Science.gov

Sample records for non-destructive pollution exposure

  1. Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): II. Hair and spines as indicators of endogenous metal and As concentrations.

    PubMed

    D'Havé, Helga; Scheirs, Jan; Mubiana, Valentine Kayawe; Verhagen, Ron; Blust, Ronny; De Coen, Wim

    2006-08-01

    The role of hair and spines of the European hedgehog as non-destructive monitoring tools of metal (Ag, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn) and As pollution in terrestrial ecosystems was investigated. Our results showed that mean pollution levels of a random sample of hedgehogs in Flanders are low to moderate. Yet, individual hedgehogs may be at risk for metal toxicity. Tissue distribution analyses (hair, spines, liver, kidney, muscle and fat tissue) indicated that metals and As may reach considerable concentrations in external tissues, such as hair and spines. Positive relationships were observed between concentrations in hair and those in liver, kidney and muscle for Al, Co, Cr, Cu, and Pb (0.43 < r < 0.85). Spine concentrations were positively related to liver, kidney and muscle concentrations for Cd, Co, Cr, Cu and Pb (0.37 < r < 0.62). Hair Ag, As, Fe and Zn and spine Ag, Al, As and Fe were related to metal concentrations in one or two of the investigated internal tissues (0.31 < r < 0.45). The regression models presented here may be used to predict metal and As concentrations in internal tissues of hedgehogs when concentrations in hair or spines are available. The present study demonstrated the possibility of using hair and spines for non-destructive monitoring of metal and As pollution in hedgehogs.

  2. Non-destructive method for determining neutron exposure and constituent concentrations of a body

    DOEpatents

    Gold, Raymond; McElroy, William N.

    1986-01-01

    A non-destructive method for determination of neutron exposure and constituent concentrations in an object, such as reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure or the spatial constituent concentration at regions of interest within the object.

  3. A NEW NON-DESTRUCTIVE METHOD FOR CHEMICAL ANALYSIS OF PARTICULATE MATTER FILTERS: THE CASE OF MANGANESE AIR POLLUTION IN VALLECAMONICA (ITALY)

    PubMed Central

    Borgese, Laura; Zacco, Annalisa; Pal, Sudipto; Bontempi, Elza; Lucchini, Roberto; Zimmerman, Neil; Depero, Laura E.

    2011-01-01

    Total Reflection X-ray Fluorescence (TXRF) is a well-established technique for chemical analysis, but it is mainly employed for quality control in the electronics semiconductor industry. The capability to analyze liquid and uniformly thin solid samples makes this technique suitable for other applications, and especially in the very critical field of environmental analysis. Comparison with standard methods like Inductively Coupled Plasma (ICP) and Atomic Absorption Spectroscopy (AAS) show that TXRF is a practical, accurate, and reliable technique in occupational settings. Due to the greater sensitivity necessary in trace heavy metal detection, TXRF is also suitable for environmental chemical analysis. In this paper we show that based on appropriate standards, TXRF can be considered for non-destructive routine quantitative analysis of environmental matrices such as air filters. This work has been developed in the frame of the EU-FP6 PHIME (Public Health Impact of long-term, low-level Mixed element Exposure in susceptible population strata) Integrated Project (www.phime.org). The aim of this work was to investigate Mn air pollution in the area of Vallecamonica (Italy). PMID:21315919

  4. A first evaluation of the usefulness of feathers of nestling predatory birds for non-destructive biomonitoring of persistent organic pollutants.

    PubMed

    Eulaers, Igor; Covaci, Adrian; Herzke, Dorte; Eens, Marcel; Sonne, Christian; Moum, Truls; Schnug, Lisbeth; Hanssen, Sveinn Are; Johnsen, Trond Vidar; Bustnes, Jan Ove; Jaspers, Veerle L B

    2011-04-01

    In previous studies, feathers of adult predatory birds have been evaluated as valid non-destructive biomonitor matrices for persistent organic pollutants (POPs). In this study, we assessed for the first time the usefulness of nestling raptor feathers for non-destructive biomonitoring of POPs. For this purpose, we collected body feathers and blood of nestlings from three avian top predators from northern Norway: northern goshawks (Accipiter gentilis), white-tailed eagles (Haliaeetus albicilla) and golden eagles (Aquila chrysaetos). We were able to detect a broad spectrum of legacy POPs in the nestling feathers of all three species (Σ PCBs: 6.78-140ng g(-1); DDE: 3.15-145ng g(-1); Σ PBDEs: 0.538-7.56ng g(-1)). However, these concentrations were lower compared to other studies on raptor species, probably due to the aspect of monitoring of nestlings instead of adults. Besides their analytical suitability, nestling feathers also appear to be biologically informative: concentrations of most POPs in nestling feathers showed strong and significant correlations with blood plasma concentrations in all species (p<0.050; 0.775non-destructive biomonitoring strategy for POPs in their ecosystems. PMID:21256594

  5. Air Pollution Exposure

    PubMed Central

    Balmes, John R.; Collard, Harold R.

    2015-01-01

    Air pollution exposure is a well-established risk factor for several adverse respiratory outcomes, including airways diseases and lung cancer. Few studies have investigated the relationship between air pollution and interstitial lung disease (ILD) despite many forms of ILD arising from environmental exposures. There are potential mechanisms by which air pollution could cause, exacerbate, or accelerate the progression of certain forms of ILD via pulmonary and systemic inflammation as well as oxidative stress. This article will review the current epidemiologic and translational data supporting the plausibility of this relationship and propose a new conceptual framework for characterizing novel environmental risk factors for these forms of lung disease. PMID:25846532

  6. Monitoring of non-destructive sampling strategies to assess the exposure of avian species in Jiangsu Province, China to heavy metals.

    PubMed

    Fu, Jie; Wang, Qing; Wang, Hui; Yu, Hongxia; Zhang, Xiaowei

    2014-02-01

    To assess the exposure of avian species in Jiangsu Province, China to eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn), the flight feathers, eggshells and feces of total ten avian species (including four herons, four cranes, one stork and one gull) were collected during March to May in 2012. The total concentrations of As, Cd and Hg were measured by Atomic Fluorescence Spectrometer; Cr, Cu, Ni, Pb and Zn were measured by inductively coupled plasma optical emission spectrometer. The determined concentrations of Cr (3.94, 1.33-8.30 mg kg(-1)), Cu (15.02, 7.34-35.53 mg kg(-1)) and Zn (134.66, 77.26-242.25 mg kg(-1)) in fresh feathers and Cd (7.93, 7.44-9.12 mg kg(-1)), Ni (22.74, 19.38-24.71 mg kg(-1)), Pb (85.06, 78.72-91.95 mg kg(-1)) and Zn (63.54, 55.82-72.14 mg kg(-1)) in eggshells were higher than the mean values of other reported data, indicating a considerable heavy metal pollution status in local area. Comparing to the heavy metal levels in early historic feathers (1992-2000), a significant elevation of concentrations has been observed in recent bird feathers. For feathers of Grus japonensis, the heavy metal concentrations increased by 19-267%. This increased tendency was consistent with local GDP (Gross Domestic Products) development. The anthropogenic economic activity especially industrial development may be a critical reason that caused the increase of heavy metal levels in local avian species. PMID:24154854

  7. Method for non-destructive testing

    DOEpatents

    Akers, Douglas W.

    2011-08-30

    Non-destructive testing method may include providing a source material that emits positrons in response to bombardment of the source material with photons. The source material is exposed to photons. The source material is positioned adjacent the specimen, the specimen being exposed to at least some of the positrons emitted by the source material. Annihilation gamma rays emitted by the specimen are detected.

  8. FIRST 100 T NON-DESTRUCTIVE MAGNET

    SciTech Connect

    J. R. SIMS; ET AL

    1999-10-01

    The first 100 T non-destructive (100 T ND) magnet and power supplies as currently designed are described. This magnet will be installed as part of the user facility research equipment at the National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory. The 100 T ND magnet will provide a 100 T pulsed field of 5 ms duration (above 90% of full field) in a 15 mm diameter bore once per hour. Magnet operation will be non-destructive. The magnet will consist of a controlled power outer coil set which produces a 47 T platform field in a 225 mm diameter bore. Located within the outer coil set will be a 220 mm outer diameter capacitor powered insert coil. Using inertial energy storage a synchronous motor/generator will provide ac power to a set of seven ac-dc converters rated at 64 MW/80 MVA each. These converters will energize three independent coil circuits to create 170 MJ of field energy in the outer coil set at the platform field of 47 T. The insert will then be energized to produce the balance of the 100 T peak field using a 2.3 MJ, 18 kV (charged to 15 kV), 14.4 mF capacitor bank controlled with solid-state switches. The magnet will be the first of its kind and the first non-destructive, reusable 100 T pulsed magnet. The operation of the magnet will be described along with special features of its design and construction.

  9. Complementary Electromagnetic Non-Destructive Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, Gui Yun; Wilson, John; Morozov, Maxim

    2011-06-01

    The use of non-destructive evaluation (NDE) for defect detection and failure prediction in structures and specimens is widespread in energy industries, aimed at ageing power plants and pipelines, material degradation, fatigue and radiation damage, etc. At present there are no suitable electromagnetic NDE methods for the measurement and characterization of material degradation, in irradiated samples in particular, which is very important and timely for the nuclear power industry in the UK. This paper reports recent developments in the field of electromagnetic (EM) NDE at Newcastle University, including pulsed eddy current (PEC), pulsed magnetic flux leakage (PMFL), magnetic Barkhausen emission (MBE) and magneto-acoustic emission (MAE). As different EM methods have different strengths, an integrative EM framework is introduced. Case studies through the second round robin tests organized by the Universal Network for Magnetic Non-Destructive Evaluation (UNMNDE), representing eighteen leading research groups worldwide in the area of electromagnetic NDE, are reported. Twelve samples with different ageing times and rolling reduction ratios were tested using different magnetic methods among the UNMNDE members. Based on the studies, the complementary characteristics of electromagnetic techniques for NDE are discussed.

  10. NON-DESTRUCTIVE FLAW DETECTION APPARATUS

    DOEpatents

    Stateman, M.J.; Holloway, H.R.

    1957-12-17

    An apparatus is described for the non-destructive detection of flaws in electrical conducting articles. The particular feature of the detection apparatus is that a flaw in the front or back of the test article will not be masked by signals caused by the passage of the end and front of the article through the detection apparatus. The present invention alleviates the above problem by mounting detection coils on directly opposite sides of the test passageway so that the axes of the pickup coils are perpendicular to the axis of an energizing coil through which the article is passed. A flaw in the article will cause a change in the voltage induced in one pickup coil, but passage of the end or front of the article will not produce unequal signals. The signals are compared in appropriate electrical circuitry to actuate a recorder only when unequal signals are present, indicating the presence of a flaw.

  11. Non-destructive testing method and apparatus

    DOEpatents

    Akers, Douglas W.

    2011-10-04

    Non-destructive testing apparatus may comprise a photon source and a source material that emits positrons in response to bombardment of the source material with photons. The source material is positionable adjacent the photon source and a specimen so that when the source material is positioned adjacent the photon source it is exposed to photons produced thereby. When the source material is positioned adjacent the specimen, the specimen is exposed to at least some of the positrons emitted by the source material. A detector system positioned adjacent the specimen detects annihilation gamma rays emitted by the specimen. Another embodiment comprises a neutron source and a source material that emits positrons in response to neutron bombardment.

  12. Direct and indirect exposure to air pollution.

    PubMed

    Thron, R W

    1996-02-01

    Hazardous substances that originally are discharged as air pollutants may find their pathway to human exposure through multiple routes, including ingestion and dermal contact, as well as direct inhalation. The mechanisms for modeling and understanding the fate of air pollutants through atmospheric transport, deposition into water and soil, bioaccumulation, and ultimate uptake to receptor organs and systems in the human body are complex. Pollution prevention programs can be better engineered, pollution priorities can be identified, and greater environmental public health gains (attributable to pollution prevention) can be achieved by evaluating the multiple pathways to human exposure and through improved dosage calculations. A single contaminant source often may represent only a fraction of a total body pollutant burden. Further research is needed on source culpability and attributable risk, long-range transport of air pollutants, human dose contributions by various pathways, better techniques for health risk assessment, and an identification of human behavior patterns that affect exposure and dose.

  13. Cryogenic Storage Tank Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2010-01-01

    This slide presentation reviews the work in non-destructive evaluation (NDE) of cryogenic storage tanks. Four large cryogenic tanks, constructed in 1965 with perlite insulation in the annular regions, are of concern. The construction of the tanks, two Liquid Oxygen (LOX) and two Liquid Hydrogen (LH2), are described. The loss rate for the LOX tank at Pad A is slightly higher than that for the one at Pad B. The concerns for the LH2 tank at Pad B are that there is a significantly higher boil-off rate than that at Pad A, that there is mold growth, indicative of increased heat flow, that there is a long down-time needed for repairs, and that 3 of 5 full thermal cycles have been used on the Pad B LH2 tank. The advantages and disadvantages of thermal imaging are given. A detailed description of what is visible of the structures in the infra-red is given and views of the thermal images are included. Missing Perlite is given as the probable cause of the cold spot on the Pad B LH2 tank. There is no indications of problematic cold regions on the Pad A LH2 tank, as shown by the thermal images given in the presentation. There is definite indication of a cold region on the Pad A LOX tank. There is however concerns with thermal imaging, as thermal images can be significantly effected by environmental conditions, image differences on similar days but with different wind speeds. Other effects that must be considered include ambient temperature, humidity levels/dew, and cloud reflections

  14. Using magnetic levitation for non-destructive quality control of plastic parts.

    PubMed

    Hennek, Jonathan W; Nemiroski, Alex; Subramaniam, Anand Bala; Bwambok, David K; Yang, Dian; Harburg, Daniel V; Tricard, Simon; Ellerbee, Audrey K; Whitesides, George M

    2015-03-01

    Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated. PMID:25589230

  15. Using magnetic levitation for non-destructive quality control of plastic parts.

    PubMed

    Hennek, Jonathan W; Nemiroski, Alex; Subramaniam, Anand Bala; Bwambok, David K; Yang, Dian; Harburg, Daniel V; Tricard, Simon; Ellerbee, Audrey K; Whitesides, George M

    2015-03-01

    Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated.

  16. Exposure measurement for air-pollution epidemiology

    SciTech Connect

    Ferris, B.G.; Ware, J.H.; Spengler, J.D.

    1988-08-01

    The chapter describes the evolution of air-pollution epidemiology over a period when changes in pollution technologies have both lowered total exposures and dispersed them over vastly greater areas. Since personal exposure and microenvironmental measurements are expensive, studies oriented toward measurements of total exposure will be smaller and more intensive. The shift in emphasis to total human exposure also will affect health risk assessment and raise difficult issues in the regulatory domain. Considering that outdoor exposures (for which EPA has a regulatory mandate) occur in the context of exposures from other sources, the potential effect of regulatory action would probably be small. The regulatory issues are even more difficult for particulate air pollution since cigarette smoking is the strongest determinant of indoor levels but the EPA lacks regulatory responsibility for cigarette smoke.

  17. NON-DESTRUCTIVE SOIL CARBON ANALYZER.

    SciTech Connect

    Wielopolski, Lucian; Hendrey, G.; Orion, I.; Prior, S.; Rogers, H.; Runion, B.; Torbert, A.

    2004-02-01

    This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil

  18. NON-DESTRUCTIVE TESTING METHODS FOR GEOTHERMAL PIPING.

    SciTech Connect

    BERNDT,M.L.

    2001-03-23

    Non-destructive testing is a key component of optimized plant inspection and maintenance programs. Risk based inspection, condition based maintenance and reliability centered maintenance systems all require detection, location and sizing of defects or flaws by non-destructive methods. Internal damage of geothermal piping by corrosion and erosion-corrosion is an ongoing problem requiring inspection and subsequent maintenance decisions to ensure safe and reliable performance. Conventional manual ultrasonic testing to determine remaining wall thickness has major limitations, particularly when damage is of a random and localized nature. Therefore, it is necessary to explore alternative non-destructive methods that offer potential benefits in terms of accurate quantification of size, shape and location of damage, probability of detection, ability to use on-line over long ranges, and economics. A review of non-destructive methods and their applicability to geothermal piping was performed. Based on this, ongoing research will concentrate on long range guided wave and dynamic methods.

  19. Non-Destructive Classification Approaches for Equilibrated Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-09-01

    In order to compare a few non-destructive classification techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Mössbauer spectroscopy.

  20. Non-destructive evaluation of TBC by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqi

    suggested. An alternative electrolyte (trifluoroacetic acid) was investigated using EIS in order to be used as compatible or friendly solution to TBC. A similar characteristic EIS result was found using the alternative electrolyte compared with the commonly used electrolyte [Fe(CN)6]-3/[Fe(CN) 6]-4 in this work. It has indicated that a friendly electrolyte be viable for EIS technique to be used for non-destructive evaluation of TBC. Visualization of a flexible probe for EIS field detection has also been designed. (Abstract shortened by UMI.)

  1. Characterizing climate change impacts on human exposures to air pollutants

    EPA Science Inventory

    Human exposures to air pollutants such as ozone (O3) have the potential to be altered by changes in climate through multiple factors that drive population exposures, including: ambient pollutant concentrations, human activity patterns, population sizes and distributions, and hous...

  2. Elderly exposure to indoor air pollutants

    NASA Astrophysics Data System (ADS)

    Almeida-Silva, M.; Wolterbeek, H. T.; Almeida, S. M.

    2014-03-01

    The aim of this work was to characterize the indoor air quality in Elderly Care Centers (ECCs) in order to assess the elders' daily exposure to air pollutants. Ten ECCs hosting 384 elderly were selected in Lisbon and Loures. Firstly, a time-budget survey was created based on questionnaires applied in the studied sites. Results showed that in average elders spend 95% of their time indoors splitted between bedrooms and living-rooms. Therefore, a set of physical and chemical parameters were measured continuously during the occupancy period in these two indoor micro-environments and in the outdoor. Results showed that indoor was the main environment contributing for the elders' daily exposure living in ECCs. In the indoor, the principal micro-environment contributing for the elders' daily exposure varied between bedrooms and living-rooms depending not only on the characteristics of the ECCs but also on the pollutants. The concentrations of CO2, VOCt, O3 and PM10 exceeded the limit values predominantly due to the insufficient ventilation preconized in the studied sites.

  3. Non-destructive techniques based on eddy current testing.

    PubMed

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future.

  4. Infrared Thermography for Temperature Measurement and Non-Destructive Testing

    PubMed Central

    Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.

    2014-01-01

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096

  5. Non-destructive examination system of vitreous body

    NASA Astrophysics Data System (ADS)

    Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi

    2014-04-01

    Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.

  6. Non-Destructive Techniques Based on Eddy Current Testing

    PubMed Central

    García-Martín, Javier; Gómez-Gil, Jaime; Vázquez-Sánchez, Ernesto

    2011-01-01

    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future. PMID:22163754

  7. Non-destructive metallurgical analysis of astrolabes utilizing synchrotron radiation.

    SciTech Connect

    Newbury, B.; Stephenson, B.; Almer, J. D.; Notis, M.; Haeffner, D. R.; Slade Cargill, G., III

    2002-05-22

    From the experiments performed it is possible to determine a wide range of information about the metallurgy of the astrolabes studied. It was found that different brass alloys were used for components that were cast and those that were mechanically deformed. Chemical composition, forming history, and thickness measurements are all determined non-destructively, illustrating that this technique could be useful for many applications with metal artifact analysis where non-intrusive methods are required.

  8. Non-Destructive Testing for Control of Radioactive Waste Package

    NASA Astrophysics Data System (ADS)

    Plumeri, S.; Carrel, F.

    2015-10-01

    Characterization and control of radioactive waste packages are important issues in the management of a radioactive waste repository. Therefore, Andra performs quality control inspection on radwaste package before disposal to ensure the compliance of the radwast characteristics with Andra waste disposal specifications and to check the consistency between Andra measurements results and producer declared properties. Objectives of this quality control are: assessment and improvement of producer radwaste packages quality mastery, guarantee of the radwaste disposal safety, maintain of the public confidence. To control radiological characteristics of radwaste package, non-destructive passive methods (gamma spectrometry and neutrons counting) are commonly used. These passive methods may not be sufficient, for instance to control the mass of fissile material contained inside radwaste package. This is particularly true for large concrete hull of heterogeneous radwaste containing several actinides mixed with fission products like 137Cs. Non-destructive active methods, like measurement of photofission delayed neutrons, allow to quantify the global mass of actinides and is a promising method to quantify mass of fissile material. Andra has performed different non-destructive measurements on concrete intermediate-level short lived nuclear waste (ILW-SL) package to control its nuclear material content. These tests have allowed Andra to have a first evaluation of the performance of photofission delayed neutron measurement and to identify development needed to have a reliable method, especially for fissile material mass control in intermediate-level long lived waste package.

  9. Human exposure to urban air pollution.

    PubMed Central

    Boström, C E; Almén, J; Steen, B; Westerholm, R

    1994-01-01

    This study deals with some methods of making human exposure estimates, aimed at describing the human exposure for selected air pollutants in Sweden that are suspected carcinogens. Nitrogen oxides (NOx) have been chosen as an indicator substance for estimating the concentration of the urban plume. Earlier investigations have shown that the traffic in Swedish cities contributes around 85% to the measured NOx concentrations, and that most of the mutagenicity in urban air originates from traffic. The first section of this paper describes measurements in Stockholm of some unregulated light hydrocarbons, such as ethene, ethyne, propane, propene, butane, and isobutane. In addition, measurements of some volatile aromatic hydrocarbons are presented. Simultaneous measurements of carbon monoxide (CO) were made. The ratios between CO and the individual specific compounds were determined by linear regression analysis. By analysis of relationships between CO and NOx, NOx concentrations can be used as a tracer to describe the exposure for these specific compounds. NOx are considered to be a better tracer than CO, because NOx or NO2 values exist for many places over a long time, while CO is measured mostly in streets with high concentrations. At low concentrations, instruments that measure normal CO levels give no detectable signals. Through use of atmospheric dispersion models and models that describe how people live and work in urban areas it has been possible to describe the average exposure to NOx in cities of different sizes. The exposure to NOx for people living in the countryside has also been estimated. In this way, it has been possible to calculate the average exposure dose for NOx for the Swedish population. This figure is 23 micrograms/m3. By use of the relationships between NOx and specific compounds the average dose has been calculated for the following compounds: polyaromatic compounds (PAH); ethene, propene, and butadiene; benzene, toluene, and xylene; formaldehyde

  10. Controlled human exposures to ambient pollutant particles in susceptible populations

    EPA Science Inventory

    Epidemiologic studies have established an association between exposures to air pollution particles and human mortality and morbidity at concentrations of particles currently found in major metropolitan areas. The adverse effects of pollution particles are most prominent in suscep...

  11. [Urban air pollutant exposure among traffic policemen].

    PubMed

    Priante, E; Schiavon, I; Boschi, G; Gori, G; Bartolucci, G B; Soave, C; Brugnone, F; Clonfero, E

    1996-01-01

    Exposure to dusts and benzene was studied in 65 traffic policemen. Samples of total dusts showed that mean personal exposure was 0.44 (SD = 0.30) mg/m3, with peaks of about 2 mg/m3. Exposure to 1-nitropyrene (1-NP), the main compound occurring in emissions from diesel engines, which was estimated from concentrations in dusts collected with high-flow samplers, was 0.28 (SD = 0.19) ng/m3 (range: 0.06-1.24 ng/m3). The mean concentration of benzene in the breathing zone was 41 (SD = 20) micrograms/m3, although a level of 100 micrograms/m3 was slightly exceeded in one subject. In urine samples collected before and after workshifts, two biological indicators of exposure to benzene were measured, urinary benzene and urinary trans, trans-muconic acid (MA). The mean values of urinary benzene before and after workshift were similar (98, SD = 81 and 83, SD = 55 ng/l; n = 63; Wilcoxon's T-test = not significant), while a moderate increase in the metabolite was observed (MA = 0.08, SD = 0.11; 0.11, SD = 0.09 mg/g creatinine, in pre- and post-shift samples respectively; Wilcoxon's T-test, z = 3.00; p < 0.01). The levels of exposure to dusts and 1-NP deriving from diesel engine emissions were comparable to those of other occupational groups with this type of risk (garage mechanics, workers operating diesel engine machinery, etc.). Traffic police exposure to benzene was similar to that of the whole population of Padova (40 micrograms/m3, mean annual 24-hour value). However, the values of urinary MA, like those reported by other authors for non-smoker controls, increased after the workshift, indicating low occupational exposure to this pollutant. It should be noted that traffic police exposure to benzene is much lower than that of other occupational categories, e.g., fuel pump distributors. PMID:9102558

  12. The use of non destructive biomarkers in the study of marine mammals.

    PubMed

    M Cristina Fossi And Letizia Marsili

    1997-01-01

    Marine mammals have been subject to heavy anthropogenic pressure by direct killing and chemical pollution all over the world. Most studies of contamination and biomarker responses in marine mammals have been conducted using animals killed by hunting out of a total of 12 cetacean species studied, 45 of the specimens were obtained by sacrificing the animal; out of a total of eight pinniped species studied, 40 of the specimens were obtained by killing. The development of a series of non destructive techniques to evaluate biomarker responses and residue levels is recommended for the hazard assessment and conservation of endangered species of marine mammals. Here we review the current status of the non destructive biomarker approach in marine mammals, describing the biological materials available for non destructive tests in stranded brain, liver, blood, skin, subcutaneous blubber, muscle and fur and free ranging animals blood, skin biopsy, fur and faeces and the respective biomarker techniques mixed function oxidase activity and DNA damage in skin biopsy samples; porphyrins in faeces and fur; esterases, porphyrins, clinical biochemical parameter, vitamin A and micronuclei in blood samples. Residue analysis can be carried out in the various biological materials. We also report the results of applying this methodological approach to cetaceans minke whale Balaenoptera acutorostrata, fin whale-- Balaenoptera physalus, beluga whale-- Delphinapterus leucas, short finned pilot whale-- Globicephala macrorhynchus, harbour porpoise -- Phocoena phocoena, Rissos dolphin-- Risso s Grampus griseus, Dall s porpoise-- Phocoenoides dalli dalli, melon headed whale-- Peponocephala electra, bottlenose dolphin -- Tursiops truncatus, striped dolphin-- Stenella coeruleoalba, spinner dolphin-- Stenella longirostris, killer whale-- Orcinus orca and pinnipeds northern fur seal- Callorhinus ursinus, hooded seal-- Cystophora cristata, grey seal-- Halichoerus grypus, harbour seal-- Phoca vitulina

  13. Potential techniques for non-destructive evaluation of cable materials

    NASA Astrophysics Data System (ADS)

    Gillen, Kenneth T.; Clough, Roger L.; Mattson, Bengt; Stenberg, Bengt; Oestman, Erik

    This paper describes the connection between mechanical degradation of common cable materials, in radiation and elevated temperature environments, and density increases caused by the oxidation which leads to this degradation. Two techniques based on density changes are suggested as potential non-destructive evaluation (NDE) procedures which may be applicable to monitoring the mechanical condition of cable materials in power plant environments. The first technique is direct measurement of density changes, via a density gradient column, using small shavings removed from the surface of cable jackets at selected locations. The second technique is computed X-ray tomography, utilizing a portable scanning device.

  14. APPARATUS FOR NON-DESTRUCTIVE INSPECTION OF CANTILEVERED MEMBERS

    DOEpatents

    Taylor, E.R.; Mahoney, C.H.; Lay, C.R.

    1961-10-24

    An apparatus for non-destructive inspection of cantilevered members, such as compressor blades, is described. The member under inspection is vibrated with a regulated source of air under pressure. The amplitude of vibration of the member is maintained at its natural frequency. The frequency of vibration of the member is measured. An indication of an excessive decay or erratic shifting in the measured frequency above an allowable hysteretic decay is provided as an indication of a fault in the member. The member is vibrated for a selected test period. (AEC)

  15. Non-destructive characterization using pulsed fast-thermal neutrons

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Schultz, F. J.; Vourvopoulos, G.

    1995-05-01

    Explosives, illicit drugs, and other contraband materials contain various chemical elements in quantities and ratios that differentiate them from each other and from innocuous substances. Furthermore, the major chemical elements in coal can provide information about various parameters of importance to the coal industry. In both examples, the non-destructive identification of chemical elements can be performed using pulsed fast-thermal neutrons that, through nuclear reactions, excite the nuclei of the various elements. This technique is being currently developed for the dismantling of nuclear weapons classified as trainers, and for the on-line coal bulk analysis.

  16. Oxidative Stress and Air Pollution Exposure

    PubMed Central

    Lodovici, Maura; Bigagli, Elisabetta

    2011-01-01

    Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM2.5, PM < 2.5 μm) and ultrafine (PM0.1, PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact. PMID:21860622

  17. Monitoring human exposure to urban air pollutants

    PubMed Central

    Barale, R.; Barrai, I.; Sbrana, I.; Migliore, L.; Marrazzini, A.; Scarcelli, V.; Bacci, E.; Di Sibio, A.; Tessa, A.; Cocchi, L.; Lubrano, V.; Vassalle, C.; He, J.

    1993-01-01

    A multidisciplinary study on a general population exposed to vehicle exhaust was undertaken in Pisa in 1991. Environmental factors such as air pollution and those associated with lifestyle were studied. Meanwhile, biological and medical indicators of health condition were investigated. Chromosomal aberrations, sister chromatid exchanges (SCEs), and micronuclei in lymphocytes were included for the assessment of the genotoxic risk. Because of the large number (3800) of subjects being investigated, standardization of protocols was compulsory. The results on data reproducibility are reported. To assess the reliability of the protocol on a large scale, the population of Porto Tolle, a village located in northeast Italy, was studied and compared to a subset of the Pisa population. Preliminary results showed that probable differences between the two populations and invididuals were present in terms of SCE frequencies. The study was potentially able to detect the effects of several factors such as age, smoking, genetics, and environment. The in vitro treatment of lymphocytes with diepoxybutane confirmed the presence of more responsive individuals and permitted us to investigate the genetic predisposition to genetic damage. The possible influence of environmental factors was studied by correlation analyses with external exposure to air pollutants as well as with several lifestyle factors. PMID:8143653

  18. MODELING POPULATION EXPOSURES TO OUTDOOR SOURCES OF HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration ...

  19. Non-destructive assessment of parchment deterioration by optical methods.

    PubMed

    Dolgin, Bella; Bulatov, Valery; Schechter, Israel

    2007-08-01

    A non-destructive and non-invasive method for quantitative characterization of parchment deterioration, based on spectral measurements, is proposed. Deterioration due to both natural aging (ancient parchments) and artificial aging (achieved by means of controlled UV irradiation and temperature treatment) was investigated. The effect of aging on parchment native fluorescence was correlated with its deterioration condition. Aging causes fluorescence intensity drop, spectral shift of the main peak, and an overall change in the fluorescence spectral features. Digital color imaging analysis based on visible reflectance from the parchment surface was also applied, and the correspondent color components (RGB) were successively correlated with the state of parchment deterioration/aging. The fluorescence and color imaging data were validated by analysis of historical parchments, aged between 50 and 2000 years and covering a large variety of states of deterioration. The samples were independently assessed by traditional microscopy methods. We conclude that the proposed optical method qualifies well as a non-destructive tool for rapid assessment of the stage of parchment deterioration.

  20. Laser active thermography for non-destructive testing

    NASA Astrophysics Data System (ADS)

    Semerok, A.; Grisolia, C.; Fomichev, S. V.; Thro, P.-Y.

    2013-11-01

    Thermography methods have found their applications in different fields of human activity. The non-destructive feature of these methods along with the additional advantage by automated remote control and tests of nuclear installations without personnel attendance in the contaminated zone are of particular interest. Laser active pyrometry and laser lock-in thermography for in situ non-destructive characterization of micrometric layers on graphite substrates from European tokamaks were under extensive experimental and theoretical studies in CEA (France). The studies were aimed to obtain layer characterization with cross-checking the layer thermal contact coefficients determined by active laser pyrometry and lock-in thermography. The experimental installation comprised a Nd-YAG pulsed repetition rate laser (1 Hz - 10 kHz repetition rate frequency, homogeneous spot) and a home-made pyrometer system based on two pyrometers for the temperature measurements in 500 - 2600 K range. For both methods, the layer characterization was provided by the best fit of the experimental results and simulations. The layer thermal contact coefficients determined by both methods were quite comparable. Though there was no gain in the measurements accuracy, lock-in measurements have proved their advantage as being much more rapid. The obtained experimental and theoretical results are presented. Some practical applications and possible improvements of the methods are discussed.

  1. Non destructive testing of works of art by terahertz analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, Jean-Luc; Metayer, Jean-Jacques; Mouhoubi, Kamel; Detalle, Vincent

    2013-11-01

    Improvements in technologies and the growing security needs in airport terminals lead to the development of non destructive testing devices using terahertz waves. Indeed, these waves have the advantage of being, on one hand, relatively penetrating. They also have the asset of not being ionizing. It is thus potentially an interesting contribution in the non destructive testing field. With the help of the VISIOM Company, the possibilities of this new industrial analysis method in assisting the restoration of works of art were then approached. The results obtained within this framework are presented here and compared with those obtained by infrared thermography. The results obtained show first that the THZ method, like the stimulated infrared thermography allows the detection of delamination located in murals paintings or in marquetries. They show then that the THZ method seems to allow detecting defects located relatively deeply (10 mm) and defects potentially concealed by other defects. It is an advantage compared to the stimulated infra-red thermography which does not make it possible to obtain these results. Furthermore, they show that the method does not seem sensitive to the various pigments constituting the pictorial layer, to the presence of a layer of "Japan paper" and to the presence of a layer of whitewash. It is not the case of the stimulated infrared thermography. It is another advantage of the THZ method. Finally, they show that the THZ method is limited in the detection of low-size defects. It is a disadvantage compared to the stimulated infrared thermography.

  2. MODELING INHALATION AND MULTIMEDIA MULTIPATHWAY HUMAN EXPOSURES TO ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    Estimation of exposures of children and adults to air toxics or multimedia pollutants require careful consideration of sources and concentrations of pollutants that may be present in different media, as well as various routes and pathways of exposures associated with age-specif...

  3. CHARACTERIZATION OF INDOOR AND OUTDOOR AIR POLLUTION EXPOSURES AND SOURCES

    EPA Science Inventory

    Human exposures to indoor and outdoor pollutants vary depending on the sources and concentrations of pollutants as well as human behavioral factors that determine the extent of an individual's contact with indoor or outdoor pollutants. In general, the older populations spend more...

  4. Air pollution exposure prediction approaches used in air pollution epidemiology studies

    EPA Science Inventory

    Epidemiological studies of the health effects of air pollution have traditionally relied upon surrogates of personal exposures, most commonly ambient concentration measurements from central-site monitors. However, this approach may introduce exposure prediction errors and miscla...

  5. Evaluation and Application of Alternative Air Pollution Exposure Metrics in Air Pollution Epidemiology Studies

    EPA Science Inventory

    ABSTRACT: Periodic review, revision and subsequent implementation of the National Ambient Air Quality Standards for criteria air pollutants rely upon various types of scientific air quality, exposure, toxicological dose-response and epidemiological information. Exposure assessmen...

  6. Non-destructive photoacoustic imaging of metal surface defects

    NASA Astrophysics Data System (ADS)

    Jeon, Seungwan; Kim, Jeesu; Yun, Jong Pil; Kim, Chulhong

    2016-11-01

    The detection of metal surface defects is important in achieving the goals of product quality enhancement and manufacturing cost reduction. Identifying the defects with visual inspection is difficult, inaccurate, and time-consuming. Thus, several inspection methods using line cameras, magnetic field, and ultrasound have been proposed. However, identifying small defects on metal surfaces remains a challenge. To deal with this problem, we propose the use of photoacoustic imaging (PAI) as a new non-destructive imaging tool to detect metal surface defects. We successfully visualized two types of cracks (i.e., unclassified and seam cracks) in metal plate samples using PAI. In addition, we successfully extracted cracked edges from height-encoded photoacoustic maximum amplitude projection images using the Laplacian of Gaussian filtering method, and then, quantified the detected edges for a statistical analysis. We concluded that PAI can be useful in detecting metal surface defects reducing the defect rate and manufacturing cost during metal production.

  7. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul L.; Mørch, Troels; Hilliard, Andrew J.; Arlt, Jan; Sherson, Jacob F.

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  8. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  9. Non-destructive Faraday imaging of dynamically controlled ultracold atoms.

    PubMed

    Gajdacz, Miroslav; Pedersen, Poul L; Mørch, Troels; Hilliard, Andrew J; Arlt, Jan; Sherson, Jacob F

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds. PMID:24007051

  10. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    SciTech Connect

    Gajdacz, Miroslav; Pedersen, Poul L.; Mørch, Troels; Hilliard, Andrew J.; Arlt, Jan; Sherson, Jacob F.

    2013-08-15

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  11. Non-destructive Faraday imaging of dynamically controlled ultracold atoms.

    PubMed

    Gajdacz, Miroslav; Pedersen, Poul L; Mørch, Troels; Hilliard, Andrew J; Arlt, Jan; Sherson, Jacob F

    2013-08-01

    We describe an easily implementable method for non-destructive measurements of ultracold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. The signal-to-noise ratio is analyzed theoretically and, in the absence of experimental imperfections, the sensitivity limit is found to be identical to other conventional dispersive imaging techniques. The dependence on laser detuning, atomic density, and temperature is characterized in a detailed comparison with theory. Due to low destructiveness, spatially resolved images of the same cloud can be acquired up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration, to demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. This demonstrates that the method is a useful tool for the characterization of static and dynamically changing properties of ultracold atomic clouds.

  12. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  13. Non-Destructive Classification Approaches for Equilbrated Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Righter, K.; Harrington, R.; Schroeder, C.; Morris, R. V.

    2013-01-01

    Classification of meteorites is most effectively carried out by petrographic and mineralogic studies of thin sections, but a rapid and accurate classification technique for the many samples collected in dense collection areas (hot and cold deserts) is of great interest. Oil immersion techniques have been used to classify a large proportion of the US Antarctic meteorite collections since the mid-1980s [1]. This approach has allowed rapid characterization of thousands of samples over time, but nonetheless utilizes a piece of the sample that has been ground to grains or a powder. In order to compare a few non-destructive techniques with the standard approaches, we have characterized a group of chondrites from the Larkman Nunatak region using magnetic susceptibility and Moessbauer spectroscopy.

  14. Induction thermography for non-destructive evaluation of adhesive bonds

    NASA Astrophysics Data System (ADS)

    Balaji, L.; Balasubramaniam, Krishnan; Krishnamurthy, C. V.

    2013-01-01

    Adhesive bonding is widely used in automotive industry in the recent times. One of the major problems with adhesive bonds is the lack of a suitable non-destructive evaluation technique for assessing bonding. In this paper, an experimental study was carried out to apply induction thermography technique to evaluate adhesively bonded steel plates. Samples were fabricated with artificial defects such as air gap, foreign material, and improper adhesive filling. Induction thermography technique was found to detect defects and foreign inclusions. The sample specimen was also inspected using standard techniques such as Ultrasonic testing and Radiography testing. Defect detecting capabilities of the three techniques are compared. Induction thermography heating was FE modelled in 3D using COMSOL 3.5a. The simulated Induction thermography model was compared and validated with experimental results.

  15. Non-destructive Elemental Analysis Using Negative Muon

    NASA Astrophysics Data System (ADS)

    Kubo, Michael K.

    2016-09-01

    A negative muon implanted into materials is captured by an atom and forms a muonic atom with emission of muonic X-rays. The X-ray energy is characteristic to the atomic number of the atom which captured the muon. By measuring the energy of the muonic X-ray induced by the negative muon implanted into the sample material with a kinetic energy tuned to stop at a chosen depth from the sample surface, the elemental composition of the sample at the specific depth from the surface is revealed. This elemental analysis method has unique in non-destructive, multi-element, and depth-selective characteristics. The method is being developed at the J-PARC/MUSE facility.

  16. Electromagnetic non-destructive technique for duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  17. EVALUATION OF TRANSPORTATION OPTIONS FOR INTERMEDIATE NON DESTRUCTIVE EXAMINATIONS

    SciTech Connect

    Case, Susan; Hoggard, Gary

    2014-07-01

    Idaho National Laboratory (INL) shipments of irradiated experiments from the Advanced Test Reactor (ATR) to the Hot Fuels Examination Facility (HFEF) have historically been accomplished using the General Electric Model 2000 (GE 2000) Type B shipping container. Battelle Energy Alliance (BEA) concerns regarding the future availability and leasing and handling costs associated with the GE 2000 cask have warranted an evaluation of alternative shipping options. One or more of these shipping options may be utilized to perform non destructive examinations (NDE) such as neutron radiography and precision gamma scans of irradiated experiments at HFEF and then return the experiments to ATR for further irradiation, hereafter referred to as “intermediate NDE.”

  18. Non-destructive techniques for biomonitoring of spatial, temporal, and demographic patterns of mercury bioaccumulation and maternal transfer in turtles.

    PubMed

    Hopkins, Brittney C; Hepner, Mark J; Hopkins, William A

    2013-06-01

    Mercury (Hg) is a globally ubiquitous pollutant that has received much attention due to its toxicity to humans and wildlife. The development of non-destructive sampling techniques is a critical step for sustainable monitoring of Hg accumulation. We evaluated the efficacy of non-destructive sampling techniques and assessed spatial, temporal, and demographic factors that influence Hg bioaccumulation in turtles. We collected muscle, blood, nail, and eggs from snapping turtles (Chelydra serpentina) inhabiting an Hg contaminated river. As predicted, all Hg tissue concentrations strongly and positively correlated with each other. Additionally, we validated our mathematical models against two additional Hg contaminated locations and found that tissue relationships developed from the validation sites did not significantly differ from those generated from the original sampling site. The models provided herein will be useful for a wide array of systems where biomonitoring of Hg in turtles needs to be accomplished in a conservation-minded fashion. PMID:23500054

  19. Reducing indoor residential exposures to outdoor pollutants

    SciTech Connect

    Sherman, Max H.; Matson, Nance E.

    2003-07-01

    The basic strategy for providing indoor air quality in residences is to dilute indoor sources with outdoor air. This strategy assumes that the outdoor air does not have pollutants at harmful levels or that the outdoor air is, at least, less polluted than the indoor air. When this is not the case, different strategies need to be employed to ensure adequate air quality in the indoor environment. These strategies include ventilation systems, filtration and other measures. These strategies can be used for several types of outdoor pollution, including smog, particulates and toxic air pollutants. This report reviews the impacts that typical outdoor air pollutants can have on the indoor environment and provides design and operational guidance for mitigating them. Poor quality air cannot be used for diluting indoor contaminants, but more generally it can become an indoor contaminant itself. This paper discusses strategies that use the building as protection against potentially hazardous outdoor pollutants, including widespread pollutants, accidental events, and potential attacks.

  20. Effects of Ambient Air Pollution Exposure on Olfaction: A Review

    PubMed Central

    Ajmani, Gaurav S.; Suh, Helen H.; Pinto, Jayant M.

    2016-01-01

    Background: Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. Objectives: To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. Methods: We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. Results: We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Conclusions: Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution

  1. Air Pollution Exposure Model for Individuals (EMI) in Health Studies

    EPA Science Inventory

    In health studies, traffic-related air pollution is associated with adverse respiratory effects. Due to cost and participant burden of personal measurements, health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect ...

  2. Novel Approaches for Estimating Human Exposure to Air Pollutants

    EPA Science Inventory

    Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying on solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal varia...

  3. Complex Archaeological Prospection Using Combination of Non-destructive Techniques

    NASA Astrophysics Data System (ADS)

    Faltýnová, M.; Pavelka, K.; Nový, P.; Šedina, J.

    2015-08-01

    This article describes the use of a combination of non-destructive techniques for the complex documentation of a fabulous historical site called Devil's Furrow, an unusual linear formation lying in the landscape of central Bohemia. In spite of many efforts towards interpretation of the formation, its original form and purpose have not yet been explained in a satisfactory manner. The study focuses on the northern part of the furrow which appears to be a dissimilar element within the scope of the whole Devil's Furrow. This article presents detailed description of relics of the formation based on historical map searches and modern investigation methods including airborne laser scanning, aerial photogrammetry (based on airplane and RPAS) and ground-penetrating radar. Airborne laser scanning data and aerial orthoimages acquired by the Czech Office for Surveying, Mapping and Cadastre were used. Other measurements were conducted by our laboratory. Data acquired by various methods provide sufficient information to determine the probable original shape of the formation and proves explicitly the anthropological origin of the northern part of the formation (around village Lipany).

  4. Non-destructive investigation of thermoplastic reinforced composites

    DOE PAGES

    Hassen, Ahmed; Taheri, Hossein; Vaidya, Uday

    2016-05-09

    This paper studies various manufacturing defects in glass fiber/Polypropylene (PP) composite parts and their methods of detection. Foreign Object Inclusion (FOI) of different shapes, sizes, and materials were placed in a glass fiber/PP panel made by compression molding. The paper aims to characterize the fiber orientation and fiber related defects such as fiber waviness in the composite specimen. Comprehensive investigation for different Non Destructive Evaluation (NDE) techniques, namely X-ray radiography and Ultrasonic Testing (UT) techniques to trace and characterize the embedded defects and the composite texture are presented. Conventional X-ray radiography successfully identified the fiber orientation in two dimension (2-D)more » plane; however, information for the sample depth was not captured. The radiography techniques showed low relative errors for the defect size measurements (maximum error was below 9.5%) when compared to the ultrasonic techniques. Ultrasonic techniques were able to map all the embedded artificial defects. Phase Array (PA) ultrasonic technique was able to precisely locate the FOI in the glass fiber/PP specimen. Nerveless, the shape and size of the defects were not accurately determined due to the high signal attenuation and distortion characteristics of the E-glass fiber.« less

  5. Non-destructive compositional analysis of historic organ reed pipes

    NASA Astrophysics Data System (ADS)

    Manescu, A.; Fiori, F.; Giuliani, A.; Kardjilov, N.; Kasztovszky, Z.; Rustichelli, F.; Straumal, B.

    2008-03-01

    In order to be able to reproduce historic organ reed pipes, a bulk non-destructive chemical composition analysis was performed on the tongues and shallots, focusing mainly on the ratio between copper and zinc and on the presence of lead. Prompt gamma activation analysis results allowed us to observe for the first time that the ratio between the two main components of the brass alloy changed from Cu:Zn = 3:1 for the old tongues and shallots to Cu:Zn = 2:1 around the middle of the 18th century, which is typical also for the modern alloys offered to the organ builders nowadays. We also discovered that the Pb content in the old historic brass alloy diminished until the middle of 18th century when the brass alloy became mainly Pb free. The non-uniform lead distribution inside one of the shallots obtained from a prompt gamma activation analysis (PGAA) experiment was studied by neutron tomography. It gave us a three-dimensonal (3D) distribution of the lead inclusions inside the shallots. The lead particles are concentrated towards the base of the shallot.

  6. A non-destructive method for dating human remains

    USGS Publications Warehouse

    Lail, Warren K.; Sammeth, David; Mahan, Shannon; Nevins, Jason

    2013-01-01

    The skeletal remains of several Native Americans were recovered in an eroded state from a creek bank in northeastern New Mexico. Subsequently stored in a nearby museum, the remains became lost for almost 36 years. In a recent effort to repatriate the remains, it was necessary to fit them into a cultural chronology in order to determine the appropriate tribe(s) for consultation pursuant to the Native American Grave Protection and Repatriation Act (NAGPRA). Because the remains were found in an eroded context with no artifacts or funerary objects, their age was unknown. Having been asked to avoid destructive dating methods such as radiocarbon dating, the authors used Optically Stimulated Luminescence (OSL) to date the sediments embedded in the cranium. The OSL analyses yielded reliable dates between A.D. 1415 and A.D. 1495. Accordingly, we conclude that the remains were interred somewhat earlier than A.D. 1415, but no later than A.D. 1495. We believe the remains are from individuals ancestral to the Ute Mouache Band, which is now being contacted for repatriation efforts. Not only do our methods contribute to the immediate repatriation efforts, they provide archaeologists with a versatile, non-destructive, numerical dating method that can be used in many burial contexts.

  7. Data fusion for automated non-destructive inspection.

    PubMed

    Brierley, N; Tippetts, T; Cawley, P

    2014-07-01

    In industrial non-destructive evaluation (NDE), it is increasingly common for data acquisition to be automated, driving a recent substantial increase in the availability of data. The collected data need to be analysed, typically necessitating the painstaking manual labour of a skilled operator. Moreover, in automated NDE a region of an inspected component is typically interrogated several times, be it within a single data channel due to multiple probe passes, across several channels acquired simultaneously or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to offer an opportunity to improve the reliability of the inspection, but is not achievable in a manual analysis. This paper describes a data-fusion-based software framework providing a partial automation capability, allowing component regions to be declared defect-free to a very high probability while readily identifying defect indications, thereby optimizing the use of the operator's time. The system is designed to applicable to a wide range of automated NDE scenarios, but the processing is exemplified using the industrial ultrasonic immersion inspection of aerospace turbine discs. Results obtained for industrial datasets demonstrate an orders-of-magnitude reduction in false-call rates, for a given probability of detection, achievable using the developed software system.

  8. FIRST 100 T NON-DESTRUCTIVE MAGNET OUTER COIL SET

    SciTech Connect

    J. BACON; A. BACA; ET AL

    1999-09-01

    The controlled power outer coil set of the first 100 T non-destructive (100 T ND) magnet is described. This magnet will be installed as part of the user facility research equipment at the National High Magnetic Field laboratory (NHMFL) Pulsed Field Facility at Los Alamos National Laboratory. The 100 T ND controlled power outer coil set consists of seven nested, mechanically independent externally reinforced coils. These coils, in combination, will produce a 47 T platform field in a 225-mm diameter bore. Using inertial energy storage a synchronous motor/generator provides ac power to a set of seven ac-dc converters rated at 64 MW/80 MVA each. These converters energize three independent coil circuits to create 170 MJ of field energy in the outer coil set at the platform field of 47 T. Each coil consists of a multi-layer winding of high strength conductor supported by an external high strength stainless steel shell. Coils with the highest magnetic loads will utilize a reinforcing shell fabricated from highly cold worked 301 stainless steel strip. The autofrettage conditioning method will be used to pre-stress the coils and thereby limit conductor and reinforcement strains to the elastic range. The purpose of pre-stressing the coils is to attain a design life of 10,000 full field pulses. The operation and conditioning of the coil set will be described along with special features of its design, magnetic and structural analyses and construction.

  9. Non-destructive evaluation of anchorage zones by ultrasonics techniques.

    PubMed

    Kharrat, M; Gaillet, L

    2015-08-01

    This work aims to evaluate the efficiency and reliability of two Non-Destructive Testing (NDT) methods for damage assessment in bridges' anchorages. The Acousto-Ultrasonic (AU) technique is compared to classical Ultrasonic Testing (UT) in terms of defect detection and structural health classification. The AU technique is firstly used on single seven-wire strands damaged by artificial defects. The effect of growing defects on the waves traveling through the strands is evaluated. Thereafter, three specimens of anchorages with unknown defects are inspected by the AU and UT techniques. Damage assessment results from both techniques are then compared. The structural health conditions of the specimens can be then classified by a damage severity criterion. Finally, a damaged anchorage socket with mastered defects is controlled by the same techniques. The UT allows the detection and localization of damaged wires. The AU technique is used to bring out the effect of defects on acoustic features by comparing a healthy and damaged anchorage sockets. It is concluded that the UT method is suitable for local and crack-like defects, whereas the AU technique enables the assessment of the global structural health of the anchorage zones.

  10. Method of non-destructively inspecting a curved wall portion

    DOEpatents

    Fong, James T.

    1996-01-01

    A method of non-destructively inspecting a curved wall portion of a large and thick walled vessel for a defect by computed tomography is provided. A collimated source of radiation is placed adjacent one side of the wall portion and an array of detectors for the radiation is placed on the other side adjacent the source. The radiation from the source passing through the wall portion is then detected with the detectors over a limited angle, dependent upon the curvature of the wall of the vessel, to obtain a dataset. The source and array are then coordinately moved relative to the wall portion in steps and a further dataset is obtained at each step. The plurality of datasets obtained over the limited angle is then processed to produce a tomogram of the wall portion to determine the presence of a defect therein. In a preferred embodiment, the curved wall portion has a center of curvature so that the source and the array are positioned at each step along a respective arc curved about the center. If desired, the detector array and source can be reoriented relative to a new wall portion and an inspection of the new wall portion can be easily obtained. Further, the source and detector array can be indexed in a direction perpendicular to a plane including the limited angle in a plurality of steps so that by repeating the detecting and moving steps at each index step, a three dimensional image can be created of the wall portion.

  11. Non-Destructive Evaluation of Materials via Ultraviolet Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pugel, Betsy

    2008-01-01

    A document discusses the use of ultraviolet spectroscopy and imaging for the non-destructive evaluation of the degree of cure, aging, and other properties of resin-based composite materials. This method can be used in air, and is portable for field use. This method operates in reflectance, absorbance, and luminescence modes. The ultraviolet source is used to illuminate a composite surface of interest. In reflectance mode, the reflected response is acquired via the imaging system or via the spectrometer. The spectra are analyzed for organic compounds (conjugated organics) and inorganic compounds (semiconducting band-edge states; luminescing defect states such as silicates, used as adhesives for composite aerospace applications; and metal oxides commonly used as thermal coating paints on a wide range of spacecraft). The spectra are compared with a database for variation in conjugation, substitution, or length of molecule (in the case of organics) or band edge position (in the case of inorganics). This approach is useful in the understanding of material quality. It lacks the precision in defining the exact chemical structure that is found in other materials analysis techniques, but it is advantageous over methods such as nuclear magnetic resonance, infrared spectroscopy, and chromatography in that it can be used in the field to assess significant changes in chemical structure that may be linked to concerns associated with weaknesses or variations in structural integrity, without disassembly of or destruction to the structure of interest.

  12. Data fusion for automated non-destructive inspection

    PubMed Central

    Brierley, N.; Tippetts, T.; Cawley, P.

    2014-01-01

    In industrial non-destructive evaluation (NDE), it is increasingly common for data acquisition to be automated, driving a recent substantial increase in the availability of data. The collected data need to be analysed, typically necessitating the painstaking manual labour of a skilled operator. Moreover, in automated NDE a region of an inspected component is typically interrogated several times, be it within a single data channel due to multiple probe passes, across several channels acquired simultaneously or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to offer an opportunity to improve the reliability of the inspection, but is not achievable in a manual analysis. This paper describes a data-fusion-based software framework providing a partial automation capability, allowing component regions to be declared defect-free to a very high probability while readily identifying defect indications, thereby optimizing the use of the operator's time. The system is designed to applicable to a wide range of automated NDE scenarios, but the processing is exemplified using the industrial ultrasonic immersion inspection of aerospace turbine discs. Results obtained for industrial datasets demonstrate an orders-of-magnitude reduction in false-call rates, for a given probability of detection, achievable using the developed software system. PMID:25002828

  13. Metal Pollutant Exposure and Behavior Disorders: Implications for School Practices.

    ERIC Educational Resources Information Center

    Marlowe, Mike

    1986-01-01

    The article summarizes research on relationships between low (below metal poisoning) metal exposure and childhood behavior disorders. Symptoms, assessment techniques (hair analysis), and environmental and dietary factors that may increase the risk of metal pollutant exposure are described. School programs emphasizing education and the role of…

  14. Pollution exposure on marine protected areas: A global assessment.

    PubMed

    Partelow, Stefan; von Wehrden, Henrik; Horn, Olga

    2015-11-15

    Marine protected areas (MPAs) face many challenges in their aim to effectively conserve marine ecosystems. In this study we analyze the extent of pollution exposure on the global fleet of MPAs. This includes indicators for current and future pollution and the implications for regionally clustered groups of MPAs with similar biophysical characteristics. To cluster MPAs into characteristic signature groups, their bathymetry, baseline biodiversity, distance from shore, mean sea surface temperature and mean sea surface salinity were used. We assess the extent at which each signature group is facing exposure from multiple pollution types. MPA groups experience similar pollution exposure on a regional level. We highlight how the challenges that MPAs face can be addressed through governance at the appropriate scale and design considerations for integrated terrestrial and marine management approaches within regional level networks. Furthermore, we present diagnostic social-ecological indicators for addressing the challenges facing unsuccessful MPAs with practical applications. PMID:26330016

  15. Pollution exposure on marine protected areas: A global assessment.

    PubMed

    Partelow, Stefan; von Wehrden, Henrik; Horn, Olga

    2015-11-15

    Marine protected areas (MPAs) face many challenges in their aim to effectively conserve marine ecosystems. In this study we analyze the extent of pollution exposure on the global fleet of MPAs. This includes indicators for current and future pollution and the implications for regionally clustered groups of MPAs with similar biophysical characteristics. To cluster MPAs into characteristic signature groups, their bathymetry, baseline biodiversity, distance from shore, mean sea surface temperature and mean sea surface salinity were used. We assess the extent at which each signature group is facing exposure from multiple pollution types. MPA groups experience similar pollution exposure on a regional level. We highlight how the challenges that MPAs face can be addressed through governance at the appropriate scale and design considerations for integrated terrestrial and marine management approaches within regional level networks. Furthermore, we present diagnostic social-ecological indicators for addressing the challenges facing unsuccessful MPAs with practical applications.

  16. Controlled Exposures to Air Pollutants and Risk of Cardiac Arrhythmia

    PubMed Central

    Watts, Simon J.; Hunter, Amanda J.; Shah, Anoop S.V.; Bosson, Jenny A.; Unosson, Jon; Barath, Stefan; Lundbäck, Magnus; Cassee, Flemming R.; Donaldson, Ken; Sandström, Thomas; Blomberg, Anders; Newby, David E.; Mills, Nicholas L.

    2014-01-01

    Background: Epidemiological studies have reported associations between air pollution exposure and increases in cardiovascular morbidity and mortality. Exposure to air pollutants can influence cardiac autonomic tone and reduce heart rate variability, and may increase the risk of cardiac arrhythmias, particularly in susceptible patient groups. Objectives: We investigated the incidence of cardiac arrhythmias during and after controlled exposure to air pollutants in healthy volunteers and patients with coronary heart disease. Methods: We analyzed data from 13 double-blind randomized crossover studies including 282 participants (140 healthy volunteers and 142 patients with stable coronary heart disease) from whom continuous electrocardiograms were available. The incidence of cardiac arrhythmias was recorded for each exposure and study population. Results: There were no increases in any cardiac arrhythmia during or after exposure to dilute diesel exhaust, wood smoke, ozone, concentrated ambient particles, engineered carbon nanoparticles, or high ambient levels of air pollution in either healthy volunteers or patients with coronary heart disease. Conclusions: Acute controlled exposure to air pollutants did not increase the short-term risk of arrhythmia in participants. Research employing these techniques remains crucial in identifying the important pathophysiological pathways involved in the adverse effects of air pollution, and is vital to inform environmental and public health policy decisions. Citation: Langrish JP, Watts SJ, Hunter AJ, Shah AS, Bosson JA, Unosson J, Barath S, Lundbäck M, Cassee FR, Donaldson K, Sandström T, Blomberg A, Newby DE, Mills NL. 2014. Controlled exposures to air pollutants and risk of cardiac arrhythmia. Environ Health Perspect 122:747–753; http://dx.doi.org/10.1289/ehp.1307337 PMID:24667535

  17. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  18. An empirical assessment of exposure measurement error and effect attenuation in bi-pollutant epidemiologic models

    EPA Science Inventory

    Background: Using multipollutant models to understand combined health effects of exposure to multiple pollutants is becoming more common. However, complex relationships between pollutants and differing degrees of exposure error across pollutants can make health effect estimates f...

  19. An empirical assessment of exposure measurement errors and effect attenuation in bi-pollutant epidemiologic models

    EPA Science Inventory

    Using multipollutant models to understand the combined health effects of exposure to multiple pollutants is becoming more common. However, the complex relationships between pollutants and differing degrees of exposure error across pollutants can make health effect estimates from ...

  20. Thermal history sensors for non-destructive temperature measurements in harsh environments

    SciTech Connect

    Pilgrim, C. C.; Heyes, A. L.; Feist, J. P.

    2014-02-18

    The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature information can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.

  1. Thermal history sensors for non-destructive temperature measurements in harsh environments

    NASA Astrophysics Data System (ADS)

    Pilgrim, C. C.; Heyes, A. L.; Feist, J. P.

    2014-02-01

    The operating temperature is a critical physical parameter in many engineering applications, however, can be very challenging to measure in certain environments, particularly when access is limited or on rotating components. A new quantitative non-destructive temperature measurement technique has been proposed which relies on thermally induced permanent changes in ceramic phosphors. This technique has several distinct advantages over current methods for many different applications. The robust ceramic material stores the temperature information allowing long term thermal exposures in harsh environment to be measured at a convenient time. Additionally, rare earth dopants make the ceramic phosphorescent so that the temperature information can be interpreted by automated interrogation of the phosphorescent light. This technique has been demonstrated by application of YAG doped with dysprosium and europium as coatings through the air-plasma spray process. Either material can be used to measure temperature over a wide range, namely between 300°C and 900°C. Furthermore, results show that the material records the peak exposure temperature and prolonged exposure at lower temperatures would have no effect on the temperature measurement. This indicates that these materials could be used to measure peak operating temperatures in long-term testing.

  2. MANAGING EXPOSURES TO NEUROTOXIC AIR POLLUTANTS.

    EPA Science Inventory

    Researchers at EPA's National Health and Environmental Effects Research Laboratory are developing a biologically-based dose-response model to describe the neurotoxic effects of exposure to volatile organic compounds (VOCs). The model is being developed to improve risk assessment...

  3. Assessing human exposure to airborne pollutants: Advances and opportunities

    SciTech Connect

    Lioy, P.J. )

    1991-08-01

    A committee which was convened by the National Research Council, recently completed an analysis of new methods and technologies for assessing exposure to air pollutants. The committee identified three major ways of determining human exposure to airborne pollutants. Monitoring the air around an individual with a portable personal air sampler is, of course, the most comprehensive and most accurate. It is also the costliest and most time consuming. The second method is more indirect and involves techniques such as measuring the amount of a contaminant with a stationary monitor and extrapolating exposure by means of personal activity records or mathematical models. Exposure to carbon monoxide inside a car, for example, might be roughly calculated from the amount of time spent in the car and the quantity of carbon monoxide in the car under typical operating conditions. The third method involves biological markers as a measure of the integrated dose within the body and of past contact with pollutants. For example, a marker for airborne lead exposure can be elevated lead levels in the blood. However, this must be weighed against contributions from other media. A final and major point made in the report is the need to have accurate and realistic assessments to ensure optimal reduction of human exposure. To accomplish this, exposure assessment research should be supported by government programs. Although not stated, such research should also be supported by other sectors, including the regulated community.

  4. Non-destructive hyperspectral imaging of quarantined Mars Returned Samples

    NASA Astrophysics Data System (ADS)

    Simionovici, Alexandre; Viso, Michel; Beck, Pierre; Lemelle, Laurence; Westphal, Andrew; Vincze, Laszlo; Schoonjans, Tom; Fihman, Francois; Chazalnoel, Pascale; Ferroir, Tristan; Solé, Vicente Armando; Tucoulou, R.

    Introduction: In preparation for the upcoming International Mars Sample Return mission (MSR), returning samples containing potential biohazards, we have implemented a hyperspec-tral method of in-situ analysis of grains performed in BSL4 quarantine conditions, by combining several non-destructive imaging diagnostics. This allows sample transportation on optimized experimental setups, while monitoring the sample quarantine conditions. Our hyperspectral methodology was tested during analyses of meteorites [1-2] and cometary and interstellar grains from the recent NASA Stardust mission [3-6]. Synchrotron Radiation protocols: X-ray analysis methods are widely accepted as the least destructive probes of fragile, unique samples. Diffraction, X-ray fluorescence and ab-sorption micro/nano-spectroscopies were performed on chondritic test samples using focused monochromatic beams at the ESRF synchrotron in Grenoble, France. 2D maps of grain com-position down to ppm concentrations and polycrystalline structure have simultaneously been acquired, followed by X-ray absorption performed on elements of Z 26. Ideally, absorption micro-tomography can later be performed in full-beam mode to record the 3D morphology of the grain followed by fluorescence-tomography in focus-beam mode which complements this picture with a 3D elemental image of the grain. Lab-based protocols: Raman and IR-based spectroscopies have been performed in reflection mode for mineralogical imaging of the grains in the laboratory using commercial microscopes. The spatial resolution varied in the 1-10 m range. Laser limited penetration of opaque samples permits only 2D imaging of the few nanometer-thick outer layers of the grains. Mineralogical maps are now routinely acquired using Raman spectroscopy at sub-micron scales through the 3 container walls of the Martian sample holder, followed by IR few-micrometer spot measurements recording C-based and potential aqueous alteration distributions. Sample Holder: A

  5. Assessment of human exposure to gaseous pollutants

    SciTech Connect

    Baskin, L.B.; Falco, J.W. )

    1989-09-01

    A mathematical model to aid in assessment of human environmental exposure to volatile organic substances is presented. The model simulates the convective and diffusive transport of gas from the ambient environment into the human body by way of the respiratory and circulatory systems. Data required include easily obtained physical and chemical properties of substances as well as several estimated or measured physiological parameters. Transient and steady-state tissue concentrations resulting from an input atmospheric partial pressure are predicted. From these concentrations, an effective dose may be calculated, allowing for the determination of an exposure-response relationship based upon independently obtained dose-response data. The model's results compare favorably to experimental data on oxygen and halothane. Steady-state conditions are reached very rapidly. These results suggest that uptake of these substances is limited by both ventilation and perfusion. Rates are demonstrated to be essentially linear within the current neighborhoods. Conditions in which the primary processes of ventilation, diffusion, perfusion, and elimination limit uptake of gases are considered. Expressions describing the conditions necessary for a single process to limit gas uptake are derived. Accompanying equations for estimating tissue concentrations under these limiting conditions are presented.

  6. Modeling population exposures to outdoor sources of hazardous air pollutants.

    PubMed

    Ozkaynak, Halûk; Palma, Ted; Touma, Jawad S; Thurman, James

    2008-01-01

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration monitoring or modeling data. In this paper, we examine the limitations of using outdoor concentration predictions instead of modeled personal exposures for over 30 gaseous and particulate hazardous air pollutants (HAPs) in the US. The analysis uses the results from an air quality dispersion model (the ASPEN or Assessment System for Population Exposure Nationwide model) and an inhalation exposure model (the HAPEM or Hazardous Air Pollutant Exposure Model, Version 5), applied by the US. Environmental protection Agency during the 1999 National Air Toxic Assessment (NATA) in the US. Our results show that the total predicted chronic exposure concentrations of outdoor HAPs from all sources are lower than the modeled ambient concentrations by about 20% on average for most gaseous HAPs and by about 60% on average for most particulate HAPs (mainly, due to the exclusion of indoor sources from our modeling analysis and lower infiltration of particles indoors). On the other hand, the HAPEM/ASPEN concentration ratio averages for onroad mobile source exposures were found to be greater than 1 (around 1.20) for most mobile-source related HAPs (e.g. 1, 3-butadiene, acetaldehyde, benzene, formaldehyde) reflecting the importance of near-roadway and commuting environments on personal exposures to HAPs. The distribution of the ratios of personal to ambient concentrations was found to be skewed for a number of the VOCs and reactive HAPs associated with major source emissions, indicating the importance of personal mobility factors. We conclude that the increase in personal exposures from the corresponding predicted ambient levels tends to occur near locations where there are either major emission sources of HAPs

  7. RESPIRATORY EPIDEMIOLOGY OF HOUSEHOLD AIR POLLUTION EXPOSURES IN DEVELOPING COUNTRIES

    EPA Science Inventory

    Acute and chronic respiratory diseases impose a huge public health burden in the developing world. A large and growing body of scientific evidence indicates that household air pollution exposures contribute substantially to this burden. The most important source of indoor air p...

  8. Approaches to characterize inequities in air pollution exposures

    EPA Science Inventory

    Certain populations bear a disproportionate burden of air pollutant exposures resulting in inequity of risk. This may be due to proximity to outdoor sources such as major roadways and industry or increased prevalence of indoor sources such as cigarette smoking or gas stoves. Ther...

  9. Assessment of planctomycetes cell viability after pollutants exposure.

    PubMed

    Flores, Carlos; Catita, José A M; Lage, Olga Maria

    2014-08-01

    In this study, the growth of six different planctomycetes, a particular ubiquitous bacterial phylum, was assessed after exposure to pollutants. In addition and for comparative purposes, Pseudomonas putida, Escherichia coli and Vibrio anguillarum were tested. Each microorganism was exposed to several concentrations of 21 different pollutants. After exposure, bacteria were cultivated using the drop plate method. In general, the strains exhibited a great variation of sensitivity to pollutants in the order: V. anguillarum > planctomycetes > P. putida > E. coli. E. coli showed resistance to all pollutants tested, with the exception of phenol and sodium azide. Copper, Ridomil® (fungicide), hydrazine and phenol were the most toxic pollutants. Planctomycetes were resistant to extremely high concentrations of nitrate, nitrite and ammonium but they were the only bacteria sensitive to Previcur N® (fungicide). Sodium azide affected the growth on plates of E. coli, P. putida and V. anguillarum, but not of planctomycetes. However, this compound affected planctomycetes cell respiration but with less impact than in the aforementioned bacteria. Our results provide evidence for a diverse response of bacteria towards pollutants, which may influence the structuring of microbial communities in ecosystems under stress, and provide new insights on the ecophysiology of planctomycetes.

  10. The Evaluation of Alternative Exposure Metrics for Traffic-related Air Pollutant Exposure in North Carolina

    EPA Science Inventory

    Transportation plays an important role in the modern society but can cause significant health impacts. To quantify the associated health impacts, an appropriate traffic-related air pollution exposure metric is required. In this study, we evaluate the suitability of four exposure ...

  11. The health burden of pollution: the impact of prenatal exposure to air pollutants

    PubMed Central

    Vieira, Sandra E

    2015-01-01

    Exposure to atmospheric pollutants in both open and closed environments is a major cause of morbidity and mortality that may be both controlled and minimized. Despite growing evidence, several controversies and disagreements exist among the studies that have analyzed the effects of prenatal pollutant exposure. This review article aims to analyze primary scientific evidence of the effects of air pollution during pregnancy and the impact of these effects on the fetus, infant health, and in particular, the respiratory system. We performed a review of articles from the PubMed and Web of Science databases that were published in English within the past 5 years, particularly those related to birth cohorts that began in pregnancy with follow-up until the first years of life. The largest reported effects are associated with prenatal exposure to particulate matter, nitrogen dioxide, and tobacco smoke. The primary effects affect birth weight and other parameters of fetal biometry. There is strong evidence regarding the impact of pollutants on morbidity secondary to respiratory problems. Growing evidence links maternal smoking to childhood asthma and wheezing. The role of passive maternal smoking is less clear. Great heterogeneity exists among studies. There is a need for additional studies on birth cohorts to monitor the relationship between the exposure of pregnant women to pollutants and their children’s progress during the first years of life. PMID:26089661

  12. The health burden of pollution: the impact of prenatal exposure to air pollutants.

    PubMed

    Vieira, Sandra E

    2015-01-01

    Exposure to atmospheric pollutants in both open and closed environments is a major cause of morbidity and mortality that may be both controlled and minimized. Despite growing evidence, several controversies and disagreements exist among the studies that have analyzed the effects of prenatal pollutant exposure. This review article aims to analyze primary scientific evidence of the effects of air pollution during pregnancy and the impact of these effects on the fetus, infant health, and in particular, the respiratory system. We performed a review of articles from the PubMed and Web of Science databases that were published in English within the past 5 years, particularly those related to birth cohorts that began in pregnancy with follow-up until the first years of life. The largest reported effects are associated with prenatal exposure to particulate matter, nitrogen dioxide, and tobacco smoke. The primary effects affect birth weight and other parameters of fetal biometry. There is strong evidence regarding the impact of pollutants on morbidity secondary to respiratory problems. Growing evidence links maternal smoking to childhood asthma and wheezing. The role of passive maternal smoking is less clear. Great heterogeneity exists among studies. There is a need for additional studies on birth cohorts to monitor the relationship between the exposure of pregnant women to pollutants and their children's progress during the first years of life. PMID:26089661

  13. The relationship between exposure to air pollution and sperm disomy.

    PubMed

    Jurewicz, Joanna; Radwan, Michał; Sobala, Wojciech; Polańska, Kinga; Radwan, Paweł; Jakubowski, Lucjusz; Ulańska, Anna; Hanke, Wojciech

    2015-01-01

    The causes of the chromosome abnormalities have been studied for decades. It has been suggested that exposure to various environmental agents can induce chromosomal abnormalities in germ cells. This study was designed to address the hypothesis that exposure to specific air pollutants increases sperm disomy. The study population consisted of 212 men who were attending an infertility clinic for diagnostic purposes. They represented a subset of men in a multicenter parent study conducted in Poland to evaluate environmental factors and male fertility. Sperm aneuploidy for chromosomes 13, 18, 21, X, and Y was assessed using multicolor fluorescence in situ hybridization. Air quality data were obtained from the AirBase database. After adjusting for age, smoking, alcohol consumption, temperature (90 days), season, past diseases, abstinence interval, distance from the monitoring station, concentration, motility and morphology, positive associations were observed between exposure to PM2.5 and disomy Y (P = 0.001), sex chromosome disomy (P = 0.05) and disomy 21 (P = 0.03). Exposure to PM10 was associated with disomy 21 (P = 0.02). Conversely, exposure to ozone, CO, SO2, and NOx did not affect sperm aneuploidy. A separate analysis conducted among men who were nonsmokers (n = 117) showed that the relationship between PM2.5 and disomy Y and disomy 21 remained significant (P = 0.01, P = 0.05, respectively). The present findings indicate that exposure to air pollution induces sperm aneuploidy.

  14. Exposure to Ambient Air Pollution and Premature Rupture of Membranes.

    PubMed

    Wallace, Maeve E; Grantz, Katherine L; Liu, Danping; Zhu, Yeyi; Kim, Sung Soo; Mendola, Pauline

    2016-06-15

    Premature rupture of membranes (PROM) is a major factor that predisposes women to preterm delivery. Results from previous studies have suggested that there are associations between exposure to air pollution and preterm birth, but evidence of a relationship with PROM is sparse. Modified Community Multiscale Air Quality models were used to estimate mean exposures to particulate matter less than 10 µm or less than 2.5 µm in aerodynamic diameter, nitrogen oxides, carbon monoxide, sulfur dioxide, and ozone among 223,375 singleton deliveries in the Air Quality and Reproductive Health Study (2002-2008). We used log-linear models with generalized estimating equations to estimate adjusted relative risks and 95% confidence intervals for PROM per each interquartile-range increase in pollutants across the whole pregnancy, on the day of delivery, and 5 hours before delivery. Whole-pregnancy exposures to carbon monoxide and sulfur dioxide were associated with an increased risk of PROM (for carbon monoxide, relative risk (RR) = 1.09, 95% confidence interval (CI): 1.04, 1.14; for sulfur dioxide, RR = 1.15, 95% CI: 1.06, 1.25) but not preterm PROM. Ozone exposure increased the risk of PROM on the day of delivery (RR = 1.06, 95% CI: 1.02, 1.09) and 1 day prior (RR = 1.04, 95% CI: 1.01, 1.07). In the 5 hours preceding delivery, there were 3%-7% increases in risk associated with exposure to ozone and particulate matter less than 2.5 µm in aerodynamic diameter and inverse associations with exposure to carbon monoxide and nitrogen oxides. Acute and long-term air pollutant exposures merit further study in relation to PROM. PMID:27188941

  15. Prenatal Air Pollution Exposure and Newborn Blood Pressure

    PubMed Central

    Rifas-Shiman, Sheryl L.; Melly, Steven J.; Kloog, Itai; Luttmann-Gibson, Heike; Zanobetti, Antonella; Coull, Brent A.; Schwartz, Joel D.; Mittleman, Murray A.; Oken, Emily; Gillman, Matthew W.; Koutrakis, Petros; Gold, Diane R.

    2015-01-01

    Background Air pollution exposure has been associated with increased blood pressure in adults. Objective: We examined associations of antenatal exposure to ambient air pollution with newborn systolic blood pressure (SBP). Methods: We studied 1,131 mother–infant pairs in a Boston, Massachusetts, area pre-birth cohort. We calculated average exposures by trimester and during the 2 to 90 days before birth for temporally resolved fine particulate matter (≤ 2.5 μm; PM2.5), black carbon (BC), nitrogen oxides, nitrogen dioxide, ozone (O3), and carbon monoxide measured at stationary monitoring sites, and for spatiotemporally resolved estimates of PM2.5 and BC at the residence level. We measured SBP at a mean age of 30 ± 18 hr with an automated device. We used mixed-effects models to examine associations between air pollutant exposures and SBP, taking into account measurement circumstances; child’s birth weight; mother’s age, race/ethnicity, socioeconomic position, and third-trimester BP; and time trend. Estimates represent differences in SBP associated with an interquartile range (IQR) increase in each pollutant. Results: Higher mean PM2.5 and BC exposures during the third trimester were associated with higher SBP (e.g., 1.0 mmHg; 95% CI: 0.1, 1.8 for a 0.32-μg/m3 increase in mean 90-day residential BC). In contrast, O3 was negatively associated with SBP (e.g., –2.3 mmHg; 95% CI: –4.4, –0.2 for a 13.5-ppb increase during the 90 days before birth). Conclusions: Exposures to PM2.5 and BC in late pregnancy were positively associated with newborn SBP, whereas O3 was negatively associated with SBP. Longitudinal follow-up will enable us to assess the implications of these findings for health during later childhood and adulthood. Citation: van Rossem L, Rifas-Shiman SL, Melly SJ, Kloog I, Luttmann-Gibson H, Zanobetti A, Coull BA, Schwartz JD, Mittleman MA, Oken E, Gillman MW, Koutrakis P, Gold DR. 2015. Prenatal air pollution exposure and newborn blood pressure

  16. A PILOT STUDY OF CHILDREN'S TOTAL EXPOSURE TO PERSISTENT PESTICIDES AND OTHER PERSISTENT ORGANIC POLLUTANTS (CTEPP)

    EPA Science Inventory

    The Pilot Study of Children's Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants (CTEPP) investigated the aggregate exposures of 257 preschool children and their primary adult caregivers to pollutants commonly detected in their everyday environments. ...

  17. Simultaneous Exposure to Multiple Air Pollutants Influences Alveolar Epithelial Cell Ion Transport

    EPA Science Inventory

    Purpose. Air pollution sources generally release multiple pollutants simultaneously and yet, research has historically focused on the source-to-health linkages of individual air pollutants. We recently showed that exposure of alveolar epithelial cells to a combination of particul...

  18. Improving estimates of air pollution exposure through ubiquitous sensing technologies.

    PubMed

    de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael

    2013-05-01

    Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power, or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free-living population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. We found that information from CalFit could substantially alter exposure estimates. For instance, on average travel activities accounted for 6% of people's time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of enhancing epidemiologic exposure data at low cost.

  19. Commuter exposure to aerosol pollution on public transport in Singapore

    NASA Astrophysics Data System (ADS)

    Tan, S.; Velasco, E.; Roth, M.; Norford, L.

    2013-12-01

    Personal exposure to aerosol pollutants in the transport microenvironment of Singapore has not been well documented. Studies from many cities suggest that brief periods of exposure to high concentrations of airborne pollutants may have significant health impacts. Thus, a large proportion of aerosol exposure may be experienced during daily commuting trips due to the proximity to traffic. A better understanding of the variability across transport modes is therefore needed to design transport policies that minimize commuters' exposure. In light of this, personal exposure measurements of PM10 and PM2.5, particle number (PN), black carbon (BC), carbon monoxide (CO), particle-bound polycyclic aromatic hydrocarbons (pPAH), and active surface area (SA) were conducted on a selected route in downtown Singapore. Portable and real-time monitoring instruments were carried onto three different modes of public transport (bus, taxi, subway) and by foot. Simultaneous measurements were taken at a nearby park to capture the background concentrations. Large variability was observed amongst the various transport modes investigated. For example, the particle number concentration was on average 1.5, 1.6, 0.8, and 2.2 times higher inside buses, taxis, subway and by foot, respectively, than at the background site. Based on the results, it is possible to come up with a ranking of the 'cleanest' transport mode for Singapore.

  20. Socioeconomic Disparities and Air Pollution Exposure: a Global Review.

    PubMed

    Hajat, Anjum; Hsia, Charlene; O'Neill, Marie S

    2015-12-01

    The existing reviews and meta-analyses addressing unequal exposure of environmental hazards on certain populations have focused on several environmental pollutants or on the siting of hazardous facilities. This review updates and contributes to the environmental inequality literature by focusing on ambient criteria air pollutants (including NOx), by evaluating studies related to inequality by socioeconomic status (as opposed to race/ethnicity) and by providing a more global perspective. Overall, most North American studies have shown that areas where low-socioeconomic-status (SES) communities dwell experience higher concentrations of criteria air pollutants, while European research has been mixed. Research from Asia, Africa, and other parts of the world has shown a general trend similar to that of North America, but research in these parts of the world is limited.

  1. Method and Apparatus for Non-Destructive Evaluation of Materials

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil J. (Inventor); Washabaugh, Andrew P. (Inventor); Lyons, Robert (Inventor); Thomas, Zachary (Inventor); Jablonski, David A. (Inventor); Martin, Christopher (Inventor)

    2015-01-01

    Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.

  2. Multi-pollutant exposures in an asthmatic cohort

    NASA Astrophysics Data System (ADS)

    Williams, Ron; Rappold, Ana G.; Case, Martin; Schmitt, Mike; Stone, Susan; Jones, Paul; Thornburg, Jonathan; Devlin, Robert B.

    2012-12-01

    An investigation of personal fine and coarse particulate matter (PM2.5, PM10-2.5), nitrogen dioxide (NO2), and ozone (O3) exposures was conducted with an adult asthmatic cohort as part of the U.S. Environmental Protection Agency's Moderate and Severe Asthmatics and their Environment Study (MASAES). The overall goal of the MASAES was to determine the association of particulate matter on the degree of resulting lung inflammation, with those having severe asthma hypothesized to be more highly susceptible to such outcomes. The primary exposure objective was to determine the spatial (personal versus ambient) and temporal relationships associated with the aforementioned air pollutants and establish the precision of a new dual PM2.5, PM10-2.5 monitor (CPEM) for personal exposure monitoring. A total of 16 non-smoking adults of various asthma severities were monitored over the course of a 14 month period during 2008-2009. Participants were monitored for 24 continuous hours each monitoring day with a maximum of five events per participant. Median personal PM2.5 and PM10-2.5 exposures were 16.5 and 10.1 μg m-3, respectively. Daily ambient mass concentrations accounted for less than 1% of the observed variability in personal PM2.5 or PM10-2.5 exposures. Duplicate personal measures yielded R2 values of 0.92 PM2.5 and 0.77 PM10-2.5, respectively. Maximum daily personal exposures of 17.0 ppb NO2 and 21.7 ppb O3 occurred with respective mean exposures of 5.8 and 3.4 ppb. Ambient NO2 and O3 measures were observed to be poorly associated with personal exposures (R2 < 0.08) when viewed independent of the participant. The poor correlation between personal and ambient concentrations of PM as well as the various gaseous copollutants indicates the complexity of the multi-pollutant environment and the impact of non-ambient sources on these pollutants relative to total personal exposures.

  3. Air pollution exposure: An activity pattern approach for active transportation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew D.; Yiannakoulias, Nikolaos; Kanaroglou, Pavlos S.

    2016-09-01

    In this paper, we demonstrate the calculation of personal air pollution exposure during trips made by active transportation using activity patterns without personal monitors. We calculate exposure as the inhaled dose of particulate matter 2.5 μg or smaller. Two modes of active transportation are compared, and they include cycling and walking. Ambient conditions are calculated by combining mobile and stationary monitoring data in an artificial neural network space-time model. The model uses a land use regression framework and has a prediction accuracy of R2 = 0.78. Exposure is calculated at 10 m or shorter intervals during the trips using inhalation rates associated with both modes. The trips are children's routes between home and school. The average dose during morning cycling trips was 2.17 μg, during morning walking trips was 3.19 μg, during afternoon cycling trips was 2.19 μg and during afternoon walking trips was 3.23 μg. The cycling trip dose was significantly lower than the walking trip dose. The air pollution exposure during walking or cycling trips could not be strongly predicted by either the school or household ambient conditions, either individually or in combination. Multiple linear regression models regressing both the household and school ambient conditions against the dose were only able to account for, at most, six percent of the variance in the exposure. This paper demonstrates that incorporating activity patterns when calculating exposure can improve the estimate of exposure compared to its calculation from ambient conditions.

  4. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    PubMed

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228

  5. Non-destructive lichen biomass estimation in northwestern Alaska: a comparison of methods.

    PubMed

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa "community" samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m-2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska.

  6. Non-Destructive Lichen Biomass Estimation in Northwestern Alaska: A Comparison of Methods

    PubMed Central

    Rosso, Abbey; Neitlich, Peter; Smith, Robert J.

    2014-01-01

    Terrestrial lichen biomass is an important indicator of forage availability for caribou in northern regions, and can indicate vegetation shifts due to climate change, air pollution or changes in vascular plant community structure. Techniques for estimating lichen biomass have traditionally required destructive harvesting that is painstaking and impractical, so we developed models to estimate biomass from relatively simple cover and height measurements. We measured cover and height of forage lichens (including single-taxon and multi-taxa “community” samples, n = 144) at 73 sites on the Seward Peninsula of northwestern Alaska, and harvested lichen biomass from the same plots. We assessed biomass-to-volume relationships using zero-intercept regressions, and compared differences among two non-destructive cover estimation methods (ocular vs. point count), among four landcover types in two ecoregions, and among single-taxon vs. multi-taxa samples. Additionally, we explored the feasibility of using lichen height (instead of volume) as a predictor of stand-level biomass. Although lichen taxa exhibited unique biomass and bulk density responses that varied significantly by growth form, we found that single-taxon sampling consistently under-estimated true biomass and was constrained by the need for taxonomic experts. We also found that the point count method provided little to no improvement over ocular methods, despite increased effort. Estimated biomass of lichen-dominated communities (mean lichen cover: 84.9±1.4%) using multi-taxa, ocular methods differed only nominally among landcover types within ecoregions (range: 822 to 1418 g m−2). Height alone was a poor predictor of lichen biomass and should always be weighted by cover abundance. We conclude that the multi-taxa (whole-community) approach, when paired with ocular estimates, is the most reasonable and practical method for estimating lichen biomass at landscape scales in northwest Alaska. PMID:25079228

  7. Ecological and spatial factors drive intra- and interspecific variation in exposure of subarctic predatory bird nestlings to persistent organic pollutants.

    PubMed

    Eulaers, Igor; Jaspers, Veerle L B; Bustnes, Jan O; Covaci, Adrian; Johnsen, Trond V; Halley, Duncan J; Moum, Truls; Ims, Rolf A; Hanssen, Sveinn A; Erikstad, Kjell E; Herzke, Dorte; Sonne, Christian; Ballesteros, Manuel; Pinxten, Rianne; Eens, Marcel

    2013-07-01

    contamination). In conclusion, the combined analysis of POPs and stable isotopes in body feathers from fully-grown nestlings has identified ecological and spatial factors that may drive POP exposure over the larger part of the nestling stage. This methodological approach further promotes the promising use of nestling predatory bird body feathers as a non-destructive sampling strategy to integrate various toxicological and ecological proxies. PMID:23632440

  8. Improving estimates of air pollution exposure through ubiquitous sensing technologies

    PubMed Central

    de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael

    2013-01-01

    Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free living-population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. For instance, we found on average travel activities accounted for 6% of people’s time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of collecting epidemiologic exposure data at low cost. PMID:23416743

  9. Ambient Air Pollution Exposures and Risk of Parkinson Disease

    PubMed Central

    Liu, Rui; Young, Michael T.; Chen, Jiu-Chiuan; Kaufman, Joel D.; Chen, Honglei

    2016-01-01

    Background: Few epidemiologic studies have evaluated the effects of air pollution on the risk of Parkinson disease (PD). Objective: We investigated the associations of long-term residential concentrations of ambient particulate matter (PM) < 10 μm in diameter (PM10) and < 2.5 μm in diameter (PM2.5) and nitrogen dioxide (NO2) in relation to PD risk. Methods: Our nested case–control analysis included 1,556 self-reported physician-diagnosed PD cases identified between 1995 and 2006 and 3,313 controls frequency-matched on age, sex, and race. We geocoded home addresses reported in 1995–1996 and estimated the average ambient concentrations of PM10, PM2.5, and NO2 using a national fine-scale geostatistical model incorporating roadway information and other geographic covariates. Air pollutant exposures were analyzed as both quintiles and continuous variables, adjusting for matching variables and potential confounders. Results: We observed no statistically significant overall association between PM or NO2 exposures and PD risk. However, in preplanned subgroup analyses, a higher risk of PD was associated with higher exposure to PM10 (ORQ5 vs. Q1 = 1.65; 95% CI: 1.11, 2.45; p-trend = 0.02) among women, and with higher exposure to PM2.5 (ORQ5 vs. Q1 = 1.29; 95% CI: 0.94, 1.76; p-trend = 0.04) among never smokers. In post hoc analyses among female never smokers, both PM2.5 (ORQ5 vs. Q1 = 1.79; 95% CI: 1.01, 3.17; p-trend = 0.05) and PM10 (ORQ5 vs. Q1 = 2.34; 95% CI: 1.29, 4.26; p-trend = 0.01) showed positive associations with PD risk. Analyses based on continuous exposure variables generally showed similar but nonsignificant associations. Conclusions: Overall, we found limited evidence for an association between exposures to ambient PM10, PM2.5, or NO2 and PD risk. The suggestive evidence that exposures to PM2.5 and PM10 may increase PD risk among female never smokers warrants further investigation. Citation: Liu R, Young MT, Chen JC, Kaufman JD, Chen H. 2016. Ambient

  10. Maternal Exposure to Air Pollution and Birth Outcomes

    PubMed Central

    Malmqvist, Ebba; Rignell-Hydbom, Anna; Tinnerberg, Håkan; Björk, Jonas; Stroh, Emilie; Jakobsson, Kristina; Rittner, Ralf; Rylander, Lars

    2011-01-01

    Background The knowledge about air pollution effects on birth weight, prematurity, and small for gestational age (SGA) in low-exposure areas is insufficient. Objectives The aim of this birth cohort study was to investigate whether low-level exposure to air pollution was associated with prematurity and fetal growth and whether there are sex-specific effects. Method We combined high-quality registry information on 81,110 births with individually modeled exposure data at residence for nitrogen oxides (NOx) and proximity to roads with differing traffic density. The data were analyzed by logistic and linear regression with and without potential confounders. Results We observed an increased risk for babies being SGA when we compared highest and lowest NOx quartiles, adjusting for maternal age, smoking, sex, and year of birth. After additional adjustment for maternal country of origin and parity (which were highly intercorrelated), the increase was no longer statistically significant. However, in subgroup analyses when we compared highest and lowest NOx quartiles we still observed an increased risk for SGA for girls [odds ratio (OR) = 1.12; 95% confidence interval (CI), 1.01–1.24); we also observed increased risk among mothers who had not changed residency during pregnancy (OR = 1.09; 95% CI, 1.01–1.18). The confounders with the greatest impact on SGA were parity and country of origin. Concerning prematurity, the prevalence was lower in the three higher NOx exposure quartiles compared with the lowest category. Conclusion For future studies on air pollution effects on birth outcomes, careful control of confounding is crucial. PMID:21212043

  11. Non-Destructive Testing A Developing Tool in Science and Engineering

    SciTech Connect

    Lin, Lianshan

    2013-01-01

    Non-destructive testing (NDT), sometimes also known as non-destructive inspection (NDI) or non-destructive examination (NDE), has been applied to solve a wide range of science and industry problems including construction, aerospace, nuclear engineering, manufacturing, space exploration, art objects, forensic studies, biological and medical fields, etc. Without any permanent changing or alteration of testing objects, NDT methods provide great advantages such as increased testing reliability, efficiency, and safety, as well as reduced time and cost. Since the second half of the 20th century, NDT technology has seen significant growth. Depending on the physical properties being measured, NDT techniques can be classified into several branches. This article will provide a brief overview of commonly used NDT methods and their up-to-date progresses including optical examination, radiography, acoustic emission, ultrasonic testing and eddy current testing. For extended reviews on many presently used NDT methods, please refer to articles by Mullins [1, 2].

  12. Evaluation of noise pollution level based upon community exposure and response data

    NASA Technical Reports Server (NTRS)

    Edmiston, R. D.

    1972-01-01

    The results and procedures are reported from an evaluation of noise pollution level as a predictor of annoyance, based on aircraft noise exposure and community response data. The measures of noise exposure presented include composite noise rating, noise exposure forecast, noise and number index. A proposed measure as a universal noise exposure measure for noise pollution level (L sub NP) is discussed.

  13. Exposure to automotive pollution increases plasma susceptibility to oxidation.

    PubMed

    Sharman, James E; Coombes, Jeff S; Geraghty, Dominic P; Fraser, David I

    2002-01-01

    Low-density lipoprotein oxidation is implicated in the development of atherosclerosis. Plasma susceptibility to oxidation may be used as a marker of low-density lipoprotein oxidation and thus predict atherosclerotic risk. In this study the authors investigated the relationship between plasma susceptibility to oxidation and exposure to automotive pollution in a group of automobile mechanics (n = 16) exposed to high levels of automotive pollution, vs. matched controls (n = 13). The authors induced plasma oxidation by a free radical initiator and they determined susceptibility to oxidation by (1) change in absorbance at 234 nm, (2) lag time to conjugated diene formation, and (3) linear slope of the oxidation curve. Mechanics had significantly higher values (mean +/- standard error) for change in absorbance (1.60 +/- 0.05 vs. 1.36 +/- 0.05; p < .002), and slope (1.6 x 10(-3) +/- 0.1 x 10(-3) vs. 1.3 x 10(-3) +/- 0.1 x 10(-3); p < .001), compared with controls. These results indicate that regular exposure to automotive pollutants increases plasma susceptibility to oxidation and may, in the long-term, increase the risk of developing atherosclerosis.

  14. Assessment of exposure to mixture pollutants in Mexican indigenous children.

    PubMed

    Flores-Ramírez, R; Pérez-Vázquez, F J; Cilia-López, V G; Zuki-Orozco, B A; Carrizales, L; Batres-Esquivel, L E; Palacios-Ramírez, A; Díaz-Barriga, F

    2016-05-01

    The aim of the present work was to complete an exposure assessment in three Mexican indigenous communities using the community-based health risk assessment, which is the first step in the CHILD framework. We used 1-hydroxypyrene (1-OHP) as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) and trans, trans-muconic acid (t,t-MA) as an exposure biomarker to benzene, persistent organic pollutants (POPs), lead, manganese, arsenic, and fluoride. Anthropometric measurements were also taken. In these communities, high percentages of children with chronic malnutrition were found (28 to 49 %) based on their weight and age. All communities showed a high percentage of children with detectable levels of four or more compounds (70 to 82 %). Additionally, our results showed that in indigenous communities, children are exposed to elevated levels of certain environmental pollutants, including manganese with 17.6, 16.8, and 7.3 μg/L from SMP, TOC, and CUA, respectively. Lead and HCB levels were similar in the indigenous communities (2.5, 3.1, and 4.2 μg/dL and 2.5, 3.1, and 3.7 ng/mL, respectively). 1-OHP and t,t-MA levels were higher in TOC (0.8 μmol/mol of creatinine, 476 μg/g of creatinine, respectively) when compared with SMP (0.1 μmol/mol of creatinine, 215.5 μg/g of creatinine, respectively) and CUA (0.1 μmol/mol of creatinine, 185.2 μg/g of creatinine, respectively). DDE levels were 30.7, 26.9, and 9.6 ng/mL in CUA, SMP, and TOC, respectively. The strength of this study is that it assesses exposure to pollutants with indications for the resultant risk before an intervention is made by the CHILD program to manage this risk in the indigenous communities. Considering the large number of people, especially children, exposed to multiple pollutants, it is important to design effective intervention programs that reduce exposure and the resultant risk in the numerous indigenous communities in Mexico.

  15. Edward's sword? - A non-destructive study of a medieval king's sword

    SciTech Connect

    Segebade, Chr.

    2013-04-19

    Non-destructive and instrumental methods including photon activation analysis were applied in an examination of an ancient sword. It was tried to find indication of forgery or, if authentic, any later processing and alteration. Metal components of the hilt and the blade were analysed by instrumental photon activation. Non-destructive metallurgical studies (hardness measurements, microscopic microstructure analysis) are briefly described, too. The results of these investigations did not yield indication of non-authenticity. This stood in agreement with the results of stylistic and scientific studies by weapon experts.

  16. Non destructive evaluation of adhesively bonded carbon fiber reinforced composite lap joints with varied bond quality

    NASA Astrophysics Data System (ADS)

    Vijayakumar, R. L.; Bhat, M. R.; Murthy, C. R. L.

    2012-05-01

    Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.

  17. Exposures and health outcomes from outdoor air pollutants in China.

    PubMed

    Chen, Bingheng; Hong, Chuanjie; Kan, Haidong

    2004-05-20

    China's economy has developed rapidly in the recent two decades. Economic development is usually linked with increase in energy consumption and consumption emissions, which in turn leads to worsening of air quality. Due to the adoption of various control measures, the ambient air quality in a number of large cities in China has actually improved. The ambient air TSP and SO(2) levels in China have been decreasing in the last decade. However, ambient air NO(x) level has been increasing due to the increased number of motor vehicles. Coal has been and is still the major source of energy in China. Ambient air pollution in large cities has changed from the conventional coal combustion type to the mixed coal combustion/motor vehicle emission type. A series of epidemiological studies on air pollution and health effects ranging from mortality, morbidity to functional changes have been conducted in China. The results showed that ambient air pollution had acute and chronic effects on mortality, morbidity, hospital admissions, clinical symptoms, lung function changes, etc. The exposure-response relationship between air pollutants and daily mortality, morbidity, hospital admissions, and lung function has been established accordingly.

  18. A review and evaluation of intraurban air pollution exposure models.

    PubMed

    Jerrett, Michael; Arain, Altaf; Kanaroglou, Pavlos; Beckerman, Bernardo; Potoglou, Dimitri; Sahsuvaroglu, Talar; Morrison, Jason; Giovis, Chris

    2005-03-01

    The development of models to assess air pollution exposures within cities for assignment to subjects in health studies has been identified as a priority area for future research. This paper reviews models for assessing intraurban exposure under six classes, including: (i) proximity-based assessments, (ii) statistical interpolation, (iii) land use regression models, (iv) line dispersion models, (v) integrated emission-meteorological models, and (vi) hybrid models combining personal or household exposure monitoring with one of the preceding methods. We enrich this review of the modelling procedures and results with applied examples from Hamilton, Canada. In addition, we qualitatively evaluate the models based on key criteria important to health effects assessment research. Hybrid models appear well suited to overcoming the problem of achieving population representative samples while understanding the role of exposure variation at the individual level. Remote sensing and activity-space analysis will complement refinements in pre-existing methods, and with expected advances, the field of exposure assessment may help to reduce scientific uncertainties that now impede policy intervention aimed at protecting public health.

  19. Satellite-aided evaluation of population exposure to air pollution

    NASA Technical Reports Server (NTRS)

    Todd, W. J.; George, A. J., Jr.; Bryant, N. A.

    1979-01-01

    The evaluation of population exposure to air pollution through the computer processing of Landsat digital land use data, along with total suspended particulate estimates and population data by census tracts, is demonstrated. Digital image processing was employed to analyze simultaneously data from Landsat MSS bands 4 through 7 in order to extract land use and land cover information. The three data sets were spatially registered in a digital format, compatible with integrated computer processing, and cross-tabulated. A map illustrating relative air quality by 2-sq km cells for the residential population in the Portland, Oregon area is obtained.

  20. Human nasal mucosal changes after exposure to urban pollution.

    PubMed Central

    Calderon-Garcidueñas, L; Rodriguez-Alcaraz, A; Garcia, R; Sanchez, G; Barragan, G; Camacho, R; Ramirez, L

    1994-01-01

    Millions of people worldwide are living in areas where ozone (O3) concentrations exceed health standards (an hourly average of 235 micrograms/m3/0.12 ppm, not to be exceeded more than once per year). Ozone induces acute nasal inflammatory responses and significant epithelial lesions in experimental animals and humans. To determine the nasal effects of a 15-day exposure to an urban polluted atmosphere with O3 as the main pollutant, we studied a population of healthy, young males newly arrived to southwest metropolitan Mexico City (SWMMC). The study included 49 non-smoking residents in an unpolluted port, Veracruz City; 14 subjects stayed in the port and served as controls, while 35 subjects traveled to SWMMC and had serial nasal lavages at different times after arriving in SWMMC. Subjects had exposures to ambient O3 an average of 10.2 hr/day, with a total cumulative O3 exposure of 10.644 ppm.hr. Nasal inflammatory responses, polymorphonuclear leukocyte PMN-CD11b surface expression, rhinoscopic changes, and respiratory symptoms were evaluated. Exposed subjects had massive nasal epithelial shedding and significant responses in PMN nasal influx (p < 0.00001) and in PMN-CD11b expression (p < 0.05). Cumulative O3 exposure correlated with respiratory symptoms, PMNs (rs = 0.2374, p < 0.01), and CD11b (rs = 0.3094, p < 0.01); 94% of exposed subjects experienced respiratory symptoms, and 97% left the city with an abnormal nasal mucosa by rhinoscopy. Nasal epithelial changes persisted 2 weeks after the exposed subjects returned to their nonpolluted environment. Exposure to an urban polluted atmosphere induces significant and persistent nasal epithelial alterations in healthy subjects.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 2. E Figure 2. F Figure 3. A Figure 3. B Figure 4. A Figure 4. B Figure 5. A Figure 5. B PMID:7713020

  1. Acute air pollution exposure and risk of suicide completion.

    PubMed

    Bakian, Amanda V; Huber, Rebekah S; Coon, Hilary; Gray, Douglas; Wilson, Phillip; McMahon, William M; Renshaw, Perry F

    2015-03-01

    Research into environmental factors associated with suicide has historically focused on meteorological variables. Recently, a heightened risk of suicide related to short-term exposure to airborne particulate matter was reported. Here, we examined the associations between short-term exposure to nitrogen dioxide, particulate matter, and sulfur dioxide and completed suicide in Salt Lake County, Utah (n = 1,546) from 2000 to 2010. We used a time-stratified case-crossover design to estimate adjusted odds ratios for the relationship between suicide and exposure to air pollutants on the day of the suicide and during the days preceding the suicide. We observed maximum heightened odds of suicide associated with interquartile-range increases in nitrogen dioxide during cumulative lag 3 (average of the 3 days preceding suicide; odds ratio (OR) = 1.20, 95% confidence interval (CI): 1.04, 1.39) and fine particulate matter (diameter ≤2.5 μm) on lag day 2 (day 2 before suicide; OR = 1.05, 95% CI: 1.01, 1.10). Following stratification by season, an increased suicide risk was associated with exposure to nitrogen dioxide during the spring/fall transition period (OR = 1.35, 95% CI: 1.09, 1.66) and fine particulate matter in the spring (OR = 1.28, 95% CI: 1.01, 1.61) during cumulative lag 3. Findings of positive associations between air pollution and suicide appear to be consistent across study locations with vastly different meteorological, geographical, and cultural characteristics.

  2. Non-destructive assessment of human ribs mechanical properties using quantitative ultrasound.

    PubMed

    Mitton, David; Minonzio, Jean-Gabriel; Talmant, Maryline; Ellouz, Rafaa; Rongieras, Frédéric; Laugier, Pascal; Bruyère-Garnier, Karine

    2014-04-11

    Advanced finite element models of the thorax have been developed to study, for example, the effects of car crashes. While there is a need for material properties to parameterize such models, specific properties are largely missing. Non-destructive techniques applicable in vivo would, therefore, be of interest to support further development of thorax models. The only non-destructive technique available today to derive rib bone properties would be based on quantitative computed tomography that measures bone mineral density. However, this approach is limited by the radiation dose. Bidirectional ultrasound axial transmission was developed on long bones ex vivo and used to assess in vivo health status of the radius. However, it is currently unknown if the ribs are good candidates for such a measurement. Therefore, the goal of this study is to evaluate the relationship between ex vivo ultrasonic measurements (axial transmission) and the mechanical properties of human ribs to determine if the mechanical properties of the ribs can be quantified non-destructively. The results show statistically significant relationships between the ultrasonic measurements and mechanical properties of the ribs. These results are promising with respect to a non-destructive and non-ionizing assessment of rib mechanical properties. This ex vivo study is a first step toward in vivo studies to derive subject-specific rib properties.

  3. Research on non-destructive testing method of silkworm cocoons based on image processing technology

    NASA Astrophysics Data System (ADS)

    Gan, Yong; Kong, Qing-hua; Wei, Li-fu

    2008-03-01

    The major studied in this dissertation is the non-destructive testing method of silkworm cocoon's quality, based on the digital image processing and photoelectricity technology. Through the images collection and the data analysis, procession and calculation of the tested silkworm cocoons with the non-destructive testing technology, internet applications automatically reckon all items of the classification indexes. Finally we can conclude the classification result and the purchase price of the silkworm cocoons. According to the domestic classification standard of the silkworm cocoons, the author investigates various testing methods of silkworm cocoons which are used or have been explored at present, and devices a non-destructive testing scheme of the silkworm cocoons based on the digital image processing and photoelectricity technology. They are dissertated about the project design of the experiment. The precisions of all the implements are demonstrated. I establish Manifold mathematic models, compare them with each other and analyze the precision with technology of databank to get the best mathematic model to figure out the weight of the dried silkworm cocoon shells. The classification methods of all the complementary items are designed well and truly. The testing method has less error and reaches an advanced level of the present domestic non-destructive testing technology of the silkworm cocoons.

  4. The non-destructive identification of early Chinese porcelain by PIXE

    NASA Astrophysics Data System (ADS)

    Cheng, H. S.; Zhang, Z. Q.; Zhang, B.; Yang, F. J.

    2004-06-01

    PIXE is used for the non-destructive differentiation of early precious Chinese blue and white porcelain made in Yuan (AD 1206-1368), Ming (AD 1368-1644) Dynasty in Jingdezhen from imitations. Also, ancient celadon made in Song Dynasty (AD 960-1279) is identified by measuring the trace elements contained in the glazes.

  5. Time Domain Terahertz Non-Destructive Evaluation of Aeroturbine Blade Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    White, Jeffrey; Fichter, G.; Chernovsky, A.; Whitaker, John F.; Das, D.; Pollock, Tresa M.; Zimdars, David

    2009-03-01

    Time domain terahertz (TD-THz) non destructive evaluation (NDE) imaging is used to two-dimensionally map the thickness of yttria stabilized zirconia (YSZ) thermal barrier coatings (TBC) on aircraft engine turbine blades. Indications of thermal degradation can be seen. The method is non-contact, rapid, and requires no special preparation of the blade.

  6. Journey-time exposure to particulate air pollution

    NASA Astrophysics Data System (ADS)

    Gulliver, John; Briggs, David J.

    Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM 10, PM 2.5, and PM 1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m -3 for coarse (TSP-PM 10), intermediate (PM 10-PM 2.5), fine (PM 2.5-PM 1), and very fine particles (PM 1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles ( r=0.10, p=0.58), moderate for the intermediate particles ( r=0.49, p<0.01) but strong for fine ( r=0.89, p<0.01) and very fine ( r=0.90, P<0.01) particles. PM 10 exposures while walking were on average 70% higher than a nearby roadside fixed-site monitor whilst in-car exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.

  7. Occupational Exposure to Urban Air Pollution and Allergic Diseases

    PubMed Central

    Vimercati, Luigi; Gatti, Maria Franca; Baldassarre, Antonio; Nettis, Eustachio; Favia, Nicola; Palma, Marco; Martina, Gabriella Lucia Maria; Di Leo, Elisabetta; Musti, Marina

    2015-01-01

    Exposure to air pollution is associated with increased morbidity from cardiovascular diseases, lung cancer, respiratory and allergic diseases. The aim of this study was to investigate allergic diseases in 111 traffic wardens compared to a control group of 101 administrative employees. All participating subjects underwent a physical examination, in which a complete medical history was taken and a dedicated allergological questionnaire administered. Spirometry, Specific IgE dosage (RAST) and skin prick tests (SPT) were done. Diagnostic investigations such as the nasal cytology, a specific nasal provocation test and rhinomanometry were also performed. Statistical analyses were performed using STATA version 11. The percentage of subjects with a diagnosis of allergy was higher in the exposed workers than in the controls. As regards the clinical tests, the positivity was higher for the group of exposed subjects. Among the exposed workers, those who worked on foot or motorcycle had a higher positivity in clinical trials compared to the traffic wardens who used the car. Our study showed a higher percentage of allergic subjects in the group of workers exposed to outdoor pollutants than in the controls. These results suggest that allergological tests should be included in the health surveillance protocols for workers exposed to outdoor pollutants. PMID:26501303

  8. Development and Evaluation of Alternative Metrics of Ambient Air Pollution Exposure for Use in Epidemiologic Studies

    EPA Science Inventory

    Population-based epidemiologic studies of air pollution have traditionally relied upon imperfect surrogates of personal exposures, such as area-wide ambient air pollution levels based on readily available outdoor concentrations from central monitoring sites. This practice may in...

  9. Design and use of an exposure chamber for air pollution studies on microarthropods

    SciTech Connect

    Andre, H.M.

    1982-10-01

    An exposure chamber for studying the effects of air pollution on microarthropods is described. The chamber was tested on a corticolous mite, Humerobates rostrolamellatus Grandjean (Acari: Oribatida). In the absence of pollutants, the overall mortality was about 2.5%.

  10. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    EPA Science Inventory

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect ...

  11. MANAGING EXPOSURE TO INDOOR AIR POLLUTANTS IN RESIDENTIAL AND OFFICE ENVIRONMENTS

    EPA Science Inventory

    The paper discusses the factors to be considered in managing indoor air pollutants in residential and office environments to reduce occupant exposures. Techniques for managing indoor air pollution sources include: source elimination, substitution, modification, and pretreatment a...

  12. ADDRESSING HUMAN EXPOSURES TO AIR POLLUTANTS AROUND BUILDINGS IN URBAN AREAS WITH COMPUTATIONAL FLUID DYNAMICS MODELS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics (CFD) models to address challenges for modeling human exposures to air pollutants around urban building microenvironments. There are challenges for more detailed understanding of air pollutant sour...

  13. Satellite-aided evaluation of population exposure to air pollution

    USGS Publications Warehouse

    Todd, William J.; George, Anthony J.; Bryant, Nevin A.

    1979-01-01

    The Clean Air Act Amendments of 1977 set schedules for states to implement regional, spatial assessments of air quality impacts. Accordingly, the U.S. Environmental Protection Agency recently published guidelines for quantifying population exposure to adverse air quality impact by using air quality and population data by census tracts. Our research complements the EPA guidelines in that it demonstrates the ability to determine population exposure to air pollution through computer processing that utilizes Landsat satellite-derived land use information. Three variables-a 1985 estimate of total suspended particulates for 2-km2 grid cells, Landsat-derived residential land cover data for 0.45-ha cells, and population totals for census tracts-were spatially registered and cross-tabulated to produce tabular and map products illustrating relative air quality exposure for residential population by 2-km2 cells. It would cost $20,000 to replicate our analysis for an area similar in size to the 4000-km2 Portland area. Once completed, the spatially fine, computer-compatible air quality and population data are amenable to the timely and efficient generation of population-at-risk tabular and map information on a continuous or periodic basis.

  14. Opportunities for using spatial property assessment data in air pollution exposure assessments

    PubMed Central

    Setton, Eleanor M; Hystad, Perry W; Keller, C Peter

    2005-01-01

    Background Many epidemiological studies examining the relationships between adverse health outcomes and exposure to air pollutants use ambient air pollution measurements as a proxy for personal exposure levels. When pollution levels vary at neighbourhood levels, using ambient pollution data from sparsely located fixed monitors may inadequately capture the spatial variation in ambient pollution. A major constraint to moving toward exposure assessments and epidemiological studies of air pollution at a neighbourhood level is the lack of readily available data at appropriate spatial resolutions. Spatial property assessment data are widely available in North America and may provide an opportunity for developing neighbourhood level air pollution exposure assessments. Results This paper provides a detailed description of spatial property assessment data available in the Pacific Northwest of Canada and the United States, and provides examples of potential applications of spatial property assessment data for improving air pollution exposure assessment at the neighbourhood scale, including: (1) creating variables for use in land use regression modelling of neighbourhood levels of ambient air pollution; (2) enhancing wood smoke exposure estimates by mapping fireplace locations; and (3) using data available on individual building characteristics to produce a regional air pollution infiltration model. Conclusion Spatial property assessment data are an extremely detailed data source at a fine spatial resolution, and therefore a source of information that could improve the quality and spatial resolution of current air pollution exposure assessments. PMID:16262893

  15. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related a...

  16. Windsor, Ontario Exposure Assessment Study: Design and Methods Validation of Personal, Indoor and Outdoor Air Pollution Monitoring

    EPA Science Inventory

    The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures...

  17. Microwaving Blood as a Non-Destructive Technique for Haemoglobin Measurements on Microlitre Samples

    PubMed Central

    Basey-Fisher, Toby H.; Guerra, Nadia; Triulzi, Chiara; Gregory, Andrew; Hanham, Stephen M.; Stevens, Molly M.; Maier, Stefan A.; Klein, Norbert

    2016-01-01

    The non-destructive ex vivo determination of haemoglobin (Hgb) concentration offers the capability to conduct multiple red blood cell haematological measurements on a single sample, an advantage that current optical techniques are unable to offer. Here, a microwave method and device for the accurate and non-destructive determination of Hgb concentration in microlitre blood samples are described. Using broadband microwave spectroscopy, a relationship is established between the dielectric properties of murine blood and Hgb concentration that is utilized to create a technique for the determination of Hgb concentration. Subsequently, a microwave dielectric resonator-microfluidic system is implemented in the analysis of 52 murine samples with microlitre volumes and Hgb concentrations ranging from 0 to 17 g dL−1. Using the characterized relationship, independent and minimally invasive Hgb measurements are made on nine healthy mice as well as seven with mutations in the Adenomatous polyposis coli (APC) gene that leads to colorectal cancer and consequently anaemia. PMID:24002989

  18. Non-destructive missile seeker flight testing: HWIL in the sky

    NASA Astrophysics Data System (ADS)

    Clements, Jim; Robinson, Joe; Robinson, Richard M.

    2010-04-01

    Surface to air missile development programs typically utilize hardware-in-the-loop (HWIL) simulations when available to provide a non-destructive high volume test environment for what are typically very expensive guidance sections. The HWIL, while invaluable, hasn't been able to obviate the need for missile flight tests. Because of the great expense of these missiles the designers are only allowed to perform a fraction of the desired tests. Missile Airframe Simulation Testbed (MAST) is a program conceived by US Army Aviation and Missile Research Development and Engineering Center (AMRDEC) that blends the non-destructive nature of HWIL with the confidence gained from flight tests to expand the knowledge gained while reducing the development schedule of new missile programs.

  19. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam

    NASA Astrophysics Data System (ADS)

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A.; Vick, Andrew J.

    2016-09-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices.

  20. Photoacoustic Spectroscopy as a Non-destructive Tool for Quantification of Pesticide Residue in Apple Cuticle

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Wang, Yafei; Gao, Chunming; Huan, Huiting; Zhao, Binxing; Yan, Laijun

    2015-06-01

    Photoacoustic spectroscopy (PAS), the non-destructive method to detect residue of dimethyl-dichloro-vinyl-phosphate (DDVP) pesticide in a cuticle of apple, is described. After constructing the PA experimental setup and identifying three characteristic peaks of DDVP in the near ultraviolet region, the PA spectra of an apple cuticle contaminated with DDVP were collected. The artificial neural network method was then applied to analyze data quantitatively. The results show a correlation coefficient exceeding 0.99 and a detection limit of 0.2 ppm, which is within the national food safety standard for maximum residue limits for pesticides in food (GB 2763-2012). This fact and the non-destructive character of PAS make the approach promising for detection of pesticide residue in fruits.

  1. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam.

    PubMed

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A; Vick, Andrew J

    2016-01-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices. PMID:27586090

  2. Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam

    PubMed Central

    Hirohata, Atsufumi; Yamamoto, Yasuaki; Murphy, Benedict A.; Vick, Andrew J.

    2016-01-01

    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing for an increase in the number of transistors in a processor. However, uniform electron transport has not yet been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes that can potentially introduce additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices. PMID:27586090

  3. The application of non-destructive techniques to the testing of a wind turbine blade

    SciTech Connect

    Sutherland, H.; Beattie, A.; Hansche, B.; Musial, W.; Allread, J.; Johnson, J.; Summers, M.

    1994-06-01

    NonDestructive Testing (NDT), also called NonDestructive Evaluation (NDE), is commonly used to monitor structures before, during, and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electron shearography to measure the differences in surface displacements between two load states. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Furthermore, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

  4. Fusion of visual and infrared thermography images for advanced assessment in non-destructive testing.

    PubMed

    Eisler, K; Homma, C; Goldammer, M; Rothenfusser, M; Arnold, W

    2013-06-01

    For better evaluation of infrared measurements in non-destructive testing, especially for objects with complex geometry or small dimensions, it is beneficial to combine with the same viewing angle an image of a camera in the visible range with the image of an infrared camera. In the hybrid camera developed by us, a beam splitter is used which combines the visible and the infrared wavelength regions under the same viewing angle to form a hybrid image. The applications of this new technique range from the localization and the verification of false indications in non-destructive testing applications to the retrieval of 3D surface information with a hybrid picture as texture with defect indications and the filtering of laser markings displayed in the IR image to area and process monitoring. PMID:23822367

  5. COOPERATIVE RESEARCH AND DEVELOPMENT FOR APPLICATION OF CFD TO ESTIMATING HUMAN EXPOSURES TO ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    Under a Cooperative Research and Development Agreement (CRADA), Fluent, Inc. and the US EPA National Exposure Research Laboratory (NERL) propose to improve the ability of environmental scientists to use computer modeling for environmental exposure to air pollutants in human exp...

  6. Development and evaluation of alternative approaches for exposure assessment of multiple air pollutants in Atlanta, Georgia

    EPA Science Inventory

    Measurements from central site (CS) monitors are often used as estimates of exposure in air pollution epidemiological studies. As these measurements are typically limited in their spatiotemporal resolution, true exposure variability within a population is often obscured, leading ...

  7. Field monitoring design considerations for assessing indoor exposures to combustion pollutants

    NASA Astrophysics Data System (ADS)

    Traynor, Gregory W.

    Laboratory and controlled field studies of indoor air quality (IAQ) have characterized pollutant emission rates from combustion sources and have measured other key indoor air pollution parameters such as air exchange rates and indoor reactivity rates for the houses investigated. In addition, several field studies have attempted to measure, with varying degrees of success, pollutant exposures, indoor pollutant concentrations, and other parameters in large populations. To date, there exists no comprehensive strategy for assessing distributions of exposures to combustion pollutants and distributions of factors that affect such exposures in large populations. This paper outlines important parameters that affect combustion-related indoor air pollution concentrations and exposures, delineates weaknesses in our current understanding of exposures and field sampling methodologies, and mentions important considerations in planning appropriate field sampling strategies.

  8. Application of Non-destructive Methods of Stress-strain State at Hazardous Production Facilities

    NASA Astrophysics Data System (ADS)

    Shram, V.; Kravtsova, Ye; Selsky, A.; Bezborodov, Yu; Lysyannikova, N.; Lysyannikov, A.

    2016-06-01

    The paper deals with the sources of accidents in distillation columns, on the basis of which the most dangerous defects are detected. The analysis of the currently existing methods of non-destructive testing of the stress-strain state is performed. It is proposed to apply strain and acoustic emission techniques to continuously monitor dangerous objects, which helps prevent the possibility of accidents, as well as reduce the work.

  9. Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.

    PubMed

    Mulaveesala, Ravibabu; Venkata Ghali, Subbarao

    2011-05-01

    This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.

  10. Rotational magnetic flux sensor with neural network for non-destructive testing

    SciTech Connect

    Enokizono, M.; Todaka, T.; Akita, M. . Faculty of Engineering); Nagata, S. . Faculty of Engineering)

    1993-11-01

    This paper presents a new non-destructive testing (NDT) method which utilizes rotational magnetic flux. In this system, the magnitude and phase value are measured and used to obtain information about defect. These values include the information about the shape or position of an unknown defect. The authors employ the neural network technique for estimation of a defect shape. The experimental results show the validity of the method.

  11. MIRRORCLE-CV The Portable Synchrotron For Precise Non-Destructive Testing And Medical Diagnosis

    SciTech Connect

    Hasegawa, Daisuke; Yamada, Hironari

    2007-03-30

    We are developing the portable synchrotron MIRRORCLE-CV series, which provides a high quality x-ray beam for high precision non-destructive testing (NDT). Computer simulations for the magnetic field design and electron dynamics reveal that the outer diameter of the synchrotron magnet can be as small as 30 cm. This synchrotron size approaches that of a conventional x-ray tube.

  12. Metal Pollutants and Cardiovascular Disease: Mechanisms and Consequences of Exposure

    PubMed Central

    Solenkova, Natalia V.; Newman, Jonathan D.; Berger, Jeffrey S.; Thurston, George; Hochman, Judith S.; Lamas, Gervasio A.

    2014-01-01

    Introduction There is epidemiological evidence that metal contaminants may play a role in the development of atherosclerosis and its complications. Moreover, a recent clinical trial of a metal chelator had a surprisingly positive result in reducing cardiovascular events in a secondary prevention population, strengthening the link between metal exposure and cardiovascular disease (CVD). This is, therefore, an opportune moment to review evidence that exposure to metal pollutants, such as arsenic, lead, cadmium, and mercury, are significant risk factors for CVD. Methods We reviewed the English-speaking medical literature to assess and present the epidemiological evidence that 4 metals having no role in the human body (xenobiotic), mercury, lead, cadmium, and arsenic, have epidemiologic and mechanistic links to atherosclerosis and CVD. Moreover, we briefly review how the results of the Trial to Assess Chelation Therapy strengthen the link between atherosclerosis and xenobiotic metal contamination in humans. Conclusions There is strong evidence that xenobiotic metal contamination is linked to atherosclerotic disease and is a modifiable risk factor. PMID:25458643

  13. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    NASA Astrophysics Data System (ADS)

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-10-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance.

  14. Non-destructive single-pass low-noise detection of ions in a beamline

    SciTech Connect

    Schmidt, Stefan; Murböck, Tobias; Birkl, Gerhard; Andelkovic, Zoran; Vogel, Manuel; Nörtershäuser, Wilfried; Stahl, Stefan

    2015-11-15

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.

  15. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications.

    PubMed

    Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan

    2016-02-26

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  16. Non-destructive single-pass low-noise detection of ions in a beamline

    NASA Astrophysics Data System (ADS)

    Schmidt, Stefan; Murböck, Tobias; Andelkovic, Zoran; Birkl, Gerhard; Nörtershäuser, Wilfried; Stahl, Stefan; Vogel, Manuel

    2015-11-01

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles' beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar13+) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.

  17. Non-destructive single-pass low-noise detection of ions in a beamline.

    PubMed

    Schmidt, Stefan; Murböck, Tobias; Andelkovic, Zoran; Birkl, Gerhard; Nörtershäuser, Wilfried; Stahl, Stefan; Vogel, Manuel

    2015-11-01

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles' beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar(13+)) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections. PMID:26628124

  18. Non-destructively reading out information embedded inside real objects by using far-infrared light

    NASA Astrophysics Data System (ADS)

    Okada, Ayumi; Silapasuphakornwong, Piyarat; Suzuki, Masahiro; Torii, Hideyuki; Takashima, Youichi; Uehira, Kazutake

    2015-09-01

    This paper presents a technique that can non-destructively read out information embedded inside real objects by using far-infrared-light. We propose a technique that can protect the copyrights of digital content for homemade products using digital fabrication technologies such as those used in 3D printers. It embeds information on copyrights inside real objects produced by 3D printers by forming fine structures inside the objects as a watermark that cannot be observed from the outside. Fine structures are formed near the surface inside real objects when they are being fabricated. Information embedded inside real objects needs to be read out non-destructively. We used a technique that could non-destructively read out information from inside real objects by using far-infrared light. We conducted experiments where we structured fine cavities inside objects. The disposition of the fine domain contained valuable information. We used the flat and curved surfaces of the objects to identify them. The results obtained from the experiments demonstrated that the disposition patterns of the fine structures appeared on the surface of objects as a temperature profile when far-infrared light was irradiated on their surface. Embedded information could be read out successfully by analyzing the temperature profile images of the surface of the objects that were captured with thermography and these results demonstrated the feasibility of the technique we propose.

  19. A new non-destructive readout by using photo-recovered surface potential contrast

    PubMed Central

    Wang, Le; Jin, Kui-juan; Gu, Jun-xing; Ma, Chao; He, Xu; Zhang, Jiandi; Wang, Can; Feng, Yu; Wan, Qian; Shi, Jin-an; Gu, Lin; He, Meng; Lu, Hui-bin; Yang, Guo-zhen

    2014-01-01

    Ferroelectric random access memory is still challenging in the feature of combination of room temperature stability, non-destructive readout and high intensity storage. As a non-contact and non-destructive information readout method, surface potential has never been paid enough attention because of the unavoidable decay of the surface potential contrast between oppositely polarized domains. That is mainly due to the recombination of the surface movable charges around the domain walls. Here, by introducing a laser beam into the combination of piezoresponse force microscopy and Kelvin probe force microscopy, we demonstrate that the surface potential contrast of BiFeO3 films can be recovered under light illumination. The recovering mechanism is understood based on the redistribution of the photo-induced charges driven by the internal electric field. Furthermore, we have created a 12-cell memory pattern based on BiFeO3 films to show the feasibility of such photo-assisted non-volatile and non-destructive readout of the ferroelectric memory. PMID:25381929

  20. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    PubMed Central

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  1. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy

    PubMed Central

    McDonald, S. A.; Reischig, P.; Holzner, C.; Lauridsen, E. M.; Withers, P. J.; Merkle, A. P.; Feser, M.

    2015-01-01

    The ability to characterise crystallographic microstructure, non-destructively and in three-dimensions, is a powerful tool for understanding many aspects related to damage and deformation mechanisms in polycrystalline materials. To this end, the technique of X-ray diffraction contrast tomography (DCT) using monochromatic synchrotron and polychromatic laboratory X-ray sources has been shown to be capable of mapping crystal grains and their orientations non-destructively in 3D. Here we describe a novel laboratory-based X-ray DCT modality (LabDCT), enabling the wider accessibility of the DCT technique for routine use and in-depth studies of, for example, temporal changes in crystallographic grain structure non-destructively over time through ‘4D’ in situ time-lapse studies. The capability of the technique is demonstrated by studying a titanium alloy (Ti-β21S) sample. In the current implementation the smallest grains that can be reliably detected are around 40 μm. The individual grain locations and orientations are reconstructed using the LabDCT method and the results are validated against independent measurements from phase contrast tomography and electron backscatter diffraction respectively. Application of the technique promises to provide important insights related to the roles of recrystallization and grain growth on materials properties as well as supporting 3D polycrystalline modelling of materials performance. PMID:26494523

  2. [Study on Non-Destructive Testing of Guqin Interior Structure Based on Computed Tomography].

    PubMed

    Zhao, De-da; Liu, Xing-e; Yang, Shu-min; Yu, Shenz; Tian, Gen-lin; Ma, Jian-feng; Wang, Qing-ping

    2015-12-01

    The wood property and production process affect quality of Guqin. At the same time, Guqin shape with cavity layout relations to the improvement of Guqin technology and inheritance, so it's very important to get the internal cavity characteristics and parameters on the condition of non-destructive the structure of Guqin. The image of interior structure in Guqin was investigated by overall scanning based on non-destructive testing technology of computed tomography, which texture of faceplate, connection method between faceplate and soleplate and interior defects were studied. The three-dimensional reconstruction of Guqin cavity was achieved through Mimics software of surface rendering method and put the two-dimensional CT tomography images convert into three-dimensional, which more complete show interior structural form in Guqin, and finally the parameter of cavity dimensions was obtained. Experimental research shows that there is significant difference in Guqin interior structure between Zhong-ni and Luo-xia type, in which the fluctuation of the interior surfacein Zhong-ni type's is larger than that in Luo-xia type; the interior volume of Zhong-ni typeis less than that of Luo-xia type, especially in Guqin neck. The accurate internal information of Guqin obtained through the computed tomography (CT) technology will provide technical support for the Guqin manufacture craft and the quality examination, as well as provide the reference in the aspect of non-destructive testing for other traditional precious internal structure research. PMID:26964242

  3. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications.

    PubMed

    Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  4. Air pollution dispersion models for human exposure predictions in London.

    PubMed

    Beevers, Sean D; Kitwiroon, Nutthida; Williams, Martin L; Kelly, Frank J; Ross Anderson, H; Carslaw, David C

    2013-01-01

    The London household survey has shown that people travel and are exposed to air pollutants differently. This argues for human exposure to be based upon space-time-activity data and spatio-temporal air quality predictions. For the latter, we have demonstrated the role that dispersion models can play by using two complimentary models, KCLurban, which gives source apportionment information, and Community Multi-scale Air Quality Model (CMAQ)-urban, which predicts hourly air quality. The KCLurban model is in close agreement with observations of NO(X), NO(2) and particulate matter (PM)(10/2.5), having a small normalised mean bias (-6% to 4%) and a large Index of Agreement (0.71-0.88). The temporal trends of NO(X) from the CMAQ-urban model are also in reasonable agreement with observations. Spatially, NO(2) predictions show that within 10's of metres of major roads, concentrations can range from approximately 10-20 p.p.b. up to 70 p.p.b. and that for PM(10/2.5) central London roadside concentrations are approximately double the suburban background concentrations. Exposure to different PM sources is important and we predict that brake wear-related PM(10) concentrations are approximately eight times greater near major roads than at suburban background locations. Temporally, we have shown that average NO(X) concentrations close to roads can range by a factor of approximately six between the early morning minimum and morning rush hour maximum periods. These results present strong arguments for the hybrid exposure model under development at King's and, in future, for in-building models and a model for the London Underground.

  5. Identifying exposure disparities in air pollution epidemiology specific to adverse birth outcomes

    NASA Astrophysics Data System (ADS)

    Geer, Laura A.

    2014-10-01

    More than 147 million people in the US live in areas where pollutant levels are above regulatory limits and pose a risk to health. Most of the vast network of air pollutant monitors in the US are located in places with higher pollution levels and a higher density of pollutant sources (e.g., point sources from industrial pollution). Vulnerable populations are more likely to live closer to pollutant sources, and thus closer to pollutant monitors. These differential exposures have an impact on maternal and child health; maternal air pollutant exposures have been linked to adverse outcomes such as preterm birth and infant low birth weight. Several studies are highlighted that address methodological approaches in the study of air pollution and health disparities.

  6. Synergistic effects of exposure to concentrated ambient fine pollution particles and nitrogen dioxide in humans

    EPA Science Inventory

    Exposure to single pollutants such as ambient particulate matter (PM) is associated with adverse health effects. It is unclear, however, if simultaneous exposure to multiple air pollutants (e.g. PM and ozone or nitrogen dioxide), a more real world scenario, results in non-additiv...

  7. Early life exposure to air pollution induces adult cardiac dysfunction.

    PubMed

    Gorr, Matthew W; Velten, Markus; Nelin, Timothy D; Youtz, Dane J; Sun, Qinghua; Wold, Loren E

    2014-11-01

    Exposure to ambient air pollution contributes to the progression of cardiovascular disease, particularly in susceptible populations. The objective of the present study was to determine whether early life exposure to air pollution causes persistent cardiovascular consequences measured at adulthood. Pregnant FVB mice were exposed to filtered (FA) or concentrated ambient particulate matter (PM2.5) during gestation and nursing. Mice were exposed to PM2.5 at an average concentration of 51.69 μg/m(3) from the Columbus, OH region for 6 h/day, 7 days/wk in utero until weaning at 3 wk of age. Birth weight was reduced in PM2.5 pups compared with FA (1.36 ± 0.12 g FA, n = 42 mice; 1.30 ± 0.15 g PM2.5, n = 67 P = 0.012). At adulthood, mice exposed to perinatal PM2.5 had reduced left ventricular fractional shortening compared with FA-exposed mice (43.6 ± 2.1% FA, 33.2 ± 1.6% PM2.5, P = 0.001) with greater left ventricular end systolic diameter. Pressure-volume loops showed reduced ejection fraction (79.1 ± 3.5% FA, 35.5 ± 9.5% PM2.5, P = 0.005), increased end-systolic volume (10.4 ± 2.5 μl FA, 39.5 ± 3.8 μl PM2.5, P = 0.001), and reduced dP/dt maximum (11,605 ± 200 μl/s FA, 9,569 ± 800 μl/s PM2.5, P = 0.05) and minimum (-9,203 ± 235 μl/s FA, -7,045 ± 189 μl/s PM2.5, P = 0.0005) in PM2.5-exposed mice. Isolated cardiomyocytes from the hearts of PM2.5-exposed mice had reduced peak shortening (%PS, 8.53 ± 2.82% FA, 6.82 ± 2.04% PM2.5, P = 0.003), slower calcium reuptake (τ, 0.22 ± 0.09 s FA, 0.26 ± 0.07 s PM2.5, P = 0.048), and reduced response to β-adrenergic stimulation compared with cardiomyocytes isolated from mice that were exposed to FA. Histological analyses revealed greater picro-sirius red-positive-stained areas in the PM2.5 vs. FA group, indicative of increased collagen deposition. We concluded that these data demonstrate the detrimental role of early life exposure to ambient particulate air pollution in programming of adult cardiovascular

  8. Non-destructive testing on aramid fibres for the long-term assessment of interventions on heritage structures

    NASA Astrophysics Data System (ADS)

    Ceravolo, R.; De Marchi, A.; Pinotti, E.; Surace, C.; Zanotti Fragonara, L.

    2015-07-01

    High strength fibre reinforced polymers (FRPs) are composite materials made of fibres such as carbon, aramid and/or glass, and a resin matrix. FRPs are commonly used for structural repair and strengthening interventions and exhibit high potential for applications to existing constructions, including heritage buildings. In regard to aramid fibres, uncertainties about the long-term behaviour of these materials have often made the designers reluctant to use them in structural engineering. The present study describes simple and non-destructive nonlinearity tests for assessing damage or degradation of structural properties in Kevlar fibres. This was obtained by using high precision measurements to detect small deviations in the dynamic response measured on fibres and ropes. The change in dynamic properties was then related to a damage produced by exposure of the sample to UV rays for a defined time period, which simulated long-term sun exposure. In order to investigate the sensitivity of such an approach to damage detection, non-linearity characterisation tests were conducted on aramid fibres in both damaged and undamaged states. With the purpose of carrying out dynamic tests on small fibre specimens, a dedicated instrumentation was designed and built in cooperation with the Metrology Laboratory of the Department of Electronics at the Politecnico di Torino.

  9. In vitro mucus transportability, cytogenotoxicity, and hematological changes as non-destructive physiological biomarkers in fish chronically exposed to metals.

    PubMed

    Seriani, Robson; Abessa, Denis M S; Moreira, Lucas B; Cabrera, Joana P G; Sanches, Juliana Q; Silva, Carolina L S; Amorim, Francisca A; Rivero, Dolores H R F; Silva, Flavia L; Fitorra, Lilian S; Carvalho-Oliveira, Regiani; Macchione, Mariangela; Ranzani-Paiva, Maria J T

    2015-02-01

    The biomonitoring of fish using biomarkers represents a useful tool for the assessment of aquatic pollution. This study evaluated the sublethal toxic effects of aquatic pollution on fish collected from a site contaminated by metals. Water and fish (Oreochromis niloticus) samples were collected from a pond in the Parque Ecológico do Tietê (PET) that lies along the Tietê River (São Paulo, Brazil), and from a control site (an experimental fish farm). The metal content of the water was evaluated, and fish were used to examine the properties of gill mucus and blood. The PET fish were evaluated for alterations in the in vitro transportability of mucus and changes in blood properties (e.g., cell volume, hemoglobin concentration, red blood cells, and white blood cell count). The results of the water analyzes indicated metal levels above the legal standards for Fe (0.71 mg/L), Ni (0.06 mg/L), Mn (0.11 mg/L), and Pb (0.48 mg/L). Compared to the controls, the hematologic parameter analyzes of PET fish revealed significantly higher numbers of erythrocytes (RBC), leukocytes (WBC), lymphocytes, erythroblasts, and Mean Corpuscular Volume (MCV); however, the hemoglobin content and Mean Corpuscular Hemoglobin Concentration (MCHC) values were significantly lower. The frequencies of nuclear abnormalities and micronuclei were significantly higher and the mucociliary transport was significantly lower in PET fish than in the controls. These results suggest that fish from the contaminated site exhibit a series of physiological responses, which probably indicate health disturbances. Furthermore, the results suggest that blood and mucus are promising, non-destructive targets for use in the monitoring of pollution.

  10. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface

  11. Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Burns, Erin A.

    2004-01-01

    Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing

  12. Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices.

    PubMed

    Fassnacht, Fabian E; Stenzel, Stefanie; Gitelson, Anatoly A

    2015-03-15

    Leaf pigment content is an important indicator of plant status and can serve to assess the vigor and photosynthetic activity of plants. The application of spectral information gathered from laboratory, field and remote sensing-based spectrometers to non-destructively assess total chlorophyll (Chl) content of higher plants has been demonstrated in earlier studies. However, the precise estimation of carotenoid (Car) content with non-destructive spectral measurements has so far not reached accuracies comparable to the results obtained for Chl content. Here, we examined the potential of a recently developed angular vegetation index (AVI) to estimate total foliar Car content of three tree species. Based on an iterative search of all possible band combinations, we identified a best candidate AVIcar. The identified index showed quite close but essentially not linear relation with Car contents of the examined species with increasing sensitivity to high Car content and a lack of sensitivity to low Car content for which earlier proposed vegetation indices (VI) performed better. To make use of the advantages of both VI types, we developed a simple merging procedure, which combined the AVIcar with two earlier proposed carotenoid indices. The merged indices had close linear relationship with total Car content and outperformed all other examined indices. The merged indices were able to accurately estimate total Car content with a percental root mean square error (%RMSE) of 8.12% and a coefficient of determination of 0.88. Our findings were confirmed by simulations using the radiative transfer model PROSPECT-5. For simulated data, the merged indices again showed a quasi linear relationship with Car content. This strengthens the assumption that the proposed merged indices have a general ability to accurately estimate foliar Car content. Further examination of the proposed merged indices to estimate foliar Car content of other plant species is desirable to prove the general

  13. Vibration-based non-destructive technique to detect crack in multi-span beam

    NASA Astrophysics Data System (ADS)

    Sharma, Dharmendra S.; Mungla, Mitesh J.; Barad, Kaushar H.

    2015-10-01

    This article presents the study on identification of a single open crack in a straight multi-span beam using natural frequency-based non-destructive technique. The crack is assumed to be transverse and one-dimensional partial cut of a beam, and is modelled as equivalent elastic rotational spring. The effects of crack location and depth on the natural frequency for multi-span uniform beam are demonstrated. The reduction in natural frequency due to presence of crack is utilised to detect crack location and its severity. The formulation is validated experimentally.

  14. Non-destructive high-resolution thermal imaging techniques to evaluate wildlife and delicate biological samples

    NASA Astrophysics Data System (ADS)

    Lavers, C.; Franklin, P.; Franklin, P.; Plowman, A.; Sayers, G.; Bol, J.; Shepard, D.; Fields, D.

    2009-07-01

    Thermal imaging cameras now allows routine monitoring of dangerous yet endangered wildlife in captivity. This study looks at the potential applications of radiometrically calibrated thermal data to wildlife, as well as providing parameters for future materials applications. We present a non-destructive active testing technique suitable for enhancing imagery contrast of thin or delicate biological specimens yielding improved thermal contrast at room temperature, for analysis of sample thermal properties. A broad spectrum of animals is studied with different textured surfaces, reflective and emissive properties in the infra red part of the electromagnetic spectrum. Some surface features offer biomimetic materials design opportunities.

  15. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuuki; Inoue, Hiroyuki

    2003-10-01

    The absence of non-destructive inspection techniques for illicit drugs hidden in mail envelopes has resulted in such drugs being smuggled across international borders freely. We have developed a novel basic technology for terahertz imaging, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. The spatial distributions of the targets are obtained from terahertz multispectral transillumination images, using absorption spectra measured with a tunable terahertz-wave source. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  16. Application of magnetic resonance imaging to non-destructive void detection in watermelon

    NASA Astrophysics Data System (ADS)

    Saito, K.; Miki, T.; Hayashi, S.; Kajikawa, H.; Shimada, M.; Kawate, Y.; Nishizawa, T.; Ikegaya, D.; Kimura, N.; Takabatake, K.; Sugiura, N.; Suzuki, M.

    A novel application of magnetic resonance imaging (MRI) is described. The possibility of utilizing MRI for non-destructive quality evaluation of watermelons was studied. In this study, we applied MRI to the detection of internal voids in watermelons. In order to increase the measurement rate, we employed a one-dimensional projection profile method instead of observing a two-dimensional cross-sectional image. The void detection was carried out with this technique over 30 samples and 28 samples were correctly evaluated. The measurement rate was 900 ms per sample, which is an acceptable speed for a sorting machine in the agricultural field.

  17. Non-Destructive Evaluation Method and Apparatus for Measuring Acoustic Material Nonlinearity

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    2002-01-01

    An acoustic non-linearity parameter (beta) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members obviates the need for electronic calibration of the measuring equipment. Unlike known substitutional measuring techniques requiring elaborate calibration procedures, the electrical outputs of the capacitive detector of a sample with known beta and the test sample of unknown beta are compared to determine the unknown beta. In order to provide the necessary stability of the present-inventive reference-based approach, the bandpass filters of the measurement system are maintained in a temperature-controlled environment, and the line voltage supplied to said amplifiers is well-regulated.

  18. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    SciTech Connect

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  19. Ultrasonic transverse velocity calibration of standard blocks for use in non-destructive testing

    NASA Astrophysics Data System (ADS)

    Silva, C. E. R.; Braz, D. S.; Maggi, L. E.; Costa Felix, R. P. B.

    2015-01-01

    Standard blocks are employed in the verification of the equipment used in Ultrasound Non-Destructive Testing. To assure the metrology reliability of all the measurement process, it is necessary to calibrate or certify these Standard blocks. In this work, the transverse wave velocity and main dimensions were assessed according to the specifications ISO Standards. For transverse wave velocity measurement, a 5 MHz transverse wave transducer, a waveform generator, an oscilloscope and a computer with a program developed in LabVIEWTM were used. Concerning the transverse wave velocity calibration, only two Standard blocks of the 4 tested is in accordance with the standard.

  20. Non-destructive Testing by Infrared Thermography Under Random Excitation and ARMA Analysis

    NASA Astrophysics Data System (ADS)

    Bodnar, J. L.; Nicolas, J. L.; Candoré, J. C.; Detalle, V.

    2012-11-01

    Photothermal thermography is a non-destructive testing (NDT) method, which has many applications in the field of control and characterization of thin materials. This technique is usually implemented under CW or flash excitation. Such excitations are not adapted for control of fragile materials or for multi-frequency analysis. To allow these analyses, in this article, the use of a new control mode is proposed: infrared thermography under random excitation and auto regressive moving average analysis. First, the principle of this NDT method is presented. Then, the method is shown to permit detection, with low energy constraints, of detachments situated in mural paintings.

  1. A new facility for non-destructive assay using a 252Cf source.

    PubMed

    Stevanato, L; Caldogno, M; Dima, R; Fabris, D; Hao, Xin; Lunardon, M; Moretto, S; Nebbia, G; Pesente, S; Pino, F; Sajo-Bohus, L; Viesti, G

    2013-03-01

    A new laboratory facility for non-destructive analysis (NDA) using a time-tagged (252)Cf source is presented. The system is designed to analyze samples having maximum size of about 20 × 25 cm(2), the material recognition being obtained by measuring simultaneously total and energy dependent transmission of neutrons and gamma rays. The equipment technical characteristics and performances of the NDA system are presented, exploring also limits due to the sample thickness. Some recent applications in the field of cultural heritage are presented. PMID:23276691

  2. Non-destructive NIR-FT-Raman analyses in practice. Part I. Analyses of plants and historic textiles.

    PubMed

    Andreev, G N; Schrader, B; Schulz, H; Fuchs, R; Popov, S; Handjieva, N

    2001-12-01

    Non-destructive analysis of natural substances in plants as well as of old dyed textiles by Raman spectroscopy has not been possible using conventional techniques. Exciting lines from the visible part of the spectrum produced photochemical and thermal decomposition of the objects as well as strong fluorescence. Using Nd:YAG laser excitation at 1,064 nm together with a special sample arrangement and interferometric recording, various polyacetylenes in Aethusa cynapium and in chamomile (Chamomilla recutita) and the main valuable substances in gentian species (Gentiana lutea and G. punctata), curcuma roots (Curcuma longa), cinnamon (Cinnamomum zeylanicum), fennel (Foeniculum vulgare), clove (Caryophyllus aromaticus), and ginger (Zingiber officinale) were analyzed non-destructively and discussed in comparison with the corresponding pure standard compounds. We further analyzed non-destructively the FT Raman spectra of collections of historical textiles and lakes used for dyeing. It is possible to distinguish the main dye component non-destructively by using Raman bands.

  3. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    EPA Science Inventory

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studi...

  4. EXPOSURE VERSION 2 - A COMPUTER MODEL FOR ANALYZING THE EFFECTS OF INDOOR AIR POLLUTANT SOURCES ON INDIVIDUAL EXPOSURE

    EPA Science Inventory

    The report presents a model for calculating individual exposure to indoor pollutants from sources. The model calculates exposure due to individual, as opposed to population, activity patterns and source use. The model uses data on source emissions, room- to- room air flows, air e...

  5. Exposure prediction approaches used in air pollution epidemiology studies: Keyfindings and future recommendations

    EPA Science Inventory

    Many epidemiologic studies of the health effects of exposure to ambient air pollution use measurements from central-site monitors as their exposure estimate. However, measurements from central-site monitors may lack the spatial and temporal resolution required to capture exposure...

  6. Case report: Atrial fibrillation following exposure to ambient air pollution particles

    EPA Science Inventory

    CONTEXT: Exposure to air pollution can result in the onset of atrial fibrillation. CASE PRESENTATION: We present a case of a 58 year old woman who volunteered to participate in a controlled exposure to concentrated ambient particles (CAPs). Twenty minutes into the exposure, there...

  7. PREFACE: III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing (SibTest 2015)

    NASA Astrophysics Data System (ADS)

    2016-01-01

    This issue of the journal is devoted to the research and studies presented at the III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing SibTest. The conference was held in Altai, Russia, on 27-31 July 2015. The conference brought together experts from different countries and organizations who had a great opportunity to share knowledge during oral and poster presentations and to initiate discussions on topics that are of interest to the conference attendees. The conference aimed to discuss innovative methods and the application of advanced technologies in non-destructive testing. The conference also attempted to bring together university, academic and industrial science, to expand the co-operation of scientists from different countries in research and development and the commercialization of innovative technologies in non-destructive testing. The key themes of the conference were: ultrasonic and acoustic testing; electromagnetic and thermal testing; various types of radiation non-destructive testing; passive and active testing techniques. The conference organizers are the Institute of Non-Destructive Testing, Tomsk Polytechnic University, with the assistance of the Russian Society for Non-Destructive Testing and Technical Diagnostics, Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, National Research Tomsk State University, Moscow State Institute of Radio Engineering, Electronics and Automation.

  8. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates

    SciTech Connect

    Dhondt, Stijn; Beckx, Carolien; Degraeuwe, Bart; Lefebvre, Wouter; Kochan, Bruno; Bellemans, Tom; Int Panis, Luc; Macharis, Cathy; Putman, Koen

    2012-09-15

    In both ambient air pollution epidemiology and health impact assessment an accurate assessment of the population exposure is crucial. Although considerable advances have been made in assessing human exposure outdoors, the assessments often do not consider the impact of individual travel behavior on such exposures. Population-based exposures to NO{sub 2} and O{sub 3} using only home addresses were compared with models that integrate all time-activity patterns-including time in commute-for Flanders and Brussels. The exposure estimates were used to estimate the air pollution impact on years of life lost due to respiratory mortality. Health impact of NO{sub 2} using an exposure that integrates time-activity information was on average 1.2% higher than when assuming that people are always at their home address. For ozone the overall estimated health impact was 0.8% lower. Local differences could be much larger, with estimates that differ up to 12% from the exposure using residential addresses only. Depending on age and gender, deviations from the population average were seen. Our results showed modest differences on a regional level. At the local level, however, time-activity patterns indicated larger differences in exposure and health impact estimates, mainly for people living in more rural areas. These results suggest that for local analyses the dynamic approach can contribute to an improved assessment of the health impact of various types of pollution and to the understanding of exposure differences between population groups. - Highlights: Black-Right-Pointing-Pointer Exposure to ambient air pollution was assessed integrating population mobility. Black-Right-Pointing-Pointer This dynamic exposure was integrated into a health impact assessment. Black-Right-Pointing-Pointer Differences between the dynamic and residential exposure were quantified. Black-Right-Pointing-Pointer Modest differences in health impact were found at a regional level. Black

  9. Degradation of the ethyl glucuronide content in hair by hydrogen peroxide and a non-destructive assay for oxidative hair treatment using infra-red spectroscopy.

    PubMed

    Ammann, Dominic; Becker, Roland; Kohl, Anka; Hänisch, Jessica; Nehls, Irene

    2014-11-01

    The assessment of quantification results of the alcohol abuse marker ethyl glucuronide (EtG) in hair in comparison to the cut-off values for the drinking behavior may be complicated by cosmetic hair bleaching. Thus, the impact of increasing exposure to hydrogen peroxide on the EtG content of hair was investigated. Simultaneously, the change of absorbance in the range of 1000-1100 cm(-1) indicative for the oxidation of cystine was investigated non-destructively by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) using pulverized portions of the respective hair samples. Hair samples treated with hydrogen peroxide consistently displayed a significantly increased absorbance at 1040 cm(-1) associated with the formation of cysteic acid. The EtG content decreased significantly if the hair was treated with alkaline hydrogen peroxide as during cosmetic bleaching. It could be shown that ATR-FTIR is capable of detecting an exposure to hydrogen peroxide when still no brightening was visible and already before the EtG content deteriorated significantly. Thus, hair samples suspected of having been exposed to oxidative treatment may be checked non-destructively by a readily available technique. This assay is also possible retrospectively after EtG extraction and using archived samples. PMID:25180828

  10. Non destructive analysis of the wax layer of apple (Malus domestica Borkh.) by means of confocal laser scanning microscopy.

    PubMed

    Veraverbeke, E A; Van Bruaene, N; Van Oostveldt, P; Nicolaï, B M

    2001-08-01

    Confocal laser scanning microscopy (CLSM) was used to non-destructively analyse the changes in the structure and thickness of the cuticle during storage of apples (Malus domestica Borkh.). Interpretation of the confocal images was performed by comparison with scanning electron microscopy and environmental scanning electron microscopy images. The natural reflectance of the wax and the auto-fluorescence of the underlying cells made it possible with CLSM to distinguish the wax from the underlying layers without any pretreatment of the fruit. The thickness of the consecutive layers (wax, cutin, cells) could be estimated from measurements of the reflection and fluorescence intensities as a function of the number of pixels. The mean wax-layer thickness measured in this way amounted to 2.58 microm, 3.41 microm or 4.14 microm for the cultivars Jonagold, Jonagored and Elstar, respectively. Changes in the wax structure and cells of the same important Belgian apple cultivars as mentioned above were monitored during nine months of storage in ultra low oxygen and after exposure to ambient conditions. The changes in the wax ultrastructure and cell morphology are likely related to water losses and specific protection of the apple cultivars against water losses during storage and shelf life.

  11. Application of alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological study in Atlanta

    EPA Science Inventory

    Exposure error in studies of ambient air pollution and health that use city-wide measures of exposure may be substantial for pollutants that exhibit spatiotemporal variability. Alternative spatiotemporal metrics of exposure for traffic-related and regional pollutants were applied...

  12. Neural network and principal component regression in non-destructive soluble solids content assessment: a comparison*

    PubMed Central

    Chia, Kim-seng; Abdul Rahim, Herlina; Abdul Rahim, Ruzairi

    2012-01-01

    Visible and near infrared spectroscopy is a non-destructive, green, and rapid technology that can be utilized to estimate the components of interest without conditioning it, as compared with classical analytical methods. The objective of this paper is to compare the performance of artificial neural network (ANN) (a nonlinear model) and principal component regression (PCR) (a linear model) based on visible and shortwave near infrared (VIS-SWNIR) (400–1000 nm) spectra in the non-destructive soluble solids content measurement of an apple. First, we used multiplicative scattering correction to pre-process the spectral data. Second, PCR was applied to estimate the optimal number of input variables. Third, the input variables with an optimal amount were used as the inputs of both multiple linear regression and ANN models. The initial weights and the number of hidden neurons were adjusted to optimize the performance of ANN. Findings suggest that the predictive performance of ANN with two hidden neurons outperforms that of PCR. PMID:22302428

  13. Rapid non-destructive assessment of pork edible quality by using VIS/NIR spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Peng, Yankun; Dhakal, Sagar; Song, Yulin; Zhao, Juan; Zhao, Songwei

    2013-05-01

    The objectives of this research were to develop a rapid non-destructive method to evaluate the edible quality of chilled pork. A total of 42 samples were packed in seal plastic bags and stored at 4°C for 1 to 21 days. Reflectance spectra were collected from visible/near-infrared spectroscopy system in the range of 400nm to 1100nm. Microbiological, physicochemical and organoleptic characteristics such as the total viable counts (TVC), total volatile basic-nitrogen (TVB-N), pH value and color parameters L* were determined to appraise pork edible quality. Savitzky-Golay (SG) based on five and eleven smoothing points, Multiple Scattering Correlation (MSC) and first derivative pre-processing methods were employed to eliminate the spectra noise. The support vector machines (SVM) and partial least square regression (PLSR) were applied to establish prediction models using the de-noised spectra. A linear correlation was developed between the VIS/NIR spectroscopy and parameters such as TVC, TVB-N, pH and color parameter L* indexes, which could gain prediction results with Rv of 0.931, 0.844, 0.805 and 0.852, respectively. The results demonstrated that VIS/NIR spectroscopy technique combined with SVM possesses a powerful assessment capability. It can provide a potential tool for detecting pork edible quality rapidly and non-destructively.

  14. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    PubMed

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  15. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines

    PubMed Central

    Busschots, Steven; O’Toole, Sharon; O’Leary, John J.; Stordal, Britta

    2014-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. • Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner. • The technique is quick, affordable and eliminates sample manipulation. • The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines. PMID:26150966

  16. Non-destructive Magnetic Evaluation of Laser Weld Quality in Hot Rolled Coils

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Chakradhar, I.; Rao, K. R. C.; Rao, V. V. L.; Kaza, Marutiram

    2015-06-01

    Weld quality evaluation was conducted on laser welded thin sectsions (2 mm) of hot-rolled (HR) low-carbon steel coils during cold rolling process. The analysis revealed that the poor welds consisting of the weld defects like incomplete fusion, cluster of porosity, and large difference in hardness between the weld zone and base metal were responsible for the weld failures. Experiments were conducted by varying the welding parameters; laser power and welding speed to optimize the parameters for minimizing the weld defects. The optimized weld process parameters have helped elimination of weld defects and the results are verified with microscopy and microhardness measurements. As destructive evaluation techniques are time consuming and not always permitted in industrial applications, attempts have been made in the present investigation for the utilization of suitable non-destructive techniques for the evaluation of weld quality. Non-destructive magnetic techniques of magnetic hysteresis loop and magnetic Barkhausen emissions were used in the present investigation to establish possible correlations of magnetic properties across the weld seam with the mechanical property (microhardness) for evaluation of weld quality. It is inferred that the magnetic properties of coercivity and inverse of root mean square voltage can be effectively utilized to determine weld quality in HR steel coils.

  17. Non-destructive 3D shape measurement of transparent and black objects with thermal fringes

    NASA Astrophysics Data System (ADS)

    Brahm, Anika; Rößler, Conrad; Dietrich, Patrick; Heist, Stefan; Kühmstedt, Peter; Notni, Gunther

    2016-05-01

    Fringe projection is a well-established optical method for the non-destructive contactless three-dimensional (3D) measurement of object surfaces. Typically, fringe sequences in the visible wavelength range (VIS) are projected onto the surfaces of objects to be measured and are observed by two cameras in a stereo vision setup. The reconstruction is done by finding corresponding pixels in both cameras followed by triangulation. Problems can occur if the properties of some materials disturb the measurements. If the objects are transparent, translucent, reflective, or strongly absorbing in the VIS range, the projected patterns cannot be recorded properly. To overcome these challenges, we present a new alternative approach in the infrared (IR) region of the electromagnetic spectrum. For this purpose, two long-wavelength infrared (LWIR) cameras (7.5 - 13 μm) are used to detect the emitted heat radiation from surfaces which is induced by a pattern projection unit driven by a CO2 laser (10.6 μm). Thus, materials like glass or black objects, e.g. carbon fiber materials, can be measured non-destructively without the need of any additional paintings. We will demonstrate the basic principles of this heat pattern approach and show two types of 3D systems based on a freeform mirror and a GOBO wheel (GOes Before Optics) projector unit.

  18. Checking collagen preservation in archaeological bone by non-destructive studies (Micro-CT and IBA)

    NASA Astrophysics Data System (ADS)

    Beck, L.; Cuif, J.-P.; Pichon, L.; Vaubaillon, S.; Dambricourt Malassé, A.; Abel, R. L.

    2012-02-01

    The material to be studied is a piece of human skull discovered (1999) in Pleistocene sediments from the Orsang river (Gujarat state, India). From anatomical view point, this skull is highly composite: modern Homo sapiens characters are associated to undoubtedly more ancient features. Absolute dating by 14C is critical to understand this discovery. Prior to dating measurements, non-destructive studies have been carried out. Micro-CT reconstruction (X-ray microtomography) and Ion Beam Analysis (IBA) have been undertaken to check the structural preservation of the fossil and the collagen preservation. PIXE elemental map was used to select well-preserved bone area. RBS/EBS and NRA were used for light element quantification, in particular C, N and O contents. We also demonstrate that the PIXE-RBS/EBS combination is a effective tool for the whole characterization of archaeological and recent bones by analysing in one experiment both mineral and organic fractions. We have shown that the archaeological bone, a fragment of the potentially oldest modern Indian, is enough preserved for radiocarbon dating. We propose that Elastic Backscattering Spectrometry (EBS) using 3 MeV protons could be a good non destructive alternative to conventional CHN method using Carbon-Hydrogen-Nitrogen analyzer for measuring C and N before 14C dating.

  19. Non-destructive on-chip cell sorting system with real-time microscopic image processing.

    PubMed

    Takahashi, Kazunori; Hattori, Akihiro; Suzuki, Ikurou; Ichiki, Takanori; Yasuda, Kenji

    2004-06-01

    Studying cell functions for cellomics studies often requires the use of purified individual cells from mixtures of various kinds of cells. We have developed a new non-destructive on-chip cell sorting system for single cell based cultivation, by exploiting the advantage of microfluidics and electrostatic force. The system consists of the following two parts: a cell sorting chip made of poly-dimethylsiloxane (PDMS) on a 0.2-mm-thick glass slide, and an image analysis system with a phase-contrast/fluorescence microscope. The unique features of our system include (i) identification of a target from sample cells is achieved by comparison of the 0.2-microm-resolution phase-contrast and fluorescence images of cells in the microchannel every 1/30 s; (ii) non-destructive sorting of target cells in a laminar flow by application of electrostatic repulsion force for removing unrequited cells from the one laminar flow to the other; (iii) the use of agar gel for electrodes in order to minimize the effect on cells by electrochemical reactions of electrodes, and (iv) pre-filter, which was fabricated within the channel for removal of dust contained in a sample solution from tissue extracts. The sorting chip is capable of continuous operation and we have purified more than ten thousand cells for cultivation without damaging them. Our design has proved to be very efficient and suitable for the routine use in cell purification experiments. PMID:15176978

  20. Non-destructive on-line monitoring of MIC (microbially influenced corrosion)

    SciTech Connect

    White, D.C. Tennessee Univ., Knoxville, TN ); Nivens, D.E.; Mittelman, M.W. . Inst. for Applied Microbiology); Chambers, J.Q. . Dept. of Chemistry); King, J.M.H. . Center for Environmental Biotechnology); Sayler, G.S. (Tennessee Univ., Knoxville, TN

    1990-01-01

    The formation of microbial biofilms on metal surfaces with the subsequent increase in heat transfer resistance and the induction of microbially influenced corrosion (MIC) is being increasingly recognized as an extremely important economic and safety problem for industrial water systems. The development of sufficiently rugged and accurate monitoring devices by which biofilm formation and activity of microbial biofilms can be monitored non-destructively, directly in water systems is the goal of this research. This on-line systems would allow the effective utilization of minimal levels of biocides and inhibitors as well as permit in situ testing of materials for MIC resistance. Several non-destructive technologies such as the quartz crystal microbalance (QCM), the attenuated total reflectance-Fourier transforming infrared spectrometer (ATR-FT/IR), and a genetically engineered bacterium containing the lux gene cassette in which its bioluminescence can be used to define its presence on coupons are on-line devices which accurately measure biofilm formation. Corrosion activity can be estimated by electrochemical impedance. 12 refs., 8 figs.

  1. Non-Destructive Evaluation of Thermal Spray Coating Interface Quality by Eddy Current Method

    SciTech Connect

    B.Mi; X. Zhao; R. Bayles

    2006-05-26

    Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with different surface preparation conditions before applying the coating, e.g., grit-blasted surface, wire-brush cleaned surface, and a dirty surface. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that the three surface preparation conditions can be successfully differentiated by looking into the impedance difference observed from the eddy current probe. The measurement is fairly robust and consistent. More specimens are also prepared with variations of process parameters, such as spray angle, stand-off distance, and application of corrosion protective sealant, etc. They are blindly tested to evaluate the reliability of the eddy current system. Quantitative relations between the coating bond strength and the eddy current response are also established with the support of destructive testing. This non-contact, non-destructive, easy to use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.

  2. Non-destructive measurement of soil liquefaction density change by crosshole radar tomography, Treasure Island, California

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.; Ashford, Scott; Rollins, Kyle

    2000-01-01

    A ground penetrating radar (GPR) experiment at the Treasure Island Test Site [TILT] was performed to non-destructively image the soil column for changes in density prior to, and following, a liquefaction event. The intervening liquefaction was achieved by controlled blasting. A geotechnical borehole radar technique was used to acquire high-resolution 2-D radar velocity data. This method of non-destructive site characterization uses radar trans-illumination surveys through the soil column and tomographic data manipulation techniques to construct radar velocity tomograms, from which averaged void ratios can be derived at 0.25 - 0.5m pixel footprints. Tomograms of void ratio were constructed through the relation between soil porosity and dielectric constant. Both pre- and post-blast tomograms were collected and indicate that liquefaction related densification occurred at the site. Volumetric strains estimated from the tomograms correlate well with the observed settlement at the site. The 2-D imagery of void ratio can serve as high-resolution data layers for numerical site response analysis.

  3. Non-destructive high-throughput DNA extraction and genotyping methods for cotton seeds and seedlings.

    PubMed

    Zheng, Xiuting; Hoegenauer, Kevin A; Maeda, Andrea B V; Wang, Fei; Stelly, David M; Nichols, Robert L; Jones, Don C

    2015-05-01

    Extensive use of targeted PCR-based genotyping is precluded for many plant research laboratories by the cost and time required for DNA extraction. Using cotton (Gossypium hirsutum) as a model for plants with medium-sized seeds, we report here manual procedures for inexpensive non-destructive high-throughput extraction of DNA suitable for PCR-based genotyping of large numbers of individual seeds and seedlings. By sampling only small amounts of cotyledon tissue of ungerminated seed or young seedlings, damage is minimized, and viability is not discernibly affected. The yield of DNA from each seed or seedling is typically sufficient for 1000 or 500 PCR reactions, respectively. For seeds, the tissue sampling procedure relies on a modified 96-well plate that is used subsequently for seed storage. For seeds and seedlings, the DNA is extracted in a strongly basic DNA buffer that is later neutralized and diluted. Extracts can be used directly for high-throughput PCR-based genotyping. Any laboratory can thus extract DNA from thousands of individual seeds/seedlings per person-day at a very modest cost for consumables (~$0.05 per sample). Being non-destructive, our approach enables a wide variety of time- and resource-saving applications, such as marker-assisted selection (MAS), before planting, transplanting, and flowering.

  4. Non-destructive investigation of a time capsule using neutron radiography and X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    MacDonald, B. L.; Vanderstelt, J.; O'Meara, J.; McNeill, F. E.

    2016-01-01

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. This study applied two techniques: X-ray fluorescence and neutron radiography, for the investigation of a capped, tubular metal object recovered from an urban construction site in Gore Park, Hamilton, Canada. The site is an urban park containing a World War I commemorative monument that underwent renovation and relocation. Historical documentation suggested that the object buried underneath the monument was a time capsule containing a paper document listing the names of 1800 Canadians who died during WWI. The purpose of this study was to assess the condition of the object, and to verify if it was what the historical records purported. XRF analysis was used to characterize the elemental composition of the metal artifact, while neutron radiography revealed that its contents were congruent with historical records and remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage.

  5. Non-destructive dielectric assessment of water permeation in composite structures

    SciTech Connect

    Boinard, P.; Boinard, E.; Pethrick, R.A.; Banks, W.M.; Crane, R.L.

    2000-07-01

    Over the last ten years, the application of high frequency dielectric spectroscopy techniques for the assessment of composite structures has been investigated. Novel approaches to assess non-destructively the evolution during ageing of adhesively bonded carbon fiber reinforced plastic (CFRP) structures and bulk glass fiber reinforced plastic (GRP) structures are presented in this paper and the results are critically assessed. The applicability and limitations of dielectric measurements, in both frequency and time domain, to the monitoring of water ingress at 30 C and 60 C are examined. The correlation between gravimetric and high frequency dielectric spectroscopy data demonstrates the suitability of the techniques regarding the assessment of water uptake in composites structures and illustrates its potential as a non-destructive evaluation (NDE) technique. The dielectric time domain response (TDR) study of adhesively bonded structures indicates a new way to assess such structures. The approach for frequency domain analysis of bulk GRP using a coaxial probe technique indicates the potential portability of the technique for in-situ measurements.

  6. Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production

    NASA Astrophysics Data System (ADS)

    Zaretski, Aliaksandr V.; Lipomi, Darren J.

    2015-05-01

    The exceptional charge-transport, mechanical, and barrier properties of graphene are well known. High-quality films of single-layer graphene produced over large areas, however, are extremely expensive. The high cost of graphene precludes its use in industries--such as transparent electrodes and flexible packaging--that might take full advantage of its properties. This minireview presents several strategies for the transfer of graphene from the substrates used for growth to substrates used for the final application. Each strategy shares the characteristic of being non-destructive: that is, the growth substrate remains reusable for further synthesis of new graphene. These processes have the potential to lower significantly the costs of manufacturing graphene, to increase production yields, and to minimize environmental impact. This article is divided into sections on (i) the synthesis of high-quality single-layer graphene and (ii) its non-destructive transfer to a host substrate. Section (ii) is further divided according to the substrate from which graphene is transferred: single-crystalline wafers or flexible copper foils. We also comment, wherever possible, on defects produced as a result of the transfer, and potential strategies to mitigate these defects. We conclude that several methods for the green synthesis and transfer of graphene have several of the right characteristics to be useful in industrial scale production.

  7. Non-Destructive Evaluation of Grain Structure Using Air-Coupled Ultrasonics

    SciTech Connect

    Belvin, A. D.; Burrell, R. K.; Cole, E.G.

    2009-08-01

    Cast material has a grain structure that is relatively non-uniform. There is a desire to evaluate the grain structure of this material non-destructively. Traditionally, grain size measurement is a destructive process involving the sectioning and metallographic imaging of the material. Generally, this is performed on a representative sample on a periodic basis. Sampling is inefficient and costly. Furthermore, the resulting data may not provide an accurate description of the entire part's average grain size or grain size variation. This project is designed to develop a non-destructive acoustic scanning technique, using Chirp waveforms, to quantify average grain size and grain size variation across the surface of a cast material. A Chirp is a signal in which the frequency increases or decreases over time (frequency modulation). As a Chirp passes through a material, the material's grains reduce the signal (attenuation) by absorbing the signal energy. Geophysics research has shown a direct correlation with Chirp wave attenuation and mean grain size in geological structures. The goal of this project is to demonstrate that Chirp waveform attenuation can be used to measure grain size and grain variation in cast metals (uranium and other materials of interest). An off-axis ultrasonic inspection technique using air-coupled ultrasonics has been developed to determine grain size in cast materials. The technique gives a uniform response across the volume of the component. This technique has been demonstrated to provide generalized trends of grain variation over the samples investigated.

  8. Early non-destructive biofouling detection and spatial distribution: Application of oxygen sensing optodes.

    PubMed

    Farhat, N M; Staal, M; Siddiqui, A; Borisov, S M; Bucs, Sz S; Vrouwenvelder, J S

    2015-10-15

    Biofouling is a serious problem in reverse osmosis/nanofiltration (RO/NF) applications, reducing membrane performance. Early detection of biofouling plays an essential role in an adequate anti-biofouling strategy. Presently, fouling of membrane filtration systems is mainly determined by measuring changes in pressure drop, which is not exclusively linked to biofouling. Non-destructive imaging of oxygen concentrations (i) is specific for biological activity of biofilms and (ii) may enable earlier detection of biofilm accumulation than pressure drop. The objective of this study was to test whether transparent luminescent planar O2 optodes, in combination with a simple imaging system, can be used for early non-destructive biofouling detection. This biofouling detection is done by mapping the two-dimensional distribution of O2 concentrations and O2 decrease rates inside a membrane fouling simulator (MFS). Results show that at an early stage, biofouling development was detected by the oxygen sensing optodes while no significant increase in pressure drop was yet observed. Additionally, optodes could detect spatial heterogeneities in biofouling distribution at a micro scale. Biofilm development started mainly at the feed spacer crossings. The spatial and quantitative information on biological activity will lead to better understanding of the biofouling processes, contributing to the development of more effective biofouling control strategies.

  9. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    NASA Astrophysics Data System (ADS)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  10. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.

    PubMed

    Bogas, J Alexandre; Gomes, M Glória; Gomes, Augusto

    2013-07-01

    In this paper the compressive strength of a wide range of structural lightweight aggregate concrete mixes is evaluated by the non-destructive ultrasonic pulse velocity method. This study involves about 84 different compositions tested between 3 and 180 days for compressive strengths ranging from about 30 to 80 MPa. The influence of several factors on the relation between the ultrasonic pulse velocity and compressive strength is examined. These factors include the cement type and content, amount of water, type of admixture, initial wetting conditions, type and volume of aggregate and the partial replacement of normal weight coarse and fine aggregates by lightweight aggregates. It is found that lightweight and normal weight concretes are affected differently by mix design parameters. In addition, the prediction of the concrete's compressive strength by means of the non-destructive ultrasonic pulse velocity test is studied. Based on the dependence of the ultrasonic pulse velocity on the density and elasticity of concrete, a simplified expression is proposed to estimate the compressive strength, regardless the type of concrete and its composition. More than 200 results for different types of aggregates and concrete compositions were analyzed and high correlation coefficients were obtained. PMID:23351273

  11. Non-destructive inspection in industrial equipment using robotic mobile manipulation

    NASA Astrophysics Data System (ADS)

    Maurtua, Iñaki; Susperregi, Loreto; Ansuategui, Ander; Fernández, Ane; Ibarguren, Aitor; Molina, Jorge; Tubio, Carlos; Villasante, Cristobal; Felsch, Torsten; Pérez, Carmen; Rodriguez, Jorge R.; Ghrissi, Meftah

    2016-05-01

    MAINBOT project has developed service robots based applications to autonomously execute inspection tasks in extensive industrial plants in equipment that is arranged horizontally (using ground robots) or vertically (climbing robots). The industrial objective has been to provide a means to help measuring several physical parameters in multiple points by autonomous robots, able to navigate and climb structures, handling non-destructive testing sensors. MAINBOT has validated the solutions in two solar thermal plants (cylindrical-parabolic collectors and central tower), that are very demanding from mobile manipulation point of view mainly due to the extension (e.g. a thermal solar plant of 50Mw, with 400 hectares, 400.000 mirrors, 180 km of absorber tubes, 140m height tower), the variability of conditions (outdoor, day-night), safety requirements, etc. Once the technology was validated in simulation, the system was deployed in real setups and different validation tests carried out. In this paper two of the achievements related with the ground mobile inspection system are presented: (1) Autonomous navigation localization and planning algorithms to manage navigation in huge extensions and (2) Non-Destructive Inspection operations: thermography based detection algorithms to provide automatic inspection abilities to the robots.

  12. Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production.

    PubMed

    Zaretski, Aliaksandr V; Lipomi, Darren J

    2015-06-14

    The exceptional charge-transport, mechanical, and barrier properties of graphene are well known. High-quality films of single-layer graphene produced over large areas, however, are extremely expensive. The high cost of graphene precludes its use in industries-such as transparent electrodes and flexible packaging-that might take full advantage of its properties. This minireview presents several strategies for the transfer of graphene from the substrates used for growth to substrates used for the final application. Each strategy shares the characteristic of being non-destructive: that is, the growth substrate remains reusable for further synthesis of new graphene. These processes have the potential to lower significantly the costs of manufacturing graphene, to increase production yields, and to minimize environmental impact. This article is divided into sections on (i) the synthesis of high-quality single-layer graphene and (ii) its non-destructive transfer to a host substrate. Section (ii) is further divided according to the substrate from which graphene is transferred: single-crystalline wafers or flexible copper foils. We also comment, wherever possible, on defects produced as a result of the transfer, and potential strategies to mitigate these defects. We conclude that several methods for the green synthesis and transfer of graphene have several of the right characteristics to be useful in industrial scale production.

  13. Non-destructive sampling of rock-dwelling microbial communities using sterile adhesive tape.

    PubMed

    Cutler, Nick A; Oliver, Anna E; Viles, Heather A; Whiteley, Andrew S

    2012-12-01

    Building stone provides a habitat for an array of microorganisms, many of which have been demonstrated to have a deleterious effect on the appearance and/or structural integrity of stone masonry. It is essential to understand the composition and structure of stone-dwelling (lithobiontic) microbial communities if successful stone conservation strategies are to be applied, particularly in the face of global environmental change. Ideally, the techniques used to sample such assemblages should be non-destructive due to the sensitive conservation status of many stone buildings. This paper quantitatively assesses the performance of sterile adhesive tape as a non-destructive sampling technique and compares the results of tape sampling with an alternative, destructive, sampling method. We used DNA fingerprinting (TRFLP) to characterise the algal, fungal and bacterial communities living on a stone slab. Our results demonstrate that tape sampling may be used to collect viable quantities of microbial DNA from environmental samples. This technique is ideally suited to the sampling of microbial biofilms, particularly when these communities are dominated by green algae. It provides a good approximation of total community diversity (i.e. the aggregate diversity of epilithic and endolithic communities). Tape sampling is straightforward, rapid and cost effective. When combined with molecular analytical techniques, this sampling method has the potential to make a major contribution to efforts to understand the structure of lithobiontic microbial communities and our ability to predict the response of such communities to future environmental change. PMID:23022426

  14. Exposure and inequality for select urban air pollutants in the Tampa Bay area.

    PubMed

    Yu, Haofei; Stuart, Amy L

    2016-05-01

    Air pollution exposure has been linked to numerous adverse health effects, with some disadvantaged subgroups disproportionately burdened. The objective of this work was to characterize distributions of emissions and concentrations of a few important urban air toxics at high spatiotemporal resolution in order to assess exposure and inequality. Benzene, 1,3-butadiene, formaldehyde, and acetaldehyde were the focus pollutants, with oxides of nitrogen (NOx) estimated for comparisons. Primary pollutant emissions were estimated for the full spectrum of source types in the Tampa area using a hybrid approach that is most detailed for major roadways and includes hourly variations in vehicle speed. Resultant pollutant concentrations were calculated using the CALPUFF dispersion model, and combined with CMAQ model output to account for secondary formation of formaldehyde and acetaldehyde. Census demographic data were applied to estimate residential pollution exposures and inequality among population subgroups. Estimated concentrations of benzene, 1,3-butadiene, and NOx were generally higher in urban areas and lower in rural areas. Exposures to these pollutants were disproportionately high for subgroups characterized as black, Hispanic and low income (annual household income less than $20,000). For formaldehyde and acetaldehyde, the patterns of concentration and exposure were largely reversed. Results suggest that disparities in exposure depend on pollutant type. PMID:26895157

  15. "Exposure Track"-The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air Pollution.

    PubMed

    Nyhan, Marguerite; Grauwin, Sebastian; Britter, Rex; Misstear, Bruce; McNabola, Aonghus; Laden, Francine; Barrett, Steven R H; Ratti, Carlo

    2016-09-01

    Air pollution is now recognized as the world's single largest environmental and human health threat. Indeed, a large number of environmental epidemiological studies have quantified the health impacts of population exposure to pollution. In previous studies, exposure estimates at the population level have not considered spatially- and temporally varying populations present in study regions. Therefore, in the first study of it is kind, we use measured population activity patterns representing several million people to evaluate population-weighted exposure to air pollution on a city-wide scale. Mobile and wireless devices yield information about where and when people are present, thus collective activity patterns were determined using counts of connections to the cellular network. Population-weighted exposure to PM2.5 in New York City (NYC), herein termed "Active Population Exposure" was evaluated using population activity patterns and spatiotemporal PM2.5 concentration levels, and compared to "Home Population Exposure", which assumed a static population distribution as per Census data. Areas of relatively higher population-weighted exposures were concentrated in different districts within NYC in both scenarios. These were more centralized for the "Active Population Exposure" scenario. Population-weighted exposure computed in each district of NYC for the "Active" scenario were found to be statistically significantly (p < 0.05) different to the "Home" scenario for most districts. In investigating the temporal variability of the "Active" population-weighted exposures determined in districts, these were found to be significantly different (p < 0.05) during the daytime and the nighttime. Evaluating population exposure to air pollution using spatiotemporal population mobility patterns warrants consideration in future environmental epidemiological studies linking air quality and human health. PMID:27518311

  16. "Exposure Track"-The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air Pollution.

    PubMed

    Nyhan, Marguerite; Grauwin, Sebastian; Britter, Rex; Misstear, Bruce; McNabola, Aonghus; Laden, Francine; Barrett, Steven R H; Ratti, Carlo

    2016-09-01

    Air pollution is now recognized as the world's single largest environmental and human health threat. Indeed, a large number of environmental epidemiological studies have quantified the health impacts of population exposure to pollution. In previous studies, exposure estimates at the population level have not considered spatially- and temporally varying populations present in study regions. Therefore, in the first study of it is kind, we use measured population activity patterns representing several million people to evaluate population-weighted exposure to air pollution on a city-wide scale. Mobile and wireless devices yield information about where and when people are present, thus collective activity patterns were determined using counts of connections to the cellular network. Population-weighted exposure to PM2.5 in New York City (NYC), herein termed "Active Population Exposure" was evaluated using population activity patterns and spatiotemporal PM2.5 concentration levels, and compared to "Home Population Exposure", which assumed a static population distribution as per Census data. Areas of relatively higher population-weighted exposures were concentrated in different districts within NYC in both scenarios. These were more centralized for the "Active Population Exposure" scenario. Population-weighted exposure computed in each district of NYC for the "Active" scenario were found to be statistically significantly (p < 0.05) different to the "Home" scenario for most districts. In investigating the temporal variability of the "Active" population-weighted exposures determined in districts, these were found to be significantly different (p < 0.05) during the daytime and the nighttime. Evaluating population exposure to air pollution using spatiotemporal population mobility patterns warrants consideration in future environmental epidemiological studies linking air quality and human health.

  17. Exposure to Air Pollution Enhances the Generation of Vascular Microparticles

    EPA Science Inventory

    Epidemiological studies associate exposure to ambient levels of particulate matter (PM) with cardiovascular morbidity and mortality. The biological mechanisms by which PM exposure induces cardiovascular effects remain to be elucidated. One important limitation is the lack of sens...

  18. Rapid microRNA changes in airways of human volunteers after controlled exposure to air pollutants

    EPA Science Inventory

    Introduction/Rationale: Exposure to air pollutants, including ozone and diesel exhaust (DE) are known to cause acute cardiopulmonary dysfunction; however, the molecular mechanisms underlying these changes remain elusive. One mechanism for rapid regulation of multiple genes is a...

  19. Non-destructive infrared analyses: a method for provenance analyses of sandstones

    NASA Astrophysics Data System (ADS)

    Bowitz, Jörg; Ehling, Angela

    2008-12-01

    Infrared spectroscopy (IR spectroscopy) is commonly applied in the laboratory for mineral analyses in addition to XRD. Because such technical efforts are time and cost consuming, we present an infrared-based mobile method for non-destructive mineral and provenance analyses of sandstones. IR spectroscopy is based on activating chemical bonds. By irradiating a mineral mixture, special bonds are activated to vibrate depending on the bond energy (resonance vibration). Accordingly, the energy of the IR spectrum will be reduced thereby generating an absorption spectrum. The positions of the absorption maxima within the spectral region indicate the type of the bonds and in many cases identify minerals containing these bonds. The non-destructive reflection spectroscopy operates in the near infrared region (NIR) and can detect all common clay minerals as well as sulfates, hydroxides and carbonates. The spectra produced have been interpreted by computer using digital mineral libraries that have been especially collected for sandstones. The comparison of all results with XRD, RFA and interpretations of thin sections demonstrates impressively the accuracy and reliability of this method. Not only are different minerals detectable, but also differently ordered kaolinites and varieties of illites can be identified by the shape and size of the absorption bands. Especially clay minerals and their varieties in combination with their relative contents form the characteristic spectra of sandstones. Other components such as limonite, hematite and amorphous silica also influence the spectra. Sandstones, similar in colour and texture, often can be identified by their characteristic reflectance spectra. Reference libraries with more than 60 spectra of important German sandstones have been created to enable entirely computerized interpretations and identifications of these dimension stones. The analysis of infrared spectroscopy results is demonstrated with examples of different sandstones

  20. Photonic non-destructive measurement methods for investigating the evolution of polar firn and ice

    NASA Astrophysics Data System (ADS)

    Breton, Daniel James

    When snow falls on glaciers or ice sheets, it persists for many tens, hundreds and sometimes thousands of years before becoming ice. The granular material in between fresh snow and glacial ice is known as firn and is generally 50 to 100 m thick over polar ice sheets. The compaction mechanism of firn into ice (called densification) has important glaciological ramifications in determination of ice sheet stability and related sea level rise effects via remote sensing altimetry. Firn densification is also important for correctly interpreting ice core paleoclimate records, especially those analyzing gases trapped in air bubbles within the glacial ice. Densification is thought to depend strongly on microstructure: the sizes, shapes, orientations and inter-particle bonds of the ice grains that make up polar firn. Microstructure-dependent densification is poorly understood and occurs in the region where two-thirds of the overall densification takes place. This work focuses on developing non-destructive methods for simultaneously evaluating changes in both the bulk density and microstructure of polar firn to better understand structure- dependent densification processes. The first method is an automated density gauge which uses gamma-ray transmission methods to non-destructively produce high resolution (3.3 mm) and high precision (+/-4 kg m-3) density profiles of firn and ice cores. This instrument was used to collect a density profile for the first 160 m of the West Antarctic Ice Sheet Divide WDCO6A deep ice core. The second method involves optical scattering measurements on firn and ice cores to determine the important microstructural parameters of ice grain and air bubble size and air-ice interface surface area. These measurements are modeled using both Monte Carlo radiative transfer and ray-tracing geometric optics methods, and are then tested against experiment using digital photography of the WDC06A core. Combining the results of both bulk density and optical

  1. On the "non- destructiveness" of Schmidt hammer test: a microscopic approach

    NASA Astrophysics Data System (ADS)

    Snizek, Petr; Prikryl, Richard

    2013-04-01

    Schmidt hammer is used as a non-destructive surface strength tester of construction materials including natural stones for many decades. Dimensionless rebound value is a measure of tested material's recoil when being impacted by a plunger. The acceptable correlation between Schmidt hammer rebound value and rock strength has been proved experimentally for many lithotypes. Assumed non-destructive nature of the Schmidt hammer testing favoured its implementation in the evaluation of surface strength and degree of damage of natural stones used in monuments and sculptures. The nature of Schmidt hammer test raises a question, whether the response of material to which plunger impacted is purely elastic or if some brittle damage is involved. In our experimental study, several types of building and sculptural sandstones have been tested in dry and/or wet conditions. Due to the fact, that our recent study was focused on the search for possible brittle damage to the tested material, the sites of impact have been impregnated with the mixture of low viscosity epoxy resin and fluorescent dye in order to preserve all phenomena (by hardening of epoxy resin) and to allow observation of brittle damage pattern (e.g. microcracks, crushed grain) in optical microscope equipped with a source of fluorescent light. After the hardening of the resin, the thin sections have been prepared by cutting the impacted site in the middle, perpendicularly to the surface. For all studied sandstones and all test conditions, pronounced brittle damage zone was found in the material just below the impact. The observed phenomena correspond to the similar patterns caused by static or dynamic indentation test and consist of microcrater formation with grain crushing at the bottom and microcrack pattern radiating outside the microcrater. This observation confirms our assumption that Schmidt hammer test cannot be considered as innocent non-destructive test. Its use for the testing of surface strength of carved

  2. Air pollution exposure: Who is at high risk?

    NASA Astrophysics Data System (ADS)

    Peled, Ronit

    2011-04-01

    This article reviews the sub-population groups who are at high risk and first to be harmed by air pollution coming from anthropogenic combustions. Epidemiological studies from the last few decades contributed to the understanding of the different levels of susceptibility to air pollution. Older people and young infants, people who suffer from allergies, pulmonary and heart diseases, pregnant women and newborn babies, and deprived populations that suffer from low socio-economic status have all been described as populations at risk. A better understanding of the role of air pollution on large as well as specific populations' health, will promote a better protection policy.

  3. A Behavioral Intervention to Reduce Child Exposure to Indoor Air Pollution: Identifying Possible Target Behaviors

    ERIC Educational Resources Information Center

    Barnes, Brendon R.; Mathee, Angela; Shafritz, Lonna B.; Krieger, Laurie; Zimicki, Susan

    2004-01-01

    Indoor air pollution has been causally linked to acute lower respiratory infections in children younger than 5. The aim of this study was to identify target behaviors for a behavioral intervention to reduce child exposure to indoor air pollution by attempting to answer two research questions: Which behaviors are protective of child respiratory…

  4. CHILDREN'S TOTAL EXPOSURE TO PERSISTENT PESTICIDES AND OTHER PERSISTENT ORGANIC POLLUTANTS (CTEPP): AN OVERVIEW

    EPA Science Inventory

    Young children may have greater exposures to pollutants in their everyday environments than do adults. Because of their immaturity, rapid development, and smaller body masses, children may also be more susceptible to the effects of these pollutants. Recent federal health init...

  5. EXPOSURE TO PARTICULATE MATTER, VOLATILE ORGANIC COMPOUNDS, AND OTHER AIR POLLUTANTS INSIDE PATROL CARS

    EPA Science Inventory

    People driving in a vehicle might receive an enhanced dose of mobile source pollutants that are considered a potential risk for cardiovascular diseases. The exposure to components of air pollution in highway patrol vehicles, at an ambient, and a roadside location was determined d...

  6. "Development of Model-Based Air Pollution Exposure Metrics for use in Epidemiologic Studies"

    EPA Science Inventory

    Population-based epidemiological studies of air pollution have traditionally relied upon imperfect surrogates of personal exposures, such as area-wide ambient air pollution levels based on readily available concentrations from central monitoring sites. U.S. EPA in collaboration w...

  7. DEVELOPMENT OF MODEL-BASED AIR POLLUTION EXPOSURE METRICS FOR USE IN EPIDEMIOLOGIC STUDIES

    EPA Science Inventory

    Population-based epidemiological studies of air pollution have traditionally relied upon imperfect surrogates of personal exposures, such as area-wide ambient air pollution levels based on readily available concentrations from central monitoring sites. U.S. EPA in collaboration w...

  8. Contribution to the improvement of heritage mural painting non-destructive testing by stimulated infrared thermography

    NASA Astrophysics Data System (ADS)

    Bodnar, Jean-Luc; Mouhoubi, Kamel; Di Pallo, Luigi; Detalle, Vincent; Vallet, Jean-Marc; Duvaut, Thierry

    2013-10-01

    Non-destructive testing of heritage mural paintings by means of stimulated infrared thermography has now become rather efficient [1-14]. However, pigments, which form a pictorial layer, have contrasting radiative properties possibly leading to artifact detection. In this paper, attempts to alleviate this difficulty are presented. Based on the spectroscopic study of different paint layers, one can argue that, in the medium infrared field, this radiative disparity decreases significantly. Then, with similar settings, it can be shown that ceramic radiative sources allow reaching this wavelength band. Finally, on the basis of a study carried out on an academic sample and a partial copy of a fresco from the cathedral of Angers, combining ceramic heat sources with a laboratory SAMMTHIR experimental setup enables to make real headway in terms of defects' detection.

  9. Rapid, non-destructive evaluation of ultrathin WSe{sub 2} using spectroscopic ellipsometry

    SciTech Connect

    Eichfeld, Sarah M.; Lin, Yu-Chuan; Hossain, Lorraine; Eichfeld, Chad M.; Robinson, Joshua A.

    2014-09-01

    The utilization of tungsten diselenide (WSe{sub 2}) in electronic and optoelectronic devices depends on the ability to understand and control the process-property relationship during synthesis. We demonstrate that spectroscopic ellipsometry is an excellent technique for accurate, non-destructive determination of ultra-thin (<30 nm) WSe{sub 2} properties. The refractive index (n) and extinction coefficient (k) were found to be independent of thickness down to 1.3 nm, and were used to determine film thickness, which was confirmed to be within 9% of values found via atomic force microscopy. Finally, the optical bandgap was found to closely correlate with thickness, ranging from 1.2 to 1.55 eV as the WSe{sub 2} is thinned to the equivalent of 2 atomic layers.

  10. Gigahertz time-domain spectroscopy and imaging for non-destructive materials research and evaluation

    NASA Astrophysics Data System (ADS)

    Bulgarevich, Dmitry S.; Shiwa, Mitsuharu; Furuya, Takashi; Tani, Masahiko

    2016-06-01

    By using optical sampling with repetition frequency modulation of pump/probe laser pulses on photoconductive emitter/detector antennas, the high-speed time/frequency domain gigahertz imaging is reported due to the absence of opto-mechanical delay line in this optical scheme. The clear contrast for a 3-cm wide metal plate, which was placed behind a 5-cm thick concrete block, was observed with a 1 × 1 mm image pixilation. On average, it took only ~0.75 s per pixel/waveform acquisition/assignment with a 675 ps time-domain window. This could become a valuable non-destructive evaluation technique in gigahertz spectral range with all benefits of time-domain spectroscopy.

  11. Gigahertz time-domain spectroscopy and imaging for non-destructive materials research and evaluation.

    PubMed

    Bulgarevich, Dmitry S; Shiwa, Mitsuharu; Furuya, Takashi; Tani, Masahiko

    2016-01-01

    By using optical sampling with repetition frequency modulation of pump/probe laser pulses on photoconductive emitter/detector antennas, the high-speed time/frequency domain gigahertz imaging is reported due to the absence of opto-mechanical delay line in this optical scheme. The clear contrast for a 3-cm wide metal plate, which was placed behind a 5-cm thick concrete block, was observed with a 1 × 1 mm image pixilation. On average, it took only ~0.75 s per pixel/waveform acquisition/assignment with a 675 ps time-domain window. This could become a valuable non-destructive evaluation technique in gigahertz spectral range with all benefits of time-domain spectroscopy. PMID:27302877

  12. Could non-destructive methodologies enhance the microbiologically influenced corrosion (MIC) in pipeline systems?

    NASA Astrophysics Data System (ADS)

    Al-Abbas, F.; Kakpovbia, A.; Mishra, B.; Olson, D.; Spear, J.

    2013-01-01

    Stringent corrosion management programs are being deployed by oil and gas industry to ensure the integrity of pipeline systems. Parts of this program are the corrosion protection systems and inspection detection methods included non-destructive techniques. Those measures induce remnant magnetic field (RMF) in the pipeline steel. Potentially the RMF could affect the corrosion process in the pipeline including microbiologically influenced corrosion (MIC). Microorganisms in pipelines have surface charges and produce a wide variety of metabolic products. Consequently, when they are exposed to RMF generated at the linepipe steel surface by the aforementioned sources there will be potential effects. This sequentially will increase the likelihood of biofilm formation and hence enhance/promote MIC. This study investigates the potential effects of RFM on the MIC by sulfate reducing bacteria (SRB).

  13. A rapid non-destructive method for root dentin moisture measurements

    PubMed Central

    Komabayashi, Takashi; Zhu, Qiang; Jiang, Jin; Safavi, Kamran E.; Spångberg, Larz S.W.

    2009-01-01

    Dentin moisture content is important in adhesive bonding and structural strength research. However, there is no rapid method available to assess dentin moisture without sample destruction. This study examined the use of a digital grain moisture meter to measure root dentin moisture in vitro. Extracted mandibular single rooted teeth were sectioned at the CEJ. The moisture of the root dentin was measured at six measuring modes for different grains and repeated five times. Dentin weight changes before and after drying were measured to obtain control values. The control values were compared with machine readings. In conclusion, (1) Each non-destructive measurement took less than 30 seconds. (2) 24 hours storage at 37°C and 100 % humidity did not restore dentin moisture. (3) Five grain modes had a high validity, and could be used for dentin moisture measurements. PMID:19157921

  14. QUANTITATIVE NON-DESTRUCTIVE EVALUATION (QNDE) OF THE ELASTIC MODULI OF POROUS TIAL ALLOYS

    SciTech Connect

    Yeheskel, O.

    2008-02-28

    The elastic moduli of {gamma}-TiA1 were studied in porous samples consolidated by various techniques e.g. cold isostatic pressing (CIP), pressure-less sintering, or hot isostatic pressing (HIP). Porosity linearly affects the dynamic elastic moduli of samples. The results indicate that the sound wave velocities and the elastic moduli affected by the processing route and depend not only on the attained density but also on the consolidation temperature. In this paper we show that there is linear correlation between the shear and the longitudinal sound velocities in porous TiA1. This opens the way to use a single sound velocity as a tool for quantitative non-destructive evaluation (QNDE) of porous TiA1 alloys. Here we demonstrate the applicability of an equation derived from the elastic theory and used previously for porous cubic metals.

  15. Monitoring ground anchor using non-destructive ground anchor integrity test (NDT-GRANIT)

    SciTech Connect

    Robbany, Z. Handayani, G.

    2015-09-30

    Monitoring at ground anchor commonly uses a pull out test method, therefor we developing a non-destructive ground anchor integrity testing (NDT-GRANIT). NDT-GRANIT using the principle of seismic waves that have been modified into form of sweep signal, the signal will be demodulated, filtered, and Fourier transformation (inverse discrete Fourier transform) so the data can be interpreted reflected wave from the ground anchor. The method was applied to determine whether the ground anchor still gripped in the subsurface by looking the attenuation of the wave generated sources. From the result we can see that ground anchor does not grip. To validate the results of the comparison method of measurement used pile integrity test.

  16. MCNP ESTIMATE OF THE SAMPLED VOLUME IN A NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS.

    SciTech Connect

    WIELOPOLSKI, L.; DIOSZEGI, I.; MITRA, S.

    2004-05-03

    Global warming, promoted by anthropogenic CO{sub 2} emission into the atmosphere, is partially mitigated by the photosynthesis processes of the terrestrial echo systems that act as atmospheric CO{sub 2} scrubbers and sequester carbon in soil. Switching from till to no till soils management practices in agriculture further augments this process. Carbon sequestration is also advanced by putting forward a carbon ''credit'' system whereby these can be traded between CO{sub 2} producers and sequesters. Implementation of carbon ''credit'' trade will be further promulgated by recent development of a non-destructive in situ carbon monitoring system based on inelastic neutron scattering (INS). Volumes and depth distributions defined by the 0.1, 1.0, 10, 50, and 90 percent neutron isofluxes, from a point source located at either 5 or 30 cm above the surface, were estimated using Monte Carlo calculations.

  17. Non-destructive testing of an original XVI century painting on wood by ESPI system

    NASA Astrophysics Data System (ADS)

    Arena, G.; Paturzo, M.; Fatigati, G.; Grilli, M.; Pezzati, L.; Ferraro, P.

    2015-03-01

    Electronic Speckle Pattern Interferometry (ESPI), a non-contact and non-destructive optical techniques, was employed for assessing the conservation state of a XVI Century painting on wood (72x88x1,9 cm). By a long term analysis, the whole structure alterations, induced by the room temperature and relative humidity variations, were evaluated. Measurement of the whole painting structural bends was achieved. Local flaws and hidden detachments of pictorial layers from the support, which cannot be recognized by traditional art-restorer methods, were also revealed. This work was prevalently aimed at achieving a simple approach, in the laboratory practice, to get an intuitively user-friendly method for art conservators, not accustomed to high-tech or math based methods. The results demonstrate that ESPI can largely improve the traditional art conservation survey techniques.

  18. Gigahertz time-domain spectroscopy and imaging for non-destructive materials research and evaluation

    PubMed Central

    Bulgarevich, Dmitry S.; Shiwa, Mitsuharu; Furuya, Takashi; Tani, Masahiko

    2016-01-01

    By using optical sampling with repetition frequency modulation of pump/probe laser pulses on photoconductive emitter/detector antennas, the high-speed time/frequency domain gigahertz imaging is reported due to the absence of opto-mechanical delay line in this optical scheme. The clear contrast for a 3-cm wide metal plate, which was placed behind a 5-cm thick concrete block, was observed with a 1 × 1 mm image pixilation. On average, it took only ~0.75 s per pixel/waveform acquisition/assignment with a 675 ps time-domain window. This could become a valuable non-destructive evaluation technique in gigahertz spectral range with all benefits of time-domain spectroscopy. PMID:27302877

  19. Non-destructive research methods applied on materials for the new generation of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Bartošová, I.; Slugeň, V.; Veterníková, J.; Sojak, S.; Petriska, M.; Bouhaddane, A.

    2014-06-01

    The paper is aimed on non-destructive experimental techniques applied on materials for the new generation of nuclear reactors (GEN IV). With the development of these reactors, also materials have to be developed in order to guarantee high standard properties needed for construction. These properties are high temperature resistance, radiation resistance and resistance to other negative effects. Nevertheless the changes in their mechanical properties should be only minimal. Materials, that fulfil these requirements, are analysed in this work. The ferritic-martensitic (FM) steels and ODS steels are studied in details. Microstructural defects, which can occur in structural materials and can be also accumulated during irradiation due to neutron flux or alpha, beta and gamma radiation, were analysed using different spectroscopic methods as positron annihilation spectroscopy and Barkhausen noise, which were applied for measurements of three different FM steels (T91, P91 and E97) as well as one ODS steel (ODS Eurofer).

  20. PREDICTION OF DISSOLVER LIFETIMES THROUGH NON-DESTRUCTIVE EVALUATION AND LABORATORY TESTING

    SciTech Connect

    Mickalonis, J.; Woodsmall, T.; Hinz, W.; Edwards, T.

    2011-10-03

    Non-destructive evaluation was used as the primary method of monitoring the corrosion degradation of nuclear material dissolvers and assessing the remaining lifetimes. Materials were typically processed in nitric acid based (4-14M) solutions containing fluoride concentrations less than 0.2 M. The primary corrosion issue for the stainless steel dissolvers is the occurrence of localized corrosion near the tank bottom and the heat affected zones of the welds. Laboratory data for a range of operational conditions, including solution chemistry and temperature, was used to assess the impact of processing changes on the dissolver corrosion rate. Experimental and NDE-based general corrosion rates were found to be in reasonable agreement for standard dissolution chemistries consisting of nitric acid with fluorides and at temperatures less than 95 C. Greater differences were observed when chloride was present as an impurity and temperatures exceeded 100 C.

  1. In-situ and non-destructive focus determination device for high-precision laser applications

    NASA Astrophysics Data System (ADS)

    Armbruster, Oskar; Naghilou, Aida; Pöhl, Hannes; Kautek, Wolfgang

    2016-09-01

    A non-destructive, in-line, and low-cost focusing device based on an image sensor has been developed and demonstrated. It allows an in situ focus determination for a broad variety of laser types (e.g. cw and pulsed lasers). It provides stringent focusing conditions with high numerical apertures. This approach does not require sub-picosecond and/or auxiliary lasers, or high fluences above damage thresholds. Applications of this system include, but are not limited to the laser-illumination of micro-electrodes, pump-probe microscopy on thin films, and laser ablation of small samples without sufficient surface area for focus determination by ablation. An uncertainty of the focus position by an order of magnitude less than the respective Rayleigh length could be demonstrated.

  2. A non-destructive evaluation of the material properties of a composite laminated plate

    NASA Astrophysics Data System (ADS)

    Papazoglou, V. J.; Tsouvalis, N. G.; Lazaridis, A. G.

    1996-09-01

    A non-destructive method for the evaluation of material properties of a rectangular, anisotropic, homogeneous plate with four free edges is presented. The method consists of two steps. In the first step, a certain number of the plate's natural frequencies are experimentally measured. In the second step, the plate rigidities are varied in a theoretical model, so that the calculated natural frequencies match as close as possible the corresponding experimental values. Two such models are presented, based on the Classical Lamination Theory and on a Higher Order Shear Deformation Theory. High order Lagrange polynomials are used as deflection functions and the Rayleigh-Ritz procedure is employed to arrive at the solution. The identification of the plate rigidities is done by means of an iterative Bayesian parameter estimation method, where possible measurement errors or rigidities' uncertainties can be taken into account.

  3. Verification of nuclear fuel plates by a developed non-destructive assay method

    NASA Astrophysics Data System (ADS)

    El-Gammal, W.; El-Nagdy, M.; Rizk, M.; Shawky, S.; Samei, M. A.

    2005-11-01

    Nuclear material (NM) verification is a main target for NM accounting and control. In this work a new relative non-destructive assay technique has been developed to verify the uranium mass content in nuclear fuel. The technique uses a planar high-resolution germanium gamma ray spectrometer in combination with the MCNP-4B Monte Carlo transport code. A standard NM sample was used to simulate the assayed NM and to determine the average intrinsic full energy peak efficiency of the detector for assayed configuration. The developed technique was found to be capable of verifying the operator declarations with an average accuracy of about 2.8% within a precision of better than 4%.

  4. Non-destructive evaluation of depth of surface cracks using ultrasonic frequency analysis.

    PubMed

    Her, Shiuh-Chuan; Lin, Sheng-Tung

    2014-01-01

    Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875

  5. Non-Destructive Evaluation of Depth of Surface Cracks Using Ultrasonic Frequency Analysis

    PubMed Central

    Her, Shiuh-Chuan; Lin, Sheng-Tung

    2014-01-01

    Ultrasonic is one of the most common uses of a non-destructive evaluation method for crack detection and characterization. The effectiveness of the acoustic-ultrasound Structural Health Monitoring (SHM) technique for the determination of the depth of the surface crack was presented. A method for ultrasonic sizing of surface cracks combined with the time domain and frequency spectrum was adopted. The ultrasonic frequency spectrum was obtained by Fourier transform technique. A series of test specimens with various depths of surface crack ranging from 1 mm to 8 mm was fabricated. The depth of the surface crack was evaluated using the pulse-echo technique. In this work, three different longitudinal waves with frequencies of 2.25 MHz, 5 MHz and 10 MHz were employed to investigate the effect of frequency on the sizing detection of surface cracks. Reasonable accuracies were achieved with measurement errors less than 7%. PMID:25225875

  6. Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics.

    PubMed

    Santana, Felipe Bachion de; Gontijo, Lucas Caixeta; Mitsutake, Hery; Mazivila, Sarmento Júnior; Souza, Leticia Maria de; Borges Neto, Waldomiro

    2016-10-15

    Rosehip oil (Rosa eglanteria L.) is an important oil in the food, pharmaceutical and cosmetic industries. However, due to its high added value, it is liable to adulteration with other cheaper or lower quality oils. With this perspective, this work provides a new simple, fast and accurate methodology using mid-infrared (MIR) spectroscopy and partial least squares discriminant analysis (PLS-DA) as a means to discriminate authentic rosehip oil from adulterated rosehip oil containing soybean, corn and sunflower oils in different proportions. The model showed excellent sensitivity and specificity with 100% correct classification. Therefore, the developed methodology is a viable alternative for use in the laboratory and industry for standard quality analysis of rosehip oil since it is fast, accurate and non-destructive. PMID:27173556

  7. Non-destructive fraud detection in rosehip oil by MIR spectroscopy and chemometrics.

    PubMed

    Santana, Felipe Bachion de; Gontijo, Lucas Caixeta; Mitsutake, Hery; Mazivila, Sarmento Júnior; Souza, Leticia Maria de; Borges Neto, Waldomiro

    2016-10-15

    Rosehip oil (Rosa eglanteria L.) is an important oil in the food, pharmaceutical and cosmetic industries. However, due to its high added value, it is liable to adulteration with other cheaper or lower quality oils. With this perspective, this work provides a new simple, fast and accurate methodology using mid-infrared (MIR) spectroscopy and partial least squares discriminant analysis (PLS-DA) as a means to discriminate authentic rosehip oil from adulterated rosehip oil containing soybean, corn and sunflower oils in different proportions. The model showed excellent sensitivity and specificity with 100% correct classification. Therefore, the developed methodology is a viable alternative for use in the laboratory and industry for standard quality analysis of rosehip oil since it is fast, accurate and non-destructive.

  8. High-resolution thermal imaging methodology for non-destructive evaluation of historic structures

    NASA Astrophysics Data System (ADS)

    Hess, Michael; Vanoni, David; Petrovic, Vid; Kuester, Falko

    2015-11-01

    This paper presents a methodology for automated, portable thermography, for the acquisition of high-resolution thermal image mosaics supporting the non-destructive evaluation of historic structures. The presented approach increases the spatial resolution of thermal surveys to a level of detail needed for building scale analysis. The integration of a robotic camera platform enables automated alignment of multiple images into a high-resolution thermal image mosaic giving a holistic view of the structure while maintaining a level of detail equaling or exceeding that of traditional spot surveys using existing cameras. Providing a digital workflow for automated data and metadata recording increases the consistency and accuracy of surveys regardless of the location or operator. An imaging workflow and instrumentation are shown for a case-study on buildings in Florence, Italy demonstrating the effectiveness of this methodology for structural diagnostics.

  9. Three-dimensional non-destructive testing (NDT) in the infrared spectrum

    NASA Astrophysics Data System (ADS)

    Akhloufi, Moulay A.; Guyon, Yannis; Bendada, Abdelhakim; Castenado, Clemente-Ibarra

    2015-05-01

    Three-dimensional (3D) vision scanning for metrology and inspection applications is an area that knows an increasing interest in the industry. This interest is driven by the recent advances in 3D technologies, permitting to attain high precision measurements at an affordable cost. 3D vision allows for the modelling and inspection of the visible surface of objects. When it is necessary to detect subsurface defects, active infrared (IR) thermography is one of the most used tools today for non-destructive testing (NDT) of materials. Fusion of these two modalities allows the simultaneous detection of surface and subsurface defects and to visualize these defects overlaid on a 3D model of the scanned and modelled parts or their 3D computer-aided design (CAD) models. In this work, we present a framework for automatically fusing 3D data (scanned or CAD) with the infrared thermal images for an NDT process in 3D space.

  10. Non-Destructive Evaluation of Thermal Spray Coating Interface Quality By Eddy Current Method

    SciTech Connect

    B. Mi; G. Zhao; R. Bayles

    2006-08-10

    Thermal spray coating is usually applied through directing molten or softened particles at very high velocities onto a substrate. An eddy current non-destructive inspection technique is presented here for thermal spray coating interface quality characterization. Several high-velocity-oxy-fuel (HVOF) coated steel plates were produced with various surface preparation conditions or spray process parameters. A quad-frequency eddy current probe was used to manually scan over the coating surface to evaluate the bonding quality. Experimental results show that different surface preparation conditions and varied process parameters can be successfully differentiated by the impedance value observed from the eddy current probe. The measurement is fairly robust and consistent. This non-contact, nondestructive, easy-to-use technique has the potential for evaluating the coating quality immediately after its application so that any defects can be corrected immediately.

  11. Transient elastodynamic model for beam defect interaction: application to non-destructive testing

    PubMed

    Raillon; Lecoeur-Taibi

    2000-03-01

    Modeling tools have been developed at the French Atomic Energy Commission (CEA) for the simulation of ultrasonic non-destructive testing inspections. In this paper the model for the prediction of echoes arising from defects within a piece (Mephisto) is presented and some examples are given and compared with experimental results. The model for computing wave defect interaction is based on Kirchhoff's approximation, and uses the principle of reciprocity and a mode-by-mode (between the transducer and the defect) calculation of the echoes. It accounts for possible mode conversions. These approximations and other approximations for the radiated field incident on the defect allow us to obtain a formulation of the echo received at the transducer, which is able to be computed rapidly.

  12. Portable generator-based XRF instrument for non-destructive analysis at crime scenes

    NASA Astrophysics Data System (ADS)

    Schweitzer, Jeffrey S.; Trombka, Jacob I.; Floyd, Samuel; Selavka, Carl; Zeosky, Gerald; Gahn, Norman; McClanahan, Timothy; Burbine, Thomas

    2005-12-01

    Unattended and remote detection systems find applications in space exploration, telemedicine, teleforensics, homeland security and nuclear non-proliferation programs. The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals investigate crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ, together with state and local forensic laboratories. A general-purpose X-ray fluorescence system has been built for non-destructive analyses of trace and invisible material at crime scenes. This portable instrument is based on a generator that can operate to 60 kV and a Schottky CdTe detector. The instrument has been shown to be successful for the analysis of gunshot residue and a number of bodily fluids at crime scenes.

  13. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope.

    PubMed

    Larimer, Curtis; Suter, Jonathan D; Bonheyo, George; Addleman, Raymond Shane

    2016-06-01

    Biofilms are ubiquitous and impact the environment, human health, dental hygiene, and a wide range of industrial processes. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein a method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometry is described. Using this technique, surface morphology, surface roughness, and biofilm thickness were measured over time without while the biofilm continued to grow. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Measured thickness followed expected trends for bacterial growth. Surface roughness also increased over time and was a leading indicator of biofilm growth.

  14. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope.

    PubMed

    Larimer, Curtis; Suter, Jonathan D; Bonheyo, George; Addleman, Raymond Shane

    2016-06-01

    Biofilms are ubiquitous and impact the environment, human health, dental hygiene, and a wide range of industrial processes. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein a method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometry is described. Using this technique, surface morphology, surface roughness, and biofilm thickness were measured over time without while the biofilm continued to grow. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Measured thickness followed expected trends for bacterial growth. Surface roughness also increased over time and was a leading indicator of biofilm growth. PMID:26992071

  15. Template synthesis of test tube nanoparticles using non-destructive replication

    PubMed Central

    Wagner, Jonathan; Yao, Jingyuan; Rodgers, David; Hinds, Bruce

    2013-01-01

    Nano test tubes are a promising delivery vehicle for a range of therapeutics including small molecule drugs and biologics. However, current template synthesis methods of producing nano test tubes are prohibitively expensive and time consuming. Here, non-destructive template replication was used to increase nano test tube yield from porous alumina by more than a hundredfold. We demonstrate how to produce nano test tubes of several sizes and compositions including hybrid tubes with different inner and outer surfaces for targeted surface chemistry. Nano test tubes were readily suspended and stored in aqueous solutions without the need for chemical treatment. These nano test tubes should find application as delivery vehicles for therapeutics, particularly for processive “bionanoreactors” loaded with enzymes. PMID:23376956

  16. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    DOEpatents

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  17. Design of ERL Spoke Cavity For Non-Destructive Assay Research

    NASA Astrophysics Data System (ADS)

    Sawamura, M.; Nagai, R.; Nishimori, N.; Hajima, R.

    2015-10-01

    We are proposing non-destructive assay system of nuclear materials with laser Compton scattering combined with an energy-recovery linac (ERL) and a laser. Since constructing accelerator system for nuclear safe guard and security requires small cavities, spoke cavities have many advantages such as shortening the distance between cavities, small frequency detune due to micro-phonics and easy adjustment of field distribution for strong cell coupling. Calculations of optimized cavity shape and HOM coupler shape have been performed and rf properties with aluminum spoke cavity model have been also measured. Considering refrigerator system required for superconducting accelerator, we are planning to develop 325MHz spoke cavity which can be practically operated with 4K liquid helium. We have started to fabricate the niobium one-spoke cavity.

  18. Prediction of Service Life of Cordierite-Mullite Refractory Materials by Non-Destructive Methods

    SciTech Connect

    Boccaccini, D. N.; Kamseu, Elie; Cannio, M.; Romagnoli, M.; Veronesi, P.; Leonelli, C.; Volkov-Husoviae, T. D.; Dlouhy, I.; Boccaccini, A. R.

    2008-02-15

    Ultrasonic pulse velocity testing was used to perform non-destructive quality control of refractory plates used as substrates in fast firing of porcelain whitewares. The measurement of the ultrasonic velocity was used to asses the presence of internal voids or cracks originated from the manufacturing procedure. Image analysis was used to predict thermal stability of the refractory materials. Two cordierite-mullite compositions were investigated that are characterized by different microstructure morphologies and crack propagation behaviour. A brief discussion about the correlation between microstructure, crack propagation behaviour and thermal shock resistance is presented. Moreover, empirical models were developed to predict the service life of refractory plates from measured values of ultrasonic velocities in plates in the as-received state.

  19. Non-destructive testing of mid-IR optical fiber using infrared imaging

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Fortin, Vincent; Vallée, Réal; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Marcotte, Frédérick

    2016-05-01

    Optical fiber lasers offers the advantage of being relatively compact and efficient. However, the materials such as fluoride and chalcogenide glasses used for their fabrication must be exempt of defects in order to make efficient laser systems. However, most existing quality control techniques are not compatible with chalcogenide fibers because of their limited transparency in the visible spectral range. For this reason, the Université Laval's Centre d'optique, photonique et laser (COPL), in Quebec City, Canada, has developed a novel non-destructive testing (NDT) methodology based on infrared imaging to address this problem. The results show how this simple screening technique eases the selection of high-quality fibers for the design of high-power mid-IR lasers.

  20. Quantitative non-destructive evaluation of high-temperature superconducting materials

    SciTech Connect

    Achenbach, J.D.

    1990-09-15

    Even though the currently intensive research efforts on high-temperature superconducting materials have not yet converged on a well specified material, the strong indications are that such a material will be brittle, anisotropic, and may contain many flaws such as microcracks and voids at grain boundaries. Consequently, practical applications of high temperature superconducting materials will require a very careful strength analysis based on fracture mechanics considerations. Because of the high sensitivity of the strength of such materials to the presence of defects, methods of quantitative non-destructive evaluation may be expected to play an important role in strength determinations. This proposal is concerned with the use of ultrasonic methods to detect and characterize isolated cracks, clusters of microcracks and microcracks distributed throughout the material. Particular attention will be devoted to relating ultrasonic results directly to deterministic and statistical linear elastic fracture mechanics considerations.

  1. Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings.

    PubMed

    Azuma, Kenichi; Uchiyama, Iwao; Uchiyama, Shigehisa; Kunugita, Naoki

    2016-02-01

    Over the past few decades, multiple low level indoor pollutants have been found in domestic dwellings. The types and concentrations of these indoor pollutants have not been consistent over time and have changed with alterations in lifestyle, the development of novel products used in housing, and the development of new measurement technologies. To clarify the highest risk pollutants for which health risks should be reduced, we conducted a health risk assessment of 49 indoor air pollutants measured in 602 houses during winter and summer from 2012 to 2014. Inhalation reference concentrations were determined, and the margins of exposure were estimated for each indoor pollutant from measured indoor air concentrations. Health risks due to ammonia and acidic gases, including formic acid, acetic acid, and hydrogen chloride, were also assessed. Overall, during both winter and summer, the highest risk pollutants were acrolein, nitrogen dioxide, benzene, formic acid, and hydrogen chloride. The health risks of propanal, acetaldehyde, and 1,4-dichlorobenzene were also high. Principal component analysis (PCA) suggested an independent principal component for 1,4-dichlorobenzene. The primary source of exposure to 1,4-dichlorobenzene in Japan is an indoor household insect repellent. The improvement of individual lifestyle and housing may be appropriate targets for reducing the risk associated with this compound. The provision of further information on the risk to consumers and promotion of changes in consumer consciousness are needed. PCA suggested that the health risks of indoor air pollutants are amalgamated into similar chemical families, such as aldehydes, aliphatic hydrocarbons, aromatic hydrocarbons, or acetic esters. Our results suggest that health-based guidelines or source control measures, based on these chemical families and similar health endpoints, are appropriate for reducing total health risk due to multiple low level indoor pollutants.

  2. Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings.

    PubMed

    Azuma, Kenichi; Uchiyama, Iwao; Uchiyama, Shigehisa; Kunugita, Naoki

    2016-02-01

    Over the past few decades, multiple low level indoor pollutants have been found in domestic dwellings. The types and concentrations of these indoor pollutants have not been consistent over time and have changed with alterations in lifestyle, the development of novel products used in housing, and the development of new measurement technologies. To clarify the highest risk pollutants for which health risks should be reduced, we conducted a health risk assessment of 49 indoor air pollutants measured in 602 houses during winter and summer from 2012 to 2014. Inhalation reference concentrations were determined, and the margins of exposure were estimated for each indoor pollutant from measured indoor air concentrations. Health risks due to ammonia and acidic gases, including formic acid, acetic acid, and hydrogen chloride, were also assessed. Overall, during both winter and summer, the highest risk pollutants were acrolein, nitrogen dioxide, benzene, formic acid, and hydrogen chloride. The health risks of propanal, acetaldehyde, and 1,4-dichlorobenzene were also high. Principal component analysis (PCA) suggested an independent principal component for 1,4-dichlorobenzene. The primary source of exposure to 1,4-dichlorobenzene in Japan is an indoor household insect repellent. The improvement of individual lifestyle and housing may be appropriate targets for reducing the risk associated with this compound. The provision of further information on the risk to consumers and promotion of changes in consumer consciousness are needed. PCA suggested that the health risks of indoor air pollutants are amalgamated into similar chemical families, such as aldehydes, aliphatic hydrocarbons, aromatic hydrocarbons, or acetic esters. Our results suggest that health-based guidelines or source control measures, based on these chemical families and similar health endpoints, are appropriate for reducing total health risk due to multiple low level indoor pollutants. PMID:26618504

  3. Portable 1,5 MeV X-Band Linac For Non-destructive Radiography

    NASA Astrophysics Data System (ADS)

    Saversky, A. J.; Rodionov, A. E.; Shaltyrev, A. P.; Shchedrin, I. S.

    1997-05-01

    Portable linear electron accelerator Y-34 developed in Small Accelerator Laboratory of MEPhI for non-destructive industrial radiography. This Linac is a fully self-contained device with the exception of external electric power 220Vx50Gz, 1 phase, 5 kVA. Full mass of Linac Y-34 - less than 300 kg. The Radiographic parameters: Nominal Energy - 1,5 MeV; Energy Range - 0,7...1,8 MeV; Maximum pulse current - 100 mA; Maximum Intensity - 15 R/min@m; Focal spot size - less than 2 mm. The Linac is comprised of 4 subassemblies. The X-ray head with weight less than 100 kg, dimensions: 0,7x0,7x1,0 m contains the traveling-wave accelerating structure with lens 0,4 m, electron gun, vacuum pump, tungsten target and RF-system with 500-kW magnetron. The permanent magnets focusing system provides focal spot less than 2 mm. The high voltage power unit consist of a line-type magnetron/electron gun modulator 2 kW power supply, the weight is equal 70 kg. The self-contained cooling water supply provides temperature controlled water for accelerator structure and magnetron. The control console allows convenient monitoring of critical system and Linac parameters by manual or remote computer. Portable X-band Linac Y-34 is the effective X - ray and/or electron beam source for such applications as non-destructive examination of nuclear reactor systems, solid rocket motors, technology research.

  4. Wave field features of shallow vertical discontinuity and their application in non-destructive detection

    USGS Publications Warehouse

    Liu, J.; Xia, J.; Luo, Y.; Chen, C.; Li, X.; Huang, Y.

    2007-01-01

    The geotechnical integrity of critical infrastructure can be seriously compromised by the presence of fractures or crevices. Non-destructive techniques to accurately detect fractures in critical infrastructure such as dams and highways could be of significant benefit to the geotechnical industry. This paper investigates the application of shallow seismic and georadar methods to the detection of a vertical discontinuity using numerical simulations. The objective is to address the kinematical analysis of a vertical discontinuity, determine the resulting wave field characteristics, and provide the basis for determining the existence of vertical discontinuities based on the recorded signals. Simulation results demonstrate that: (1) A reflection from a vertical discontinuity produces a hyperbolic feature on a seismic or georadar profile; (2) In order for a reflection from a vertical discontinuity to be produced, a reflecting horizon below the discontinuity must exist, the offset between source and receiver (x0) must be non-zero, on the same side of the vertical discontinuity; (3) The range of distances from the vertical discontinuity where a reflection event is observed is proportional to its length and to x0; (4) Should the vertical crevice (or fracture) pass through a reflecting horizon, dual hyperbolic features can be observed on the records, and this can be used as a determining factor that the vertical crevice passes through the interface; and (5) diffractions from the edges of the discontinuity can be recorded with relatively smaller amplitude than reflections and their ranges are not constrained by the length of discontinuity. If the length of discontinuity is short enough, diffractions are the dominant feature. Real-world examples show that the shallow seismic reflection method and the georadar method are capable of recording the hyperbolic feature, which can be interpreted as vertical discontinuity. Thus, these methods show some promise as effective non-destructive

  5. Non-destructive dental-age calculation methods in adults: intra- and inter-observer effects.

    PubMed

    Willems, Guy; Moulin-Romsee, Christian; Solheim, Tore

    2002-05-23

    The aim of the present study was to obtain data on the reliability and reproducibility of two non-destructive dental-age estimation methods in adults by calculating inter- and intra-observer effects. Both a morphological and a radiological technique available in the scientific literature were evaluated on a number of recently extracted teeth: the morphological technique was evaluated on a total of 160 teeth by two examiners, while three examiners applied the radiological technique on apical radiographs of 72 extracted teeth. Paired t-tests were used to calculate intra- and inter-observer differences. For the morphological method, both examiners were able to produce dental-age estimations that did not differ significantly from the real age of the teeth, obtaining a mean error between 0.5 and 1.8 years and a standard deviation of this error between 9.0 and 11.3 years. When using the radiological technique according to the original protocol, all three examiners produced age estimations that were statistically comparable to the real age of the teeth with a mean error of 0.5-2.5 years and a standard deviation of 4.6-9.8 years. For both techniques, intra-observer differences were observed. Based on the results of this study, it can be concluded that both non-destructive dental-age estimation techniques were able to produce reasonably accurate dental-age estimations, at least when these techniques were applied appropriately. However, the forensic odontologist is recommended to use different age estimation techniques and perform repetitive measurements in order to verify the reproducibility of the calculations performed. PMID:12062945

  6. Monitoring fungal growth on brown rice grains using rapid and non-destructive hyperspectral imaging.

    PubMed

    Siripatrawan, U; Makino, Y

    2015-04-16

    This research aimed to develop a rapid, non-destructive, and accurate method based on hyperspectral imaging (HSI) for monitoring spoilage fungal growth on stored brown rice. Brown rice was inoculated with a non-pathogenic strain of Aspergillus oryzae and stored at 30 °C and 85% RH. Growth of A. oryzae on rice was monitored using viable colony counts, expressed as colony forming units per gram (CFU/g). The fungal development was observed using scanning electron microscopy. The HSI system was used to acquire reflectance images of the samples covering the visible and near-infrared (NIR) wavelength range of 400-1000 nm. Unsupervised self-organizing map (SOM) was used to visualize data classification of different levels of fungal infection. Partial least squares (PLS) regression was used to predict fungal growth on rice grains from the HSI reflectance spectra. The HSI spectral signals decreased with increasing colony counts, while conserving similar spectral pattern during the fungal growth. When integrated with SOM, the proposed HSI method could be used to classify rice samples with different levels of fungal infection without sample manipulation. Moreover, HSI was able to rapidly identify infected rice although the samples showed no symptoms of fungal infection. Based on PLS regression, the coefficient of determination was 0.97 and root mean square error of prediction was 0.39 log (CFU/g), demonstrating that the HSI technique was effective for prediction of fungal infection in rice grains. The ability of HSI to detect fungal infection at early stage would help to prevent contaminated rice grains from entering the food chain. This research provides scientific information on the rapid, non-destructive, and effective fungal detection system for rice grains. PMID:25662486

  7. Non-destructive in situ mapping of macroholes, cracks and inhomogeneities of stalagmites in cave environments

    NASA Astrophysics Data System (ADS)

    Hegymegi, Erika; Gyöngy, Miklós; Bodolai, Tamás; Divós, Ferenc; Barta, Edit; Gribovszki, Katalin; Bokelmann, Götz; Hegymegi, Csaba; Lednická, Markéta; Kovács, Károly

    2016-04-01

    Intact and vulnerable, candle-stick type stalagmites can be used as prehistoric-earthquake indicators during seismic-hazard analysis of a given region, because they are old enough to survive several earthquakes. The continued intactness of the stalagmites indicates a lack of earthquakes that had the strength to destroy them. To make sure that the stalagmites are intact, we have to image their internal structure in order to estimate the steadiness more accurate and potential failure in the last few thousand years, during their evolution. These stalagmites play an important indicator role and carry fundamental information; however, legally they are strictly protected natural objects in Europe. Therefore it is impossible to examine them in the laboratory by conventional equipment such as computer tomography (CT) or X-ray, because this would require taking samples. With the presented non-destructive methods (ultrasound and acoustic tomography) we tried to detect macroholes, cracks and velocity anomalies inside the stalagmites on the mm scale in situ, in the cave. The acoustic tomography applied in the current work is an existing method in forest research. Forest researchers use it to non-destructively detect the size and location of decayed or hollow parts in the trunk and this technique is able to detect the velocity changing of wave propagation and anomalies in the stalagmites as well. The other method that we use is ultrasound imaging, which uses (and is able to calculate) the velocity of sound propagation. Here, the frequency used is much higher (typically 250 kHz to 5 MHz), which increases resolution but at the same time decreases penetration depth compared to acoustic tomography. In this latter work, through transmission and TOFD (time-of-flight-diffraction) ultrasound methods are using thickness-mode ultrasound transducers (Panametrics, Olympus). Such equipment is well-adapted to the cave environment and this is the first time that it has been used for these

  8. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T. M.; Sigloch, K.

    2011-12-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and engineering structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to analyze ultrasonic waveforms measured at the surface of Plexiglas and rock samples, and to define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  9. Non-destructive ripeness sensing by using proton NMR (Nuclear Magnetic Resonance)

    SciTech Connect

    Cho, Seong In; Krutz, G.W.; Stroshine, R.L. . Dept. of Agricultural Engineering); Bellon, V. , 34 - Montpellier )

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz). 7 refs., 4 figs.

  10. μ-XRF analysis of glasses: a non-destructive utility for Cultural Heritage applications.

    PubMed

    Vaggelli, G; Cossio, R

    2012-02-01

    This paper presents a μ-XRF analytical approach for a non-destructive study of Cultural Heritage glass finds. This technique can be used for quantitative analysis of small volumes of solid samples, with a sensitivity that is superior to the electron microprobe but inferior to an ICP-MS system. An experimental set-up with natural and synthetic glass standards is proposed here for the quantitative analyses of major and trace elements on glass objects which cannot be sampled such as small archaeological or historical artefacts from Cultural Heritage. The described method, performed by means of the commercial μ-XRF Eagle III-XPL, was applied to Islamic glass specimens of Sasanian production (III-VII century A.D.) previously analyzed by ICP-MS and SEM-EDS techniques (P. Mirti, M. Pace, M. Negro Ponzi and M. Aceto, Archaeometry, 2008, 50(3), 429-450; P. Mirti, M. Pace, M. Malandrino and M. Negro Ponzi, J. Archaeol. Sci., 36, 1061-1069; and M. Gulmini, M. Pace, G. Ivaldi, M. Negro Ponzi and P. Mirti, J. Non-Cryst. Solids, 2009, 355, 1613-1621) and coming from the archaeological site of Veh Ardasir in modern Iraq. Major elements (Na, Mg, Al, Si, K, Ca, Fe) of glass specimens show an accuracy better than 5%. Trace elements (Cr, Mn, Sr and Zr) display an accuracy better than 5% when the checked elements have a concentration >100 ppm by weight, whereas it is around 10% with a concentration <100 ppm by weight. μ-XRF is, therefore, a suitable elemental analysis technique for the non-destructive study of small glass finds due to its relatively good accuracy, reproducibility and low detection limits (∼tens ppm).

  11. Non-destructive Ripeness Sensing by Using Proton NMR [Nuclear Magnetic Resonance

    DOE R&D Accomplishments Database

    Cho, Seong In; Krutz, G. W.; Stroshine, R. L.; Bellon, V.

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz).

  12. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution

    PubMed Central

    Pettit, Ashley P.; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46–70 years) were taken on a 1.5hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics. PMID:26656561

  13. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution.

    PubMed

    Pettit, Ashley P; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46-70 years) were taken on a 1.5 hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics.

  14. Air pollution exposure: a novel environmental risk factor for interstitial lung disease?

    PubMed

    Johannson, Kerri A; Balmes, John R; Collard, Harold R

    2015-04-01

    Air pollution exposure is a well-established risk factor for several adverse respiratory outcomes, including airways diseases and lung cancer. Few studies have investigated the relationship between air pollution and interstitial lung disease (ILD) despite many forms of ILD arising from environmental exposures. There are potential mechanisms by which air pollution could cause, exacerbate, or accelerate the progression of certain forms of ILD via pulmonary and systemic inflammation as well as oxidative stress. This article will review the current epidemiologic and translational data supporting the plausibility of this relationship and propose a new conceptual framework for characterizing novel environmental risk factors for these forms of lung disease.

  15. Health and Household Air Pollution from Solid Fuel Use: The Need for Improved Exposure Assessment

    PubMed Central

    Peel, Jennifer L.; Balakrishnan, Kalpana; Breysse, Patrick N.; Chillrud, Steven N.; Naeher, Luke P.; Rodes, Charles E.; Vette, Alan F.; Balbus, John M.

    2013-01-01

    Background: Nearly 3 billion people worldwide rely on solid fuel combustion to meet basic household energy needs. The resulting exposure to air pollution causes an estimated 4.5% of the global burden of disease. Large variability and a lack of resources for research and development have resulted in highly uncertain exposure estimates. Objective: We sought to identify research priorities for exposure assessment that will more accurately and precisely define exposure–response relationships of household air pollution necessary to inform future cleaner-burning cookstove dissemination programs. Data Sources: As part of an international workshop in May 2011, an expert group characterized the state of the science and developed recommendations for exposure assessment of household air pollution. Synthesis: The following priority research areas were identified to explain variability and reduce uncertainty of household air pollution exposure measurements: improved characterization of spatial and temporal variability for studies examining both short- and long-term health effects; development and validation of measurement technology and approaches to conduct complex exposure assessments in resource-limited settings with a large range of pollutant concentrations; and development and validation of biomarkers for estimating dose. Addressing these priority research areas, which will inherently require an increased allocation of resources for cookstove research, will lead to better characterization of exposure–response relationships. Conclusions: Although the type and extent of exposure assessment will necessarily depend on the goal and design of the cookstove study, without improved understanding of exposure–response relationships, the level of air pollution reduction necessary to meet the health targets of cookstove interventions will remain uncertain. Citation: Clark ML, Peel JL, Balakrishnan K, Breysse PN, Chillrud SN, Naeher LP, Rodes CE, Vette AF, Balbus JM. 2013. Health

  16. Critical Evaluation of Air-Liquid Interface Exposure Devices for In Vitro Assessment of Atmospheric Pollutants

    EPA Science Inventory

    Exposure of cells to atmospheric pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of attached cells submerged in liquid medium. However, there is still limited understanding of the ideal ALI device design features that permit reproducible a...

  17. (CZ)BIOMARKERS OF EXPOSURE TO PARTICULATE AIR POLLUTION IN THE CZECH REPUBLIC

    EPA Science Inventory

    The use of biomarkers in the Teplice Program, provided a key tool to relate health outcomes to individual personal exposures and to provide measures of confounding exposures. This research program on the health effects of air pollution studied a population living in the heavil...

  18. (PRAGUE)BIOMARKERS OF EXPOSURE TO PARTICULATE AIR POLLUTION IN THE CZECH REPUBLIC

    EPA Science Inventory

    The use of biomarkers in the Teplice Program, provided a key tool to relate health outcomes to individual personal exposures and to provide measures of confounding exposures. This research program on the health effects of air pollution studied a population living in the heavil...

  19. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  20. Ambient air pollution exposure and the incidence of related health effects among racial/ethnic minorities

    SciTech Connect

    Nieves, L.A.; Wernette, D.R.

    1997-02-01

    Differences among racial and ethnic groups in morbidity and mortality rates for diseases, including diseases with environmental causes, have been extensively documented. However, documenting the linkages between environmental contaminants, individual exposures, and disease incidence has been hindered by difficulties in measuring exposure for the population in general and for minority populations in particular. After briefly discussing research findings on associations of common air pollutants with disease incidence, the authors summarize recent studies of radial/ethnic subgroup differences in incidence of these diseases in the US. They then present evidence of both historic and current patterns of disproportionate minority group exposure to air pollution as measured by residence in areas where ambient air quality standards are violated. The current indications of disproportionate potential exposures of minority and low-income populations to air pollutants represent the continuation of a historical trend. The evidence of linkage between disproportionate exposure to air pollution of racial/ethnic minorities and low-income groups and their higher rates of some air pollution-related diseases is largely circumstantial. Differences in disease incidence and mortality rates among racial/ethnic groups are discussed for respiratory diseases, cancers, and lead poisoning. Pollutants of concern include CO, Pb, SO{sub 2}, O{sub 3}, and particulates.

  1. Short-Term Exposure to Air Pollution and Digital Vascular Function

    PubMed Central

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.; Benjamin, Emelia J.; Mittleman, Murray A.; Hamburg, Naomi M.

    2014-01-01

    We investigated associations between ambient air pollution and microvessel function measured by peripheral arterial tonometry between 2003 and 2008 in the Framingham Heart Study Offspring and Third Generation Cohorts. We measured particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), black carbon, sulfates, particle number, nitrogen oxides, and ozone by using fixed monitors, and we determined moving averages for 1–7 days preceding vascular testing. We examined associations between these exposures and hyperemic response to ischemia and baseline pulse amplitude, a measure of arterial tone (n = 2,369). Higher short-term exposure to air pollutants, including PM2.5, black carbon, and particle number was associated with higher baseline pulse amplitude. For example, higher 3-day average PM2.5 exposure was associated with 6.3% higher baseline pulse amplitude (95% confidence interval: 2.0, 10.9). However, there were no consistent associations between the air pollution exposures assessed and hyperemic response. Our findings in a community-based sample exposed to relatively low pollution levels suggest that short-term exposure to ambient particulate pollution is not associated with vasodilator response, but that particulate air pollution is associated with baseline pulse amplitude, suggesting potentially adverse alterations in baseline vascular tone or compliance. PMID:25100647

  2. Environmental inequality: Air pollution exposures in California's South Coast Air Basin

    NASA Astrophysics Data System (ADS)

    Marshall, Julian D.

    Environmental inequality is quantified here using linear regression, based on results from a recent mobility-based exposure model for 25,064 individuals in California's South Coast Air Basin [Marshall et al., 2006. Inhalation intake of ambient air pollution in California's South Coast Air Basin. Atmospheric Environment 40, 4381-4392]. For the four primary pollutants studied (benzene, butadiene, chromium particles, and diesel particles), mean exposures are higher than average for people who are nonwhite, are from lower-income households, and live in areas with high population density. For ozone (a secondary pollutant), the reverse holds. Holding constant attributes such as population density and daily travel distance, mean exposure differences between whites and nonwhites are 16-40% among the five pollutants. These findings offer a baseline to compare against future conditions or to evaluate the impact of proposed policies.

  3. The microenvironmental modelling approach to assess children's exposure to air pollution - A review.

    PubMed

    Branco, P T B S; Alvim-Ferraz, M C M; Martins, F G; Sousa, S I V

    2014-11-01

    Exposures to a wide spectrum of air pollutants were associated to several effects on children's health. Exposure assessment can be used to establish where and how air pollutants' exposures occur. However, a realistic estimation of children's exposures to air pollution is usually a great ethics challenge, especially for young children, because they cannot intentionally be exposed to contaminants and according to Helsinki declaration, they are not old enough to make a decision on their participation. Additionally, using adult surrogates introduces bias, since time-space-activity patterns are different from those of children. From all the different available approaches for exposure assessment, the microenvironmental (ME) modelling (indirect approach, where personal exposures are estimated or predicted from microenvironment measurements combined with time-activity data) seemed to be the best to assess children's exposure to air pollution as it takes into account the varying levels of pollution to which an individual is exposed during the course of the day, it is faster and less expensive. Thus, this review aimed to explore the use of the ME modelling approach methodology to assess children's exposure to air pollution. To meet this goal, a total of 152 articles, published since 2002, were identified and titles and abstracts were scanned for relevance. After exclusions, 26 articles were fully reviewed and main characteristics were detailed, namely: (i) study design and outcomes, including location, study population, calendar time, pollutants analysed and purpose; and (ii) data collection, including time-activity patterns (methods of collection, record time and key elements) and pollution measurements (microenvironments, methods of collection and duration and time resolution). The reviewed studies were from different parts of the world, confirming the worldwide application, and mostly cross-sectional. Longitudinal studies were also found enhancing the applicability of

  4. PM(10) exposure, gaseous pollutants, and daily mortality in Inchon, South Korea.

    PubMed Central

    Hong, Y C; Leem, J H; Ha, E H; Christiani, D C

    1999-01-01

    To evaluate the relative importance of various measures of particulate and gaseous air pollution as predictors of daily mortality in Inchon, South Korea, the association between total daily mortality and air pollution was investigated for a 20-month period (January 1995 through August 1996). Poisson regression was used to regress daily death counts on each air pollutant, controlling for time trends, season, and meteorologic influences such as temperature and relative humidity. Regression coefficients of a 5-day moving average of particulate matter less than or = to 10 microm in aerodynamic diameter (PM(10)) on total mortality were positively significant when considered separately and simultaneously with other pollutants in the model. PM(10) remained significant when the models were confined to cardiovascular or respiratory mortality. Sulfur dioxide (SO(2)) and carbon monoxide (CO) were significantly related to respiratory mortality in the single-pollutant model. Ozone exposure was not statistically significant with regard to mortality in the above models, and graphic analysis showed that the relationship was nonlinear. A combined index of PM(10), nitrogen dioxide, SO(2), and CO seemed to better explain the exposure-response relationship with total mortality than an individual air pollutant. Pollutants should be considered together in the risk assessment of air pollution, as opposed to measuring the risk of individual pollutants. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10544154

  5. Arsenic pesticides and environmental pollution: exposure, poisoning, hazards and recommendations.

    PubMed

    El-Bahnasawy, Mamdouh M; Mohammad, Amina El-Hosini; Morsy, Tosson A

    2013-08-01

    Arsenic is a metalloid element. Acute high-dose exposure to arsenic can cause severe systemic toxicity and death. Lower dose chronic arsenic exposure can result in subacute toxicity that can include peripheral sensorimotor neuropathy, skin eruptions, and hepatotoxicity. Long-term effects of arsenic exposure include an in Due to the physiologic effects of the arsenic on all body systems, thus, chronic arsenic-poisoned patient is a major nursing challenge. The critical care nurse provides valuable assessment and interventions that prevent major multisystem complications from arsenic toxicity.

  6. Simulation of population-based commuter exposure to NO₂ using different air pollution models.

    PubMed

    Ragettli, Martina S; Tsai, Ming-Yi; Braun-Fahrländer, Charlotte; de Nazelle, Audrey; Schindler, Christian; Ineichen, Alex; Ducret-Stich, Regina E; Perez, Laura; Probst-Hensch, Nicole; Künzli, Nino; Phuleria, Harish C

    2014-05-12

    We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland), and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2) as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD) NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m(-3), range: 21-61) than with a dispersion model with a lower resolution (39 ± 5 µg m(-3); range: 24-51), and a land use regression model (41 ± 5 µg m(-3); range: 24-54). Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas.

  7. Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models

    PubMed Central

    Ragettli, Martina S.; Tsai, Ming-Yi; Braun-Fahrländer, Charlotte; de Nazelle, Audrey; Schindler, Christian; Ineichen, Alex; Ducret-Stich, Regina E.; Perez, Laura; Probst-Hensch, Nicole; Künzli, Nino; Phuleria, Harish C.

    2014-01-01

    We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland), and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2) as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD) NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m−3, range: 21–61) than with a dispersion model with a lower resolution (39 ± 5 µg m−3; range: 24–51), and a land use regression model (41 ± 5 µg m−3; range: 24–54). Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas. PMID:24823664

  8. Modelling of human exposure to air pollution in the urban environment: a GPS-based approach.

    PubMed

    Dias, Daniela; Tchepel, Oxana

    2014-03-01

    The main objective of this work was the development of a new modelling tool for quantification of human exposure to traffic-related air pollution within distinct microenvironments by using a novel approach for trajectory analysis of the individuals. For this purpose, mobile phones with Global Positioning System technology have been used to collect daily trajectories of the individuals with higher temporal resolution and a trajectory data mining, and geo-spatial analysis algorithm was developed and implemented within a Geographical Information System to obtain time-activity patterns. These data were combined with air pollutant concentrations estimated for several microenvironments. In addition to outdoor, pollutant concentrations in distinct indoor microenvironments are characterised using a probabilistic approach. An example of the application for PM2.5 is presented and discussed. The results obtained for daily average individual exposure correspond to a mean value of 10.6 and 6.0-16.4 μg m(-3) in terms of 5th-95th percentiles. Analysis of the results shows that the use of point air quality measurements for exposure assessment will not explain the intra- and inter-variability of individuals' exposure levels. The methodology developed and implemented in this work provides time-sequence of the exposure events thus making possible association of the exposure with the individual activities and delivers main statistics on individual's air pollution exposure with high spatio-temporal resolution.

  9. Climate change impacts on human exposures to air pollution

    EPA Science Inventory

    This is an abstract for a presentations at the Annual Conference of the International Society on Exposure Science and Environmental Epidemiology. This presentation will serve as an introduction to the symposium.

  10. Heterogeneity of passenger exposure to air pollutants in public transport microenvironments

    NASA Astrophysics Data System (ADS)

    Yang, Fenhuan; Kaul, Daya; Wong, Ka Chun; Westerdahl, Dane; Sun, Li; Ho, Kin-fai; Tian, Linwei; Brimblecombe, Peter; Ning, Zhi

    2015-05-01

    Epidemiologic studies have linked human exposure to pollutants with adverse health effects. Passenger exposure in public transport systems contributes an important fraction of daily burden of air pollutants. While there is extensive literature reporting the concentrations of pollutants in public transport systems in different cities, there are few studies systematically addressing the heterogeneity of passenger exposure in different transit microenvironments, in cabins of different transit vehicles and in areas with different characteristics. The present study investigated PM2.5 (particulate matter with aerodynamic diameters smaller than 2.5 μm), black carbon (BC), ultrafine particles (UFP) and carbon monoxide (CO) pollutant concentrations in various public road transport systems in highly urbanized city of Hong Kong. Using a trolley case housing numerous portable air monitors, we conducted a total of 119 trips during the campaign. Transit microenvironments, classified as 1). busy and secondary roadside bus stops; 2). open and enclosed termini; 3). above- and under-ground Motor Rail Transport (MTR) platforms, were investigated and compared to identify the factors that may affect passenger exposures. The pollutants inside bus and MTR cabins were also investigated together with a comparison of time integrated exposure between the transit modes. Busy roadside and enclosed termini demonstrated the highest average particle concentrations while the lowest was found on the MTR platforms. Traffic-related pollutants BC, UFP and CO showed larger variations than PM2.5 across different microenvironments and areas confirming their heterogeneity in urban environments. In-cabin pollutant concentrations showed distinct patterns with BC and UFP high in diesel bus cabins and CO high in LPG bus cabins, suggesting possible self-pollution issues and/or penetration of on-road pollutants inside cabins during bus transit. The total passenger exposure along selected routes, showed bus

  11. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    NASA Astrophysics Data System (ADS)

    Batterman, Stuart; Chambliss, Sarah; Isakov, Vlad

    2014-09-01

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km2) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 h, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic

  12. Spatial Resolution Requirements for Traffic-Related Air Pollutant Exposure Evaluations.

    PubMed

    Batterman, Stuart; Chambliss, Sarah; Isakov, Vlad

    2014-09-01

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km(2)) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9,700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 hr, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic

  13. An examination of exposure measurement error from air pollutant spatial variability in time-series studies.

    PubMed

    Sarnat, Stefanie E; Klein, Mitchel; Sarnat, Jeremy A; Flanders, W Dana; Waller, Lance A; Mulholland, James A; Russell, Armistead G; Tolbert, Paige E

    2010-03-01

    Relatively few studies have evaluated the effects of heterogeneous spatiotemporal pollutant distributions on health risk estimates in time-series analyses that use data from a central monitor to assign exposures. We present a method for examining the effects of exposure measurement error relating to spatiotemporal variability in ambient air pollutant concentrations on air pollution health risk estimates in a daily time-series analysis of emergency department visits in Atlanta, Georgia. We used Poisson generalized linear models to estimate associations between current-day pollutant concentrations and circulatory emergency department visits for the 1998-2004 time period. Data from monitoring sites located in different geographical regions of the study area and at different distances from several urban geographical subpopulations served as alternative measures of exposure. We observed associations for spatially heterogeneous pollutants (CO and NO(2)) using data from several different urban monitoring sites. These associations were not observed when using data from the most rural site, located 38 miles from the city center. In contrast, associations for spatially homogeneous pollutants (O(3) and PM(2.5)) were similar, regardless of the monitoring site location. We found that monitoring site location and the distance of a monitoring site to a population of interest did not meaningfully affect estimated associations for any pollutant when using data from urban sites located within 20 miles from the population center under study. However, for CO and NO(2), these factors were important when using data from rural sites located > or = 30 miles from the population center, most likely owing to exposure measurement error. Overall, our findings lend support to the use of pollutant data from urban central sites to assess population exposures within geographically dispersed study populations in Atlanta and similar cities. PMID:19277071

  14. A simulation study to determine the attenuation and bias in health risk estimates due to exposure measurement error in bi-pollutant models

    EPA Science Inventory

    To understand the combined health effects of exposure to ambient air pollutant mixtures, it is becoming more common to include multiple pollutants in epidemiologic models. However, the complex spatial and temporal pattern of ambient pollutant concentrations and related exposures ...

  15. Comparing disproportionate exposure to acute and chronic pollution risks: a case study in Houston, Texas.

    PubMed

    Chakraborty, Jayajit; Collins, Timothy W; Grineski, Sara E; Montgomery, Marilyn C; Hernandez, Maricarmen

    2014-11-01

    While environmental justice (EJ) research in the United States has focused primarily on the social distribution of chronic pollution risks, previous empirical studies have not analyzed disparities in exposure to both chronic (long-term) and acute (short-term) pollution in the same study area. Our article addresses this limitation though a case study that compares social inequities in exposure to chronic and acute pollution risks in the Greater Houston Metropolitan Statistical Area, Texas. The study integrates estimates of chronic cancer risk associated with ambient exposure to hazardous air pollutants from the Environmental Protection Agency's National-Scale Air Toxics Assessment (2005), hazardous chemical accidents from the National Response Center's Emergency Response Notification System (2007-2011), and sociodemographic characteristics from the American Community Survey (2007-2011). Statistical analyses are based on descriptive comparisons, bivariate correlations, and locally derived spatial regression models that account for spatial dependence in the data. Results indicate that neighborhoods with a higher percentage of Hispanic residents, lower percentage of homeowners, and higher income inequality are facing significantly greater exposure to both chronic and acute pollution risks. The non-Hispanic black percentage is significantly higher in neighborhoods with greater chronic cancer risk, but lower in areas exposed to acute pollution events. Households isolated by language--those highly likely to face evacuation problems during an actual chemical disaster--tend to reside in areas facing significantly greater exposure to high-impact acute events. Our findings emphasize the growing need to examine social inequities in exposure to both chronic and acute pollution risks in future EJ research and policy.

  16. Fast solver for large scale eddy current non-destructive evaluation problems

    NASA Astrophysics Data System (ADS)

    Lei, Naiguang

    Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two

  17. Non-destructive testing for the structures and civil infrastructures characterization

    NASA Astrophysics Data System (ADS)

    Capozzoli, L.; Rizzo, E.

    2012-04-01

    infrared thermography and sonic testing. Finally, we investigated a radiant floor by GPR (900 MHz to 2000 MHz antennas) and long-wave infrared camera. Non-destructive diagnostic techniques allow to investigate a building structure in reinforced concrete or masonry without altering the characteristics of the element investigated. For this reason, geo-electrical and electromagnetic surveys of masonry are a suitable non-destructive tool for the diagnosis of a deteriorated concrete structure. Moreover, the integration of different NDT techniques (conventional and no-conventional) is a very powerful to maximize the capabilities and to compensate for the limitations of each method.

  18. Accuracy of Non-Destructive Testing of PBRs to Estimate Fragilities

    NASA Astrophysics Data System (ADS)

    Brune, J. N.; Brune, R.; Biasi, G. P.; Anooshehpoor, R.; Purvance, M.

    2011-12-01

    Prior studies of Precariously Balanced Rocks (PBRs) have involved various methods of documenting rock shapes and fragilities. These have included non-destructive testing (NDT) methods such as photomodeling, and potentially destructive testing (PDT) such as forced tilt tests. PDT methods usually have the potential of damaging or disturbing the rock or its pedestal so that the PBR usefulness for future generations is compromised. To date we have force-tilt tested approximately 28 PBRs, and of these we believe 7 have been compromised. We suggest here that given other inherent uncertainties in the current methodologies, NDT methods are now sufficiently advanced as to be adequate for the current state of the art use for comparison with Ground Motion Prediction Equations (GMPEs) and seismic hazard maps (SHMs). Here we compare tilt-test static toppling estimates to three non-destructive methods: (1) 3-D photographic modeling (2) profile analysis assuming the rock is 2-D, and (3) expert judgments from photographs. 3-D modeling uses the commercial Photomodeler program and photographs in the field taken from numerous directions around the rock. The output polyhedral shape is analyzed in Matlab determine the center of mass and in Autocad to estimate the static overturning angle alpha. For the 2-D method we chose the photograph in profile looking perpendicular to the estimated direction of toppling. The rock is outlined as a 2-D object in Matlab. Rock dimensions, rocking points, and a vertical reference are supplied by the photo analyst to estimate the center of gravity and static force overturning angles. For the expert opinion method we used additional photographs taken from different directions to improve the estimates of the center of mass and the rocking points. We used 7 rocks for comparisons. The error in estimating tan alpha from 3-D modeling is about 0.05. For 2-D estimates an average error is about 0.1 (?). For expert opinion estimates the error is about 0.06. For

  19. Methods for assessing the extent of exposure and effects of air pollution.

    PubMed Central

    Krzyzanowski, M

    1997-01-01

    BACKGROUND AND OBJECTIVES: In many places in Europe, the ambient air pollution exceeds the levels considered to be safe for health. The objective of the paper is to review and summarise the methods of assessment of its impact on health, and to indicate the contributions of various research disciplines, particularly environmental epidemiology. METHODS: The framework for assessment of impact is based on a four stage model: assessment of release of pollutant; assessment of exposure; assessment of the consequence; and risk estimation. RESULTS: Epidemiology is crucial in providing the data for the assessment of consequence. The criteria that determine the use of epidemiological studies for this task include lack of bias, correct control of confounding, and measured estimates of exposure. At present, those criteria are easier to satisfy for studies of short term effects on health than for the delayed consequences of exposure, or exposure accumulated over a prolonged period. Combinations of results from various populations through meta-analysis of existing studies or conducting multicentre studies is often necessary to increase the reliability of the consequence assessment stage. CONCLUSION: To assess the impact on health systematically helps to focus on actions to limit air pollutants with the greatest impacts on human health and on the most affected populations. This method allows identification of the most pertinent questions which have to be answered by studies on relations between pollution and health and on exposure of populations to air pollutants. Epidemiology has considerable potential to contribute to this research. PMID:9155775

  20. A non-destructive readout circuit of the linear array image sensor with over 90dB dynamic range and 190k fps for radar system

    NASA Astrophysics Data System (ADS)

    Yang, Cong-jie; Gao, Zhi-yuan; Zeng, Xin-ji; Yao, Su-ying; Gao, Jing

    2015-04-01

    This paper presents a non-destructive readout circuit of the linear array image sensor with wide dynamic range and high speed readout for radar system. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A class AB OPA is utilized to drive all the additional capacitors to achieve high speed readout. A photo response curve presents as a polyline with 5 segments, which enables a 101.7 dB dynamic range. In addition, the exposure time is 5.12us in the simulation, then an over 190k fps is achieved.

  1. Traffic, air pollution, minority and socio-economic status: addressing inequities in exposure and risk.

    PubMed

    Pratt, Gregory C; Vadali, Monika L; Kvale, Dorian L; Ellickson, Kristie M

    2015-05-19

    Higher levels of nearby traffic increase exposure to air pollution and adversely affect health outcomes. Populations with lower socio-economic status (SES) are particularly vulnerable to stressors like air pollution. We investigated cumulative exposures and risks from traffic and from MNRiskS-modeled air pollution in multiple source categories across demographic groups. Exposures and risks, especially from on-road sources, were higher than the mean for minorities and low SES populations and lower than the mean for white and high SES populations. Owning multiple vehicles and driving alone were linked to lower household exposures and risks. Those not owning a vehicle and walking or using transit had higher household exposures and risks. These results confirm for our study location that populations on the lower end of the socio-economic spectrum and minorities are disproportionately exposed to traffic and air pollution and at higher risk for adverse health outcomes. A major source of disparities appears to be the transportation infrastructure. Those outside the urban core had lower risks but drove more, while those living nearer the urban core tended to drive less but had higher exposures and risks from on-road sources. We suggest policy considerations for addressing these inequities.

  2. Traffic, Air Pollution, Minority and Socio-Economic Status: Addressing Inequities in Exposure and Risk

    PubMed Central

    Pratt, Gregory C.; Vadali, Monika L.; Kvale, Dorian L.; Ellickson, Kristie M.

    2015-01-01

    Higher levels of nearby traffic increase exposure to air pollution and adversely affect health outcomes. Populations with lower socio-economic status (SES) are particularly vulnerable to stressors like air pollution. We investigated cumulative exposures and risks from traffic and from MNRiskS-modeled air pollution in multiple source categories across demographic groups. Exposures and risks, especially from on-road sources, were higher than the mean for minorities and low SES populations and lower than the mean for white and high SES populations. Owning multiple vehicles and driving alone were linked to lower household exposures and risks. Those not owning a vehicle and walking or using transit had higher household exposures and risks. These results confirm for our study location that populations on the lower end of the socio-economic spectrum and minorities are disproportionately exposed to traffic and air pollution and at higher risk for adverse health outcomes. A major source of disparities appears to be the transportation infrastructure. Those outside the urban core had lower risks but drove more, while those living nearer the urban core tended to drive less but had higher exposures and risks from on-road sources. We suggest policy considerations for addressing these inequities. PMID:25996888

  3. Air Pollution Exposure During Pregnancy and Fetal Markers of Metabolic function: The MIREC Study.

    PubMed

    Lavigne, Eric; Ashley-Martin, Jillian; Dodds, Linda; Arbuckle, Tye E; Hystad, Perry; Johnson, Markey; Crouse, Dan L; Ettinger, Adrienne S; Shapiro, Gabriel D; Fisher, Mandy; Morisset, Anne-Sophie; Taback, Shayne; Bouchard, Maryse F; Sun, Liu; Monnier, Patricia; Dallaire, Renée; Fraser, William D

    2016-05-01

    Previous evidence suggests that exposure to outdoor air pollution during pregnancy could alter fetal metabolic function, which could increase the risk of obesity in childhood. However, to our knowledge, no epidemiologic study has investigated the association between prenatal exposure to air pollution and indicators of fetal metabolic function. We investigated the association between maternal exposure to nitrogen dioxide and fine particulate matter (aerodynamic diameter ≤2.5 µm) and umbilical cord blood leptin and adiponectin levels with mixed-effects linear regression models among 1,257 mother-infant pairs from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, conducted in Canada (2008-2011). We observed that an interquartile-range increase in average exposure to fine particulate matter (3.2 µg/m(3)) during pregnancy was associated with an 11% (95% confidence interval: 4, 17) increase in adiponectin levels. We also observed 13% (95% confidence interval: 6, 20) higher adiponectin levels per interquartile-range increase in average exposure to nitrogen dioxide (13.6 parts per billion) during pregnancy. Significant associations were seen between air pollution markers and cord blood leptin levels in models that adjusted for birth weight z score but not in models that did not adjust for birth weight z score. The roles of prenatal exposure to air pollution and fetal metabolic function in the potential development of childhood obesity should be further explored.

  4. Exposure and measurement contributions to estimates of acute air pollution effects.

    PubMed

    Sheppard, Lianne; Slaughter, James C; Schildcrout, Jonathan; Liu, L-J Sally; Lumley, Thomas

    2005-07-01

    Air pollution health effect studies are intended to estimate the effect of a pollutant on a health outcome. The definition of this effect depends upon the study design, disease model parameterization, and the type of analysis. Further limitations are imposed by the nature of exposure and our ability to measure it. We define a plausible exposure model for air pollutants that are relatively nonreactive and discuss how exposure varies. We discuss plausible disease models and show how their parameterizations are affected by different exposure partitions and by different study designs. We then discuss a measurement model conditional on ambient concentrations and incorporate this into the disease model. We use simulation studies to show the impact of a range of exposure model assumptions on estimation of the health effect in the ecologic time series design. This design only uses information from the time-varying ambient source exposure. When ambient and nonambient sources are independent, exposure variation due to nonambient source exposures behaves like Berkson measurement error and does not bias the effect estimates. Variation in the population attenuation of ambient concentrations over time does bias the estimates with the bias being either positive or negative depending upon the association of this parameter with ambient pollution. It is not realistic to substitute measured average personal exposures into time series studies because so much of the variation in personal exposures comes from nonambient sources that do not contribute information in the time series design. We conclude that general statements about the implications of measurement error need to be conditioned on the health effect study design and the health effect parameter to be estimated. PMID:15602584

  5. Non-destructive testing for combined stresses using high-resolution thermal infrared remote sensing and ''three-temperature model'': A case study on mangrove plant Kandelia obovata

    NASA Astrophysics Data System (ADS)

    Shen, X.; LI, R.; Li, Y. H.; Chai, M. W.; Qiu, G. Y.

    2015-12-01

    Mangrove forests are currently facing serious heavy metal pollution and eutrophication problems. Remote sensing of vegetation is a non-invasive methodology to monitor physiological characteristics of plants. The potential of high-resolution thermal infrared remote sensing and the three-temperature model (3T model) for monitoring the effects of combined stresses on mangrove plant Kandelia obovata was assessed. The experiment consists of four levels of CdCl2 stress (0, 1, 5 and 10 mg·L-1) in each of four NH4Cl stress levels: 0, 10, 50 and 100 mg·L-1, respectively. The non-destructive testing indices, including plant transpiration transfer coefficient (hat) and estimated instant transpiration rate, were calculated from thermal images and the 3T model. The photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) were also tested to validate the results of non-destructive testing. The results showed that: (1) The plant transpiration transfer coefficients (hat) were changed from 0.246 to 0.928 and the estimated instant transpiration rates ranged from 0.590 to 6.119 mmol H2O m-2s-1 among different combined stresses. With increasing stress, there were significant decreases for estimated instant transpiration rate and increases for hat (P < 0.05). (2) The photosynthetic characteristics, including Pn, Gs and Tr, were significantly decreased with the increasing combined stresses (P < 0.05). (3) The effects of Cd, N, and their interaction on non-destructive indices and photosynthetic parameters were significant (P < 0.05). (4) The hat was significantly negatively correlated with photosynthetic parameters and the T-3T was significantly positively correlated with photosynthetic parameters (P < 0.05). Therefore, the transpiration transfer coefficient (hat) andestimated instant transpiration rate detecting by infrared thermography device could be indicators to reflect the stress conditions. Based on high-resolution thermal infrared remote sensing, we

  6. Synergistic Effects of Traffic-Related Air Pollution and Exposure to Violence on Urban Asthma Etiology

    PubMed Central

    Clougherty, Jane E.; Levy, Jonathan I.; Kubzansky, Laura D.; Ryan, P. Barry; Suglia, Shakira Franco; Canner, Marina Jacobson; Wright, Rosalind J.

    2007-01-01

    Background Disproportionate life stress and consequent physiologic alteration (i.e., immune dysregulation) has been proposed as a major pathway linking socioeconomic position, environmental exposures, and health disparities. Asthma, for example, disproportionately affects lower-income urban communities, where air pollution and social stressors may be elevated. Objectives We aimed to examine the role of exposure to violence (ETV), as a chronic stressor, in altering susceptibility to traffic-related air pollution in asthma etiology. Methods We developed geographic information systems (GIS)–based models to retrospectively estimate residential exposures to traffic-related pollution for 413 children in a community-based pregnancy cohort, recruited in East Boston, Massachusetts, between 1987 and 1993, using monthly nitrogen dioxide measurements for 13 sites over 18 years. We merged pollution estimates with questionnaire data on lifetime ETV and examined the effects of both on childhood asthma etiology. Results Correcting for potential confounders, we found an elevated risk of asthma with a 1-SD (4.3 ppb) increase in NO2 exposure solely among children with above-median ETV [odds ratio (OR) = 1.63; 95% confidence interval (CI), 1.14–2.33)]. Among children always living in the same community, with lesser exposure measurement error, this association was magnified (OR = 2.40; 95% CI, 1.48–3.88). Of multiple exposure periods, year-of-diagnosis NO2 was most predictive of asthma outcomes. Conclusions We found an association between traffic-related air pollution and asthma solely among urban children exposed to violence. Future studies should consider socially patterned susceptibility, common spatial distributions of social and physical environmental factors, and potential synergies among these. Prospective assessment of physical and social exposures may help determine causal pathways and critical exposure periods. PMID:17687439

  7. Prenatal Air Pollution Exposure and Early Cardiovascular Phenotypes in Young Adults.

    PubMed

    Breton, Carrie V; Mack, Wendy J; Yao, Jin; Berhane, Kiros; Amadeus, Milena; Lurmann, Fred; Gilliland, Frank; McConnell, Rob; Hodis, Howard N; Künzli, Nino; Avol, Ed

    2016-01-01

    Exposure to ambient air pollutants increases risk for adverse cardiovascular health outcomes in adults. We aimed to evaluate the contribution of prenatal air pollutant exposure to cardiovascular health, which has not been thoroughly evaluated. The Testing Responses on Youth (TROY) study consists of 768 college students recruited from the University of Southern California in 2007-2009. Participants attended one study visit during which blood pressure, heart rate and carotid artery arterial stiffness (CAS) and carotid artery intima-media thickness (CIMT) were assessed. Prenatal residential addresses were geocoded and used to assign prenatal and postnatal air pollutant exposure estimates using the U.S. Environmental Protection Agency's Air Quality System (AQS) database. The associations between CAS, CIMT and air pollutants were assessed using linear regression analysis. Prenatal PM10 and PM2.5 exposures were associated with increased CAS. For example, a 2 SD increase in prenatal PM2.5 was associated with CAS indices, including a 5% increase (β = 1.05, 95% CI 1.00-1.10) in carotid stiffness index beta, a 5% increase (β = 1.05, 95% CI 1.01-1.10) in Young's elastic modulus and a 5% decrease (β = 0.95, 95% CI 0.91-0.99) in distensibility. Mutually adjusted models of pre- and postnatal PM2.5 further suggested the prenatal exposure was most relevant exposure period for CAS. No associations were observed for CIMT. In conclusion, prenatal exposure to elevated air pollutants may increase carotid arterial stiffness in a young adult population of college students. Efforts aimed at limiting prenatal exposures are important public health goals.

  8. Air pollution exposure as a risk factor for cardiovascular disease morbidity and mortality.

    PubMed

    Koulova, Anna; Frishman, William H

    2014-01-01

    There is growing evidence of an association between increasing exposure to air pollutants (both short-term and long-term exposures) and elevated risk of mortality and incidence of cardiovascular diseases in certain high-risk populations and throughout different geographic regions. The pathophysiologic mechanisms of air pollutant-induced cardiovascular morbidity and mortality are actively being studied, with autonomic system dysregulation and inflammatory pathway activation believed to be among the key culprits. Policy changes at the local and global levels are addressing the need for more stringent air pollution standards. These initiatives are projected to lower costs and improve health outcomes. In this review, we examine some major studies of the cardiovascular health impacts of air pollution.

  9. NON-DESTRUCTIVE RADIOCARBON DATING: NATURALLY MUMMIFIED INFANT BUNDLE FROM SW TEXAS

    SciTech Connect

    Steelman, K L; Rowe, M W; Turpin, S A; Guilderson, T P; Nightengale, L

    2004-09-07

    Plasma oxidation was used to obtain radiocarbon dates on six different materials from a naturally mummified baby bundle from the Lower Pecos River region of southwest Texas. This bundle was selected because it was thought to represent a single event and would illustrate the accuracy and precision of the plasma oxidation method. Five of the materials were clearly components of the original bundle with 13 dates combined to yield a weighted average of 2135 {+-} 11 B.P. Six dates from a wooden stick of Desert Ash averaged 939 {+-} 14 B.P., indicating that this artifact was not part of the original burial. Plasma oxidation is shown to be a virtually non-destructive alternative to combustion. Because only sub-milligram amounts of material are removed from an artifact over its exposed surface, no visible change in fragile materials has been observed, even under magnification. The method is best applied when natural organic contamination is unlikely and serious consideration of this issue is needed in all cases. If organic contamination is present, it will have to be removed before plasma oxidation to obtain accurate radiocarbon dates.

  10. Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite

    NASA Astrophysics Data System (ADS)

    Shibata, Taiju; Sumita, Junya; Tada, Tatsuya; Hanawa, Satoshi; Sawa, Kazuhiro; Iyoku, Tatsuo

    2008-10-01

    The lifetime extension of in-core graphite components is one of the key technologies for the VHTR. The residual stress in the graphite components caused by neutron irradiation at high temperatures affects their lifetime. Although oxidation damage in the components would not be significant in normal reactor operation, it should be checked as well. To evaluate the degradation of the graphite components directly by a non-destructive analysis, the applicability of the micro-indentation and ultrasonic wave methods were investigated. The fine-grained isotropic graphites of IG-110 and IG-430, the candidate grades for the VHTR, were used in this study. The following results were obtained. (1) The micro-indentation behavior was changed by applying the compressive strain on the graphite. It suggested that the residual stress would be measured directly. (2) The change of ultrasonic wave velocity with 1 MHz by the uniform oxidation could be evaluated by the wave-propagation analysis with wave-pore interaction model. (3) The trend of oxidation-induced strength degradation on IG-110 was expressed by using the proposed uniform oxidation model. The importance of the non-uniformity consideration was indicated.

  11. Development of non-destructive evaluation methods for degradation of HTGR graphite components

    NASA Astrophysics Data System (ADS)

    Shibata, Taiju; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro

    2008-10-01

    To develop the non-destructive evaluation method for degradation of HTGR graphite components, the applicability of the micro-indentation method to detect residual stress was studied. The fine-grained isotropic graphites IG-110 and IG-430, the candidates for the VHTR, were used. The following results were obtained: The residual stress in a graphite block at the HTTR in-core condition was analyzed. It was suggested that, for the components in the VHTR which would be used at much severer condition, the development of lifetime extension methods is an important subject. The micro-indentation behavior at stress free condition was investigated with some indenters. The spherical indenter R0.5 mm was selected to detect the specimen surface condition sensitively. The indentation load of 5 and 10 N was selected to avoid the pop-up effect in the loading process. The relationship between the average value of normalized indentation depth and compressive stress of the specimen was expressed by an empirical formula. It would be possible to evaluate the residual stress by the indentation behaviour. It is necessary to assess the variation of data with statistic method and it is the subject of future study.

  12. PHOTOACOUSTIC NON-DESTRUCTIVE EVALUATION AND IMAGING OF CARIES IN DENTAL SAMPLES

    SciTech Connect

    Li, T.; Dewhurst, R. J.

    2010-02-22

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 deg. C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  13. METAPHIX-1 non destructive post irradiation examinations in the irradiated elements cell at Phenix

    SciTech Connect

    Breton, Laurent; Masson, M.; Garces, E.; Desjardins, S.; Fontaine, B.; Lacroix, B.; Martella, T.; Loubet, L.; Ohta, H.; Yokoo, T.; Ougier, M.; Glatz, J.P.

    2007-07-01

    Central Research Institute of Electric Power Industry (CRIEPI) has been developing minor actinide (MA) transmutation technology in homogeneous loading mode by use of metal fuel fast reactors in cooperation with Institute for Transuranium Elements (ITU) and Commissariat a l'Energie Atomique (CEA). Fast reactor metal fuel pins of Uranium- Plutonium-Zirconium (U-Pu-Zr) alloy containing 2 wt% MAs and 2 wt% rare earth elements (REs), 5 wt% MAs, and 5 wt% MAs and 5 wt% REs were irradiated in the PHENIX French fast reactor as METAPHIX experiments. In these METAPHIX experiments, three rigs each consisting of three metal fuel experimental pins and sixteen oxide fuel driver pins were irradiated. The target burnup of the three rigs is 2.4 at%, 7 at% and 11 at% which corresponds to 120, 360 and 600 equivalent full power days (EFPD) in terms of irradiation periods, respectively. The low burnup rig of 2.4 at%, METAPHIX-1, was discharged from the core in August 2004. After cooling, the non-destructive post irradiation examinations (PIEs) of the rig (visual examination, measurement of rig length and deformation) and of the metal fuel pins (visual examination, measurement of pin length and deformation, {gamma}-spectrometry and neutron radiography) were conducted in the Irradiated Elements Cell (IEC) at PHENIX. (authors)

  14. Feasibility for non-destructive discrimination of natural and beryllium-diffused sapphires using Raman spectroscopy.

    PubMed

    Chang, Kyeol; Lee, Sanguk; Park, Jimin; Chung, Hoeil

    2016-03-01

    Raman spectroscopy based non-destructive discrimination between natural and beryllium-diffused (Be-diffused) sapphires has been attempted. The initial examination of Raman image acquired on a sapphire revealed that microscopic structural and compositional heterogeneity was apparent in the sample, so acquisition of spectra able to represent a whole body of sapphire rather than a localized area was necessary for a reliable discrimination. For this purpose, a wide area illumination (WAI) scheme (illumination area: 28.3mm(2)) providing a large sampling volume was employed to collect representative Raman spectra of sapphires. Upon the diffusion of Be into a sapphire, the band shift originated from varied lattice structure by substitution of Be at cation sites was observed and utilized as a valuable spectral signature for the discrimination. In the domain of principal component (PC) scores, the groups of natural and Be-diffused sapphires were identifiable with minor overlapping and the cross-validated discrimination error was 7.3% when k-Nearest Neighbor (k-NN) was used as a classifier. PMID:26717849

  15. Assessment of the non-destructive nature of PASD on wire insulation integrity.

    SciTech Connect

    Lockner, Thomas Ramsbeck; Peña, Gary Edward; Schneider, Larry X.; Higgins, Matthew B.; Glover, Steven Frank

    2003-09-01

    The potential of a new cable diagnostic known as Pulse-Arrested Spark Discharge technique (PASD) is being studied. Previous reports have documented the capability of the technique to locate cable failures using a short high voltage pulse. This report will investigate the impact of PASD on the sample under test. In this report, two different energy deposition experiments are discussed. These experiments include the PASD pulse ({approx}6 mJ) and a high energy discharge ({approx}600 mJ) produced from a charged capacitor source. The high energy experiment is used to inflict detectable damage upon the insulators and to make comparisons with the effects of the low energy PASD pulse. Insulator breakdown voltage strength before and after application of the PASD pulse and high energy discharges are compared. Results indicate that the PASD technique does not appear to degrade the breakdown strength of the insulator or to produce visible damage. However, testing of the additional materials, including connector insulators, may be warranted to verify PASDs non-destructive nature across the full spectrum of insulators used in commercial aircraft wiring systems.

  16. First-time observation of Mastro Giorgio masterpieces by means of non-destructive techniques

    NASA Astrophysics Data System (ADS)

    Padeletti, G.; Ingo, G. M.; Bouquillon, A.; Pages-Camagna, S.; Aucouturier, M.; Roehrs, S.; Fermo, P.

    2006-06-01

    For the first time some excellent pieces belonging to the majolica production of the great master Giorgio Andreoli from Gubbio (Central Italy) have been characterized from a chemical and structural point of view with the aim to identify the composition of both pigments and lustres. A series of particle-induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and Raman analyses have been performed on some plates coming from Museo del Palazzo dei Consoli (Gubbio) and several French museums (Louvre, Musée National de la Céramique, Musée National de la Renaissance) lustred by Giorgio Andreoli and decorated by famous majolica painters such as Francesco Xanto Avelli. The three techniques are complementary and useful in the investigation of art objects since they are non-destructive. Furthermore, the low detection limits allow the identification of all elements and compounds present, and RBS allows concentration profiling, too. It is worth noticing that the examined objects are characterized by the presence of both gold and ruby-red lustres, a peculiarity of Mastro Giorgio’s technique. The measurements by PIXE and RBS have been carried out on the AGLAE accelerator at C2RMF, Louvre Palace.

  17. Robotic path planning for non-destructive testing of complex shaped surfaces

    NASA Astrophysics Data System (ADS)

    Mineo, Carmelo; Pierce, Stephen Gareth; Wright, Ben; Nicholson, Pascual Ian; Cooper, Ian

    2015-03-01

    The requirement to increase inspection speeds for non-destructive testing (NDT) of composite aerospace parts is common to many manufacturers. The prevalence of complex curved surfaces in the industry provides significant motivation for the use of 6 axis robots for deployment of NDT probes in these inspections. A new system for robot deployed ultrasonic inspection of composite aerospace components is presented. The key novelty of the approach is through the accommodation of flexible robotic trajectory planning, coordinated with the NDT data acquisition. Using a flexible approach in MATLAB, the authors have developed a high level custom toolbox that utilizes external control of an industrial 6 axis manipulator to achieve complex path planning and provide synchronization of the employed ultrasonic phase array inspection system. The developed software maintains a high level approach to the robot programming, in order to ease the programming complexity for an NDT inspection operator. Crucially the approach provides a pathway for a conditional programming approach and the capability for multiple robot control (a significant limitation in many current off-line programming applications). Ultrasonic and experimental data has been collected for the validation of the inspection technique. The path trajectory generation for a large, curved carbon-fiber-reinforced polymer (CFRP) aerofoil component has been proven and is presented. The path error relative to a raster-scan tool-path, suitable for ultrasonic phased array inspection, has been measured to be within + 2mm over the 1.6 m2 area of the component surface.

  18. Non-destructive Assay Measurements Using the RPI Lead Slowing Down Spectrometer

    SciTech Connect

    Becker, Bjorn; Weltz, Adam; Kulisek, Jonathan A.; Thompson, J. T.; Thompson, N.; Danon, Yaron

    2013-10-01

    The use of a Lead Slowing-Down Spectrometer (LSDS) is consid- ered as a possible option for non-destructive assay of fissile material of used nuclear fuel. The primary objective is to quantify the 239Pu and 235U fissile content via a direct measurement, distinguishing them through their characteristic fission spectra in the LSDS. In this pa- per, we present several assay measurements performed at the Rensse- laer Polytechnic Institute (RPI) to demonstrate the feasibility of such a method and to provide benchmark experiments for Monte Carlo cal- culations of the assay system. A fresh UOX fuel rod from the RPI Criticality Research Facility, a 239PuBe source and several highly en- riched 235U discs were assayed in the LSDS. The characteristic fission spectra were measured with 238U and 232Th threshold fission cham- bers, which are only sensitive to fission neutron with energy above the threshold. Despite the constant neutron and gamma background from the PuBe source and the intense interrogation neutron flux, the LSDS system was able to measure the characteristic 235U and 239Pu responses. All measurements were compared to Monte Carlo simula- tions. It was shown that the available simulation tools and models are well suited to simulate the assay, and that it is possible to calculate the absolute count rate in all investigated cases.

  19. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification.

    PubMed

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-01-01

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response. PMID:26184208

  20. Static characterization of a soft elastomeric capacitor for non destructive evaluation applications

    SciTech Connect

    Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna

    2014-02-18

    A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 με. A sensitivity of 1190 pF/ε is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain.

  1. Non-destructive evaluation of spiral-welded pipes using flexural guided waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Tang, Zhifeng; Lü, Fuzai; Pan, Xiaohong

    2016-02-01

    Millions of miles of pipes are being used in both civil and industrial fields. Spiral-welded pipes, which are widely applied in fields such as drainage, architecture as well as oil and gas storage and transportation, are difficult to inspect due to their complex geometry. Guided waves have shown a great potential in Non-Destructive Evaluation (NDE) and Structural Health Monitoring (SHM) for such cases. Flexural guided waves that propagate at a helix angle relative to the axial direction of pipe, are the most appropriate modes for inspecting spiral-welded pipes. The classical Normal Mode Expansion method (NME) is adopted to disseminate the forced response and perturbation analysis of a steel pipe with respect to a time delay circular loading. A time delay circular array transducer (TDCAT) is proposed for the purpose of exciting pure flexural mode in pipes. Pure flexural mode can be excited when the time delay parameter is specifically designed. The theoretical prediction is verified by finite element numerical evaluation and spiral-welded pipe inspection experiment.

  2. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness

    NASA Astrophysics Data System (ADS)

    Das, Anshuman J.; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh

    2016-09-01

    We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner.

  3. Static characterization of a soft elastomeric capacitor for non destructive evaluation applications

    NASA Astrophysics Data System (ADS)

    Saleem, Hussam; Laflamme, Simon; Zhang, Huanhuan; Geiger, Randall; Kessler, Michael; Rajan, Krishna

    2014-02-01

    A large and flexible strain transducer consisting of a soft elastomeric capacitor (SEC) has been proposed by the authors. Arranged in a network setup, the sensing strategy offers tremendous potential at conducting non-destructive evaluation of large-scale surfaces. In prior work, the authors have demonstrated the performance of the sensor at tracking strain history, localizing cracks, and detecting vibration signatures. In this paper, we characterize the static performance of the proposed SEC. The characterization includes sensitivity of the signal, and temperature and humidity dependences. Tests are conducted on a simply supported aluminum beam subjected to bending as well as on a free standing sensor. The performance of the SEC is compared against off-the-shelf resistance-based strain gauges with resolution of 1 μɛ. A sensitivity of 1190 pF/ɛ is obtained experimentally, in agreement with theory. Results also show the sensor linearity over the given level of strain, showing the promise of the SEC at monitoring of surface strain.

  4. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    PubMed Central

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-01-01

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response. PMID:26184208

  5. Non-destructive X-ray examination of weft knitted wire structures

    NASA Astrophysics Data System (ADS)

    Obermann, M.; Ellouz, M.; Aumann, S.; Martens, Y.; Bartelt, P.; Klöcker, M.; Kordisch, T.; Ehrmann, A.; Weber, M. O.

    2016-07-01

    Conductive yarns or wires are often integrated in smart textiles to enable data or energy transmission. In woven fabrics, these conductive parts are fixed at defined positions and thus protected from external loads. Knitted fabrics, however, have relatively loose structures, resulting in higher impacts of possible mechanical forces on the individual yarns. Hence, metallic wires with smaller diameters in particular are prone to break when integrated in knitted fabrics. In a recent project, wires of various materials including copper, silver and nickel with diameters varying between 0.05 mm and 0.23 mm were knitted in combination with textile yarns. Hand flat knitting machines of appropriate gauges were used to produce different structures. On these samples, non-destructive examinations, using an industrial X-ray system Seifert x|cube (225 kV) equipped with a minifocus X-ray tube, were carried out, directly after knitting as well as after different mechanical treatments (tensile, burst, and washing tests). In this way, structural changes of the stitch geometry could be visualized before failure. In this paper, the loop geometries in the knitted fabrics are depicted depending on knitted structures, wire properties and the applied mechanical load. Consequently, it is shown which metallic wires and yarns are most suitable to be integrated into knitted smart textiles.

  6. Non-destructive Evaluation of Bonds Between Fiberglass Composite and Metal

    NASA Technical Reports Server (NTRS)

    Zhao, Selina; Sonta, Kestutis; Perey, Daniel F.; Cramer, K. E.; Berger, Libby

    2015-01-01

    To assess the integrity and reliability of an adhesive joint in an automotive composite component, several non-destructive evaluation (NDE) methodologies are correlated to lap shear bond strengths. A glass-fabric-reinforced composite structure was bonded to a metallic structure with a two-part epoxy adhesive. Samples were subsequently cut and tested in shear, and flaws were found in some areas. This study aims to develop a reliable and portable NDE system for service-level adhesive inspection in the automotive industry. The results of the experimental investigation using several NDE methods are presented and discussed. Fiberglass-to-metal bonding is the ideal configuration for NDE via thermography using excitation with induction heating, due to the conductive metal and non-conductive glass-fiber-reinforced composites. Excitation can be either by a research-grade induction heater of highly defined frequency and intensity, or by a service-level heater, such as would be used for sealing windshields in a body shop. The thermographs thus produced can be captured via a high-resolution infrared camera, with principal component analysis and 2D spatial Laplacian processing. Alternatively, the thermographs can be captured by low resolution thermochromic microencapsulated liquid crystal film imaging, which needs no post-processing and can be very inexpensive. These samples were also examined with phased-array ultrasound. The NDE methods are compared to the lap shear values and to each other for approximate cost, accuracy, and time and level of expertise needed.

  7. Non-destructive state detection for quantum logic spectroscopy of molecular ions.

    PubMed

    Wolf, Fabian; Wan, Yong; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2016-02-25

    Precision laser spectroscopy of cold and trapped molecular ions is a powerful tool in fundamental physics--used, for example, in determining fundamental constants, testing for their possible variation in the laboratory, and searching for a possible electric dipole moment of the electron. However, the absence of cycling transitions in molecules poses a challenge for direct laser cooling of the ions, and for controlling and detecting their quantum states. Previously used state-detection techniques based on photodissociation or chemical reactions are destructive and therefore inefficient, restricting the achievable resolution in laser spectroscopy. Here, we experimentally demonstrate non-destructive detection of the quantum state of a single trapped molecular ion through its strong Coulomb coupling to a well controlled, co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force changes the internal state of the atom according to the internal state of the molecule. We show that individual quantum states in the molecular ion can be distinguished by the strength of their coupling to the optical dipole force. We also observe quantum jumps (induced by black-body radiation) between rotational states of a single molecular ion. Using the detuning dependence of the state-detection signal, we implement a variant of quantum logic spectroscopy of a molecular resonance. Our state-detection technique is relevant to a wide range of molecular ions, and could be applied to state-controlled quantum chemistry and to spectroscopic investigations of molecules that serve as probes for interstellar clouds.

  8. Non-destructive state detection for quantum logic spectroscopy of molecular ions.

    PubMed

    Wolf, Fabian; Wan, Yong; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2016-02-25

    Precision laser spectroscopy of cold and trapped molecular ions is a powerful tool in fundamental physics--used, for example, in determining fundamental constants, testing for their possible variation in the laboratory, and searching for a possible electric dipole moment of the electron. However, the absence of cycling transitions in molecules poses a challenge for direct laser cooling of the ions, and for controlling and detecting their quantum states. Previously used state-detection techniques based on photodissociation or chemical reactions are destructive and therefore inefficient, restricting the achievable resolution in laser spectroscopy. Here, we experimentally demonstrate non-destructive detection of the quantum state of a single trapped molecular ion through its strong Coulomb coupling to a well controlled, co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force changes the internal state of the atom according to the internal state of the molecule. We show that individual quantum states in the molecular ion can be distinguished by the strength of their coupling to the optical dipole force. We also observe quantum jumps (induced by black-body radiation) between rotational states of a single molecular ion. Using the detuning dependence of the state-detection signal, we implement a variant of quantum logic spectroscopy of a molecular resonance. Our state-detection technique is relevant to a wide range of molecular ions, and could be applied to state-controlled quantum chemistry and to spectroscopic investigations of molecules that serve as probes for interstellar clouds. PMID:26855427

  9. Non-destructive assessment of mechanical properties of microcrystalline cellulose compacts.

    PubMed

    Palomäki, Emmi; Ehlers, Henrik; Antikainen, Osmo; Sandler, Niklas; Yliruusi, Jouko

    2015-11-30

    In the present study the mechanical properties of microcrystalline cellulose compacts compressed were studied. The resistance to crushing was tested using diametral compression testing and apparent Young's modulus was determined using consecutive uniaxial compression of the full cross-sectional area of single tablets. As non-elastic deformation during the first compression cycle and reverse plasticity were discovered, the loading phase of the second compression cycle was used to determine Young's modulus. The relative standard deviation of 10 consecutive measurements was 3.6%. The results indicate a direct correlation between crushing strength and Young's modulus, which found further support when comparing surface roughness data and radial recovery of the tablets to Young's modulus. The extrapolated elastic modulus at zero-porosity was found to be 1.80±0.08 GPa, which is slightly lower than previously reported values, confirming the complexity of measuring the elastic properties of microcrystalline cellulose compacts. The method can be used for non-destructive assessment of mechanical properties of powder compacts for example during storage studies.

  10. Non-Destructive Evaluation of Wind Turbine Blades Using an Infrared Camera

    SciTech Connect

    Beattie, A.G.; Rumsey, M.

    1998-12-17

    The use of a digital infrared as a non-destructive evaluation thermography camera (NDE) tool was ex- plored in two separate wind turbine blade fatigue tests. The fwst test was a fatigue test of part of a 13.1 meter wood-epoxy-composite blade. The second test was on a 4.25 meter pultruded fiber glass blade section driven at several mechanical resonant frequencies. The digital infrared camera can produce images of either the static temperature distribution on the surface of the specimen, or the dynamic temperature distribution that is in phase with a specific frequency on a vibrating specimen. The dynamic temperature distribution (due to thermoplastic effects) gives a measure of the sum of the principal stresses at each point on the surface. In the wood- epoxy-composite blade fatigue test, the point of ultimate failure was detected long before failure occurred. The mode shapes obtained with the digital infrared camera, from the resonant blade tests, were in very good agree- ment with the finite-element calculations. In addition, the static temperature images of the resonating blade showed two areas that contained cracks. Close-up dy- namic inf%red images of these areas showed the crack structure that agreed with subsequent dye-penetrant analysis.

  11. Routes for GMR-Sensor Design in Non-Destructive Testing

    PubMed Central

    Pelkner, Matthias; Neubauer, Andreas; Reimund, Verena; Kreutzbruck, Marc; Schütze, Andreas

    2012-01-01

    GMR sensors are widely used in many industrial segments such as information technology, automotive, automation and production, and safety applications. Each area requires an adaption of the sensor arrangement in terms of size adaption and alignment with respect to the field source involved. This paper deals with an analysis of geometric sensor parameters and the arrangement of GMR sensors providing a design roadmap for non-destructive testing (NDT) applications. For this purpose we use an analytical model simulating the magnetic flux leakage (MFL) distribution of surface breaking defects and investigate the flux leakage signal as a function of various sensor parameters. Our calculations show both the influence of sensor length and height and that when detecting the magnetic flux leakage of μm sized defects a gradiometer base line of 250 μm leads to a signal strength loss of less than 10% in comparison with a magnetometer response. To validate the simulation results we finally performed measurements with a GMR magnetometer sensor on a test plate with artificial μm-range cracks. The differences between simulation and measurement are below 6%. We report on the routes for a GMR gradiometer design as a basis for the fabrication of NDT-adapted sensor arrays. The results are also helpful for the use of GMR in other application when it comes to measure positions, lengths, angles or electrical currents.

  12. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification.

    PubMed

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-07-10

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response.

  13. Feasibility for non-destructive discrimination of natural and beryllium-diffused sapphires using Raman spectroscopy.

    PubMed

    Chang, Kyeol; Lee, Sanguk; Park, Jimin; Chung, Hoeil

    2016-03-01

    Raman spectroscopy based non-destructive discrimination between natural and beryllium-diffused (Be-diffused) sapphires has been attempted. The initial examination of Raman image acquired on a sapphire revealed that microscopic structural and compositional heterogeneity was apparent in the sample, so acquisition of spectra able to represent a whole body of sapphire rather than a localized area was necessary for a reliable discrimination. For this purpose, a wide area illumination (WAI) scheme (illumination area: 28.3mm(2)) providing a large sampling volume was employed to collect representative Raman spectra of sapphires. Upon the diffusion of Be into a sapphire, the band shift originated from varied lattice structure by substitution of Be at cation sites was observed and utilized as a valuable spectral signature for the discrimination. In the domain of principal component (PC) scores, the groups of natural and Be-diffused sapphires were identifiable with minor overlapping and the cross-validated discrimination error was 7.3% when k-Nearest Neighbor (k-NN) was used as a classifier.

  14. How clean is clean: Non-destructive/direct methods of flux, residue detection

    SciTech Connect

    Welch, C.S.; Ray, U.; Stallard, B.R.; Watkins, R.D.; Koch, M.W.; Moya, M.M.

    1994-06-01

    The feasibility of three different non-destructive and direct methods of evaluating PCB (printed circuit boards) cleanliness was demonstrated. The detection limits associated with each method were established. In addition, the pros and cons of these methods as routine quality control inspection tools were discussed. OSEE (Optically Stimulated Electron Emission) was demonstrated to be a sensitive technique for detection of low levels of flux residues on insulating substances. However, future work including development of rugged OSEE instrumentation will determine whether the PCB industry can accept this technique in a production environment. FTIR (Fourier Transform Infrared) microscopy is a well established technique with well known characteristics. The inability of FTIR to discriminate an organic contaminant from an organic substrate limits its usefulness as a PCB line inspection tool, but it will still remain a technique for the QC/QA laboratory. One advantage of FTIR over the other two techniques described here is its ability to identify the chemical nature of the residue, which is important in Failure Mode Analysis. Optical imaging using sophisticated pattern recognition algorithms was found to be limited to high concentrations of residue. Further work on improved sensor techniques is necessary.

  15. Research Based on Optical Non-Destructive Testing of Pigment Identification.

    PubMed

    Wang, Jigang; Hao, Shengcai; Zhou, Wenhua; Qi, Xiaokun; Shi, Jilong

    2016-04-01

    Optical Non-Destructive Testing (ONDT) can be applied as penetrating elemental and structure analysis technology in the Pigments identification field. Three-dimensional video microscopy, Raman microscopy and energy dispersive X-ray fluorescence spectroscopy are employed to measure the materials based on a Qing Dynasty meticulous painting. The results revealed that the dark yellow area within the decorative patterns was presented due to the interaction of Emerald green and hematite, and the bright yellow edge area was delineated by Cu-Zn-Pb composition. The interesting thing is that an artificial synthetic ultramarine blue was checked in the painting. According to the first synthesized time of ultramarine blue and Paris green, the time limit of the painting completion can be identified. The principle of Pigment subtractive colorant and nitikaset method were employed to interpreting the results. Optical testing combined with the area of cultural relic identification can be a potential method to build an expert identification system successfully. This work also help lay the optical method groundwork for further cultural relic identification, sterilization, and preservation. PMID:27451669

  16. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    NASA Astrophysics Data System (ADS)

    Boubenia, R.; Rosenkrantz, E.; Despetis, F.; P, P.; Ferrandis, J.-Y.

    2016-03-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten).

  17. Non-destructive analysis of DU content in the NIF hohlraums

    SciTech Connect

    Gharibyan, Narek; Moody, Ken J.; Shaughnessy, Dawn A.

    2015-12-16

    The advantage of using depleted uranium (DU) hohlraums in high-yield deuterium-tritium (DT) shots at the National Ignition Facility (NIF) is addressed by Döppner, et al., in great detail [1]. This DU based hohlraum incorporates a thin layer of DU, ~7 μm thick, on the inner surface along with a thin layer of a gold coating, ~0.7 μm thick, while the outer layer is ~22 μm thick gold. A thickness measurement of the DU layer can be performed using an optical microscope where the total DU weight can be computed provided a uniform DU layer. However, the uniformity of the thickness is not constant throughout the hohlraum since CAD drawing calculations of the DU weight do not agree with the computed values from optical measurements [2]. Therefore, a non-destructive method for quantifying the DU content in hohlraums has been established by utilizing gamma-ray spectroscopy. The details of this method, along with results from several hohlraums, are presented in this report.

  18. Laser ultrasound and simulated time reversal on bulk waves for non destructive control

    NASA Astrophysics Data System (ADS)

    Diot, G.; Walaszek, H.; Kouadri-David, A.; Guégan, S.; Flifla, J.

    2014-06-01

    Laser welding of aluminium generally creates embedded welding defects, such as porosities or cracks. Non Destructive Inspection (NDI) after processing may ensure an acceptable weld quality by defect detection. Nowadays, NDI techniques used to control the inside of a weld are mainly limited to X-Rays or ultrasonics. The current paper describes the use of a Laser Ultrasound (LU) technique to inspect porosities in 2 and 4-mm thick sheet lap welds. First experimentations resulted in the detection of 0.5-mm drilled holes in bulk aluminium sheets. The measurement of the depth of these defects is demonstrated too. Further experimentations shows the applicability of the LU technique to detect porosities in aluminium laser welds. However, as the interpretation of raw measures is limiting the detection capacity of this technique, we developed a signal processing using Time-Reversal capabilities to enhance detection capacities. Furthermore, the signal processing output is a geometrical image of the material's inner state, increasing the ease of interpretation. It is based on a mass-spring simulation which enables the back-propagation of the acquired ultrasound signal. The spring-mass simulation allows the natural generation of all the different sound waves and thus enables the back-propagation of a raw signal without any need of filtering or wave identification and extraction. Therefore the signal processing uses the information contained in the compression wave as well as in the shear wave.

  19. Non-destructive quantification of alignment of nanorods embedded in uniaxially stretched polymer films

    SciTech Connect

    Stoenescu, Stefan Packirisamy, Muthukumaran; Truong, Vo-Van

    2014-03-21

    Among several methods developed for uniaxial alignment of metallic nanorods for optical applications, alignment by film stretching consists in embedding the rods in a transparent thin film of thermoplastic polymer, followed by simultaneous heating and uniaxial stretching of the composite film. As to the quantification of the resulting alignment, it has been limited to statistical calculations based on microscopic examination, which is incomplete, subject to errors due to geometric distortions of the scanning electron microscope images and destructive, since it involves cutting of samples. In contrast, we present in this paper a non-destructive quantification of the average orientation of the rods, based on a probabilistic approach combined with numerical simulations of absorbance spectra and spectrometric characterization of the composite film. Assuming electromagnetically non-interacting rods, we consider the longitudinal absorbance peak of their ensemble to consist of the superposition of their individual spectra that we obtain by numerical simulation using the size and shape adapted dielectric function of the metal and the finite difference time domain method. The accuracy of the solution depends on the number of discretization intervals, the accuracy of the numerical simulations, and the accurate knowledge of the polydispersity of the rods. For the sake of concreteness, we used nanorods to describe the quantification steps but the method is equally valid for any dichroic particles.

  20. Application of coupled electric field method for eddy current non-destructive inspection of multilayer structures

    NASA Astrophysics Data System (ADS)

    Bouchala, T.; Abdelhadi, B.; Benoudjit, A.

    2015-04-01

    The development of fast and accurate method describing the electromagnetic phenomena intervening in eddy current non-destructive systems is very interesting, since it permits the design of reliable systems permitting the detection and the characterisation of defect in conductive materials. The coupled electric field method presented in this article can assume a large part of these objectives, because it is fast in comparison to the finite element method and easily invertible since the sensor impedance variation is an explicit function of target physical and geometrical characteristics. These advantages have motivated us to extend this method for multilayered structures, very interesting in aeronautic industry, by superposing the inductive effects in different layers. The impedance of an absolute sensor operating above three conducting layers will be calculated and compared to those obtained with finite element method. Afterwards, we shall exploit the model to study the effect of defect characteristics on the sensor impedance. Furthermore, regarding to the depth penetration effect, we shall make into evidence the necessity of accomplishing an optimal choice of the exciting field frequency during the inspection of multilayered materials. The essential importance of this method, besides of its rapidity, resides in its possibility to be extended to 2D irregular and 3D asymmetric configurations.

  1. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness

    PubMed Central

    Das, Anshuman J.; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh

    2016-01-01

    We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner. PMID:27606927

  2. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness.

    PubMed

    Das, Anshuman J; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh

    2016-09-08

    We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner.

  3. X-ray based methods for non-destructive testing and material characterization

    NASA Astrophysics Data System (ADS)

    Hanke, Randolf; Fuchs, Theobald; Uhlmann, Norman

    2008-06-01

    The increasing complexity and miniaturization in the field of new materials as well as in micro-production requires in the same way improvements and technical advances in the field of micro-NDT to provide better quality data and more detailed knowledge about the internal structures of micro-components. Therefore, non-destructive methods like radioscopy, ultrasound, optical or thermal imaging increasingly gain in importance with respect to ongoing product and material development in the different phases like material characterization, production control or module reliability testing. Because of the manifold different application fields, i.e., certain physical NDT methods applied to material inspection, characterization or reliability testing, this contribution will focus on the radioscopic-based methods related to their most important applications. Today, in modern industrial quality control, X-ray transmission is used in two different ways: Two-dimensional radioscopic transmission imaging (projection technique), usually applied to inline inspection tasks in application fields like lightweight material production, electronic component soldering or food production. Computed tomography (CT) for generation of three-dimensional data, representing spatial information and density distribution of objects. CT application fields are on the one hand the understanding of production process failure or component and module inspection (completeness) and on the other hand the dimensional measuring of hidden geometrical outlines (metrology). This paper demonstrates the methods including technical set-ups (X-ray source and detector), imaging and reconstruction results and the methods for high speed and high-resolution volume data generation and evaluation.

  4. Photoacoustic Non-Destructive Evaluation and Imaging of Caries in Dental Samples

    NASA Astrophysics Data System (ADS)

    Li, T.; Dewhurst, R. J.

    2010-02-01

    Dental caries is a disease wherein bacterial processes damage hard tooth structure. Traditional dental radiography has its limitations for detecting early stage caries. In this study, a photoacoustic (PA) imaging system with the near-infrared light source has been applied to postmortem dental samples to obtain 2-D and 3-D images. Imaging results showed that the PA technique can be used to image human teeth caries. For non-destructive photoacoustic evaluation and imaging, the induced temperature and pressure rises within biotissues should not cause physical damage to the tissue. For example, temperature rises above 5 °C within live human teeth will cause pulpal necrosis. Therefore, several simulations based on the thermoelastic effect have been applied to predict temperature and pressure fields within samples. Predicted temperature levels are below corresponding safety limits, but care is required to avoid nonlinear absorption phenomena. Furthermore, PA imaging results from the phantom provide evidence for high sensitivity, which shows the imaging potential of the PA technique for detecting early stage disease.

  5. Imaging air volume fraction in sea ice using non-destructive X-ray tomography

    NASA Astrophysics Data System (ADS)

    Crabeck, Odile; Galley, Ryan; Delille, Bruno; Else, Brent; Geilfus, Nicolas-Xavier; Lemes, Marcos; Des Roches, Mathieu; Francus, Pierre; Tison, Jean-Louis; Rysgaard, Søren

    2016-05-01

    Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a new fast and non-destructive X-ray computed tomography technique to quantify the air volume fraction and produce separate images of air volume inclusions in sea ice. The technique was performed on relatively thin (4-22 cm) sea ice collected from an experimental ice tank. While most of the internal layers showed air volume fractions < 2 %, the ice-air interface (top 2 cm) systematically showed values up to 5 %. We suggest that the air volume fraction is a function of both the bulk ice gas saturation factor and the brine volume fraction. We differentiate micro bubbles (Ø < 1 mm), large bubbles (1 mm < Ø < 5 mm) and macro bubbles (Ø > 5 mm). While micro bubbles were the most abundant type of gas bubbles, most of the air porosity observed resulted from the presence of large and macro bubbles. The ice texture (granular and columnar) as well as the permeability state of ice are important factors controlling the air volume fraction. The technique developed is suited for studies related to gas transport and bubble migration.

  6. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    NASA Astrophysics Data System (ADS)

    Kiefel, Denis; Stoessel, Rainer; Grosse, Christian

    2015-03-01

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  7. Recent advances in rapid and non-destructive assessment of meat quality using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Ngadi, Michael

    2016-05-01

    Meat is an important food item in human diet. Its production and consumption has greatly increased in the last decades with the development of economies and improvement of peoples' living standards. However, most of the traditional methods for evaluation of meat quality are time-consuming, laborious, inconsistent and destructive to samples, which make them not appropriate for a fast-paced production and processing environment. Development of innovative and non-destructive optical sensing techniques to facilitate simple, fast, and accurate evaluation of quality are attracting increasing attention in the food industry. Hyperspectral imaging is one of the promising techniques. It integrates the combined merits of imaging and spectroscopic techniques. This paper provides a comprehensive review on recent advances in evaluation of the important quality attributes of meat including color, marbling, tenderness, pH, water holding capacity, and also chemical composition attributes such as moisture content, protein content and fat content in pork, beef and lamb. In addition, the future potential applications and trends of hyperspectral imaging are also discussed in this paper.

  8. Ultra-portable, wireless smartphone spectrometer for rapid, non-destructive testing of fruit ripeness.

    PubMed

    Das, Anshuman J; Wahi, Akshat; Kothari, Ishan; Raskar, Ramesh

    2016-01-01

    We demonstrate a smartphone based spectrometer design that is standalone and supported on a wireless platform. The device is inherently low-cost and the power consumption is minimal making it portable to carry out a range of studies in the field. All essential components of the device like the light source, spectrometer, filters, microcontroller and wireless circuits have been assembled in a housing of dimensions 88 mm × 37 mm × 22 mm and the entire device weighs 48 g. The resolution of the spectrometer is 15 nm, delivering accurate and repeatable measurements. The device has a dedicated app interface on the smartphone to communicate, receive, plot and analyze spectral data. The performance of the smartphone spectrometer is comparable to existing bench-top spectrometers in terms of stability and wavelength resolution. Validations of the device were carried out by demonstrating non-destructive ripeness testing in fruit samples. Ultra-Violet (UV) fluorescence from Chlorophyll present in the skin was measured across various apple varieties during the ripening process and correlated with destructive firmness tests. A satisfactory agreement was observed between ripeness and fluorescence signals. This demonstration is a step towards possible consumer, bio-sensing and diagnostic applications that can be carried out in a rapid manner. PMID:27606927

  9. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  10. Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands.

    PubMed

    Chaki, S; Bourse, G

    2009-02-01

    The safety of prestressed civil structures such as bridges, dams, nuclear power plants, etc. directly involves the security of both environment and users. Health monitoring of the tensioning components, such as strands, tendons, bars, anchorage bolts, etc. is an important research topic and a challenging task bringing together the non-destructive evaluation (NDE) and civil engineering communities. This paper deals with a guided ultrasonic wave procedure for monitoring the stress levels in seven-wire steel strands (15.7 mm in diameter). The mechanical and geometrical characteristics of the prestressed strands were taken into account for optimizing the measurement configuration and then the choice of the guided ultrasonic mode at a suitable frequency. Simplified acoustoelastic formulations were derived from the acoustoelasticity theory according to either calibration test or in situ measurement. The results from acoustoelastic measurements on the seven-wire steel strands are presented and discussed in the case of calibration tests and industrially prestressed strands. They show the potential and the suitability of the proposed guided wave method for evaluating the stress levels in the tested seven-wire steel strands. PMID:18804832

  11. Nitrogen Concentration Estimation in Tomato Leaves by VIS-NIR Non-Destructive Spectroscopy

    PubMed Central

    Ulissi, Valentina; Antonucci, Francesca; Benincasa, Paolo; Farneselli, Michela; Tosti, Giacomo; Guiducci, Marcello; Tei, Francesco; Costa, Corrado; Pallottino, Federico; Pari, Luigi; Menesatti, Paolo

    2011-01-01

    Nitrogen concentration in plants is normally determined by expensive and time consuming chemical analyses. As an alternative, chlorophyll meter readings and N-NO3 concentration determination in petiole sap were proposed, but these assays are not always satisfactory. Spectral reflectance values of tomato leaves obtained by visible-near infrared spectrophotometry are reported to be a powerful tool for the diagnosis of plant nutritional status. The aim of the study was to evaluate the possibility and the accuracy of the estimation of tomato leaf nitrogen concentration performed through a rapid, portable and non-destructive system, in comparison with chemical standard analyses, chlorophyll meter readings and N-NO3 concentration in petiole sap. Mean reflectance leaf values were compared to each reference chemical value by partial least squares chemometric multivariate methods. The correlation between predicted values from spectral reflectance analysis and the observed chemical values showed in the independent test highly significant correlation coefficient (r = 0.94). The utilization of the proposed system, increasing efficiency, allows better knowledge of nutritional status of tomato plants, with more detailed and sharp information and on wider areas. More detailed information both in space and time is an essential tool to increase and stabilize crop quality levels and to optimize the nutrient use efficiency. PMID:22163962

  12. Non-destructive testing of critical infrastructure with giant magneto resistive sensors

    NASA Astrophysics Data System (ADS)

    Hunze, A.; Bailey, J.; Sidorov, G.; Bondurant, P.; Mactutis, T.

    2016-04-01

    Corrosion is the leading failure mechanism for metallic structures. One of the standard non-destructive techniques to assess the status and predict remaining lifetime and possible failure is based on the excitation with a varying magnetic field and measuring the change of the magnetic field due to eddy currents in the device under test. Since the magnetic field is decaying quickly a large lift-off between the excitation source, magnetic sensors and the test object will reduce the signals considerably. In order to obtain a deep penetration into the test object excitation at low frequency is desirable. In this study an investigation of a high power excitation system in combination with giant magneto resistance (GMR) based sensors was done. GMR sensors have a good sensitivity and are suitable for low frequency eddy current testing due to their low 1/f noise. Finite element analysis was used to evaluate the excitation setup, sensor alignment and positions and study the influence of different parameters of the excitation and sensor setup as well as the device under test. Based on these results a laboratory setup was build and used to study the influence of main measurement parameters.

  13. [Non-destructive brand identification of car wax using visible and near-infrared spectroscopy].

    PubMed

    Zhang, Yu; Tan, Li-Hong; He, Yong

    2014-02-01

    Visible and near-infrared (Vis-NIR) spectroscopy was applied to identify brands of car wax. A total of 104 samples were obtained for the analysis, in which 40 samples (calibration set) were used for model calibration, and the remaining 64 samples (prediction set) were used to validate the calibrated model independently. Linear discriminant analysis (LDA) and least square-support vector machine (LS-SVM) were respectively used to establish identification models for car wax with five brands based on their Vis-NIR spectra. Correct rates for prediction sample set were 84% and 97% for LDA and LS-SVM models, respectively. Spectral variable selection was further conducted by successive projections algorithm, (SPA), resulting in seven feature variables (351, 365, 401, 441, 605, 926, and 980 nm) selected from full range spectra that had 751 variables. The new LS-SVM model established using the feature variables selected by SPA also had the correct rate of 97%, showing that the selected variables had the most important information for brand identification, while other variables with no useful information were eliminated efficiently. The use of SPA and LS-SVM could not only obtain a high correct identification rate, but also simplify the model calibration and calculation. SPA-LS-SVM model could extract the useful information from the Vis-NIR spectra of car wax rapidly and accurately for the non-destructive brand identification of car wax.

  14. Non-destructive in-situ method and apparatus for determining radionuclide depth in media

    DOEpatents

    Xu, X. George; Naessens, Edward P.

    2003-01-01

    A non-destructive method and apparatus which is based on in-situ gamma spectroscopy is used to determine the depth of radiological contamination in media such as concrete. An algorithm, Gamma Penetration Depth Unfolding Algorithm (GPDUA), uses point kernel techniques to predict the depth of contamination based on the results of uncollided peak information from the in-situ gamma spectroscopy. The invention is better, faster, safer, and/cheaper than the current practice in decontamination and decommissioning of facilities that are slow, rough and unsafe. The invention uses a priori knowledge of the contaminant source distribution. The applicable radiological contaminants of interest are any isotopes that emit two or more gamma rays per disintegration or isotopes that emit a single gamma ray but have gamma-emitting progeny in secular equilibrium with its parent (e.g., .sup.60 Co, .sup.235 U, and .sup.137 Cs to name a few). The predicted depths from the GPDUA algorithm using Monte Carlo N-Particle Transport Code (MCNP) simulations and laboratory experiments using .sup.60 Co have consistently produced predicted depths within 20% of the actual or known depth.

  15. Quantitative impact characterization of aeronautical CFRP materials with non-destructive testing methods

    SciTech Connect

    Kiefel, Denis E-mail: Rainer.Stoessel@airbus.com; Stoessel, Rainer E-mail: Rainer.Stoessel@airbus.com; Grosse, Christian

    2015-03-31

    In recent years, an increasing number of safety-relevant structures are designed and manufactured from carbon fiber reinforced polymers (CFRP) in order to reduce weight of airplanes by taking the advantage of their specific strength into account. Non-destructive testing (NDT) methods for quantitative defect analysis of damages are liquid- or air-coupled ultrasonic testing (UT), phased array ultrasonic techniques, and active thermography (IR). The advantage of these testing methods is the applicability on large areas. However, their quantitative information is often limited on impact localization and size. In addition to these techniques, Airbus Group Innovations operates a micro x-ray computed tomography (μ-XCT) system, which was developed for CFRP characterization. It is an open system which allows different kinds of acquisition, reconstruction, and data evaluation. One main advantage of this μ-XCT system is its high resolution with 3-dimensional analysis and visualization opportunities, which enables to gain important quantitative information for composite part design and stress analysis. Within this study, different NDT methods will be compared at CFRP samples with specified artificial impact damages. The results can be used to select the most suitable NDT-method for specific application cases. Furthermore, novel evaluation and visualization methods for impact analyzes are developed and will be presented.

  16. Non-destructive testing of composite materials by means of active thermography-based tools

    NASA Astrophysics Data System (ADS)

    Lizaranzu, Miguel; Lario, Alberto; Chiminelli, Agustín; Amenabar, Ibán

    2015-07-01

    Infrared analysis tools are nowadays widely used for the non-destructive testing of components made up in composite materials, belonging to many different industrial sectors. Being a non-contact method, its capability for the inspection of large areas in short periods of time justifies the great number of works and technical studies that can be found in this field. The growing interest in the technique is also supported by the development, during recent years, of increasingly powerful equipment and data analysis tools. In order to establish a base of knowledge to assist defect identification in real components inspections, the design and manufacturing of inspection samples including controlled defects, is a frequently used strategy. This paper deals with the analysis, by means of transient active thermography, of a set of inspection patterns made out of different composite materials and configurations that can be found in the wind turbine blade manufacturing industry. The design and manufacturing of these patterns are described, including different types of representative defects, stack configurations and composite manufacturing techniques. Reference samples are then inspected by means of active thermography analysis tools and the results obtained are discussed.

  17. Non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels using active thermography

    NASA Astrophysics Data System (ADS)

    Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; López, I.

    2012-11-01

    The aerospace industry is in constant need of ever-more efficient inspection methods for quality control. Product inspection is also essential to maintain the safe operation of aircraft components designed to perform for decades. This paper proposes a method for non-destructive inspection of drilled holes in reinforced honeycomb sandwich panels. Honeycomb sandwich panels are extensively employed in the aerospace industry due to their high strength and stiffness to weight ratios. In order to attach additional structures to them, panels are reinforced by filling honeycomb cells and drilling holes into the reinforced areas. The proposed procedure is designed to detect the position of the holes within the reinforced area and to provide a robust measurement of the distance between each hole and the boundary of the reinforced area. The result is a fast, safe and clean inspection method for drilled holes in reinforced honeycomb sandwich panels that can be used to robustly assess a possible displacement of the hole from the center of the reinforced area, which could have serious consequences. The proposed method is based on active infrared thermography, and uses state of the art methods for infrared image processing, including signal-to-nose ratio enhancement, hole detection and segmentation. Tests and comparison with X-ray inspections indicate that the proposed system meets production needs.

  18. Research Based on Optical Non-Destructive Testing of Pigment Identification.

    PubMed

    Wang, Jigang; Hao, Shengcai; Zhou, Wenhua; Qi, Xiaokun; Shi, Jilong

    2016-04-01

    Optical Non-Destructive Testing (ONDT) can be applied as penetrating elemental and structure analysis technology in the Pigments identification field. Three-dimensional video microscopy, Raman microscopy and energy dispersive X-ray fluorescence spectroscopy are employed to measure the materials based on a Qing Dynasty meticulous painting. The results revealed that the dark yellow area within the decorative patterns was presented due to the interaction of Emerald green and hematite, and the bright yellow edge area was delineated by Cu-Zn-Pb composition. The interesting thing is that an artificial synthetic ultramarine blue was checked in the painting. According to the first synthesized time of ultramarine blue and Paris green, the time limit of the painting completion can be identified. The principle of Pigment subtractive colorant and nitikaset method were employed to interpreting the results. Optical testing combined with the area of cultural relic identification can be a potential method to build an expert identification system successfully. This work also help lay the optical method groundwork for further cultural relic identification, sterilization, and preservation.

  19. Non-destructive determination of anisotropic mechanical properties of pharmaceutical solid dosage forms.

    PubMed

    Akseli, I; Hancock, B C; Cetinkaya, C

    2009-07-30

    The mechanical property anisotropy of compacts made from four commercially available pharmaceutical excipient powders (microcrystalline cellulose, lactose monohydrate, ascorbic acid, and aspartame) was evaluated. The speed of pressure (longitudinal) waves in the uni-axially compressed cubic compacts of each excipient in the three principle directions was determined using a contact ultrasonic method. Average Young's moduli of each compact in the axial (x) and radial (y and z) directions were characterized. The contact ultrasonic measurements revealed that average Young's modulus values vary with different testing orientations which indicate Young's modulus anisotropy in the compacts. The extent of Young's modulus anisotropy was quantified by using a dimensionless ratio and was found to be significantly different for each material (microcrystalline cellulose>lactose>aspartame>ascorbic acid). It is also observed that using the presented contact method, compacts at high solid fraction (0.857-0.859) could be differentiated than those at the solid fraction of 0.85 in their groups. The presented contact ultrasonic method is an attractive tool since it has the advantages of being sensitive to solid fraction ratio, non-destructive, requiring small amount of material and rapid. It is noteworthy that, since the approach provides insight into the performance of common pharmaceutical materials and fosters increased process knowledge, it can be applied to broaden the understanding of the effect of the mechanical properties on the performance (e.g., disintegration profiles) of solid oral dosage forms.

  20. Non-destructive Characterization of Microdamage in Cortical Bone using Low Field Pulsed NMR

    PubMed Central

    Nicolella, Daniel P.; Ni, Qingwen; Chan, Kwai S.

    2010-01-01

    The microcracking and damage accumulation process in human cortical bone was characterized by performing cyclic loading under four-point bending at ambient temperature. A non-destructive nuclear magnetic resonance (NMR) spin-spin (T2) relaxation technique was applied to quantify the apparent changes in bone porosity as a function of cyclic loading and prior damage accumulation, first to unloaded cortical bone to quantify the initial porosity and then to fatigued cortical bone that was subjected to cyclic loading to various levels of modulus degradation and microdamage in the form of microcracks. The NMR T2 relaxation time and amplitude data of the fatigued bone were compared against the undamaged state. The difference in the T2 relaxation time data was taken as a measure of the increase in pore size, bone porosity or microcrack density due to microdamage induced by cyclic loading. A procedure was developed to deduce the number and size distributions of microcracks formed in cortical bone. Serial sectioning of the fatigued bone showed the formation of microcracks along the cement lines or within the interstitial tissue. The results on the evolution of microdamage derived from NMR measurements were verified by independent experimental measurements of microcrack density using histological characterization techniques. The size distribution and population of the microcracks were then utilized in conjunction with an analytical model to predict the degradation of the elastic modulus of cortical bone as a function of damage accumulation. PMID:21316626

  1. The use of digital image correlation for non-destructive and multi-scale damage quantification

    NASA Astrophysics Data System (ADS)

    Schwartz, Eric; Saralaya, Raghavendra; Cuadra, Jefferson; Hazeli, Kavan; Vanniamparambil, Prashanth A.; Carmi, Rami; Bartoli, Ivan; Kontsos, Antonios

    2013-04-01

    This research demonstrates the use of Digital Image Correlation (DIC) as a non-contact, non-destructive testing and evaluation (NDT and E) technique by presenting experimental results pertinent to damage monitoring and quantification in several material systems at different length scales of interest. At the microstructural level compact tension aluminum alloy specimens were tested under Mode I loading conditions using an appropriate field of view to track grain scale crack initiation and growth. The results permitted the quantification of the strain accumulation near the tip of the fatigue pre-crack, as well as the computation of the relevant crack opening displacement as a function of crack length. At the mesoscale level, damage quantification in fiber reinforced composites subject to both tensile and fatigue loading conditions was achieved by using the DIC as part of a novel integrated NDT approach combining both acoustic and thermal methods. DIC in these experiments provided spatially resolved and high accuracy strain measurements capable to track the formation of damage "hot spots" that corresponded to the sites of the ultimately visible fracture pattern, while it further allowed the correlation of mechanical parameters to thermal and acoustic features. Finally, at the macrostructural level DIC measurements were also performed and compared to traditional displacement gauges mounted on a steel deck model subject to both static and dynamic loads, as well as on masonry structures including hollow and grouted concrete walls.

  2. Image pixel guided tours: a software platform for non-destructive x-ray imaging

    NASA Astrophysics Data System (ADS)

    Lam, K. P.; Emery, R.

    2009-02-01

    Multivariate analysis seeks to describe the relationship between an arbitrary number of variables. To explore highdimensional data sets, projections are often used for data visualisation to aid discovering structure or patterns that lead to the formation of statistical hypothesis. The basic concept necessitates a systematic search for lower-dimensional representations of the data that might show interesting structure(s). Motivated by the recent research on the Image Grand Tour (IGT), which can be adapted to view guided projections by using objective indexes that are capable of revealing latent structures of the data, this paper presents a signal processing perspective on constructing such indexes under the unifying exploratory frameworks of Independent Component Analysis (ICA) and Projection Pursuit (PP). Our investigation begins with an overview of dimension reduction techniques by means of orthogonal transforms, including the classical procedure of Principal Component Analysis (PCA), and extends to an application of the more powerful techniques of ICA in the context of our recent work on non-destructive testing technology by element specific x-ray imaging.

  3. Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy

    PubMed Central

    Tate, Jim; Moens, Luc

    2006-01-01

    Raman spectroscopy is a versatile technique that has frequently been applied for the investigation of art objects. By using mobile Raman instrumentation it is possible to investigate the artworks without the need for sampling. This work evaluates the use of a dedicated mobile spectrometer for the investigation of a range of museum objects in museums in Scotland, including antique Egyptian sarcophagi, a panel painting, painted surfaces on paper and textile, and the painted lid and soundboard of an early keyboard instrument. The investigations of these artefacts illustrate some analytical challenges that arise when analysing museum objects, including fluorescing varnish layers, ambient sunlight, large dimensions of artefacts and the need to handle fragile objects with care. Analysis of the musical instrument (the Mar virginals) was undertaken in the exhibition gallery, while on display, which meant that interaction with the public and health and safety issues had to be taken into account. Experimental set-up for the non-destructive Raman spectroscopic investigation of a textile banner in the National Museums of Scotland PMID:16953310

  4. Non-destructive diagnosis of relativistic electron beams using a short undulator

    SciTech Connect

    Ponds, M.L.; Madey, J.M.J.; O`Shea, P.G.

    1995-12-31

    The performance of an FEL depends critically on the characteristics of the electron beam used to drive it. In the past it has been very difficult to measure the details of the transverse and longitudinal phase-space distributions of high-energy electron beams with the precision required to predict FEL performance. Furthermore, the available diagnostics were generally pertubative, and could not be used simultaneously with lasing. We investigate the potential use of a short undulator insertion device for non-destructive diagnosis of relativistic electron beams. Incoherent visible to near-infrared synchrotron radiation from a single magnet in the diagnostic undulator will be used to obtain information on beam position and transverse phase-space. Coherent off-axis undulator radiation in the millimeter to sub-millimeter range will be used to measure longitudinal phase-space characteristics of the beam. These two types of radiation can be analyzed simultaneously, while the FEL is lasing; thus giving a complete picture of relevant electron beam characteristics. In this paper we analyze the theoretical and practical design issues associated with such a diagnostic undulator.

  5. Numerical study of light propagation in agricultural products for non-destructive assessment of food quality

    NASA Astrophysics Data System (ADS)

    Hattori, Kiyohito; Fujii, Hiroyuki; Tatekura, Yuki; Kobayashi, Kazumichi; Watanabe, Masao

    2015-12-01

    An accurate determination of optical properties of agricultural products is crucial for non-destructive assessment of food quality. For the determination, light intensity is measured at the surface of the product; then, inverse analysis is employed based on a light propagation model such as the radiative transfer equation (RTE). The inverse analysis requires high computational loads because the light intensity is numerically calculated using the model every time the optical properties are changed. For the calculation, we propose an efficient technique by combining a numerical solution with an analytical solution of the RTE, and investigate the validity of the technique in a two-dimensional homogeneous circular medium which is regarded as a light propagation model with optical properties of kiwifruit. The proposed technique can provide accurate results of the light intensity in change of the optical properties, and the accuracy is less dependent on the boundary conditions and source-detector angles. In addition, the technique can reduce computation time compared with that for numerical calculation of the RTE. These results indicate usefulness of the proposed technique for the inverse analysis.

  6. Development of a neutron measurement system in unified non-destructive assay for the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Seo, Hee; Park, Se-Hwan; Won, Byung-Hee; Ahn, Seong-Kyu; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Lee, Seung Kyu

    2013-12-01

    The Korea Atomic Energy Research Institute (KAERI) has made an effort to develop pyroprocessing technology to resolve an on-going problem in Korea, i.e., the management of spent nuclear fuels. To this end, a test-bed facility for pyroprocessing, called PRIDE (PyRoprocessing Integrated inactive DEmonstration facility), is being constructed at KAERI. The main objective of PRIDE is to evaluate the performance of the unit processes, remote operation, maintenance, and proliferation resistance. In addition, integrating all unit processes into a one-step process is also one of the main goals. PRIDE can also provide a good opportunity to test safeguards instrumentations for a pyroprocessing facility such as nuclear material accounting devices, surveillance systems, radiation monitoring systems, and process monitoring systems. In the present study, a non-destructive assay (NDA) system for the testing of nuclear material accountancy of PRIDE was designed by integrating three different NDA techniques, i.e., neutron, gamma-ray, and mass measurements. The developed neutron detection module consists of 56 3He tubes and 16 AMPTEK A111 signal processing circuits. The amplifiers were matched in terms of the gain and showed good uniformity after a gain-matching procedure (%RSD=0.37%). The axial and the radial efficiency distributions within the cavity were then measured using a 252Cf neutron source and were compared with the MCNPX calculation results. The measured efficiency distributions showed excellent agreement with the calculations, which confirmed the accuracy of the MCNPX model of the system.

  7. Development of non-destructive quality measurement technique for cabbage seed (Brassica campestris L) using hyperspectral reflectance imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cabbage (Brassica campestris L) is an important crop for Asian countries especially in Korea, Japan and China. In order to achieve uniform and high-yield rate of cabbage product, the seed lot quality needs to be controlled. Non-destructive evaluation of seed viability is an important technique for i...

  8. Direct, non-destructive, and rapid evaluation of developmental cotton fibers by ATR FT-IR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical, compositional, and structural differences within the fibers at different growth stages have been investigated considerably through a number of methodologies. Due to its direct, non-destructive, and rapid attribute, this study reports the utilization of attenuated total reflection Fourier t...

  9. A new facility for Non-Destructive Assay with a time-tagged {sup 252}Cf source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2010-08-04

    A new facility for non-destructive assay using a time-tagged {sup 252}Cf source is presented. The system is designed to analyze samples having maximum size of about 15x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays.

  10. NEUROBEHAVIORAL EFFECTS OF EXPOSURE TO ENVIRONMENTAL POLLUTANTS IN CZECH CHILDREN

    EPA Science Inventory

    Ambient levels of SO2, NOx, PAHs and heavy metals are elevated in Northern Bohemia as a result of intensive mining and combustion of brown coal. To assess the neurotoxicological effects of exposure to these chemicals, tests from the Neurobehavioral Evaluation System (NES2) we...

  11. Cause-specific mortality and the extended effects of particulate pollution and temperature exposure.

    PubMed

    Goodman, Patrick G; Dockery, Douglas W; Clancy, Luke

    2004-02-01

    Air pollution exposure studies in the past decade have focused on acute (days) or long-term (years) effects. We present an analysis of medium-term (weeks to months) exposure effects of particulate pollution and temperature. We assessed the associations of particulate pollution (black smoke) and temperature with age-standardized daily mortality rates over 17 years in Dublin, Ireland, using a polynomial distributed lag model of both temperature and particulate air pollution simultaneously through 40 days after exposure. When only acute effects (3-day mean) were considered, we found total mortality increased by 0.4% for each 10-microg/m3 increase in black smoke concentration. When deaths in the 40 days after exposure were considered, we found a 1.1% increase. For respiratory mortality, the estimated effect was 0.9% for acute exposures, but 3.6% for the extended follow-up. We found each increase in current-day temperature by 1 degree C was associated with a 0.4% increase in total mortality, whereas each decrease of 1 degree C was associated with a 2.6% increase in mortality in the following 40 days. For both temperature and pollution, the largest effects on cardiovascular mortality were observed immediately, whereas respiratory mortality was delayed and distributed over several weeks. These effects were two to three times greater than the acute effects reported in other studies, and approach the effects reported in longer-term survival studies. This analysis suggests that studies on the acute effects of air pollution have underestimated the total effects of temperature and particulate air pollution on mortality.

  12. Traffic pollution exposure is associated with altered brain connectivity in school children.

    PubMed

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain.

  13. Traffic pollution exposure is associated with altered brain connectivity in school children.

    PubMed

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain. PMID:26825441

  14. A network-based approach for estimating pedestrian journey-time exposure to air pollution.

    PubMed

    Davies, Gemma; Whyatt, J Duncan

    2014-07-01

    Individual exposure to air pollution depends not only upon pollution concentrations in the surrounding environment, but also on the volume of air inhaled, which is determined by an individual's physiology and activity level. This study focuses on journey-time exposure, using network analysis in a GIS environment to identify pedestrian routes between multiple origins and destinations throughout the city of Lancaster, North West England. For each segment of a detailed footpath network, exposure was calculated accounting for PM2.5 concentrations (estimated using an atmospheric dispersion model) and respiratory minute volume (varying between individuals and with slope). For each of the routes generated the cumulative exposure to PM2.5 was estimated, allowing for easy comparison between multiple routes. Significant variations in exposure were found between routes depending on their geography, as well as in response to variations in background concentrations and meteorology between days. Differences in physiological characteristics such as age or weight were also seen to impact journey-time exposure considerably. In addition to assessing exposure for a given route, the approach was used to identify alternative routes that minimised journey-time exposure. Exposure reduction potential varied considerably between days, with even subtle shifts in route location, such as to the opposite side of the road, showing significant benefits. The method presented is both flexible and scalable, allowing for the interactions between physiology, activity level, pollution concentration and journey duration to be explored. In enabling physiology and activity level to be integrated into exposure calculations a more comprehensive estimate of journey-time exposure can be made, which has potential to provide more realistic inputs for epidemiological studies.

  15. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    SciTech Connect

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  16. Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm

    PubMed Central

    Korek, Michal J; Bellander, Tom D; Lind, Tomas; Bottai, Matteo; Eneroth, Kristina M; Caracciolo, Barbara; de Faire, Ulf H; Fratiglioni, Laura; Hilding, Agneta; Leander, Karin; Magnusson, Patrik K E; Pedersen, Nancy L; Östenson, Claes-Göran; Pershagen, Göran; Penell, Johanna C

    2015-01-01

    We investigated the risk of stroke related to long-term ambient air pollution exposure, in particular the role of various exposure time windows, using four cohorts from Stockholm County, Sweden. In total, 22,587 individuals were recruited from 1992 to 2004 and followed until 2011. Yearly air pollution levels resulting from local road traffic emissions were assessed at participant residences using dispersion models for particulate matter (PM10) and nitrogen oxides (NOX). Cohort-specific hazard ratios were estimated for time-weighted air pollution exposure during different time windows and the incidence of stroke, adjusted for common risk factors, and then meta-analysed. Overall, 868 subjects suffered a non-fatal or fatal stroke during 238,731 person-years of follow-up. An increment of 20 μg/m3 in estimated annual mean of road-traffic related NOX exposure at recruitment was associated with a hazard ratio of 1.16 (95% CI 0.83–1.61), with evidence of heterogeneity between the cohorts. For PM10, an increment of 10 μg/m3 corresponded to a hazard ratio of 1.14 (95% CI 0.68–1.90). Time-window analyses did not reveal any clear induction-latency pattern. In conclusion, we found suggestive evidence of an association between long-term exposure to NOX and PM10 from local traffic and stroke at comparatively low levels of air pollution. PMID:25827311

  17. Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm.

    PubMed

    Korek, Michal J; Bellander, Tom D; Lind, Tomas; Bottai, Matteo; Eneroth, Kristina M; Caracciolo, Barbara; de Faire, Ulf H; Fratiglioni, Laura; Hilding, Agneta; Leander, Karin; Magnusson, Patrik K E; Pedersen, Nancy L; Östenson, Claes-Göran; Pershagen, Göran; Penell, Johanna C

    2015-01-01

    We investigated the risk of stroke related to long-term ambient air pollution exposure, in particular the role of various exposure time windows, using four cohorts from Stockholm County, Sweden. In total, 22,587 individuals were recruited from 1992 to 2004 and followed until 2011. Yearly air pollution levels resulting from local road traffic emissions were assessed at participant residences using dispersion models for particulate matter (PM10) and nitrogen oxides (NOX). Cohort-specific hazard ratios were estimated for time-weighted air pollution exposure during different time windows and the incidence of stroke, adjusted for common risk factors, and then meta-analysed. Overall, 868 subjects suffered a non-fatal or fatal stroke during 238,731 person-years of follow-up. An increment of 20 μg/m(3) in estimated annual mean of road-traffic related NOX exposure at recruitment was associated with a hazard ratio of 1.16 (95% CI 0.83-1.61), with evidence of heterogeneity between the cohorts. For PM10, an increment of 10 μg/m(3) corresponded to a hazard ratio of 1.14 (95% CI 0.68-1.90). Time-window analyses did not reveal any clear induction-latency pattern. In conclusion, we found suggestive evidence of an association between long-term exposure to NOX and PM10 from local traffic and stroke at comparatively low levels of air pollution.

  18. A model of human nasal epithelial cells adapted for direct and repeated exposure to airborne pollutants.

    PubMed

    Bardet, Gaëlle; Achard, Sophie; Loret, Thomas; Desauziers, Valérie; Momas, Isabelle; Seta, Nathalie

    2014-08-17

    Airway epithelium lining the nasal cavity plays a pivotal role in respiratory tract defense and protection mechanisms. Air pollution induces alterations linked to airway diseases such as asthma. Only very few in vitro studies to date have succeeded in reproducing physiological conditions relevant to cellular type and chronic atmospheric pollution exposure. We therefore, set up an in vitro model of human Airway Epithelial Cells of Nasal origin (hAECN) close to real human cell functionality, specifically adapted to study the biological effects of exposure to indoor gaseous pollution at the environmental level. hAECN were exposed under air-liquid interface, one, two, or three-times at 24 h intervals for 1 h, to air or formaldehyde (200 μg/m(3)), an indoor air gaseous pollutant. All experiments were ended at day 4, when both cellular viability and cytokine production were assessed. Optimal adherence and confluence of cells were obtained 96 h after cell seeding onto collagen IV-precoated insert. Direct and repeated exposure to formaldehyde did not produce any cellular damage or IL-6 production change, although weak lower IL-8 production was observed only after the third exposure. Our model is significantly better than previous ones due to cell type and the repeated exposure protocol.

  19. Hypoxia Stress Test Reveals Exaggerated Cardiovascular Effects in Hypertensive Rats after Exposure to the Air Pollutant Acrolein

    EPA Science Inventory

    Exposure to air pollution increases the risk of cardiovascular morbidity and mortality, especially in susceptible populations with cardiovascular disease. Stress tests are useful in assessing cardiovascular risk and manifesting latent effects of exposure. The goal of this study w...

  20. ADDRESSING HUMAN EXPOSURE TO AIR POLLUTANTS AROUND BUILDINGS IN URBAN AREAS WITH COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

    EPA Science Inventory

    Computational Fluid Dynamics (CFD) simulations provide a number of unique opportunities for expanding and improving capabilities for modeling exposures to environmental pollutants. The US Environmental Protection Agency's National Exposure Research Laboratory (NERL) has been c...

  1. Maternal air pollution exposure induces fetal neuroinflammation and predisposes offspring to obesity in aduthood in a sex-specific manner

    EPA Science Inventory

    Emerging evidence suggests environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal air pollution exposure would predispose the offspring to weight gain in adulthood. Pre...

  2. #2 - An Empirical Assessment of Exposure Measurement Error and Effect Attenuation in Bi-Pollutant Epidemiologic Models

    EPA Science Inventory

    Background• Differing degrees of exposure error acrosspollutants• Previous focus on quantifying and accounting forexposure error in single-pollutant models• Examine exposure errors for multiple pollutantsand provide insights on the potential for bias andattenuation...

  3. Participatory measurements of individual exposure to air pollution in urban areas

    NASA Astrophysics Data System (ADS)

    Madelin, Malika; Duché, Sarah; Dupuis, Vincent

    2016-04-01

    Air pollution is a major environmental issue in urban areas. Chronic and high concentration exposure presents a health risk with cardiovascular and respiratory problems and longer term nervous, carcinogenic and endocrine problems. In addition to the estimations based on simulations of both background and regional pollution and of the pollution induced by the traffic, knowing exposure of each individual is a key issue. This exposure reflects the high variability of pollution at fine spatial and time scales, according to the proximity of emission sources and the urban morphology outside. The emergence of citizen science and the progress of miniaturized electronics, low-cost and accessible to (almost) everyone, offers new opportunities for the monitoring of air pollution, but also for the citizens' awareness of their individual exposure to air pollution. In this communication, we propose to present a participatory research project 'What is your air?' (project funded by the Île-de-France region), which aims at raising awareness on the theme of air quality, its monitoring with sensors assembled in a FabLab workshop and an online participatory mapping. Beyond the discussion on technical choices, the stages of manufacture or the sensor calibration procedures, we discuss the measurements made, in this case the fine particle concentration measurements, which are dated and georeferenced (communication via a mobile phone). They show high variability between the measurements (in part linked to the substrates, land use, traffic) and low daily contrasts. In addition to the analysis of the measurements and their comparison with the official data, we also discuss the choice of representation of information, including mapping, and therefore the message about pollution to communicate.

  4. Predicting personal exposure of pregnant women to traffic-related air pollutants.

    PubMed

    Nethery, Elizabeth; Teschke, Kay; Brauer, Michael

    2008-05-20

    As epidemiological studies report associations between ambient air pollution and adverse birth outcomes, it is important to understand determinants of exposures among pregnant women. We measured (48-h, personal exposure) and modeled (using outdoor ambient monitors and a traffic-based land-use regression model) NO, NO(2), fine particle mass and absorbance in 62 non-smoking pregnant women in Vancouver, Canada on 1-3 occasions during pregnancy (total N=127). We developed predictive models for personal measurements using modeled ambient concentrations and individual determinants of exposure. Geometric mean exposures of personal samples were relatively low (GM (GSD) NO=37 ppb (2.0); NO(2)=17 ppb (1.6); 'soot', as filter absorbance=0.8 10(-5) m(-1) (1.5); PM(2.2)=10 microg m(-3) (1.6)). Having a gas stove (vs. electric stove) in the home was associated with exposure increases of 89% (NO), 44% (NO(2)), 20% (absorbance) and 35% (fine PM). Interpolated concentrations from outdoor fixed-site monitors were associated with all personal exposures except NO(2). Land-use regression model estimates of outdoor air pollution were associated with personal NO and NO(2) only. The effects of outdoor air pollution on personal samples were consistent, with and without adjustment for other individual determinants (e.g. gas stove). These findings improve our understanding of sources of exposure to air pollutants among pregnant women and support the use of outdoor concentration estimates as proxies for exposure in epidemiologic studies.

  5. Spatial Cluster Detection of Air Pollution Exposure Inequities across the United States

    PubMed Central

    Zou, Bin; Peng, Fen; Wan, Neng; Mamady, Keita; Wilson, Gaines J.

    2014-01-01

    Air quality is known to be a key factor in affecting the wellbeing and quality of life of the general populous and there is a large body of knowledge indicating that certain underrepresented groups may be overexposed to air pollution. Therefore, a more precise understanding of air pollution exposure as a driving cause of health disparities between and among ethnic and racial groups is necessary. Utilizing 52,613 urban census tracts across the United States, this study investigates age, racial, educational attainment and income differences in exposure to benzene pollution in 1999 as a case. The study examines spatial clustering patterns of these inequities using logistic regression modeling and spatial autocorrelation methods such as the Global Moran's I index and the Anselin Local Moran's I index. Results show that the age groups of 0 to 14 and those over 60 years old, individuals with less than 12 years of education, racial minorities including Blacks, American Indians, Asians, some other races, and those with low income were exposed to higher levels of benzene pollution in some census tracts. Clustering analyses stratified by age, education, and race revealed a clear case of disparities in spatial distribution of exposure to benzene pollution across the entire United States. For example, people aged less than 4 years from the western south and the Pacific coastal areas exhibit statistically significant clusters. The findings confirmed that there are geographical-location based disproportionate pattern of exposures to benzene air pollution by various socio-demographic factors across the United States and this type of disproportionate exposure pattern can be effectively detected by a spatial autocorrelation based cluster analysis method. It is suggested that there is a clear and present need for programs and services that will reduce inequities and ultimately improve environmental conditions for all underrepresented groups in the United States. PMID:24647354

  6. The impact of urban street canyons on population exposure to traffic-related primary pollutants

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Levy, Jonathan I.

    The relationship between emissions and population exposures to traffic-related air pollutants is a necessary component of any assessment of mobile source control strategies. In this analysis, part of the New York Metropolitan Exposure to Traffic Study (NYMETS), we simulated atmospheric dispersion and population exposure in densely populated street canyons in mid-town Manhattan. We estimated population exposure using the concept of an intake fraction (iF), defined as the fraction of material released from a source that is eventually inhaled or ingested by a population. We applied the Operational Street Pollution Model (OSPM) for inert pollutants (e.g., CO, PM 2.5), reactive pollutants (e.g., NO and NO 2), and ultrafine particles. Concentrations were linked with different subpopulations, including residents, workers, and pedestrians, incorporating time-activity patterns and differential breathing rates. For the base case scenario, the total iF for a 100-m-long street canyon including the contribution of different subpopulations is on the order of 10 -3. Daytime office workers and pedestrians contribute most to the overall iF, together contributing over 80% for all pollutants. Univariate sensitivity analyses show that iFs are sensitive to the street configuration and slightly sensitive to traffic volume, speed, and percent of trucks. Our iF estimates are similar in magnitude to those found for indoor environmental tobacco smoke and are substantially higher than previous mobile source estimates, mainly due to the higher population density in street canyons. Our findings emphasize the importance of controlling emissions in urban street canyons, and the need to study high-resolution near-source exposures for primary pollutants in urban settings to inform cost-benefit analyses.

  7. Spatial cluster detection of air pollution exposure inequities across the United States.

    PubMed

    Zou, Bin; Peng, Fen; Wan, Neng; Mamady, Keita; Wilson, Gaines J

    2014-01-01

    Air quality is known to be a key factor in affecting the wellbeing and quality of life of the general populous and there is a large body of knowledge indicating that certain underrepresented groups may be overexposed to air pollution. Therefore, a more precise understanding of air pollution exposure as a driving cause of health disparities between and among ethnic and racial groups is necessary. Utilizing 52,613 urban census tracts across the United States, this study investigates age, racial, educational attainment and income differences in exposure to benzene pollution in 1999 as a case. The study examines spatial clustering patterns of these inequities using logistic regression modeling and spatial autocorrelation methods such as the Global Moran's I index and the Anselin Local Moran's I index. Results show that the age groups of 0 to 14 and those over 60 years old, individuals with less than 12 years of education, racial minorities including Blacks, American Indians, Asians, some other races, and those with low income were exposed to higher levels of benzene pollution in some census tracts. Clustering analyses stratified by age, education, and race revealed a clear case of disparities in spatial distribution of exposure to benzene pollution across the entire United States. For example, people aged less than 4 years from the western south and the Pacific coastal areas exhibit statistically significant clusters. The findings confirmed that there are geographical-location based disproportionate pattern of exposures to benzene air pollution by various socio-demographic factors across the United States and this type of disproportionate exposure pattern can be effectively detected by a spatial autocorrelation based cluster analysis method. It is suggested that there is a clear and present need for programs and services that will reduce inequities and ultimately improve environmental conditions for all underrepresented groups in the United States.

  8. Measuring combined exposure to environmental pressures in urban areas: an air quality and noise pollution assessment approach.

    PubMed

    Vlachokostas, Ch; Achillas, Ch; Michailidou, A V; Moussiopoulos, Nu

    2012-02-01

    This study presents a methodological scheme developed to provide a combined air and noise pollution exposure assessment based on measurements from personal portable monitors. Provided that air and noise pollution are considered in a co-exposure approach, they represent a significant environmental hazard to public health. The methodology is demonstrated for the city of Thessaloniki, Greece. The results of an extensive field campaign are presented and the variations in personal exposure between modes of transport, routes, streets and transport microenvironments are evaluated. Air pollution and noise measurements were performed simultaneously along several commuting routes, during the morning and evening rush hours. Combined exposure to environmental pollutants is highlighted based on the Combined Exposure Factor (CEF) and Combined Dose and Exposure Factor (CDEF). The CDEF takes into account the potential relative uptake of each pollutant by considering the physical activities of each citizen. Rather than viewing environmental pollutants separately for planning and environmental sustainability considerations, the possibility of an easy-to-comprehend co-exposure approach based on these two indices is demonstrated. Furthermore, they provide for the first time a combined exposure assessment to these environmental pollutants for Thessaloniki and in this sense they could be of importance for local public authorities and decision makers. A considerable environmental burden for the citizens of Thessaloniki, especially for VOCs and noise pollution levels is observed. The material herein points out the importance of measuring public health stressors and the necessity of considering urban environmental pollution in a holistic way.

  9. Non-Destructive Evaluation of Kissing Bonds using Local Defect Resonance (LDR) Spectroscopy: A Simulation Study

    NASA Astrophysics Data System (ADS)

    Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.

    With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.

  10. Density determination of nano-layers depending to the thickness by non-destructive method

    SciTech Connect

    Gacem, A.; Doghmane, A.; Hadjoub, Z.

    2013-12-16

    Non-destructive tests used to characterize and observe the state of the solids near the surface or at depth, without damaging them or damaging them. Density is frequently used to follow the variations of the physical structure of the samples, as well as in the calculation of quantity of material required to fill a given volume, and it is also used to determine the homogeneity of a sample. However, the measurement of the acoustic properties (density, elastic constants,…) of a thin film whose thickness is smaller than several atomic layers is not easy to perform. For that reason, we expose in this work the effects of the thicknesses of thin films on the evolution of the density, where several samples are analyzed. The samples selected structures are thin films deposited on substrates, these coatings have thicknesses varying from a few atomic layers to ten or so micrometers and can change the properties of the substrate on which they are deposited. To do so, we considered a great number of layers (Cr, Al, SiO{sub 2}, ZnO, Cu, AlN, Si{sub 3}N{sub 4}, SiC) deposited on different substrates (Al{sub 2}O{sub 3}, Cu and Quartz). It is first shown that the density exhibits a dispersive behaviour. Such a behaviour is characterized by an initial increase (or decrease) followed by a saturated region. Further investigations of these dependences led to the determination of a semi-empirical universal relations, ρ=f(h/λ{sub T}), for all the investigated layer/substrate combination. Such expression could be of great importance in the density prediction of even layers thicknesses.

  11. Iron speciation in ancient Attic pottery pigments: a non-destructive SR-XAS investigation.

    PubMed

    Bardelli, Fabrizio; Barone, Germana; Crupi, Vincenza; Longo, Francesca; Maisano, Giacomo; Majolino, Domenico; Mazzoleni, Paolo; Venuti, Valentina

    2012-09-01

    The present work reports a detailed investigation on the speciation of iron in the pigments of decorated pottery fragments of cultural heritage relevance. The fragments come from the Gioiosa Guardia archaeological site in the area of the `Strait of Messina' (Sicily, Southern Italy), and date back to VI-V century BC. The purpose of this study is to characterize the main pigmenting agents responsible for the dark-red coloration of the specimens using non-destructive analytical techniques such as synchrotron radiation X-ray absorption spectroscopy (SR-XAS), a well established technique for cultural heritage and environmental subjects. Absorption spectra were collected at the Fe K-edge on the Italian beamline for absorption and diffraction (BM8-GILDA) at the European Synchrotron Radiation Facility in Grenoble (France). In order to determine the speciation of Fe in the samples, principal component analysis and least-squares fitting procedures were applied to the near-edge part of the absorption spectra (XANES). Details on the local structure around the Fe sites were obtained by analyzing the extended part of the spectra (EXAFS). Furthermore, an accurate determination of the average Fe oxidation state was carried out through analysis of the pre-edge peaks of the absorption spectra. Samples resulted composed of an admixture of Fe(2)O(3) (hematite or maghemite) and magnetite (Fe(3)O(4)), occurring in different relative abundance in the dark- and light-colored areas of the specimens. The results obtained are complementary to information previously obtained by means of instrumental neutron activation analysis, Fourier transform infrared absorbance and time-of-flight neutron diffraction. PMID:22898958

  12. Infrared thermography non-destructive evaluation of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Zi-jun; Li, Zhi-qiang; Liu, Qiang

    2011-08-01

    The power lithium-ion battery with its high specific energy, high theoretical capacity and good cycle-life is a prime candidate as a power source for electric vehicles (EVs) and hybrid electric vehicles (HEVs). Safety is especially important for large-scale lithium-ion batteries, especially the thermal analysis is essential for their development and design. Thermal modeling is an effective way to understand the thermal behavior of the lithium-ion battery during charging and discharging. With the charging and discharging, the internal heat generation of the lithium-ion battery becomes large, and the temperature rises leading to an uneven temperature distribution induces partial degradation. Infrared (IR) Non-destructive Evaluation (NDE) has been well developed for decades years in materials, structures, and aircraft. Most thermographic methods need thermal excitation to the measurement structures. In NDE of battery, the thermal excitation is the heat generated from carbon and cobalt electrodes in electrolyte. A technique named "power function" has been developed to determine the heat by chemical reactions. In this paper, the simulations of the transient response of the temperature distribution in the lithium-ion battery are developed. The key to resolving the security problem lies in the thermal controlling, including the heat generation and the internal and external heat transfer. Therefore, three-dimensional modelling for capturing geometrical thermal effects on battery thermal abuse behaviour is required. The simulation model contains the heat generation during electrolyte decomposition and electrical resistance component. Oven tests are simulated by three-dimensional model and the discharge test preformed by test system. Infrared thermography of discharge is recorded in order to analyze the security of the lithium-ion power battery. Nondestructive detection is performed for thermal abuse analysis and discharge analysis.

  13. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    NASA Astrophysics Data System (ADS)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-01

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  14. Non-Destructive Survey of Archaeological Sites Using Airborne Laser Scanning and Geophysical Applications

    NASA Astrophysics Data System (ADS)

    Poloprutský, Z.; Cejpová, M.; Němcová, J.

    2016-06-01

    This paper deals with the non-destructive documentation of the "Radkov" (Svitavy district, Czech Republic) archaeological site. ALS, GPR and land survey mapping will be used for the analysis. The fortified hilltop settlement "Radkov" is an immovable historical monument with preserved relics of anthropogenic origin in relief. Terrain reconnaissance can identify several accentuated objects on site. ALS enables identification of poorly recognizable archaeological objects and their contexture in the field. Geophysical survey enables defunct objects identification. These objects are hidden below the current ground surface and their layout is crucial. Land survey mapping provides technical support for ALS and GPR survey. It enables data georeferencing in geodetic reference systems. GIS can then be used for data analysis. M. Cejpová and J. Němcová have studied this site over a long period of time. In 2012 Radkov was surveyed using ALS in the project "The Research of Ancient Road in Southwest Moravia and East Bohemia". Since 2015 the authors have been examining this site. This paper summarises the existing results of the work of these authors. The digital elevation model in the form of a grid (GDEM) with a resolution 1 m of 2012 was the basis for this work. In 2015 the survey net, terrain reconnaissance and GPR survey of two archaeological objects were done at the site. GDEM was compared with these datasets. All datasets were processed individually and its results were compared in ArcGIS. This work was supported by the Grant Agency of the CTU in Prague, grant No. SGS16/063/OHK1/1T/11.

  15. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.

    PubMed

    Manley, Marena

    2014-12-21

    Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as

  16. Crime scene investigations using portable, non-destructive space exploration technology

    NASA Technical Reports Server (NTRS)

    Trombka, Jacob I.; Schweitzer, Jeffrey; Selavka, Carl; Dale, Mark; Gahn, Norman; Floyd, Samuel; Marie, James; Hobson, Maritza; Zeosky, Jerry; Martin, Ken; McClannahan, Timothy; Solomon, Pamela; Gottschang, Elyse

    2002-01-01

    The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASAs) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals solve crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ programs with state and local forensic laboratories. A working group of NASA scientists and law enforcement professionals has been established to develop and implement a feasibility demonstration program. Specifically, the group has focused its efforts on identifying gunpowder and primer residue, blood, and semen at crime scenes. Non-destructive elemental composition identification methods are carried out using portable X-ray fluorescence (XRF) systems. These systems are similar to those being developed for planetary exploration programs. A breadboard model of a portable XRF system has been constructed for these tests using room temperature silicon and cadmium-zinc telluride (CZT) detectors. Preliminary tests have been completed with gunshot residue (GSR), blood-spatter and semen samples. Many of the element composition lines have been identified. Studies to determine the minimum detectable limits needed for the analyses of GSR, blood and semen in the crime scene environment have been initiated and preliminary results obtained. Furthermore, a database made up of the inorganic composition of GSR is being developed. Using data obtained from the open literature of the elemental composition of barium (Ba) and antimony (Sb) in handswipes of GSR, we believe that there may be a unique GSR signature based on the Sb to Ba ratio.

  17. Application of active and passive neutron non destructive assay methods to concrete radioactive waste drums

    NASA Astrophysics Data System (ADS)

    Jallu, F.; Passard, C.; Brackx, E.

    2011-09-01

    This paper deals with the application of non-destructive neutron measurement methods to control and characterize 200 l radioactive waste drums filled with a concrete matrix. Due to its composition, and particularly to hydrogen, concrete penalizes the use of such methods to quantify uranium (U) and plutonium (Pu) components, which are mainly responsible of the α-activity of the waste. The determination of the alpha activity is the main objective of neutron measurements, in view to verify acceptance criteria in surface storage. Calibration experiments of the Active Neutron Interrogation (ANI) method lead to Detection Limit Masses (DLM) of about 1 mg of 239Pu eff in the total counting mode, and of about 10 mg of 239Pu eff in the coincidence counting mode, in case of a homogeneous Pu source and measurement times between one and two hours. Monte Carlo calculation results show a very satisfactory agreement between experimental values and calculated ones. Results of the application of passive and active neutron methods to control two real drums are presented in the last part of the paper. They show a good agreement between measured data and values declared by the waste producers. The main difficulties that had to be overcome are the low neutron signal in passive and active coincidence counting modes due to concrete, the analysis of the passive neutron signal in presence of 244Cm in the drum, which is a strong spontaneous fission neutron emitter, the variation of the active background with the concrete composition, and the analysis of the active prompt neutron signal due to the simultaneous presence of U and Pu in the drums.

  18. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.

    PubMed

    Manley, Marena

    2014-12-21

    Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as

  19. The use of non-destructive passive neutron measurement methods in dismantling and radioactive waste characterization

    SciTech Connect

    Jallu, F.; Allinei, P. G.; Bernard, P.; Loridon, J.; Soyer, P.; Pouyat, D.; Torreblanca, L.; Reneleau, A.

    2011-07-01

    The cleaning up and dismantling of nuclear facilities lead to a great volume of technological radioactive wastes which need to be characterized in order to be sent to the adequate final disposal or interim storage. The control and characterization can be performed with non-destructive nuclear measurements such as gamma-ray spectrometry. Passive neutron counting is an alternative when the alpha-gamma emitters cannot be detected due to the presence of a high gamma emission resulting from fission or activation products, or when the waste matrix is too absorbing for the gamma rays of interest (too dense and/or made of high atomic number elements). It can also be a complement to gamma-ray spectrometry when two measurement results must be confronted to improve the confidence in the activity assessment. Passive neutron assays involve the detection of spontaneous fission neutrons emitted by even nuclides ({sup 238}Pu, {sup 240}Pu, {sup 242}Pu, {sup 242}Cm, {sup 244}Cm...) and neutrons resulting from ({alpha}, n) reactions with light nuclides (O, F, Be...). The latter is conditioned by the presence of high {alpha}-activity radionuclides ({sup 234}U, {sup 238}Pu, {sup 240}Pu, {sup 241}Am...) and low-Z elements, which depends on the chemical form (metallic, oxide or fluorine) of the plutonium or uranium contaminant. This paper presents the recent application of passive neutron methods to the cleaning up of a nuclear facility located at CEA Cadarache (France), which concerns the Pu mass assessment of 2714 historic, 100 litre radioactive waste drums produced between 1980 and 1997. Another application is the dismantling and decommissioning of an uranium enrichment facility for military purposes, which involves the {sup 235}U and total uranium quantifications in about a thousand, large compressors employed in the gaseous diffusion enrichment process. (authors)

  20. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    SciTech Connect

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-18

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  1. A direct comparison of non-destructive techniques for determining bridging stress distributions

    NASA Astrophysics Data System (ADS)

    Greene, R. B.; Gallops, S.; Fünfschilling, S.; Fett, T.; Hoffmann, M. J.; Ager, J. W.; Kruzic, J. J.

    2012-08-01

    Crack bridging is an important source of crack propagation resistance in many materials and the bridging stress distribution as a function of crack opening displacement is widely believed to represent a true material property uninfluenced by sample geometry, loading conditions, and other extrinsic factors. Accordingly, accurate measurement of the bridging stress distribution is needed and many non-destructive methods have been developed. However, there are many challenges to accurately determining bridging stresses. A comparison of bridging stresses measured using R-curve, crack opening displacement (COD), and spectroscopy methods has been made using two bridging ceramics, Y2O3 and MgO doped Si3N4 and 99.5% pure Al2O3. The COD method is surface sensitive and gives a lower peak bridging stress compared to the R-curve technique which samples through the entire material thickness. This is attributed to a more compliant near surface bridging zone. Conversely, when R-curves rise steeply over the first few micrometers of growth from a notch, an effect of negative T-stress is expected to raise the R-curve determined peak bridging stress. Spectroscopy methods were only found to yield reliable bridging stress results if a reasonable through thickness volume of material is sampled. It was found that 2.5% of the specimen thickness achieved using fluorescence spectroscopy appears adequate for Al2O3 while 0.1-0.2% of the sample thickness achieved using Raman spectroscopy for Si3N4 appears inadequate. Overall, it is concluded that in the absence of T-stresses a bridging distribution can be determined that is a true material property. Also, a new method is proposed for determining the bridging stresses of fatigue cracks from (1) the bridging stress distribution for monotonically loaded cracks and (2) experimental fatigue data.

  2. XPS for non-destructive depth profiling and 3D imaging of surface nanostructures.

    PubMed

    Hajati, Shaaker; Tougaard, Sven

    2010-04-01

    Depth profiling of nanostructures is of high importance both technologically and fundamentally. Therefore, many different methods have been developed for determination of the depth distribution of atoms, for example ion beam (e.g. O(2)(+) , Ar(+)) sputtering, low-damage C(60) cluster ion sputtering for depth profiling of organic materials, water droplet cluster ion beam depth profiling, ion-probing techniques (Rutherford backscattering spectroscopy (RBS), secondary-ion mass spectroscopy (SIMS) and glow-discharge optical emission spectroscopy (GDOES)), X-ray microanalysis using the electron probe variation technique combined with Monte Carlo calculations, angle-resolved XPS (ARXPS), and X-ray photoelectron spectroscopy (XPS) peak-shape analysis. Each of the depth profiling techniques has its own advantages and disadvantages. However, in many cases, non-destructive techniques are preferred; these include ARXPS and XPS peak-shape analysis. The former together with parallel factor analysis is suitable for giving an overall understanding of chemistry and morphology with depth. It works very well for flat surfaces but it fails for rough or nanostructured surfaces because of the shadowing effect. In the latter method shadowing effects can be avoided because only a single spectrum is used in the analysis and this may be taken at near normal emission angle. It is a rather robust means of determining atom depth distributions on the nanoscale both for large-area XPS analysis and for imaging. We critically discuss some of the techniques mentioned above and show that both ARXPS imaging and, particularly, XPS peak-shape analysis for 3D imaging of nanostructures are very promising techniques and open a gateway for visualizing nanostructures. PMID:20091159

  3. Iron speciation in ancient Attic pottery pigments: a non-destructive SR-XAS investigation.

    PubMed

    Bardelli, Fabrizio; Barone, Germana; Crupi, Vincenza; Longo, Francesca; Maisano, Giacomo; Majolino, Domenico; Mazzoleni, Paolo; Venuti, Valentina

    2012-09-01

    The present work reports a detailed investigation on the speciation of iron in the pigments of decorated pottery fragments of cultural heritage relevance. The fragments come from the Gioiosa Guardia archaeological site in the area of the `Strait of Messina' (Sicily, Southern Italy), and date back to VI-V century BC. The purpose of this study is to characterize the main pigmenting agents responsible for the dark-red coloration of the specimens using non-destructive analytical techniques such as synchrotron radiation X-ray absorption spectroscopy (SR-XAS), a well established technique for cultural heritage and environmental subjects. Absorption spectra were collected at the Fe K-edge on the Italian beamline for absorption and diffraction (BM8-GILDA) at the European Synchrotron Radiation Facility in Grenoble (France). In order to determine the speciation of Fe in the samples, principal component analysis and least-squares fitting procedures were applied to the near-edge part of the absorption spectra (XANES). Details on the local structure around the Fe sites were obtained by analyzing the extended part of the spectra (EXAFS). Furthermore, an accurate determination of the average Fe oxidation state was carried out through analysis of the pre-edge peaks of the absorption spectra. Samples resulted composed of an admixture of Fe(2)O(3) (hematite or maghemite) and magnetite (Fe(3)O(4)), occurring in different relative abundance in the dark- and light-colored areas of the specimens. The results obtained are complementary to information previously obtained by means of instrumental neutron activation analysis, Fourier transform infrared absorbance and time-of-flight neutron diffraction.

  4. The effect of variation in phased array element performance for Non-Destructive Evaluation (NDE).

    PubMed

    Duxbury, David; Russell, Jonathan; Lowe, Michael

    2013-08-01

    This paper reports the results of an investigation into the effects of phased array element performance on ultrasonic beam integrity. This investigation has been performed using an array beam model based on Huygens' principle to independently investigate the effects of element sensitivity and phase, and non-functioning elements via Monte Carlo simulation. The purpose of this work is to allow a new method of array calibration for Non-Destructive Evaluation (NDE) to be adopted that focuses on probe integrity rather than beam integrity. This approach is better suited to component inspections that utilise Full Matrix Capture (FMC) to record data as the calibration routine is uncoupled from the beams that the array is required to produce. For this approach to be adopted specifications must be placed on element performance that guarantee beam quality without carrying out any beam forming. The principal result of this investigation is that the dominant outcome following variations in array element performance is the introduction of beam artefacts such as main beam broadening, raising of the noise floor of the ultrasonic field, and the enlargement or creation of side lobes. Specifications for practical allowable limits of element sensitivity, element phase, and the number of non-functioning elements have been suggested based on a minimum amplitude difference between beam artefacts and the main beam peak of 8 dB. Simulation at a number of centre frequencies has led to a recommendation that the product of transducer bandwidth and maximum phase error should be kept below 0.051 and 0.035 for focused and plane beams respectively. Element sensitivity should be within 50% of mean value of the aperture, and no more than 9% of the elements should be non-functioning.

  5. The effect of variation in phased array element performance for Non-Destructive Evaluation (NDE).

    PubMed

    Duxbury, David; Russell, Jonathan; Lowe, Michael

    2013-08-01

    This paper reports the results of an investigation into the effects of phased array element performance on ultrasonic beam integrity. This investigation has been performed using an array beam model based on Huygens' principle to independently investigate the effects of element sensitivity and phase, and non-functioning elements via Monte Carlo simulation. The purpose of this work is to allow a new method of array calibration for Non-Destructive Evaluation (NDE) to be adopted that focuses on probe integrity rather than beam integrity. This approach is better suited to component inspections that utilise Full Matrix Capture (FMC) to record data as the calibration routine is uncoupled from the beams that the array is required to produce. For this approach to be adopted specifications must be placed on element performance that guarantee beam quality without carrying out any beam forming. The principal result of this investigation is that the dominant outcome following variations in array element performance is the introduction of beam artefacts such as main beam broadening, raising of the noise floor of the ultrasonic field, and the enlargement or creation of side lobes. Specifications for practical allowable limits of element sensitivity, element phase, and the number of non-functioning elements have been suggested based on a minimum amplitude difference between beam artefacts and the main beam peak of 8 dB. Simulation at a number of centre frequencies has led to a recommendation that the product of transducer bandwidth and maximum phase error should be kept below 0.051 and 0.035 for focused and plane beams respectively. Element sensitivity should be within 50% of mean value of the aperture, and no more than 9% of the elements should be non-functioning. PMID:23337826

  6. Crime scene investigations using portable, non-destructive space exploration technology.

    PubMed

    Trombka, Jacob I; Schweitzer, Jeffrey; Selavka, Carl; Dale, Mark; Gahn, Norman; Floyd, Samuel; Marie, James; Hobson, Maritza; Zeosky, Jerry; Martin, Ken; McClannahan, Timothy; Solomon, Pamela; Gottschang, Elyse

    2002-09-10

    The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASAs) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals solve crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ programs with state and local forensic laboratories. A working group of NASA scientists and law enforcement professionals has been established to develop and implement a feasibility demonstration program. Specifically, the group has focused its efforts on identifying gunpowder and primer residue, blood, and semen at crime scenes. Non-destructive elemental composition identification methods are carried out using portable X-ray fluorescence (XRF) systems. These systems are similar to those being developed for planetary exploration programs. A breadboard model of a portable XRF system has been constructed for these tests using room temperature silicon and cadmium-zinc telluride (CZT) detectors. Preliminary tests have been completed with gunshot residue (GSR), blood-spatter and semen samples. Many of the element composition lines have been identified. Studies to determine the minimum detectable limits needed for the analyses of GSR, blood and semen in the crime scene environment have been initiated and preliminary results obtained. Furthermore, a database made up of the inorganic composition of GSR is being developed. Using data obtained from the open literature of the elemental composition of barium (Ba) and antimony (Sb) in handswipes of GSR, we believe that there may be a unique GSR signature based on the Sb to Ba ratio.

  7. Non destructive technique for cracks detection by an eddy current in differential mode for steel frames

    SciTech Connect

    Harzalla, S. Chabaat, M.; Belgacem, F. Bin Muhammad

    2014-12-10

    In this paper, a nondestructive technique is used as a tool to control cracks and microcracks in materials. A simulation by a numerical approach such as the finite element method is employed to detect cracks and eventually; to study their propagation using a crucial parameter such as the stress intensity factor. This approach has been used in the aircraft industry to control cracks. Besides, it makes it possible to highlight the defects of parts while preserving the integrity of the controlled products. On the other side, it is proven that the reliability of the control of defects gives convincing results for the improvement of the quality and the safety of the material. Eddy current testing (ECT) is a standard technique in industry for the detection of surface breaking flaws in magnetic materials such as steels. In this context, simulation tools can be used to improve the understanding of experimental signals, optimize the design of sensors or evaluate the performance of ECT procedures. CEA-LIST has developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. The developments presented herein address the case of flaws located inside a planar and magnetic medium. Simulation results are obtained through the application of the Volume Integral Method (VIM). When considering the ECT of a single flaw, a system of two differential equations is derived from Maxwell equations. The numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments. Besides, a probe response is calculated by application of the Lorentz reciprocity theorem. Finally, the approach itself as well as comparisons between simulation results and measured data are presented.

  8. In-vehicle exposures to particulate air pollution in Canadian metropolitan areas: the urban transportation exposure study.

    PubMed

    Weichenthal, Scott; Van Ryswyk, Keith; Kulka, Ryan; Sun, Liu; Wallace, Lance; Joseph, Lawrence

    2015-01-01

    Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/min) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 m buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R(2) = 0.24) and black carbon (R(2) = 0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.

  9. Ambient exposure to criteria air pollutants and female lung cancer in Taiwan.

    PubMed

    Liu, Chia-Chia; Tsai, Shang-Shyue; Chiu, Hui-Fen; Wu, Trong-Neng; Yang, Chun-Yuh

    2008-02-01

    To investigate the relationship between air pollution and female lung cancer, the authors conducted a matched case-control study using female deaths that occurred in Taiwan from 1995 through 2005. Data on all eligible female lung cancer deaths were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. The control group consisted of women who died from causes other than cancer or diseases associated with respiratory problems. The controls were pair-matched to the cases by sex, year of birth, and year of death. Each matched control was selected randomly from the set of possible controls for each case. Classification of exposure to municipality air pollution was based on the measured levels of nitrogen dioxide and carbon monoxide. The results of the present study show that there is a significant positive association between the levels of air pollution and female lung cancer mortality. The adjusted odds ratios (95% confidence interval) were 1.24 (1.03-1.50) for the group with medium air pollution level and 1.46 (1.18-1.81) for the group with high air pollution level when compared to the group with the low air pollution level. Trend analyses showed statistically significant trend in risk of female lung cancer with increasing air pollution level. The findings of this study warrant further investigation of the role of air pollutants in the etiology of lung cancer. PMID:18300049

  10. Health and Household Air Pollution from Solid Fuel Use: The Needfor Improved Exposure Assessment

    EPA Science Inventory

    Background: Nearly half the world’s population relies on solid fuel combustion to meet basic household energy needs (e.g., cooking and heating). Resulting air pollution exposures are estimated to cause 3% of the global burden of disease. Large variability and a lack of resource...

  11. Exposure to concentrated coarse air pollution particles causes mild cardiopulmonary effects in young healthy adults

    EPA Science Inventory

    Rationale: There is ample epidemiological and toxicological evidence that exposure to fme air pollution particles (PM2.5), which are primarily derived from combustion processes, can result in increased mortality and morbidity. There is less certainty as to the contribution of coa...

  12. AIR PARTICULATE POLLUTION EXPOSURE INDUCES SYSTEMIC OXIDATIVE STRESS IN HEALTHY MICE

    EPA Science Inventory

    Air particulate pollution exposure induces systemic oxidative stress in healthy mice

    Elizabeth S Roberts1 and Kevin L Dreher2. 1 College or Veterinary Medicine, NC State University, Raleigh, NC , 2US Environmental Protection Agency, NHEERL, RTP, NC

    Epidemiological s...

  13. Summary and Findings of the EPA and CDC Symposium on Air Pollution Exposure and Health

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) co-organized a symposium on "Air Pollution Exposure and Health" at Research Triangle Park, North Carolina on September 19–20, 2006. The symposium brought together health and environmenta...

  14. LONGITUDINAL STUDY OF SEMEN QUALITY AFTER INTERMITTENT EXPOSURE TO AIR POLLUTION

    EPA Science Inventory

    LONGITUDINAL STUDY OF SEMEN QUALITY AFTER INTERMITTENT EXPOSURE TO AIR POLLUTION. J. Rubes*, D. Zudova*, Veterinary Research Institute, Brno, CR, S.G. Selevan*, US EPA/ORD/NCEA, Washington, DC, D.P. Evenson, South Dakota State University, Brookings, SD, and S.D. Perreault, US ...

  15. Exposure of Mammalian Cells to Air-Pollutant Mixtures at the Air-Liquid Interface

    EPA Science Inventory

    It has been widely accepted that exposure of mammalian cells to air-pollutant mixtures at the air-liquid interface is a more realistic approach than exposing cell under submerged conditions. The VITROCELL systems, are commercially available systems for air-liquid interface expo...

  16. GST M1 GENOTYPE INFLUENCES SPERM DNA DAMAGE ASSOCIATED WITH EXPOSURE TO AIR POLLUTION

    EPA Science Inventory

    For Society for Epidemiologic Research Meeting, June 15-18, 2004, Salt Lake City, Utah.

    Presenter: Sherry G. Selevan

    GSTM1 GENOTYPE INFLUENCES SPERM DNA DAMAGE ASSOCIATED WITH EXPOSURE TO AIR POLLUTION. J Rubes, SG Selevan*, R. Sram, DPEvenson, SD Perreault. VRI, ...

  17. AGGREGATE EXPOSURES OF NINE PRESCHOOL CHILDREN TO PERSISTENT ORGANIC POLLUTANTS AT DAY CARE AND AT HOME

    EPA Science Inventory

    In the summer of 1997, we measured the aggregate exposures of nine preschool children, ages two to five years, to a suite of organic pesticides and other persistent organic pollutants that are commonly found in the home and school environment. The children attended either of t...

  18. What Doesn't Kill You Makes You Weaker: Prenatal Pollution Exposure and Educational Outcomes

    ERIC Educational Resources Information Center

    Sanders, Nicholas J.

    2012-01-01

    I examine the impact of prenatal total suspended particulate (TSP) exposure on educational outcomes using county-level variation in the timing and severity of the industrial recession of the early 1980s as a shock to ambient TSPs (similar to Chay and Greenstone 2003b). I then instrument for pollution levels using county-level changes in relative…

  19. Review of Air Exchange Rate Models for Air Pollution Exposure Assessments

    EPA Science Inventory

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings, where people spend their time. The AER, which is rate the exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pol...

  20. Comparison of modeled traffic exposure zones using on-road air pollution measurements

    EPA Science Inventory

    Modeled traffic data were used to develop traffic exposure zones (TEZs) such as traffic delay, high volume, and transit routes in the Research Triangle area of North Carolina (USA). On-road air pollution measurements of nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxid...

  1. Biomass fuel use and the exposure of children to particulate air pollution in southern Nepal

    PubMed Central

    Devakumar, D.; Semple, S.; Osrin, D.; Yadav, S.K.; Kurmi, O.P.; Saville, N.M.; Shrestha, B.; Manandhar, D.S.; Costello, A.; Ayres, J.G.

    2014-01-01

    The exposure of children to air pollution in low resource settings is believed to be high because of the common use of biomass fuels for cooking. We used microenvironment sampling to estimate the respirable fraction of air pollution (particles with median diameter less than 4 μm) to which 7–9 year old children in southern Nepal were exposed. Sampling was conducted for a total 2649 h in 55 households, 8 schools and 8 outdoor locations of rural Dhanusha. We conducted gravimetric and photometric sampling in a subsample of the children in our study in the locations in which they usually resided (bedroom/living room, kitchen, veranda, in school and outdoors), repeated three times over one year. Using time activity information, a 24-hour time weighted average was modeled for all the children in the study. Approximately two-thirds of homes used biomass fuels, with the remainder mostly using gas. The exposure of children to air pollution was very high. The 24-hour time weighted average over the whole year was 168 μg/m3. The non-kitchen related samples tended to show approximately double the concentration in winter than spring/autumn, and four times that of the monsoon season. There was no difference between the exposure of boys and girls. Air pollution in rural households was much higher than the World Health Organization and the National Ambient Air Quality Standards for Nepal recommendations for particulate exposure. PMID:24533994

  2. Changes in Gene Expression due to Chronic Exposure to Environmental Pollutants

    PubMed Central

    Oleksiak, Marjorie F.

    2008-01-01

    Populations of the teleost fish Fundulus heteroclitus inhabit and have adapted to highly polluted Superfund sites that are contaminated with persistent toxic chemicals. Populations inhabiting different Superfund sites provide independent contrasts for studying mechanisms of toxicity and resistance due to exposure to environmental pollutants. To identify both shared and unique responses to chronic pollutant exposure, liver, metabolic gene expression in F. heteroclitus populations from each of three Superfund sites (New Bedford Harbor, MA, Newark Bay, NJ, and Elizabeth River, VA) were compared to two flanking reference site populations (9 populations in total). In comparisons to their two clean reference sites, the three Superfund sites had 8 to 32% of genes with altered expression patterns. Between any two Superfund populations, up to 9 genes (4%) show a conserved response, yet among all three populations, there was no gene which had a conserved, altered pattern of expression. Across all three Superfund sites in comparison to all six reference populations, the most significant gene was fatty acid synthase. Fatty acid synthase is involved in the storage of excess energy as fat, and its lesser expression in the polluted populations suggests that the polluted populations may have limited energy stores. In contrast to previous studies of metabolic gene expression in F. heteroclitus, body weight was a significant covariate for many of the genes which could reflect accumulation and different body burdens of pollutants. Overall, the altered gene expression in these populations likely represents both induced and adaptive changes in gene expression. PMID:18929415

  3. Controlled Exposure Study of Air Pollution and T-Wave Alternans in Volunteers without Cardiovascular Disease

    PubMed Central

    Kusha, Marjan; Masse, Stephane; Farid, Talha; Urch, Bruce; Silverman, Frances; Brook, Robert D; Gold, Diane R; Mangat, Iqwal; Speck, Mary; Nair, Krishnakumar; Poku, Kwaku; Meyer, Chris; Mittleman, Murray A; Wellenius, Gregory A

    2012-01-01

    Background: Epidemiological studies have assessed T-wave alternans (TWA) as a possible mechanism of cardiac arrhythmias related to air pollution in high-risk subjects and have reported associations with increased TWA magnitude. Objective: In this controlled human exposure study, we assessed the impact of exposure to concentrated ambient particulate matter (CAP) and ozone (O3) on T-wave alternans in resting volunteers without preexisting cardiovascular disease. Methods: Seventeen participants without preexisting cardiovascular disease were randomized to filtered air (FA), CAP (150 μg/m3), O3 (120 ppb), or combined CAP + O3 exposures for 2 hr. Continuous electrocardiograms (ECGs) were recorded at rest and T-wave alternans (TWA) was computed by modified moving average analysis with QRS alignment for the artifact-free intervals of 20 beats along the V2 and V5 leads. Exposure-induced changes in the highest TWA magnitude (TWAMax) were estimated for the first and last 5 min of each exposure (TWAMax_Early and TWAMax_Late respectively). ΔTWAMax (Late–Early) were compared among exposure groups using analysis of variance. Results: Mean ± SD values for ΔTWAMax were –2.1 ± 0.4, –2.7 ± 1.1, –1.9 ± 1.5, and –1.2 ± 1.5 in FA, CAP, O3, and CAP + O3 exposure groups, respectively. No significant differences were observed between pollutant exposures and FA. Conclusion: In our study of 17 volunteers who had no preexisting cardiovascular disease, we did not observe significant changes in T-wave alternans after 2-hr exposures to CAP, O3, or combined CAP + O3. This finding, however, does not preclude the possibility of pollution-related effects on TWA at elevated heart rates, such as during exercise, or the possibility of delayed responses. PMID:22552907

  4. Long-term exposure to traffic pollution and hospital admissions in London.

    PubMed

    Halonen, Jaana I; Blangiardo, Marta; Toledano, Mireille B; Fecht, Daniela; Gulliver, John; Anderson, H Ross; Beevers, Sean D; Dajnak, David; Kelly, Frank J; Tonne, Cathryn

    2016-01-01

    Evidence on the effects of long-term exposure to traffic pollution on health is inconsistent. In Greater London we examined associations between traffic pollution and emergency hospital admissions for cardio-respiratory diseases by applying linear and piecewise linear Poisson regression models in a small-area analysis. For both models the results for children and adults were close to unity. In the elderly, linear models found negative associations whereas piecewise models found non-linear associations characterized by positive risks in the lowest and negative risks in the highest exposure category. An increased risk was observed among those living in areas with the highest socioeconomic deprivation. Estimates were not affected by adjustment for traffic noise. The lack of convincing positive linear associations between primary traffic pollution and hospital admissions agrees with a number of other reports, but may reflect residual confounding. The relatively greater vulnerability of the most deprived populations has important implications for public health. PMID:26476693

  5. Chronic exposure to volcanogenic air pollution as cause of lung injury.

    PubMed

    Camarinho, Ricardo; Garcia, Patrícia Ventura; Rodrigues, Armindo Santos

    2013-10-01

    Few studies were made regarding the pulmonary effects of exposure to volcanogenic air pollution, representing an unrecognized health risk for humans inhabiting non-eruptive volcanically active areas (10% of world human population). We tested the hypothesis whether chronic exposure to air pollution of volcanogenic origin causes lung injury, using wild mice (Mus musculus) as model. Lung injury was determined using histological morphometric parameters, inflammatory status (InfS) and the amount of black silver deposits (BSD). Mice exposed to volcanogenic air pollution have decreased percentage of alveolar space, alveolar perimeter and lung structural functionality (LSF) ratio and, increased alveolar septal thickness, amount of BSD and InfS. For the first time it is evidenced that non-eruptive active volcanism has a high potential to cause lung injury. This study also highlights the usefulness of M. musculus as bioindicator species, and of the developed biomarker of effect LSF ratio, for future animal and/or human biomonitoring programs.

  6. Pollutant exposures from unvented gas cooking burners: A Simulation-based Assessment for Southern California

    SciTech Connect

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-01-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. In this study, LBNL researchers quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes.The simulation model estimated that—in homes using NGCBs without coincident use of venting range hoods -- 62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. The study recommends that reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.

  7. Surrounding Greenness and Exposure to Air Pollution During Pregnancy: An Analysis of Personal Monitoring Data

    PubMed Central

    de Nazelle, Audrey; Triguero-Mas, Margarita; Schembari, Anna; Cirach, Marta; Amoly, Elmira; Figueras, Francesc; Basagaña, Xavier; Ostro, Bart; Nieuwenhuijsen, Mark

    2012-01-01

    Background: Green spaces are reported to improve health status, including beneficial effects on pregnancy outcomes. Despite the suggestions of air pollution–related health benefits of green spaces, there is no available evidence on the impact of greenness on personal exposure to air pollution. Objectives: We investigated the association between surrounding greenness and personal exposure to air pollution among pregnant women and to explore the potential mechanisms, if any, behind this association. Methods: In total, 65 rounds of sampling were carried out for 54 pregnant women who resided in Barcelona during 2008–2009. Each round consisted of a 2-day measurement of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) and a 1-week measurement of nitric oxides collected simultaneously at both the personal and microenvironmental levels. The study participants were also asked to fill out a time–microenvironment–activity diary during the sampling period. We used satellite retrievals to determine the surrounding greenness as the average of Normalized Difference Vegetation Index (NDVI) in a buffer of 100 m around each maternal residential address. We estimated the impact of surrounding greenness on personal exposure levels, home-outdoor and home-indoor pollutant levels, and maternal time-activity. Results: Higher residential surrounding greenness was associated with lower personal, home-indoor, and home-outdoor PM2.5 levels, and more time spent at home-outdoor. Conclusions: We found lower levels of personal exposure to air pollution among pregnant women residing in greener areas. This finding may be partly explained by lower home-indoor pollutant levels and more time spent in less polluted home-outdoor environment by pregnant women in greener areas. PMID:22647671

  8. Exposure to Severe Urban Air Pollution Influences Cognitive Outcomes, Brain Volume and Systemic Inflammation in Clinically Healthy Children

    ERIC Educational Resources Information Center

    Calderon-Garciduenas, Lilian; Engle, Randall; Mora-Tiscareno, Antonieta; Styner, Martin; Gomez-Garza, Gilberto; Zhu, Hongtu; Jewells, Valerie; Torres-Jardon, Ricardo; Romero, Lina; Monroy-Acosta, Maria E.; Bryant, Christopher; Gonzalez-Gonzalez, Luis Oscar; Medina-Cortina, Humberto; D'Angiulli, Amedeo

    2011-01-01

    Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes,…

  9. IN VIVO EVIDENCE OF FREE RADICAL FORMATION IN THE RAT LUNG AFTER EXPOSURE TO AN EMISSION SOURCE AIR POLLUTION PARTICLE

    EPA Science Inventory

    Exposure to air pollution particles can be associated with increased human morbidity and mortality. The mechanism(s) of lung injury remains unknown. We tested the hypothesis that lung exposure to oil fly ash (an emission source air pollution particle) causes in vivo free radical ...

  10. Modeling exposures to traffic-related air pollutants for the NEXUS respiratory health study of asthmatic children in Detroit, MI

    EPA Science Inventory

    The Near-Road EXposures and Effects of Urban Air Pollutants Study (NEXUS) was designed to investigate associations between exposure to traffic-related air pollution and the respiratory health of asthmatic children living near major roadways in Detroit, MI. A combination of modeli...

  11. The Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS): Study Design and Methods

    EPA Science Inventory

    The Near-road EXposures and effects of urban air pollutants Study (NEXUS) was designed to examine the relationship between near-roadway exposures to air pollutants and respiratory outcomes in a cohort of asthmatic children who live close to major roadways in Detroit, Michigan USA...

  12. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.

    PubMed

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended.

  13. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    PubMed Central

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  14. A dynamic system for single and repeated exposure of airway epithelial cells to gaseous pollutants.

    PubMed

    Kastner, Pierre Edouard; Le Calvé, Stéphane; Zheng, Wuyin; Casset, Anne; Pons, Françoise

    2013-03-01

    In vitro models are promising approaches to investigate the adverse effects and the mode of action of air pollutants on the respiratory tract. We designed a dynamic system that allows the single or repeated exposure of cultured cells to two major indoor air gaseous pollutants, formaldehyde (HCHO) and nitrogen dioxide (NO2), alone or as a mixture. In this system, the Calu-3 human bronchial epithelial cell line was exposed at the air-liquid interface (ALI) or submerged by culture medium to synthetic air or to target concentrations of HCHO and/or NO2 once or on 4 consecutive days before assessment of cell viability and necrosis, IL-6 and IL-8 release and trans-epithelial electrical resistance. Our data showed that whereas the ALI method can be used for single short-term exposures only, the submerged method provides the possibility to expose Calu-3 cells in a repeated manner. As well, we found that repeated exposures of the cells to HCHO and NO2 at concentrations that can be found indoors triggered a significant decrease in cell metabolism and an increase in IL-8 release that were not evoked by a single exposure. Thus, our work highlights the fact that the development of systems and methods that allow repeated exposures of cultured cells to gaseous compounds in mixtures is of major interest to evaluate the impact of air pollution on the respiratory tract.

  15. Exposure to Indoor Pollutants and Wheeze and Asthma Development during Early Childhood

    PubMed Central

    Patelarou, Evridiki; Tzanakis, Nikolaos; Kelly, Frank J.

    2015-01-01

    Background: This review aimed to summarize existing epidemiological evidence of the association between quantitative estimates of indoor air pollution with early childhood respiratory disease. Methods: We carried out a systematic literature search of peer-reviewed epidemiological studies undertaken in “westernized” countries that have assessed exposure to indoor pollutants and asthma and wheeze from infancy up to the age of 5. Results: The search, between January 2004 and February 2014 yielded 1840 studies for consideration. Following application of eligibility criteria to titles and abstracts 22 independent studies were deemed relevant for further review. Two additional studies were next identified through examination of the references’ lists of these studies. Of these 24 selected studies, 16 adopted a prospective cohort design and 8 were case-control studies. Fourteen studies assessed exposure to bio-aerosols, 8 studies assessed exposure to specific air chemicals and two studies assessed exposure to bio-aerosols and air chemicals. Furthermore, 11 studies examined the association of exposure with asthma and 16 with wheeze. Findings indicate that existing studies have reported contradictory effects of indoor pollutants levels and occurrence of asthma/wheeze. Conclusion: Additional research to establish causality and evaluate interventions to prevent disease onset is needed. PMID:25872014

  16. Non-destructive flavour evaluation of red onion (Allium cepa L.) ecotypes: an electronic-nose-based approach.

    PubMed

    Russo, Mariateresa; di Sanzo, Rosa; Cefaly, Vittoria; Carabetta, Sonia; Serra, Demetrio; Fuda, Salvatore

    2013-11-15

    This work reports preliminary results on the potential of a metal oxide sensor (MOS)-based electronic nose, as a non-destructive method to discriminate three "Tropea Red Onion" PGI ecotypes (TrT, TrMC and TrA) from each other and the common red onion (RO), which is usually used to counterfeit. The signals from the sensor array were processed using a canonical discriminant function analysis (DFA) pattern recognition technique. The DFA on onion samples showed a clear separation among the four onion groups with an overall correct classification rate (CR) of 97.5%. Onion flavour is closely linked to pungency and thus to the pyruvic acid content. The e-nose analysis results are in good agreement with pyruvic acid analysis. This work demonstrated that artificial olfactory systems have potential for use as an innovative, rapid and specific non-destructive technique, and may provide a method to protect food products against counterfeiting.

  17. Occupant exposure to indoor air pollutants in modern European offices: An integrated modelling approach

    NASA Astrophysics Data System (ADS)

    Terry, Andrew C.; Carslaw, Nicola; Ashmore, Mike; Dimitroulopoulou, Sani; Carslaw, David C.

    2014-01-01

    A new model (INDAIR-CHEM) has been developed by combining a detailed indoor air chemistry model with a physical and probabilistic multi-compartment indoor/outdoor air exposure model. The detailed indoor air chemistry model was used to produce a simplified chemistry scheme for INDAIR-CHEM, which performs well for key indoor air pollutants under a range of conditions when compared to the parent model. INDAIR-CHEM was used to compare indoor pollutant concentrations in naturally ventilated offices in 8 European cities for typical outdoor conditions in summer, with those experienced during the European heat-wave in August 2003 for different air exchange rates. We also investigated the effect of cleaning with limonene based products on the subsequent exposure to secondary reaction products from limonene degradation. Extreme climatic conditions, such as a heat-wave which often leads to poor outdoor air quality, can increase personal exposure to both primary and secondary species indoors. Occupant exposure to indoor air pollutants may also be exacerbated by poor ventilation in offices. Reduced ventilation reduces maximum exposure to ozone, as there is less ingress from outdoors, but allows secondary species to persist indoors for much longer. The balance between these two processes may mean that cumulative exposures for office workers increase as ventilation decreases. Cleaning staff are at lower risk of exposure to secondary oxidation products if they clean before office hours rather than after office hours, since ozone is generally at lower outdoor (and hence indoor) concentrations during the early morning compared to late afternoon. However, from the viewpoint of office workers, reduced exposure would occur if cleaning was performed at the end of the working day.

  18. Air pollution exposure and daily clinical visits for allergic rhinitis in a subtropical city: Taipei, Taiwan.

    PubMed

    Chen, Chih-Cheng; Chiu, Hui-Fen; Yang, Chun-Yuh

    2016-01-01

    This study was undertaken to determine whether there was an association between air pollutant level exposure and daily clinic visits for allergic rhinitis (AR) in Taipei, Taiwan. Daily clinic visits for AR and ambient air pollution data for Taipei were obtained for the period of 2006-2011. The relative risk for clinic visits for AR was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. In the single-pollutant models, on warm days (>23ºC) significant positive associations were found for increased rate of AR occurrence and ambient levels of particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). On cool days (<23ºC), all air pollutants were significantly associated with elevated number of AR visits except SO2. For the two-pollutant models, PM10, O3, and NO2 were significantly associated with higher rate of AR visits in combination with each of the other four pollutants on cool days. On warm days, CO levels remained significantly related with increased AR visits in all two-pollutant models. This study provides evidence that higher levels of ambient air contaminants enhance the risk of elevated frequency of clinic visits for AR. PMID:27294298

  19. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus

    SciTech Connect

    Robledo, Candace A.; Mendola, Pauline; Yeung, Edwina; Männistö, Tuija; Sundaram, Rajeshwari; Liu, Danping; Ying, Qi; Sherman, Seth; Grantz, Katherine L.

    2015-02-15

    Background: Air pollution has been linked to gestational diabetes mellitus (GDM) but no studies have evaluated impact of preconception and early pregnancy air pollution exposures on GDM risk. Methods: Electronic medical records provided data on 219,952 singleton deliveries to mothers with (n=11,334) and without GDM (n=208,618). Average maternal exposures to particulate matter (PM) ≤ 2.5 μm (PM{sub 2.5}) and PM{sub 2.5} constituents, PM ≤ 10 μm (PM{sub 10}), nitrogen oxides (NO{sub x}), carbon monoxide, sulfur dioxide (SO{sub 2}) and ozone (O{sub 3}) were estimated for the 3-month preconception window, first trimester, and gestational weeks 1–24 based on modified Community Multiscale Air Quality models for delivery hospital referral regions. Binary regression models with robust standard errors estimated relative risks (RR) for GDM per interquartile range (IQR) increase in pollutant concentrations adjusted for study site, maternal age and race/ethnicity. Results: Preconception maternal exposure to NO{sub X} (RR=1.09, 95% CI: 1.04, 1.13) and SO{sub 2} (RR=1.05, 1.01, 1.09) were associated with increased risk of subsequent GDM and risk estimates remained elevated for first trimester exposure. Preconception O{sub 3} was associated with lower risk of subsequent GDM (RR=0.93, 0.90, 0.96) but risks increased later in pregnancy. Conclusion: Maternal exposures to NO{sub x} and SO{sub 2} preconception and during the first few weeks of pregnancy were associated with increased GDM risk. O{sub 3} appeared to increase GDM risk in association with mid-pregnancy exposure but not in earlier time windows. These common exposures merit further investigation. - Highlights: • Air pollution may be related to gestational diabetes (GDM). • No prior studies have examined preconception exposure. • Maternal exposure to NO{sub x} and SO{sub 2} before conception increased subsequent GDM risk. • NO{sub x} and SO{sub 2} exposure in the first seven weeks of pregnancy also increased

  20. Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study

    PubMed Central

    2013-01-01

    Background A travel mode shift to active transportation such as bicycling would help reduce traffic volume and related air pollution emissions as well as promote increased physical activity level. Cyclists, however, are at risk for exposure to vehicle-related air pollutants due to their proximity to vehicle traffic and elevated respiratory rates. To promote safe bicycle commuting, the City of Berkeley, California, has designated a network of residential streets as “Bicycle Boulevards.” We hypothesized that cyclist exposure to air pollution would be lower on these Bicycle Boulevards when compared to busier roads and this elevated exposure may result in reduced lung function. Methods We recruited 15 healthy adults to cycle on two routes – a low-traffic Bicycle Boulevard route and a high-traffic route. Each participant cycled on the low-traffic route once and the high-traffic route once. We mounted pollutant monitors and a global positioning system (GPS) on the bicycles. The monitors were all synced to GPS time so pollutant measurements could be spatially plotted. We measured lung function using spirometry before and after each bike ride. Results We found that fine and ultrafine particulate matter, carbon monoxide, and black carbon were all elevated on the high-traffic route compared to the low-traffic route. There were no corresponding changes in the lung function of healthy non-asthmatic study subjects. We also found that wind-speed affected pollution concentrations. Conclusions These results suggest that by selecting low-traffic Bicycle Boulevards instead of heavily trafficked roads, cyclists can reduce their exposure to vehicle-related air pollution. The lung function results indicate that elevated pollutant exposure may not have acute negative effects on healthy cyclists, but further research is necessary to determine long-term effects on a more diverse population. This study and broader field of research have the potential to encourage policy-makers and

  1. Indoor metallic pollution and children exposure in a mining city.

    PubMed

    Barbieri, Enio; Fontúrbel, Francisco E; Herbas, Cristian; Barbieri, Flavia L; Gardon, Jacques

    2014-07-15

    Mining industries are known for causing strong environmental contamination. In most developing countries, the management of mining wastes is not adequate, usually contaminating soil, water and air. This situation is a source of concern for human settlements located near mining centers, especially for vulnerable populations such as children. The aim of this study was to assess the correlations of the metallic concentrations between household dust and children hair, comparing these associations in two different contamination contexts: a mining district and a suburban non-mining area. We collected 113 hair samples from children between 7 and 12 years of age in elementary schools in the mining city of Oruro, Bolivia. We collected 97 indoor dust samples from their households, as well as information about the children's behavior. Analyses of hair and dust samples were conducted to measure As, Cd, Pb, Sb, Sn, Cu and Zn contents. In the mining district, there were significant correlations between non-essential metallic elements (As, Cd, Pb, Sb and Sn) in dust and hair, but not for essential elements (Cu and Zn), which remained after adjusting for children habits. Children who played with dirt had higher dust-hair correlations for Pb, Sb, and Cu (P=0.006; 0.022 and 0.001 respectively) and children who put hands or toys in their mouths had higher dust-hair correlations of Cd (P=0.011). On the contrary, in the suburban area, no significant correlations were found between metallic elements in dust and children hair and neither children behavior nor gender modified this lack of associations. Our results suggest that, in a context of high metallic contamination, indoor dust becomes an important exposure pathway for children, modulated by their playing behavior.

  2. Non-destructive assessment of Hot Mix Asphalt density with a Step Frequency Radar - Case study

    NASA Astrophysics Data System (ADS)

    Fauchard, Cyrille; Beaucamp, Bruno

    2013-04-01

    The density of Hot Mix Asphalt (HMA) layers is a key parameter for assessing newly paved roads. It allows the quality control and ensures the time performance of the road layers. The standard methods for measuring the in-place HMA density are destructive and based on cores testing. Knowing the specific gravity of the HMA (data provided by builder), the bulk density can be determined in the laboratory either by weighting cores methods or by measuring the absorption ratio of gamma rays through road samples. Non destructive (ND) methods are highly needed in order to gain time and to avoid the strong constraints due to the nuclear gauges use. The Step Frequency Radar (SFR) is an electromagnetic method based on wave propagation in matter, similar in its principle to the Ground Penetrating Radar (GPR). It can use wide band and higher frequencies than GPR, allowing a thinner spatial resolution, but with a lower speed of acquisition. It is used in the present work as a tool providing the dielectric constant of HMA. Recent results in the laboratory have shown that the density can be relied on HMA dielectric constant with the use of a dielectric model (Complex Refractive Index model, or CRI model) taking into account the volume concentration and the dielectric constant of each HMA component. In this approach, the knowledge of the rock dielectric constant that composes the main part of HMA is required. If not, the in-place measurements can be calibrated according to one or more core drillings and the previous approach is still available. The main objective of this paper is to apply the methodology developed in the laboratory on a new HMA layer (case study located on A13 highway, nearby the city of Cagny, Normandie, France) for assessing the HMA density. The SFR system is composed of a vector network analyser sweeping a large frequency band [1.4 GHz - 20 GHz] and an ultra wide band antenna placed above the HMA surface. The whole system is pc-controlled and embedded in a

  3. Holocene Temperature Reconstructions from Arctic Lakes based on Alkenone Paleothermometry and Non-Destructive Scanning Techniques

    NASA Astrophysics Data System (ADS)

    D'Andrea, W. J.; Balascio, N. L.; Bradley, R. S.; Bakke, J.; Gjerde, M.; Kaufman, D. S.; Briner, J. P.; von Gunten, L.

    2014-12-01

    Generating continuous, accurate and quantitative Holocene temperature estimates from the Arctic is an ongoing challenge. In many Arctic regions, tree ring-based approaches cannot be used and lake sediments provide the most valuable repositories for extracting paleotemperature information. Advances in lacustrine alkenone paleothermometry now allow for quantitative reconstruction of lake-water temperature based on the UK37 values of sedimentary alkenones. In addition, a recent study demonstrated the efficacy of non-destructive scanning reflectance spectroscopy in the visible range (VIS-RS) for high-resolution quantitative temperature reconstruction from arctic lake sediments1. In this presentation, I will report a new UK37-based temperature reconstruction and a scanning VIS-RS record (using the RABD660;670 index as a measure of sedimentary chlorin content) from Kulusuk Lake in southeastern Greenland (65.6°N, 37.1°W). The UK37 record reveals a ~3°C increase in summer lake water temperatures between ~10ka and ~7ka followed by sustained warmth until ~4ka and a gradual (~3°C) cooling until ~400 yr BP. The strong correlation between UK37 and RABD660;670 measured in the same sediment core provides further evidence that in arctic lakes where temperature regulates primary productivity, and thereby sedimentary chlorin content, these proxies can be combined to develop high-resolution quantitative temperature records. The Holocene temperature history of Kulusuk Lake determined using this approach corresponds to changes in the size of the glaciers adjacent to the lake, as inferred from sediment minerogenic properties measured with scanning XRF. Glaciers retreated during early Holocene warming, likely disappeared during the period of mid-Holocene warmth, and advanced after 4ka. I will also discuss new UK37 and RABD660;670 reconstructions from northwestern Svalbard and the central Brooks Range of Alaska within the framework of published regional temperature reconstructions and

  4. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    oxygen isotope composition of ambient CO2. This non-destructive approach was tested through laboratory incubations of air-dried soils that were re-wetted with water of known isotopic composition. Performance was assessed by comparing estimates of the soil water oxygen isotope composition derived from open chamber flux measurements with those measured in the irrigation water and soil water extracted following incubations. The influence of soil pH and bovine carbonic anhydrase additions on these estimates was also investigated. Coherent values were found between the soil water composition estimates obtained from the dual steady state approach and those measured for irrigation waters. Estimates of carbonic anhydrase activity made using this approach also reflected well artificial increases to the concentration of carbonic anhydrase and indicated that this activity was sensitive to soil pH.

  5. Quasi ?non-destructive? laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Günther, D.

    2001-07-01

    A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for 'quasi' non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97-99% of Al 2O 3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm -2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20-120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g -1 range and were better for heavier elements (mass >85), being in the 0.1 μg g -1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and

  6. Advanced Non-Destructive Assay Systems and Special Instrumentation Requirements for Spent Nuclear Fuel Recycling Facilities

    SciTech Connect

    Simpson, A.P.; Clapham, M.J.; Swinson, B.

    2008-07-01

    The safe and efficient operation of the next generation of Spent Nuclear Fuel (SNF) recycling / reprocessing facilities is dependent upon the availability of high performance real time Non- Destructive Assay (NDA) systems at key in-line points. A diverse variety of such special instrument systems have been developed and commissioned at reprocessing plants worldwide over the past fifty years.. The measurement purpose, technique and plant performance for selected key systems have been reviewed. Obsolescence issues and areas for development are identified in the context of the measurements needs of future recycling facilities and their associated waste treatment plants. Areas of concern include (i) Materials Accountancy and Safeguards, (ii) Head End process control and feed envelope verification, (iii) Real-time monitoring at the Product Finishing Stages, (iv) Criticality safety and (v) Radioactive waste characterization. Common characteristics of the traditional NDA systems in historical recycling facilities are (i) In-house development of bespoke instruments resulting in equipment that if often unique to a given facility and generally not commercially available, (ii) Use of 'novel' techniques - not widely deployed in other applications, (iii) Design features that are tailored to the specific plant requirements of the facility operator, (iv) Systems and software implementation that was not always carried out to modern industry standards and (v) A tendency to be overly complex - refined by on-plant operational usage and experience. Although these systems were 'validated in use' and are generally fit for purpose, there are a number of potential problems in transferring technology that was developed ten or more years ago to the new build SNF recycling facilities of the future. These issues include (i) Obsolescence of components - particularly with respect to computer hardware and data acquisition electronics, (ii) Availability of Intellectual Property and design

  7. A Non-Destructive Investigation of Plutonium Reference Items Used for Calibration

    SciTech Connect

    Curtis, D.; Wormald, M.; Wilkins, C.G.; Croft, S.

    2008-07-01

    The calibration of Non-Destructive Assay (NDA) equipment relies on the availability of certified items of known content and construction. Increasing use is being made of calculational tools to create calibration data and so representative standards are no longer always needed. However, even with this approach it is invaluable to benchmark the tools against the measured response under well known conditions and to apply the Measured: Calculated ratio as a scaling factor. Reference sources for Pu are typically doubly encapsulated for safety reasons and contain Pu of well known chemical form, elemental composition, relative isotopic composition and mass. Destructive analysis techniques are used to characterize the materials and so these attributes are usually known with far greater accuracy than that achievable by the NDA methods to which they are being applied. Construction details are also usually provided in order to permit attenuation and related factors to be estimated. This work concerns the empirical investigation of a set of encapsulated PuO{sub 2} powder standards. The characterization and fabrication of the items is adequately documented with the exception of fill height. The fill height governs the powder density and in turn both the self attenuation of photons and the self multiplication of neutrons, consequently this is an important omission. Initially the location and dimensions of the internal plunger cup was used as a basis to estimate the packing density, but later records of plunger positions made at the time of filling were found and significant revisions followed. As a consequence of discrepancies observed in measurements designed to evaluate a new lump correction algorithm we were led to investigate the powder density and distribution directly by gamma-ray scanning. In some cases this resulted in revised density estimates. Equally importantly it was discovered that for the smallest mass items, the powder was not held fixed in the form of a uniform

  8. Spatial associations between socioeconomic groups and NO2 air pollution exposure within three large Canadian cities.

    PubMed

    Pinault, Lauren; Crouse, Daniel; Jerrett, Michael; Brauer, Michael; Tjepkema, Michael

    2016-05-01

    Previous studies of environmental justice in Canadian cities have linked lower socioeconomic status to greater air pollution exposures at coarse geographic scales, (i.e., Census Tracts). However, studies that examine these associations at finer scales are less common, as are comparisons among cities. To assess differences in exposure to air pollution among socioeconomic groups, we assigned estimates of exposure to ambient nitrogen dioxide (NO2), a marker for traffic-related pollution, from city-wide land use regression models to respondents of the 2006 Canadian census long-form questionnaire in Toronto, Montreal, and Vancouver. Data were aggregated at a finer scale than in most previous studies (i.e., by Dissemination Area (DA), which includes approximately 400-700 persons). We developed simultaneous autoregressive (SAR) models, which account for spatial autocorrelation, to identify associations between NO2 exposure and indicators of social and material deprivation. In Canada's three largest cities, DAs with greater proportions of tenants and residents who do not speak either English or French were characterised by greater exposures to ambient NO2. We also observed positive associations between NO2 concentrations and indicators of social deprivation, including the proportion of persons living alone (in Toronto), and the proportion of persons who were unmarried/not in a common-law relationship (in Vancouver). Other common measures of deprivation (e.g., lone-parent families, unemployment) were not associated with NO2 exposures. DAs characterised by selected indicators of deprivation were associated with higher concentrations of ambient NO2 air pollution in the three largest cities in Canada.

  9. Air Pollution Exposures During Adulthood and Risk of Endometriosis in the Nurses’ Health Study II

    PubMed Central

    Hart, Jaime E.; Laden, Francine; Aschengrau, Ann; Missmer, Stacey A.

    2013-01-01

    Background: Particulate matter and proximity to large roadways may promote disease mechanisms, including systemic inflammation, hormonal alteration, and vascular proliferation, that may contribute to the development and severity of endometriosis. Objective: Our goal was to determine the association of air pollution exposures during adulthood, including distance to road, particulate matter < 2.5 μm, between 2.5 and 10 μm, and < 10 μm, (PM2.5, PM10–2.5, PM10), and timing of exposure with risk of endometriosis in the Nurses’ Health Study II. Methods: Proximity to major roadways and outdoor levels of PM2.5, PM10–2.5, and PM10 were determined for all residential addresses from 1993 to 2007. Multivariable-adjusted time-varying Cox proportional hazard models were used to estimate the relation between these air pollution exposures and endometriosis risk. Results: Among 84,060 women, 2,486 incident cases of surgically confirmed endometriosis were identified over 710,230 person-years of follow-up. There was no evidence of an association between endometriosis risk and distance to road or exposure to PM2.5, PM10–2.5, or PM10 averaged over follow-up or during the previous 2- or 4-year period. Conclusions: Traffic and air pollution exposures during adulthood were not associated with incident endometriosis in this cohort of women. Citation: Mahalingaiah S, Hart JE, Laden F, Aschengrau A, Missmer SA. 2014. Air pollution exposures during adulthood and risk of endometriosis in the Nurses’ Health Study II. Environ Health Perspect 122:58–64; http://dx.doi.org/10.1289/ehp.1306627 PMID:24225723

  10. Cellular RNA is chemically modified by exposure to air pollution mixtures.

    PubMed

    Baldridge, Kevin C; Zavala, Jose; Surratt, Jason; Sexton, Kenneth G; Contreras, Lydia M

    2015-01-01

    RNAs are more susceptible to modifications than DNA, and chemical modifications in RNA have an effect on their structure and function. This study aimed to characterize chemical effects on total RNA in human A549 lung cells after exposure to elevated levels of major secondary air pollutants commonly found in urban locations, including ozone (O3), acrolein (ACR) and methacrolein (MACR). Enzyme-linked immunosorbent assays (ELISA) were used to measure levels of interleukin (IL)-8 in the growth media and 8-oxoguanine (8OG) levels in total cellular RNA, and lactate dehydrogenase (LDH) in the growth media was measured by a coupled enzymatic assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure levels of microRNA 10b (miR-10b). The study found that 1-h exposure to all tested pollutant mixtures consistently caused significant increases in the levels of 8OG in total RNA. In the case of 4 ppm O3 exposures, measured levels of IL-8, LDH and miR-10b each showed consistent trends between two independent trials, but varied among these three targets. After 1-h exposures to an ACR+MACR mixture, measured levels of IL-8, LDH and miR-10b showed variable results. For mixtures of O3+ACR+MACR, IL-8 measurements showed no change; miR-10b and LDH showed variable results. The results indicate that short-term high-concentration exposures to air pollution can cause RNA chemical modifications. Chemical modifications in RNAs could represent more consistent markers of cellular stress relative to other inflammation markers, such as IL-8 and LDH, and provide a new biomarker endpoint for mechanistic studies in toxicity of air pollution exposure.

  11. The non-destructive sizing of nanoparticles via particle-electrode collisions: Tag-redox coulometry (TRC)

    NASA Astrophysics Data System (ADS)

    Rees, Neil V.; Zhou, Yi-Ge; Compton, Richard G.

    2012-02-01

    The use of anodic particle coulometry (APC) for the sizing and detection of oxidisable metal nanoparticles such as gold or silver have previously been shown to be reliable, albeit destructive. For the first time, the voltammetric sizing and detection of nanoparticles has been accomplished non-destructively, via the reduction of electroactively-tagged silver nanoparticles during particle impacts. Tag-redox coulometry (TRC) thus significantly expands the scope of nanoparticle sizing by particle-impact methods.

  12. Shake and stew: a non-destructive PCR-ready DNA isolation method from a single preserved fish larva.

    PubMed

    Alvarado Bremer, J R; Smith, B L; Moulton, D L; Lu, C-P; Cornic, M

    2014-01-01

    A rapid non-destructive alternative to isolate DNA from an individual fish larva is presented, based on the suspension of epithelial cells through vortex forces, and the release of DNA in a heated alkaline solution. DNA from >6056 fish larvae isolated using this protocol has yielded a high PCR amplification success rate (>93%), suggesting its applicability to other taxonomic groups or sources when tissue amount is the limiting factor. PMID:24383811

  13. A New Facility For Non-Destructive Assay With A Time-Tagged {sup 252}Cf Source

    SciTech Connect

    Stevanato, L.; Caldogno, M.; Hao, Xin; Dima, R.; Fabris, D.; Nebbia, G.; Lunardon, M.; Moretto, S.; Pesente, S.; Viesti, G.; Sajo-Bohus, L.

    2011-06-01

    A new facility for Non-Destructive Assay based on a time-tagged {sup 252}Cf spontaneous fission source is now in operation at the Padova University. The system is designed to analyze samples with dimensions on the order of 20x20 cm{sup 2}, the material recognition being obtained by measuring simultaneously transmission of neutrons and gamma rays as a function of energy.

  14. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    SciTech Connect

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  15. Status Report of the Frankfurt H--Test LEBT Including a Non-destructive Emittance Measurement Device

    NASA Astrophysics Data System (ADS)

    Gabor, C.; Jakob, A.; Meusel, O.; Schäfer, J.; Klomp, A.; Santić, F.; Pozimski, J.; Klein, H.; Ratzinger, U.

    2002-11-01

    For high power proton accelerators like SNS, ESS or the planned neutrino factory (CERN), negative ions are preferred because they offer charge exchange injection into the accumulation rings (non Liouvillian stacking). The low energy beam emittance is a key parameter in order to avoid emittance growth and particle losses in the high-energy sections. Conventional destructive emittance measurement methods like slit-harp systems are restricted for high power ion beams by the interaction of the ion beam with e.g. slit or harp. Therefore a non-destructive emittance measurement has several technical and physical advantages. To study the transport of high perveance beams of negative ions, a Low Energy Beam Transport (LEBT) section is under construction. The study of non destructive emittance measurement devices is one major subject of the test bench. For negative ions -especially H--ions-photodetachment can be applied for a non-destructive emittance measurement instrument (PD-EMI). The paper will present the status of that emittance diagnostic and of the test bench.

  16. Pre-processing of data coming from a laser-EMAT system for non-destructive testing of steel slabs.

    PubMed

    Sgarbi, Mirko; Colla, Valentina; Cateni, Sivia; Higson, Stuart

    2012-01-01

    Non destructive test systems are increasingly applied in the industrial context for their strong potentialities in improving and standardizing quality control. Especially in the intermediate manufacturing stages, early detection of defects on semi-finished products allow their direction towards later production processes according to their quality, with consequent considerable savings in time, energy, materials and work. However, the raw data coming from non destructive test systems are not always immediately suitable for sophisticated defect detection algorithms, due to noise and disturbances which are unavoidable, especially in harsh operating conditions, such as the ones which are typical of the steelmaking cycle. The paper describes some pre-processing operations which are required in order to exploit the data coming from a non destructive test system. Such a system is based on the joint exploitation of Laser and Electro-Magnetic Acoustic Transducer technologies and is applied to the detection of surface and sub-surface cracks in cold and hot steel slabs. PMID:21855062

  17. The association of annual air pollution exposure with blood pressure among patients with sleep-disordered breathing.

    PubMed

    Liu, Wen-Te; Lee, Kang-Yun; Lee, Hsin-Chien; Chuang, Hsiao-Chi; Wu, Dean; Juang, Jer-Nan; Chuang, Kai-Jen

    2016-02-01

    While sleep-disordered breathing (SDB), high blood pressure (BP) and air pollution exposure have separately been associated with increased risk of cardiopulmonary mortality, the association linking air pollution exposure to BP among patients with sleep-disordered breathing is still unclear. We collected 3762 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of 1-year mean criteria air pollutants [particulate matter with aerodynamic diameters ≤10 μm (PM10), particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5), nitrogen dioxide (NO2) and ozone (O3)] with systolic BP (SBP) and diastolic BP (DBP) were investigated by generalized additive models. After controlling for age, sex, body mass index (BMI), temperature and relative humidity, we observed that increases in air pollution levels were associated with decreased SBP and increased DBP. We also found that patients with apnea-hypopnea index (AHI) ≥30 showed a stronger BP response to increased levels of air pollution exposure than those with AHI<30. Stronger effects of air pollution exposure on BP were found in overweight participants than in participants with normal BMI. We concluded that annual exposure to air pollution was associated with change of BP among patients with sleep-disordered breathing. The association between annual air pollution exposure and BP could be modified by AHI and BMI.

  18. Exposure to occupational air pollution and cardiac function in workers of the Esfahan Steel Industry, Iran.

    PubMed

    Golshahi, Jafar; Sadeghi, Masoumeh; Saqira, Mohammad; Zavar, Reihaneh; Sadeghifar, Mostafa; Roohafza, Hamidreza

    2016-06-01

    Air pollution is recognized as an important risk factor for cardiovascular disease. We investigated association of exposure to occupational air pollution and cardiac function in the workers of the steel industry. Fifty male workers of the agglomeration and coke-making parts of the Esfahan Steel Company were randomly selected (n = 50). Workers in the administrative parts were studied as controls (n = 50). Those with known history of hypertension, dyslipidemia, or diabetes, and active smokers were not included. Data of age, body mass index, employment duration, blood pressure, fasting blood sugar, and lipid profile were gathered. Echocardiography was performed to evaluate cardiac function. Left ventricular ejection fraction was lower in workers of the agglomeration/coke-making parts than in controls (mean difference = 5 to 5.5 %, P < 0.001). Mild right ventricular dilatation and grade I pulmonary hypertension were present in three (12 %) workers of the coke-making part, but none of the controls (P = 0.010). According to these results, occupational air pollution exposure in workers of the steel industry is associated with left heart systolic dysfunction. Possible right heart insults due to air pollution exposure warrant further investigations. PMID:26946505

  19. Exposure to occupational air pollution and cardiac function in workers of the Esfahan Steel Industry, Iran.

    PubMed

    Golshahi, Jafar; Sadeghi, Masoumeh; Saqira, Mohammad; Zavar, Reihaneh; Sadeghifar, Mostafa; Roohafza, Hamidreza

    2016-06-01

    Air pollution is recognized as an important risk factor for cardiovascular disease. We investigated association of exposure to occupational air pollution and cardiac function in the workers of the steel industry. Fifty male workers of the agglomeration and coke-making parts of the Esfahan Steel Company were randomly selected (n = 50). Workers in the administrative parts were studied as controls (n = 50). Those with known history of hypertension, dyslipidemia, or diabetes, and active smokers were not included. Data of age, body mass index, employment duration, blood pressure, fasting blood sugar, and lipid profile were gathered. Echocardiography was performed to evaluate cardiac function. Left ventricular ejection fraction was lower in workers of the agglomeration/coke-making parts than in controls (mean difference = 5 to 5.5 %, P < 0.001). Mild right ventricular dilatation and grade I pulmonary hypertension were present in three (12 %) workers of the coke-making part, but none of the controls (P = 0.010). According to these results, occupational air pollution exposure in workers of the steel industry is associated with left heart systolic dysfunction. Possible right heart insults due to air pollution exposure warrant further investigations.

  20. Air pollution exposure and preeclampsia among US women with and without asthma.

    PubMed

    Mendola, Pauline; Wallace, Maeve; Liu, Danping; Robledo, Candace; Mӓnnistӧ, Tuija; Grantz, Katherine L

    2016-07-01

    Maternal asthma and air pollutants have been independently associated with preeclampsia but rarely studied together. Our objective was to comprehensively evaluate preeclampsia risk based on the interaction of maternal asthma and air pollutants. Preeclampsia and asthma diagnoses, demographic and clinical data came from electronic medical records for 210,508 singleton deliveries. Modified Community Multiscale Air Quality models estimated preconception, first and second trimester and whole pregnancy exposure to: particulate matter (PM)<2.5 and <10µm, ozone, nitrogen oxides (NOx), sulfur dioxide (SO2) and carbon monoxide (CO); PM2.5 constituents; volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Asthma-pollutant interaction adjusted relative risks (RR) and 95% confidence intervals (CI) for preeclampsia were calculated by interquartile range for criteria pollutants and high exposure (≥75th percentile) for PAHs and VOCs. Asthmatics had higher risk associated with first trimester NOx and SO2 and whole pregnancy elemental carbon (EC) exposure than non-asthmatics, but only EC significantly increased risk (RR=1.11, CI:1.03-1.21). Asthmatics also had a 10% increased risk associated with second trimester CO. Significant interactions were observed for nearly all VOCs and asthmatics had higher risk during all time windows for benzene, ethylbenzene, m-xylene, o-xylene, p-xylene and toluene while most PAHs did not increase risk. PMID:27085496

  1. Non-destructive investigations at the Dionisiac Frieze in the Villa of Mysteries, Pompeii

    NASA Astrophysics Data System (ADS)

    Cristiano, Luigia; Erkul, Ercan; Jepsen, Kalle; Meier, Thomas; Vanacore, Stefano; Stefani, Grete

    2014-05-01

    The Villa of Mysteries with its Dionisiac Frieze is one of the well-known buildings of ancient Pompeii. It has been excavated in the early 20th century. Since then many initiatives have been taken for its preservation. Currently, the Frieze is investigated in detail and tests have been made to clean the wall paintings. Non-destructive investigations as infrared thermography (IR), Ground penetrating radar (GPR), and ultrasonic measurements have been performed in order to test if these methods are well suited to reveal the walls' and paintings' structure and to identify the detachments or cracks. IR, GPR and ultrasonic measurements have different penetration capabilities and resolution in depths. So, using these three methods simultaneously can improve the knowledge of the investigated structures at several depths from millimetres and centimetres to metres. It has been tested if detachments of the paintings, cracks, or alterations of the paintings can be detected by passive and active IR measurements. 6 passive and 3 active measurements have been conducted on the Dionisiac Frieze. Lateral temperature differences present at the Frieze are mapped by passive measurements. Here, we show that temperature differences up to about 0.3°C are present and detectable. These small changes in temperature may be related to detachments, cracks, or wet areas. By active IR measurements the paintings are artificially heated by about 1°C and the cooling to normal temperature is observed and analyzed. Lateral differences in the heating and cooling behavior are related to variability in the heat absorption properties and in thermal conductivity. It is shown that detachments as well as restorative treatments are associated with changes in the thermal behavior. In order to image the construction and the condition of the investigated walls, Ground Penetrating Radar (GPR) was measured with a 2 GHz antenna. Each profile was 1.2 m long, the spacing cross-line was 3 cm and in-line 1 mm. The

  2. Occupational exposure to particulate air pollution and mortality due to ischaemic heart disease and cerebrovascular disease

    PubMed Central

    Torén, Kjell; Bergdahl, Ingvar A; Nilsson, Tohr; Järvholm, Bengt

    2007-01-01

    Objectives A growing number of epidemiological studies are showing that ambient exposure to particulate matter air pollution is a risk factor for cardiovascular disease; however, whether occupational exposure increases this risk is not clear. The aim of the present study was to examine whether occupational exposure to particulate air pollution increases the risk for ischaemic heart disease and cerebrovascular disease. Methods The study population was a cohort of 176 309 occupationally exposed Swedish male construction workers and 71 778 unexposed male construction workers. The definition of exposure to inorganic dust (asbestos, man‐made mineral fibres, dust from cement, concrete and quartz), wood dust, fumes (metal fumes, asphalt fumes and diesel exhaust) and gases and irritants (organic solvents and reactive chemicals) was based on a job‐exposure matrix with focus on exposure in the mid‐1970s. The cohort was followed from 1971 to 2002 with regard to mortality to ischaemic heart disease and cerebrovascular disease. Relative risks (RR) were obtained by the person‐years method and from Poisson regression models adjusting for baseline values of blood pressure, body mass index, age and smoking habits. Results Any occupational particulate air pollution was associated with an increased risk for ischemic heart disease (RR 1.13, 95% CI 1.07 to 1.19), but there was no increased risk for cerebrovascular disease (RR 0.97, 95% CI 0.88 to 1.07). There was an increased risk for ischaemic heart disease and exposure to inorganic dust (RR 1.07, 95% CI 1.03 to 1.12) and exposure to fumes (RR 1.05, 95% CI 1.00 to 1.10), especially diesel exhaust (RR 1.18, 95% CI 1.13 to 1.24). There was no significantly increased risk for cerebrovascular disease and exposure to inorganic dust, fumes or wood dust. Conclusions Occupational exposure to particulate air pollution, especially diesel exhaust, among construction workers increases the risk for ischaemic heart disease. PMID

  3. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    SciTech Connect

    Logue, Jennifer M.; Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2014-06-01

    Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants and they are typically used without venting. The objective of this study is to quantify pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass balance model was applied to estimate time-dependent pollutant concentrations throughout homes and the "exposure concentrations" experienced by individual occupants. The model was applied to estimate nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for one week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs, NO{sub 2} and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of CO and NO{sub 2} were obtained from available databases. Ventilation rates, occupancy patterns, and burner use were inferred from household characteristics. Proximity to the burner(s) and the benefits of using venting range hoods were also explored. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying less than 10%. The simulation model estimates that in homes using NGCBs without coincident use of venting range hoods, 62%, 9%, and 53% of occupants are routinely exposed to NO{sub 2}, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3000, and 20 ppb for NO{sub 2}, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health

  4. Air Pollution Exposure and Blood Pressure: An Updated Review of the Literature.

    PubMed

    Giorgini, Paolo; Di Giosia, Paolo; Grassi, Davide; Rubenfire, Melvyn; Brook, Robert D; Ferri, Claudio

    2016-01-01

    Both high arterial blood pressure (BP) and elevated levels of fine particulate matter (PM2.5) air pollution have been associated with an increased risk for several cardiovascular (CV) diseases, including stroke, heart failure, and myocardial infarction. Given that PM2.5 and high BP are each independently leading risk factors for premature mortality worldwide, a potential relationship between these factors would have tremendous public health repercussions. Therefore, the aim of this review is to summarize recent evidence linking air pollution and BP. Epidemiological findings demonstrate that particulate pollutants cause significant increases in BP parameters in relation to both short and long-term exposures, with robust evidence for exposures to PM2.5. Moreover, recent epidemiological studies suggest a positive association between residence within regions with higher levels of ambient PM and an increased incidence and prevalence of overt hypertension. Studies provide consistent results that elevated concentrations of pollutants increase hospital admissions and/or emergency visits for hypertensive disorders and also support that PM levels increases BP in vulnerable subsets of individuals (pregnant women, high CV risk individuals). In this context, PM-mediated BP elevations may be an important pathway which acts as a potential triggering factor for acute CV events. Mechanistic evidence illustrates plausible pathways by which acute and chronic exposures to air pollutants might disrupt hemodynamic balance favoring vasoconstriction, including autonomic imbalance and augmented release of various pro-oxidative, inflammatory and/or hemodynamically-active mediators. Together these responses may underlie PM-induced BP elevations; however, full details regarding the responsible mechanisms require further studies. As a consequence of the ubiquity of air pollution, even a small effect on raising BP and/or the prevalence of hypertension, i.e. the major risk factor for mortality

  5. Modeling population exposure to community noise and air pollution in a large metropolitan area.

    PubMed

    Gan, Wen Qi; McLean, Kathleen; Brauer, Michael; Chiarello, Sarah A; Davies, Hugh W

    2012-07-01

    Epidemiologic studies have shown that both air pollution and community noise are associated with cardiovascular disease mortality. Because road traffic is a major contributor to these environmental pollutants in metropolitan areas, it is plausible that the observed associations may be confounded by coexistent pollutants. As part of a large population-based cohort study to address this concern, we used a noise prediction model to assess annual average community noise levels from transportation sources in metropolitan Vancouver, Canada. The modeled annual average noise level was 64 (inter quartile range 60-68) dB(A) for the region. This model was evaluated by comparing modeled annual daytime A-weighted equivalent continuous noise levels (L(day)) with measured 5-min daytime A-weighted equivalent continuous noise levels (L(eq,day,5 min)) at 103 selected roadside sites in the study region. On average, L(day) was 6.2 (95% CI, 6.0-7.9) dB(A) higher than, but highly correlated (r=0.62; 95% CI, 0.48-0.72) with, L(eq,day,5 min). These results suggest that our model-based noise exposure assessment could approximately reflect actual noise exposure in the study region. Overall, modeled noise levels were not strongly correlated with land use regression estimates of traffic-related air pollutants including black carbon, particulate matter with aerodynamic diameter ≤2.5 μm (PM(2.5)), NO(2) and NO; the highest correlation was with black carbon (r=0.48), whereas the lowest correlation was with PM(2.5) (r=0.18). There was no consistent effect of traffic proximity on the correlations between community noise levels and traffic-related air pollutant concentrations. These results, consistent with previous studies, suggest that it is possible to assess potential adverse cardiovascular effects from long-term exposures to community noise and traffic-related air pollution in prospective epidemiologic studies.

  6. The influence from synoptic weather on the variation of air pollution and pollen exposure

    NASA Astrophysics Data System (ADS)

    Grundström, Maria; Dahl, Åslög; Chen, Deliang; Pleijel, Håkan

    2014-05-01

    Exposure to elevated air pollution levels can make people more susceptible to allergies or result in more severe allergic reactions for people with an already pronounced sensitivity to pollen. The aim of this study was to investigate the relationships between urban air pollution (nitrogen oxides, ozone and particles) and airborne Betula pollen in Gothenburg, Sweden, during the pollen seasons for the years 2001-2012. Further, the influence from atmospheric weather pattern on pollen/pollution related risk, using Lamb Weather Types (LWT), was also considered. Daily LWTs were obtained by comparing the variation in atmospheric pressure from a 16 point grid over a given region on earth (scale ~1000km) and essentially describe the air mass movement for the region. They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E... etc.). LWTs with dry and calm meteorological character e.g. limited precipitation and low to moderate wind speeds (A, NE, E, SE) were associated with strongly elevated air pollution and pollen levels where Betula was exceptionally high in LWTs NE and E. The co-variation between Betula pollen and ozone was strong and significant during situations with LWTs A, NE, E and SE. The most important conclusion from this study was that LWTs A, NE, E and SE were associated with high pollen and air pollution levels and can therefore be classified as high risk weather situations for combined air pollution and pollen exposure. Our study shows that LWTs have the potential to be developed into an objective tool for integrated air quality forecasting and a warning system for risk of high exposure situations.

  7. Perinatal Exposure to Hazardous Air Pollutants and Autism Spectrum Disorders at Age 8

    PubMed Central

    Kalkbrenner, Amy E.; Daniels, Julie L.; Chen, Jiu-Chiuan; Poole, Charles; Emch, Michael; Morrissey, Joseph

    2010-01-01

    Background Hazardous air pollutants are plausible candidate exposures for autism spectrum disorders. They have been explored in recent studies for their role in the development of these disorders. Methods We used a prevalent case-control design to screen perinatal exposure to 35 hazardous air pollutants for further investigation in autism etiology. We included 383 children with autism spectrum disorders and, as controls, 2829 children with speech and language impairment. All participants were identified from the records-based surveillance of 8-year-old children conducted by the Autism and Developmental Disabilities Monitoring Network in North Carolina (for children born in 1994 and 1996) and West Virginia (born in 1992 and 1994). Exposures to ambient concentrations of metal, particulate, and volatile organic air pollutants in the census tract of the child’s birth residence were assigned from the 1996 National Air Toxics Assessment annual-average model. We estimated odds ratios (ORs) for autism spectrum disorders and corresponding 95% confidence intervals (CIs), comparing across the 20th and 80th percentiles of log-transformed hazardous air pollutant concentration among the selected controls, using semi-Bayes logistic models and adjusting for sampling variables (surveillance year and state), a priori demographic confounders from the birth certificate and census, and covarying air pollutants. Results We estimated many near-null ORs, including those for metals, established human neurodevelopmental toxicants, and several pollutants that were elevated in a similar study in California. Hazardous air pollutants with more precise and elevated OR estimates included methylene chloride, 1.4 (95% CI = 0.7–2.5), quinoline, 1.4 (1.0–2.2), and styrene, 1.8 (1.0–3.1). Conclusions Our screening design was limited by exposure misclassification of air pollutants and the use of an alternate developmental disorder as the control group, both of which may have biased results

  8. Summary and findings of the EPA and CDC symposium on air pollution exposure and health.

    PubMed

    Ozkaynak, Halûk; Glenn, Barbara; Qualters, Judith R; Strosnider, Heather; McGeehin, Michael A; Zenick, Harold

    2009-01-01

    The U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) co-organized a symposium on "Air Pollution Exposure and Health" at Research Triangle Park, North Carolina on September 19-20, 2006. The symposium brought together health and environmental scientists to discuss the state of the science and the cross-jurisdictional and methodological challenges in conducting air pollution epidemiology, environmental public health tracking and accountability research. The symposium was held over 2 days and consisted of technical presentations and breakout group discussions on each of the three principal themes of this meeting: (1) monitoring and exposure modeling information, (2) health effects data and (3) linkage of air quality and health data for research, tracking and accountability. This paper summarizes the symposium presentations and the conclusions and recommendations developed during the meeting. The accompanying two papers, which appear in this issue of the Journal, provide more in-depth discussion of issues pertinent to obtaining and analyzing air pollution exposure and health information. The symposium succeeded in identifying areas where there are critical gaps of knowledge in existing air pollution exposure and health information and in discovering institutional or programmatic barriers, which impede accessing and linking disparate data sets. Several suggestions and recommendations emerged from this meeting, directed toward (1) improving the utility of air monitoring data for exposure quantification, (2) improving access to and the quality of health data, (3) studying emerging air quality and health issues, (4) exploring improved or novel methods for linking data and (5) developing partnerships, building capacity and facilitating interdisciplinary communication. The meeting was successful in promoting an interdisciplinary dialogue around these issues and in formulating strategies to support these recommended activities. Finally

  9. Exposure measurement error in time-series studies of air pollution: concepts and consequences.

    PubMed Central

    Zeger, S L; Thomas, D; Dominici, F; Samet, J M; Schwartz, J; Dockery, D; Cohen, A

    2000-01-01

    Misclassification of exposure is a well-recognized inherent limitation of epidemiologic studies of disease and the environment. For many agents of interest, exposures take place over time and in multiple locations; accurately estimating the relevant exposures for an individual participant in epidemiologic studies is often daunting, particularly within the limits set by feasibility, participant burden, and cost. Researchers have taken steps to deal with the consequences of measurement error by limiting the degree of error through a study's design, estimating the degree of error using a nested validation study, and by adjusting for measurement error in statistical analyses. In this paper, we address measurement error in observational studies of air pollution and health. Because measurement error may have substantial implications for interpreting epidemiologic studies on air pollution, particularly the time-series analyses, we developed a systematic conceptual formulation of the problem of measurement error in epidemiologic studies of air pollution and then considered the consequences within this formulation. When possible, we used available relevant data to make simple estimates of measurement error effects. This paper provides an overview of measurement errors in linear regression, distinguishing two extremes of a continuum-Berkson from classical type errors, and the univariate from the multivariate predictor case. We then propose one conceptual framework for the evaluation of measurement errors in the log-linear regression used for time-series studies of particulate air pollution and mortality and identify three main components of error. We present new simple analyses of data on exposures of particulate matter < 10 microm in aerodynamic diameter from the Particle Total Exposure Assessment Methodology Study. Finally, we summarize open questions regarding measurement error and suggest the kind of additional data necessary to address them. Images Figure 1 Figure 2

  10. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    NASA Astrophysics Data System (ADS)

    Nazaroff, William W.; Weschler, Charles J.

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals that can react with other air contaminants to yield potentially harmful secondary products. For example, terpenes can react rapidly with ozone in indoor air generating many secondary pollutants, including TACs such as formaldehyde. Furthermore, ozone-terpene reactions produce the hydroxyl radical, which reacts rapidly with organics, leading to the formation of other potentially toxic air pollutants. Indoor reactive chemistry involving the nitrate radical and cleaning-product constituents is also of concern, since it produces organic nitrates as well as some of the same oxidation products generated by ozone and hydroxyl radicals. Few studies have directly addressed the indoor concentrations of TACs that might result from primary emissions or secondary pollutant formation following the use of cleaning agents and air fresheners. In this paper, we combine direct empirical evidence with the basic principles of indoor pollutant behavior and with information from relevant studies, to analyze and critically assess air pollutant exposures resulting from the use of cleaning products and air fresheners. Attention is focused on compounds that are listed as HAPs, TACs or Proposition 65 carcinogens/reproductive toxicants and compounds that can readily react to generate secondary pollutants. The toxicity of many of these secondary pollutants has yet to be evaluated. The inhalation

  11. Time-space modeling of journey-time exposure to traffic-related air pollution using GIS.

    PubMed

    Gulliver, John; Briggs, David J

    2005-01-01

    Journey-time exposures represent an important, though as yet little-studied, component of human exposure to traffic-related air pollution, potentially with important health effects. Methods for assessing journey-time exposures, either as part of epidemiological studies or for policy assessment, are, however, poorly developed. This paper describes the development and testing of a GIS-based system for modeling human journey-time exposures to traffic-related air pollution: STEMS (Space-Time Exposure Modeling System). The model integrates data on source activity, pollutant dispersion, and travel behavior to derive individual- or group-level exposure measures to atmospheric pollution. The model, which is designed to simulate exposures of people as they move through a changing air pollution field, was developed, validated, and trialed in Northampton, UK. The system currently uses ArcInfo to couple four separate submodels: a source activity/emission model (SATURN), a proprietary atmospheric dispersion model (ADMS-Urban), an empirically derived background air pollution model, and a purposely designed time-activity-based exposure model (TOTEM). This paper describes the structure of the modeling system; presents results of field calibration, validation, and sensitivity analysis; and illustrates the use of the model to analyze journey-time exposures of schoolchildren.

  12. Impacts of Mercury Pollution Controls on Atmospheric Mercury Concentration and Occupational Mercury Exposure in a Hospital.

    PubMed

    Li, Ping; Yang, Yan; Xiong, Wuyan

    2015-12-01

    Mercury (Hg) and Hg-containing products are used in a wide range of settings in hospitals. Hg pollution control measures were carried out in the pediatric ward of a hospital to decrease the possibility of Hg pollution occurring and to decrease occupational Hg exposure. Total gaseous Hg (TGM) concentrations in the pediatric ward and hair and urine Hg concentrations for the pediatric staff were determined before and after the Hg pollution control measures had been implemented. A questionnaire survey performed indicated that the pediatric staff had little understanding of Hg pollution and that appropriate disposal techniques were not always used after Hg leakage. TGM concentrations in the pediatric ward and urine Hg (UHg) concentrations for the pediatric staff were 25.7 and 22.2% lower, respectively, after the Hg pollution control measures had been implemented than before, which indicated that the control measures were effective. However, TGM concentrations in the pediatric ward remained significantly higher than background concentrations and UHg concentrations for the pediatric staff were remained significantly higher than the concentrations in control group, indicating continued existence of certain Hg pollution.

  13. Effect of poverty on the relationship between personal exposures and ambient concentrations of air pollutants in Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Mehta, Sumi; Sbihi, Hind; Dinh, Tuan Nguyen; Xuan, Dan Vu; Le Thi Thanh, Loan; Thanh, Canh Truong; Le Truong, Giang; Cohen, Aaron; Brauer, Michael

    2014-10-01

    Socioeconomic factors often affect the distribution of exposure to air pollution. The relationships between health, air pollution, and poverty potentially have important public health and policy implications, especially in areas of Asia where air pollution levels are high and income disparity is large. The objective of the study was to characterize the levels, determinants of exposure, and relationships between children personal exposures and ambient concentrations of multiple air pollutants amongst different socioeconomic segments of the population of Ho Chi Minh City, Vietnam. Using repeated (N = 9) measures personal exposure monitoring and determinants of exposure modeling, we compared daily average PM2.5, PM10, PM2.5 absorbance and NO2 concentrations measured at ambient monitoring sites to measures of personal exposures for (N = 64) caregivers of young children from high and low socioeconomic groups in two districts (urban and peri-urban), across two seasons. Personal exposures for both PM sizes were significantly higher among the poor compared to non-poor participants in each district. Absolute levels of personal exposures were under-represented by ambient monitors with median individual longitudinal correlations between personal exposures and ambient concentrations of 0.4 for NO2, 0.6 for PM2.5 and PM10 and 0.7 for absorbance. Exposures of the non-poor were more highly correlated with ambient concentrations for both PM size fractions and absorbance while those for NO2 were not significantly affected by socioeconomic position. Determinants of exposure modeling indicated the importance of ventilation quality, time spent in the kitchen, air conditioner use and season as important determinant of exposure that are not fully captured by the differences in socioeconomic position. Our results underscore the need to evaluate how socioeconomic position affects exposure to air pollution. Here, differential exposure to major sources of pollution, further influenced by

  14. Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. Th...

  15. GPS-based Microenvironment Tracker (MicroTrac) Model to Estimate Time-Location of Individuals for Air Pollution Exposure Assessments: Model Evaluation in Central North Carolina

    EPA Science Inventory

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure...

  16. Optimization of ISOCS Parameters for Quantitative Non-Destructive Analysis of Uranium in Bulk Form

    NASA Astrophysics Data System (ADS)

    Kutniy, D.; Vanzha, S.; Mikhaylov, V.; Belkin, F.

    2011-12-01

    Quantitative calculation of the isotopic masses of fissionable U and Pu is important for forensic analysis of nuclear materials. γ-spectrometry is the most commonly applied tool for qualitative detection and analysis of key radionuclides in nuclear materials. Relative isotopic measurement of U and Pu may be obtained from γ-spectra through application of special software such as MGAU (Multi-Group Analysis for Uranium, LLNL) or FRAM (Fixed-Energy Response Function Analysis with Multiple Efficiency, LANL). If the concentration of U/Pu in the matrix is unknown, however, isotopic masses cannot be calculated. At present, active neutron interrogation is the only practical alternative for non-destructive quantification of fissionable isotopes of U and Pu. An active well coincidence counter (AWCC), an alternative for analyses of uranium materials, has the following disadvantages: 1) The detection of small quantities (≤100 g) of 235U is not possible in many models; 2) Representative standards that capture the geometry, density and chemical composition of the analyzed unknown are required for precise analysis; and 3) Specimen size is severely restricted by the size of the measuring chamber. These problems may be addressed using modified γ-spectrometry techniques based on a coaxial HPGe-detector and ISOCS software (In Situ Object Counting System software, Canberra). We present data testing a new gamma-spectrometry method uniting actinide detection with commonly utilized software, modified for application in determining the masses of the fissionable isotopes in unknown samples of nuclear materials. The ISOCS software, widely used in radiation monitoring, calculates the detector efficiency curve in a specified geometry and range of photon energies. In describing the geometry of the source-detector, it is necessary to clearly describe the distance between the source and the detector, the material and the thickness of the walls of the container, as well as material, density

  17. Non-destructive, in-field determination of wood density in tropical forests

    NASA Astrophysics Data System (ADS)

    Torello-Raventos, Mireia; Page, Tony; Ford, Andrew; Metcalfe, Dan; Lloyd, Jon; Bird, Michael

    2014-05-01

    the validation of an accurate field-based, non-destructive measurement of wood density. 1Phillips, O. L., et al., 2008. The changing Amazon forest. Philosophical Transactions of the Royal Society of Biological Sciences, 363, 1819-1827. 2Phillips, O. L., et al., 1998. Changes in the carbon balance of tropical forests: evidence from long term plot data. Science 282, 439-442.3Malhi,Y. and Grace, J., 2000. Tropical forests and atmospheric carbon dioxide. Trends Ecology Evolution, 15, 332-337.4Gibbs, H. K., et al, 2007. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2, 1-13.5Nogueira, E. M., et al., 2005. Wood density in dense forest in central Amazonia, Brazil. Forest Ecology and Management, 208, 261-268.6Nogueira, E. M., et al., 2008. Normalization of wood density in biomass estimates of Amazon forests. Forest Ecology and Management, 256, 990-996.7Chave, J., et al., 2003. Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. Journal of Ecology, 91, 240-252.

  18. Materials processing issues for non-destructive laser gas sampling (NDLGS)

    SciTech Connect

    Lienert, Thomas J

    2010-12-09

    The Non-Destructive Laser Gas Sampling (NDLGS) process essentially involves three steps: (1) laser drilling through the top of a crimped tube made of 304L stainles steel (Hammar and Svennson Cr{sub eq}/Ni{sub eq} = 1.55, produced in 1985); (2) gas sampling; and (3) laser re-welding of the crimp. All three steps are performed in a sealed chamber with a fused silica window under controlled vacuum conditions. Quality requirements for successful processing call for a hermetic re-weld with no cracks or other defects in the fusion zone or HAZ. It has been well established that austenitic stainless steels ({gamma}-SS), such as 304L, can suffer from solidification cracking if their Cr{sub eq}/Ni{sub eq} is below a critical value that causes solidification to occur as austenite (fcc structure) and their combined impurity level (%P+%S) is above {approx}0.02%. Conversely, for Cr{sub eq}/Ni{sub eq} values above the critical level, solidification occurs as ferrite (bcc structure), and cracking propensity is greatly reduced at all combined impurity levels. The consensus of results from studies of several researchers starting in the late 1970's indicates that the critical Cr{sub eq}/Ni{sub eq} value is {approx}1.5 for arc welds. However, more recent studies by the author and others show that the critical Cr{sub eq}/Ni{sub eq} value increases to {approx}1 .6 for weld processes with very rapid thermal cycles, such as the pulsed Nd:YAG laser beam welding (LBW) process used here. Initial attempts at NDLGS using pulsed LBW resulted in considerable solidification cracking, consistent with the results of work discussed above. After a brief introduction to the welding metallurgy of {gamma}-SS, this presentation will review the results of a study aimed at developing a production-ready process that eliminates cracking. The solution to the cracking issue, developed at LANL, involved locally augmenting the Cr content by applying either Cr or a Cr-rich stainless steel (ER 312) to the top of

  19. Non-destructive assessment of the Ancient 'Tholos Acharnon' Tomb building geometry

    NASA Astrophysics Data System (ADS)

    Santos-Assunçao, Sonia; Dimitriadis, Klisthenis; Konstantakis, Yiannis; Pérez-Gracia, Vega; Anagnostopoulou, Eirini; Solla, Mercedes; Lorenzo, Henrique

    2014-05-01

    Ancient Greek Monuments are considered glorious buildings that still remain on the modern times. Tombs were specifically built according to the architecture of respective epoch. Hence, the main function was to royal families in Greece and other countries. The lack of systematic preservation could promote the damage of the structure. Therefore, a correct maintenance can diminish the impact of the main causes of pathologies. Schist, limestone and sandstone have been the main geological building materials of the Greek Ancient tombs. In order to preserve several of these monumental tombs, in depth non-destructive evaluation by means of Ground-penetrating radar (GPR) is proposed in a scientific mission with partners from Greece and Spain surveying with the 1 GHz and 2.3 GHz antennas. High frequency antennas are able to identify small size cracks or voids. Grandjean et al. [1] used the 300 MHz and 900 MHz antennas, obtaining 2 cm and 5 cm of resolution. Later on, Faize et al. [2] employed a 2.3 GHz antenna to detect anomalies and create a pathological model. The structure of this Mycenaean Tomb (14th - 13th c. BC) is composed by a corridor which is supported by irregular stones and the inner is 8.74 m high and 8.35 m diameter. The surface of the wall is composed by diverse geological materials of irregular shapes that enhance the GPR acquisition difficulty: 1) Passing the GPR antenna in a waved surface may randomly change the directivity of the emission. 2) The roof of the tomb is described by a pseudo-conical form with a decreasing radio for higher levels, with a particular beehive. If the roof of the Tomb is defined by a decreasing radius, innovative processes must be carried out with GPR to non constant radius structures. With GPR, the objective is to define the wall thickness, voids and/or cracks detection as well as other structural heterogeneities. Therefore, the aim is to create a three dimensional model based in the interpolation of the circular profiles. Three

  20. Non Destructive Testing by active infrared thermography coupled with shearography under same optical heat excitation

    NASA Astrophysics Data System (ADS)

    Theroux, Louis-Daniel; Dumoulin, Jean; Maldague, Xavier

    2014-05-01

    As infrastructures are aging, the evaluation of their health is becoming crucial. To do so, numerous Non Destructive Testing (NDT) methods are available. Among them, thermal shearography and active infrared thermography represent two full field and contactless methods for surface inspection. The synchronized use of both methods presents multiples advantages. Most importantly, both NDT are based on different material properties. Thermography depend on the thermal properties and shearography on the mechanical properties. The cross-correlation of both methods result in a more accurate and exact detection of the defects. For real site application, the simultaneous use of both methods is simplified due to the fact that the excitation method (thermal) is the same. Active infrared thermography is the measure of the temperature by an infrared camera of a surface subjected to heat flux. Observation of the variation of temperature in function of time reveal the presence of defects. On the other hand, shearography is a measure of out-of-plane surface displacement. This displacement is caused by the application of a strain on the surface which (in our case) take the form of a temperature gradient inducing a thermal stress To measure the resulting out-of-plane displacement, shearography exploit the relation between the phase difference and the optical path length. The phase difference is measured by the observation of the interference between two coherent light beam projected on the surface. This interference is due to change in optical path length as the surface is deformed [1]. A series of experimentation have been conducted in laboratory with various sample of concrete reinforced with CFRP materials. Results obtained reveal that with both methods it was possible to detect defects in the gluing. An infrared lamp radiating was used as the active heat source. This is necessary if measurements with shearography are to be made during the heating process. A heating lamp in the

  1. Determinants of exposure to chemical pollutants in wet X-ray film processing in Iran.

    PubMed

    Kakooei, Hossein; Ardakani, Mehdi B; Sadighi, Alireza

    2007-07-15

    The aim of the current study was to measure glutaraldehyde, acetic acid and sulfur dioxide and levels inside wet x-ray processing areas in a developing country and comparing data with those in developed countries. Forty-five radiographers from 10 educational hospitals affiliated to the Tehran University of Medical Sciences (TUMS) in Tehran, Iran participated in this descriptive-analytical study. Exposure to glutaraldehyde (a constituent of developer chemistry), acetic acid (a constituent of fixer chemistry) and sulfur dioxide (a byproduct of sulfites present in both developer and fixer solutions) was measured in all participants as well as area exposure. Average full-shift exposure to glutaraldehyde, acetic acid and sulfur dioxide were 0.0018, 2.65 and 1.64 mg m(-1), respectively. The results showed that the TUMS radiographers full-shift exposures are generally lower than the American Conference of Governmental Industrial Hygienists (ACGIH) recommended levels. The concentration of glutaraldehyde collected by area sampling (darkroom) was almost five times (0.0104 mg m(-3)) greater than taken by personal sampling. Exposure to the chemical pollutants in the currents study were generally higher than in developed countries. Identification of these key exposure determinants is useful in targeting exposure evaluation and controls to reduce developer and fixer chemicals exposures in the radiology departments. Employing of a digital imaging system that do not involve wet x-ray processing of photographic film would be a useful device for radiographers protection. PMID:19070154

  2. Exposure to air pollution increases the risk of osteoporosis: a nationwide longitudinal study.

    PubMed

    Chang, Kuang-Hsi; Chang, Mei-Yin; Muo, Chih-Hsin; Wu, Trong-Neng; Hwang, Bing-Fang; Chen, Chiu-Ying; Lin, Tsung-Hsing; Kao, Chia-Hung

    2015-05-01

    Several studies have indicated that air pollution induces systemic as well as tissue-specific inflammation. Chronic inflammatory diseases such as rheumatoid arthritis and chronic obstructive pulmonary disease reduce bone mineral density (BMD), leading to increased release of immune cells from the bone marrow. However, the association between air pollution and osteoporosis remains poorly defined. Therefore, we conducted this population-based retrospective cohort study to evaluate the risk of osteoporosis in Taiwanese residents exposed to air pollution.We combined 2 nationwide databases in this study. The National Health Insurance Research Database of Taiwan was available from 2000 to 2010. Detailed daily data on air pollution were collected by Taiwan Environmental Protection Agency (EPA) from 1998 to 2010. We calculated the yearly average concentrations of air pollutants from the study start to the date of osteoporosis occurrence, or withdrawal from the NHI program, or December 31, 2010. The yearly average concentrations of air pollutants were categorized into quartiles, and the risks of osteoporosis were evaluated among 4 stages of air pollutants.Among Q1, Q2, Q3, and Q4 of pollutants in all subjects, the adjusted hazard ratios (HRs) of osteoporosis in Q2, Q3, and Q4 were compared with Q1. For carbon monoxide (CO), the adjusted HRs were 1.05 (95% confidence interval [CI], 0.97-1.14), 1.78 (95% CI, 1.65-1.92), and 1.84 (95% CI, 1.71-1.98), respectively. For nitrogen dioxide (NO2), the adjusted HRs were 1.35 (95% CI, 1.25-1.45), 1.24 (95% CI, 1.15-1.35), and 1.60 (95% CI, 1.48-1.73), respectively, in all subjects.The findings of the present study show that CO and NO2 exposure is associated with an increased risk of osteoporosis in the Taiwanese population.

  3. Pollutant Exposures from Natural Gas Cooking Burners: A Simulation-Based Assessment for Southern California

    PubMed Central

    Klepeis, Neil E.; Lobscheid, Agnes B.; Singer, Brett C.

    2013-01-01

    Background: Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. Objective: We quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes. Methods: A mass-balance model was applied to estimate time-dependent pollutant concentrations throughout homes in Southern California and the exposure concentrations experienced by individual occupants. We estimated nitrogen dioxide (NO2), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for 1 week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs as well as NO2 and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of NO2 and CO were obtained from available databases. We inferred ventilation rates, occupancy patterns, and burner use from household characteristics. We also explored proximity to the burner(s) and the benefits of using venting range hoods. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying by < 10%. Results: The simulation model estimated that—in homes using NGCBs without coincident use of venting range hoods—62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. Conclusions: Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed

  4. An empirical analysis of exposure-based regulation to abate toxic air pollution

    SciTech Connect

    Marakovits, D.M.; Considine, T.J.

    1996-11-01

    Title III of the 1990 Clean Air Act Amendments requires the Environmental Protection Agency to regulate 189 air toxics, including emissions from by-product coke ovens. Economists criticize the inefficiency of uniform standards, but Title III makes no provision for flexible regulatory instruments. Environmental health scientists suggest that population exposure, not necessarily ambient air quality, should motivate environmental air pollution policies. Using an engineering-economic model of the United States steel industry, we estimate that an exposure-based policy can achieve the same level of public health as coke oven emissions standards and can reduce compliance costs by up to 60.0%. 18 refs., 3 figs., 1 tab.

  5. Hybrid Air Quality Modeling Approach for use in the Hear-road Exposures to Urban air pollutant Study(NEXUS)

    EPA Science Inventory

    The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...

  6. Forecasting human exposure to atmospheric pollutants in Portugal - A modelling approach

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Sá, E.; Monteiro, A.; Ferreira, J.; Miranda, A. I.

    2009-12-01

    Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure. To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other

  7. Effect of pollutant-exposure ambient air in childhood and adulthood. Final report

    SciTech Connect

    Wegman, D.H.

    1987-06-16

    This study explored multivariate modeling to describe the relationship between respiratory health and ambient air pollution in three Los Angeles communities using data of respiratory symptoms and pulmonary function collected for the UCLA Population Studies of Chronic Obstructive Respiratory Disease. The modeling approach focused on adult non-commuting females whose ambient-air exposures were best represented by air-quality monitoring stations in the community of residence. Multivariate analysis did not provide a clear model that improved on earlier analyses based upon residence. Effects of birthplace or current abnormal respiratory health as indicators or potential susceptibility to air pollution were not identified. The results were judged indicative of limits in the data available for estimating ambient air exposures for individual study subjects.

  8. Transcriptome of the Antarctic amphipod Gondogeneia antarctica and its response to pollutant exposure.

    PubMed

    Kang, Seunghyun; Kim, Sanghee; Park, Hyun

    2015-12-01

    Gondogeneia antarctica is widely distributed off the western Antarctic Peninsula and is a key species in the Antarctic food web. In this study, we performed Illumina sequencing to produce a total of 4,599,079,601 (4.6Gb) nucleotides and a comprehensive transcript dataset for G. antarctica. Over 46 million total reads were assembled into 20,749 contigs, and 12,461 annotated genes were predicted by Blastx. The RNA-seq results after exposure to three pollutants showed that 658, 169 and 367 genes that were potential biomarkers of responses to pollutants for this species were specifically upregulated after exposure to PCBs (Polychlorinated biphenyls), PFOS (Perfluorooctanesulfonic acid) and PFOA (Perfluorooctanoic acid), respectively. These data represent the first transcriptome resource for the Antarctic amphipod G. antarctica and provide a useful resource for studying Antarctic marine species.

  9. Exposure to urban air pollution and bone health in clinically healthy six-year-old children.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Francolira, Maricela; Torres-Jardón, Ricardo; Peña-Cruz, Bernardo; Palacios-López, Carolina; Zhu, Hongtu; Kong, Linglong; Mendoza-Mendoza, Nicolás; Montesinoscorrea, Hortencia; Romero, Lina; Valencia-Salazar, Gildardo; Kavanaugh, Michael; Frenk, Silvestre

    2013-01-01

    Air pollution induces systemic inflammation, as well as respiratory, myocardial and brain inflammation in children. Peak bone mass is influenced by environmental factors. We tested the hypothesis that six-year-olds with lifetime exposures to urban air pollution will have alterations in inflammatory markers and bone mineral density (BMD) as opposed to low-polluted city residents when matched for BMI, breast feeding history, skin phototype, age, sex and socioeconomic status. This pilot study included 20 children from Mexico City (MC) (6.17 years ± 0.63 years) and 15 controls (6.27 years ± 0.76 years). We performed full paediatric examinations, a history of outdoor exposures, seven-day dietary recalls, serum inflammatory markers and dual-energy X-ray absorptiometry (DXA). Children in MC had significantly higher concentrations of IL-6 (p=0.001), marked reductions in total blood neutrophils (p= 0.0002) and an increase in monocytes (p=0.005). MC children also had an insufficient Vitamin D intake and spent less time outdoors than controls (p<0.001) in an environment characterized by decreased UV light, with ozone and fine particulates concentrations above standard values. There were no significant differences between the cohorts in DXA Z scores. The impact of systemic inflammation, vitamin D insufficiency, air pollution, urban violence and poverty may have long-term bone detrimental outcomes in exposed paediatric populations as they grow older, increasing the risk of low bone mass and osteoporosis. The selection of reference populations for DXA must take into account air pollution exposures. PMID:23612523

  10. DNA strand breaks in human nasal respiratory epithelium are induced upon exposure to urban pollution

    SciTech Connect

    Calderon-Garciduenas, L.; Osnaya-Brizuela, N.; Ramirez-Martinez, L.

    1996-02-01

    All organisms have the ability to respond and adapt to a myriad of environmental insults. The human respiratory epithelium, when exposed to oxidant gases in photochemical smog, is at risk of DNA damage and requires efficient cellular adaptative responses to resist the environmentally induced cell damage. Ozone and its reaction products induce in vitro and in vivo DNA single strand breaks (SSBs) in respiratory epithelial cells and alveolar macrophages. To determine if exposure to a polluted atmosphere with ozone as the main criteria pollutant of 19 children and 13 adult males who lived in a low-polluted Pacific port, 69 males and 16 children who were permanent residents of Southwest Metropolitan Mexico City (SWMMC), and 22 young males newly arrived to SWMMC and followed for 12 weeks. Respiratory symptoms, nasal cytology and histopathology, cell viabilities, and single-cell gel electrophoresis were investigated. Atmospheric pollutant data were obtained from a fixed-site monitoring station. SWMMC volunteers spent >7 hr/day outdoors and all had upper respiratory symptoms. A significant difference in the numbers of DNA-damaged nasal cells was observed between control and chronically exposed subjects, both in children (p<0.00001) and in adults (p>0.01). SSBs in newly arrived subjects quickly increased upon arrival to the city, from 39.8 {+-}8.34% in the first week to 67.29 {+-}2.35 by week 2. Thereafter, the number of cells with SSBs remained stable in spite of the continuous increase in cumulative ozone, suggesting a threshold for cumulative DNA nasal damage. Exposure to a polluted urban atmosphere induces SSBs in human nasal respiratory epithelium, and nasal SSBs could serve as a biomarker of ozone exposure. Further, because DNA strand breaks are a threat to cell viability and genome integrity and appear to be a critical lesion responsible for p53 induction, nasal SSBs should be evaluated in ozone-exposed individuals. 43 refs., 5 figs., 4 tabs.

  11. Long-Term Exposure to Air Pollution and Type 2 Diabetes Mellitus in a Multiethnic Cohort

    PubMed Central

    Park, Sung Kyun; Adar, Sara D.; O'Neill, Marie S.; Auchincloss, Amy H.; Szpiro, Adam; Bertoni, Alain G.; Navas-Acien, Ana; Kaufman, Joel D.; Diez-Roux, Ana V.

    2015-01-01

    Although air pollution has been suggested as a possible risk factor for type 2 diabetes mellitus (DM), results from existing epidemiologic studies have been inconsistent. We investigated the associations of prevalence and incidence of DM with long-term exposure to air pollution as estimated using annual average concentrations of particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) and nitrogen oxides at baseline (2000) in the Multi-Ethnic Study of Atherosclerosis. All participants were aged 45–84 years at baseline and were recruited from 6 US sites. There were 5,839 participants included in the study of prevalent DM and 5,135 participants without DM at baseline in whom we studied incident DM. After adjustment for potential confounders, we found significant associations of prevalent DM with PM2.5 (odds ratio (OR) = 1.09, 95% confidence interval (CI): 1.00, 1.17) and nitrogen oxides (OR = 1.18, 95% CI: 1.01, 1.38) per each interquartile-range increase (2.43 µg/m3 and 47.1 ppb, respectively). Larger but nonsignificant associations were observed after further adjustment for study site (for PM2.5, OR = 1.16, 95% CI: 0.94, 1.42; for nitrogen oxides, OR = 1.29, 95% CI: 0.94, 1.76). No air pollution measures were significantly associated with incident DM over the course of the 9-year follow-up period. Results were partly consistent with a link between long-term exposure to air pollution and the risk of type 2 DM. Additional studies with a longer follow-up time and a greater range of air pollution exposures, including high levels, are warranted to evaluate the hypothesized association. PMID:25693777

  12. Exposure to urban air pollution and bone health in clinically healthy six-year-old children.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Francolira, Maricela; Torres-Jardón, Ricardo; Peña-Cruz, Bernardo; Palacios-López, Carolina; Zhu, Hongtu; Kong, Linglong; Mendoza-Mendoza, Nicolás; Montesinoscorrea, Hortencia; Romero, Lina; Valencia-Salazar, Gildardo; Kavanaugh, Michael; Frenk, Silvestre

    2013-01-01

    Air pollution induces systemic inflammation, as well as respiratory, myocardial and brain inflammation in children. Peak bone mass is influenced by environmental factors. We tested the hypothesis that six-year-olds with lifetime exposures to urban air pollution will have alterations in inflammatory markers and bone mineral density (BMD) as opposed to low-polluted city residents when matched for BMI, breast feeding history, skin phototype, age, sex and socioeconomic status. This pilot study included 20 children from Mexico City (MC) (6.17 years ± 0.63 years) and 15 controls (6.27 years ± 0.76 years). We performed full paediatric examinations, a history of outdoor exposures, seven-day dietary recalls, serum inflammatory markers and dual-energy X-ray absorptiometry (DXA). Children in MC had significantly higher concentrations of IL-6 (p=0.001), marked reductions in total blood neutrophils (p= 0.0002) and an increase in monocytes (p=0.005). MC children also had an insufficient Vitamin D intake and spent less time outdoors than controls (p<0.001) in an environment characterized by decreased UV light, with ozone and fine particulates concentrations above standard values. There were no significant differences between the cohorts in DXA Z scores. The impact of systemic inflammation, vitamin D insufficiency, air pollution, urban violence and poverty may have long-term bone detrimental outcomes in exposed paediatric populations as they grow older, increasing the risk of low bone mass and osteoporosis. The selection of reference populations for DXA must take into account air pollution exposures.

  13. Multimedia Environmental Pollutant Assessment System (MEPAS{reg_sign}): Exposure pathway and human health impact assessment models

    SciTech Connect

    Strenge, D.L.; Chamberlain, P.J.

    1995-05-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) provides physics-based models for human health risk assessment for radioactive and hazardous pollutants. MEPAS analyzes pollutant behavior in various media (air, soil, groundwater and surface water) and estimates transport through and between media and exposure and impacts to the environment, to the maximum individual, and to populations. MEPAS includes 25 exposure pathway models, a database with information on more than 650 contaminants, and a sensitivity module that allows for uncertainty analysis. Four major transport pathways are considered in MEPAS: groundwater, overland, surface water, and atmospheric. This report describes the exposure pathway and health impact assessment component of MEPAS, which provides an estimate of health impacts to selected individuals and populations from exposure to pollutants. The exposure pathway analysis starts with pollutant concentration in a transport medium and estimates the average daily dose to exposed individuals from contact with the transport medium or a secondary medium contaminated by the transport medium. The average daily dose is then used to estimate a measure of health impact appropriate to the type of pollutant considered. Discussions of the exposure pathway models include the assumptions and equations used to convert the transport medium concentrations to exposure medium concentrations. The discussion for a given exposure pathway defines the transport pathways leading to the exposure, the special processes considered in determining the pollutant concentration in the exposure medium, and the exposure model used to estimate the average daily dose. Models for the exposure pathway and health impact assessments require definition of several parameters. A summary of the notation used for these parameters is provided.

  14. [Prolonged exposure to atmospheric air pollution and mortality from respiratory causes].

    PubMed

    Eilstein, D

    2009-12-01

    Different designs can be used to analyze the relationships between respiratory mortality and long term exposure to atmospheric pollution: epidemiological studies (cohort, prevalence study) demonstrate the reality of the relationship and toxicological studies explain it. Cohort studies have the advantage of being able to take into account many confounding factors and thus avoid biases (which is not the case with prevalence studies), but require significant human and financial resources. They were first adopted in the US, but are now more often applied in Europe. The results are relatively consistent, as they all show a statistically significant association between an increase in particulate pollution and cardiopulmonary mortality. Mortality from lung cancer is also associated with long term exposition to particles and sometimes to ozone or nitrogen oxides. Cerebrovascular diseases and sudden death of young children have also been associated with particulate pollution. The relationships are more powerful for long term than short term exposure but are also linear and without threshold. In order to explain these effects (today the causality of the relationship is certain) there are many possible factors, particularly regarding particulate exposures: an increase in cardiovascular risk biomarkers (fibrinogen, white blood cells, and platelets), atherosclerosis, chronic inflammation of lung tissues increased by acute exposure, etc. More and more studies address the interaction between gene and environment and even epigenetic phenomena which could be responsible of these effects. Public Health impact could be quantified. The European E&H surveillance program Apheis, for example, estimated that if PM2.5 levels remained below 15 microg/m(3), a 30 year old person could see his life expectancy increased by 1 month to 2 years, depending on the studied city. Finally, mortality is not the only relevant indicator for health effects of air pollution. ISAAC studies address asthma

  15. Development of Toxicological Risk Assessment Models for Acute and Chronic Exposure to Pollutants.

    PubMed

    Reichwaldt, Elke S; Stone, Daniel; Barrington, Dani J; Sinang, Som C; Ghadouani, Anas

    2016-01-01

    Alert level frameworks advise agencies on a sequence of monitoring and management actions, and are implemented so as to reduce the risk of the public coming into contact with hazardous substances. Their effectiveness relies on the detection of the hazard, but with many systems not receiving any regular monitoring, pollution events often go undetected. We developed toxicological risk assessment models for acute and chronic exposure to pollutants that incorporate the probabilities that the public will come into contact with undetected pollution events, to identify the level of risk a system poses in regards to the pollutant. As a proof of concept, we successfully demonstrated that the models could be applied to determine probabilities of acute and chronic illness types related to recreational activities in waterbodies containing cyanotoxins. Using the acute model, we identified lakes that present a 'high' risk to develop Day Away From Work illness, and lakes that present a 'low' or 'medium' risk to develop First Aid Cases when used for swimming. The developed risk models succeeded in categorising lakes according to their risk level to the public in an objective way. Modelling by how much the probability of public exposure has to decrease to lower the risks to acceptable levels will enable authorities to identify suitable control measures and monitoring strategies. We suggest broadening the application of these models to other contaminants.

  16. Development of Toxicological Risk Assessment Models for Acute and Chronic Exposure to Pollutants.

    PubMed

    Reichwaldt, Elke S; Stone, Daniel; Barrington, Dani J; Sinang, Som C; Ghadouani, Anas

    2016-01-01

    Alert level frameworks advise agencies on a sequence of monitoring and management actions, and are implemented so as to reduce the risk of the public coming into contact with hazardous substances. Their effectiveness relies on the detection of the hazard, but with many systems not receiving any regular monitoring, pollution events often go undetected. We developed toxicological risk assessment models for acute and chronic exposure to pollutants that incorporate the probabilities that the public will come into contact with undetected pollution events, to identify the level of risk a system poses in regards to the pollutant. As a proof of concept, we successfully demonstrated that the models could be applied to determine probabilities of acute and chronic illness types related to recreational activities in waterbodies containing cyanotoxins. Using the acute model, we identified lakes that present a 'high' risk to develop Day Away From Work illness, and lakes that present a 'low' or 'medium' risk to develop First Aid Cases when used for swimming. The developed risk models succeeded in categorising lakes according to their risk level to the public in an objective way. Modelling by how much the probability of public exposure has to decrease to lower the risks to acceptable levels will enable authorities to identify suitable control measures and monitoring strategies. We suggest broadening the application of these models to other contaminants. PMID:27589798

  17. Development of Toxicological Risk Assessment Models for Acute and Chronic Exposure to Pollutants

    PubMed Central

    Reichwaldt, Elke S.; Stone, Daniel; Barrington, Dani J.; Sinang, Som C.; Ghadouani, Anas

    2016-01-01

    Alert level frameworks advise agencies on a sequence of monitoring and management actions, and are implemented so as to reduce the risk of the public coming into contact with hazardous substances. Their effectiveness relies on the detection of the hazard, but with many systems not receiving any regular monitoring, pollution events often go undetected. We developed toxicological risk assessment models for acute and chronic exposure to pollutants that incorporate the probabilities that the public will come into contact with undetected pollution events, to identify the level of risk a system poses in regards to the pollutant. As a proof of concept, we successfully demonstrated that the models could be applied to determine probabilities of acute and chronic illness types related to recreational activities in waterbodies containing cyanotoxins. Using the acute model, we identified lakes that present a ‘high’ risk to develop Day Away From Work illness, and lakes that present a ‘low’ or ‘medium’ risk to develop First Aid Cases when used for swimming. The developed risk models succeeded in categorising lakes according to their risk level to the public in an objective way. Modelling by how much the probability of public exposure has to decrease to lower the risks to acceptable levels will enable authorities to identify suitable control measures and monitoring strategies. We suggest broadening the application of these models to other contaminants. PMID:27589798

  18. The head dome: A simplified method for human exposures to inhaled air pollutants

    SciTech Connect