullets were compared, by establishing a common physical reference. The results show that the proposed CT scanning approach and subsequent image analysis method can bring out the statistical variations in bullet geometry pre- and post impact effectively. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Prediction of Eggshell Ultrastructure via Some Non-destructive and Destructive Measurements in Fayoumi Breed

    PubMed Central

    Radwan, Lamiaa M.; Galal, A.; Shemeis, A. R.

    2015-01-01

    Possibilities of predicting eggshell ultrastructure from direct non-destructive and destructive measurements were examined using 120 Fayoumi eggs collected from the flock at 45 weeks of age. The non-destructive measurements included weight, length and width of the egg. The destructive measurements were breaking strength and shell thickness. The eggshell ultrastructure traits involved the total thickness of eggshell layer, thickness of palisade layer, cone layer and total score. Prediction of total thickness of eggshell layer based on non-destructive measurements individually or simultaneously was not possible (R2 = 0.01 to 0.16). The destructive measurements were far more accurate than the non-destructive in predicting total thickness of eggshell layer. Prediction based on breaking strength alone was more accurate (R2 = 0.85) than that based on shell thickness alone (R2 = 0.72). Adding shell thickness to breaking strength (the best predictor) increased the accuracy of prediction by 5%. The results obtained indicated that both non-destructive and destructive measurements were not useful in predicting the cone layer (R2 not exceeded 18%). The maximum accuracy of prediction of total score (R2 = 0.48) was obtained from prediction based on breaking strength alone. Combining shell thicknesses and breaking strength into one equation was no help in improving the accuracy of prediction. PMID:26104404

  6. Prediction of Eggshell Ultrastructure via Some Non-destructive and Destructive Measurements in Fayoumi Breed.

    PubMed

    Radwan, Lamiaa M; Galal, A; Shemeis, A R

    2015-07-01

    Possibilities of predicting eggshell ultrastructure from direct non-destructive and destructive measurements were examined using 120 Fayoumi eggs collected from the flock at 45 weeks of age. The non-destructive measurements included weight, length and width of the egg. The destructive measurements were breaking strength and shell thickness. The eggshell ultrastructure traits involved the total thickness of eggshell layer, thickness of palisade layer, cone layer and total score. Prediction of total thickness of eggshell layer based on non-destructive measurements individually or simultaneously was not possible (R(2) = 0.01 to 0.16). The destructive measurements were far more accurate than the non-destructive in predicting total thickness of eggshell layer. Prediction based on breaking strength alone was more accurate (R(2) = 0.85) than that based on shell thickness alone (R(2) = 0.72). Adding shell thickness to breaking strength (the best predictor) increased the accuracy of prediction by 5%. The results obtained indicated that both non-destructive and destructive measurements were not useful in predicting the cone layer (R(2) not exceeded 18%). The maximum accuracy of prediction of total score (R(2) = 0.48) was obtained from prediction based on breaking strength alone. Combining shell thicknesses and breaking strength into one equation was no help in improving the accuracy of prediction.

  7. Neutron radiography as a non-destructive method for diagnosing neutron converters for advanced thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Muraro, A.; Albani, G.; Perelli Cippo, E.; Croci, G.; Angella, G.; Birch, J.; Cazzaniga, C.; Caniello, R.; Dell'Era, F.; Ghezzi, F.; Grosso, G.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Schimdt, S.; Robinson, L.; Rebai, M.; Salvato, G.; Tresoldi, D.; Vasi, C.; Tardocchi, M.

    2016-03-01

    Due to the well-known problem of 3He shortage, a series of different thermal neutron detectors alternative to helium tubes are being developed, with the goal to find valid candidates for detection systems for the future spallation neutron sources such as the European Spallation Source (ESS). A possible 3He-free detector candidate is a charged particle detector equipped with a three dimensional neutron converter cathode (3D-C). The 3D-C currently under development is composed by a series of alumina (Al2O3) lamellas coated by 1 μ m of 10B enriched boron carbide (B4C). In order to obtain a good characterization in terms of detector efficiency and uniformity it is crucial to know the thickness, the uniformity and the atomic composition of the B4C neutron converter coating. In this work a non-destructive technique for the characterization of the lamellas that will compose the 3D-C was performed using neutron radiography. The results of these measurements show that the lamellas that will be used have coating uniformity suitable for detector applications. This technique (compared with SEM, EDX, ERDA, XPS) has the advantage of being global (i.e. non point-like) and non-destructive, thus it is suitable as a check method for mass production of the 3D-C elements.

  8. Non-destructive analyses on a meteorite fragment that fell in the Madrid city centre in 1896.

    PubMed

    Garcia-Guinea, Javier; Tormo, Laura; Rubio Ordoñez, Alvaro; Garcia-Moreno, Olga

    2013-09-30

    The historical Madrid meteorite chondrite fell in 1896 showing thin melt veins with a 65% of brecciated forsterite fragments surrounded by a fine grained matrix formed by troilite, chromite and Fe-Ni blebs. It exhibits a delicate iron infill, neo-formation of troilite in pockets and shock veins and neo-formation of Na-feldspar formed at high temperature and fast quenching. The semi-quantitative mineral determinations were performed with IMAGEJ freeware and chemical mappings resulting in the following approximated compositions: olivine (~55%); augite (~10%); enstatite (~10%); plagioclase (~10%); chromite (~2%); troilite (~4%), kamacite-taenite α-γ-(Fe, Ni) (~7%) and merrillite (~7%). The specimen was also studied by computer tomography, micro-Raman spectroscopy and spectral cathodoluminescence. X-ray diffraction patterns were also recorded in non-destructive way on a polished surface because of the small size of the specimen. This combination of non-destructive techniques provides an improved knowledge on the Madrid-1896 meteorite compared to the previous study performed on the same specimen carried out twenty years ago by electron probe microanalysis and optical microscopy in destructive way. Limits of these techniques are the specimen's size in the analytical chambers and the threshold resolution of the microscopes analyzing shock veins micro-crystals.

  9. Classification of hot particles from the Chernobyl accident and nuclear weapons detonations by non-destructive methods.

    PubMed

    Zheltonozhsky, V; Mück, K; Bondarkov, M

    2001-01-01

    Both after the Chernobyl accident and nuclear weapon detonations, agglomerates of radioactive material, so-called hot particles, were released or formed which show a behaviour in the environment quite different from the activity released in gaseous or aerosol form. The differences in their characteristic properties, in the radionuclide composition and the uranium and actinide contents are described in detail for these particles. While nuclear bomb hot particles (both from fission and fusion bombs) incorporate well detectable trace amounts of 60Co and 152Eu, these radionuclides are absent in Chernobyl hot particles. In contrast, Chernobyl hot particles contain 125Sb and 144Ce which are absent in atomic bomb HPs. Obvious differences are also observable between fusion and fission bombs' hot particles (significant differences in 152Eu/l55Eu, 154Eu/155Eu and 238Pu/239Pu ratios) which facilitate the identification of HPs of unknown provensence. The ratio of 239Pu/240Pu in Chernobyl hot particles could be determined by a non-destructive method at 1:1.5. A non-destructive method to determine the content of non-radioactive elements by Kalpha-emission measurements was developed by which inactive Zr, Nb, Fe and Ni could be verified in the particles.

  10. Automated Non-Destructive Testing Array Evaluation System

    SciTech Connect

    Wei, T.; Zavaljevski, N.; Bakhtiari, S.; Miron, A.; Jupperman, D.

    2004-12-31

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes.

  11. Neutron tomography of particulate filters: A non-destructive investigation tool for applied and industrial research

    SciTech Connect

    Toops, Todd J.; Bilheux, Hassina Z.; Voisin, Sophie; Gregor, Jens; Walker, Lakeisha M. H.; Strzelec, Andrea; Finney, Charles E. A.; Pihl, Josh A.

    2013-08-19

    This research describes the development and implementation of high-fidelity neutron imaging and the associated analysis of the images. This advanced capability allows the non-destructive, non-invasive imaging of particulate filters (PFs) and how the deposition of particulate and catalytic washcoat occurs within the filter. The majority of the efforts described here were performed at the High Flux Isotope Reactor (HFIR) CG-1D neutron imaging beamline at Oak Ridge National Laboratory; the current spatial resolution is approximately 50 μm. The sample holder is equipped with a high-precision rotation stage that allows 3D imaging (i.e., computed tomography) of the sample when combined with computerized reconstruction tools. What enables the neutron-based image is the ability of some elements to absorb or scatter neutrons where other elements allow the neutron to pass through them with negligible interaction. Of particular interest in this study is the scattering of neutrons by hydrogen-containing molecules, such as hydrocarbons (HCs) and/or water, which are adsorbed to the surface of soot, ash and catalytic washcoat. Even so, the interactions with this adsorbed water/HC is low and computational techniques were required to enhance the contrast, primarily a modified simultaneous iterative reconstruction technique (SIRT). Lastly, this effort describes the following systems: particulate randomly distributed in a PF, ash deposition in PFs, a catalyzed washcoat layer in a PF, and three particulate loadings in a SiC PF.

  12. Neutron tomography of particulate filters: a non-destructive investigation tool for applied and industrial research

    NASA Astrophysics Data System (ADS)

    Toops, Todd J.; Bilheux, Hassina Z.; Voisin, Sophie; Gregor, Jens; Walker, Lakeisha; Strzelec, Andrea; Finney, Charles E. A.; Pihl, Josh A.

    2013-11-01

    This research describes the development and implementation of high-fidelity neutron imaging and the associated analysis of the images. This advanced capability allows the non-destructive, non-invasive imaging of particulate filters (PFs) and how the deposition of particulate and catalytic washcoat occurs within the filter. The majority of the efforts described here were performed at the High Flux Isotope Reactor (HFIR) CG-1D neutron imaging beamline at Oak Ridge National Laboratory; the current spatial resolution is approximately 50 μm. The sample holder is equipped with a high-precision rotation stage that allows 3D imaging (i.e., computed tomography) of the sample when combined with computerized reconstruction tools. What enables the neutron-based image is the ability of some elements to absorb or scatter neutrons where other elements allow the neutron to pass through them with negligible interaction. Of particular interest in this study is the scattering of neutrons by hydrogen-containing molecules, such as hydrocarbons (HCs) and/or water, which are adsorbed to the surface of soot, ash and catalytic washcoat. Even so, the interactions with this adsorbed water/HC is low and computational techniques were required to enhance the contrast, primarily a modified simultaneous iterative reconstruction technique (SIRT). This effort describes the following systems: particulate randomly distributed in a PF, ash deposition in PFs, a catalyzed washcoat layer in a PF, and three particulate loadings in a SiC PF.

  13. Nitrogen concentration estimation in tomato leaves by VIS-NIR non-destructive spectroscopy.

    PubMed

    Ulissi, Valentina; Antonucci, Francesca; Benincasa, Paolo; Farneselli, Michela; Tosti, Giacomo; Guiducci, Marcello; Tei, Francesco; Costa, Corrado; Pallottino, Federico; Pari, Luigi; Menesatti, Paolo

    2011-01-01

    Nitrogen concentration in plants is normally determined by expensive and time consuming chemical analyses. As an alternative, chlorophyll meter readings and N-NO(3) concentration determination in petiole sap were proposed, but these assays are not always satisfactory. Spectral reflectance values of tomato leaves obtained by visible-near infrared spectrophotometry are reported to be a powerful tool for the diagnosis of plant nutritional status. The aim of the study was to evaluate the possibility and the accuracy of the estimation of tomato leaf nitrogen concentration performed through a rapid, portable and non-destructive system, in comparison with chemical standard analyses, chlorophyll meter readings and N-NO(3) concentration in petiole sap. Mean reflectance leaf values were compared to each reference chemical value by partial least squares chemometric multivariate methods. The correlation between predicted values from spectral reflectance analysis and the observed chemical values showed in the independent test highly significant correlation coefficient (r = 0.94). The utilization of the proposed system, increasing efficiency, allows better knowledge of nutritional status of tomato plants, with more detailed and sharp information and on wider areas. More detailed information both in space and time is an essential tool to increase and stabilize crop quality levels and to optimize the nutrient use efficiency.

  14. Non-destructive evaluation of spiral-welded pipes using flexural guided waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Tang, Zhifeng; Lü, Fuzai; Pan, Xiaohong

    2016-02-01

    Millions of miles of pipes are being used in both civil and industrial fields. Spiral-welded pipes, which are widely applied in fields such as drainage, architecture as well as oil and gas storage and transportation, are difficult to inspect due to their complex geometry. Guided waves have shown a great potential in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) for such cases. Flexural guided waves that propagate at a helix angle relative to the axial direction of pipe, are the most appropriate modes for inspecting spiral-welded pipes. The classical Normal Mode Expansion method (NME) is adopted to disseminate the forced response and perturbation analysis of a steel pipe with respect to a time delay circular loading. A time delay circular array transducer (TDCAT) is proposed for the purpose of exciting pure flexural mode in pipes. Pure flexural mode can be excited when the time delay parameter is specifically designed. The theoretical prediction is verified by finite element numerical evaluation and spiral-welded pipe inspection experiment.

  15. Nitrogen Concentration Estimation in Tomato Leaves by VIS-NIR Non-Destructive Spectroscopy

    PubMed Central

    Ulissi, Valentina; Antonucci, Francesca; Benincasa, Paolo; Farneselli, Michela; Tosti, Giacomo; Guiducci, Marcello; Tei, Francesco; Costa, Corrado; Pallottino, Federico; Pari, Luigi; Menesatti, Paolo

    2011-01-01

    Nitrogen concentration in plants is normally determined by expensive and time consuming chemical analyses. As an alternative, chlorophyll meter readings and N-NO3 concentration determination in petiole sap were proposed, but these assays are not always satisfactory. Spectral reflectance values of tomato leaves obtained by visible-near infrared spectrophotometry are reported to be a powerful tool for the diagnosis of plant nutritional status. The aim of the study was to evaluate the possibility and the accuracy of the estimation of tomato leaf nitrogen concentration performed through a rapid, portable and non-destructive system, in comparison with chemical standard analyses, chlorophyll meter readings and N-NO3 concentration in petiole sap. Mean reflectance leaf values were compared to each reference chemical value by partial least squares chemometric multivariate methods. The correlation between predicted values from spectral reflectance analysis and the observed chemical values showed in the independent test highly significant correlation coefficient (r = 0.94). The utilization of the proposed system, increasing efficiency, allows better knowledge of nutritional status of tomato plants, with more detailed and sharp information and on wider areas. More detailed information both in space and time is an essential tool to increase and stabilize crop quality levels and to optimize the nutrient use efficiency. PMID:22163962

  16. Autofluorescence microscopy: a non-destructive tool to monitor mitochondrial toxicity.

    PubMed

    Rodrigues, Robim M; Macko, Peter; Palosaari, Taina; Whelan, Maurice P

    2011-10-30

    Visualization of NADH by fluorescence microscopy makes it possible to distinguish mitochondria inside living cells, allowing structure analysis of these organelles in a non-invasive way. Mitochondrial morphology is determined by the occurrence of mitochondrial fission and fusion. During normal cell function mitochondria appear as elongated tubular structures. However, cellular malfunction induces mitochondria to fragment into punctiform, vesicular structures. This change in morphology is associated with the generation of reactive oxygen species (ROS) and early apoptosis. The aim of this study is to demonstrate that autofluorescence imaging of mitochondria in living eukaryotic cells provides structural and morphological information that can be used to assess mitochondrial health. We firstly established the illumination conditions that do not affect mitochondrial structure and calculated the maximum safe light dose to which the cells can be exposed. Subsequently, sequential recording of mitochondrial fluorescence was performed and changes in mitochondrial morphology were monitored in a continuous non-destructive way. This approach was then used to assess mitochondrial toxicity induced by potential toxicants exposed to mammalian cells. Both mouse and human cells were used to evaluate mitochondrial toxicity of different compounds with different toxicities. This technique constitutes a novel and promising approach to explore chemical induced toxicity because of its reliability to monitor mitochondrial morphology changes and corresponding toxicity in a non-invasive way.

  17. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model

    NASA Astrophysics Data System (ADS)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello

    2017-02-01

    Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.

  18. Non-destructive monitoring of fiber orientation using AC-IS: An industrial-scale application

    SciTech Connect

    Ozyurt, Nilufer . E-mail: ozyurtnil@itu.edu.tr; Mason, Thomas O.; Shah, Surendra P.

    2006-09-15

    A comprehensive study has been undertaken to investigate the ability of AC-impedance spectroscopy (AC-IS) to non-destructively monitor the fiber dispersion of conductive fiber-reinforced cement-based materials. Previous work showed that AC-IS effectively monitors various fiber dispersion issues in lab-scale steel fiber-reinforced specimens. In this part of the study, AC-IS was used to study fiber orientation in an industrial-scale pre-cast concrete beam. A conventional method-image analysis (IA)-was used to verify the results of AC-IS measurements. The results of AC-IS and IA were found to match very well in experimental uncertainty. Splitting tensile tests and bending tests were conducted on the parts of the beam to study the effects of fiber orientation on the mechanical performance. The results of the mechanical tests also confirmed the results of AC-IS with splitting tensile strengths increasing as the alignment of fibers increased.

  19. Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines.

    PubMed

    Shih, Yi-Fan; Wang, Yu-Ren; Lin, Kuo-Liang; Chen, Chin-Wen

    2015-10-22

    Non-destructive testing (NDT) methods are important alternatives when destructive tests are not feasible to examine the in situ concrete properties without damaging the structure. The rebound hammer test and the ultrasonic pulse velocity test are two popular NDT methods to examine the properties of concrete. The rebound of the hammer depends on the hardness of the test specimen and ultrasonic pulse travelling speed is related to density, uniformity, and homogeneity of the specimen. Both of these two methods have been adopted to estimate the concrete compressive strength. Statistical analysis has been implemented to establish the relationship between hammer rebound values/ultrasonic pulse velocities and concrete compressive strength. However, the estimated results can be unreliable. As a result, this research proposes an Artificial Intelligence model using support vector machines (SVMs) for the estimation. Data from 95 cylinder concrete samples are collected to develop and validate the model. The results show that combined NDT methods (also known as SonReb method) yield better estimations than single NDT methods. The results also show that the SVM model is more accurate than the statistical regression model.

  20. Routes for GMR-Sensor Design in Non-Destructive Testing

    PubMed Central

    Pelkner, Matthias; Neubauer, Andreas; Reimund, Verena; Kreutzbruck, Marc; Schütze, Andreas

    2012-01-01

    GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT) applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL) distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of μm sized defects a gradiometer base line of 250 μm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial μm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.

  1. Combined non-destructive XRF and SR-XAS study of archaeological artefacts.

    PubMed

    Bardelli, Fabrizio; Barone, Germana; Crupi, Vincenza; Longo, Francesca; Majolino, Domenico; Mazzoleni, Paolo; Venuti, Valentina

    2011-03-01

    We report on a non-destructive study of Sicilian ceramic fragments of cultural heritage interest, classified as "proto-majolica" pottery and dating back to the twelfth to thirteen centuries AD. The analytical approach used is based on the employment of two totally non-invasive spectroscopic techniques: X-ray fluorescence (XRF), using a portable energy-dispersive XRF analyser, and X-ray absorption spectroscopy, using synchrotron radiation as a probe (SR-XAS). XRF measurements allowed us to collect elemental and spatially resolved information on major and minor constituents of the decorated coating of archaeological pottery fragments, so providing preliminary results on the main components characterizing the surface. In particular, we assigned to Fe and Mn the role of key elements of the colouring agent. With the aim of obtaining more detailed information, we performed SR-XAS measurements at the Fe and Mn K-edges at the Italian BM08 beamline at the European Synchrotron Radiation Facility (Grenoble, France). The experimental data were analysed by applying principal component analysis and least-squares fitting to the near-edge part of the spectra (X-ray absorption near-edge structure) to determine the samples' speciation. From the overall results, umber, a class of brownish pigments characterized by a mixture of hydrated iron and manganese oxides, has been ascribed as a pigmenting agent.

  2. Non-Destructive Inspection Techniques for Acrylic Canopies,

    DTIC Science & Technology

    1976-04-01

    usually oil or water. inspection is performed by an analysis of the ultrasonic waves received by the transmitter/receiver transducer, as in pulse-echo or...coupling the transducer holder to the standard with lightweight oil . Test sensitivity was adjusted to produce a response from the reference flaw of...entire edge area was inspected as shown in Figure 6. The transducer holder is cotipled by lightweight oil to the canopy. Scanning is accomplished by

  3. Non-destructive ultrasonic measurements of case depth. [in steel

    NASA Technical Reports Server (NTRS)

    Flambard, C.; Lambert, A.

    1978-01-01

    Two ultrasonic methods for nondestructive measurements of the depth of a case-hardened layer in steel are described. One method involves analysis of ultrasonic waves diffused back from the bulk of the workpiece. The other method involves finding the speed of propagation of ultrasonic waves launched on the surface of the work. Procedures followed in the two methods for measuring case depth are described.

  4. Non-Destructive Testing A Developing Tool in Science and Engineering

    SciTech Connect

    Lin, Lianshan

    2013-01-01

    Non-destructive testing (NDT), sometimes also known as non-destructive inspection (NDI) or non-destructive examination (NDE), has been applied to solve a wide range of science and industry problems including construction, aerospace, nuclear engineering, manufacturing, space exploration, art objects, forensic studies, biological and medical fields, etc. Without any permanent changing or alteration of testing objects, NDT methods provide great advantages such as increased testing reliability, efficiency, and safety, as well as reduced time and cost. Since the second half of the 20th century, NDT technology has seen significant growth. Depending on the physical properties being measured, NDT techniques can be classified into several branches. This article will provide a brief overview of commonly used NDT methods and their up-to-date progresses including optical examination, radiography, acoustic emission, ultrasonic testing and eddy current testing. For extended reviews on many presently used NDT methods, please refer to articles by Mullins [1, 2].

  5. Non-destructive label-free continuous monitoring of in vitro chondrogenesis via electrical conductivity and its anisotropy.

    PubMed

    Oh, Tong In; Kim, Changhwan; Karki, Bishal; Son, Youngsook; Lee, EunAh; Woo, Eung Je

    2015-02-01

    Non-destructive label-free continuous monitoring of in vitro tissue culture is an unmet demand in tissue engineering. Noting that different compositions of cartilage lead to different electrical tissue properties, we propose a new method to measure the electrical conductivity and its anisotropy during in vitro chondrogenesis. We used a conductivity tensor probe with 17 electrodes and a bio-impedance spectroscopy (BIS) device to measure the conductivity values and the anisotropy ratios at the bottom and top surfaces of the tissue samples during the culture period of 6 weeks. Clearly distinguishing glycosaminoglycans (GAGs), collagen, and also various mixtures of them, the measured conductivity value and the estimated tissue anisotropy provide diagnostic information of the depth-dependent tissue structure and compositions. Continuously monitoring the individual tissue during the entire chondrogenesis process without any adverse effect, the proposed method may significantly increase the productivity of cartilage tissue engineering. © 2014 Wiley Periodicals, Inc.

  6. Non-destructive evaluation techniques for chemical weapons destruction

    SciTech Connect

    Hartwell, J.K.; Caffrey, A.J.

    1996-09-01

    fThe safe and verifiable disposition, either by incineration or chemical neutralization of chemical warfare (CW) agents requires correct {ital a priori} identification of each munition or container to be processed. A variety of NDE techniques have been used or tested for the examination and characterization of munitions. In the U.S., three widely used techniques are X-ray radiography, acoustic resonance spectroscopy (ARS), and prompt gamma ray neutron activation analysis (PINS). The technical bases, instrumental implementations, and applications of the U.S. versions of these methods are briefly discussed. 10 refs., 2 figs., 1 tab.

  7. Optical surface contouring for non-destructive inspection of turbomachinery

    NASA Technical Reports Server (NTRS)

    Modarress, Dariush; Schaack, David F.

    1994-01-01

    Detection of stress cracks and other surface defects during maintenance and in-service inspection of propulsion system components, including turbine blades and combustion compartments, is presently performed visually. There is a need for a non-contact, miniaturized, and fully fieldable instrument that may be used as an automated inspection tool for inspection of aircraft engines. During this SBIR Phase 1 program, the feasibility of a ruggedized optical probe for automatic and nondestructive inspection of complex shaped objects will be established. Through a careful analysis of the measurement requirements, geometrical and optical constraints, and consideration of issues such as manufacturability, compactness, simplicity, and cost, one or more conceptual optical designs will be developed. The proposed concept will be further developed and a prototype will be fabricated during Phase 2.

  8. Non-Destructive Evaluation of Wire Insulation and Coatings

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I (Inventor); Anastasi, Robert F. (Inventor)

    2004-01-01

    The present invention uses the generation and detection of acoustic guided waves to evaluate the condition of the insulation on electrical wiring. Low order axisymmetric and flexural acoustic modes are generated in the insulated wire and travel partially in the center conductor and partially in the outer insulation. The stiffness of the insulation and the insulation's condition affect the overall wave speed and amplitude of the guided wave. Analysis of the received signal provides information about the age or useful life of the wire insulation. In accordance with the present invention, signal transmission occurs at one location on the electrical wire to be evaluated, and detection occurs at one or more locations along the electrical wire. Additional receivers can be used to improve measurement accuracy. Either the transmission transducer or one or more receiver transducers may be angled at other than 90 degrees to the wire. Generation of the guided waves can be accomplished by imparting a pressure pulse on the wire. Alternative embodiments include generation via a laser, such as a Q-switched laser or a laser diode.

  9. Design of a Borescope for Extravehicular Non-Destructive Applications

    NASA Technical Reports Server (NTRS)

    Bachnak, Rafic

    2003-01-01

    Anomalies such as corrosion, structural damage, misalignment, cracking, stress fiactures, pitting, or wear can be detected and monitored by the aid of a borescope. A borescope requires a source of light for proper operation. Today s current lighting technology market consists of incandescent lamps, fluorescent lamps and other types of electric arc and electric discharge vapor lamp. Recent advances in LED technology have made LEDs viable for a number of applications, including vehicle stoplights, traffic lights, machine-vision-inspection, illumination, and street signs. LEDs promise significant reduction in power consumption compared to other sources of light. This project focused on comparing images taken by the Olympus IPLEX, using two different light sources. One of the sources is the 50-W internal metal halide lamp and the other is a 1 W LED placed at the tip of the insertion tube. Images acquired using these two light sources were quantitatively compared using their histogram, intensity profile along a line segment, and edge detection. Also, images were qualitatively compared using image registration and transformation [l]. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by an operator. Analysis using pattern recognition using Eigenfaces and Gaussian Pyramid in face recognition may be more useful.

  10. EVITA Project: Comparison Between Traditional Non-Destructive Techniques and Phase Contrast X-Ray Imaging Applied to Aerospace Carbon Fibre Reinforced Polymer

    NASA Astrophysics Data System (ADS)

    Gresil, Matthieu; Revol, Vincent; Kitsianos, Konstantinos; Kanderakis, Georges; Koulalis, Ilias; Sauer, Marc-Olivier; Trétout, Hervé; Madrigal, Ana-Maria

    2016-10-01

    The EU-project EVITA (Non-Destructive EValuation, Inspection and Testing of Primary Aeronautical Composite Structures Using Phase Contrast X-Ray Imaging) aims at bringing Grating-based Phase Contrast X-ray imaging technology to Non-Destructive Evaluation and Inspection of advanced primary and/or complex aerospace composite structures. Grating-based Phase Contrast X-Ray Imaging is based on the so-called Talbot-Lau interferometer, which is made of the combination of a standard X-ray apparatus with three transmission gratings as documented in the literature. This paper presents a comparison of two traditional non-destructive techniques (NDT): ultrasonic through transmission (immersed and water jet) and ultrasonic phased-array pulse echo, with the developed phase contrast X-Ray Imaging applied to advanced aerospace carbon fibre reinforced polymer. Typical defects produced during manufacture is examined as part of the testing and validation procedure. The following defects have been identified as being those most likely to be detected more effectively by the Grating-based Phase Contrast X-Ray Imaging process than other state of the art industrial NDT techniques: porosity, foreign objects, cracks, resin rich, cut fibres, and wavy fibres. The introduction of this innovative methodology is expected to provide the aeronautical industry with a reliable and detailed insight of the integrity of thin and thick composite structures as well as of complex geometry ones, such as integrated closed boxes and sandwiches.

  11. EVITA Project: Comparison Between Traditional Non-Destructive Techniques and Phase Contrast X-Ray Imaging Applied to Aerospace Carbon Fibre Reinforced Polymer

    NASA Astrophysics Data System (ADS)

    Gresil, Matthieu; Revol, Vincent; Kitsianos, Konstantinos; Kanderakis, Georges; Koulalis, Ilias; Sauer, Marc-Olivier; Trétout, Hervé; Madrigal, Ana-Maria

    2017-04-01

    The EU-project EVITA (Non-Destructive EValuation, Inspection and Testing of Primary Aeronautical Composite Structures Using Phase Contrast X-Ray Imaging) aims at bringing Grating-based Phase Contrast X-ray imaging technology to Non-Destructive Evaluation and Inspection of advanced primary and/or complex aerospace composite structures. Grating-based Phase Contrast X-Ray Imaging is based on the so-called Talbot-Lau interferometer, which is made of the combination of a standard X-ray apparatus with three transmission gratings as documented in the literature. This paper presents a comparison of two traditional non-destructive techniques (NDT): ultrasonic through transmission (immersed and water jet) and ultrasonic phased-array pulse echo, with the developed phase contrast X-Ray Imaging applied to advanced aerospace carbon fibre reinforced polymer. Typical defects produced during manufacture is examined as part of the testing and validation procedure. The following defects have been identified as being those most likely to be detected more effectively by the Grating-based Phase Contrast X-Ray Imaging process than other state of the art industrial NDT techniques: porosity, foreign objects, cracks, resin rich, cut fibres, and wavy fibres. The introduction of this innovative methodology is expected to provide the aeronautical industry with a reliable and detailed insight of the integrity of thin and thick composite structures as well as of complex geometry ones, such as integrated closed boxes and sandwiches.

  12. Pallasite formation after a non-destructive impact. An experimental- and image analyses-based study

    NASA Astrophysics Data System (ADS)

    Solferino, Giulio; Golabek, Gregor J.; Nimmo, Francis; Schmidt, Max W.

    2015-04-01

    The formation conditions of pallasite meteorites in the interior of terrestrial planetesimals have been matter of debate over the last 40 years. Among other characteristics, the simple mineralogical composition (i.e., olivine, FeNi, FeS +/- pyroxene) and the dualism between fragmental and rounded olivine-bearing pallasites must be successfully reproduced by a potential formation scenario. This study incorporates a series of annealing experiments with olivine plus Fe-S, and digital image analyses of slabs from Brenham, Brahin, Seymchan, and Springwater pallasites. Additionally a 1D finite-difference numerical model was employed to show that a non-destructive collision followed by mixing of the impactor's core with the target body silicate mantle could lead to the formation of both fragmental and rounded pallasite types. Specifically, an impact occurring right after the accomplishment of the target body differentiation and up to several millions of years afterwards allows for (i) average grain sizes consistent with the observed rounded olivine-bearing pallasites, (ii) a remnant magnetization of Fe-Ni olivine inclusions as measured in natural pallasites and (iii) for the metallographic cooling rates derived from Fe-Ni in pallasites. An important result of this investigation is the definition of the grain growth rate of olivine in molten Fe-S as follows: dn - d0n = k0 exp(-Ea/RT) t, where, d0 is the starting grain size, d the grain size at time t, n = 2.42(46) the growth exponent, k0 = 9.43•E06 μm n s-1 a characteristic constant, Ea = 289 kJ/mol the activation energy for a specific growth process, R the gas constant, and T the absolute temperature. The computed olivine coarsening rate is markedly faster than in olivine-FeNi and olivine-Ni systems.

  13. Non-Destructive Evaluation of Kissing Bonds using Local Defect Resonance (LDR) Spectroscopy: A Simulation Study

    NASA Astrophysics Data System (ADS)

    Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.

    With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.

  14. Infrared thermography non-destructive evaluation of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  15. A spatially offset Raman spectroscopy method for non-destructive detection of gelatin-encapsulated powders

    USDA-ARS?s Scientific Manuscript database

    Non-destructive subsurface detection of encapsulated, coated, or seal-packaged foods and pharmaceuticals can help prevent distribution and consumption of counterfeit or hazardous products. This study used a Spatially Offset Raman Spectroscopy (SORS) method to detect and identify urea, ibuprofen, and...

  16. Non-destructive method for inward leakage detection of a plate evaporator

    NASA Astrophysics Data System (ADS)

    Hribernik, Ales

    2007-05-01

    A new non-destructive method was developed for the detection of refrigerant leakage at an evaporator's inflow. Nitrogen and oxygen gas were successively blown through the evaporator. A gas analyser was applied at the outflow of the evaporator and the oxygen concentration measured. It was possible to detect any leakage by investigating the oxygen concentration-time history diagram.

  17. Using magnetic levitation for non-destructive quality control of plastic parts.

    PubMed

    Hennek, Jonathan W; Nemiroski, Alex; Subramaniam, Anand Bala; Bwambok, David K; Yang, Dian; Harburg, Daniel V; Tricard, Simon; Ellerbee, Audrey K; Whitesides, George M

    2015-03-04

    Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated.

  18. Measuring low-level porosity structures by using a non-destructive terahertz inspection system

    NASA Astrophysics Data System (ADS)

    Liu, Hongwei; Ke, Lin

    2017-09-01

    It is demanded a non-contact, non-destructive and reliable system and method of porosity measurement because conventional techniques are contact and cubersome. We have developed a method by using THz inspection system, which allows measuring the porosity rapidly and non-invasively, by introducing an external perturbation. The embodiments of the external perturbation can be mechanical or pulsed laser.

  19. Non-destructive assessment of human ribs mechanical properties using quantitative ultrasound.

    PubMed

    Mitton, David; Minonzio, Jean-Gabriel; Talmant, Maryline; Ellouz, Rafaa; Rongieras, Frédéric; Laugier, Pascal; Bruyère-Garnier, Karine

    2014-04-11

    Advanced finite element models of the thorax have been developed to study, for example, the effects of car crashes. While there is a need for material properties to parameterize such models, specific properties are largely missing. Non-destructive techniques applicable in vivo would, therefore, be of interest to support further development of thorax models. The only non-destructive technique available today to derive rib bone properties would be based on quantitative computed tomography that measures bone mineral density. However, this approach is limited by the radiation dose. Bidirectional ultrasound axial transmission was developed on long bones ex vivo and used to assess in vivo health status of the radius. However, it is currently unknown if the ribs are good candidates for such a measurement. Therefore, the goal of this study is to evaluate the relationship between ex vivo ultrasonic measurements (axial transmission) and the mechanical properties of human ribs to determine if the mechanical properties of the ribs can be quantified non-destructively. The results show statistically significant relationships between the ultrasonic measurements and mechanical properties of the ribs. These results are promising with respect to a non-destructive and non-ionizing assessment of rib mechanical properties. This ex vivo study is a first step toward in vivo studies to derive subject-specific rib properties.

  20. The Combine Use of Semi-destructive and Non-destructive Methods for Tiled Floor Diagnostics

    NASA Astrophysics Data System (ADS)

    Štainbruch, Jakub; Bayer, Karol; Jiroušek, Tomáš; Červinka, Josef

    2017-04-01

    -destructive resistivity drilling, and non-destructive georadar, and the results were compared. Floors were measured by 3D laser scanning technology and captured by the camera before reconstruction work. Using SFM photogrammetry were achieved results: ortomozaik (0.3 mm / pix) and DEM (0.6 mm / pix). These results were a basis for restoration work and also allow comparisons with the original state at any stage of the project. Drilling resistance measurement is used for indirect determination of strength profile based on resistance to drilling depending on into the depth. The observed resistance to drilling correlates with the strength and toughness of the measured material. The method is referred as a micro- or semi-invasive, since sampling is not necessary and but the drilling diameter is usually 3-5 mm. The ultrasonic measurement consists in the measuring of the longitude as well as the transverse waves - velocity, shape, amplitude. The propagation velocity is a characteristic values for the material influenced by its composition and compactness. Georadar (GPR) is a high frequency electromagnetic pulse method. For measurement the GPR RAMAC system coupled with 1600 MHz shielded antenna was used. Two tiles (one with defects and one in relatively good condition) were surveyed in a regular grid of perpendicular lines 5 cm separated. Data were processed by means of ReflexW software and performed in the form of cross sections and amplitude maps. The map of the amplitude summed over a time window 1 - 1,4 ns (representing the intensity of the reflection from the tiles bottom) gave good result. The areas of registered relatively high amplitudes correspond with the position of airgaps. A correlation was observed between the results of different survey methods.

  1. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor

    PubMed Central

    Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhou, Jianting; Yang, Mao; Xia, Runchuan

    2016-01-01

    This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor. PMID:27608029

  2. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor.

    PubMed

    Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhou, Jianting; Yang, Mao; Xia, Runchuan

    2016-09-06

    This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor.

  3. Non-destructive determination of soluble solids in chufa by FT-near infrared (FT-NIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Guang; Ying, Yibin; Lu, Huishan; Fu, Xiaping; Yu, Haiyan; Liu, Yande

    2005-11-01

    The near infrared (NIR) method based on fibre-optic FT-NIR spectrometer was tested to determine soluble solids content (SSC) non-destructively in chufa (Eleocharis tuberose schult). A total of 240 chufas (120 of cv. 'Jinhua' and 120 of cv. 'Yongkang') sampled from eight positions in the different fields to increase variation in soluble solids content, were measured after 2-days storage and the measurements randomly assigned to a calibration data set and a prediction data set. Thus the calibration set and the prediction set represented exactly the same distribution. The calibration data set was used to select the wavelengths best correlated with Brix and different regression methods (partial least squares (PLS) regression and multiple linear regression (MLR)) that was applied to calculate the Brix value in the prediction data set. The most significant r (0.9056) was found with the first derivative of log (1/R) (where R reflectance), yielding standard error of calibration (SEC)=0.545 Brix, standard error of prediction (SEP)=0.632 Brix. Analysis of different methods performed on the actual and the predicted Brix showed PLS is better than MLR. This NIR method seems reliable for determining soluble solids contents of chufa non-destructively, and could prove useful for it.

  4. Non-Destructive Survey of Archaeological Sites Using Airborne Laser Scanning and Geophysical Applications

    NASA Astrophysics Data System (ADS)

    Poloprutský, Z.; Cejpová, M.; Němcová, J.

    2016-06-01

    This paper deals with the non-destructive documentation of the "Radkov" (Svitavy district, Czech Republic) archaeological site. ALS, GPR and land survey mapping will be used for the analysis. The fortified hilltop settlement "Radkov" is an immovable historical monument with preserved relics of anthropogenic origin in relief. Terrain reconnaissance can identify several accentuated objects on site. ALS enables identification of poorly recognizable archaeological objects and their contexture in the field. Geophysical survey enables defunct objects identification. These objects are hidden below the current ground surface and their layout is crucial. Land survey mapping provides technical support for ALS and GPR survey. It enables data georeferencing in geodetic reference systems. GIS can then be used for data analysis. M. Cejpová and J. Němcová have studied this site over a long period of time. In 2012 Radkov was surveyed using ALS in the project "The Research of Ancient Road in Southwest Moravia and East Bohemia". Since 2015 the authors have been examining this site. This paper summarises the existing results of the work of these authors. The digital elevation model in the form of a grid (GDEM) with a resolution 1 m of 2012 was the basis for this work. In 2015 the survey net, terrain reconnaissance and GPR survey of two archaeological objects were done at the site. GDEM was compared with these datasets. All datasets were processed individually and its results were compared in ArcGIS. This work was supported by the Grant Agency of the CTU in Prague, grant No. SGS16/063/OHK1/1T/11.

  5. Selection of native plants with phytoremediation potential for highly contaminated Mediterranean soil restoration: Tools for a non-destructive and integrative approach.

    PubMed

    Heckenroth, Alma; Rabier, Jacques; Dutoit, Thierry; Torre, Franck; Prudent, Pascale; Laffont-Schwob, Isabelle

    2016-12-01

    The aim of this study was to develop an effective and non-destructive method for the selection of native Mediterranean plants with phytoremediation potential based on their spontaneous recovery capacities. The study site consisted in a mixed contaminated soils (As, Cu, Pb, Sb, Zn) in the vicinity of a former lead smelting factory abandoned since 1925 in the Calanques National Park (Marseille, southeastern France). We developed an integrated characterization approach that takes into account topsoil metal(loid)s (MM) contamination, plant community composition and structure and mesologic parameters without using destructive methods. From a statistical selection of significant environmental descriptors, plant communities were described and interpreted as the result of spontaneous recovery under multiple stresses and local conditions (both natural and anthropogenic). We collected phytoecological and MM topsoil data using field monitoring and geographic information system (GIS) on a pollution hotspot where natural plant communities occur. The results of the multivariate analysis performed between species and descriptors indicated that a century of MM pollution pressure produced a significant correlation with plant community dynamics in terms of composition, diversity and structure, leading to the co-occurrence of different plant succession stages. Thus, these successions seemed linked to the variability of anthropogenic disturbance regimes within the study site. We recorded high topsoil contamination heterogeneity at the scale both of the plot and of the whole study area that suggested a heterogeneous MM distribution pattern dependent on the source of contaminants and site environmental variability. We identified 4 spontaneous plant communities co-occurring through a MM contamination gradient that could be used later from degraded to reference communities to define ecological restoration target combined to phytoremediation applications with respect to local conditions

  6. High temperature ultrasonic transducers for the generation of guided waves for non-destructive evaluation of pipes

    NASA Astrophysics Data System (ADS)

    Sinding, K.; Searfass, C.; Malarich, N.; Reinhardt, B.; Tittmann, B. R.

    2014-02-01

    Applications for non-destructive evaluation and structural health monitoring of steam generators require ultrasonic transducers capable of withstanding the high temperatures of the pipes and heat exchangers. These applications require a strong coupling of the transducer to the heat exchanger's complex geometry at the elevated temperatures. Our objective is to use spray-on piezo-electrics for depositing comb transducers onto the curved surfaces. This paper shows results for composite transducers such as lead zirconate titanate/ bismuth titanate and bismuth titanate/ lithium niobate. The comb transducers were prepared by precision laser ablation. The feasibility of producing second harmonic waves in rods with these spay-on comb transducers was demonstrated and paves the way toward measuring material degradation early-on before crack initiation occurs.

  7. Technology and Applications of Terahertz Imaging Non-Destructive Examination: Inspection of Space Shuttle Sprayed On Foam Insulation

    NASA Astrophysics Data System (ADS)

    Zimdars, David; Valdmanis, J. A.; White, Jeffrey S.; Stuk, G.; Williamson, S.; Winfree, William P.; Madaras, Eric I.

    2005-04-01

    The implementation of terahertz (THz) imaging for non-destructive evaluation shows great promise in 2 and 3 dimensional non-contact inspection of non-conductive materials such as plastics, foam, composites, ceramics, paper, wood and glass. THz imaging employs safe low power non-ionizing electromagnetic pulses, which produce images with lateral resolution <200 microns, and depth resolution <50 microns. We demonstrate the detection of voids and disbonds intentionally incorporated within the sprayed on foam insulation of a space shuttle external tank mock-up segment using time domain THz imaging. Recently, highly integrated turn-key THz imaging systems have been introduced commercially. An industrially hardened THz scanning system which has been deployed to scan the space shuttle tank with small remote THz transceiver on a 30 meter fiber optic umbilical, is described.

  8. Non-destructive determination of age and species of Anopheles gambiae s.l. using near-infrared spectroscopy.

    PubMed

    Mayagaya, Valeliana S; Michel, Kristin; Benedict, Mark Q; Killeen, Gerry F; Wirtz, Robert A; Ferguson, Heather M; Dowell, Floyd E

    2009-10-01

    Determining malaria vector species and age is crucial to measure malaria risk. Although different in ecology and susceptibility to control, the African malaria vectors Anopheles gambiae sensu stricto and An. arabiensis are morphologically similar and can be differentiated only by molecular techniques. Furthermore, few reliable methods exist to estimate the age of these vectors, which is a key predictor of malaria transmission intensity. We evaluated the use of near-infrared spectroscopy (NIRS) to determine vector species and age. This non-destructive technique predicted the species of field-collected mosquitoes with approximately 80% accuracy and predicted the species of laboratory-reared insects with almost 100% accuracy. The relative age of young or old females was predicted with approximately 80% accuracy, and young and old insects were predicted with > or = 90% accuracy. For applications where rapid assessment of the age structure and species composition of wild vector populations is needed, NIRS offers a valuable alternative to traditional methods.

  9. High temperature ultrasonic transducers for the generation of guided waves for non-destructive evaluation of pipes

    SciTech Connect

    Sinding, K.; Searfass, C.; Malarich, N.; Reinhardt, B.; Tittmann, B. R.

    2014-02-18

    Applications for non-destructive evaluation and structural health monitoring of steam generators require ultrasonic transducers capable of withstanding the high temperatures of the pipes and heat exchangers. These applications require a strong coupling of the transducer to the heat exchanger’s complex geometry at the elevated temperatures. Our objective is to use spray-on piezo-electrics for depositing comb transducers onto the curved surfaces. This paper shows results for composite transducers such as lead zirconate titanate/ bismuth titanate and bismuth titanate/ lithium niobate. The comb transducers were prepared by precision laser ablation. The feasibility of producing second harmonic waves in rods with these spay-on comb transducers was demonstrated and paves the way toward measuring material degradation early-on before crack initiation occurs.

  10. Non-destructive microwave evaluation of TBC delamination induced by acute angle laser drilling

    NASA Astrophysics Data System (ADS)

    Sezer, H. K.; Li, Lin; Wu, Z.; Anderson, B.; Williams, P.

    2007-01-01

    Laser drilling has been applied to the production of cooling holes of various size and angles in the modern aerospace gas turbine components such as turbine blades, nozzle guide vanes, combustion chambers and afterburner. These parts are usually made of heat resistant nickel superalloys. The superalloy substrate is coated with yttria-stabilized zirconia thermal barrier coatings (TBCs) to protect them from reaching excessive temperatures in hot engine environments. Drilling the parts at acute angles to the surface is complicated because (i) multiple layers are being drilled through, (ii) the melt ejection and heat flow patterns around the hole are non-symmetrical and (iii) the drilling distance is greater than when drilling normal to the surface. In a previous investigation by the authors, delamination of TBC was addressed as a main problem of angled drilling and mechanisms involved were discussed. Characterization of delamination cracks was normally performed via metallographic techniques. It involves sectioning the samples using an abrasive cutting machine, grinding with successively finer silicon carbide paper up to the centre of the hole and polishing to allow optical microscopic analysis of the cracks. However, clamping and sectioning process of thermal-spray-coated workpieces can introduce cracks in brittle coatings due to the drag of the cut-off wheels. Hence, it is not possible to decide if the delamination is caused as a result of post-process sectioning or laser drilling. In this paper, a microwave non-destructive testing (NDT) technique is employed to evaluate the integrity of TBC after acute angle laser drilling. An Agilent 8510 XF network analyser operating over the frequency range of 45 MHz to 110 GHz was used to measure the amplitude and phase variations of scattered waves. The results significantly indicated the existence of delamination of 1-1.5 mm long at the TBC/substrate interface on the leading edge part of an acute-angled hole laser drilled

  11. Non-Destructive Approaches for the Validation of Visually Observed Spatial Patterns of Decay

    NASA Astrophysics Data System (ADS)

    Johnston, Brian; McKinley, Jennifer; Warke, Patricia; Ruffell, Alastair

    2017-04-01

    , three complimentary approaches were employed, ground penetrating radar (GPR), probe permeametry and 3D modelling. Each of these strategies were selected as they were both capable of substantiating the suggested causes of visible decay trends and non-destructive in nature. GPR was employed to detect variations in the wall corresponding to the presence of hollows or moisture within the wall sections. The returns support the conclusions that empty spaces, created through the deterioration of mortar exist within the wall, allowing the passage of moisture. Using probe permeametry, the surface permeability of the wall surface was measured, analysis of which was carried out using kriging. The variograms created for this purpose suggest a significant directional element. 3D Models created by scanning the wall sections was used to calculate a measurement of roughness for the surfaces of the study area. Due to the stonework at the church being hammer dressed, the effectiveness of the determination of changing roughness was restricted, however some variation was identified. Through the combined use of these techniques, the wall scale trends suggested by the results of the visual inspection were validated. Thus, the apparent potential of these techniques, in particular the use of GPR, in supporting future studies of decay is promising.

  12. Non-destructive determination of total polyphenols content and classification of storage periods of Iron Buddha tea using multispectral imaging system.

    PubMed

    Xiong, Chuanwu; Liu, Changhong; Pan, Wenjuan; Ma, Fei; Xiong, Can; Qi, Li; Chen, Feng; Lu, Xuzhong; Yang, Jianbo; Zheng, Lei

    2015-06-01

    Total polyphenols is a primary quality indicator in tea which is consumed worldwide. The feasibility of using near infrared reflectance (NIR) spectroscopy (800-2500nm) and multispectral imaging (MSI) system (405-970nm) for prediction of total polyphenols contents (TPC) of Iron Buddha tea was investigated in this study. The results revealed that the predictive model by MSI using partial least squares (PLS) analysis for tea leaves was considered to be the best in non-destructive and rapid determination of TPC. Besides, the ability of MSI to classify tea leaves based on storage period (year of 2004, 2007, 2011, 2012 and 2013) was tested and the classification accuracies of 95.0% and 97.5% were achieved using LS-SVM and BPNN models, respectively. These overall results suggested that MSI together with suitable analysis model is a promising technology for rapid and non-destructive determination of TPC and classification of storage periods in tea leaves.

  13. Post-Irradiation Non-Destructive Analyses of the AFIP-7 Experiment

    NASA Astrophysics Data System (ADS)

    Williams, W. J.; Robinson, A. B.; Rabin, B. H.

    2017-08-01

    This article reports the results and interpretation of post-irradiation non-destructive examinations performed on four curved full-size fuel plates that comprise the AFIP-7 experiment. These fuel plates, having a U-10 wt.%Mo monolithic design, were irradiated under moderate operating conditions in the Advanced Test Reactor to assess fuel performance for geometries that are prototypic of research reactor fuel assemblies. Non-destructive examinations include visual examination, neutron radiography, profilometry, and precision gamma scanning. This article evaluates the qualitative and quantitative data taken for each plate, compares corresponding data sets, and presents the results of swelling analyses. These characterization results demonstrate that the fuel meets established irradiation performance requirements for mechanical integrity, geometric stability, and stable and predictable behavior.

  14. Photoacoustic Spectroscopy as a Non-destructive Tool for Quantification of Pesticide Residue in Apple Cuticle

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Wang, Yafei; Gao, Chunming; Huan, Huiting; Zhao, Binxing; Yan, Laijun

    2015-06-01

    Photoacoustic spectroscopy (PAS), the non-destructive method to detect residue of dimethyl-dichloro-vinyl-phosphate (DDVP) pesticide in a cuticle of apple, is described. After constructing the PA experimental setup and identifying three characteristic peaks of DDVP in the near ultraviolet region, the PA spectra of an apple cuticle contaminated with DDVP were collected. The artificial neural network method was then applied to analyze data quantitatively. The results show a correlation coefficient exceeding 0.99 and a detection limit of 0.2 ppm, which is within the national food safety standard for maximum residue limits for pesticides in food (GB 2763-2012). This fact and the non-destructive character of PAS make the approach promising for detection of pesticide residue in fruits.

  15. Non-destructive quality control of kiwi fruits by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Serranti, S.; Bonifazi, G.; Luciani, V.

    2017-05-01

    This study aimed to evaluate the possibility to perform a fast, reliable and robust non-destructive monitoring of kiwifruits characteristics adopting an HyperSpectral Imaging (HSI) based approach. HSI was thus utilized for two different purposes: i) to test whether the postharvest ripeness of kiwifruits could be non-destructively determined and ii) for the diagnosis of pseudomonas infection in the Kiwi orchards. To reach the 1st goal (i.e. fruit ripening evaluation) a NIR Spectral Camera acting in the range between 900 and 1700 nm has been used. To reach the 2nd goal a hyperspectral camera working in the VIS-NIR range (400 nm - 1000 nm) was used. For both the approaches "only" significance and robustness of the collected data, in respect of the selected operative conditions, was investigated and the results have been evaluated in terms of different Principal Components (PC) images.

  16. Can predatory bird feathers be used as a non-destructive biomonitoring tool of organic pollutants?

    PubMed Central

    Jaspers, Veerle L.B; Voorspoels, Stefan; Covaci, Adrian; Eens, Marcel

    2006-01-01

    The monitoring of different types of pollutants that are released into the environment and that present risks for both humans and wildlife has become increasingly important. In this study, we examined whether feathers of predatory birds can be used as a non-destructive biomonitor of organic pollutants. We demonstrate that polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and polybrominated diphenyl ethers (PBDEs) are measurable in one single tail feather of common buzzards (Buteo buteo) and that levels in this feather and internal tissues are significantly related to each other (0.35non-destructive biomonitoring of organic pollutants, although further validation may be necessary. PMID:17148383

  17. Probability of detection model for the non-destructive inspection of steam generator tubes of PWRs

    NASA Astrophysics Data System (ADS)

    Yusa, N.

    2017-06-01

    This study proposes a probability of detection (POD) model to discuss the capability of non-destructive testing methods for the detection of stress corrosion cracks appearing in the steam generator tubes of pressurized water reactors. Three-dimensional finite element simulations were conducted to evaluate eddy current signals due to stress corrosion cracks. The simulations consider an absolute type pancake probe and model a stress corrosion crack as a region with a certain electrical conductivity inside to account for eddy currents flowing across a flaw. The probabilistic nature of a non-destructive test is simulated by varying the electrical conductivity of the modelled stress corrosion cracking. A two-dimensional POD model, which provides the POD as a function of the depth and length of a flaw, is presented together with a conventional POD model characterizing a flaw using a single parameter. The effect of the number of the samples on the PODs is also discussed.

  18. Non-destructive optical methods for the study of soft tissues

    NASA Astrophysics Data System (ADS)

    Santiago-Lona, Cynthia V.; Hernández-Montes, María. del Socorro; Mendoza Santoyo, F.; Muñoz, Silvino; Mendoza, Fernando

    2015-08-01

    In optical metrology, non-destructive methods allow studying some mechanical properties of the samples to investigate by using light, which leads to non-contact testing. This paper shows recent results of the application of non-destructive optical methods based on Digital Holographic Interferometry to the study biological tissues; particularly vocal folds and the tympanic membrane. The displacements data and its corresponding patterns found generates information on its characteristics that can be correlated with their physiological state. These methods prove to be an alternative viable and appropriate to characterize these soft tissues so important for the proper function of the human body. The result shows a potential impact on its possible uses in the field of otorhinolaryngology.

  19. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam

    PubMed Central

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A.; Vick, Andrew J.

    2016-01-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices. PMID:27586090

  20. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam

    NASA Astrophysics Data System (ADS)

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A.; Vick, Andrew J.

    2016-09-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices.

  1. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam.

    PubMed

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A; Vick, Andrew J

    2016-09-02

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices.

  2. The application of non-destructive techniques to the testing of a wind turbine blade

    SciTech Connect

    Sutherland, H.; Beattie, A.; Hansche, B.; Musial, W.; Allread, J.; Johnson, J.; Summers, M.

    1994-06-01

    NonDestructive Testing (NDT), also called NonDestructive Evaluation (NDE), is commonly used to monitor structures before, during, and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electron shearography to measure the differences in surface displacements between two load states. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Furthermore, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

  3. A novel quadruple excitation in high-Tc SQUID-based non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Kong, X. Y.; Ren, Y. F.; Li, J. W.; Yu, H. W.; Chen, G. H.; Yang, Q. S.

    2006-02-01

    A high-Tc SQUID-based non-destructive evaluation (NDE) system has been set up in our laboratory. The SQUID was made on a 24° bicystal SrTiO3 substrate. A novel quadruple excitation coil was proposed for the first time and applied in the artificial holes in the aluminium multilayer structure in a noisy unshielded environment. The experimental data shows that it has good balance and is very effective at detecting small hole defects.

  4. Non-Destructive Methods of Characterising the Strength of Adhesive-Bonded Joints.

    DTIC Science & Technology

    1985-10-01

    R D-RI68 191 NON-DESTRUCTIVE METHODS OF CHRACTERISING THE STRENGTH ±i𔃻 I OF ADHESIVE-BONDED..(U) ROYAL AIRCRAFT ESTABLISHMENT I FRNBOROUGH ( ENGLAND ... UK to monitor degrada- tion by means of ultrasound have used a conventional pulse-echo approach in which the .’#" direction of the ultrasonic wave is...UNCLASSIFIED 5. DRIC Code for Originator 6. Originator (Corporate Author) Name and Location 7673000W Royal Aircraft Establishment, Farnborough, Hants, UK 5a

  5. Development of the Portable Synchrotron MIRRORCLE-CV for High Precision Non-Destructive Testing

    SciTech Connect

    Hasegawa, Daisuke; Toyosugi, Norio; Noh, Young Deok; Yamada, Takanori; Morita, Masaki; Mantey, Edward; Masaoka, Sei; Yamada, Hironari

    2007-01-19

    We started the development of the portable synchrotron MIRRORCLE-CV series, which provides a high quality x-ray beam for high precision non-destructive testing (NDT). Computer simulations for the magnetic field design and electron dynamics reveal that the outer diameter of the synchrotron magnet can be as small as 30 cm. This synchrotron size approaches that of a conventional x-ray tube.

  6. MIRRORCLE-CV The Portable Synchrotron For Precise Non-Destructive Testing And Medical Diagnosis

    SciTech Connect

    Hasegawa, Daisuke; Yamada, Hironari

    2007-03-30

    We are developing the portable synchrotron MIRRORCLE-CV series, which provides a high quality x-ray beam for high precision non-destructive testing (NDT). Computer simulations for the magnetic field design and electron dynamics reveal that the outer diameter of the synchrotron magnet can be as small as 30 cm. This synchrotron size approaches that of a conventional x-ray tube.

  7. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    PubMed Central

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  8. Feasibility Study of Non-Destructive Techniques to Measure Corrosion in SAVY Containers

    SciTech Connect

    Davenport, Matthew Nicholas

    2016-07-15

    Stainless Steel SAVY containers are used to transport and store nuclear material. They are prone to interior corrosion in the presence of certain chemicals and a low-oxygen environment. SAVY containers also have relatively thin walls to reduce their weight, making their structural integrity more vulnerable to the effects of corrosion. A nondestructive evaluation system that finds and monitors corrosion within containers in use would improve safety conditions and preclude hazards. Non-destructive testing can determine whether oxidation or corrosion is occurring inside the SAVY containers, and there are a variety of non-destructive testing methods that may be viable. The feasibility study described will objectively decide which method best fits the requirements of the facility and the problem. To improve efficiency, the containers cannot be opened during the non-destructive examination. The chosen technique should also be user-friendly and relatively quick to apply. It must also meet facility requirements regarding wireless technology and maintenance. A feasibility study is an objective search for a new technology or product to solve a particular problem. First, the design, technical, and facility feasibility requirements are chosen and ranked in order of importance. Then each technology considered is given a score based upon a standard ranking system. The technology with the highest total score is deemed the best fit for a certain application.

  9. Non-destructive single-pass low-noise detection of ions in a beamline

    SciTech Connect

    Schmidt, Stefan; Murböck, Tobias; Birkl, Gerhard; Andelkovic, Zoran; Vogel, Manuel; Nörtershäuser, Wilfried; Stahl, Stefan

    2015-11-15

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.

  10. Non-destructive techniques for determining the material characteristics of Cr-Mo-V rotor steel

    SciTech Connect

    Goto, Toru; Kadoya, Yoshikuni; Konishi, Takashi; Kamimura, Takeo; Suyama, Shouji; Haruki, Nirou; Ikuno, Takeshi; Yoshimura, Kouji

    1994-12-31

    Long-term service causes material deterioration, such as the accumulation of creep and fatigue damage, as well as softening and embrittlement, in the high-temperature components of fossil fuel power plants. Therefore, in order to extend plant life at minimum cost without any accidental outages, it is important to observe the material state, especially of rotors and conduct necessary repairs or replace them at the most appropriate time. Therefore, there is a need for non-destructive techniques to evaluate the material characteristics of Cr-Mo-V rotors under service. In this paper, a comparative report of non-destructive techniques using artificially aged and crept Cr-Mo-V steel specimens is given. The techniques tested include replication, hardness measurement, electro-magnetic and ultrasonic techniques, and conventional metallurgical techniques, which have been here to fore usable only in the laboratory, but due to expected advances in the non-destructive sampling of material from service rotors these techniques are now usable in the field. As a result of the studies, the features of each technique are well recognized and the suggestions for the further development of NDE methods for the evaluation of creep damage in Cr-Mo-V rotors are presented.

  11. A new non-destructive readout by using photo-recovered surface potential contrast

    NASA Astrophysics Data System (ADS)

    Wang, Le; Jin, Kui-Juan; Gu, Jun-Xing; Ma, Chao; He, Xu; Zhang, Jiandi; Wang, Can; Feng, Yu; Wan, Qian; Shi, Jin-An; Gu, Lin; He, Meng; Lu, Hui-Bin; Yang, Guo-Zhen

    2014-11-01

    Ferroelectric random access memory is still challenging in the feature of combination of room temperature stability, non-destructive readout and high intensity storage. As a non-contact and non-destructive information readout method, surface potential has never been paid enough attention because of the unavoidable decay of the surface potential contrast between oppositely polarized domains. That is mainly due to the recombination of the surface movable charges around the domain walls. Here, by introducing a laser beam into the combination of piezoresponse force microscopy and Kelvin probe force microscopy, we demonstrate that the surface potential contrast of BiFeO3 films can be recovered under light illumination. The recovering mechanism is understood based on the redistribution of the photo-induced charges driven by the internal electric field. Furthermore, we have created a 12-cell memory pattern based on BiFeO3 films to show the feasibility of such photo-assisted non-volatile and non-destructive readout of the ferroelectric memory.

  12. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications.

    PubMed

    Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan

    2016-02-26

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  13. Non-destructively reading out information embedded inside real objects by using far-infrared light

    NASA Astrophysics Data System (ADS)

    Okada, Ayumi; Silapasuphakornwong, Piyarat; Suzuki, Masahiro; Torii, Hideyuki; Takashima, Youichi; Uehira, Kazutake

    2015-09-01

    This paper presents a technique that can non-destructively read out information embedded inside real objects by using far-infrared-light. We propose a technique that can protect the copyrights of digital content for homemade products using digital fabrication technologies such as those used in 3D printers. It embeds information on copyrights inside real objects produced by 3D printers by forming fine structures inside the objects as a watermark that cannot be observed from the outside. Fine structures are formed near the surface inside real objects when they are being fabricated. Information embedded inside real objects needs to be read out non-destructively. We used a technique that could non-destructively read out information from inside real objects by using far-infrared light. We conducted experiments where we structured fine cavities inside objects. The disposition of the fine domain contained valuable information. We used the flat and curved surfaces of the objects to identify them. The results obtained from the experiments demonstrated that the disposition patterns of the fine structures appeared on the surface of objects as a temperature profile when far-infrared light was irradiated on their surface. Embedded information could be read out successfully by analyzing the temperature profile images of the surface of the objects that were captured with thermography and these results demonstrated the feasibility of the technique we propose.

  14. Non-destructive single-pass low-noise detection of ions in a beamline.

    PubMed

    Schmidt, Stefan; Murböck, Tobias; Andelkovic, Zoran; Birkl, Gerhard; Nörtershäuser, Wilfried; Stahl, Stefan; Vogel, Manuel

    2015-11-01

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles' beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar(13+)) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.

  15. [Study on Non-Destructive Testing of Guqin Interior Structure Based on Computed Tomography].

    PubMed

    Zhao, De-da; Liu, Xing-e; Yang, Shu-min; Yu, Shenz; Tian, Gen-lin; Ma, Jian-feng; Wang, Qing-ping

    2015-12-01

    The wood property and production process affect quality of Guqin. At the same time, Guqin shape with cavity layout relations to the improvement of Guqin technology and inheritance, so it's very important to get the internal cavity characteristics and parameters on the condition of non-destructive the structure of Guqin. The image of interior structure in Guqin was investigated by overall scanning based on non-destructive testing technology of computed tomography, which texture of faceplate, connection method between faceplate and soleplate and interior defects were studied. The three-dimensional reconstruction of Guqin cavity was achieved through Mimics software of surface rendering method and put the two-dimensional CT tomography images convert into three-dimensional, which more complete show interior structural form in Guqin, and finally the parameter of cavity dimensions was obtained. Experimental research shows that there is significant difference in Guqin interior structure between Zhong-ni and Luo-xia type, in which the fluctuation of the interior surfacein Zhong-ni type's is larger than that in Luo-xia type; the interior volume of Zhong-ni typeis less than that of Luo-xia type, especially in Guqin neck. The accurate internal information of Guqin obtained through the computed tomography (CT) technology will provide technical support for the Guqin manufacture craft and the quality examination, as well as provide the reference in the aspect of non-destructive testing for other traditional precious internal structure research.

  16. A new non-destructive readout by using photo-recovered surface potential contrast.

    PubMed

    Wang, Le; Jin, Kui-juan; Gu, Jun-xing; Ma, Chao; He, Xu; Zhang, Jiandi; Wang, Can; Feng, Yu; Wan, Qian; Shi, Jin-an; Gu, Lin; He, Meng; Lu, Hui-bin; Yang, Guo-zhen

    2014-11-10

    Ferroelectric random access memory is still challenging in the feature of combination of room temperature stability, non-destructive readout and high intensity storage. As a non-contact and non-destructive information readout method, surface potential has never been paid enough attention because of the unavoidable decay of the surface potential contrast between oppositely polarized domains. That is mainly due to the recombination of the surface movable charges around the domain walls. Here, by introducing a laser beam into the combination of piezoresponse force microscopy and Kelvin probe force microscopy, we demonstrate that the surface potential contrast of BiFeO3 films can be recovered under light illumination. The recovering mechanism is understood based on the redistribution of the photo-induced charges driven by the internal electric field. Furthermore, we have created a 12-cell memory pattern based on BiFeO3 films to show the feasibility of such photo-assisted non-volatile and non-destructive readout of the ferroelectric memory.

  17. A new non-destructive readout by using photo-recovered surface potential contrast

    PubMed Central

    Wang, Le; Jin, Kui-juan; Gu, Jun-xing; Ma, Chao; He, Xu; Zhang, Jiandi; Wang, Can; Feng, Yu; Wan, Qian; Shi, Jin-an; Gu, Lin; He, Meng; Lu, Hui-bin; Yang, Guo-zhen

    2014-01-01

    Ferroelectric random access memory is still challenging in the feature of combination of room temperature stability, non-destructive readout and high intensity storage. As a non-contact and non-destructive information readout method, surface potential has never been paid enough attention because of the unavoidable decay of the surface potential contrast between oppositely polarized domains. That is mainly due to the recombination of the surface movable charges around the domain walls. Here, by introducing a laser beam into the combination of piezoresponse force microscopy and Kelvin probe force microscopy, we demonstrate that the surface potential contrast of BiFeO3 films can be recovered under light illumination. The recovering mechanism is understood based on the redistribution of the photo-induced charges driven by the internal electric field. Furthermore, we have created a 12-cell memory pattern based on BiFeO3 films to show the feasibility of such photo-assisted non-volatile and non-destructive readout of the ferroelectric memory. PMID:25381929

  18. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  19. Analytical Raman spectroscopy in a forensic art context: the non-destructive discrimination of genuine and fake lapis lazuli.

    PubMed

    Ali, Esam M A; Edwards, Howell G M

    2014-01-01

    The differentiation between genuine and fake lapis lazuli specimens using Raman spectroscopy is assessed using laboratory and portable instrumentation operating at two longer wavelengths of excitation in the near-infrared, namely 1064 and 785 nm. In spite of the differences between the spectra excited here in the near infrared and those reported in the literature using visible excitation, it is clear that Raman spectroscopy at longer wavelengths can provide a means of differentiating between the fakes studied here and genuine lapis lazuli. The Raman spectra obtained from portable instrumentation can also achieve this result, which will be relevant for the verification of specimens which cannot be removed from collections and for the identification of genuine lapis lazuli inlays in, for example, complex jewellery and furniture. The non-destructive and non-contact character of the technique offers a special role for portable Raman spectroscopy in forensic art analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Analytical Raman spectroscopy in a forensic art context: The non-destructive discrimination of genuine and fake lapis lazuli

    NASA Astrophysics Data System (ADS)

    Ali, Esam M. A.; Edwards, Howell G. M.

    2014-03-01

    The differentiation between genuine and fake lapis lazuli specimens using Raman spectroscopy is assessed using laboratory and portable instrumentation operating at two longer wavelengths of excitation in the near-infrared, namely 1064 and 785 nm. In spite of the differences between the spectra excited here in the near infrared and those reported in the literature using visible excitation, it is clear that Raman spectroscopy at longer wavelengths can provide a means of differentiating between the fakes studied here and genuine lapis lazuli. The Raman spectra obtained from portable instrumentation can also achieve this result, which will be relevant for the verification of specimens which cannot be removed from collections and for the identification of genuine lapis lazuli inlays in, for example, complex jewellery and furniture. The non-destructive and non-contact character of the technique offers a special role for portable Raman spectroscopy in forensic art analysis.

  1. Non-destructive evaluation of ATP content and plate count on pork meat surface by fluorescence spectroscopy.

    PubMed

    Oto, N; Oshita, S; Makino, Y; Kawagoe, Y; Sugiyama, J; Yoshimura, M

    2013-03-01

    The potential of fluorescence spectroscopy was investigated for the non-destructive evaluation of ATP content and plate count on pork meat surface stored aerobically at 15 °C during three days. Excitation (Ex) Emission (Em) Matrix of fluorescence intensity was obtained and fluorescence from tryptophan (Ex=295 nm and Em=335 nm) and NADPH (Ex=335 nm and Em=450 nm) was detected. Because tryptophan and NADPH fluorescence changed along with the growth of microorganisms, microbial spoilage on meat could be detected from fluorescence. By applying PLSR (Partial Least Squares Regression) analysis, ATP content and plate count were predicted with good determination coefficient (0.94-0.97 in calibration and 0.84-0.88 in validation). Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Non-destructive Preirradiation Assessment of UN / U-Si “LANL1” ATF formulation

    SciTech Connect

    Vogel, Sven C.; Losko, Adrian Simon; Pokharel, Reeju; Ickes, Timothy Lee; Hunter, James F.; Brown, Donald William; Voit, Stewart Lancaster; Tremsin, Anton S.; Bourke, Mark Andrew; McClellan, Kenneth James

    2016-09-15

    The goal of the Advanced Non-destructive Fuel Examination (ANDE) work package is the development and application of non-destructive neutron imaging and scattering techniques to ceramic and metallic nuclear fuels, ultimately also to irradiated fuels. The results of these characterizations provide complete pre- and post-irradiation on length scales ranging from mm to nm, guide destructive examination, and inform modelling efforts. Besides technique development and application to samples to be irradiated, the ANDE work package also examines possible technologies to provide these characterization techniques pool-side, e.g. at the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) using laser-driven intense pulsed neutron and gamma sources. Neutron tomography and neutron diffraction characterizations were performed on nine pellets; four UN/ U-Si composite formulations (two enrichment levels), three pure U3Si5 reference formulations (two enrichment levels), and two reject pellets with visible flaws (to qualify the technique). The 235U enrichments ranged from 0.2 to 8.8 wt. %. The nitride/silicide composites are candidate compositions for use as Accident Tolerant Fuel (ATF). The monophase U3Si5 material was included as a reference. Pellets from the same fabrication batches will be inserted in the Advanced Test Reactor at Idaho during 2016. We have also proposed a data format to build a database for characterization results of individual pellets. Neutron data reported in this report were collected in the LANSCE run cycle that started in September 2015 and ended in March 2016. This report provides the results for the characterized samples and discussion in the context of ANDE and APIE. We quantified the gamma spectra of several samples in their received state as well as after neutron irradiation to ensure that the neutron irradiation does not add significant activation that would complicate shipment and

  3. Structural Analysis of Polymer Composites Using Spectral Domain Optical Coherence Tomography.

    PubMed

    Shirazi, Muhammad Faizan; Jeon, Mansik; Kim, Jeehyun

    2017-05-18

    The structural analysis of nylon/graphene oxide (NY/GO) and polyetherblockamide/ trisilinolphenyl-polyhederal oligomeric silsesquioxane (PEBA/t-POSS) composites were performed using high-resolution spectral domain optical coherence tomography (SD-OCT). This optical technology revealed both cross-sectional, as well as sub-layer depth information of sample. The non-destructive real-time imaging demonstrated the nature of defects in the composites. The thickness and location of each defect point in the composites were measured using A-scan analysis on the SD-OCT images. The cross-sectional and volumetric images clearly demonstrate the effectiveness of SD-OCT for composite research, as well as the for industrial quality assurance of polymer materials.

  4. Quasi ?non-destructive? laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Günther, D.

    2001-07-01

    A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for 'quasi' non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97-99% of Al 2O 3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm -2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20-120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g -1 range and were better for heavier elements (mass >85), being in the 0.1 μg g -1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and

  5. Non-destructive automated sampling of mycotoxins in bulk food and feed - A new tool for required harmonization.

    PubMed

    Spanjer, M; Stroka, J; Patel, S; Buechler, S; Pittet, A; Barel, S

    2001-06-01

    Mycotoxins contamination is highly non-uniformly distributed as is well recog-nized by the EC, by not only setting legal limits in a series of commodities, but also schedule a sampling plan that takes this heterogeneity into account. In practice however, it turns out that it is very difficult to carry out this sampling plan in a harmonised way. Applying the sampling plan to a container filled with pallets of bags (i.e. with nuts or coffee beans) varies from very laborious to almost impossible. The presented non-destructive automated method to sample bulk food could help to overcome these practical problems and to enforcing of EC directives. It is derived from a tested and approved technology for detection of illicit substances in security applications. It has capability to collect and iden-tify ultra trace contaminants, i.e. from a fingerprint of chemical substance in a bulk of goods, a cargo pallet load (~ 1000 kg) with boxes and commodities.The technology, patented for explosives detection, uses physical and chemistry processes for excitation and remote rapid enhanced release of contaminant residues, vapours and particulate, of the inner/outer surfaces of inspected bulk and collect them on selective probes. The process is automated, takes only 10 minutes, is non-destructive and the bulk itself remains unharmed. The system design is based on applicable international regulations for shipped cargo hand-ling and transportation by road, sea and air. After this process the pallet can be loaded on a truck, ship or plane. Analysis can be carried out before the cargo leaves the place of shipping. The potent application of this technology for myco-toxins detection, has been demonstrated by preliminary feasibility experiments. Aflatoxins were detected in pistachios and ochratoxin A in green coffee beans bulk. Both commodities were naturally contaminated, priory found and confirm-ed by common methods as used at routine inspections. Once the contaminants are extracted from a

  6. Non-destructive investigations at the Dionisiac Frieze in the Villa of Mysteries, Pompeii

    NASA Astrophysics Data System (ADS)

    Cristiano, Luigia; Erkul, Ercan; Jepsen, Kalle; Meier, Thomas; Vanacore, Stefano; Stefani, Grete

    2014-05-01

    vertical sections contain reflection horizons of the plaster layer, the second wall layer and the back wall. Additional diffractions of objects with high differences in electrical properties i.e. bricks, cavities, cracks enables to estimate the travelling velocity of electromagnetic waves and the deep penetration. In addition, calculated time slices show areas with concentrated high and low reflection energy of different depth layers of the wall inside structure, which can related to changes in the composition and the water saturation. Ultrasonic experiments with frequencies between about 5 kHz and 500 kHz may be applied to non-destructive testing of structures made of natural stone for example facades, engineering structures, Usually, traveltimes of first-arriving P-waves are measured in ultrasonic transmission experiments. The resolution for changes of uppermost structures in transmission configuration is however limited. Therefore, we firstly perform surface measurements and secondly the full waveform is investigated. That means source and receiver are coupled to nearly plane parts of the object's surface and the receiver is moved along profiles with lengths between about 10 cm to 30 cm. These measurements are simple to perform because the object under consideration has to be accessible only from one side and the source and receiver configuration is easier to control. In this configuration, P-waves show generally very low signal-to-noise ratios but surface waves propagating along the free surface - here Rayleigh waves - show large amplitudes and are well suited for the investigation of superficial layering. Furthermore, surface wave dispersion is sensitive also to gradual changes of the structure with depth as usually present in real structures. This is another advantage of ultrasonic surface wave studies as body waves are not reflected by gradual internal changes in the structure and methods based on reflected body waves may not be applied in these cases. Here, we show

  7. Adhesive Defect Monitoring of Glass Fiber Epoxy Plate Using an Impedance-Based Non-Destructive Testing Method for Multiple Structures

    PubMed Central

    Na, Wongi S.; Baek, Jongdae

    2017-01-01

    The emergence of composite materials has revolutionized the approach to building engineering structures. With the number of applications for composites increasing every day, maintaining structural integrity is of utmost importance. For composites, adhesive bonding is usually the preferred choice over the mechanical fastening method, and monitoring for delamination is an essential factor in the field of composite materials. In this study, a non-destructive method known as the electromechanical impedance method is used with an approach of monitoring multiple areas by specifying certain frequency ranges to correspond to a certain test specimen. Experiments are conducted using various numbers of stacks created by attaching glass fiber epoxy composite plates onto one another, and two different debonding damage types are introduced to evaluate the performance of the multiple monitoring electromechanical impedance method. PMID:28629194

  8. Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices.

    PubMed

    Fassnacht, Fabian E; Stenzel, Stefanie; Gitelson, Anatoly A

    2015-03-15

    Leaf pigment content is an important indicator of plant status and can serve to assess the vigor and photosynthetic activity of plants. The application of spectral information gathered from laboratory, field and remote sensing-based spectrometers to non-destructively assess total chlorophyll (Chl) content of higher plants has been demonstrated in earlier studies. However, the precise estimation of carotenoid (Car) content with non-destructive spectral measurements has so far not reached accuracies comparable to the results obtained for Chl content. Here, we examined the potential of a recently developed angular vegetation index (AVI) to estimate total foliar Car content of three tree species. Based on an iterative search of all possible band combinations, we identified a best candidate AVIcar. The identified index showed quite close but essentially not linear relation with Car contents of the examined species with increasing sensitivity to high Car content and a lack of sensitivity to low Car content for which earlier proposed vegetation indices (VI) performed better. To make use of the advantages of both VI types, we developed a simple merging procedure, which combined the AVIcar with two earlier proposed carotenoid indices. The merged indices had close linear relationship with total Car content and outperformed all other examined indices. The merged indices were able to accurately estimate total Car content with a percental root mean square error (%RMSE) of 8.12% and a coefficient of determination of 0.88. Our findings were confirmed by simulations using the radiative transfer model PROSPECT-5. For simulated data, the merged indices again showed a quasi linear relationship with Car content. This strengthens the assumption that the proposed merged indices have a general ability to accurately estimate foliar Car content. Further examination of the proposed merged indices to estimate foliar Car content of other plant species is desirable to prove the general

  9. Evaluation of Mechanical Properties of Nuclear Materials Using Non-Destructive Ball Indentation Technique

    SciTech Connect

    Mathew, M.D.; Linga Murty, K.

    2002-07-01

    Integrity of structural components depends on the deformation and fracture behavior of materials. For evaluating the material condition in-service, it is generally not feasible or practical or advisable to cut samples from operating structures. Non-destructive testing (NDT) techniques are required to evaluate the mechanical properties. Although several NDT techniques such as ultrasound, magnetic strength, Barkhausen noise, microhardness etc., are employed for estimating the mechanical property degradation, these methodologies are generally empirical and indirect. Automated Ball Indentation (ABI) is a non-destructive testing technique for direct measurement of mechanical and fracture properties of metallic engineering materials. Because of the small area over which the test is carried out, it is possible to determine point to point variations in the mechanical and fracture properties, such as those that exist in weldments. Although ABI technique is non-intrusive, it is a state-of-the-art mechanical test that measures directly the current/local deformation behavior of the material. In this paper, we present results from studies on the application of ABI technique to determine tensile and fracture properties of ferritic steels, an austenitic stainless steel, a nickel base superalloy and Zircaloy in different thermo-mechanical conditions. The effects of aging and cold work on these properties were determined from the ABI tests. Gradients in mechanical properties of ferritic steel welds, particularly in the narrow heat-affected zone, were clearly established. ABI technique was found to be useful in determining the anisotropy in the tensile properties of Zircaloy cladding tubes. The technique has potential as a non-destructive method for assessing structural integrity of aged components. (authors)

  10. Fast Non-Destructive Evaluation of Superconducting Magnet Wires using a Flow-Through SQUID Microscope

    NASA Astrophysics Data System (ADS)

    Matthews, John; Wellstood, Frederick; Weinstock, Harold

    2006-03-01

    We have developed a cryocooled high-Tc SQUID microscope for fast non-destructive evaluation (NDE) of long wires, designed for detecting defects in superconducting magnet wire. A feedthrough mechanism pulls the wire at speeds of up to 20 cm/s through a thin mylar tube that separates the room temperature wire from the SQUID. We present results on test wires where we detect defects down to about 0.3 mm diameter. We discuss how we extract information from the data, such as defect size and location, and also outline a method for fast automated detection of defects in long wires.

  11. Non-destructive method for determining neutron exposure and constituent concentrations of a body

    DOEpatents

    Gold, Raymond; McElroy, William N.

    1986-01-01

    A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentration at regions of interest within the object.

  12. Non-destructive method for determining neutron exposure and constituent concentrations of a body

    DOEpatents

    Gold, R.; McElroy, W.N.

    1984-02-22

    A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentrations at regions of interest within the object.

  13. Application of magnetic resonance imaging to non-destructive void detection in watermelon

    NASA Astrophysics Data System (ADS)

    Saito, K.; Miki, T.; Hayashi, S.; Kajikawa, H.; Shimada, M.; Kawate, Y.; Nishizawa, T.; Ikegaya, D.; Kimura, N.; Takabatake, K.; Sugiura, N.; Suzuki, M.

    A novel application of magnetic resonance imaging (MRI) is described. The possibility of utilizing MRI for non-destructive quality evaluation of watermelons was studied. In this study, we applied MRI to the detection of internal voids in watermelons. In order to increase the measurement rate, we employed a one-dimensional projection profile method instead of observing a two-dimensional cross-sectional image. The void detection was carried out with this technique over 30 samples and 28 samples were correctly evaluated. The measurement rate was 900 ms per sample, which is an acceptable speed for a sorting machine in the agricultural field.

  14. Non-destructive testing of biaxial stress state in ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Vengrinovich, V. L.; Vintov, D. A.; Dmitrovich, D. V.

    2014-02-01

    The technique for biaxial stress state quantitative non destructive testing using magnetic, namely Barkhausen Noise, measurements is developed and checked experimentally. The main elaboration concerns the application of uni-axial calibration data for bi-axial stress measurement in the material which treatment pre-history is not definitely known. The article is aimed to get over difficulties, accompanying factual nondestructive stress evaluation, implied from its tensor nature. The developed technique of stress calibration and measurement assumes the bi-axial stress components recovery from uni-axial magnetic and Barkhausen noise measurement results. The complete technology, based on new calibration procedure with grid diagrams is considered in the article.

  15. Non-Destructive Testing with Atmospheric Pressure Radio-Frequency Plasma

    NASA Astrophysics Data System (ADS)

    May, A.; Andarawis, E.

    2007-03-01

    We summarize our recent work using radio-frequency (RF) atmospheric pressure plasma (APP) for non-destructive evaluation (NDE), specifically for: (1) Clearance sensing (0-5mm) on rotating components, and (2) Generation of broadband ultrasound in air at 900kHz. RF-APP showed potential in both of these common NDE requirements, but further work is required to better characterize and optimize the performance of the new techniques. Application of RF-APP to other NDE disciplines, such as plasma spectroscopy and gas flow measurement, is also likely to be advantageous, especially in harsh environments where existing approaches are prohibitively expensive or complex.

  16. [NIR spectrometer for non-destruction measurement of oil contents in a corn seed].

    PubMed

    Cui, Zhi-li; Xie, Jin-chun; Wang, Nan; Pan, Ling-ling; Song, Tong-ming; Zhang, Ye-hui; Xu, Xiao-jie

    2005-11-01

    NIR spectromneter for non-destruction measurement of oil contents in an integrated kernel of corn was manufactured. Using LED (light emitting diode) as the light source and six filters as the monochromator, the specifications of the instrument are compared with those of the commercial instruments. The regression coefficient, the standard error, and the relative error of measuring oil contents in an integrated kernel of corn are 0.9688, 0.72 and 0.062 respectively. The results meet the demand of high-oil corn breeding.

  17. Methods for Non-destructive Temperature Measurements in a Magneto-Optical Trap

    NASA Astrophysics Data System (ADS)

    Narducci, Frank A.; Duncan, Dwight; White, Grady R.; Lough, James; Davis, Jon P.

    2009-05-01

    Certain practical applications for precision measurements by atom interferometers require knowledge of the input atom cloud's temperature from realization to realization. Recent work [1,2] has shown how to measure the temperature of atoms in a magneto-optical trap in a non-destructive, in situ manner. We discuss an alternate, simpler method for the nondestructive measurement of the temperature of an atom cloud and compare our method with earlier techniques. [4pt] [1] T. Brzozowski, M. Brzozowska, J. Zachorowski, M. Zawada, W. Gawlik, PRA, 71, 013401 (2005).[0pt] [2] M. Brzozowska, T. Brzozowski J. Zachorowski, W. Gawlik, PRA, 72, 061401(R), (2005).

  18. Homeland Security, Medical, Pharmaceutical and Non-destructive Testing Applications of Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Kemp, Michael

    2005-03-01

    The terahertz region of the electromagnetic spectrum (300GHz-10THz) spans the region between radio and light. Recent advances in terahertz source, detector and systems technology are enabling new applications across a number of fields, based on both terahertz imaging and spectroscopy. This paper reviews our recent work on the development of practical systems and applications in security screening for the detection of explosives and non-metallic weapons; in medical imaging for cancer detection; as well as applications in non-destructive testing and the pharmaceutical industry.

  19. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    SciTech Connect

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  20. Non-Destructive Evaluation Method and Apparatus for Measuring Acoustic Material Nonlinearity

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    2002-01-01

    An acoustic non-linearity parameter (beta) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members obviates the need for electronic calibration of the measuring equipment. Unlike known substitutional measuring techniques requiring elaborate calibration procedures, the electrical outputs of the capacitive detector of a sample with known beta and the test sample of unknown beta are compared to determine the unknown beta. In order to provide the necessary stability of the present-inventive reference-based approach, the bandpass filters of the measurement system are maintained in a temperature-controlled environment, and the line voltage supplied to said amplifiers is well-regulated.

  1. Magnetic non-destructive evaluation of hardening of cold rolled reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Wang, Xuejiao; Qiang, Wenjiang; Shu, Guogang

    2017-08-01

    Non-destructive test (NDT) of reactor pressure vessel (RPV) steel is urgently required due to the life extension program of nuclear power plant. Here magnetic NDT of cold rolled RPV steel is studied. The strength, hardness and coercivity increase with the increasing deformation, and a good linear correlation between the increment of coercivity, hardness and yield strength is found, which may be helpful to develop magnetic NDT of degradation of RPV steel. It is also found that besides dislocation density, the distribution of dislocations may affect coercivity as well.

  2. Additive Manufacturing (AM) Activities and Non-Destructive Evaluation (NDE) at GSFC

    NASA Technical Reports Server (NTRS)

    Jones, Justin S.

    2017-01-01

    NASA personnel will be meeting with a delegation from the Japan Aerospace Exploration Agency (JAXA) Office of Safety and Mission Assurance (OSMA) at Langley Research Center on 2217 through 3217. The purpose of the meeting is a technical interchange between NASA and JAXA to discuss Non-Destructive Evaluation (NDE) of Additive Manufacturing (AM) parts and the HALT process (relates to accelerated life testing). The visitors will be a small group of Japanese citizens. Goddard Space Flight Center (GSFC) has been asked to participate in the meeting, either in person or via teleconference. This presentation covers NDE efforts at GSFC and provides a cursory overview of AM and lab capabilities.

  3. PREFACE: III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing (SibTest 2015)

    NASA Astrophysics Data System (ADS)

    2016-01-01

    This issue of the journal is devoted to the research and studies presented at the III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing SibTest. The conference was held in Altai, Russia, on 27-31 July 2015. The conference brought together experts from different countries and organizations who had a great opportunity to share knowledge during oral and poster presentations and to initiate discussions on topics that are of interest to the conference attendees. The conference aimed to discuss innovative methods and the application of advanced technologies in non-destructive testing. The conference also attempted to bring together university, academic and industrial science, to expand the co-operation of scientists from different countries in research and development and the commercialization of innovative technologies in non-destructive testing. The key themes of the conference were: ultrasonic and acoustic testing; electromagnetic and thermal testing; various types of radiation non-destructive testing; passive and active testing techniques. The conference organizers are the Institute of Non-Destructive Testing, Tomsk Polytechnic University, with the assistance of the Russian Society for Non-Destructive Testing and Technical Diagnostics, Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, National Research Tomsk State University, Moscow State Institute of Radio Engineering, Electronics and Automation.

  4. NON-DESTRUCTIVE THERMAL BARRIER COATING SPALLATION PREDICTION BY A LOADBASED MICRO-INDENTATION TECHNIQUE

    SciTech Connect

    J. M. Tannenbaum; K. Lee; B. S.-J. Kang; M.A. Alvin

    2010-11-18

    Currently, the durability and life cycle of thermal barrier coatings (TBC) applied to gas turbine blades and combustor components are limiting the maximum temperature and subsequent efficiency at which gas turbine engines operate. The development of new materials, coating technologies and evaluation techniques is required if enhanced efficiency is to be achieved. Of the current ceramic coating materials used in gas turbine engines, yttria stabilized zirconia (YSZ) is most prevalent, its low thermal conductivity, high thermal expansion coefficient and outstanding mechanical strength make it ideal for use in TBC systems. However, residual stresses caused by coefficients of thermal expansion mismatches within the TBC system and unstable thermally grown oxides are considered the primary causes for its premature and erratic spallation failure. Through finite element simulations, it is shown that the residual stresses generated within the thermally grown oxide (TGO), bond coat (BC), YSZ and their interfaces create slight variations in indentation unloading surface stiffness response prior to spallation failure. In this research, seven air plasma sprayed and one electron beam physical vapor deposition yttria partially stabilized zirconia TBCs were subjected to isothermal and cyclic loadings at 1100°C. The associated coating degradation was evaluated using a non-destructive multiple partial unloading micro-indentation procedure. The results show that the proposed non-destructive micro-indentation evaluation technique can be an effective and specimenindependent TBC failure prediction tool capable of determining the location of initial spallation failure prior to its actual occurrence.

  5. Early non-destructive biofouling detection and spatial distribution: Application of oxygen sensing optodes.

    PubMed

    Farhat, N M; Staal, M; Siddiqui, A; Borisov, S M; Bucs, Sz S; Vrouwenvelder, J S

    2015-10-15

    Biofouling is a serious problem in reverse osmosis/nanofiltration (RO/NF) applications, reducing membrane performance. Early detection of biofouling plays an essential role in an adequate anti-biofouling strategy. Presently, fouling of membrane filtration systems is mainly determined by measuring changes in pressure drop, which is not exclusively linked to biofouling. Non-destructive imaging of oxygen concentrations (i) is specific for biological activity of biofilms and (ii) may enable earlier detection of biofilm accumulation than pressure drop. The objective of this study was to test whether transparent luminescent planar O2 optodes, in combination with a simple imaging system, can be used for early non-destructive biofouling detection. This biofouling detection is done by mapping the two-dimensional distribution of O2 concentrations and O2 decrease rates inside a membrane fouling simulator (MFS). Results show that at an early stage, biofouling development was detected by the oxygen sensing optodes while no significant increase in pressure drop was yet observed. Additionally, optodes could detect spatial heterogeneities in biofouling distribution at a micro scale. Biofilm development started mainly at the feed spacer crossings. The spatial and quantitative information on biological activity will lead to better understanding of the biofouling processes, contributing to the development of more effective biofouling control strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Non-Destructive Evaluation of Thermal Spray Coating Interface Quality by Eddy Current Method

    SciTech Connect

    B.Mi; X. Zhao; R. Bayles

    2006-05-26

    Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with different surface preparation conditions before applying the coating, e.g., grit-blasted surface, wire-brush cleaned surface, and a dirty surface. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that the three surface preparation conditions can be successfully differentiated by looking into the impedance difference observed from the eddy current probe. The measurement is fairly robust and consistent. More specimens are also prepared with variations of process parameters, such as spray angle, stand-off distance, and application of corrosion protective sealant, etc. They are blindly tested to evaluate the reliability of the eddy current system. Quantitative relations between the coating bond strength and the eddy current response are also established with the support of destructive testing. This non-contact, non-destructive, easy to use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.

  7. Rapid non-destructive assessment of pork edible quality by using VIS/NIR spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Peng, Yankun; Dhakal, Sagar; Song, Yulin; Zhao, Juan; Zhao, Songwei

    2013-05-01

    The objectives of this research were to develop a rapid non-destructive method to evaluate the edible quality of chilled pork. A total of 42 samples were packed in seal plastic bags and stored at 4°C for 1 to 21 days. Reflectance spectra were collected from visible/near-infrared spectroscopy system in the range of 400nm to 1100nm. Microbiological, physicochemical and organoleptic characteristics such as the total viable counts (TVC), total volatile basic-nitrogen (TVB-N), pH value and color parameters L* were determined to appraise pork edible quality. Savitzky-Golay (SG) based on five and eleven smoothing points, Multiple Scattering Correlation (MSC) and first derivative pre-processing methods were employed to eliminate the spectra noise. The support vector machines (SVM) and partial least square regression (PLSR) were applied to establish prediction models using the de-noised spectra. A linear correlation was developed between the VIS/NIR spectroscopy and parameters such as TVC, TVB-N, pH and color parameter L* indexes, which could gain prediction results with Rv of 0.931, 0.844, 0.805 and 0.852, respectively. The results demonstrated that VIS/NIR spectroscopy technique combined with SVM possesses a powerful assessment capability. It can provide a potential tool for detecting pork edible quality rapidly and non-destructively.

  8. Non-destructive techniques for the detection of fungal infection in cereal grains.

    PubMed

    Orina, Irene; Manley, Marena; Williams, Paul J

    2017-10-01

    Infection of cereal grains by fungi is a serious problem worldwide. Depending on the environmental conditions, cereal grains may be colonised by different species of fungi. These fungi cause reduction in yield, quality and nutritional value of the grain; and of major concern is their production of mycotoxins which are harmful to both humans and animals. Early detection of fungal contamination is an essential control measure for ensuring storage longevity and food safety. Conventional methods for detection of fungal infection, such as culture and colony techniques or immunological methods are either slow, labour intensive or difficult to automate. In recent years, there has been an increasing need to develop simple, rapid, non-destructive methods for early detection of fungal infection and mycotoxins contamination in cereal grains. Methods such as near infrared (NIR) spectroscopy, NIR hyperspectral imaging, and electronic nose were evaluated for these purposes. This paper reviews the different non-destructive techniques that have been considered thus far for detection of fungal infection and mycotoxins in cereal grains, including their principles, application and limitations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Non-destructive observation of electrically detected magnetic resonance in bulk material using AC bias.

    PubMed

    Sato, Toshiyuki; Yokoyama, Hidekatsu; Ohya, Hiroaki

    2005-07-01

    DC bias is normally found in conventional measurements of electrically detected magnetic resonance (EDMR). Usually, electrodes are formed on the sample surface to make ohmic contacts for detecting changes in the electrical characteristics of the sample material. Thus, destructive procedures are required to detect the EDMR signal of bulk material with such methods. An AC bias detection technique was developed to allow the non-destructive EDMR measurement of bulk materials. An AC bridge circuit was constructed to detect the change in impedance of the sample, which when changed by ESR, an unbalanced AC voltage can be detected. By detecting this AC bias, it is possible to cancel the effects, such as Shottky barriers, that disturb the ohmic contact between the electrodes and a sample material. Further, the AC bias current penetrates the thin surface layer of a sample such as silicon oxide, which normally obstructs a DC current. This method was utilized using conductive rubber contacts for non-destructive EDMR measurements of part of a silicon wafer. EDMR spectra observed were the same as those obtained by the conventional method of using DC bias detection.

  10. Non-destructive observation of electrically detected magnetic resonance in bulk material using AC bias

    NASA Astrophysics Data System (ADS)

    Sato, Toshiyuki; Yokoyama, Hidekatsu; Ohya, Hiroaki

    2005-07-01

    DC bias is normally found in conventional measurements of electrically detected magnetic resonance (EDMR). Usually, electrodes are formed on the sample surface to make ohmic contacts for detecting changes in the electrical characteristics of the sample material. Thus, destructive procedures are required to detect the EDMR signal of bulk material with such methods. An AC bias detection technique was developed to allow the non-destructive EDMR measurement of bulk materials. An AC bridge circuit was constructed to detect the change in impedance of the sample, which when changed by ESR, an unbalanced AC voltage can be detected. By detecting this AC bias, it is possible to cancel the effects, such as Shottky barriers, that disturb the ohmic contact between the electrodes and a sample material. Further, the AC bias current penetrates the thin surface layer of a sample such as silicon oxide, which normally obstructs a DC current. This method was utilized using conductive rubber contacts for non-destructive EDMR measurements of part of a silicon wafer. EDMR spectra observed were the same as those obtained by the conventional method of using DC bias detection.

  11. Non-destructive Testing of Forged Metallic Materials by Active Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Maillard, S.; Cadith, J.; Bouteille, P.; Legros, G.; Bodnar, J. L.; Detalle, V.

    2012-11-01

    Nowadays, infrared thermography is considered as the reference method in many applications such as safety, the inspection of electric installations, or the inspection of buildings' heat insulation. In recent years, the evolution of both material and data-processing tools also allows the development of thermography as a real non-destructive testing method. Thus, by subjecting the element to be inspected to an external excitation and by analyzing the propagation of heat in the examined zone, it is possible to highlight surface or subsurface defects such as cracks, delaminations, or corrosion. One speaks then about active infrared thermography. In this study, some results obtained during the collective studies carried out by CETIM and the University of Reims for the forging industry are presented. Various experimental possibilities offered by active thermography are presented and the interest in this method in comparison with the traditional non-destructive testing methods (penetrant testing and magnetic particle inspection) is discussed. For example, comparative results on a forged cracked hub, a steering joint, and a threaded rod are presented. They highlight the interest of infrared thermography stimulated by induction for forged parts.

  12. Non-destructive 3D shape measurement of transparent and black objects with thermal fringes

    NASA Astrophysics Data System (ADS)

    Brahm, Anika; Rößler, Conrad; Dietrich, Patrick; Heist, Stefan; Kühmstedt, Peter; Notni, Gunther

    2016-05-01

    Fringe projection is a well-established optical method for the non-destructive contactless three-dimensional (3D) measurement of object surfaces. Typically, fringe sequences in the visible wavelength range (VIS) are projected onto the surfaces of objects to be measured and are observed by two cameras in a stereo vision setup. The reconstruction is done by finding corresponding pixels in both cameras followed by triangulation. Problems can occur if the properties of some materials disturb the measurements. If the objects are transparent, translucent, reflective, or strongly absorbing in the VIS range, the projected patterns cannot be recorded properly. To overcome these challenges, we present a new alternative approach in the infrared (IR) region of the electromagnetic spectrum. For this purpose, two long-wavelength infrared (LWIR) cameras (7.5 - 13 μm) are used to detect the emitted heat radiation from surfaces which is induced by a pattern projection unit driven by a CO2 laser (10.6 μm). Thus, materials like glass or black objects, e.g. carbon fiber materials, can be measured non-destructively without the need of any additional paintings. We will demonstrate the basic principles of this heat pattern approach and show two types of 3D systems based on a freeform mirror and a GOBO wheel (GOes Before Optics) projector unit.

  13. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    NASA Astrophysics Data System (ADS)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  14. A Distributive, Non-Destructive, Real-Time Approach to Snowpack Monitoring

    NASA Technical Reports Server (NTRS)

    Frolik, Jeff; Skalka, Christian

    2012-01-01

    This invention is designed to ascertain the snow water equivalence (SWE) of snowpacks with better spatial and temporal resolutions than present techniques. The approach is ground-based, as opposed to some techniques that are air-based. In addition, the approach is compact, non-destructive, and can be communicated with remotely, and thus can be deployed in areas not possible with current methods. Presently there are two principal ground-based techniques for obtaining SWE measurements. The first is manual snow core measurements of the snowpack. This approach is labor-intensive, destructive, and has poor temporal resolution. The second approach is to deploy a large (e.g., 3x3 m) snowpillow, which requires significant infrastructure, is potentially hazardous [uses a approximately equal to 200-gallon (approximately equal to 760-L) antifreeze-filled bladder], and requires deployment in a large, flat area. High deployment costs necessitate few installations, thus yielding poor spatial resolution of data. Both approaches have limited usefulness in complex and/or avalanche-prone terrains. This approach is compact, non-destructive to the snowpack, provides high temporal resolution data, and due to potential low cost, can be deployed with high spatial resolution. The invention consists of three primary components: a robust wireless network and computing platform designed for harsh climates, new SWE sensing strategies, and algorithms for smart sampling, data logging, and SWE computation.

  15. Non-Destructive Observations of Internal Micro-Defects Using Scanning Electron-Induced Acoustic Microscope

    NASA Astrophysics Data System (ADS)

    Koyama, Atsuhiro; Shibutani, Yoji

    Scanning electron-induced acoustic microscope (SEAM) has been developed as a new tool for non-destructive observations of the internal microstructures of materials. It consists of the electric chopper to pulse the high current electron beam and the detector of the longitudinal acoustic waves, both being attached to the commercial scanning electron microscope (SEM). The cyclic chopping of electron beam with extremely high frequency of a few hundred kilohertz makes the thermal wave due to the cyclic temperature rise with the short period. The wavelength of thermal wave may determine the essential SEAM resolution, because it's much smaller than the thermal stress wave (that is, the acoustic wave), which has just the role of conveying the information of thermal wave disturbance due to unexpected change as defects. Our own-built SEAM gives the best performance for observing the internal defects like the micro-voids, because it susceptibly senses the local difference of thermal properties in the sample. The paper indicates that some non-destructive observations for the micro-voids with a few microns order existing in the sintered materials are exhibited in conjunction with their destructive observations using focused-ion beam (FIB) technique to make certain of those as the proof.

  16. Are those bugs reflective? Non-destructive biofilm imaging with white light interferometry

    SciTech Connect

    Larimer, Curtis J.; Brann, Michelle R.; Suter, Jonathan D.; Bonheyo, George T.; Addleman, Raymond S.

    2016-08-28

    White light interferometry (WLI) is not typically used to image bacterial biofilms that are immersed in water because there is insufficient refractive index contrast to induce reflection from the biofilm’s interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ by any means, especially in a non-destructive manner. Here we describe a new method for measuring and monitoring the thickness and topology of live biofilms using a WLI microscope. A microfluidic system was used to create a reflective interface on the surface of biofilms. Live biofilm samples were monitored non-destructively over time. The method enables surface metrology measurements (roughness, surface area) and a novel approach to measuring thickness of the thin hydrated biofilms. Increase in surface roughness preceded observable increase in biofilm thickness, indicating that this measure may be used to predict future development of biofilms. We have also developed a flow cell that enables WLI biofilm imaging in a dynamic environment. We have used this flow cell to observe changes in biofilm structure in response to changes in environmental conditions - flow velocity, availability of nutrients, and presence of biocides.

  17. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines

    PubMed Central

    Busschots, Steven; O’Toole, Sharon; O’Leary, John J.; Stordal, Britta

    2014-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. • Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner. • The technique is quick, affordable and eliminates sample manipulation. • The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines. PMID:26150966

  18. Neural network and principal component regression in non-destructive soluble solids content assessment: a comparison.

    PubMed

    Chia, Kim-seng; Abdul Rahim, Herlina; Abdul Rahim, Ruzairi

    2012-02-01

    Visible and near infrared spectroscopy is a non-destructive, green, and rapid technology that can be utilized to estimate the components of interest without conditioning it, as compared with classical analytical methods. The objective of this paper is to compare the performance of artificial neural network (ANN) (a nonlinear model) and principal component regression (PCR) (a linear model) based on visible and shortwave near infrared (VIS-SWNIR) (400-1000 nm) spectra in the non-destructive soluble solids content measurement of an apple. First, we used multiplicative scattering correction to pre-process the spectral data. Second, PCR was applied to estimate the optimal number of input variables. Third, the input variables with an optimal amount were used as the inputs of both multiple linear regression and ANN models. The initial weights and the number of hidden neurons were adjusted to optimize the performance of ANN. Findings suggest that the predictive performance of ANN with two hidden neurons outperforms that of PCR.

  19. Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production

    NASA Astrophysics Data System (ADS)

    Zaretski, Aliaksandr V.; Lipomi, Darren J.

    2015-05-01

    The exceptional charge-transport, mechanical, and barrier properties of graphene are well known. High-quality films of single-layer graphene produced over large areas, however, are extremely expensive. The high cost of graphene precludes its use in industries--such as transparent electrodes and flexible packaging--that might take full advantage of its properties. This minireview presents several strategies for the transfer of graphene from the substrates used for growth to substrates used for the final application. Each strategy shares the characteristic of being non-destructive: that is, the growth substrate remains reusable for further synthesis of new graphene. These processes have the potential to lower significantly the costs of manufacturing graphene, to increase production yields, and to minimize environmental impact. This article is divided into sections on (i) the synthesis of high-quality single-layer graphene and (ii) its non-destructive transfer to a host substrate. Section (ii) is further divided according to the substrate from which graphene is transferred: single-crystalline wafers or flexible copper foils. We also comment, wherever possible, on defects produced as a result of the transfer, and potential strategies to mitigate these defects. We conclude that several methods for the green synthesis and transfer of graphene have several of the right characteristics to be useful in industrial scale production.

  20. Variation in gymnemic acid content and non-destructive harvesting of Gymnema sylvestre (Gudmar).

    PubMed

    Pandey, Ashok Kumar; Yadav, Swati

    2010-09-01

    Madhunashini (Gymnema sylvestre R. Br.) commonly known as 'Gudmar' in Hindi is an important medicinal climber and extensively used in almost all Indian System of Medicine as a remedy for diabetes, rheumatism, cough, ulcer, jaundice, dyspepsia, constipation, eyes pain and also in snakebite. In India, it is found growing in Andhra Pradesh, Bihar, Chhattisgarh, Karnataka, Kerala, Madhya Pradesh, Maharastra, Orissa, Tamil Nadu, Uttar Pradesh and West Bengal. The major phytoconstituents are gymnemic acids, gudmarin and saponins. In the present study, Gymnema germplasm collected from various regions of Madhya Pradesh was evaluated on the basis of their morphological characteristics and gymnemic acid content. Gymnemic acid content in the leaves was estimated by HPLC. We have also standardized the non-destructive harvesting practices of Gudmar. Selective harvesting was done without harming the main plant. Only mature leaves (60%) were hand plucked in the month of October. Second harvest was done in the month of June. Data revealed that gymnemic acid content varied between 0.96% ± 0.03 (Seoni) to 1.58% ±0.03 (Amarkantak). It was also observed that the leaves left at the time of 1(st) harvest during October matured in June at the time of 2(nd) harvest. Non destructive harvesting practice did not have any negative impact on overall development of the plant. It is evident that there is wide variation in the morphological characteristics and gymnemic acid content in G. sylvestre collected from various locations, which can be exploited for further crop improvement programmes.

  1. Non-destructive inspection in industrial equipment using robotic mobile manipulation

    NASA Astrophysics Data System (ADS)

    Maurtua, Iñaki; Susperregi, Loreto; Ansuategui, Ander; Fernández, Ane; Ibarguren, Aitor; Molina, Jorge; Tubio, Carlos; Villasante, Cristobal; Felsch, Torsten; Pérez, Carmen; Rodriguez, Jorge R.; Ghrissi, Meftah

    2016-05-01

    MAINBOT project has developed service robots based applications to autonomously execute inspection tasks in extensive industrial plants in equipment that is arranged horizontally (using ground robots) or vertically (climbing robots). The industrial objective has been to provide a means to help measuring several physical parameters in multiple points by autonomous robots, able to navigate and climb structures, handling non-destructive testing sensors. MAINBOT has validated the solutions in two solar thermal plants (cylindrical-parabolic collectors and central tower), that are very demanding from mobile manipulation point of view mainly due to the extension (e.g. a thermal solar plant of 50Mw, with 400 hectares, 400.000 mirrors, 180 km of absorber tubes, 140m height tower), the variability of conditions (outdoor, day-night), safety requirements, etc. Once the technology was validated in simulation, the system was deployed in real setups and different validation tests carried out. In this paper two of the achievements related with the ground mobile inspection system are presented: (1) Autonomous navigation localization and planning algorithms to manage navigation in huge extensions and (2) Non-Destructive Inspection operations: thermography based detection algorithms to provide automatic inspection abilities to the robots.

  2. Non-destructive high-throughput DNA extraction and genotyping methods for cotton seeds and seedlings.

    PubMed

    Zheng, Xiuting; Hoegenauer, Kevin A; Maeda, Andrea B V; Wang, Fei; Stelly, David M; Nichols, Robert L; Jones, Don C

    2015-05-01

    Extensive use of targeted PCR-based genotyping is precluded for many plant research laboratories by the cost and time required for DNA extraction. Using cotton (Gossypium hirsutum) as a model for plants with medium-sized seeds, we report here manual procedures for inexpensive non-destructive high-throughput extraction of DNA suitable for PCR-based genotyping of large numbers of individual seeds and seedlings. By sampling only small amounts of cotyledon tissue of ungerminated seed or young seedlings, damage is minimized, and viability is not discernibly affected. The yield of DNA from each seed or seedling is typically sufficient for 1000 or 500 PCR reactions, respectively. For seeds, the tissue sampling procedure relies on a modified 96-well plate that is used subsequently for seed storage. For seeds and seedlings, the DNA is extracted in a strongly basic DNA buffer that is later neutralized and diluted. Extracts can be used directly for high-throughput PCR-based genotyping. Any laboratory can thus extract DNA from thousands of individual seeds/seedlings per person-day at a very modest cost for consumables (~$0.05 per sample). Being non-destructive, our approach enables a wide variety of time- and resource-saving applications, such as marker-assisted selection (MAS), before planting, transplanting, and flowering.

  3. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    PubMed

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  4. Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production.

    PubMed

    Zaretski, Aliaksandr V; Lipomi, Darren J

    2015-06-14

    The exceptional charge-transport, mechanical, and barrier properties of graphene are well known. High-quality films of single-layer graphene produced over large areas, however, are extremely expensive. The high cost of graphene precludes its use in industries-such as transparent electrodes and flexible packaging-that might take full advantage of its properties. This minireview presents several strategies for the transfer of graphene from the substrates used for growth to substrates used for the final application. Each strategy shares the characteristic of being non-destructive: that is, the growth substrate remains reusable for further synthesis of new graphene. These processes have the potential to lower significantly the costs of manufacturing graphene, to increase production yields, and to minimize environmental impact. This article is divided into sections on (i) the synthesis of high-quality single-layer graphene and (ii) its non-destructive transfer to a host substrate. Section (ii) is further divided according to the substrate from which graphene is transferred: single-crystalline wafers or flexible copper foils. We also comment, wherever possible, on defects produced as a result of the transfer, and potential strategies to mitigate these defects. We conclude that several methods for the green synthesis and transfer of graphene have several of the right characteristics to be useful in industrial scale production.

  5. Application of non-destructive techniques to assess the state of Hagia Sophia's mosaics

    NASA Astrophysics Data System (ADS)

    Moropoulou, Antonia; Karoglou, Maria; Labropoulos, Kyriakos C.; Delegou, Ekaterini T.; Katsiotis, Nikolaos K.; Karagiannis-Bakolas, Asterios

    2012-04-01

    The church of Hagia Sophia in Istanbul is a world heritage monument that epitomizes the byzantine ecclesiastic architecture. The church is decorated with mosaics from various historic periods. The preservation state of the mosaics is of high importance. In this study, non-destructive techniques (ground penetrating radar, infra-red thermography, fibreoptics microscopy) were employed on south upper gallery mosaic areas. The main aim of this on-site investigation was the evaluation of the preservation state of the mosaics and the previous interventions (materials characterization and decay diagnosis) in order to assess the performance of previous conservation/restoration interventions, as well as to verify the presence of mosaics in layers below the external plaster surfaces. Results indicated that is indeed possible to locate the grid of rendered mosaics. Regarding the preservation state of the mosaics, it was indicated that the main environmental decay factors were the high relative humidity levels with co-action of salt damp as well as the air pollutants. Moreover, it was revealed that previous incompatible restoration/conservation interventions have often accelerated the mosaics' degradation processes. Using non-destructive techniques it was possible to identify areas where the mosaic materials (tesserae and mortars) presented decay problems and in addition identify sub-layers that pose risk of detachment or decay intensification. In this way, NDT can contribute to the development of a strategic planning for mosaics conservation, protection and revealing.

  6. Are those bugs reflective? non-destructive biofilm imaging with white light interferometry

    NASA Astrophysics Data System (ADS)

    Larimer, Curtis; Brann, Michelle; Suter, Jonathan D.; Bonheyo, George; Addleman, R. Shane

    2016-08-01

    White light interferometry (WLI) is not typically used to image bacterial biofilms that are immersed in water because there is insufficient refractive index contrast to induce reflection from the biofilm's interface. The soft structure and water-like bulk properties of hydrated biofilms make them difficult to characterize in situ by any means, especially in a non-destructive manner. Here we describe a new method for measuring and monitoring the thickness and topology of live biofilms using a WLI microscope. A microfluidic system was used to create a reflective interface on the surface of biofilms. Live biofilm samples were monitored non-destructively over time. The method enables surface metrology measurements (roughness, surface area) and a novel approach to measuring thickness of the thin hydrated biofilms. Increase in surface roughness preceded observable increase in biofilm thickness, indicating that this measure may be used to predict future development of biofilms. We have also developed a flow cell that enables WLI biofilm imaging in a dynamic environment. We have used this flow cell to observe changes in biofilm structure in response to changes in environmental conditions - flow velocity, availability of nutrients, and presence of biocides.

  7. Neural network and principal component regression in non-destructive soluble solids content assessment: a comparison*

    PubMed Central

    Chia, Kim-seng; Abdul Rahim, Herlina; Abdul Rahim, Ruzairi

    2012-01-01

    Visible and near infrared spectroscopy is a non-destructive, green, and rapid technology that can be utilized to estimate the components of interest without conditioning it, as compared with classical analytical methods. The objective of this paper is to compare the performance of artificial neural network (ANN) (a nonlinear model) and principal component regression (PCR) (a linear model) based on visible and shortwave near infrared (VIS-SWNIR) (400–1000 nm) spectra in the non-destructive soluble solids content measurement of an apple. First, we used multiplicative scattering correction to pre-process the spectral data. Second, PCR was applied to estimate the optimal number of input variables. Third, the input variables with an optimal amount were used as the inputs of both multiple linear regression and ANN models. The initial weights and the number of hidden neurons were adjusted to optimize the performance of ANN. Findings suggest that the predictive performance of ANN with two hidden neurons outperforms that of PCR. PMID:22302428

  8. Non-Destructive Evaluation of Grain Structure Using Air-Coupled Ultrasonics

    SciTech Connect

    Belvin, A. D.; Burrell, R. K.; Cole, E.G.

    2009-08-01

    Cast material has a grain structure that is relatively non-uniform. There is a desire to evaluate the grain structure of this material non-destructively. Traditionally, grain size measurement is a destructive process involving the sectioning and metallographic imaging of the material. Generally, this is performed on a representative sample on a periodic basis. Sampling is inefficient and costly. Furthermore, the resulting data may not provide an accurate description of the entire part's average grain size or grain size variation. This project is designed to develop a non-destructive acoustic scanning technique, using Chirp waveforms, to quantify average grain size and grain size variation across the surface of a cast material. A Chirp is a signal in which the frequency increases or decreases over time (frequency modulation). As a Chirp passes through a material, the material's grains reduce the signal (attenuation) by absorbing the signal energy. Geophysics research has shown a direct correlation with Chirp wave attenuation and mean grain size in geological structures. The goal of this project is to demonstrate that Chirp waveform attenuation can be used to measure grain size and grain variation in cast metals (uranium and other materials of interest). An off-axis ultrasonic inspection technique using air-coupled ultrasonics has been developed to determine grain size in cast materials. The technique gives a uniform response across the volume of the component. This technique has been demonstrated to provide generalized trends of grain variation over the samples investigated.

  9. Development of an instrument for non-destructive identification of Unexploded Ordnance using tagged neutrons - a proof of concept study

    SciTech Connect

    Mitra, S.; Dioszegi, I.

    2011-10-23

    Range clearance operations at munitions testing grounds must discriminate Unexploded Ordnance (UXO) from clutter items and distinguish UXO filled with High Explosives (HE) from those with inert fillers. Non-destructive technologies are thus necessary for the cost-effective disposal of UXO during remediation of such sites. The only technique showing promise so far for the non-destructive elemental characterization of UXO fillers utilizes neutron interactions with the material to detect carbon (C), nitrogen (N) and oxygen (O) which have unique ratios in HE. However, several unresolved issues hinder the wide application of this potentially very suitable technique. The most important one is that neutrons interact with all surrounding matter in addition to the interrogated material, leading to a very high gamma-ray background in the detector. Systems requiring bulky shielding and having poor signal-to-noise ratios (SNRs) for measuring elements are unsuitable for field deployment. The inadequacies of conventional neutron interrogation methods are overcome by using the tagged-neutron approach, and the availability of compact sealed neutron generators exploiting this technique offers field deployment of non-intrusive measurement systems for detecting threat materials, like explosives and drugs. By accelerating deuterium ions into a tritium target, the subsequent fusion reaction generates nearly back-to-back emissions of neutrons and alpha particles of energy 14.1 and 3.5 MeV respectively. A position-sensitive detector recognizes the associated alpha particle, thus furnishing the direction of the neutron. The tagged neutrons interact with the nuclei of the interrogated object, producing element-specific prompt gamma-rays that the gamma detectors recognize. Measuring the delay between the detections of the alpha particle and the gamma-ray determines where the reaction occurred along the axis of the neutron beam (14.1 MeV neutrons travel at 5 cm/nanosecond, while gamma rays

  10. Non-destructive testing on aramid fibres for the long-term assessment of interventions on heritage structures

    NASA Astrophysics Data System (ADS)

    Ceravolo, R.; De Marchi, A.; Pinotti, E.; Surace, C.; Zanotti Fragonara, L.

    2015-07-01

    High strength fibre reinforced polymers (FRPs) are composite materials made of fibres such as carbon, aramid and/or glass, and a resin matrix. FRPs are commonly used for structural repair and strengthening interventions and exhibit high potential for applications to existing constructions, including heritage buildings. In regard to aramid fibres, uncertainties about the long-term behaviour of these materials have often made the designers reluctant to use them in structural engineering. The present study describes simple and non-destructive nonlinearity tests for assessing damage or degradation of structural properties in Kevlar fibres. This was obtained by using high precision measurements to detect small deviations in the dynamic response measured on fibres and ropes. The change in dynamic properties was then related to a damage produced by exposure of the sample to UV rays for a defined time period, which simulated long-term sun exposure. In order to investigate the sensitivity of such an approach to damage detection, non-linearity characterisation tests were conducted on aramid fibres in both damaged and undamaged states. With the purpose of carrying out dynamic tests on small fibre specimens, a dedicated instrumentation was designed and built in cooperation with the Metrology Laboratory of the Department of Electronics at the Politecnico di Torino.

  11. Infrared thermal wave nondestructive testing for rotor blades in wind turbine generators non-destructive evaluation and damage monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, Shi bin; Zhang, Cun-lin; Wu, Nai-ming; Duan, Yu-xia; Li, Hao

    2009-07-01

    The rotor blades are key components in wind turbine generators. A visual inspection of the laminated shells for delaminations, air pockets, missing/disoriented fabric etc. is in most cases also not possible due to the manufacturing process, so Non-destructive testing and evaluation (NDT & E) techniques for assessing the integrity of rotor blades structure are essential to both reduce manufacturing costs and out of service time of wind turbine generators due to maintenance. Nowadays, Infrared Thermal Wave Nondestructive Testing (Pulsed thermography) is commonly used for assessing composites. This research work utilizes Infrared Thermal Wave Nondestructive Testing system (EchoTherm, Thermal Wave Imaging, Inc.) to inspect a specimen with embedded defects (i.e. foreign matter and air inclusions) in different depth which is a part of rotor blades in wind turbine generators, we have successfully identified defects including foreign matter and air inclusions, and discovered a defective workmanship. The system software allows us to simultaneously view and analyze the results for an entire transition.

  12. A non-destructive in ovo assay to quantify EROD activity in embryo-larval Fundulus heteroclitus

    SciTech Connect

    Nacci, D.; Kuhn-Hines, A.; Coiro, L.; Munns, W.R. Jr.; Cooper, K.

    1995-12-31

    Sensitive embryo-larval estuarine fish exposed to organic contaminants such as polyaromatic hydrocarbons and polyhalogenated aromatic hydrocarbons (PHAHs) have been shown to demonstrate characteristic biochemical responses, and impaired development and reduced survival. One of the best studied of these biochemical responses is induction of cytochrome P450 enzymes, e.g., CYP1A, frequently assessed as ethoxyresorufin-o-deethylase (EROD) activity. Standard methods to measure EROD activity in embryo-larval fish require destructive samples, composited from many embryos, precluding information on individual variation in EROD activity or concurrent observation of health effects. A novel method has been developed that employs the non-destructive observation in individual embryos of EROD activity, demonstrated by the production and accumulation in the embryonic bladder of the fluorescent product, resorufin. EROD activity in a living embryo is quantified by bladder fluorescence using microfluorometric instrumentation. Using this technique, the authors were able to follow individual fish throughout embryonic and early larval development making temporal observations of EROD activity as well as developmental progress, lesion characterization, hatch rate and success, and post-hatch growth and survival. Results were used to examine differential responsiveness to EROD-inducing organic contaminants of embryo-larval fish from parental populations inhabiting PHAH-contaminated or uncontaminated environments.

  13. Non Destructive Testing by active infrared thermography coupled with shearography under same optical heat excitation

    NASA Astrophysics Data System (ADS)

    Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier

    2014-05-01

    As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the

  14. Non-destructive, in-field determination of wood density in tropical forests

    NASA Astrophysics Data System (ADS)

    Torello-Raventos, Mireia; Page, Tony; Ford, Andrew; Metcalfe, Dan; Lloyd, Jon; Bird, Michael

    2014-05-01

    the validation of an accurate field-based, non-destructive measurement of wood density. 1Phillips, O. L., et al., 2008. The changing Amazon forest. Philosophical Transactions of the Royal Society of Biological Sciences, 363, 1819-1827. 2Phillips, O. L., et al., 1998. Changes in the carbon balance of tropical forests: evidence from long term plot data. Science 282, 439-442.3Malhi,Y. and Grace, J., 2000. Tropical forests and atmospheric carbon dioxide. Trends Ecology Evolution, 15, 332-337.4Gibbs, H. K., et al, 2007. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2, 1-13.5Nogueira, E. M., et al., 2005. Wood density in dense forest in central Amazonia, Brazil. Forest Ecology and Management, 208, 261-268.6Nogueira, E. M., et al., 2008. Normalization of wood density in biomass estimates of Amazon forests. Forest Ecology and Management, 256, 990-996.7Chave, J., et al., 2003. Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. Journal of Ecology, 91, 240-252.

  15. Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol.

    PubMed

    Hajibabaei, Mehrdad; Spall, Jennifer L; Shokralla, Shadi; van Konynenburg, Steven

    2012-12-23

    Characterizing biodiversity in a habitat or in targeted taxonomically or socioeconomically important groups remains a challenge. Standard DNA-based biodiversity identification tools such as DNA barcoding coupled with high-throughput Next-Generation Sequencing (NGS) technologies are rapidly changing the landscape of biodiversity analysis by targeting various habitats and a wide array of organisms. However, effective use of these technological advances requires optimized protocols and benchmarking against traditional tools. Here we investigate the use of commonly used preservative ethanol as a non-destructive and inexpensive source of DNA for NGS biodiversity analysis of benthic macroinvertebrates. We used the preservative ethanol added to field collected organisms (live sorted bulk benthic samples) as a source of community DNA for NGS environmental barcoding. We directly compare this approach with a DNA barcode library generated using Sanger sequencing of all individuals separated from abenthic sample as well as with NGS environmental barcoding of DNA extracted from mixed/homogenized tissue specimens of the same benthic sample. We also evaluate a multiplex PCR strategy, as compared to commonly used single amplicon workflow, using three newly designed primer sets targeting a wide array of benthic macroinvertebrate taxa. Our results indicate the effectiveness of ethanol-based DNA in providing sequence information from 87% of taxa identified individually from mixture as compared to 89% in conventional tissue extracted DNA. Missing taxa in both DNA sources were from species with the lowest abundance (e.g. 1 individual) in the benthic mixture. Interestingly, we achieved 100% detection for taxa represented with more than 1% individuals in the mixture in both sources of DNA. Our multiplex amplification regime increased the detection as compared to any single primer set indicating the usefulness of using multiple primer sets in initial amplification of target genes

  16. Layered Composite Analysis Capability

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.; Cole, J. G.

    1985-01-01

    Laminated composite material construction is gaining popularity within industry as an attractive alternative to metallic designs where high strength at reduced weights is of prime consideration. This has necessitated the development of an effective analysis capability for the static, dynamic and buckling analyses of structural components constructed of layered composites. Theoretical and user aspects of layered composite analysis and its incorporation into CSA/NASTRAN are discussed. The availability of stress and strain based failure criteria is described which aids the user in reviewing the voluminous output normally produced in such analyses. Simple strategies to obtain minimum weight designs of composite structures are discussed. Several example problems are presented to demonstrate the accuracy and user convenient features of the capability.

  17. Passive and Active Tagging of Reinforced Composites for in Process and Infield Non-Destructive Evaluation

    DTIC Science & Technology

    1996-02-01

    participating companies: Reichhold Chemicals, Clark-Schwebel, PPG Industries, Interplastic Corp., Owens - Corning , and TPI, Inc .. Tagging Materials Five...cellophane film (# 95080906). The eddy current testing of samples with MnZn ferrite tagging from Owens - Corning showed that the response of the sample...example, consider the specimen obtained from Owens - Corning sample A (MnZn ferrite tagging) shown in the sixth row of Table 3. The naturaI frequency

  18. Non-Destructive Evaluation of Aircraft Structural Components and Composite Materials at DSTO Using Sonic Thermography

    DTIC Science & Technology

    2011-02-01

    5 3.3 Vaseline contamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Glass reinforced aluminium specimens...superimposed with a photograph of the panel. In (a) the coloured circles correspond to the vaseline contamination in the bondline, red crosses indicate...superimposed with a photograph of the panel. In (a) the coloured circles correspond to the vaseline contamination in the bondline, red crosses indicate impact

  19. Physical principles of ultrasonic non-destructive evaluation of advanced composites

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1988-01-01

    Results are presented from the continued investigations into the use of ultrasonic measurement techniques for the detection and characterization of porosity. The effects that bleeder cloth impressions (left after the cure process) have on the capability of polar backscatter to interrogate volume effects such as porosity are described. Some preliminary data regarding a comparison of phase sensitive and phase insensitivie detection for materials characterization is presented.

  20. Development of Embedded Acoustic Waveguides for Monitoring Composite Material Processing and Non-Destructive Evaluation

    DTIC Science & Technology

    1995-12-01

    The reason for using a sawcut- type of slot in the resin was to create a reflection site for the AWG transmitted signal and simulate the acoustic...due to acoustic wave reflections . In Figure 5-23 it can be seen that for zero bond, when the resin is completely cut through, and the only acoustic...acoustic reflection at the bondline. These analyses of the AWG response to simulated degrees of resin bonding is considered proof-of-principle for

  1. Characterization and Source Term Assessments of Radioactive Particles from Marshall Islands Using Non-Destructive Analytical Techniques

    SciTech Connect

    Jernstrom, J; Eriksson, M; Simon, R; Tamborini, G; Bildstein, O; Carlos-Marquez, R; Kehl, S R; Betti, M; Hamilton, T

    2005-06-11

    A considerable fraction of radioactivity entering the environment from different nuclear events is associated with particles. The impact of these events can only be fully assessed where there is some knowledge about the mobility of particle bound radionuclides entering the environment. The behavior of particulate radionuclides is dependent on several factors, including the physical, chemical and redox state of the environment, the characteristics of the particles (e.g., the chemical composition, crystallinity and particle size) and on the oxidative state of radionuclides contained in the particles. Six plutonium-containing particles stemming from Runit Island soil (Marshall Islands) were characterized using non-destructive analytical and microanalytical methods. By determining the activity of {sup 239,240}Pu and {sup 241}Am isotopes from their gamma peaks structural information related to Pu matrix was obtained, and the source term was revealed. Composition and elemental distribution in the particles were studied with synchrotron radiation based micro X-ray fluorescence (SR-{mu}-XRF) spectrometry. Scanning electron microscope equipped with energy dispersive X-ray detector (SEMEDX) and secondary ion mass spectrometer (SIMS) were used to examine particle surfaces. Based on the elemental composition the particles were divided into two groups; particles with plain Pu matrix, and particles where the plutonium is included in Si/O-rich matrix being more heterogeneously distributed. All of the particles were identified as fragments of initial weapons material. As containing plutonium with low {sup 240}Pu/{sup 239}Pu atomic ratio, {approx}2-6%, which corresponds to weapons grade plutonium, the source term was identified to be among the safety tests conducted in the history of Runit Island.

  2. Non-destructive elemental quantification of polymer-embedded thin films using laboratory based X-ray techniques

    NASA Astrophysics Data System (ADS)

    Cordes, Nikolaus L.; Havrilla, George J.; Usov, Igor O.; Obrey, Kimberly A.; Patterson, Brian M.

    2014-11-01

    Thin coatings are important for a variety of industries including energy (e.g., solar cells, batteries), consumer electronics (e.g., LCD displays, computer chips), and medical devices (e.g., implants). These coatings are typically highly uniform layers with thicknesses ranging from a monolayer up to several micrometers. Characterizing these highly uniform coatings for their thickness, elemental composition, and uniformity are all paramount, but obtaining these measurements can be more difficult when the layers are subsurface and must be interrogated non-destructively. The coupling of confocal micro-X-ray fluorescence (confocal MXRF) and nano-scale X-ray computed tomography (nano-CT) together can make these measurements while meeting these sensitivity and resolution specifications necessary for characterizing thin films. Elemental composition, atomic percent, placement, and uniformity can be measured in three dimensions with this integrated approach. Confocal MXRF uses a pair of polycapillary optics to focus and collect X-rays from a material from a 3D spatially restricted confocal volume. Because of the spatial definition, individual layers (of differing composition) can be characterized based upon the elementally characteristic X-ray fluorescence collected for each element. Nano-scale X-ray computed tomography, in comparison, can image the layers at very high resolution (down to 50 nm) to precisely measure the embedded layer thickness. These two techniques must be used together if both the thickness and atomic density of a layer are unknown. This manuscript will demonstrate that it is possible to measure both the atomic percent of an embedded thin film layer and confirm its manufacturing quality. As a proof of principle, a 1.5 atomic percent, 2 μm-thick Ge layer embedded within polymer capsules, used for laser plasma experiments at the Omega Laser Facility and National Ignition Facility, are measured.

  3. [Non-destructive detection research for hollow heart of potato based on semi-transmission hyperspectral imaging and SVM].

    PubMed

    Huang, Tao; Li, Xiao-yu; Xu, Meng-ling; Jin, Rui; Ku, Jing; Xu, Sen-miao; Wu, Zhen-zhong

    2015-01-01

    The quality of potato is directly related to their edible value and industrial value. Hollow heart of potato, as a physiological disease occurred inside the tuber, is difficult to be detected. This paper put forward a non-destructive detection method by using semi-transmission hyperspectral imaging with support vector machine (SVM) to detect hollow heart of potato. Compared to reflection and transmission hyperspectral image, semi-transmission hyperspectral image can get clearer image which contains the internal quality information of agricultural products. In this study, 224 potato samples (149 normal samples and 75 hollow samples) were selected as the research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images (390-1 040 nn) of the potato samples, and then the average spectrum of region of interest were extracted for spectral characteristics analysis. Normalize was used to preprocess the original spectrum, and prediction model were developed based on SVM using all wave bands, the accurate recognition rate of test set is only 87. 5%. In order to simplify the model competitive.adaptive reweighed sampling algorithm (CARS) and successive projection algorithm (SPA) were utilized to select important variables from the all 520 spectral variables and 8 variables were selected (454, 601, 639, 664, 748, 827, 874 and 936 nm). 94. 64% of the accurate recognition rate of test set was obtained by using the 8 variables to develop SVM model. Parameter optimization algorithms, including artificial fish swarm algorithm (AFSA), genetic algorithm (GA) and grid search algorithm, were used to optimize the SVM model parameters: penalty parameter c and kernel parameter g. After comparative analysis, AFSA, a new bionic optimization algorithm based on the foraging behavior of fish swarm, was proved to get the optimal model parameter (c=10. 659 1, g=0. 349 7), and the recognition accuracy of 10% were obtained for the AFSA

  4. High-Tc planar SQUID gradiometer for eddy current non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Jian; Lang, Pei-Lin; Peng, Zhi-Hui; Chen, Ying-Fei; Chen, Ke; Zheng, Dong-Ning

    2006-08-01

    This paper reports the fabrication and test of a high-Tc SQUID planar gradiometer which is patterned from YBCO thin film deposited on a SrTiO3 bicrystal substrate. The measurement of noise spectrum at 77K shows that the white noise at 200 Hz is about 1×10-4Φ0/(Hz)1/2. The minimal magnetic gradient is measured and the results suggest that the minimal magnetic gradient is 94 pT/m. The planar gradiometer is used in non-destructive evaluation (NDE) experiments to detect the artifacts in conducting aluminium plates by performing eddy current testing in an unshielded environment. The effect of the exciting coil dimension on the NDE results is investigated. By mapping out the induced field distribution, flaws about 10mm below the plate surface can be clearly identified.

  5. Research on high-Tc SQUID based non-destructive evaluation

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Wu; Kong, Xiang-Yan; Ren, Yu-Feng; Yu, Hong-Wei; Ding, Hong-Sheng; Zhao, Shi-Ping; Chen, Geng-Hua; Zhou, Yue-Liang; Zhang, Li-Hua; He, Yu-Sheng; Yang, Qian-Sheng

    2004-01-01

    A non-destructive evaluation system based on high-Tc dc-SQUID (superconducting quantum interference device) incorporating a gradient field excitation has been built. By using this system a 1mm-diameter hole at a depth of 2mm inside an aluminium plate at room temperature can be easily detected and imaged in an unshielded environment. The relation between the spatial resolution, or the smallest detectable flaw size and experimental parameters is briefly analysed in terms of a simple metal ring model. The result shows that the spatial resolution depends strongly on the sensor-sample separation as well as on some other parameters, such as signal-to-noise ratio of excitation, excitation frequency and material conductivity.

  6. Correlation-based imaging technique using ultrasonic transmit-receive array for Non-Destructive Evaluation.

    PubMed

    Quaegebeur, Nicolas; Masson, Patrice

    2012-12-01

    This paper describes a novel array post-processing method for Non-Destructive Evaluation (NDE) using phased-array ultrasonic probes. The approach uses the capture and processing of the full matrix of all transmit-receive time-domain signals from a transducer array as in the case of the Total Focusing Method (TFM), referred as the standard of imaging algorithms. The proposed technique is based on correlation of measured signals with theoretical propagated signals computed over a given grid of points. In that case, real-time imaging can be simply implemented using discrete signal product. The advantage of the present technique is to take into account transducer directivity, dynamics and complex propagation patterns, such that the number of required array elements for a given imaging performance can be greatly reduced. Numerical and experimental application to contact inspection of isotropic structure is presented and real-time implementation issues are discussed.

  7. Non-Destructive Evaluation of Thermal Spray Coating Interface Quality By Eddy Current Method

    SciTech Connect

    B. Mi; G. Zhao; R. Bayles

    2006-08-10

    Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with various surface preparation conditions or spray process parameters. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that different surface preparation conditions and varied process parameters can be successfully differentiated by the impedance value observed from the eddy current probe. The measurement is fairly robust and consistent. This non-contact, nondestructive, easy-to-use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.

  8. A Novel Application of Non-Destructive Readout Technology to Localisation Microscopy

    PubMed Central

    Barnett, Samuel F. H.; Snape, Mary; Hunter, C. Neil; Juárez, Miguel A.; Cadby, Ashley J.

    2017-01-01

    The fitting precision in localisation microscopy is highly dependent on the signal to noise ratio. To increase the quality of the image it is therefore important to increase the signal to noise ratio of the measurements. We present an imaging system for localisation microscopy based on non-destructive readout camera technology that can increase the signal to noise ratio of localisation based microscopy. This approach allows for much higher frame rates through subsampling a traditional camera frame. By matching the effective exposure to both the start time and duration of a single molecule we diminish the effects of read noise and temporal noise. We demonstrate the application of this novel method to localisation microscopy and show both an increase in the attainable signal to noise ratio of data collection and an increase in the number of detected events. PMID:28195127

  9. Could non-destructive methodologies enhance the microbiologically influenced corrosion (MIC) in pipeline systems?

    NASA Astrophysics Data System (ADS)

    Al-Abbas, F.; Kakpovbia, A.; Mishra, B.; Olson, D.; Spear, J.

    2013-01-01

    Stringent corrosion management programs are being deployed by oil and gas industry to ensure the integrity of pipeline systems. Parts of this program are the corrosion protection systems and inspection detection methods included non-destructive techniques. Those measures induce remnant magnetic field (RMF) in the pipeline steel. Potentially the RMF could affect the corrosion process in the pipeline including microbiologically influenced corrosion (MIC). Microorganisms in pipelines have surface charges and produce a wide variety of metabolic products. Consequently, when they are exposed to RMF generated at the linepipe steel surface by the aforementioned sources there will be potential effects. This sequentially will increase the likelihood of biofilm formation and hence enhance/promote MIC. This study investigates the potential effects of RFM on the MIC by sulfate reducing bacteria (SRB).

  10. Contribution to the improvement of heritage mural painting non-destructive testing by stimulated infrared thermography

    NASA Astrophysics Data System (ADS)

    Bodnar, Jean-Luc; Mouhoubi, Kamel; Di Pallo, Luigi; Detalle, Vincent; Vallet, Jean-Marc; Duvaut, Thierry

    2013-10-01

    Non-destructive testing of heritage mural paintings by means of stimulated infrared thermography has now become rather efficient [1-14]. However, pigments, which form a pictorial layer, have contrasting radiative properties possibly leading to artifact detection. In this paper, attempts to alleviate this difficulty are presented. Based on the spectroscopic study of different paint layers, one can argue that, in the medium infrared field, this radiative disparity decreases significantly. Then, with similar settings, it can be shown that ceramic radiative sources allow reaching this wavelength band. Finally, on the basis of a study carried out on an academic sample and a partial copy of a fresco from the cathedral of Angers, combining ceramic heat sources with a laboratory SAMMTHIR experimental setup enables to make real headway in terms of defects' detection.

  11. PREDICTION OF DISSOLVER LIFETIMES THROUGH NON-DESTRUCTIVE EVALUATION AND LABORATORY TESTING

    SciTech Connect

    Mickalonis, J.; Woodsmall, T.; Hinz, W.; Edwards, T.

    2011-10-03

    Non-destructive evaluation was used as the primary method of monitoring the corrosion degradation of nuclear material dissolvers and assessing the remaining lifetimes. Materials were typically processed in nitric acid based (4-14M) solutions containing fluoride concentrations less than 0.2 M. The primary corrosion issue for the stainless steel dissolvers is the occurrence of localized corrosion near the tank bottom and the heat affected zones of the welds. Laboratory data for a range of operational conditions, including solution chemistry and temperature, was used to assess the impact of processing changes on the dissolver corrosion rate. Experimental and NDE-based general corrosion rates were found to be in reasonable agreement for standard dissolution chemistries consisting of nitric acid with fluorides and at temperatures less than 95 C. Greater differences were observed when chloride was present as an impurity and temperatures exceeded 100 C.

  12. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    DOEpatents

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  13. Barkhausen spectroscopy: Non-destructive characterization of magnetic materials as a function of depth

    NASA Astrophysics Data System (ADS)

    Kypris, O.; Nlebedim, I. C.; Jiles, D. C.

    2014-05-01

    In this study, we conceptually divided a ferromagnetic specimen into layers along its depth. For each layer, we derived a non-linear integral equation that describes the attenuation with frequency and distance of magnetic Barkhausen emissions coming from that layer. We postulate that the Barkhausen spectrum measured at the surface by an induction coil can be expressed as the sum of the individual layer spectra. We show how a non-linear least squares algorithm can be used to recover the properties in individual layers. These are related to stress using an extension to the theory of ferromagnetic hysteresis. We found that the quality of the fit is influenced by the sensitivity of the ferromagnetic material to strain, as well as by the sensor-specimen coupling. The proposed method can be used for the non-destructive characterization of stress as a function of depth in magnetic materials.

  14. Model-based non-destructive investigation methods in semiconductor industry

    NASA Astrophysics Data System (ADS)

    Bilski, B.; Paz, V. Ferreras; Frenner, K.; Osten, W.

    2013-05-01

    Scatterometry is an investigation method that is gaining in importance in semiconductor industry. As an optical method it has distinct advantages that its competitor-methods do not possess: the ability for a quick and non-destructive measurement of fine features fabricated by modern generations of lithography machines. Scatterometry is very distinct from other measurement techniques also in this respect that it is a model-based method. As such it relies heavily on simulation and is essentially solving an inverse problem. In a forward optical measurement an imaging system processes the object information losing some fraction of information in the process. The measurement process in scatterometry follows the same pattern. The measurement result however is now compared against multiple simulated direct problems. The best fit between the simulation and the measurement is assumed to reconstruct the measured object.

  15. Incoherent scattering of gamma photons for non-destructive tomographic inspection of pipeline.

    PubMed

    Sharma, Amandeep; Sandhu, B S; Singh, Bhajan

    2010-12-01

    A scanner system, operating in a non-destructive and non-invasive way, is presented for pipeline to determine its location in land soil, wall thickness, type of liquid flowing and crack/blockage position. The present experiment simulates a real case where pipe corrosion (wall thinning) under insulation can be known from the study of incoherent scattering of 662 keV gamma photons. The incoherent scattered intensity, obtained by unfolding (deconvolution) the experimental pulse-height distribution of NaI(Tl) scintillation detector with the help of inverse response matrix, provides the desired information. The method is quite sensitive for small change (approximately 1 mm) in the thickness of pipe wall, locating a defect of 1mm width under insulation and a small change (approximately 0.1 gm cm(-3)) in the density of liquid flowing through pipe. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Gigahertz time-domain spectroscopy and imaging for non-destructive materials research and evaluation

    PubMed Central

    Bulgarevich, Dmitry S.; Shiwa, Mitsuharu; Furuya, Takashi; Tani, Masahiko

    2016-01-01

    By using optical sampling with repetition frequency modulation of pump/probe laser pulses on photoconductive emitter/detector antennas, the high-speed time/frequency domain gigahertz imaging is reported due to the absence of opto-mechanical delay line in this optical scheme. The clear contrast for a 3-cm wide metal plate, which was placed behind a 5-cm thick concrete block, was observed with a 1 × 1 mm image pixilation. On average, it took only ~0.75 s per pixel/waveform acquisition/assignment with a 675 ps time-domain window. This could become a valuable non-destructive evaluation technique in gigahertz spectral range with all benefits of time-domain spectroscopy. PMID:27302877

  17. Design of ERL Spoke Cavity For Non-Destructive Assay Research

    NASA Astrophysics Data System (ADS)

    Sawamura, M.; Nagai, R.; Nishimori, N.; Hajima, R.

    2015-10-01

    We are proposing non-destructive assay system of nuclear materials with laser Compton scattering combined with an energy-recovery linac (ERL) and a laser. Since constructing accelerator system for nuclear safe guard and security requires small cavities, spoke cavities have many advantages such as shortening the distance between cavities, small frequency detune due to micro-phonics and easy adjustment of field distribution for strong cell coupling. Calculations of optimized cavity shape and HOM coupler shape have been performed and rf properties with aluminum spoke cavity model have been also measured. Considering refrigerator system required for superconducting accelerator, we are planning to develop 325MHz spoke cavity which can be practically operated with 4K liquid helium. We have started to fabricate the niobium one-spoke cavity.

  18. A rapid non-destructive method for root dentin moisture measurements

    PubMed Central

    Komabayashi, Takashi; Zhu, Qiang; Jiang, Jin; Safavi, Kamran E.; Spångberg, Larz S.W.

    2009-01-01

    Dentin moisture content is important in adhesive bonding and structural strength research. However, there is no rapid method available to assess dentin moisture without sample destruction. This study examined the use of a digital grain moisture meter to measure root dentin moisture in vitro. Extracted mandibular single rooted teeth were sectioned at the CEJ. The moisture of the root dentin was measured at six measuring modes for different grains and repeated five times. Dentin weight changes before and after drying were measured to obtain control values. The control values were compared with machine readings. In conclusion, (1) Each non-destructive measurement took less than 30 seconds. (2) 24 hours storage at 37°C and 100 % humidity did not restore dentin moisture. (3) Five grain modes had a high validity, and could be used for dentin moisture measurements. PMID:19157921

  19. A Novel Application of Non-Destructive Readout Technology to Localisation Microscopy

    NASA Astrophysics Data System (ADS)

    Barnett, Samuel F. H.; Snape, Mary; Hunter, C. Neil; Juárez, Miguel A.; Cadby, Ashley J.

    2017-02-01

    The fitting precision in localisation microscopy is highly dependent on the signal to noise ratio. To increase the quality of the image it is therefore important to increase the signal to noise ratio of the measurements. We present an imaging system for localisation microscopy based on non-destructive readout camera technology that can increase the signal to noise ratio of localisation based microscopy. This approach allows for much higher frame rates through subsampling a traditional camera frame. By matching the effective exposure to both the start time and duration of a single molecule we diminish the effects of read noise and temporal noise. We demonstrate the application of this novel method to localisation microscopy and show both an increase in the attainable signal to noise ratio of data collection and an increase in the number of detected events.

  20. Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications

    NASA Astrophysics Data System (ADS)

    Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.

    2017-05-01

    Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.

  1. Non-destructive testing of mid-IR optical fiber using infrared imaging

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Fortin, Vincent; Vallée, Réal; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Marcotte, Frédérick

    2016-05-01

    Optical fiber lasers offers the advantage of being relatively compact and efficient. However, the materials such as fluoride and chalcogenide glasses used for their fabrication must be exempt of defects in order to make efficient laser systems. However, most existing quality control techniques are not compatible with chalcogenide fibers because of their limited transparency in the visible spectral range. For this reason, the Université Laval's Centre d'optique, photonique et laser (COPL), in Quebec City, Canada, has developed a novel non-destructive testing (NDT) methodology based on infrared imaging to address this problem. The results show how this simple screening technique eases the selection of high-quality fibers for the design of high-power mid-IR lasers.

  2. Main geophysical techniques used for non-destructive evaluation in cultural built heritage: a review

    NASA Astrophysics Data System (ADS)

    Martinho, E.; Dionísio, A.

    2014-10-01

    Geophysical methodologies have been implemented, tested and validated as diagnostic and /or monitoring tools in artworks or historical monuments. They are non-destructive and can give an image of internal structure of investigated medium. This paper is a review about the main geophysical techniques applied to the study of cultural built heritage (excluding the archaeology field). A brief description of the used methodologies is presented, the main investigations done in this field are showed, the method or methods most appropriate to answer each problem (moisture detection, characterization of the materials, study of the structural continuity of the material, assessment of intervention’s effectiveness) are indicated and the main advances and gaps and future developments are also pointed out.

  3. Design status of the US 100 tesla non-destructive magnet system

    SciTech Connect

    Schneider-Muntau, H.; Eyssa, Y.; Pernambuco-Wise, P.; Boenig, H.; Campbell, L.J.; Eberl, K.R.; Parkin, D.M.; Schillig, J.; Sims, J.

    1996-09-01

    A collaborative effort is now underway in the US between the Department of Energy and the National Science Foundation to design, build, and use a 100 T non-destructive magnet for studying the properties of materials at high fields. The National High Magnetic Field Laboratory (NHMFL) at Tallahassee, Florida, and Los Alamos, New Mexico, where the magnet will be sited, is carrying out this task. This magnet will join other pulsed magnets at NHMFL, to provide magnetic fields at strengths, time durations, and volumes that are longer (in combination) than any now available. In particular, the goal for the 100 T magnet is a time duration above 80 T of about 15 ms in a cold bore of 24 mm. The present status of the design effort and various design issues are presented here.

  4. Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Eichfeld, Sarah M.; Eichfeld, Chad M.; Lin, Yu-Chuan; Hossain, Lorraine; Robinson, Joshua A.

    2014-09-01

    The utilization of tungsten diselenide (WSe2) in electronic and optoelectronic devices depends on the ability to understand and control the process-property relationship during synthesis. We demonstrate that spectroscopic ellipsometry is an excellent technique for accurate, non-destructive determination of ultra-thin (<30 nm) WSe2 properties. The refractive index (n) and extinction coefficient (k) were found to be independent of thickness down to 1.3 nm, and were used to determine film thickness, which was confirmed to be within 9% of values found via atomic force microscopy. Finally, the optical bandgap was found to closely correlate with thickness, ranging from 1.2 to 1.55 eV as the WSe2 is thinned to the equivalent of 2 atomic layers.

  5. A robust approach to optimal matched filter design in ultrasonic non-destructive evaluation (NDE)

    NASA Astrophysics Data System (ADS)

    Li, Minghui; Hayward, Gordon

    2017-02-01

    The matched filter was demonstrated to be a powerful yet efficient technique to enhance defect detection and imaging in ultrasonic non-destructive evaluation (NDE) of coarse grain materials, provided that the filter was properly designed and optimized. In the literature, in order to accurately approximate the defect echoes, the design utilized the real excitation signals, which made it time consuming and less straightforward to implement in practice. In this paper, we present a more robust and flexible approach to optimal matched filter design using the simulated excitation signals, and the control parameters are chosen and optimized based on the real scenario of array transducer, transmitter-receiver system response, and the test sample, as a result, the filter response is optimized and depends on the material characteristics. Experiments on industrial samples are conducted and the results confirm the great benefits of the method.

  6. Non-destructive Imaging of Standard Cracks of Railway by Photoacoustic Piezoelectric Technology

    NASA Astrophysics Data System (ADS)

    Yan, Laijun; Gao, Chunming; Zhao, Binxing; Ma, Xingchen; Zhuang, Nan; Duan, Haiyang

    2012-11-01

    The photoacoustic piezoelectric (PAPE) technique is an effective non-destructive testing technique for detecting defects in materials. In this paper, Chinese national standard railway cracks have been detected by thermal wave imaging based on the PAPE technique. First, the theory of the PAPE technique has been introduced and the corresponding imaging principle has been analyzed. Second, the corresponding experimental system has been setup, and the imaging tests have been carried out. Third, two kinds of standard cracks have been examined by the imaging system. The results show that thermal wave imaging based on the PAPE technique can effectively image and identify the cracks at different depths, which lays a foundation for practical application to the detection of rail cracks.

  7. Laser ultrasonics for civil engineering : some applications in development for concrete non destructive testing

    NASA Astrophysics Data System (ADS)

    Abraham, O.; Popovics, J. S.; Cottineau, L.-M.; Durand, O.

    2011-01-01

    Non destructive testing of civil engineering infrastructures is becoming of primary importance for their diagnosis, residual time life estimation and/or structural health monitoring. A particularity of civil engineering application is the large size of the survey zones and the expected low cost of inspection. In this context non contact ultrasonics may offer the possibility to built robots that can automatically scan large areas (or eventually be integrated in moving vehicles) to recover mechanical properties of material or to perform imagery for geometrical information recovery. In this paper we present two possible applications of in situ laser ultrasonics : one is the detection of voids in tendon duct with the impact echo method, the other is the use of surface waves to recover mechanical properties of the first centimetres of concrete structures (here after called cover concrete).

  8. Rapid, non-destructive evaluation of ultrathin WSe{sub 2} using spectroscopic ellipsometry

    SciTech Connect

    Eichfeld, Sarah M.; Lin, Yu-Chuan; Hossain, Lorraine; Eichfeld, Chad M.; Robinson, Joshua A.

    2014-09-01

    The utilization of tungsten diselenide (WSe{sub 2}) in electronic and optoelectronic devices depends on the ability to understand and control the process-property relationship during synthesis. We demonstrate that spectroscopic ellipsometry is an excellent technique for accurate, non-destructive determination of ultra-thin (<30 nm) WSe{sub 2} properties. The refractive index (n) and extinction coefficient (k) were found to be independent of thickness down to 1.3 nm, and were used to determine film thickness, which was confirmed to be within 9% of values found via atomic force microscopy. Finally, the optical bandgap was found to closely correlate with thickness, ranging from 1.2 to 1.55 eV as the WSe{sub 2} is thinned to the equivalent of 2 atomic layers.

  9. Measurements of aerospace materials and their interpretation for non-destructive testing

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.; Mason, Ian; Price, Sean; Beale, John

    2009-09-01

    Millimetre and terahertz radiation penetration into materials enables non-destructive testing capabilities for the aerospace industry, either remotely using imaging technology or locally using microscope type diagnostics. This paper presents measurements made on Norcoat and Prosial, used in the aerospace industry for thermal insulation and on carbon fibre, used for its high strength weight ratio. Michelson interferometer measurements over the band 100 GHz to 1 THz, with a 30 GHz spectral resolution, are presented, together with images of a range of samples taken using a 35 GHz real-time imaging system. The measured optical properties of these materials are examined and used in modelling to predict signatures of failure modes in these materials when they are attached to cryogenic fuel tanks.

  10. Non-destructive testing of mid-IR optical fiber using infrared imaging

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Fortin, Vincent; Vallée, Réal; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Marcotte, Frédérick

    2016-10-01

    Optical fiber lasers offers the advantage of being relatively compact and efficient. However, the materials such as fluoride and chalcogenide glasses used for their fabrication must be exempt of defects in order to make efficient laser systems. However, most existing quality control techniques are not compatible with chalcogenide fibers because of their limited transparency in the visible spectral range. For this reason, the Université Laval's Centre d'optique, photonique et laser (COPL), in Quebec City, Canada, has developed a novel non-destructive testing (NDT) methodology based on infrared imaging to address this problem. The results show how this simple screening technique eases the selection of high-quality fibers for the design of high-power mid-IR lasers.

  11. Pulsed Eddy Current Non-destructive Testing and Evaluation: A Review

    NASA Astrophysics Data System (ADS)

    Sophian, Ali; Tian, Guiyun; Fan, Mengbao

    2017-05-01

    Pulsed eddy current (PEC) non-destructive testing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the literature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numerically have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.

  12. Monitoring ground anchor using non-destructive ground anchor integrity test (NDT-GRANIT)

    SciTech Connect

    Robbany, Z. Handayani, G.

    2015-09-30

    Monitoring at ground anchor commonly uses a pull out test method, therefor we developing a non-destructive ground anchor integrity testing (NDT-GRANIT). NDT-GRANIT using the principle of seismic waves that have been modified into form of sweep signal, the signal will be demodulated, filtered, and Fourier transformation (inverse discrete Fourier transform) so the data can be interpreted reflected wave from the ground anchor. The method was applied to determine whether the ground anchor still gripped in the subsurface by looking the attenuation of the wave generated sources. From the result we can see that ground anchor does not grip. To validate the results of the comparison method of measurement used pile integrity test.

  13. Non-destructive detection of water stress and estimation of relative water content in maize

    NASA Astrophysics Data System (ADS)

    Zygielbaum, Arthur I.; Gitelson, Anatoly A.; Arkebauer, Timothy J.; Rundquist, Donald C.

    2009-06-01

    Non-destructive estimation of leaf water content provides vital information about vegetation productivity. We report here on controlled seven day experiments using greenhouse-grown maize. Fifty plants were randomly assigned to two equal groups: water stressed and well watered. Spectroscopic, relative water content (RWC), and chlorophyll concentration measurements were made daily. Because water molecules absorb radiation in near- and middle-infrared, most efforts to sense water deficit remotely utilize infrared wavelengths. In these experiments, we identified a strong, systematic, and repeatable relationship between photosynthetically active radiation (PAR, 400-700 nm) albedo and leaf RWC. We show that visible spectrum reflectance provides a means to detect early stages of plant stress and estimate leaf RWC.

  14. High-speed image processing systems in non-destructive testing

    NASA Astrophysics Data System (ADS)

    Shashev, D. V.; Shidlovskiy, S. V.

    2017-08-01

    Digital imaging systems are using in most of both industrial and scientific industries. Such systems effectively solve a wide range of tasks in the field of non-destructive testing. There are problems in digital image processing for decades associated with the speed of the operation of such systems, sufficient to efficiently process and analyze video streams in real time, ideally in mobile small-sized devices. In this paper, we consider the use of parallel-pipeline computing architectures in image processing problems using the example of an algorithm for calculating the area of an object on a binary image. The approach used allows us to achieve high-speed performance in the tasks of digital image processing.

  15. A Non-destructive method to assess freshness of raw bovine milk using FT-NIR spectroscopy.

    PubMed

    Wang, Yanwen; Ding, Wu; Kou, Liping; Li, Liang; Wang, Chen; Jurick, Wayne M

    2015-08-01

    A non-destructive method to analyze the freshness of raw milk was developed using a FT-NIR spectrometer and a fiber optic probe. Diffuse transmittance spectra were acquired in the spectral range 833 ~ 2,500 nm from raw milk samples collected from Northwest A&F University Animal Husbandry Station. After each spectral acquisition, quality parameters such as acidity, pH, and lactose content were measured by traditional detection methods. For all milk samples, PLS (partial least square regression), MLR (multiple linear regression), and ANN (artificial neural networks) analyses were carried out in order to develop models to predict parameters that were indicative of freshness. Predictive models showed R(2) values up to 0.9647, 0.9876 and 0.8772 for acidity, pH, and lactose content, respectively (validation set validations). The similarity analysis and classification between raw milk freshness during storage was also conducted by means of hierarchical cluster analysis. Over an 8 day storage period, the highest heterogeneity was evident between days 1 and 2.

  16. Non-destructive ripeness sensing by using proton NMR (Nuclear Magnetic Resonance)

    SciTech Connect

    Cho, Seong In; Krutz, G.W.; Stroshine, R.L. . Dept. of Agricultural Engineering); Bellon, V. , 34 - Montpellier )

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz). 7 refs., 4 figs.

  17. Non-destructive Ripeness Sensing by Using Proton NMR [Nuclear Magnetic Resonance

    DOE R&D Accomplishments Database

    Cho, Seong In; Krutz, G. W.; Stroshine, R. L.; Bellon, V.

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz).

  18. Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging.

    PubMed

    Siripatrawan, U; Makino, Y

    2015-04-16

    This research aimed to develop a rapid, non-destructive, and accurate method based on hyperspectral imaging (HSI) for monitoring spoilage fungal growth on stored brown rice. Brown rice was inoculated with a non-pathogenic strain of Aspergillus oryzae and stored at 30 °C and 85% RH. Growth of A. oryzae on rice was monitored using viable colony counts, expressed as colony forming units per gram (CFU/g). The fungal development was observed using scanning electron microscopy. The HSI system was used to acquire reflectance images of the samples covering the visible and near-infrared (NIR) wavelength range of 400-1000 nm. Unsupervised self-organizing map (SOM) was used to visualize data classification of different levels of fungal infection. Partial least squares (PLS) regression was used to predict fungal growth on rice grains from the HSI reflectance spectra. The HSI spectral signals decreased with increasing colony counts, while conserving similar spectral pattern during the fungal growth. When integrated with SOM, the proposed HSI method could be used to classify rice samples with different levels of fungal infection without sample manipulation. Moreover, HSI was able to rapidly identify infected rice although the samples showed no symptoms of fungal infection. Based on PLS regression, the coefficient of determination was 0.97 and root mean square error of prediction was 0.39 log (CFU/g), demonstrating that the HSI technique was effective for prediction of fungal infection in rice grains. The ability of HSI to detect fungal infection at early stage would help to prevent contaminated rice grains from entering the food chain. This research provides scientific information on the rapid, non-destructive, and effective fungal detection system for rice grains. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Portable 1,5 MeV X-Band Linac For Non-destructive Radiography

    NASA Astrophysics Data System (ADS)

    Saversky, A. J.; Rodionov, A. E.; Shaltyrev, A. P.; Shchedrin, I. S.

    1997-05-01

    Portable linear electron accelerator Y-34 developed in Small Accelerator Laboratory of MEPhI for non-destructive industrial radiography. This Linac is a fully self-contained device with the exception of external electric power 220Vx50Gz, 1 phase, 5 kVA. Full mass of Linac Y-34 - less than 300 kg. The Radiographic parameters: Nominal Energy - 1,5 MeV; Energy Range - 0,7...1,8 MeV; Maximum pulse current - 100 mA; Maximum Intensity - 15 R/min@m; Focal spot size - less than 2 mm. The Linac is comprised of 4 subassemblies. The X-ray head with weight less than 100 kg, dimensions: 0,7x0,7x1,0 m contains the traveling-wave accelerating structure with lens 0,4 m, electron gun, vacuum pump, tungsten target and RF-system with 500-kW magnetron. The permanent magnets focusing system provides focal spot less than 2 mm. The high voltage power unit consist of a line-type magnetron/electron gun modulator 2 kW power supply, the weight is equal 70 kg. The self-contained cooling water supply provides temperature controlled water for accelerator structure and magnetron. The control console allows convenient monitoring of critical system and Linac parameters by manual or remote computer. Portable X-band Linac Y-34 is the effective X - ray and/or electron beam source for such applications as non-destructive examination of nuclear reactor systems, solid rocket motors, technology research.

  20. Variation in gymnemic acid content and non-destructive harvesting of Gymnema sylvestre (Gudmar)

    PubMed Central

    Pandey, Ashok Kumar; Yadav, Swati

    2010-01-01

    Background: Madhunashini (Gymnema sylvestre R. Br.) commonly known as ‘Gudmar’ in Hindi is an important medicinal climber and extensively used in almost all Indian System of Medicine as a remedy for diabetes, rheumatism, cough, ulcer, jaundice, dyspepsia, constipation, eyes pain and also in snakebite. In India, it is found growing in Andhra Pradesh, Bihar, Chhattisgarh, Karnataka, Kerala, Madhya Pradesh, Maharastra, Orissa, Tamil Nadu, Uttar Pradesh and West Bengal. The major phytoconstituents are gymnemic acids, gudmarin and saponins. Methods: In the present study, Gymnema germplasm collected from various regions of Madhya Pradesh was evaluated on the basis of their morphological characteristics and gymnemic acid content. Gymnemic acid content in the leaves was estimated by HPLC. We have also standardized the non-destructive harvesting practices of Gudmar. Selective harvesting was done without harming the main plant. Only mature leaves (60%) were hand plucked in the month of October. Second harvest was done in the month of June. Results: Data revealed that gymnemic acid content varied between 0.96% ± 0.03 (Seoni) to 1.58% ±0.03 (Amarkantak). It was also observed that the leaves left at the time of 1st harvest during October matured in June at the time of 2nd harvest. Conclusion: Non destructive harvesting practice did not have any negative impact on overall development of the plant. It is evident that there is wide variation in the morphological characteristics and gymnemic acid content in G. sylvestre collected from various locations, which can be exploited for further crop improvement programmes. PMID:21589758

  1. Isotopic composition analysis and age dating of uranium samples by high resolution gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Apostol, A. I.; Pantelica, A.; Sima, O.; Fugaru, V.

    2016-09-01

    Non-destructive methods were applied to determine the isotopic composition and the time elapsed since last chemical purification of nine uranium samples. The applied methods are based on measuring gamma and X radiations of uranium samples by high resolution low energy gamma spectrometric system with planar high purity germanium detector and low background gamma spectrometric system with coaxial high purity germanium detector. The ;Multigroup γ-ray Analysis Method for Uranium; (MGAU) code was used for the precise determination of samples' isotopic composition. The age of the samples was determined from the isotopic ratio 214Bi/234U. This ratio was calculated from the analyzed spectra of each uranium sample, using relative detection efficiency. Special attention is paid to the coincidence summing corrections that have to be taken into account when performing this type of analysis. In addition, an alternative approach for the age determination using full energy peak efficiencies obtained by Monte Carlo simulations with the GESPECOR code is described.

  2. Analysis of guided wave propagation in a tapered composite panel

    NASA Astrophysics Data System (ADS)

    Wandowski, Tomasz; Malinowski, Pawel; Moll, Jochen; Radzienski, Maciej; Ostachowicz, Wieslaw

    2015-03-01

    Many studies have been published in recent years on Lamb wave propagation in isotropic and (multi-layered) anisotropic structures. In this paper, adiabatic wave propagation phenomenon in a tapered composite panel made out of glass fiber reinforced polymers (GFRP) will be considered. Such structural elements are often used e.g. in wind turbine blades and aerospace structures. Here, the wave velocity of each wave mode does not only change with frequency and the direction of wave propagation. It further changes locally due to the varying cross-section of the GFRP panel. Elastic waves were excited using a piezoelectric transducer. Full wave-field measurements using scanning Laser Doppler vibrometry have been performed. This approach allows the detailed analysis of elastic wave propagation in composite specimen with linearly changing thickness. It will be demonstrated here experimentally, that the wave velocity changes significantly due to the tapered geometry of the structure. Hence, this work motivates the theoretical and experimental analysis of adiabatic mode propagation for the purpose of Non-Destructive Testing and Structural Health Monitoring.

  3. Non-destructive mapping of dampness and salts in degraded wall paintings in hypogeous buildings: the case of St. Clement at mass fresco in St. Clement Basilica, Rome.

    PubMed

    Di Tullio, Valeria; Proietti, Noemi; Gobbino, Marco; Capitani, Donatella; Olmi, Roberto; Priori, Saverio; Riminesi, Cristiano; Giani, Elisabetta

    2010-03-01

    As is well known, the deterioration of wall paintings due to the capillary rise of water through the walls is a very widespread problem. In this paper, a study of microclimate monitoring, unilateral nuclear magnetic resonance (NMR), and evanescent-field dielectrometry (EFD) was applied to map non-destructively, in situ, and in a quantitative way the distribution of the moisture in an ancient deteriorated wall painting of the eleventh century. Both unilateral NMR and EFD are quite new, fully portable, and non-destructive techniques, and their combination is absolutely new. The approach reported here is proposed as a new analytical protocol to afford the problem of mapping, non-destructively, the moisture in a deteriorated wall painting in a hypogeous building such as that of the second level of St. Clement Basilica, Rome (Italy), where the use of IR thermography is impaired due to the environmental conditions, and the gravimetric tests are forbidden due to the preciousness of the artifact. The moisture distribution was mapped at different depths, from the very first layers of the painted film to a depth of 2 cm. It has also been shown how the map obtained in the first layers of the artwork is affected by the environmental conditions typical of a hypogeous building, whereas the maps obtained at higher depths are representative of the moisture due to the capillary rise of water from the ground. The quantitative analysis of the moisture was performed by calibrating NMR and EFD signals with purposely prepared specimens. This study may be applied before and after performing any intervention aimed at restoring and improving the state of conservation of this type of artwork and reducing the dampness or extracting salts (driven by the variation of moisture content) and monitoring the effectiveness of the performed interventions during the time. This protocol is applicable to any type of porous material.

  4. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future.

  5. Non-destructive trace element microanalysis of as-received cometary nucleus samples using synchrotron x ray fluorescence

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.

    1989-01-01

    The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique.

  6. Shearography for Non-destructive Inspection with applications to BAT Mask Tile Adhesive Bonding and Specular Surface Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Lysak, Daniel B.

    2003-01-01

    The applicability of shearography techniques for non-destructive evaluation in two unique application areas is examined. In the first application, shearography is used to evaluate the quality of adhesive bonds holding lead tiles to the B.4T gamma ray mask for the NASA Swift program. Using a vibration excitation, the more poorly bonded tiles are readily identifiable in the shearography image. A quantitative analysis is presented that compares the shearography results with a destructive pull test measuring the force at bond failure. The second application is to evaluate the bonding between the skin and core of a honeycomb structure with a specular (mirror-like) surface. In standard shearography techniques, the object under test must have a diffuse surface to generate the speckle patterns in laser light, which are then sheared. A novel configuration using the specular surface as a mirror to image speckles from a diffuser is presented, opening up the use of shearography to a new class of objects that could not have been examined with the traditional approach. This new technique readily identifies large scale bond failures in the panel, demonstrating the validity of this approach.

  7. Non destructive GPR acquisition to characterise the historical buildings: the case study of Roman Theatre in Aosta (Italy)

    NASA Astrophysics Data System (ADS)

    Piro, S.

    2003-04-01

    The analysis of ancient historical buildings is achieved using different methods in which, according to the case, priority may be given to historical research by the documentary sources, comparative studies of style and architectonic forms, stratigraphic interpretation of the construction elements and their material characteristics. In all these cases the use of analytical and investigator technologies involving scientific equipment represent a useful contribution to the identification, measurement, description and classification of the historical constructions. This contribution becomes even more useful when the historical events associated with a site lead to the disappearance of pre-existing parts of a building which are important for the reconstruction of the historical chronology of the monument. Non-destructive GPR system may be used to identify structures or cavities lying below present floor level and to identify variations in the fabric of the ancient walls. With this approach, an investigation, over some ashlars of the Roman Theatre of Aosta, has been made with the aim to establish the state of conservation of the pillars. The ashlars of the theatre were built using puddinga stones. Six different ashlars, characterised by different granulometry and situated at different heigth, have been surveyed using GPR system, equipped with an high-frequency antenna (1.5 GHz). Over the selected ashlars, an high-resolution acquisition techniques has been applied with the aim to reconstructe the investigated volume. The acquisition technique and the obtained results are presented and discussed.

  8. An Innovative Non-Destructive and Computational Method for Uranium Activity and Enrichment Verification of UF{sub 6} Cylinder

    SciTech Connect

    El-Mongy, Sayed A.; Allam, K.M.; Farid, Osama M.

    2006-07-01

    Verification of {sup 235}U enrichment in uranium hexafluoride (UF{sub 6}) cylinders is often achieved by destructive and non-destructive assay techniques. These techniques are time consuming, need suitable and similar standard, in addition to loss of the nuclear material in the case of destructive analysis. This paper introduce an innovative approach for verifying of {sup 235}U enrichment in UF{sub 6} cylinder. The approach is based on measuring dose rate ({mu}Sv/h) resulted from the emitted gamma rays of {sup 235}U at the surface of the cylinder and then calculating the activity of uranium and enrichment percentage inside the cylinder by a three dimensional model. Attenuation of the main {sup 235}U gamma transitions due to the cylinder wall (5A Type of Ni alloy) was also calculated and corrected for. The method was applied on UF{sub 6} cylinders enriched with 19.75% of {sup 235}U. The calculated enrichment was found to be 18% with 9% uncertainty. By the suggested method, the calculated total uranium activity inside one of the investigated UF{sub 6} cylinder was found close to the target (certified) value (5.6 GBq) with 9% uncertainty. The method is being developed by taking into consideration other parameters. (authors)

  9. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy

    PubMed Central

    Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-01-01

    Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future. PMID:28272511

  10. Pre-processing of data coming from a laser-EMAT system for non-destructive testing of steel slabs.

    PubMed

    Sgarbi, Mirko; Colla, Valentina; Cateni, Sivia; Higson, Stuart

    2012-01-01

    Non destructive test systems are increasingly applied in the industrial context for their strong potentialities in improving and standardizing quality control. Especially in the intermediate manufacturing stages, early detection of defects on semi-finished products allow their direction towards later production processes according to their quality, with consequent considerable savings in time, energy, materials and work. However, the raw data coming from non destructive test systems are not always immediately suitable for sophisticated defect detection algorithms, due to noise and disturbances which are unavoidable, especially in harsh operating conditions, such as the ones which are typical of the steelmaking cycle. The paper describes some pre-processing operations which are required in order to exploit the data coming from a non destructive test system. Such a system is based on the joint exploitation of Laser and Electro-Magnetic Acoustic Transducer technologies and is applied to the detection of surface and sub-surface cracks in cold and hot steel slabs.

  11. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope

    SciTech Connect

    Larimer, Curtis; Suter, Jonathan D.; Bonheyo, George; Addleman, Raymond Shane

    2016-03-15

    Biofilms are ubiquitous and deleteriously impact a wide range of industrial processes, medical and dental health issues, and environmental problems such as transport of invasive species and the fuel efficiency of ocean going vessels. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein we describe a non-destructive high resolution method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometric optical microscopy. Using this technique, surface morphology, surface roughness, and biofilm thickness can be measured non-destructively and with high resolution as a function of time without disruption of the biofilm activity and processes. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Typical bacterial growth curves were observed. Increase in surface roughness was a leading indicator of biofilm growth.

  12. Study by non-destructive technique of gilding coat of arms of the Real Alcázar of Seville, Spain

    NASA Astrophysics Data System (ADS)

    Robador, M. D.; Pérez-Rodriguez, J. L.; Muñoz-García, A.; Garófano, I.; Garrote, M. A.; Odriozola, C.; Durán, A.

    2012-04-01

    The Real Alcazar of Seville is a building inscribed in the World Heritage List, being the most ancient Real Palace in Europe still in use. It was built over roman buildings, from the XI century to our days, exceptional buildings and gardens of the highest architectonical, cultural and historic value. High value wall paintings of different periods are located in different places all over the palace. In one of its chamber - the King's bedroom - golden medallions that represent the coat of arms of Leon and Castilla Kingdom appear decorating its walls. The objective of this work was the study of the materials employed in the manufacture of these coats by portable and non-destructive techniques: X-ray diffraction (XDR) and X-ray fluorescence (XRF) and Raman spectroscopy. The support used for gilding was also studied using conventional techniques such as: powder X-ray diffraction (powder XRD), thermal analysis (DTA-TG) and FT-IR spectroscopy. The results obtained by portable XRD, XRF and Raman spectroscopy showed that the polychrome was carried out with gold in all samples studied. Other elements such as silver and cooper were also found in minor proportion. XRF allowed the quantification of the different metal (average composition: Au 79.5 %, Ag 8.1 %, Cu 5 %). There were various ways of adhering the golden leaf to the surface, but for large areas a bole mix of fine earth was typical. For other ornamentations, technique based on an aqueous medium and brushed onto the part to be gilded was used an. For panel and wall paintings, however, oil mordant was commonly used. In our study the gold was adhered to the surface using oil mordant. The powder XRD of the support showed the presence of gypsum and small proportion of anhydrite. However, calcium carbonate was not detected due to low proportion and low diffraction intensity of the mineral. The DTA-TG study confirms the presence of calcite (less than 5%). This technique also revealed the presence of organic compounds (oil

  13. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Primetzhofer, D.; Lu, J.; Hultman, L.

    2017-02-01

    We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN's) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N2 atmosphere. For XPS measurements, layers are either (i) Ar+ ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy values. These spectra-modifying effects of Ar+ ion bombardment increase with increasing the metal atom mass due to an increasing nitrogen-to-metal sputter yield ratio. The superior quality of the XPS spectra obtained in a non-destructive way from capped TMN films is evident from that numerous metal peaks, including Ti 2p, V 2p, Zr 3d, and Hf 4f, exhibit pronounced satellite features, in agreement with previously published spectra from layers grown and analyzed in situ. In addition, the N/metal concentration ratios are found to be 25-90% higher than those obtained from the corresponding ion-etched surfaces, and in most cases agree very well with the RBS and ToF-E ERDA values. The N 1 s BE:s extracted from

  14. Non-destructive testing and assessment of dynamic incompatibility between third-party piping and drain valve systems: an industrial case study

    NASA Astrophysics Data System (ADS)

    Kong, Keen Kuan; Noroozi, Siamak; Rahman, Abdul Ghaffar Abdul; Dupac, Mihai; Eng, Hoe Cheng; Chao Ong, Zhi; Khoo, Shin Yee; Vinney, John E.

    2014-04-01

    This paper presents the outcome of an industrial case study that involved condition monitoring of piping system that showed signs of excess fatigue due to flow-induced vibration. Due to operational requirements, a novel non-destructive assessment stratagem was adopted using different vibration analysis techniques - such as experimental modal analysis and operating deflection shapes - and complemented by visual inspection. Modal analysis carried out near a drain valve showed a dynamic weakness problem (several high-frequency flow-induced vibration frequency peaks), hence condition-based monitoring was used. This could easily be linked to design problem associated with the dynamic incompatibility due to dissimilar stiffness between two third-party supplied pipe and valve systems. It was concluded that this is the main cause for these problem types especially when systems are supplied by third parties, but assembled locally, a major cause of dynamic incompatibility. It is the local assembler's responsibility to develop skills and expertise needed to sustain the operation of these plants. This paper shows the technique used as result of one such initiative. Since high amplitude, low-frequency displacement can cause low cycle fatigue, attention must be paid to ensure flow remains as steady state as possible. The ability to assess the level of design incompatibility and the level of modification required using non-destructive testing is vital if these systems are to work continuously.

  15. Destructive and non-destructive determination of the transport current density radial distribution: Application to Bi-2212 textured rods

    NASA Astrophysics Data System (ADS)

    Martínez, E.; Natividad, E.; Angurel, L. A.; Navarro, R.; Yang, Y.; Beduz, C.

    2003-03-01

    Destructive and non-destructive methods to estimate the radial distribution of the transport critical current, Jc( r), of long cylindrical superconductors are presented. The non-destructive method is based on the measurement of self-field AC losses as a function of the current amplitude, Q( I0) and takes into account the E- J characteristics of the material. Both methods have been used to derive the Jc( r) profiles of long and thin Bi-2212 rods textured by laser-induced zone melting techniques. The obtained results have been correlated with the microstructure of the samples and their critical temperature.

  16. Performance analysis of bonded composite doublers on aircraft structures

    SciTech Connect

    Roach, D.

    1995-08-01

    Researchers contend that composite repairs (or structural reinforcement doublers) offer numerous advantages over metallic patches including corrosion resistance, light weight, high strength, elimination of rivets, and time savings in installation. Their use in commercial aviation has been stifled by uncertainties surrounding their application, subsequent inspection and long-term endurance. The process of repairing or reinforcing airplane structures is time consuming and the design is dependent upon an accompanying stress and fatigue analysis. A repair that is too stiff may result in a loss of fatigue life, continued growth of the crack being repaired, and the initiation of a new flaw in the undesirable high stress field around the patch. Uncertainties in load spectrums used to design repairs exacerbates these problems as does the use of rivets to apply conventional doublers. Many of these repair or structural reinforcement difficulties can be addressed through the use of composite doublers. Primary among unknown entities are the effects of non-optimum installations and the certification of adequate inspection procedures. This paper presents on overview of a program intended to introduce composite doubler technology to the US commercial aircraft fleet. In this project, a specific composite application has been chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Through the use of laboratory test structures and flight demonstrations on an in-service L-1011 airplane, this study is investigating composite doubler design, fabrication, installation, structural integrity, and non-destructive evaluation. In addition to providing an overview of the L-1011 project, this paper focuses on a series of fatigue and strength tests which have been conducted in order to study the damage tolerance of composite doublers. Test results to-date are presented.

  17. Magnetic hysteresis and Barkhausen noise emission analysis of magnetic materials and composites

    NASA Astrophysics Data System (ADS)

    Prabhu Gaunkar, Neelam

    specialchapt{ABSTRACT}. Barkhausen emission studies have been used to analyze the effect of residual stresses in ferromagnetic materials. The stresses generated due to mechanical wear and tear, abrasion and prolonged use can also lead to phase changes within the material. These phase changes can cause damage to the structural parts and should be prevented. In this study we analyze the magnetic hysteresis and Barkhausen noise profile of materials with more than one ferromagnetic phase. The correlation between the hysteresis and Barkhausen noise profiles for such materials is studied. Secondary Barkhausen emission peaks can be simulated for such materials. Experimental observations are compared with simulation measurements. Drawing a correlation between the secondary emergent peaks and the composition of each secondary phase should lead to an improved technique for non-destructive characterization of ferromagnetic materials. . Improved sensor-to-specimen coupling is also essential for conducting Barkhausen noise measurements of multiphase materials which may also have different surface geometries. A finite element study was conducted to optimize the design parameters of the magnetizing core in a Barkhausen noise sensor. Several sensor parameters inclusive of core material, core-tip curvature, core length and pole spacing were studied. A procedure for developing a high sensitivity Barkhausen noise sensor by design optimization based on finite element simulations has been demonstrated. The study also shows the applicability of Barkhausen emission and magnetic hysteresis analysis as advanced tools of non-destructive characterization of ferromagnetic materials.

  18. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence

    PubMed Central

    Kalcsits, Lee A.

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  19. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence.

    PubMed

    Kalcsits, Lee A

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape.

  20. Non-destructive evaluation of the effects of combined bisphosphonate and photodynamic therapy on bone strain in metastatic vertebrae using image registration.

    PubMed

    Hojjat, Seyed-Parsa; Won, Emily; Hardisty, Michael R; Akens, Margarete K; Wise-Milestone, Lisa M; Whyne, Cari M

    2011-11-01

    Skeletal metastases most frequently affect the vertebral column and may lead to severe consequences including fracture. Clinical management of skeletal metastases often utilizes a multimodal treatment approach, including bisphosphonates (BPs). Previous work has demonstrated the synergistic potential of photodynamic therapy (PDT) in combination with BP in treating osteolytic disease through structural, histologic, and destructive mechanical testing analyses. Recent work has developed and validated image-based methods that may be used to non-destructively determine mechanical stability in whole bones, and enable their use for additional (i.e. histologic) analysis. In this work we use an intensity-based 3D image registration technique to compare the strain patterns throughout untreated control and BP + PDT treated rnu/rnu rat spinal motion segments with osteolytic metastases. It was hypothesized that the combination treatment will reduce average and maximum strain values and restore the pattern of strain to that of healthy vertebrae. Mean, median, and 90th percentile strains in the control group were significantly higher than the treatment group. High strain areas in both groups were observed around the endplates; in the control group, large areas of high strains were also observed around the lesions and adjacent to the dorsal wall. Absence of high strains adjacent to the dorsal wall (similar to healthy vertebrae) may correspond to a reduced risk of burst fracture following BP + PDT therapy. This study demonstrates the application of non-destructive image analysis to quantify the positive mechanical effects of combined BP + PDT treatment in the metastatic spine.