Science.gov

Sample records for non-diffracting optical metamaterials

  1. Transformation optics and metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Huanyang; Chan, C. T.; Sheng, Ping

    2010-05-01

    Underpinned by the advent of metamaterials, transformation optics offers great versatility for controlling electromagnetic waves to create materials with specially designed properties. Here we review the potential of transformation optics to create functionalities in which the optical properties can be designed almost at will. This approach can be used to engineer various optical illusion effects, such as the invisibility cloak.

  2. Electrically driven optical metamaterials

    PubMed Central

    Le-Van, Quynh; Le Roux, Xavier; Aassime, Abdelhanin; Degiron, Aloyse

    2016-01-01

    The advent of metamaterials more than 15 years ago has offered extraordinary new ways of manipulating electromagnetic waves. Yet, progress in this field has been unequal across the electromagnetic spectrum, especially when it comes to finding applications for such artificial media. Optical metamaterials, in particular, are less compatible with active functionalities than their counterparts developed at lower frequencies. One crucial roadblock in the path to devices is the fact that active optical metamaterials are so far controlled by light rather than electricity, preventing them from being integrated in larger electronic systems. Here we introduce electroluminescent metamaterials based on metal nano-inclusions hybridized with colloidal quantum dots. We show that each of these miniature blocks can be individually tuned to exhibit independent optoelectronic properties (both in terms of electrical characteristics, polarization, colour and brightness), illustrate their capabilities by weaving complex light-emitting surfaces and finally discuss their potential for displays and sensors. PMID:27328976

  3. Electrically driven optical metamaterials

    NASA Astrophysics Data System (ADS)

    Le-van, Quynh; Le Roux, Xavier; Aassime, Abdelhanin; Degiron, Aloyse

    2016-06-01

    The advent of metamaterials more than 15 years ago has offered extraordinary new ways of manipulating electromagnetic waves. Yet, progress in this field has been unequal across the electromagnetic spectrum, especially when it comes to finding applications for such artificial media. Optical metamaterials, in particular, are less compatible with active functionalities than their counterparts developed at lower frequencies. One crucial roadblock in the path to devices is the fact that active optical metamaterials are so far controlled by light rather than electricity, preventing them from being integrated in larger electronic systems. Here we introduce electroluminescent metamaterials based on metal nano-inclusions hybridized with colloidal quantum dots. We show that each of these miniature blocks can be individually tuned to exhibit independent optoelectronic properties (both in terms of electrical characteristics, polarization, colour and brightness), illustrate their capabilities by weaving complex light-emitting surfaces and finally discuss their potential for displays and sensors.

  4. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-10-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas.

  5. Roadmap on optical metamaterials

    NASA Astrophysics Data System (ADS)

    Urbas, Augustine M.; Jacob, Zubin; Dal Negro, Luca; Engheta, Nader; Boardman, A. D.; Egan, P.; Khanikaev, Alexander B.; Menon, Vinod; Ferrera, Marcello; Kinsey, Nathaniel; DeVault, Clayton; Kim, Jongbum; Shalaev, Vladimir; Boltasseva, Alexandra; Valentine, Jason; Pfeiffer, Carl; Grbic, Anthony; Narimanov, Evgenii; Zhu, Linxiao; Fan, Shanhui; Alù, Andrea; Poutrina, Ekaterina; Litchinitser, Natalia M.; Noginov, Mikhail A.; MacDonald, Kevin F.; Plum, Eric; Liu, Xiaoying; Nealey, Paul F.; Kagan, Cherie R.; Murray, Christopher B.; Pawlak, Dorota A.; Smolyaninov, Igor I.; Smolyaninova, Vera N.; Chanda, Debashis

    2016-09-01

    Optical metamaterials have redefined how we understand light in notable ways: from strong response to optical magnetic fields, negative refraction, fast and slow light propagation in zero index and trapping structures, to flat, thin and perfect lenses. Many rules of thumb regarding optics, such as μ = 1, now have an exception, and basic formulas, such as the Fresnel equations, have been expanded. The field of metamaterials has developed strongly over the past two decades. Leveraging structured materials systems to generate tailored response to a stimulus, it has grown to encompass research in optics, electromagnetics, acoustics and, increasingly, novel hybrid material responses. This roadmap is an effort to present emerging fronts in areas of optical metamaterials that could contribute and apply to other research communities. By anchoring each contribution in current work and prospectively discussing future potential and directions, the authors are translating the work of the field in selected areas to a wider community and offering an incentive for outside researchers to engage our community where solid links do not already exist.

  6. Magnetic hyperbolic optical metamaterials

    PubMed Central

    Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N.; Kivshar, Yuri S.; Zhang, Xiang

    2016-01-01

    Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light. PMID:27072604

  7. Magnetic hyperbolic optical metamaterials.

    PubMed

    Kruk, Sergey S; Wong, Zi Jing; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N; Kivshar, Yuri S; Zhang, Xiang

    2016-04-13

    Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.

  8. Magnetic hyperbolic optical metamaterials

    NASA Astrophysics Data System (ADS)

    Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; O'Brien, Kevin; Neshev, Dragomir N.; Kivshar, Yuri S.; Zhang, Xiang

    2016-04-01

    Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.

  9. Colloidal Metamaterials at Optical Frequencies

    DTIC Science & Technology

    2014-07-18

    AFRL-OSR-VA-TR-2014-0184 Colloidal Metamaterials at Optical Frequencies Jennifer Dionne LELAND STANFORD JUNIOR UNIV CA Final Report 07/18/2014...Prescribed by ANSI Std. Z39.18 Colloidal Metamaterials at Optical Frequencies Annual Report, June 30, 2014 A. Investigators PI: Jennifer Dionne...team has combined theoretical and experimental methods to produce a colloidally -synthesized metamaterial fluid, or “metafluid,” exhibiting strong

  10. Efficient generation of periodic and quasi-periodic non-diffractive optical fields with phase holograms.

    PubMed

    Arrizón, Victor; de-la-Llave, David Sánchez; Méndez, Guadalupe; Ruiz, Ulises

    2011-05-23

    The superposition of multiple plane waves with appropriate propagation vectors generates a periodic or quasi-periodic non-diffractive optical field. We show that the Fourier spectrum of the phase modulation of this field is formed by two disjoint parts, one of which is proportional to the Fourier spectrum of the field itself. Based on this result we prove that the non-diffractive field can be generated, with remarkable high accuracy and efficiency, in a Fourier domain spatial filtering setup, using a synthetic phase hologram whose transmittance is the phase modulation of the field. In a couple of cases this result is presented analytically, and in other cases the proof is computational and experimental.

  11. Optical forces in nanorod metamaterial.

    PubMed

    Bogdanov, Andrey A; Shalin, Alexander S; Ginzburg, Pavel

    2015-10-30

    Optomechanical manipulation of micro and nano-scale objects with laser beams finds use in a large span of multidisciplinary applications. Auxiliary nanostructuring could substantially improve performances of classical optical tweezers by means of spatial localization of objects and intensity required for trapping. Here we investigate a three-dimensional nanorod metamaterial platform, serving as an auxiliary tool for the optical manipulation, able to support and control near-field interactions and generate both steep and flat optical potential profiles. It was shown that the 'topological transition' from the elliptic to hyperbolic dispersion regime of the metamaterial, usually having a significant impact on various light-matter interaction processes, does not strongly affect the distribution of optical forces in the metamaterial. This effect is explained by the predominant near-fields contributions of the nanostructure to optomechanical interactions. Semi-analytical model, approximating the finite size nanoparticle by a point dipole and neglecting the mutual re-scattering between the particle and nanorod array, was found to be in a good agreement with full-wave numerical simulation. In-plane (perpendicular to the rods) trapping regime, saddle equilibrium points and optical puling forces (directed along the rods towards the light source), acting on a particle situated inside or at the nearby the metamaterial, were found.

  12. Metamaterial-enabled transformation optics

    NASA Astrophysics Data System (ADS)

    Landy, Nathan

    Transformation Optics is a design methodology that uses the form invariance of Maxwell's equations to distort electromagnetic fields. This distortion is imposed on a region of space by mimicking a curvilinear coordinate system with prescribed magnetoelectric material parameters. By simply specifying the correct coordinate transformation, researchers have created such exotic devices as invisibility cloaks, ``perfect'' lenses, and illusion devices. Unfortunately, these devices typically require correspondingly exotic material parameters that do not occur in Nature. Researchers have therefore turned to complex artificial media known as metamaterials to approximate the desired responses. However, the metamaterial design process is complex, and there are limitations on the responses that they achieve. In this dissertation, we explore both the applicability and limitations of metamaterials in Transformation Optics design. We begin in Chapter 2 by investigating the freedoms available to use in the transformation optics design process itself. We show that quasi-conformal mappings may be used to alleviate some of the complexity of material design in both two- and three-dimensional design. We then go on in Chapter 3 to apply this method to the design of a transformation-optics modified optic. We show that even a highly-approximate implementation of such a lens would retain many of the key performance feautures that we would expect from a full material prescription. However, the approximations made in the design of our lens may not be valid in other areas of transformation optical design. For instance, the high-frequency approximations of our lens design ignore the effects of impedance mismatch, and the approximation is not valid when the material parameters vary on the order of a wavelength. Therefore, in Chapter 4 we use other freedoms available to us to design a full-parameter cloak of invisibility. By tailoring the electromagnetic environment of our cloak, we are able to

  13. Ultrafast Modulation of Optical Metamaterials

    DTIC Science & Technology

    2009-09-28

    interferometer arrangement for absolute phase measurement. A 20-MHz super-continuum fiber laser providing 5ps pulses with wavelength covering from 450 to...t̂ ) and reflection ( r̂ ) coefficients. A Michelson -type interferometer is implemented for absolute phase measurement. The near-infrared tunable...behavior of optical modulation in a metamaterial with the “fishnet” structure [7]. Using femtosecond pump-probe spectroscopy with an interferometer

  14. Metamaterials for Miniaturization of Optical Components

    DTIC Science & Technology

    2014-09-24

    AFRL-OSR-VA-TR-2014-0226 METAMATERIALS FOR MINIATURIZATION OF OPTICAL COMPONENTS Aleksandr Figotin UNIVERSITY OF CALIFORNIA IRVINE Final Report 09/24...8-98) v Prescribed by ANSI Std. Z39.18 10/09/2014 Final 30/06/2011-30/06/2014 METAMATERIALS FOR MINIATURIZATION OF OPTICAL COMPONENTS FA9550-11-1...relativistic and spinorial aspects of our neoclassical electromagnetic theory. Metamaterials , fundamentals of electromagnetic theory, dissipation, magnetic

  15. Metamaterials and Transformation Optics

    DTIC Science & Technology

    2011-07-01

    Cross-section comparisons of cloaks designed by transformation optical and optical conformal mapping approaches Yaroslav A Urzhumov, Nathan B Kundtz ...B82, 205109, (2010). 9. Electromagnetic design with transformation optics Nathan B. Kundtz , David R. Smith, and John B. Pendry Proceedings of the

  16. Implementation of optical dielectric metamaterials: A review

    NASA Astrophysics Data System (ADS)

    Corbitt, Shandra J.; Francoeur, Mathieu; Raeymaekers, Bart

    2015-06-01

    Metamaterials are a class of man-made materials with exotic electromagnetic properties. The ability to fabricate three-dimensional macroscale metamaterials would enable embedding these structures in engineering applications and devices, to take advantage of their unique properties. This paper reviews the implementation of optical Mie resonance-based dielectric (MRD) metamaterials, as opposed to the more commonly used metallic-based metamaterials. Design constraints are derived based on Mie theory and related to fabrication specifications. Techniques to fabricate optical dielectric metamaterials are reviewed, including electron-beam lithography, focused ion beam lithography, nanoimprint lithography, and directed self-assembly. The limitations of each fabrication method are critically evaluated in light of the design constraints. The challenges that must be overcome to achieve fabrication and implementation of macroscale three-dimensional MRD metamaterials are discussed.

  17. Toward high throughput optical metamaterial assemblies.

    PubMed

    Fontana, Jake; Ratna, Banahalli R

    2015-11-01

    Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.

  18. Optical nonlinearities in plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zayats, Anatoly V.

    2016-04-01

    Metals exhibit strong and fast nonlinearities making metallic, plasmonic, structures very promising for ultrafast all-optical applications at low light intensities. Combining metallic nanostructures in metamaterials provides additional functionalities via prospect of precise engineering of spectral response and dispersion. From this point of view, hyperbolic metamaterials, in particular those based on plasmonic nanorod arrays, provide wealth of exciting possibilities in nonlinear optics offering designed linear and nonlinear properties, polarization control, spontaneous emission control and many others. Experiments and modeling have already demonstrated very strong Kerr-nonlinear response and its ultrafast recovery due to the nonlocal nature of the plasmonic mode of the metamaterial, so that small changes in the permittivity of the metallic component under the excitation modify the nonlocal response that in turn leads to strong changes of the metamaterial transmission. In this talk, we will discuss experimental studies and numerical modeling of second- and third-order nonlinear optical processes in hyperbolic metamaterials based on metallic nanorods and other plasmonic systems where coupling between the resonances plays important role in defining nonlinear response. Second-harmonic generation and ultrafast Kerr-type nonlinearity originating from metallic component of the metamaterial will be considered, including nonlinear magneto-optical effects. Nonlinear optical response of stand-alone as well as integrated metamaterial components will be presented. Some of the examples to be discussed include nonlinear polarization control, nonlinear metamaterial integrated in silicon photonic circuitry and second-harmonic generation, including magneto-optical effects.

  19. Metamaterials and Transformation Optics

    DTIC Science & Technology

    2014-01-31

    research is extend the analytical work in transformation optics (relating complex systems to simpler systems with the same spectral properties ) to... optics which via a transformation relates complex systems to simpler systems possessed of the same spectral properties . One good example is to be...mediated by the quantum fluctuations in electron density at the metal surfaces and are the most long ranged forces between nanoparticles . Fig. 1(a

  20. Optical properties of nanowire metamaterials with gain

    NASA Astrophysics Data System (ADS)

    Lima, Joaquim; Adam, Jost; Rego, Davi; Esquerre, Vitaly; Bordo, Vladimir

    2016-11-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide. The gain in the matrix is modeled by adding a negative imaginary part to the dielectric function of the semiconductor. It is found that the optical coefficients of the metamaterial depend on the gain magnitude in a non-trivial way: they can both increase and decrease with gain depending on the lattice constant of the metamaterial. This peculiar behavior is explained by the field redistribution between the lossy metal nanowires and the amplifying matrix material. These findings are significant for a proper design of nanowire metamaterials with low optical losses for diverse applications.

  1. Chiral THz metamaterial with tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Taylor, Antoinette; O' Hara, John; Chowdhury, Roy; Zhao, Rongkuo; Soukoullis, Costas M

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  2. [INVITED] Self-assembled optical metamaterials

    NASA Astrophysics Data System (ADS)

    Baron, Alexandre; Aradian, Ashod; Ponsinet, Virginie; Barois, Philippe

    2016-08-01

    Self-assembled metamaterials constitute a promising platform to achieving bulk and homogenous optical materials that exhibit unusual effective medium properties. For many years now, the research community has contemplated lithographically fabricated metasurfaces, with extraordinary optical features. However, achieving large volumes at low cost is still a challenge by top-down fabrication. Bottom-up fabrication, that relies both on nanochemistry and self-assembly, is capable of building such materials while greatly reducing the energy footprint in the formulation of the metamaterial. Self-assembled metamaterials have shown that they are capable of reaching unprecedented values of bulkiness and homogeneity figures of merit. This feat is achieved by synthesizing plasmonic nanoresonators (meta-atoms in the sense of artificial polarizable units) and assembling them into a fully three-dimensional matrix through a variety of methods. Furthermore it has been shown that a wide range of material parameters can be tailored by controlling the geometry and composition of the meta-atoms as well as the volume fraction of the nano-objects in the metamaterial. Here we conduct a non-comprehensive review of some of the recent trends in self-assembled optical metamaterials and illustrate these trends with our recent work.

  3. Novel Optical Metamaterials and Approaches for Fabrication

    DTIC Science & Technology

    2012-08-01

    AFRL-RY-WP-TR-2012-0250 NOVEL OPTICAL METAMATERIALS AND APPROACHES FOR FABRICATION Alkim Akyurtlu, Joel Therrien , and Aaron Bandremer...FABRICATION 5a. CONTRACT NUMBER FA8718-07-C-0054 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62204F 6. AUTHOR(S) Alkim Akyurtlu, Joel Therrien

  4. Reducing the losses of optical metamaterials

    SciTech Connect

    Fang, Anan

    2010-01-01

    The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, ε. So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. The loss compensations with gain are done for various structures, from 2D simplified models to 3D realistic structures. Results show the losses of optical metamaterials can be effectively compensated by gain. The effective gain coefficient of the combined system can be much larger than the bulk gain counterpart, due to the strong local-field enhancement.

  5. Nonlocal optical response of plasmonic nanowire metamaterials

    NASA Astrophysics Data System (ADS)

    Wells, Brian Michael

    Nanowire metamaterials are a class of composite photonic media formed by an array of aligned plasmonic nanowires embedded in a dielectric matrix. Depending on exact composition, geometry, and excitation wavelength, nanowire structures are known to exhibit elliptical, hyperbolic, or epsilon-near-zero (ENZ) responses. In the ENZ regime, optical response of the composite becomes strongly nonlocal. Excitation of an additional wave, caused by nonlocality, has been experimentally demonstrated in nanowire-based metamaterials. In this thesis, a computational study of the nonlocal optical response in plasmonic nanowire arrays has been conducted to better understand such materials. The results of this computational study were used to develop an analytical technique that provides an adequate description of the optical response of wire based metamaterials. This formalism combines the local and nonlocal effective-medium theories often used to describe the optics of nanowire composites. It provides insight into the origin of the additional wave and allows implementation of additional boundary conditions. This approach can be straightforwardly extended to describe the optics for numerious plasmonic structures.

  6. Metamaterials with tailored nonlinear optical response.

    PubMed

    Husu, Hannu; Siikanen, Roope; Mäkitalo, Jouni; Lehtolahti, Joonas; Laukkanen, Janne; Kuittinen, Markku; Kauranen, Martti

    2012-02-08

    We demonstrate that the second-order nonlinear optical response of noncentrosymmetric metal nanoparticles (metamolecules) can be efficiently controlled by their mutual ordering in an array. Two samples with minor change in ordering have nonlinear responses differing by a factor of up to 50. The results arise from polarization-dependent plasmonic resonances modified by long-range coupling associated with metamolecular ordering. The approach opens new ways for tailoring the nonlinear responses of metamaterials and their tensorial properties.

  7. Nonlinear Optics in Negative Index Metamaterials

    DTIC Science & Technology

    2012-06-05

    analytical model and solutions for nonlinear wave propagation in waveguide couplers with opposite signs of the linear refractive index, non-zero phase... couplers based on either double-negative or strongly anisotropic metamaterials that are likely to enable ultra-compact optical strorage and memory...Venugopal, Zhaxylyk Kudyshev, Natalia Litchinitser. Asymmetric Positive-Negative IndexNonlinear Waveguide Couplers , IEEE Journal of Selected Topics in

  8. Nonlocal Optical Response of Plasmonic Nanowire Metamaterials

    DTIC Science & Technology

    2014-01-01

    quantum dots, and other quantum mechanical systems can be substantially altered by the surrounding materials. Due to the correlation between...C. L., et al. " Quantum nanophotonics using hyperbolic metamaterials." Journal of Optics 14.6 (2012): 063001. [35] Ginzburg, V. L. "Electromagnetic...K., R. C. McPhedran, and Vladimir M. Shalaev. " Electrodynamics of metal-dielectric composites and electromagnetic crystals." Physical Review B 62.12

  9. Optical Metamaterial Design, Fabrication, and Test

    DTIC Science & Technology

    2011-03-01

    This work will focus on the development of metamaterials operating in the visible and infrared which will be constructed and tested for basic optical...permittivity at an infrared wavelength. The investigations into the 3D material did yield a possible for design using a novel material for the dielectric, but...16 2.4 Testing Using Spectrophotometry .......................................................................16 2.5 Testing Using Fourier

  10. Optical-image transfer through a diffraction-compensating metamaterial.

    PubMed

    Kivijärvi, Ville; Nyman, Markus; Shevchenko, Andriy; Kaivola, Matti

    2016-05-02

    Cancellation of optical diffraction is an intriguing phenomenon enabling optical fields to preserve their transverse intensity profiles upon propagation. In this work, we introduce a metamaterial design that exhibits this phenomenon for three-dimensional optical beams. As an advantage over other diffraction-compensating materials, our metamaterial is impedance-matched to glass, which suppresses optical reflection at the glass-metamaterial interface. The material is designed for beams formed by TM-polarized plane-wave components. We show, however, that unpolarized optical images with arbitrary shapes can be transferred over remarkable distances in the material without distortion. We foresee multiple applications of our results in integrated optics and optical imaging.

  11. Optical coatings for metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jen, Yi-Jun

    2016-09-01

    Optical coatings have been referred as thin films that create interference effect to change optical properties of substrates. The most common applications of optical thin films are anti-reflection coatings, high reflective coatings, beamsplitter coatings, and bandpass filter coatings. In the recent development of metamaterials, the optical coatings also play a critical role in design, fabrication and measurement. In fabrication, glancing angle deposition has been applied to grow slanted metal nanorod arrays. The associated longitudinal plasmon and transverse plasmon modes under linear polarized illuminations are induced and generate anisotropic refractive index and extinction coefficient. Strong birefringence of a silver nanorod array reveals positive and negative real refractive indices exist for two orthogonal linear polarization states. Recently, negative index materials and hyperbolic metamaterials are realized as multilayers comprising subwavelength-scale metal and dielectric films alternatively. From the view of optical coatings, the design of optical edge filters can be applied to arrange the metal-dielectric multilayer as a symmetrical film sack to perform equivalent complex admittance and refractive index. On the other hand, the traditional admittance diagram used in design of antireflection and bandpass filters can be applied to induce the transmission of a negative index multilayer. The admittance loci of metal films are designed to be huge contours in the admittance diagram to reduce the energy loss in metal films. Five-layered symmetrical film stack and seven-layered symmetrical film stack are shown here to present as new bandpass filters with negative real refractive indices.

  12. THz bandwidth optical switching with carbon nanotube metamaterial.

    PubMed

    Nikolaenko, Andrey E; Papasimakis, Nikitas; Chipouline, Arkadi; De Angelis, Francesco; Di Fabrizio, Enzo; Zheludev, Nikolay I

    2012-03-12

    We provide the first demonstration of exceptional light-with-light optical switching performance of a carbon nanotube metamaterial - a hybrid nanostructure of a plasmonic metamaterial with semiconducting single-walled carbon nanotubes. A modulation depth of 10% in the near-IR with sub-500 fs response time is achieved with a pump fluence of just 10 μJ/cm², which is an order of magnitude lower than in previously reported artificial nanostructures. The improved switching characteristics of the carbon nanotube metamaterial are defined by an excitonic nonlinearity of carbon nanotubes resonantly enhanced by a concentration of local fields in the metamaterial. Since the spectral position of the excitonic response and metamaterial plasmonic resonance can be adjusted by using carbon nanotubes of different diameter and scaling of the metamaterial design, the giant nonlinear response of the hybrid metamaterial - in principle - can be engineered to cover the entire second and third telecom windows, from O- to U-band.

  13. Acousto-optical properties of metamaterials

    SciTech Connect

    Pustovoit, V I

    2016-02-28

    The possibility of the effective use of metamaterials in acousto-optics is demonstrated. It is shown that photoelastic constants that determine a change in the dielectric constant of a heterogeneous medium under the action of a sound wave can significantly exceed the corresponding constants for conventional crystals. We have analysed the mechanisms of the dielectric constant variation in a heterogeneous medium consisting of nanoparticles in the form of ellipsoids and have found explicitly the values of the photoelastic constants. It is shown that the mechanism of the dielectric constant variation in a longitudinal sound wave is reduced to a change in the local concentration of nanoparticles in the bulk and in a transverse acoustic wave – to a local rotation of space-oriented nanoellipsoids. It is also shown that the use of metamedia with a nonuniform distribution of nanoparticles provides a unique opportunity for designing qualitatively new instruments and devices that cannot be produced on the basis of conventional crystals. It is noted that metamaterials open ample opportunities for creating devices of the IR region of the spectrum due to the absence of restrictions on the size of such media. (metamaterials)

  14. Three-dimensional optical metamaterial with a negative refractive index.

    PubMed

    Valentine, Jason; Zhang, Shuang; Zentgraf, Thomas; Ulin-Avila, Erick; Genov, Dentcho A; Bartal, Guy; Zhang, Xiang

    2008-09-18

    Metamaterials are artificially engineered structures that have properties, such as a negative refractive index, not attainable with naturally occurring materials. Negative-index metamaterials (NIMs) were first demonstrated for microwave frequencies, but it has been challenging to design NIMs for optical frequencies and they have so far been limited to optically thin samples because of significant fabrication challenges and strong energy dissipation in metals. Such thin structures are analogous to a monolayer of atoms, making it difficult to assign bulk properties such as the index of refraction. Negative refraction of surface plasmons was recently demonstrated but was confined to a two-dimensional waveguide. Three-dimensional (3D) optical metamaterials have come into focus recently, including the realization of negative refraction by using layered semiconductor metamaterials and a 3D magnetic metamaterial in the infrared frequencies; however, neither of these had a negative index of refraction. Here we report a 3D optical metamaterial having negative refractive index with a very high figure of merit of 3.5 (that is, low loss). This metamaterial is made of cascaded 'fishnet' structures, with a negative index existing over a broad spectral range. Moreover, it can readily be probed from free space, making it functional for optical devices. We construct a prism made of this optical NIM to demonstrate negative refractive index at optical frequencies, resulting unambiguously from the negative phase evolution of the wave propagating inside the metamaterial. Bulk optical metamaterials open up prospects for studies of 3D optical effects and applications associated with NIMs and zero-index materials such as reversed Doppler effect, superlenses, optical tunnelling devices, compact resonators and highly directional sources.

  15. Optical isotropy at terahertz frequencies using anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Lee, In-Sung; Sohn, Ik-Bu; Kang, Chul; Kee, Chul-Sik; Yang, Jin-Kyu; Lee, Joong Wook

    2016-07-01

    We demonstrate optically isotropic filters in the terahertz (THz) frequency range using structurally anisotropic metamaterials. The proposed metamaterials with two-dimensional arrangements of anisotropic H-shaped apertures show polarization-independent transmission due to the combined effects of the dipole resonances of resonators and antennas. Our results may offer the potential for the design and realization of versatile THz devices and systems.

  16. Broadband optical isolator based on helical metamaterials.

    PubMed

    Cao, Hu; Yang, ZhenYu; Zhao, Ming; Wu, Lin; Zhang, Peng

    2015-05-01

    Based on helical metamaterials, a new broadband optical isolator with a triple-helix structure is proposed in this paper. The right-handed circularly polarized light can transmit through the isolator with its polarization unchanged. The reverse propagating light, which is caused by the reflection of the latter optical devices, is converted into left-handed circularly polarized light that is suppressed by the proposed isolator because of absorption. Our design has some unprecedented advantages such as broad frequency ranges and a compact structure; moreover, neither polarizers nor adscititious magnetic fields are required. Properties of the isolator are investigated using the finite-difference time-domain method, and this phenomenon is studied by the mechanism of helical antenna theory.

  17. Spin-optical metamaterial route to spin-controlled photonics.

    PubMed

    Shitrit, Nir; Yulevich, Igor; Maguid, Elhanan; Ozeri, Dror; Veksler, Dekel; Kleiner, Vladimir; Hasman, Erez

    2013-05-10

    Spin optics provides a route to control light, whereby the photon helicity (spin angular momentum) degeneracy is removed due to a geometric gradient onto a metasurface. The alliance of spin optics and metamaterials offers the dispersion engineering of a structured matter in a polarization helicity-dependent manner. We show that polarization-controlled optical modes of metamaterials arise where the spatial inversion symmetry is violated. The emerged spin-split dispersion of spontaneous emission originates from the spin-orbit interaction of light, generating a selection rule based on symmetry restrictions in a spin-optical metamaterial. The inversion asymmetric metasurface is obtained via anisotropic optical antenna patterns. This type of metamaterial provides a route for spin-controlled nanophotonic applications based on the design of the metasurface symmetry properties.

  18. Metamaterials for optical and photonic applications for space: preliminary results

    NASA Astrophysics Data System (ADS)

    Gaspar Venancio, L. M.; Hannemann, S.; Lubkowski, G.; Suhrke, M.; Schweizer, H.; Fu, L.; Giessen, H.; Schau, P.; Frenner, K.; Osten, W.

    2011-09-01

    The European Space Agency (ESA) in the frame of its General Study Program (GSP) has started to investigate the opportunity of using metamaterials in space applications. In that context, ESA has initiated two GSP activities which main objectives are 1) to identify the metamaterials and associated optical properties which could be used to improve in the future the performances of optical payloads in space missions, 2) to design metamaterial based devices addressing specific needs in space applications. The range of functions for metamaterials to be investigated is wide (spectral dispersion, polarisation control, light absorption, straylight control...) and so is the required spectral range, from 0.4μm to 15μm. In the frame of these activities several applications have been selected and the designs of metamaterial based devices are proposed and their performances assessed by simulations.

  19. Gyroid Optical Metamaterials: Calculating the Effective Permittivity of Multidomain Samples

    PubMed Central

    2016-01-01

    Gold gyroid optical metamaterials are known to possess a reduced plasma frequency and linear dichroism imparted by their intricate subwavelength single gyroid morphology. The anisotropic optical properties are, however, only evident when a large individual gyroid domain is investigated. Multidomain gyroid metamaterials, fabricated using a polyisoprene-b-polystyrene-b-poly(ethylene oxide) triblock terpolymer and consisting of multiple small gyroid domains with random orientation and handedness, instead exhibit isotropic optical properties. Comparing three effective medium models, we here show that the specular reflectance spectra of such multidomain gyroid optical metamaterials can be accurately modeled over a broad range of incident angles by a Bruggeman effective medium consisting of a random wire array. This model accurately reproduces previously published results tracking the variation in normal incidence reflectance spectra of gold gyroid optical metamaterials as a function of host refractive index and volume fill fraction of gold. The effective permittivity derived from this theory confirms the change in sign of the real part of the permittivity in the visible spectral region (so, that gold gyroid metamaterials exhibit both dielectric and metallic behavior at optical wavelengths). That a Bruggeman effective medium can accurately model the experimental reflectance spectra implies that small multidomain gold gyroid optical metamaterials behave both qualitatively and quantitatively as an amorphous composite of gold and air (i.e., nanoporous gold) and that coherent electromagnetic contributions arising from the subwavelength gyroid symmetry are not dominant. PMID:27785456

  20. Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties

    DTIC Science & Technology

    2014-01-01

    slightly altered effect from the ENZ fi elds. A mate- rial with Re( ε eff ) < 0 acts ‘optically metallic’, showing a fi nite skin depth , after which the... penetration depth of the electric fi eld. g) Incident electromagnetic fi eld at the absorption maximum, 490 nm. h) Incident electromagnetic fi eld at...metamaterials. [ 6–8 ] The allure of optical metamaterials is that they provide a means for altering the temporal and spatial propagation of

  1. Optical modulation of aqueous metamaterial properties at large scale.

    PubMed

    Yang, Sui; Wang, Yuan; Ni, Xingjie; Zhang, Xiang

    2015-11-02

    Dynamical control of metamaterials by adjusting their shape and structures has been developed to achieve desired optical functionalities and to enable modulation and selection of spectra responses. However it is still challenging to realize such a manipulation at large scale. Recently, it has been shown that the desired high (or low) symmetry metamaterials structure in solution can be self-assembled under external light stimuli. Using the this approach, we systematically investiagted the optical controlling process and report here a dynamical manipulation of magnetic properties of metamaterials. Under external laser excitations, we demonstrated that selected magnetic properties of metamaterials can be tuned with the freedom of chosen wavelength ranges. The magnetic dipole selectivity and tunability were further quantified by in situ spectral measurement.

  2. PT metamaterials via complex-coordinate transformation optics.

    PubMed

    Castaldi, Giuseppe; Savoia, Silvio; Galdi, Vincenzo; Alù, Andrea; Engheta, Nader

    2013-04-26

    We extend the transformation-optics paradigm to a complex spatial coordinate domain, in order to deal with electromagnetic metamaterials characterized by balanced loss and gain, giving special emphasis to parity-time (PT) symmetric metamaterials. We apply this general theory to complex-source-point radiation and anisotropic transmission resonances, illustrating the capability and potentials of our approach in terms of systematic design, analytical modeling, and physical insights into complex-coordinate wave objects and resonant states.

  3. A review of nano-optics in metamaterial hybrid heterostructures

    SciTech Connect

    Singh, Mahi R.

    2014-03-31

    We present a review for the nonlinear nano-optics in quantum dots doped in a metamaterial heterostructure. The heterostructure is formed by depositing a metamaterial on a dielectric substrate and ensemble of noninteracting quantum dots are doped near the heterostructure interface. It is shown that there is enhancement of the second harmonic generation due to the surface plasmon polaritons field present at the interface.

  4. All-optical metamaterial modulators: Fabrication, simulation and characterization

    NASA Astrophysics Data System (ADS)

    Ku, Zahyun

    Artificially structured composite metamaterials consist of sub-wavelength sized structures that exhibit unusual electromagnetic properties not found in nature. Since the first experimental verification in 2000, metamaterials have drawn considerable attention because of their broad range of potential applications. One of the most attractive features of metamaterials is to obtain negative refraction, termed left-handed materials or negative-index metamaterials, over a limited frequency band. Negative-index metamaterials at near infrared wavelength are fabricated with circular, elliptical and rectangular holes penetrating through metal/dielectric/metal films. All three negative-index metamaterial structures exhibit similar figure of merit; however, the transmission is higher for the negative-index metamaterial with rectangular holes as a result of an improved impedance match with the substrate-superstrate (air-glass) combination. In general, the processing procedure to fabricate the fishnet structured negative-index metamaterials is to define the hole-size using a polymetric material, usually by lithographically defining polymer posts, followed by deposition of the constitutive materials and dissolution of the polymer (liftoff processing). This processing (fabrication of posts: multi-layer deposition: liftoff) often gives rise to significant sidewall-angle because materials accumulate on the tops of the posts that define the structure, each successive film deposition has a somewhat larger aperture on the bottom metamaterial film, giving rise to a nonzero sidewall-angle and to optical bianisotropy. Finally, we demonstrate a nanometer-scale, sub-picosecond metamaterial device capable of over terabit/second all-optical communication in the near infrared spectrum. We achieve a 600 fs device response by utilizing a regime of sub-picosecond carrier dynamics in amorphous silicon and ˜70% modulation in a path length of only 124 nm by exploiting the strong nonlinearities in

  5. Metamaterials for optical and radio communications

    NASA Astrophysics Data System (ADS)

    Kante, Boubacar; Ourir, Abdelwaheb; Burokur, Shah Nawaz; Gadot, Frédérique; de Lustrac, André

    2008-01-01

    We present here two examples of metamaterials for applications in the telecoms domain. The first concerns the realization of an ultra compact directive electronically reconfigurable antenna. The second deals with an infrared left-handed metamaterial working under normal incidence. For the first application, we use a composite phase varying metamaterial. An adjustable resonance radiating frequency between 7.9 and 8.2 GHz is obtained and a drastic enhancement in the directivity of the antenna is observed for a cavity thickness as small as λ/75 (0.5 mm!). Concerning the second application we present simulations and measurements of a metamaterial made of gold wires and C-shaped nanostructures on silicon at infrared wavelengths. Both plasmonic resonances occur at 1.7 and 4.2 μm, corresponding to a simultaneously negative permittivity and permeability. A simplified version of this metamaterial is realized in the microwave domain. This new metamaterial is characterized and the left-handed behavior is experimentally demonstrated. To cite this article: B. Kante et al., C. R. Physique 9 (2008).

  6. Repulsion of polarized particles near a magneto-optical metamaterial

    NASA Astrophysics Data System (ADS)

    Girón-Sedas, J. A.; Mejía-Salazar, J. R.; Granada, J. C.; Oliveira, Osvaldo N.

    2016-12-01

    We show that a particle emitting in close proximity to a magneto-optical metamaterial substrate can experience a repulsive force if the magnetization is found along the surface plane. An analytical condition for the existence of such a repulsive force is obtained within the near-field approximation. Significantly, the repulsive force can be tuned by varying the filling fraction in a stack of two alternating layers of a metallic magneto-optical material and a dielectric. Potential applications can be envisaged for nanomechanical devices, particularly since similar metamaterial architectures have already been developed experimentally.

  7. Metamaterials

    DOEpatents

    Smith, David R.; Schurig, David; Starr, Anthony F.; Mock, Jack J.

    2014-09-09

    One exemplary metamaterial is formed from a plurality of individual unit cells, at least a portion of which have a different permeability than others. The plurality of individual unit cells are arranged to provide a metamaterial having a gradient index along at least one axis. Such metamaterials can be used to form lenses, for example.

  8. Spectroscopy of Metamaterials from Infrared to Optical Frequencies

    DTIC Science & Technology

    2006-03-01

    negative permeability,” Phys. Rev. Lett. 94, 37402 (2005). 14. F . Wooten , Optical Properties of Solids (Academic, 1972). 15. For example, see M. Born...for materials with differ- ent symmetry properties of the constitutive relations. The terms and are called the magneto- optical permittivi- ties...Spectroscopy of metamaterials from infrared to optical frequencies Willie J. Padilla Materials Science and Technology Division, Center for Integrated

  9. THz optics and metamaterials: Design, fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Turaga, Shuvan Prashant

    In the past decade, terahertz(THz) based optics and metamaterials have been extensively researched to create components and devices in the frequency range of 0.1 to 5 THz also known as 'THz gap'. Metamaterials, in particular, have realized concepts such as negative refraction, slow light and superlensing through artificially engineered media. The naturally available materials have very weak interaction of terahertz light. Therefore, the design of THz metamaterials to manipulate THz radiation is an important task towards furthering the usage of terahertz light for practical applications. The thesis involved the development of two lab facilities for fabrication and characterization. A state-of-the-art two photon lithography( TPL) system was developed which enables us to manufacture 3D structures with sub-diffraction limit resolution(280nm at 800 nm wavelength). The software was written to enable easy fabrication of multiple structures with different algorithms. For characterizing our metamaterial structures in the terahertz regime, a THz time-domain spectroscopy(THz-TDS) and imaging system was built. This transmission based spectrometer has a dynamic range of 50 dB at 0.5 THz and a bandwidth of about 2.5 THz. To demonstrate the application of these home-built facilities, the metamaterials in the THz regime were fabricated using TPL and UV lithography. To investigate conductive coupling effects in meta-atoms, a new design was proposed, fabricated and characterized. As an application of TPL, free standing polymer helices were fabricated and coated with silver electroless plating. These silver helical metamaterials have potential application as circular polarizers in the MIR and THz regimes. The aspect ratio effects of these helical metamaterials were also studied in order to improve their polarizing performance.

  10. Optical Metamaterials: Design, Characterization and Applications

    ERIC Educational Resources Information Center

    Chaturvedi, Pratik

    2009-01-01

    Artificially engineered metamaterials have emerged with properties and functionalities previously unattainable in natural materials. The scientific breakthroughs made in this new class of electromagnetic materials are closely linked with progress in developing physics-driven design, novel fabrication and characterization methods. The intricate…

  11. Ubiquity of optical activity in planar metamaterial scatterers.

    PubMed

    Sersic, Ivana; van de Haar, Marie Anne; Arango, Felipe Bernal; Koenderink, A Femius

    2012-06-01

    Recently it was discovered that periodic lattices of metamaterial scatterers show optical activity, even if the scatterers or lattice show no 2D or 3D chirality, if the illumination breaks symmetry. We demonstrate that such "pseudochirality" is intrinsic to any single planar metamaterial scatterer and in fact has a well-defined value at a universal bound. We argue that in any circuit model, a nonzero electric and magnetic polarizability derived from a single resonance automatically imply strong bi-anisotropy, i.e., magnetoelectric cross polarizability at the universal bound set by energy conservation. We confirm our claim by extracting polarizability tensors and cross sections for handed excitation from transmission measurements on near-infrared split ring arrays, and electrodynamic simulations for diverse metamaterial scatterers.

  12. Nonlinear optics in nonlocal nanowire metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Podolskiy, Viktor A.; Wells, Brian; Marino, Giuseppe; Zayats, Anatoly V.

    2016-09-01

    Plasmonic nanowire metamaterials, arrays of aligned plasmonic nanowires grown inside an insulating substrate, have recently emerged as a flexible platform for engineering refraction, diffraction, and density of photonic states, as well as for applications in bio- and acoustic sensing. Majority of unique optical phenomena associated with nanowire metamaterials have been linked to the collective excitation of cylindrical surface plasmons propagating on individual nanowires. From the effective medium standpoint, this collective excitation can be described as an additional electromagnetic wave, emanating from nonlocal effective permittivity of metamaterial. The electromagnetic fields associated with such mode can are strongly inhomogeneous on the scale of the unit cell. In this work we analyze the effect of the strong field variation inside nanowire metamaterial on second harmonic generation (SHG). We show that second harmonic generation is strongly enhanced in the frequency region where metamaterial is nonlocal. Overall, the composite is predicted to outperform its homogeneous metal counterparts by several orders of magnitude. Quantitative description of SHG in nanowire medium is developed. The results suggest that bulk second harmonic polarizability emerges as result of collective surface-enhanced SHG by individual components of the composite.

  13. Symmetry breaking in a plasmonic metamaterial at optical wavelength.

    PubMed

    Christ, André; Martin, Olivier J F; Ekinci, Yasin; Gippius, Nikolai A; Tikhodeev, Sergei G

    2008-08-01

    We numerically study the effect of structural asymmetry in a plasmonic metamaterial made from gold nanowires. It is reported that optically inactive (i.e., optically dark) particle plasmon modes of the symmetric wire lattice are immediately coupled to the radiation field, when a broken structural symmetry is introduced. Such higher order plasmon resonances are characterized by their subradiant nature. They generally reveal long lifetimes and distinct absorption losses. It is shown that the near-field interaction strongly determines these modes.

  14. Multiple intersection properties of optical resonance modes in metallic metamaterials

    NASA Astrophysics Data System (ADS)

    Tokuda, Yasunori; Sakaguchi, Koichiro; Yamaguchi, Yuki; Takano, Keisuke

    2017-03-01

    Unusual behavior of Fabry-Perot-like waveguide resonance modes is presented for a quasi-dielectric metamaterial that consists of two metallic sub-wavelength cut-through slit-array slabs separated by an air-gap region. Simulations based on the finite-difference time-domain method were conducted. The unique optical properties were interpreted in terms of multiple intersection of the resonance modes. Depending on the intersection conditions of the optical modes, furthermore, a variety of crossing characteristics, i.e., fade-out crossing with/without an isolated loop, anticrossing with/without intensity reduction, and anticrossing with/without frequency repulsion, were identified for the air-gap dependence of the transmission spectra. These findings, which were obtained by careful observation of the properties of this type of metamaterial, present a novel and interesting aspect of the behavior of the optical resonance modes.

  15. Polarization-dependent optics using gauge-field metamaterials

    SciTech Connect

    Liu, Fu; Xiao, Shiyi; Li, Jensen; Wang, Saisai; Hang, Zhi Hong

    2015-12-14

    We show that effective gauge field for photons with polarization-split dispersion surfaces, being realized using uniaxial metamaterials, can be used for polarization control with unique opportunities. The metamaterials with the proposed gauge field correspond to a special choice of eigenpolarizations on the Poincaré sphere as pseudo-spins, in contrary to those from either conventional birefringent crystals or optical active media. It gives rise to all-angle polarization control and a generic route to manipulate photon trajectories or polarizations in the pseudo-spin domain. As demonstrations, we show beam splitting (birefringent polarizer), all-angle polarization control, unidirectional polarization filter, and interferometer as various polarization control devices in the pseudo-spin domain. We expect that more polarization-dependent devices can be designed under the same framework.

  16. Polarization-dependent optics using gauge-field metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Fu; Wang, Saisai; Xiao, Shiyi; Hang, Zhi Hong; Li, Jensen

    2015-12-01

    We show that effective gauge field for photons with polarization-split dispersion surfaces, being realized using uniaxial metamaterials, can be used for polarization control with unique opportunities. The metamaterials with the proposed gauge field correspond to a special choice of eigenpolarizations on the Poincaré sphere as pseudo-spins, in contrary to those from either conventional birefringent crystals or optical active media. It gives rise to all-angle polarization control and a generic route to manipulate photon trajectories or polarizations in the pseudo-spin domain. As demonstrations, we show beam splitting (birefringent polarizer), all-angle polarization control, unidirectional polarization filter, and interferometer as various polarization control devices in the pseudo-spin domain. We expect that more polarization-dependent devices can be designed under the same framework.

  17. Intensity-dependent modulation of optically active signals in a chiral metamaterial

    PubMed Central

    Rodrigues, Sean P.; Lan, Shoufeng; Kang, Lei; Cui, Yonghao; Panuski, Patrick W.; Wang, Shengxiang; Urbas, Augustine M.; Cai, Wenshan

    2017-01-01

    Chiral media exhibit optical phenomena that provide distinctive responses from opposite circular polarizations. The disparity between these responses can be optimized by structurally engineering absorptive materials into chiral nanopatterns to form metamaterials that provide gigantic chiroptical resonances. To fully leverage the innate duality of chiral metamaterials for future optical technologies, it is essential to make such chiroptical responses tunable via external means. Here we report an optical metamaterial with tailored chiroptical effects in the nonlinear regime, which exhibits a pronounced shift in its circular dichroism spectrum under a modest level of excitation power. Strong nonlinear optical rotation is observed at key spectral locations, with an intensity-induced change of 14° in the polarization rotation from a metamaterial thickness of less than λ/7. The modulation of chiroptical responses by manipulation of input powers incident on chiral metamaterials offers potential for active optics such as all-optical switching and light modulation. PMID:28240288

  18. Intensity-dependent modulation of optically active signals in a chiral metamaterial.

    PubMed

    Rodrigues, Sean P; Lan, Shoufeng; Kang, Lei; Cui, Yonghao; Panuski, Patrick W; Wang, Shengxiang; Urbas, Augustine M; Cai, Wenshan

    2017-02-27

    Chiral media exhibit optical phenomena that provide distinctive responses from opposite circular polarizations. The disparity between these responses can be optimized by structurally engineering absorptive materials into chiral nanopatterns to form metamaterials that provide gigantic chiroptical resonances. To fully leverage the innate duality of chiral metamaterials for future optical technologies, it is essential to make such chiroptical responses tunable via external means. Here we report an optical metamaterial with tailored chiroptical effects in the nonlinear regime, which exhibits a pronounced shift in its circular dichroism spectrum under a modest level of excitation power. Strong nonlinear optical rotation is observed at key spectral locations, with an intensity-induced change of 14° in the polarization rotation from a metamaterial thickness of less than λ/7. The modulation of chiroptical responses by manipulation of input powers incident on chiral metamaterials offers potential for active optics such as all-optical switching and light modulation.

  19. An optical metamaterial with simultaneously suppressed optical diffraction and surface reflection

    NASA Astrophysics Data System (ADS)

    Kivijärvi, V.; Nyman, M.; Shevchenko, A.; Kaivola, M.

    2016-03-01

    Diffraction-free propagation of light has been demonstrated in free space for Bessel-like beams and for arbitrary beams in specially designed photonic crystals and metamaterials. The phenomenon is called self-collimation in photonic crystals and canalization in metamaterials, as the approaches to obtaining the effect are different. In both cases, however, diffraction-free propagation of light is achieved by making the dispersion surface of the material at a given frequency flat. In photonic crystals this is done by tuning the unit-cell dimensions close to the band-gap regime, and in metamaterials by tuning a hyperbolic-type metamaterial towards its transition to an ordinary elliptical metamaterial. In this work, we propose an alternative way to suppress optical diffraction in a metamaterial by adjusting the anisotropy of the finite-sized three-dimensional metamolecules and the material’s spatial dispersion. The approach allows matching the wave impedance of the material to that of the surrounding medium in a wide range of incidence angles and thereby also suppressing optical reflection from the material’s surface.

  20. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications

    NASA Astrophysics Data System (ADS)

    Wang, Zuojia; Cheng, Feng; Winsor, Thomas; Liu, Yongmin

    2016-10-01

    Optical chiral metamaterials have recently attracted considerable attention because they offer new and exciting opportunities for fundamental research and practical applications. Through pragmatic designs, the chiroptical response of chiral metamaterials can be several orders of magnitude higher than that of natural chiral materials. Meanwhile, the local chiral fields can be enhanced by plasmonic resonances to drive a wide range of physical and chemical processes in both linear and nonlinear regimes. In this review, we will discuss the fundamental principles of chiral metamaterials, various optical chiral metamaterials realized by different nanofabrication approaches, and the applications and future prospects of this emerging field.

  1. Coherent control of optical polarization effects in metamaterials

    PubMed Central

    Mousavi, Seyedmohammad A.; Plum, Eric; Shi, Jinhui; Zheludev, Nikolay I.

    2015-01-01

    Processing of photonic information usually relies on electronics. Aiming to avoid the conversion between photonic and electronic signals, modulation of light with light based on optical nonlinearity has become a major research field and coherent optical effects on the nanoscale are emerging as new means of handling and distributing signals. Here we demonstrate that in slabs of linear material of sub-wavelength thickness optical manifestations of birefringence and optical activity (linear and circular birefringence and dichroism) can be controlled by a wave coherent with the wave probing the polarization effect. We demonstrate this in proof-of-principle experiments for chiral and anisotropic microwave metamaterials, where we show that the large parameter space of polarization characteristics may be accessed at will by coherent control. Such control can be exerted at arbitrarily low intensities, thus arguably allowing for fast handling of electromagnetic signals without facing thermal management and energy challenges. PMID:25755071

  2. All-semiconductor metamaterial-based optical circuit board at the microscale

    NASA Astrophysics Data System (ADS)

    Min, Li; Huang, Lirong

    2015-07-01

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arranging anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.

  3. All-semiconductor metamaterial-based optical circuit board at the microscale

    SciTech Connect

    Min, Li; Huang, Lirong

    2015-07-07

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arranging anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing.

  4. Controlling optical absorption in metamaterial absorbers for plasmonic solar cells

    NASA Astrophysics Data System (ADS)

    Adams, Wyatt; Vora, Ankit; Gwamuri, Jephias; Pearce, Joshua M.; Güney, Durdu Ö.

    2015-08-01

    Metals in the plasmonic metamaterial absorbers for photovoltaics constitute undesired resistive heating. However, tailoring the geometric skin depth of metals can minimize resistive losses while maximizing the optical absorbance in the active semiconductors of the photovoltaic device. Considering experimental permittivity data for InxGa1-xN, absorbance in the semiconductor layers of the photovoltaic device can reach above 90%. The results here also provides guidance to compare the performance of different semiconductor materials. This skin depth engineering approach can also be applied to other optoelectronic devices, where optimizing the device performance demands minimizing resistive losses and power consumption, such as photodetectors, laser diodes, and light emitting diodes.

  5. Sub-picosecond optical switching with a negative index metamaterial

    SciTech Connect

    Dani, Keshav M; Upadhya, Prashant C; Zahyum, Ku

    2009-01-01

    Development of all-optical signal processing, eliminating the performance and cost penalties of optical-electrical-optical conversion, is important for continu,ing advances in Terabits/sec (Tb/s) communications.' Optical nonlinearities are generally weak, traditionally requiring long-path, large-area devicesl,2 or very high-Q, narrow-band resonator structures.3 Optical metamaterials offer unique capabilities for optical-optical interactions. Here we report 600 femtosecond (fs) all-optical modulation using a fIShnet (2D-perforated metallamorphous-Si (a-Si)/metal film stack) negative-index meta material with a structurally tunable broad-band response near 1.2 {micro}m. Over 20% modulation (experimentally limited) is achieved in a path length of only 116 nm by photo-excitation of carriers in the a-Si layer. This has the potential for Tb/s aU-optical communication and will lead to other novel, compact, tunable sub-picosecond (ps) photonic devices.

  6. Tuning the Optical Response of Graphene and Metamaterials

    NASA Astrophysics Data System (ADS)

    Goldflam, Michael David

    The following dissertation examines the tunability of two types of proof-of-concept devices centering around post-fabrication modification of the infrared optical response. The first device, created through the hybridization of the metamaterials and the phase-transition oxide vanadium dioxide (VO2), is probed using Fourier transform infrared spectroscopy. We demonstrate that, through application of voltage pulses to this initially uniform device, a gradient in the optical properties can be obtained. This macroscopic control mechanism enables persistent modification of the device, though the hysteretic nature of the VO2 insulator to metal transition (IMT), on spatial scales on the order of a few wavelengths of the probing light. In addition to effects from current-induced heating, we show that the optical response can also be modified through the use of an ionic gel to oxidize or reduce the vanadium ions in VO2, thereby driving its IMT. These measurements also demonstrate the potential for metamaterials as a means of probing metal-to-insulator transitions, allowing for enhanced optical probing of changes in VO2 properties due to electric fields from the ion gel. The second device we explored is a graphene based device used for examining the modification of graphene's plasmonic response in conjunction with the ferroelectric high-? dielectric lead zirconium titanate (PZT) employed as a gate dielectric. By using PZT, the carrier concentration, and therefore the optical properties of graphene, can be heavily modified with small back-gate voltages. Additionally, the use of a ferroelectric dielectric enables a form of memory in the device where transient voltage application leads to persistent changes in graphene properties. Examination of this device using scanning near-field optical microscopy allows us to determine the usefulness of similar devices in future plasmonic device.

  7. Optical modes at the interface between two dissimilar discrete meta-materials.

    PubMed

    Suntsov, S; Makris, K G; Christodoulides, D N; Stegeman, G I; Morandotti, R; Volatier, Maïte; Aimez, Vincent; Arès, Richard; Rüter, Christian E; Kip, Detlef

    2007-04-16

    We have studied theoretically and experimentally the properties of optical surface modes at the hetero-interface between two meta-materials. These meta-materials consisted of two 1D AlGaAs waveguide arrays with different band structures.

  8. Negative index of refraction in optical metamaterials.

    PubMed

    Shalaev, Vladimir M; Cai, Wenshan; Chettiar, Uday K; Yuan, Hsiao-Kuan; Sarychev, Andrey K; Drachev, Vladimir P; Kildishev, Alexander V

    2005-12-15

    A double-periodic array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range. Such behavior results from the plasmon resonance in the pairs of nanorods for both the electric and the magnetic components of light. The refractive index is retrieved from direct phase and amplitude measurements for transmission and reflection, which are all in excellent agreement with simulations. Both experiments and simulations demonstrate that a negative refractive index n' approximately -0.3 is achieved at the optical communication wavelength of 1.5 microm using the array of nanorods. The retrieved refractive index critically depends on the phase of the transmitted wave, which emphasizes the importance of phase measurements in finding n'.

  9. Optical resonance problem in metamaterial arrays: a lattice dynamics approach

    NASA Astrophysics Data System (ADS)

    Liu, Wanguo

    2016-11-01

    A systematic dynamic theory is established to deal with the optical collective resonance in metamaterial arrays. As a reference model, we consider an infinite split ring resonator (SRR) array illuminated by a linearly polarized wave and introduce an N-degree-of-freedom forced oscillator equation to simplify the coupled-mode vibration problem. We derive a strict formula of resonance frequency (RF) and its adjustable range from the steady-state response. Unlike a single SRR possesses invariant RF, it successfully explains the mechanism of RF shift effect in the SRR array when the incident angle changes. Instead of full wave analysis, only one or two adjacent resonance modes can give an accurate response line shape. Our approach is applicable for metallic arrays with any N-particle cell at all incident angles and well matched with numerical results. It provides a versatile way to study the vibration dynamics in optical periodic many-body systems.

  10. Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics

    PubMed Central

    Vora, Ankit; Gwamuri, Jephias; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M.; Güney, Durdu Ö.

    2014-01-01

    Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%–95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance. PMID:24811322

  11. Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics.

    PubMed

    Vora, Ankit; Gwamuri, Jephias; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M; Güney, Durdu Ö

    2014-05-09

    Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%-95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance.

  12. Analysis of optical properties of planar metamaterials by calculating multipole moments of their constituent meta-atoms

    SciTech Connect

    Pavlov, A A; Klimov, Vasilii V; Vladimorova, Yu V; Zadkov, Viktor N

    2013-05-31

    On the basis of calculations of multipole moments of meta-atoms forming a planar metamaterial, a new method is proposed for the quantitative determination of its optical and polarisation properties. The efficiency of the method is demonstrated by the example of a planar metamaterial consisting of H-shaped nanoparticles. (metamaterials)

  13. Numerical investigation of a multi-functional optical device based on graphene-silica metamaterial

    NASA Astrophysics Data System (ADS)

    Liu, Huaiqing; Ren, Guobin; Gao, Yixiao; Zhu, Bofeng; Li, Haisu; Wu, Beilei; Jian, Shuisheng

    2016-06-01

    We propose a permittivity-tunable metamaterial channel, which is composed of alternative layers of graphene and silica. Optical waves can pass through the metamaterial channel only if its permittivity is tuned to zero. Taking advantage of the permittivity tunable property of the metamaterial, a multi-functional optical device, which can act as a wavelength demultiplexer, switch, and optical splitter without changing the geometric parameters has been proposed and numerically investigated by using the Finite Element Method. Owing to the permittivity tunable property of graphene, the working wavelength of the multi-functional device can be flexibly controlled by tuning the gate voltage applied on the metamaterial. This tunable ultracompact multi-functional optical device may find potential applications in highly integrated photonic circuits.

  14. Acoustic non-diffracting Airy beam

    SciTech Connect

    Lin, Zhou; Guo, Xiasheng Tu, Juan; Ma, Qingyu; Wu, Junru; Zhang, Dong

    2015-03-14

    The acoustic non-diffracting Airy beam as its optical counterpart has unique features of self-bending and self-healing. The complexity of most current designs handicaps its applications. A simple design of an acoustic source capable of generating multi-frequency and broad-band acoustic Airy beam has been theoretically demonstrated by numerical simulations. In the design, a piston transducer is corrugated to induce spatial phase variation for transducing the Airy function. The piston's surface is grooved in a pattern that the width of each groove corresponds to the half wavelength of Airy function. The resulted frequency characteristics and its dependence on the size of the piston source are also discussed. This simple design may promote the wide applications of acoustic Airy beam particularly in the field of medical ultrasound.

  15. Chirality detection of enantiomers using twisted optical metamaterials

    PubMed Central

    Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea

    2017-01-01

    Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies. PMID:28120825

  16. Chirality detection of enantiomers using twisted optical metamaterials

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea

    2017-01-01

    Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies.

  17. Optical properties of a fabricated self-assembled bottom-up bulk metamaterial.

    PubMed

    Mühlig, S; Rockstuhl, C; Yannopapas, V; Bürgi, T; Shalkevich, N; Lederer, F

    2011-05-09

    We investigate the optical properties of a true three-dimensional metamaterial that was fabricated using a self-assembly bottom-up technology. The metamaterial consists of closely packed spherical clusters being formed by a large number of non-touching gold nanoparticles. After presenting experimental results, we apply a generalized Mie theory to analyze its spectral response revealing that it is dominated by a magnetic dipole contribution. By using an effective medium theory we show that the fabricated metamaterial exhibits a dispersive effective permeability, i.e. artificial magnetism. Although this metamaterial is not yet left-handed it might serve as a starting point for achieving bulk metamaterials by using bottom-up approaches.

  18. Engineering optical properties of a graphene oxide metamaterial assembled in microfluidic channels.

    PubMed

    Kravets, V G; Marshall, O P; Nair, R R; Thackray, B; Zhukov, A; Leng, J; Grigorenko, A N

    2015-01-26

    The dense packing of two dimensional flakes by van der Waals forces has enabled the creation of new metamaterials with desirable optical properties. Here we assemble graphene oxide sheets into a three dimensional metamaterial using a microfluidic technique and confirm their ordering via measurements of ellipsometric parameters, polarized optical microscopy, polarized transmission spectroscopy, infrared spectroscopy and scanning electron microscopy. We show that the produced metamaterials demonstrate strong in-plane optical anisotropy (Δn≈0.3 at n≈1.5-1.8) combined with low absorption (k<0.1) and compare them with as-synthesized samples of graphene oxide paper. Our results pave the way for engineered birefringent metamaterials on the basis of two dimensional atomic crystals including graphene and its derivatives.

  19. Characterization of wave physics in acoustic metamaterials using a fiber optic point detector

    NASA Astrophysics Data System (ADS)

    Ganye, Randy; Chen, Yongyao; Liu, Haijun; Bae, Hyungdae; Wen, Zhongshan; Yu, Miao

    2016-06-01

    Due to limitations of conventional acoustic probes, full spatial field mapping (both internal and external wave amplitude and phase measurements) in acoustic metamaterials with deep subwavelength structures has not yet been demonstrated. Therefore, many fundamental wave propagation phenomena in acoustic metamaterials remain experimentally unexplored. In this work, we realized a miniature fiber optic acoustic point detector that is capable of omnidirectional detection of complex spatial acoustic fields in various metamaterial structures over a broadband spectrum. By using this probe, we experimentally characterized the wave-structure interactions in an anisotropic metamaterial waveguide. We further demonstrated that the spatial mapping of both internal and external acoustic fields of metamaterial structures can help obtain important wave propagation properties associated with material dispersion and field confinement, and develop an in-depth understanding of the waveguiding physics in metamaterials. The insights and inspirations gained from our experimental studies are valuable not only for the advancement of fundamental metamaterial wave physics but also for the development of functional metamaterial devices such as acoustic lenses, waveguides, and sensors.

  20. Design, Analysis, and Characterization of Metamaterial Quasi-Optical Components for Millimeter-Wave Automotive Radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Vinh Ngoc

    Since their introduction by Mercedes Benz in the late 1990s, W-band radars operating at 76-77 GHz have found their way into more and more passenger cars. These automotive radars are typically used in adaptive cruise control, pre-collision sensing, and other driver assistance systems. While these systems are usually only about the size of two stacked cigarette packs, system size, and weight remains a concern for many automotive manufacturers. In this dissertation, I discuss how artificially structured metamaterials can be used to improve lens-based automotive radar systems. Metamaterials allow the fabrication of smaller and lighter systems, while still meeting the frequency, high gain, and cost requirements of this application. In particular, I focus on the development of planar artificial dielectric lenses suitable for use in place of the injection-molded lenses now used in many automotive radar systems. I begin by using analytic and numerical ray-tracing to compare the performance of planar metamaterial GRIN lenses to equivalent aspheric refractive lenses. I do this to determine whether metamaterials are best employed in GRIN or refractive automotive radar lenses. Through this study I find that planar GRIN lenses with the large refractive index ranges enabled by metamaterials have approximately optically equivalent performance to equivalent refractive lenses for fields of view approaching +/-20°. I also find that the uniaxial nature of most planar metamaterials does not negatively impact planar GRIN lens performance. I then turn my attention to implementing these planar GRIN lenses at W-band automotive radar frequencies. I begin by designing uniform sheets of W-band electrically-coupled LC resonator-based metamaterials. These metamaterial samples were fabricated by the Jokerst research group on glass and liquid crystal polymer (LCP) substrates and tested at Toyota Research Institute- North America (TRI-NA). When characterized at W-band frequencies, these

  1. Electrically controlled nonlinear optical generation and signal processing in plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cai, Wenshan

    2016-09-01

    Metamaterials have offered not only the unprecedented opportunity to generate unconventional electromagnetic properties that are not found in nature, but also the exciting potential to create customized nonlinear media with tailored high-order effects. Two particularly compelling directions of current interests are active metamaterials, where the optical properties can be purposely manipulated by external stimuli, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light. By exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically-controlled nonlinear processes from photonic metamaterials. We show that a variety of nonlinear optical phenomena, including the wave mixing and the optical rectification, can be purposely modulated by applied voltage signals. In addition, electrically-induced and voltage-controlled nonlinear effects facilitate us to demonstrate the backward phase matching in a negative index material, a long standing prediction in nonlinear metamaterials. Other results to be covered in this talk include photon-drag effect in plasmonic metamaterials and ion-assisted nonlinear effects from metamaterials in electrolytes. Our results reveal a grand opportunity to exploit optical metamaterials as self-contained, dynamic electrooptic systems with intrinsically embedded electrical functions and optical nonlinearities. Reference: L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and W. Cai, Nature Communications, 5, 4680 (2014). S. P. Rodrigues and W.Cai, Nature Nanotechnology, 10, 387 (2015). S. Lan, L. Kang, D. T. Schoen, S. P. Rodrigues, Y. Cui, M. L. Brongersma, and W. Cai, Nature Materials, 14, 807 (2015).

  2. Carrier concentration dependence of the tunability of the dipole resonance peak in optically excited metamaterials

    NASA Astrophysics Data System (ADS)

    Chatzakis, Ioannis; Luo, Liang; Wang, Jigang; Shen, Nian Hai; Koschny, Thomas; Soukoulis, Costas

    2011-03-01

    Currently, there is strong interest to explore the dynamic control of the electromagnetic properties of metamaterials, which have important implications on their optoelectronic applications. While the design, fabrication and photo-doping of metamaterial/semiconductor structures have been actively pursued, some fundamental issues related to highly photo-excited states, their dynamic tuning and temporal evolution remain open. Using optical-pump terahertz probe spectroscopy, we report on the pump fluence dependence of the electric dipole resonance tunability in metamaterials. We find a previously undiscovered large non-monotonic variation on the strength of the dipole resonance peak with the photo-injected carrier concentration.

  3. Quantum optical effective-medium theory and transformation quantum optics for metamaterials

    NASA Astrophysics Data System (ADS)

    Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing; Mortensen, N. Asger

    2016-09-01

    While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions trans- form under coordinate transformations. Spontaneous-emission rates can be either enhanced or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic material profile of the cloak enables the directional control of spontaneous emission.

  4. Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials

    DOE PAGES

    Wolf, Omri; Allerman, Andrew A.; Ma, Xuedan; ...

    2015-10-15

    We use planar metamaterial resonators to enhance, by more than two orders of magnitude, the optical second harmonic generation, in the near infrared, obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators’ cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a new class of sources for quantum photonics related phenomena.

  5. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene.

    PubMed

    Weis, P; Garcia-Pomar, J L; Rahm, M

    2014-04-07

    We evidence by numerical calculations that optically pumped graphene is suitable for compensating inherent loss in terahertz (THz) metamaterials. We calculate the complex conductivity of graphene under optical pumping and determine the proper conditions for terahertz amplification in single layer graphene. It is shown that amplification in graphene occurs up to room temperature for moderate pump intensities at telecommunication wavelength λ = 1.5 μm. Furthermore, we investigate the coupling between a plasmonic split ring resonator (SRR) metamaterial and optically pumped graphene at a temperature T = 77 K and a pump intensity I = 300 mW/mm(2). We find that the loss of a SRR metamaterial can be compensated by optically stimulated amplification in graphene. Moreover, we show that a hybrid material consisting of asymmetric split-ring resonators and optically pumped graphene can emit coherent THz radiation at minimum output power levels of 60 nW/mm(2).

  6. Study of optical waveguide sensor using metamaterial as buffer layer with non-linear cladding and substrate

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Kumari, Anamika; Raghuwanshi, Sanjeev K.

    2015-05-01

    In this paper, dispersion equation of optical waveguide using metamaterial as buffer layer with non-linear cladding and substrate is pointed. The sensitivity of TE in metamaterial optical waveguide sensor is computed mathematically. The impacts of buffer layer with non-linear cladding and substrate on metamaterial optical waveguide sensor are also tried out. The effects of various parameters on sensitivity of sensor are obtained through MATLAB. It is expected that metamaterial as buffer layer with non-linear cladding and substrate profile has a huge application in leaky fibre sensor, gas sensor and chemical sensor for oil and under grounds mining industries.

  7. Second-order nonlinear optical metamaterials: ABC-type nanolaminates

    SciTech Connect

    Alloatti, L. Kieninger, C.; Lauermann, M.; Köhnle, K.; Froelich, A.; Wegener, M.; Frenzel, T.; Freude, W.; Leuthold, J.; Koos, C.

    2015-09-21

    We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al{sub 2}O{sub 3}, B = TiO{sub 2}, and C = HfO{sub 2}. The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths.

  8. Features of hyperbolic metamaterials with extremal optical characteristics

    NASA Astrophysics Data System (ADS)

    Kurilkina, S. N.; Binhussain, M. A.; Belyi, V. N.; Kazak, N. S.

    2016-08-01

    The possibility is shown and conditions are found for the realization of the type I or II epsilon-near-zero (ENZ) metamaterials based on a multilayer metal-dielectric structure. It is found that, for both propagating and evanescent extraordinary waves, diffraction-free energy transportation occurs with low losses within narrow channels inside the type I ENZ metamaterial on the basis of such a structure. The research presents the possibility of forming the type II ENZ metamaterial inside the two kinds of propagating light waves for which the amplitude decays from the boundary and the phase fronts move away from and towards the boundary of the metamaterial, respectively. The interaction between Gaussian light beams and metamaterials with extremal characteristics is theoretically investigated. The prospect of the practical application of these media is considered.

  9. Magnetoelastic metamaterials.

    PubMed

    Lapine, Mikhail; Shadrivov, Ilya V; Powell, David A; Kivshar, Yuri S

    2011-11-13

    The study of advanced artificial electromagnetic materials, known as metamaterials, provides a link from material science to theoretical and applied electrodynamics, as well as to electrical engineering. Being initially intended mainly to achieve negative refraction, the concept of metamaterials quickly covered a much broader range of applications, from microwaves to optics and even acoustics. In particular, nonlinear metamaterials established a new research direction giving rise to fruitful ideas for tunable and active artificial materials. Here we introduce the concept of magnetoelastic metamaterials, where a new type of nonlinear response emerges from mutual interaction. This is achieved by providing a mechanical degree of freedom so that the electromagnetic interaction in the metamaterial lattice is coupled to elastic interaction. This enables the electromagnetically induced forces to change the metamaterial structure, dynamically tuning its effective properties. This concept leads to a new generation of metamaterials, and can be compared to such fundamental concepts of modern physics as optomechanics of photonic structures or magnetoelasticity in magnetic materials.

  10. Magnetoelastic metamaterials

    NASA Astrophysics Data System (ADS)

    Lapine, Mikhail; Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.

    2012-01-01

    The study of advanced artificial electromagnetic materials, known as metamaterials, provides a link from material science to theoretical and applied electrodynamics, as well as to electrical engineering. Being initially intended mainly to achieve negative refraction, the concept of metamaterials quickly covered a much broader range of applications, from microwaves to optics and even acoustics. In particular, nonlinear metamaterials established a new research direction giving rise to fruitful ideas for tunable and active artificial materials. Here we introduce the concept of magnetoelastic metamaterials, where a new type of nonlinear response emerges from mutual interaction. This is achieved by providing a mechanical degree of freedom so that the electromagnetic interaction in the metamaterial lattice is coupled to elastic interaction. This enables the electromagnetically induced forces to change the metamaterial structure, dynamically tuning its effective properties. This concept leads to a new generation of metamaterials, and can be compared to such fundamental concepts of modern physics as optomechanics of photonic structures or magnetoelasticity in magnetic materials.

  11. Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics.

    PubMed

    Wu, H W; Wang, F; Dong, Y Q; Shu, F Z; Zhang, K; Peng, R W; Xiong, X; Wang, Mu

    2015-12-14

    In this work, we theoretically study the cavity modes with transverse orbital angular momentum in metamaterial ring based on transformation optics. The metamaterial ring is designed to transform the straight trajectory of light into the circulating one by enlarging the azimuthal angle, effectively presenting the modes with transverse orbital angular momentum. The simulation results confirm the theoretical predictions, which state that the transverse orbital angular momentum of the mode not only depends on the frequency of the incident light, but also depends on the transformation scale of the azimuthal angle. Because energy dissipation inevitably reduces the field amplitude of the modes, the confined electromagnetic energy and the quality factor of the modes inside the ring are also studied in order to evaluate the stability of those cavity modes. The results show that the metamaterial ring can effectively confine light with a high quality factor and maintain steady modes with the orbital angular momentum, even if the dimension of the ring is much smaller than the wavelength of the incident light. This technique for exploiting the modes with optical transverse orbital angular momentum may provides a unique platform for applications related to micromanipulation.

  12. Improved optical amplification using metamaterial based split ring structures in optical fibres

    NASA Astrophysics Data System (ADS)

    Prakash, Geetha; Nigam, Raaghvam; Das, Sovan; Chellappa, Sharath

    2016-04-01

    Optical fibres provide the best solutions for transmitting high speed, large amounts of data with good power efficiency. However such transmission would also need amplification for transmission over large distances. Erbium Doped Fibre Amplifiers(EDFAs) are currently being used for optical amplification. But good amplification is achievable with multiple stages and considerable length of EDFA fibres. In this paper we compare the use of Silver Split Ring Resonators(SRRs) , Gold Nano Rods and Silver Fishnet structures which give metamaterial properties to be used in optical fibres to give better amplification than EDFA based fibres. Metamaterials belong to a new class of materials with negative values for permittivity and permeability. Such materials would exhibit negative refractive index leading to these materials being called as left handed media.If such left handed media have an internal structure made of dimensions much smaller than the wavelength but sufficiently thick to exhibit bulk properties, using other optical domains such as plasmonics, it is possible to control light interactions and propagation. Artificial structures smaller than the wavelength of light can be used to enhance electric and magnetic fields. Surface plasmons can be excited on a metal and this can enhance the electric field at the surface. Our paper proposes the use of this phenomenon of achieving gain at optical frequencies by using SRRs, Fishnet structures , Nano Rods. We compare the performance of these structures and observe that they provide gain which is much more than that provided by EDFAs.

  13. Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry.

    PubMed

    Neira, Andres D; Wurtz, Gregory A; Ginzburg, Pavel; Zayats, Anatoly V

    2014-05-05

    The integration of optical metamaterials within silicon integrated photonic circuitry bears significantly potential in the design of low-power, nanoscale footprint, all-optical functionalities. We propose a novel concept and provide detailed analysis of an on-chip ultrafast all-optical modulator based on an hyperbolic metamaterial integrated in a silicon waveguide. The anisotropic metamaterial based on gold nanorods is placed on top of the silicon waveguide to form a modulator with a 300x440x600 nm(3) footprint. For the operating wavelength of 1.5 μm, the optimized geometry of the device has insertion loss of about 5 dB and a modulation depth of 35% with a sub-ps switching rate. The switching energy estimated from nonlinear transient dynamic numerical simulations is 3.7 pJ/bit when the transmission is controlled optically at a wavelength of 532 nm, resonant with the transverse plasmonic mode of the metamaterial. The switching mechanism is based on the control of the hybridization of eigenmodes in the metamaterial slab and the Si waveguide.

  14. Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures

    DOE PAGES

    Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; ...

    2014-08-25

    We present the design, realization, and characterization of optical strong light–matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light–matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ~0.8 eV (λ ~1.55 μm) and a planar “dogbone” metamaterial structure. Furthermore, as the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. We found that this strongly coupled entity could enable the realization of electrically tunable optical filters, a newmore » class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.« less

  15. Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures

    SciTech Connect

    Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; Wierer, Jonathan J.; Allerman, Andrew A.; Wendt, Joel R.; Brener, Igal

    2014-08-25

    We present the design, realization, and characterization of optical strong light–matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light–matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ~0.8 eV (λ ~1.55 μm) and a planar “dogbone” metamaterial structure. Furthermore, as the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. We found that this strongly coupled entity could enable the realization of electrically tunable optical filters, a new class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.

  16. Micro-electro-mechanically tunable metamaterial with enhanced electro-optic performance

    SciTech Connect

    Pitchappa, Prakash; Pei Ho, Chong; Lin, Yu-Sheng; Lee, Chengkuo; Kropelnicki, Piotr; Singh, Navab; Huang, Chia-Yi

    2014-04-14

    We experimentally demonstrate a micro-electro-mechanically tunable metamaterial with enhanced electro-optical performance by increasing the number of movable cantilevers in the symmetrical split ring resonator metamaterial unit cell. Simulations were carried out to understand the interaction of the incident terahertz radiation with out-of-plane deforming metamaterial resonator. In order to improve the overall device performance, the number of released cantilever in a unit cell was increased from one to two, and it was seen that the tunable range was doubled and the switching contrast improved by a factor of around five at 0.7 THz. This simple design approach can be adopted for a wide range of high performance electro-optical devices such as continuously tunable filters, modulators, and electro-optic switches to enable future photonic circuit applications.

  17. Optical and magneto-optical properties of plasma-magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A.

    2015-08-01

    We investigate the optical and magneto-optical properties of a tunable left-handed material (LHM) consisting of an array of plasma and ferrite layers. It has been shown that the effective refraction index of a homogeneous composite in certain frequencies is negative. It can also be seen that the magnitude of extremum of the negative effective refraction index changes with frequency, external magnetic field and the electron density of plasma layer. In addition, a theoretical calculation of the faraday optical rotation effect of the proposed metamaterial is presented. From the obtained results, we find that there is a large faraday rotation angle in the frequency range where the system shows the left-handed property. Our outcomes demonstrate the potential applications of the device for tunable perfect lenses and active magneto-optic in micro-wave devices.

  18. Elevating optical activity: Efficient on-edge lithography of three-dimensional starfish metamaterial

    SciTech Connect

    Dietrich, K. Menzel, C.; Lehr, D.; Puffky, O.; Pertsch, T.; Tünnermann, A.; Kley, E.-B.; Hübner, U.

    2014-05-12

    We present an approach for extremely fast, wafer-scale fabrication of chiral starfish metamaterials based on electron beam- and on-edge lithography. A millimeter sized array of both the planar chiral and the true 3D chiral starfish is realized, and their chiroptical performances are compared by circular dichroism measurements. We find optical activity in the visible and near-infrared spectral range, where the 3D starfish clearly outperforms the planar design by almost 2 orders of magnitude, though fabrication efforts are only moderately increased. The presented approach is capable of bridging the gap between high performance optical chiral metamaterials and industrial production by nanoimprint technology.

  19. Electron optics of nanoplasmonic metamaterials in bio/opto theranostics

    NASA Astrophysics Data System (ADS)

    Roper, D. Keith; DeJarnette, Drew; Forcherio, Gregory T.; Dunklin, Jeremy; Berry, Keith; Jang, Gyoung G.; Lisunova, Milana; Blake, Phillip; Ahn, Wonmi

    2014-08-01

    Opto-electronic coupling of plasmonic nano-antennas in the near infrared water window in vitro and in vivo is of growing interest for imaging contrast agents, spectroscopic labels and rulers, biosensing, drug-delivery, and optoplasmonic ablation. Metamaterials composed of nanoplasmonic meta-atoms offer improved figures of merit in many applications across a broader spectral window. Discrete and coupled dipole approximations effectively describe localized and coupled resonance modes in nanoplasmonic metamaterials. From numeric and experimental results have emerged four design principles to guide fabrication and implementation of metamaterials in bio-related devices and systems. Resonance intensity and sensitivity are enhanced by surface-to-mass of meta-atoms and lattice constant. Fano resonant coupling is dependent on meta-atom polarizability and lattice geometry. Internal reflection in plasmonic metaatom- containing polymer films enhances dissipation rate. Dimensions of self-assembled meta-atoms depend on balancing electrochemical and surface forces. Examples of these principles from our lab compare computation with images and spectra from ordered metal-ceramic and polymeric nanocomposite metamaterials for bio/opto theranostic applications. These principles speed design and description of new architectures for nanoplasmonic metamaterials that show promise for bioapplications.

  20. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene

    NASA Astrophysics Data System (ADS)

    Weis, P.; Garcia-Pomar, J. L.; Rahm, M.

    2014-04-01

    It is evidenced by numerical calculations that optically pumped graphene is suitable for compensating inherent loss in terahertz (THz) metamaterials. In a first step, the complex conductivity of graphene under optical pumping is calculated and the proper conditions for terahertz amplification in single layer graphene are determined. It is shown that amplification in graphene occurs for temperatures up to room temperature and for moderate pump intensities when pumped at a telecommunication wavelength $\\lambda=1.5~\\mathrm{\\mu m}$. Furthermore, the amplification properties of graphene are evaluated and discussed at a temperature as low as $T=77~\\mathrm{K}$ and a pump intensity $I=300~\\mathrm{mW/mm^2}$ to investigate the coupling between graphene and a plasmonic split ring resonator (SRR) metamaterial. The contributions of ohmic and dielectric loss mechanisms are studied by full wave simulations. As a result, it is found that the loss of a split-ring resonator metamaterial can be compensated by optically stimulated amplification in graphene. Moreover, it is shown that a hybrid material consisting of asymmetric split-ring resonators and optically pumped graphene can exceed the laser threshold condition and can emit coherent THz radiation at minimum output power levels of $6 0~\\mathrm{nW/mm^2}$. The use of optically pumped graphene is well suited for loss compensation in THz metamaterials and paves the way to new kinds of coherent THz sources.

  1. A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials

    PubMed Central

    Shin, Dongheok; Urzhumov, Yaroslav; Lim, Donghwan; Kim, Kyoungsik; Smith, David R.

    2014-01-01

    Synergistic integration of electromagnetic (EM) and mechanical properties of metamaterials, a concept known as smart metamaterials, promises new applications across the spectrum, from flexible waveguides to shape-conforming cloaks. These applications became possible thanks to smart transformation optics (STO), a design methodology that utilizes coordinate transformations to control both EM wave propagation and mechanical deformation of the device. Here, we demonstrate several STO devices based on extremely auxetic (Poisson ratio −1) elasto-electromagnetic metamaterials, both of which exhibit enormous flexibility and sustain efficient operation upon a wide range of deformations. Spatial maps of microwave electric fields across these devices confirm our ability to deform carpet cloaks, bent waveguides, and potentially other quasi-conformal TO-based devices operating at 7 ~ 8 GHz. These devices are each fabricated from a single sheet of initially uniform (double-periodic) square-lattice metamaterial, which acquires the necessary distribution of effective permittivity entirely from the mechanical deformation of its boundary. By integrating transformation optics and continuum mechanics theory, we provide analytical derivations for the design of STO devices. Additionally, we clarify an important point relating to two-dimensional STO devices: the difference between plane stress and plane strain assumptions, which lead to elastic metamaterials with Poisson ratio −1 and −∞, respectively. PMID:24522287

  2. A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials.

    PubMed

    Shin, Dongheok; Urzhumov, Yaroslav; Lim, Donghwan; Kim, Kyoungsik; Smith, David R

    2014-02-13

    Synergistic integration of electromagnetic (EM) and mechanical properties of metamaterials, a concept known as smart metamaterials, promises new applications across the spectrum, from flexible waveguides to shape-conforming cloaks. These applications became possible thanks to smart transformation optics (STO), a design methodology that utilizes coordinate transformations to control both EM wave propagation and mechanical deformation of the device. Here, we demonstrate several STO devices based on extremely auxetic (Poisson ratio -1) elasto-electromagnetic metamaterials, both of which exhibit enormous flexibility and sustain efficient operation upon a wide range of deformations. Spatial maps of microwave electric fields across these devices confirm our ability to deform carpet cloaks, bent waveguides, and potentially other quasi-conformal TO-based devices operating at 7 ~ 8 GHz. These devices are each fabricated from a single sheet of initially uniform (double-periodic) square-lattice metamaterial, which acquires the necessary distribution of effective permittivity entirely from the mechanical deformation of its boundary. By integrating transformation optics and continuum mechanics theory, we provide analytical derivations for the design of STO devices. Additionally, we clarify an important point relating to two-dimensional STO devices: the difference between plane stress and plane strain assumptions, which lead to elastic metamaterials with Poisson ratio -1 and -∞, respectively.

  3. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    SciTech Connect

    Guddala, Sriram Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-16

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm{sup 2}.

  4. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-01

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.

  5. Optical properties of two-dimensional metamaterial photonic crystals

    SciTech Connect

    Mejía-Salazar, J. R.

    2013-12-14

    In the present work, we theoretically study a 2D photonic crystal (PC) comprised by double negative (DNG) metamaterial cylinders, showing that such a system presents a superior light-matter interaction when compared with their single negative (SNG) plasmonic PC counterparts, suggesting a route to enhance the performance of sensors and photovoltaic cells. On the other hand, we have observed that depending on the frequency, the mode symmetry resembles either the case of SNG electric (SNG-E) or SNG magnetic (SNG-M) PC, suggesting that either the electric or magnetic character of the DNG metamaterial dominates in each case.

  6. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials

    PubMed Central

    Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; Di Falco, A.; Faccio, D.

    2016-01-01

    Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270

  7. Parallel fabrication of wafer-scale plasmonic metamaterials for nano-optics

    NASA Astrophysics Data System (ADS)

    Eslami, S.; Gibbs, J. G.; Mark, A. G.; Lee, T. C.; Jeong, H.-H.; Kim, I.; Fischer, P.

    2015-03-01

    We describe how physical vapor deposition coupled with micelle-nanolithography-seeded substrates permits the growth of metamaterials with 3D structural and material control at the nanoscale. Novel plasmonic hybrid structures with tuned optical response from the UV to the near IR are demonstrated.

  8. Near-ideal optical metamaterial absorbers with super-octave bandwidth.

    PubMed

    Bossard, Jeremy A; Lin, Lan; Yun, Seokho; Liu, Liu; Werner, Douglas H; Mayer, Theresa S

    2014-02-25

    Nanostructured optical coatings with tailored spectral absorption properties are of interest for a wide range of applications such as spectroscopy, emissivity control, and solar energy harvesting. Optical metamaterial absorbers have been demonstrated with a variety of customized single band, multiple band, polarization, and angular configurations. However, metamaterials that provide near unity absorptivity with super-octave bandwidth over a specified optical wavelength range have not yet been demonstrated experimentally. Here, we show a broadband, polarization-insensitive metamaterial with greater than 98% measured average absorptivity that is maintained over a wide ± 45° field-of-view for mid-infrared wavelengths between 1.77 and 4.81 μm. The nearly ideal absorption is realized by using a genetic algorithm to identify the geometry of a single-layer metal nanostructure array that excites multiple overlapping electric resonances with high optical loss across greater than an octave bandwidth. The response is optimized by substituting palladium for gold to increase the infrared metallic loss and by introducing a dielectric superstrate to suppress reflection over the entire band. This demonstration advances the state-of-the-art in high-performance broadband metamaterial absorbers that can be reliably fabricated using a single patterned layer of metal nanostructures.

  9. Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules.

    PubMed

    Chen, Wei Ting; Chen, Chen Jung; Wu, Pin Chieh; Sun, Shulin; Zhou, Lei; Guo, Guang-Yu; Hsiao, Chinh Ting; Yang, Kuang-Yu; Zheludev, Nikolay I; Tsai, Din Ping

    2011-06-20

    We report the first three-dimensional photonic metamaterial, an array of erected U-shape plasmonic gold meta-molecules, that exhibits a profound response to the magnetic field of light incident normal to the array. The metamaterial was fabricated using a double exposure e-beam lithographic process. It was investigated by optical measurements and finite-element simulations, and showed that the magnetic field solely depends on the plasmonic resonance mode showing either enhanced in the centre of the erected U-shape meta-molecule (16 times enhancement) or enhanced around two prongs of erected U-shape meta-molecule (4 times enhancement).

  10. Spectral Dependence of the Refractive Index of Magneto-Optical Metamaterials

    NASA Astrophysics Data System (ADS)

    Kozik, S. E.; Smirnov, A. G.

    2017-01-01

    A new approach is proposed for determining the optical properties of metamaterials with a complex unit cell geometry. It is based on the concept of an effective dielectric constant ɛeff (ω) and magnetic permeability μeff (ω) as a sum of Lorentzian functions, each of which is responsible for a certain dipole or multipole resonance of the structure. It is found that for "fishnet" metamaterials the spectral dependences ɛeff (ω) and magnetic permeability μeff (ω) are determined by a small number of resonances. This approach is used to calculate the effective dielectric constant and magnetic permeability of metamaterials with ordered and disordered unit cells. The spectra obtained by this analytical model are in good agreement with numerical simulations.

  11. Colloidal superlattices for unnaturally high-index metamaterials at broadband optical frequencies.

    PubMed

    Lee, Seungwoo

    2015-11-02

    The recent advance in the assembly of metallic nanoparticles (NPs) has enabled sophisticated engineering of unprecedented light-matter interaction at the optical domain. In this work, I expand the design flexibility of NP optical metamaterial to push the upper limit of accessible refractive index to the unnaturally high regime. The precise control over the geometrical parameters of NP superlattice monolayer conferred the dramatic increase in electric resonance and related effective permittivity far beyond the naturally accessible regime. Simultaneously, effective permeability change, another key factor to achieving high refractive index, was effectively suppressed by reducing the thickness of NPs. By establishing this design rule, I have achieved unnaturally high refractive index (15.7 at the electric resonance and 7.3 at the quasi-static limit) at broadband optical frequencies (100 THz ~300 THz). I also combined this NP metamaterial with graphene to electrically control the high refractive index over the broad optical frequencies.

  12. Transformation optics approach for Goos-Hänchen shift enhancement at metamaterial interfaces

    NASA Astrophysics Data System (ADS)

    Lambrechts, Lieve; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2016-04-01

    Since its first observation in 1947, the Goos-Hänchen effect—an electromagnetic wave phenomenon where a totally reflected beam with finite cross section undergoes a lateral displacement from its position predicted by geometric optics—has been extensively investigated for various types of optical media such as dielectrics, metals and photonic crystals. Given their huge potential for guiding and sensing applications, the search for giant and tunable Goos-Hänchen shifts is still an open question in the field of optics and photonics. Metamaterials allow for unprecedented control over electromagnetic properties and thus provide an interesting platform in this quest for Goos-Hänchen shift enhancement. Over the last few years, the Goos-Hänchen effect has been investigated for specific metamaterial interfaces including graphene-on-dielectric surfaces, negative index materials and epsilon- near-zero materials. In this contribution, we generalize the approach for the investigation of the Goos-Hänchen effect based on the geometric formalism of transformation optics. Although this metamaterial design methodology is generally applied to manipulate the propagation of light through continuous media, we show how it can also be used to describe the reflections arising at the interface between a vacuum region and a transformed region with a metamaterial implementation. Furthermore, we establish an analytical model that relates the magnitude of the Goos-Hänchen shift to the underlying geometry of the transformed medium. This model shows how the dependence of the Goos-Hänchen shift on geometric parameters can be used to dramatically enhance the size of the shift by an appropriate choice of permittivity and permeability tensors. Numerical simulations of a beam with spatial Gaussian profile incident upon metamaterial interfaces verify the model and firmly establish a novel route towards Goos-Hänchen shift engineering using transformation optics.

  13. Three Dimensional Optical Metamaterials via Direct Laser Writing

    DTIC Science & Technology

    2013-03-01

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the... data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this...Plasmonic nanorod metamaterials for biosensing. Nat.Mater. 2009, 8 (11), 867-871. 7. Gansel, J. K.; Thiel, M.; Rill, M. S.; Decker, M.; Bade , K

  14. Compensating substrate-induced bianisotropy in optical metamaterials using ultrathin superstrate coatings.

    PubMed

    Jiang, Zhi Hao; Werner, Douglas H

    2013-03-11

    In this work, we propose an efficient approach to compensate for the commonly observed substrate-induced bianisotropy that occurs in on-wafer optical metamaterials at normal incidence. First, the consequence of placing a finite thickness substrate underneath a metamaterial is analyzed, indicating that the induced bianisotropy is a near-field effect. The properties of metamaterials sandwiched between an infinitely thick substrate and a finite-thickness superstrate with different permittivity and thickness values are then investigated. It is demonstrated from full-wave simulations that by adding an ultrathin superstrate with a judicious choice of its thickness and permittivity value, the substrate-induced bianisotropy of the system can be suppressed and even eliminated. In addition to the extracted nonlocal effective medium parameters, the induced electric and magnetic dipole moments calculated from the volumetric microscopic fields are also presented, validating that the magnetoelectric coupling compensation is a real physical phenomenon. This study will benefit future optical metamaterial design and implementation strategies as well as the corresponding fabrication and characterization methodologies.

  15. Metamaterials with tunable negative refractive index fabricated from nanoamorphous ferromagnetic microwires and Magnus optical effect

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Shalygin, A.; Galkin, V.; Vedyayev, A.; Rozanov, K.; Ivanov, V.

    2008-08-01

    For inhomogeneous mediums the optical Magnus effect has been derived. The metamaterials fabricated from amorphous ferromagnet Co-Fe-Cr-B-Si microwires are shown to exhibit a negative refractive index for electromagnetic waves over wide scale of GHz frequencies. Optical properties and optical Magnus effect of such metamaterials are tunable by an external magnetic field. Microwave permeability of glass-coated ferromagnetic amorphous microwire exhibiting a weak negative magnetostriction has been studied. The diameter of the microwire was about 20 μm and the diameter of the metal core was about 12 μm. The microwire was wound to comprise a 7/3 washer-shaped composite sample with the volume fraction of magnetic constituent of about 10%. The permeability of the composite sample was measured in a coaxial line in the frequency range from 0.1 to 10 GHz. The composite was found to exhibit a negative permeability within the frequency range from approximately 0.7 to 1.5 GHz, with the permeability being as low as -0.4. Therefore, microwire-based composites, particularly, crossed arrays of microwires may be employed to develop metamaterials for microwave applications. In the composite, the negative microwave permeability is due to the natural ferromagnetic resonance and the negative microwave permittivity is due to the inherent inductance of the wire. Such metamaterials are advantageous in simple design, isotropic in-plane performance, and possible tunability of performance by external magnetic bias. However, for a feasible metamaterial fabricated from microwire arrays, the wires have to exhibit higher magnitude of the ferromagnetic resonance, higher quality factor, and higher resonance frequency.

  16. Ultrafast control of third-order optical nonlinearities in fishnet metamaterials

    PubMed Central

    Shorokhov, Alexander S.; Okhlopkov, Kirill I.; Reinhold, Jörg; Helgert, Christian; Shcherbakov, Maxim R.; Pertsch, Thomas; Fedyanin, Andrey A.

    2016-01-01

    Nonlinear photonic nanostructures that allow efficient all-optical switching are considered to be a prospective platform for novel building blocks in photonics. We performed time-resolved measurements of the photoinduced transient third-order nonlinear optical response of a fishnet metamaterial. The mutual influence of two non-collinear pulses exciting the magnetic resonance of the metamaterial was probed by detecting the third-harmonic radiation as a function of the time delay between pulses. Subpicosecond-scale dynamics of the metamaterial’s χ(3) was observed; the all-optical χ(3) modulation depth was found to be approximately 70% at a pump fluence of only 20 μJ/cm2. PMID:27335268

  17. Ultrafast control of third-order optical nonlinearities in fishnet metamaterials

    NASA Astrophysics Data System (ADS)

    Shorokhov, Alexander S.; Okhlopkov, Kirill I.; Reinhold, Jörg; Helgert, Christian; Shcherbakov, Maxim R.; Pertsch, Thomas; Fedyanin, Andrey A.

    2016-06-01

    Nonlinear photonic nanostructures that allow efficient all-optical switching are considered to be a prospective platform for novel building blocks in photonics. We performed time-resolved measurements of the photoinduced transient third-order nonlinear optical response of a fishnet metamaterial. The mutual influence of two non-collinear pulses exciting the magnetic resonance of the metamaterial was probed by detecting the third-harmonic radiation as a function of the time delay between pulses. Subpicosecond-scale dynamics of the metamaterial’s χ(3) was observed; the all-optical χ(3) modulation depth was found to be approximately 70% at a pump fluence of only 20 μJ/cm2.

  18. Metamaterial Lüneburg lens for Fourier optics on-a-chip

    NASA Astrophysics Data System (ADS)

    Nikkhah, Hamdam; Hall, Trevor

    2014-03-01

    A planar metamaterial Lüneburg lens that enables Fourier optics on-a-chip can be implemented in an SOI slab waveguide structure by patterning the silicon core with variable sized holes. The subwavelength patterning of binary nanocomposite material to form the metamaterial offers the major advantage of fabrication by a single etch step while demanding feature sizes that can be accessed by deep UV lithography in addition to e-beam lithography. A numerical calibration procedure is described that is used to find the relation between fill factor and the local homogenised effective refractive index and which improves upon the predictions of analytic effective media theory used by other researchers. The concept and designs were verified by the 2D FDTD simulation of a two lens telescope system with waveguide feeds implemented in a metamaterial that shows a low insertion loss of -0.45 dB with a reliable field profile at exit. A 3D FDTD simulation of the same two lens telescope system that takes full account of the SOI layers, their finite thickness, and the ridge waveguide feeds also predicts a low loss of -0.83 dB. Less reliance however can be placed on this result due to the coarseness of the computational grid that was necessary. Nevertheless both results are encouraging for planned fabrication trials. This structure can be used in optical transpose interconnection systems in optical switching architectures with the advantage of avoiding large number crossover waveguides in optical communication systems.

  19. Development of coherent light sources at the nanoscale using optical metamaterials

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Rohith

    Coherent nanoscale optical sources are of paramount importance to achieving all-optical communication. Several optical processes are inherently coherent and could be employed to achieve narrow-band light generation, including stimulated emission and nonlinear optical processes, such as second harmonic generation. Plasmonic resonances in metallic nanostructures provide a path to both confine such processes to the nanoscale, while also enhancing local electromagnetic fields to increase their efficiencies. In this thesis, we have developed two platforms for generating coherent light at the nanoscale. The first device is a unique metasurface that employs electric and magnetic resonances for TM-polarized light to greatly enhance second harmonic generation. Due to large tunability of the magnetic resonance, we can align the resonances at fundamental and second harmonic frequencies to achieve an enhanced conversion efficiency reaching up to 1.32E-10. The second device uses highly uniform gold nanowire arrays, which constitute a unique type of metamaterial with hyperbolic dispersion, to achieve efficient lasing. Such materials have a singularity in the local density of states, and therefore offer broadband means to enhance spontaneous emission of quantum emitters in their vicinity. This enhanced emission couples into lasing modes in the nanorod arrays, giving rise to low-threshold and highly-efficient lasing action. Here we have experimentally demonstrated the advantage of hyperbolic metamaterials to achieve lasing action by its comparison with that obtained in a metamaterial with elliptic iso-frequency surfaces. Both the metasurface as well as the hyperbolic metamaterial serve as platforms for nanoscale coherent photon sources in a broadband wavelength range.

  20. Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials

    PubMed Central

    Ishii, Satoshi; Narimanov, Evgenii

    2015-01-01

    Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites. PMID:26670600

  1. Metamaterials with tunable refractive index fabricated from amorphous ferromagnetic microwires and optical Magnus effect

    NASA Astrophysics Data System (ADS)

    Ivanov, Andrey; Vedyayev, Anatoly; Galkin, Vladimir; Shalygin, Alexander; Ivanov, Valery

    2009-03-01

    For homogeneous NPVM (negative phase--velocity mediums) [V. G. Veselago, Soviet Physics - Uspekhi 10 (1968) 509; T. G. Mackay, A. Lakhtakia, Phys. Rev. E 69 (2004) 026602] anomalous effects such as negative refraction, light pressure, Doppler shift, Cherenkov-Vavilov radiation, Goos-Hanchen effect have been discovered in different frequency ranges. In this presentation the optical circular polarized effect is calculated for inhomogeneous mediums (optical Magnus effect) and it is shown that it is anomalous in NPVM with respect to ``right-handed'' materials. The proposed metamaterials fabricated from glass coated amorphous ferromagnetic Co-Fe-Cr-B-Si microwires are shown to exhibit a negative refractive index for electromagnetic waves over scale of GHz frequencies [A.V. Ivanov, A.N. Shalygin, A.V. Vedyayev, V.A. Ivanov, JETP Letters 85 (2007) 565]. The magnetostatic interaction between microwires has been taken into account. The phase and group velocities in proposed metamaterial have been calculated. The ratio of thereof depends monotonically on the size of the microwires. Optical properties of such metamaterials are tunable by an external magnetic field and mechanical stress.

  2. Design of 3D isotropic metamaterial device using smart transformation optics.

    PubMed

    Shin, Dongheok; Kim, Junhyun; Yoo, Do-Sik; Kim, Kyoungsik

    2015-08-24

    We report here a design method for a 3 dimensional (3D) isotropic transformation optical device using smart transformation optics. Inspired by solid mechanics, smart transformation optics regards a transformation optical medium as an elastic solid and deformations as coordinate transformations. Further developing from our previous work on 2D smart transformation optics, we introduce a method of 3D smart transformation optics to design 3D transformation optical devices by maintaining isotropic materials properties for all types of polarizations imposing free or nearly free boundary conditions. Due to the material isotropy, it is possible to fabricate such devices with structural metamaterials made purely of common dielectric materials. In conclusion, the practical importance of the method reported here lies in the fact that it enables us to fabricate, without difficulty, arbitrarily shaped 3D devices with existing 3D printing technology.

  3. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance

    PubMed Central

    Moritake, Y.; Kanamori, Y.; Hane, K.

    2016-01-01

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers. PMID:27622503

  4. Design and experimental verification of a perfect dual-band optical metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Ye, Fenghua; Ye, Huan; Wang, Xiaozhi

    2017-03-01

    A perfect dual-band optical absorber is designed and measured. A low absorption peak (P1) and two high absorption peaks (P2 and P3) are obtained. The P1 peak is excited by the resonance of internal surface plasmon (ISP) mode. The P2 peak is resulted by the coupling of local surface plasma (LSP) modes and the resonance of ISP mode. The P3 peak is excited by the resonance of ISP mode. The damping constant of the gold film is optimization calculated in simulations. Measured results indicate that high absorption performed is obtained with different dielectric layers. The measured metamaterial absorber displays high absorption performed at TM and TE configurations. Moreover, the proposed metamaterial absorber is sensitivity on the change of the refractive index of the environmental media.

  5. gram-scale metafluids and large area tunable metamaterials: design, fabrication, and nano-optical tomographic characterization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dionne, Jennifer A.

    2016-09-01

    Advances in metamaterials and metasurfaces have enabled unprecedented control of light-matter interactions. Metamaterial constituents support high-frequency electric and magnetic dipoles, which can be used as building blocks for new materials capable of negative refraction, electromagnetic cloaking, strong visible-frequency circular dichroism, and enhanced magnetic or chiral transitions in ions and molecules. However, most metamaterials to date have been limited to solid-state, static, narrow-band, and/or small-area structures. Here, we introduce the design, fabrication, and three-dimensional nano-optical characterization of large-area, dynamically-tunable metamaterials and gram-scale metafluids. First, we use transformation optics to design a broadband metamaterial constituent - a metallo-dielectric nanocrescent - characterized by degenerate electric and magnetic dipoles. A periodic array of nanocrescents exhibits large positive and negative refractive indices at optical frequencies, confirmed through simulations of plane wave refraction through a metamaterial prism. Simulations also reveal that the metamaterial optical properties are largely insensitive to the wavelength, orientation and polarization of incident light. Then, we introduce a new tomographic technique, cathodoluminescence (CL) spectroscopic tomography, to probe light-matter interactions in individual nanocrescents with nanometer-scale resolution. Two-dimensional CL maps of the three-dimensional nanostructure are obtained at various orientations, while a filtered back projection is used to reconstruct the CL intensity at each wavelength. The resulting tomograms allow us to locate regions of efficient cathodoluminescence in three dimensions across visible and near-infrared wavelengths, with contributions from material luminescence and radiative decay of electromagnetic eigenmodes. Finally, we demonstrate the fabrication of dynamically tunable large-area metamaterials and gram-scale metafluids, using a

  6. Surface-plasmon-induced optical magnetic response in perforated trilayer metamaterial.

    PubMed

    Li, T; Liu, H; Wang, F M; Li, J Q; Zhu, Y Y; Zhu, S N

    2007-07-01

    Surface plasmon excitations and the associated optical transmission properties in perforated metal/dielectric/metal trilayer structures are numerically investigated. Pronounced magnetic modes are observed in the antisymmetric and asymmetric modes of surface plasmon polaritons (SPPs). The influence of substrates on the magnetic response is studied in detail. Quite different from the conventional LC-circuit resonance, these magnetic excitations arise from the nonlocalized SPPs in the perforated layered structure, which may considerably enrich the electromagnetic properties of such metamaterials, especially the artificial magnetism at optical frequency.

  7. Low-power all-optical tunable plasmonic-mode coupling in nonlinear metamaterials

    SciTech Connect

    Zhang, Fan; Yang, Hong; Hu, Xiaoyong E-mail: qhgong@pku.edu.cn; Gong, Qihuang E-mail: qhgong@pku.edu.cn

    2014-03-31

    All-optical tunable plasmonic-mode coupling is realized in a nonlinear photonic metamaterial consisting of periodic arrays of gold asymmetrically split ring resonators, covered with a poly[(methyl methacrylate)-co-(disperse red 13 acrylate)] azobenzene polymer layer. The third-order optical nonlinearity of the azobenzene polymer is enormously enhanced by using resonant excitation. Under excitation with a 17-kW/cm{sup 2}, 532-nm pump light, plasmonic modes shift by 51 nm and the mode interval is enlarged by 30 nm. Compared with previous reports, the threshold pump intensity is reduced by five orders of magnitude, while extremely large tunability is maintained.

  8. Ultra low-loss, isotropic optical negative-index metamaterial based on hybrid metal-semiconductor nanowires

    PubMed Central

    Paniagua-Domínguez, R.; Abujetas, D. R.; Sánchez-Gil, J. A.

    2013-01-01

    Recently, many fascinating properties predicted for metamaterials (negative refraction, superlensing, electromagnetic cloaking,…) were experimentally demonstrated. Unfortunately, the best achievements have no direct translation to the optical domain, without being burdened by technological and conceptual difficulties. Of particular importance within the realm of optical negative-index metamaterials (NIM), is the issue of simultaneously achieving strong electric and magnetic responses and low associated losses. Here, hybrid metal-semiconductor nanowires are proposed as building blocks of optical NIMs. The metamaterial thus obtained, highly isotropic in the plane normal to the nanowires, presents a negative index of refraction in the near-infrared, with values of the real part well below −1, and extremely low losses (an order of magnitude better than present optical NIMs). Tunability of the system allows to select the operating range in the whole telecom spectrum. The design is proven in configurations such as prisms and slabs, directly observing negative refraction. PMID:23514968

  9. Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials.

    PubMed

    Sun, Lei; Gao, Jie; Yang, Xiaodong

    2013-09-09

    The giant optical nonlocality near the Dirac point in lossless metal-dielectric multilayer metamaterials is revealed and investigated through the analysis of the band structure of the multilayer stack in the three-dimensional ω-k space, according to the transfer-matrix method with the optical nonlocal effect. The position of the Dirac point is analytically located in the ω-k space. It is revealed that the emergence of the Dirac point is due to the degeneracy of the symmetric and the asymmetric eigenmodes of the coupled surface plasmon polaritons. The optical nonlocality induced epsilon-near-zero frequency shift for the multilayer stack compared to the effective medium is studied. Furthermore, the giant optical nonlocality around the Dirac point is explored with the iso-frequency contour analysis, while the beam splitting phenomenon at the Dirac point due to the optical nonlocal effect is also demonstrated.

  10. Dispersion and optical gradient force from high-order mode coupling between two hyperbolic metamaterial waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Guanghui; Zhang, Weifeng; Lu, Jiahui; Zhao, Huijun

    2016-08-01

    We analytically study dispersion properties and optical gradient forces of different-order transverse magnetic (TM) modes in two coupled hyperbolic metamaterial waveguides (HMMWs). According to Maxwell's equations, we obtain the dispersion relation of symmetric and antisymmetric modes, and calculate optical gradient forces of different-order modes by using Maxwell stress tensor. Numerical results show that the dispersion properties are dependent on the filling ratio, and the optical gradient forces of high-order TM modes are larger than the fundamental mode when the gap between two HMMWs is very narrow, but they weaken much faster than the case of low-order TM modes with the gap width increasing. In addition, the effects of the dielectric surrounding of waveguides on the coupling effect and optical gradient force are clarified. These properties offer an avenue for various optomechanical applications in optical sensors and actuators.

  11. Invited Article: All-optical multichannel logic based on coherent perfect absorption in a plasmonic metamaterial

    NASA Astrophysics Data System (ADS)

    Papaioannou, Maria; Plum, Eric; Valente, João; Rogers, Edward T. F.; Zheludev, Nikolay I.

    2016-12-01

    The exponential growth of telecommunications bandwidth will require next generation optical networks, where multiple spatial information channels will be transmitted in parallel. To realise the full potential of parallel optical data channels, fast and scalable multichannel solutions for processing of optical data are of paramount importance. Established solutions based on the nonlinear wave interaction in photorefractive materials are slow. Here we experimentally demonstrate all-optical logical operations between pairs of simulated spatially multiplexed information channels using the coherent interaction of light with light on a plasmonic metamaterial. The approach is suitable for fiber implementation and—in principle—operates with diffraction-limited spatial resolution, 100 THz bandwidth, and arbitrarily low intensities, thus promising ultrafast, low-power solutions for all-optical parallel data processing.

  12. Hybrid three-dimensional dual- and broadband optically tunable terahertz metamaterials

    PubMed Central

    Meng, Qinglong; Zhong, Zheqiang; Zhang, Bin

    2017-01-01

    The optically tunable properties of the hybrid three-dimensional (3D) metamaterials with dual- and broadband response frequencies are theoretically investigated in the terahertz spectrum. The planar double-split-ring resonators (DSRRs) and the standup double-split-ring resonators are fabricated on a sapphire substrate, forming a 3D array structures. The bi-anisotropy of the hybrid 3D metamaterials is considered because the stand-up DSRRs are not symmetrical with respect to the electric field vector. Due to the electric and magnetic response realized by the planar and the standup double-split-ring resonators respectively, the dual-band resonance response and the negative refractive index can be achieved. The potential of the phase modulation under photoexcitation is also demonstrated. Further analysis indicates that, photoexcitation of free carriers in the silicon within the capacitive region of the standup DSRRs results in a broad resonance response bandwidth (about 0.47 THz), and also functions as a broadband negative refractive index that roughly lies between 0.80 and 2.01 THz. This tunable metamaterials is proposed for the potential application of electromagnetic wave propagation in terahertz area. PMID:28358357

  13. Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, J.; MacDonald, K. F.; Zheludev, N. I.

    2012-05-01

    On the mesoscopic scale, electromagnetic forces are of fundamental importance to an enormously diverse range of systems, from optical tweezers to the adhesion of gecko toes. Here we show that a strong light-driven force may be generated when a plasmonic metamaterial is illuminated in close proximity to a dielectric or metal surface. This near-field force can exceed radiation pressure and Casimir forces to provide an optically controlled adhesion mechanism mimicking the gecko toe: At illumination intensities of just a few tens of nW/μm2 it is sufficient to overcome the Earth's gravitational pull.

  14. Digital metamaterials.

    PubMed

    Della Giovampaola, Cristian; Engheta, Nader

    2014-12-01

    Balancing complexity and simplicity has played an important role in the development of many fields in science and engineering. One of the well-known and powerful examples of such balance can be found in Boolean algebra and its impact on the birth of digital electronics and the digital information age. The simplicity of using only two numbers, '0' and '1', in a binary system for describing an arbitrary quantity made the fields of digital electronics and digital signal processing powerful and ubiquitous. Here, inspired by the binary concept, we propose to develop the notion of digital metamaterials. Specifically, we investigate how one can synthesize an electromagnetic metamaterial with a desired permittivity, using as building blocks only two elemental materials, which we call 'metamaterial bits', with two distinct permittivity functions. We demonstrate, analytically and numerically, how proper spatial mixtures of such metamaterial bits lead to elemental 'metamaterial bytes' with effective material parameters that are different from the parameters of the metamaterial bits. We then apply this methodology to several design examples of optical elements, such as digital convex lenses, flat graded-index digital lenses, digital constructs for epsilon-near-zero (ENZ) supercoupling and digital hyperlenses, thus highlighting the power and simplicity of the methodology.

  15. Magneto-optical characteristics of layered Epsilon-Near-Zero metamaterials

    NASA Astrophysics Data System (ADS)

    Abdi-Ghaleh, Reza; Suldozi, Reza

    2016-09-01

    The transmittance magneto-optical (MO) characteristics of Epsilon-Near-Zero (ENZ) metamaterials are studied, using 4 by 4 transfer matrix method. The considered structures are a free standing ENZ-MO slab, and a microcavity type multi-layer structure containing an ENZ-MO layer. The transmittance coefficients of the right- and left-handed circular polarizations for the slab are analytically obtained and numerically investigated. Furthermore, these characteristics are numerically studied for the multi-layer structure. In addition, the Faraday rotations of both structures are investigated. The results reveal the circular polarization filtering effects.

  16. On the origin of pure optical rotation in twisted-cross metamaterials

    PubMed Central

    Barr, Lauren E.; Díaz-Rubio, Ana; Tremain, Ben; Carbonell, Jorge; Sánchez-Dehesa, José; Hendry, Euan; Hibbins, Alastair P.

    2016-01-01

    We present an experimental and computational study of the response of twisted-cross metamaterials that provide near dispersionless optical rotation across a broad band of frequencies from 19 GHz to 37 GHz. We compare two distinct geometries: firstly, a bilayer structure comprised of arrays of metallic crosses where the crosses in the second layer are twisted about the layer normal; and secondly where the second layer is replaced by the complementary to the original, i.e. an array of cross-shaped holes. Through numerical modelling we determine the origin of rotatory effects in these two structures. In both, pure optical rotation occurs in a frequency band between two transmission minima, where alignment of electric and magnetic dipole moments occurs. In the cross/cross metamaterial, the transmission minima occur at the symmetric and antisymmetric resonances of the coupled crosses. By contrast, in the cross/complementary-cross structure the transmission minima are associated with the dipole and quadrupole modes of the cross, the frequencies of which appear intrinsic to the cross layer alone. Hence the bandwidth of optical rotation is found to be relatively independent of layer separation. PMID:27457405

  17. On the origin of pure optical rotation in twisted-cross metamaterials

    NASA Astrophysics Data System (ADS)

    Barr, Lauren E.; Díaz-Rubio, Ana; Tremain, Ben; Carbonell, Jorge; Sánchez-Dehesa, José; Hendry, Euan; Hibbins, Alastair P.

    2016-07-01

    We present an experimental and computational study of the response of twisted-cross metamaterials that provide near dispersionless optical rotation across a broad band of frequencies from 19 GHz to 37 GHz. We compare two distinct geometries: firstly, a bilayer structure comprised of arrays of metallic crosses where the crosses in the second layer are twisted about the layer normal; and secondly where the second layer is replaced by the complementary to the original, i.e. an array of cross-shaped holes. Through numerical modelling we determine the origin of rotatory effects in these two structures. In both, pure optical rotation occurs in a frequency band between two transmission minima, where alignment of electric and magnetic dipole moments occurs. In the cross/cross metamaterial, the transmission minima occur at the symmetric and antisymmetric resonances of the coupled crosses. By contrast, in the cross/complementary-cross structure the transmission minima are associated with the dipole and quadrupole modes of the cross, the frequencies of which appear intrinsic to the cross layer alone. Hence the bandwidth of optical rotation is found to be relatively independent of layer separation.

  18. Metamaterials beyond electromagnetism.

    PubMed

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment-all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, 'space-coiling' metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials ('meta-liquids'), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  19. Metamaterials beyond electromagnetism

    NASA Astrophysics Data System (ADS)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  20. Frequency scanning non-diffraction beam by metasurface

    NASA Astrophysics Data System (ADS)

    Cheng, Bo; Liu, Dawei; Wu, Jiawen; Li, Hongliang

    2017-01-01

    A reflective metasurface that can form a non-diffraction beam is proposed in this article. This metasurface is designed based on the artificial admittance modulation surface, and the metallic square patch on the grounded dielectric substrate is utilized to construct the whole surface. The beam can change its propagation direction with the change of frequency and have good non-diffraction characteristics. The metasurface is fabricated, and the measurement results demonstrate good performance of generating non-diffraction beams.

  1. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials

    PubMed Central

    Naik, Gururaj V.; Saha, Bivas; Liu, Jing; Saber, Sammy M.; Stach, Eric A.; Irudayaraj, Joseph M. K.; Sands, Timothy D.; Shalaev, Vladimir M.; Boltasseva, Alexandra

    2014-01-01

    Titanium nitride (TiN) is a plasmonic material having optical properties resembling gold. Unlike gold, however, TiN is complementary metal oxide semiconductor-compatible, mechanically strong, and thermally stable at higher temperatures. Additionally, TiN exhibits low-index surfaces with surface energies that are lower than those of the noble metals which facilitates the growth of smooth, ultrathin crystalline films. Such films are crucial in constructing low-loss, high-performance plasmonic and metamaterial devices including hyperbolic metamaterials (HMMs). HMMs have been shown to exhibit exotic optical properties, including extremely high broadband photonic densities of states (PDOS), which are useful in quantum plasmonic applications. However, the extent to which the exotic properties of HMMs can be realized has been seriously limited by fabrication constraints and material properties. Here, we address these issues by realizing an epitaxial superlattice as an HMM. The superlattice consists of ultrasmooth layers as thin as 5 nm and exhibits sharp interfaces which are essential for high-quality HMM devices. Our study reveals that such a TiN-based superlattice HMM provides a higher PDOS enhancement than gold- or silver-based HMMs. PMID:24821762

  2. Transformation optics for antennas: why limit the bandwidth with metamaterials?

    PubMed Central

    Quevedo-Teruel, Oscar; Tang, Wenxuan; Mitchell-Thomas, Rhiannon C.; Dyke, Amy; Dyke, Hazel; Zhang, Lianhong; Haq, Sajad; Hao, Yang

    2013-01-01

    In the last decade, a technique termed transformation optics has been developed for the design of novel electromagnetic devices. This method defines the exact modification of magnetic and dielectric constants required, so that the electromagnetic behaviour remains invariant after a transformation to a new coordinate system. Despite the apparently infinite possibilities that this mathematical tool introduces, one restriction has repeatedly recurred since its conception: limited frequency bands of operation. Here we circumvent this problem with the proposal of a full dielectric implementation of a transformed planar hyperbolic lens which retains the same focusing properties of an original curved lens. The redesigned lens demonstrates operation with high directivity and low side lobe levels for an ultra-wide band of frequencies, spanning over three octaves. The methodology proposed in this paper can be applied to revolutionise the design of many electromagnetic devices overcoming bandwidth limitations. PMID:23712699

  3. Template-Free Growth of Well-Ordered Silver Nano Forest/Ceramic Metamaterial Films with Tunable Optical Responses.

    PubMed

    Gao, Junhua; Wu, Xingzhi; Li, Qiuwu; Du, Shiyu; Huang, Feng; Liang, Lingyan; Zhang, Hongliang; Zhuge, Fei; Cao, Hongtao; Song, Yinglin

    2017-02-20

    Currently, the limitations of conventional methods for fabricating metamaterials composed of well-aligned nanoscale inclusions either lack the necessary freedom to tune the structural geometry or are difficult for large-area synthesis. In this Communication, the authors propose a fabrication route to create well-ordered silver nano forest/ceramic composite single-layer or multi-layer vertically stacked structures, as a distinctive approach to make large-area nanoscale metamaterials. To take advantage of direct growth, the authors fabricate single-layer nanocomposite films with a well-defined sub-5 nm interwire gap and an average nanowire diameter of ≈3 nm. Further, artificially constructed multilayer metamaterial films are easily fabricated by vertical integration of different single-layer metamaterial films. Based upon the thermodynamics as well as thin film growth dynamics theory, the growth mechanism is presented to elucidate the formation of such structure. Intriguing steady and transient optical properties in these assemblies are demonstrated, owing to their nanoscale structural anisotropy. The studies suggest that the self-organized nanocomposites provide an extensible material platform to manipulate optical response in the region of sub-5 nm scale.

  4. N-single-helix photonic-metamaterial based broadband optical range circular polarizer by induced phase lags between helices.

    PubMed

    Behera, Saraswati; Joseph, Joby

    2015-02-10

    In this work, we have designed a photonic-metamaterial based broadband circular polarizer using N=4 phase-lagged aluminum single helices arranged in a square array as a unit cell. The effect of phase differences between the helices in an array on the optical performance of the structure is studied, and a comparative study is done with that of multi-intertwined helices. It is observed that the proposed metamaterial structure shows circular polarization sensitivity over a broad optical wavelength range (≈450-900  nm), with improved optical performance in average extinction ratio and broad positive circular dichroism in comparison to multiple intertwined helices. The induced phase lag between the helices in a square-array based unit cell reduces the linear birefringence and leads to the recovery of circular space symmetry in the structure.

  5. All-optical modulation and switching by a metamaterial of plasmonic circuits.

    PubMed

    Davis, Timothy J; Gómez, Daniel E; Eftekhari, Fatima

    2014-08-15

    We demonstrate experimentally the modulation and switching of one light beam by a second beam using metamaterials constructed from arrays of plasmonic circuits. Each circuit consists of three gold nanorods that mix together two coherent but orthogonally polarized light beams leading to modulation by an interference effect. By adjusting the phase and the amplitude of one of the beams, the amplitude and spectral composition of the second beam is altered. The plasmonic circuits display an asymmetry that enables an angle-dependent modulation, which we demonstrate with a diffraction grating where the energy directed into two diffraction orders is controlled by a second light beam. This effect appears like an optically controlled blaze that we use to switch a light beam between two different directions.

  6. Nonlocal optical effects on the Goos-Hänchen shifts at multilayered hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Wei; Bian, Tingting; Chiang, Hai-Pang; Leung, P. T.

    2016-02-01

    The lateral beam shift of light incident on a multilayered hyperbolic metamaterial (HMM) is investigated using a theoretical model which emphasizes the nonlocal optical response of the indefinite material. By applying an effective local response theory formulated recently in the literature, it is found that nonlocal effects only affect p polarized light in this Goos-Hänchen (GH) shift of the incident beam; leading to a blue-shifted peak for positive shifts at high frequencies and red-shifted dip for negative shifts at low frequencies in the GH shift spectrum. An account for the observed phenomenon is given by referring to the ‘Brewster condition’ for the reflected wave from the HMM. This observation thus provides a relatively direct probe for the nonlocal response of the HMM.

  7. Planar gradient metamaterials

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Fu, Yangyang; Chen, Huanyang

    2016-12-01

    Metamaterials possess exotic properties that do not exist in nature. Gradient metamaterials, which are characterized by a continuous spatial variation of their properties, provide a promising approach to the development of both bulk and planar optics. In particular, planar gradient metamaterials can be classified into three categories: gradient metasurfaces, gradient index metamaterials and gradient metallic gratings. In this Review, we summarize the progress made in the theoretical modelling of these materials, in their experimental implementation and in the design of functional devices. We discuss the use of planar gradient metamaterials for wave bending and focusing in free space, for supporting surface plasmon polaritons and for the realization of trapped rainbows. We also focus on the implementation of these materials in waveguide systems, which can enable electromagnetic cloaking, Fano resonances, asymmetric transmission and guided mode conversion. Finally, we discuss promising trends, such as the use of dielectric rather than metallic unit elements and the use of planar gradient metamaterials in 3D systems.

  8. Enhanced Faraday rotation in hybrid magneto-optical metamaterial structure of bismuth-substituted-iron-garnet with embedded-gold-wires

    NASA Astrophysics Data System (ADS)

    Sadatgol, Mehdi; Rahman, Mahfuzur; Forati, Ebrahim; Levy, Miguel; Güney, Durdu Ö.

    2016-03-01

    We propose an alternative class of magneto-optical metamaterials offering enhanced angle of rotation in polarization compared to pure magneto-optical materials. In this approach, the permittivity tensor of a magneto-optical material is tailored by embedded wire meshes. We show that the angle of rotation in the magneto-optical metamaterial can be enhanced up to 9 times compared to pure magneto-optical material alone, while the polarization extinction ratio remains below -20dB over more than 2 THz bandwidth and the attenuation coefficient is approximately 1.5dB μm-1.

  9. 1-D, 2-D and 3-D Negative-Refraction Metamaterials at Optical Frequencies: Optical Nano-Transmission-Line and Circuit Theory

    NASA Astrophysics Data System (ADS)

    Engheta, Nader; Alu, Andrea

    2006-03-01

    In recent years metamaterials have offered new possibilities for overcoming some of the intrinsic limitations in wave propagation. Their realization at microwave frequencies has followed two different paths; one consisting of embedding resonant inclusions in a host dielectric, and the other following a transmission-line approach, i.e., building 1-D, 2-D, or 3-D cascades of circuit elements, respectively, as linear, planar or bulk right- or left-handed metamaterials. The latter is known to provide larger bandwidth and better robustness to ohmic losses. Extending these concepts to optical frequencies is a challenging task, due to changes in material response to electromagnetic waves at these frequencies. However, recently we have studied theoretically how it may be possible to have circuit nano-elements at these frequencies by properly exploiting plasmonic resonances. Here we present our theoretical work on translating the circuit concepts of right- and left-handed metamaterials into optical frequencies by applying the analogy between nanoparticles and nanocircuit elements in transmission lines. We discuss how it is possible to synthesize optical negative-refraction metamaterials by properly cascading plasmonic and non-plasmonic elements in 1-D, 2-D and 3-D geometries.

  10. Large-Area Flexible 3D Optical Negative Index Metamaterial Formed by Nanotransfer Printing

    DTIC Science & Technology

    2011-07-01

    metamaterial formed by nanotransfer printing Debashis Chanda1, Kazuki Shigeta1, Sidhartha Gupta1, Tyler Cain1, Andrew Carlson1, Agustin Mihi1, Alfred J. Baca3...2008). 11. Dolling, G., Enkrich, C. & Wegener , M. Low-loss negative-index metamaterial at telecommunication wavelengths. Opt. Lett. 31, 1800–1802 (2006...metamaterials. Phys. Rev. B 75, 024304 (2007). 13. Dolling, G., Wegener , M. & Linden, S. Realization of a three-functional-layer negative-index photonic

  11. The properties of electromagnetic responses and optical modulation in terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Shi, Yulei; Wang, Wei; Zhou, Qingli; Zhang, Cunlin

    2016-11-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recently, the research on these artificial materials has been pushed forward to the terahertz (THz) region because of potential applications in biological fingerprinting, security imaging, and high frequency magnetic and electric resonant devices. Furthermore, active control of their properties could further facilitate and open up new applications in terms of modulation and switching. In our work, we will first present our studies of dipole arrays at terahertz frequencies. Then in experimental and theoretical studies of terahertz subwavelength L-shaped structure, we proposed an unusual-mode current resonance responsible for low-frequency characteristic dip in transmission spectra. Comparing spectral properties of our designed simplified structures with that of split-ring resonators, we attribute this unusual mode to the resonance coupling and splitting under the broken symmetry of the structure. Finally, we use optical pump-terahertz probe method to investigate the spectral and dynamic behaviour of optical modulation in the split-ring resonators. We have observed the blue-shift and band broadening in the spectral changes of transmission under optical excitation at different delay times. The calculated surface currents using finite difference time domain simulation are presented to characterize these resonances, and the blue-shift can be explained by the changed refractive index and conductivity in the photoexcited semiconductor substrate.

  12. Permeability retrieval in InP-based waveguide optical device combined with metamaterial.

    PubMed

    Amemiya, Tomohiro; Myoga, Seiji; Shindo, Takahiko; Murai, Eijun; Nishiyama, Nobuhiko; Arai, Shigehisa

    2012-06-15

    An InP-based Mach-Zehnder interferometer combined with a metamaterial layer consisting of a split-ring resonator array was constructed to measure the complex permeability of the metamaterial. At a wavelength of 1.5 μm, the metamaterial showed non-unity relative permeability induced by magnetic interaction with propagating light in the device. This method of measurement would be useful to determine constitutive parameters in such waveguide-based photonic devices, allowing us to design photonic integrated circuits that make use of metamaterials.

  13. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection.

    PubMed

    Kravets, V G; Schedin, F; Jalil, R; Britnell, L; Gorbachev, R V; Ansell, D; Thackray, B; Novoselov, K S; Geim, A K; Kabashin, A V; Grigorenko, A N

    2013-04-01

    The non-trivial behaviour of phase is crucial for many important physical phenomena, such as, for example, the Aharonov-Bohm effect and the Berry phase. By manipulating the phase of light one can create 'twisted' photons, vortex knots and dislocations which has led to the emergence of the field of singular optics relying on abrupt phase changes. Here we demonstrate the feasibility of singular visible-light nano-optics which exploits the benefits of both plasmonic field enhancement and the peculiarities of the phase of light. We show that properly designed plasmonic metamaterials exhibit topologically protected zero reflection yielding to sharp phase changes nearby, which can be employed to radically improve the sensitivity of detectors based on plasmon resonances. By using reversible hydrogenation of graphene and binding of streptavidin-biotin, we demonstrate an areal mass sensitivity at a level of fg mm(-2) and detection of individual biomolecules, respectively. Our proof-of-concept results offer a route towards simple and scalable single-molecule label-free biosensing technologies.

  14. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection

    NASA Astrophysics Data System (ADS)

    Kravets, V. G.; Schedin, F.; Jalil, R.; Britnell, L.; Gorbachev, R. V.; Ansell, D.; Thackray, B.; Novoselov, K. S.; Geim, A. K.; Kabashin, A. V.; Grigorenko, A. N.

    2013-04-01

    The non-trivial behaviour of phase is crucial for many important physical phenomena, such as, for example, the Aharonov-Bohm effect and the Berry phase. By manipulating the phase of light one can create ’twisted’ photons, vortex knots and dislocations which has led to the emergence of the field of singular optics relying on abrupt phase changes. Here we demonstrate the feasibility of singular visible-light nano-optics which exploits the benefits of both plasmonic field enhancement and the peculiarities of the phase of light. We show that properly designed plasmonic metamaterials exhibit topologically protected zero reflection yielding to sharp phase changes nearby, which can be employed to radically improve the sensitivity of detectors based on plasmon resonances. By using reversible hydrogenation of graphene and binding of streptavidin-biotin, we demonstrate an areal mass sensitivity at a level of fg mm-2 and detection of individual biomolecules, respectively. Our proof-of-concept results offer a route towards simple and scalable single-molecule label-free biosensing technologies.

  15. Orbital angular momentum of helical necklace beams in colloid-based nonlinear optical metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Walasik, Wiktor T.; Silahli, Salih Z.; Litchinitser, Natalia M.

    2016-09-01

    Colloidal metamaterials are a robust and flexible platform for engineering of optical nonlinearities and studies of light filamentation. To date, nonlinear propagation and modulation instability of Gaussian beams and optical vortices carrying orbital angular momentum were studied in such media. Here, we investigate the propagation of necklace beams and the conservation of the orbital angular momentum in colloidal media with saturable nonlinearity. We study various scenarios leading to generation of helical necklace beams or twisted beams, depending on the radius, power, and charge of the input vortex beam. Helical beams are build of two separate solitary beams with circular cross-sections that spiral around their center of mass as a result of the equilibrium between the attraction force of in-phase solitons and the centrifugal force associated with the rotational movement. A twisted beam is a single beam with an elliptical cross-section that rotates around it's own axis. We show that the orbital angular momentum is converted into the rotational motion at different rates for helical and twisted beams. While earlier studies reported that solitary beams are expelled form the initial vortex ring along straight trajectories tangent to the vortex ring, we show that depending on the charge and the power of the initial beam, these trajectories can diverge from the tangential direction and may be curvilinear. These results provide a detailed description of necklace beam dynamics in saturable nonlinear media and may be useful in studies of light filamentation in liquids and light propagation in highly scattering colloids and biological samples.

  16. Reconfigurable nanomechanical photonic metamaterials

    NASA Astrophysics Data System (ADS)

    Zheludev, Nikolay I.; Plum, Eric

    2016-01-01

    The changing balance of forces at the nanoscale offers the opportunity to develop a new generation of spatially reconfigurable nanomembrane metamaterials in which electromagnetic Coulomb, Lorentz and Ampère forces, as well as thermal stimulation and optical signals, can be engaged to dynamically change their optical properties. Individual building blocks of such metamaterials, the metamolecules, and their arrays fabricated on elastic dielectric membranes can be reconfigured to achieve optical modulation at high frequencies, potentially reaching the gigahertz range. Mechanical and optical resonances enhance the magnitude of actuation and optical response within these nanostructures, which can be driven by electric signals of only a few volts or optical signals with power of only a few milliwatts. We envisage switchable, electro-optical, magneto-optical and nonlinear metamaterials that are compact and silicon-nanofabrication-technology compatible with functionalities surpassing those of natural media by orders of magnitude in some key design parameters.

  17. Metamaterials program at Sandia National Laboratories.

    SciTech Connect

    McCormick, Frederick Bossert

    2010-10-01

    Sandia National Laboratories Metamaterial Science and Technology Program has developed novel HPC-based design tools, wafer scale 3D fabrication processes, and characterization tools to enable thermal IR optical metamaterial application studies.

  18. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  19. Isotropic optical negative index of refraction metamaterials composed of randomly arranged nanoparticles

    NASA Astrophysics Data System (ADS)

    Kussow, Adil-Gerai; Akyurtlu, Alkim

    2007-03-01

    We report a strategy for achieving fully isotropic negative refraction index in a homogenized composite medium (HCM) conceptualized using both Maxwell-Garnett's and Lewin's effective medium formulations. The HCM consists of two isotropic dielectric-magnetic media (DMM): one DMM (randomly distributed small gold nanoparticles in free space) provides only negative permittivity, and another DMM (spherical SiC particles) provides only negative permeability via the Mie resonance. We prove, in the framework of the effective medium approach, that the mixture of DMMs (with properly adjusted fill factors and sizes of Au and SiC particles) exhibits isotropic negative refraction index metamaterial (NIM) behavior with negative refraction index of in a broad frequency range of the optical part of the spectrum. This result stands for both random distribution of the spherical constituent SiC particles (or Maxwell-Garnett arrangement), and the regular simple-cubic lattice of the same particles (Lewin's arrangement). Due to the high 3D isotropy of both models, both the analytical and numerical solutions of the scattering problems were found to be close to each other, and NIM behavior has been demonstrated. The calculations were carried out accurately taking into account the losses due to both gold and SiC nanoparticles.

  20. Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials

    SciTech Connect

    Wolf, Omri E-mail: ibrener@sandia.gov; Ma, Xuedan; Brener, Igal E-mail: ibrener@sandia.gov; Allerman, Andrew A.; Wendt, Joel R.; Shaner, Eric A.; Song, Alex Y.

    2015-10-12

    We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena.

  1. Routing of deep-subwavelength optical beams without reflection and diffraction using infinitely anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Catrysse, Peter B.; Fan, Shanhui

    2015-03-01

    Media that are described by extreme electromagnetic parameters, such as very large/small permittivity/permeability, have generated significant fundamental and applied interest in recent years. Notable examples include epsilon-near-zero, ultra-low refractive-index, and ultra-high refractive-index materials. Many photonic structures, such as waveguides, lenses, and photonic band gap materials, benefit greatly from the large index contrast provided by such media. In this paper, I discuss our recent work on media with infinite anisotropy, i.e., infinite permittivity (permeability) in one direction and finite in the other directions. As an illustration of the unusual optical behaviors that result from infinite anisotropy, I describe efficient light transport in deep-subwavelength apertures filled with infinitely anisotropic media. I then point out some of the opportunities that exist for controlling light at the nano-scale using infinitely anisotropic media by themselves. First, I show that a single medium with infinite anisotropy enables diffraction-free propagation of deep-subwavelength beams. Next, I demonstrate interfaces between two infinitely anisotropic media that are impedancematched for complete deep-subwavelength beams and enable reflection-free routing with zero bend radius that is entirely free from diffraction effects even when deep-subwavelength information is encoded on the beams. These behaviors indicate an unprecedented possibility to use media with infinite anisotropy to manipulate beams with deepsubwavelength features, including complete images. To illustrate physical realizability, I demonstrate a metamaterial design using existing materials in a planar geometry, which can be implemented using well-established nanofabrication techniques. This approach provides a path to deep-subwavelength routing of information-carrying beams and far-field imaging unencumbered by diffraction and reflection.

  2. Negative index optical chiral metamaterial based on asymmetric hexagonal arrays of metallic triangular nanoprisms

    NASA Astrophysics Data System (ADS)

    Giloan, M.; Astilean, S.

    2014-03-01

    Nanostructures made of two layers of metallic triangular nanoprisms arranged in hexagonal lattice separated by a dielectric layer are theoretically analyzed as chiral metamaterial slabs. Transmitted and reflected electromagnetic field of normally incident circular polarized plane waves are computed using a tri-dimensional (3D) finite-difference time domain (FDTD) algorithm. Chirality and effective constitutive parameters are calculated using the modified S-parameter retrieval method for chiral metamaterials. Different hybridized plasmon modes are induced by the left and right circularly polarized light leading to a chiral behavior of the asymmetric type metamaterials. Negative refractive index due to chirality is obtained in the near infrared range of the spectrum for either left or right polarization.

  3. Hybridization of optical plasmonics with terahertz metamaterials to create multi-spectral filters.

    PubMed

    McCrindle, Iain J H; Grant, James; Drysdale, Timothy D; Cumming, David R S

    2013-08-12

    Multi-spectral imaging systems typically require the cumbersome integration of disparate filtering materials in order to work simultaneously in multiple spectral regions. We show for the first time how a single nano-patterned metal film can be used to filter multi-spectral content from the visible, near infrared and terahertz bands by hybridizing plasmonics and metamaterials. Plasmonic structures are well-suited to the visible band owing to the resonant dielectric properties of metals, whereas metamaterials are preferable at terahertz frequencies where metal conductivity is high. We present the simulated and experimental characteristics of our new hybrid synthetic multi-spectral material filters and demonstrate the independence of the metamaterial and plasmonic responses with respect to each other.

  4. Nature-inspired optimization of quasicrystalline arrays and all-dielectric optical filters and metamaterials

    NASA Astrophysics Data System (ADS)

    Namin, Frank Farhad A.

    (photonic resonance) and the plasmonic response of the spheres (plasmonic resonance). In particular the couplings between the photonic and plasmonic modes are studied. In periodic arrays this coupling leads to the formation of a so called photonic-plasmonic hybrid mode. The formation of hybrid modes is studied in quasicrystalline arrays. Quasicrystalline structures in essence possess several periodicities which in some cases can lead to the formation of multiple hybrid modes with wider bandwidths. It is also demonstrated that the performance of these arrays can be further enhanced by employing a perturbation method. The second property considered is local field enhancements in quasicrystalline arrays of gold nanospheres. It will be shown that despite a considerably smaller filling factor quasicrystalline arrays generate larger local field enhancements which can be even further enhanced by optimally placing perturbing spheres within the prototiles that comprise the aperiodic arrays. The second thrust of research in this dissertation focuses on designing all-dielectric filters and metamaterial coatings for the optical range. In higher frequencies metals tend to have a high loss and thus they are not suitable for many applications. Hence dielectrics are used for applications in optical frequencies. In particular we focus on designing two types of structures. First a near-perfect optical mirror is designed. The design is based on optimizing a subwavelength periodic dielectric grating to obtain appropriate effective parameters that will satisfy the desired perfect mirror condition. Second, a broadband anti-reflective all-dielectric grating with wide field of view is designed. The second design is based on a new computationally efficient genetic algorithm (GA) optimization method which shapes the sidewalls of the grating based on optimizing the roots of polynomial functions.

  5. The Cheshire Jet: Harnessing Metamaterials to Achieve an Optical Stealth Capability

    DTIC Science & Technology

    2010-07-01

    MSNBC.com, 19 October 2006. http://www.msnbc .msn.com/id/15329396/. Azad, Abul K., Hou-Tong Chen, Antoinette J. Taylor, Elshan Akhadov, Nina R. Weisse...about_metamaterials.html. Spotts, Peter N. “Disappear into thin air? Scientists take step toward invisibility.” Christian Science Monitor, 20 October 2006

  6. Exact solutions of optical pulse propagation in nonlinear meta-materials

    NASA Astrophysics Data System (ADS)

    Nanda, Lipsa

    2017-01-01

    An analytical and simulation based method has been used to exactly solve the nonlinear wave propagation in bulk media exhibiting frequency dependent dielectric susceptibility and magnetic permeability. The method has been further extended to investigate the intensity distribution in a nonlinear meta-material with negative refractive index where both ɛ and μ are dispersive and negative in nature.

  7. Hybrid mode tunability in metamaterial nanowaveguides

    NASA Astrophysics Data System (ADS)

    Beig-Mohammadi, Maryam; Sang-Nourpour, Nafiseh; Sanders, Barry C.; Lavoie, Benjamin R.; Kheradmand, Reza

    2017-02-01

    We employ the properties of metamaterials to tailor the modes of metamaterial-dielectric waveguides operating at optical frequencies. We survey the effects of three-dimensional isotropic metamaterial structural parameters on the refractive index of metamaterials and on the hybrid modes in slab metamaterial-dielectric waveguides. Hybrid modes refer to hybrid ordinary-surface plasmon polariton modes in the waveguide structures. We investigate how robust metamaterials are to fluctuations in their structural parameters; specifically, we examine the effects of Gaussian errors on the metamaterials electromagnetic behavior. Our survey enables us to determine the allowable fluctuation limits and from this to identify appropriate unit-cell structure for further applications of metamaterials in waveguide technologies.

  8. An Active Metamaterial Platform for Chiral Responsive Optoelectronics.

    PubMed

    Kang, Lei; Lan, Shoufeng; Cui, Yonghao; Rodrigues, Sean P; Liu, Yongmin; Werner, Douglas H; Cai, Wenshan

    2015-08-05

    Chiral-selective non-linear optics and optoelectronic signal generation are demonstrated in an electrically active photonic metamaterial. The metamaterial reveals significant chiroptical responses in both harmonic generation and the photon drag effect, correlated to the resonance behavior in the linear regime. The multifunctional chiral metamaterial with dual electrical and optical functionality enables transduction of chiroptical responses to electrical signals for integrated photonics.

  9. Terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Taylor, Antoineete J; Azad, Abul K; O' Hara, John F

    2009-01-01

    In this paper we present our recent developments in terahertz (THz) metamaterials and devices. Planar THz metamaterials and their complementary structures fabricated on suitable substrates have shown electric resonant response, which causes the band-pass or band-stop property in THz transmission and reflection. The operational frequency can be further tuned up to 20% upon photoexcitation of an integrated semiconductor region in the splitring resonators as the metamaterial elements. On the other hand, the use of semiconductors as metamaterial substrates enables dynamical control of metamaterial resonances through photoexcitation, and reducing the substrate carrier lifetime further enables an ultrafast switching recovery. The metamaterial resonances can also be actively controlled by application of a voltage bias when they are fabricated on semiconductor substrates with appropriate doping concentration and thickness. Using this electrically driven approach, THz modulation depth up to 80% and modulation speed of 2 MHz at room temperature have been demonstrated, which suggests practical THz applications.

  10. Metamaterial membranes

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2017-01-01

    We introduce a new class of metamaterial device to achieve separation of compounds by using coordinate transformations and metamaterial theory. By rationally designing the spatial anisotropy for mass diffusion, we simultaneously concentrate different compounds in different spatial locations, leading to separation of mixtures across a metamaterial membrane. The separation of mixtures into their constituent compounds is critically important in biophysics, biomedical, and chemical applications. We present a practical case where a mixture of oxygen and nitrogen diffusing through a polymeric planar matrix is separated. This work opens doors to new paradigms in membrane separations via coordinate transformations and metamaterials by introducing novel properties and unconventional mass diffusion phenomena.

  11. Ultralow-power all-optical tunable dual Fano resonances in nonlinear metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Hu, Xiaoyong; Zhu, Yu; Yang, Hong; Gong, Qihuang

    2013-11-01

    Dual Fano resonances are realized in a nonlinear photonic metamaterial consisting of periodic arrays of asymmetrical meta-molecules etched in a gold film coated with azobenzene polymer layer made of poly[(methyl methacrylate)-co-(disperse red 13 acrylate)]. Enormously enhanced photoisomerization associated with resonant excitation brings about a large refractive index variation in the azobenzene polymer. Under excitation of a weak pump light as low as 0.61 kW/cm2, a large shift of 50 nm in the Fano resonance wavelength is obtained. Compared with previous reports, the threshold pump intensity is reduced by seven orders of magnitude while a large tunability is maintained simultaneously.

  12. Bifunctional plasmonic metamaterials enabled by subwavelength nano-notches for broadband, polarization-independent enhanced optical transmission and passive beam-steering.

    PubMed

    Jiang, Zhi Hao; Lin, Lan; Bossard, Jeremy A; Werner, Douglas H

    2013-12-16

    In this work, we present the design, numerical experiments, and analysis of a plasmonic metamaterial thin film based on subwavelength nano-notch loaded modified fishnet structures. The resulting device offers a simultaneous bandpass filtering functionality with a broad enhanced optical transmission window and a gapless negative-zero-positive index transition to enable polarization-independent passive beam-steering. This unique characteristic is made possible by the introduced subwavelength nano-notches, which provide fine tuning and hybridization of the external and internal surface plasmon polariton modes. This allows tailoring of the dispersive properties of the plasmonic metamaterial for broadband operation. Specifically, a multilayer nanostructured modified fishnet with feature sizes accessible by modern nanofabrication techniques is presented, exhibiting a broad passband at the mid-infrared wavelengths from 3.0 to 3.7 µm and stopbands elsewhere in the 2.5 ~4.5 µm window. The transmittance normalized to area is around 3 dB within the broad 20% bandwidth of the passband. Additionally, the effective index undergoes a smooth transition from negative unity through zero to positive unity with low loss within the passband. The physical mechanism and the angular dispersion of the metamaterial are analyzed in detail. Finally, full-wave simulations of a prism formed from this metamaterial are performed to demonstrate that the proposed structure achieves simultaneous polarization-insensitive passive beam-steering and filtering functionalities.

  13. Optical properties of a one-dimensional photonic crystal containing a graphene-based hyperbolic metamaterial defect layer.

    PubMed

    Saleki, Ziba; Entezar, Samad Roshan; Madani, Amir

    2017-01-10

    The transmission properties of a one-dimensional defective photonic crystal have been investigated using the transfer matrix method. A layer of graphene-based hyperbolic metamaterial whose optical axis is tilted with respect to the interface is taken as a defect. It is shown that two kinds of the defect modes can be found in the band gaps of the structure for TM-polarized waves. One kind is created at the frequency range in which the principle elements of the effective permittivity tensor of the defect layer have the same signs. The frequency of this kind of defect mode is independent from the orientation of the optical axis of the defect layer. The other one is created at the hyperbolic dispersion frequency range. Such a defect mode appears due to the anisotropic behavior of the defect layer and its frequency strongly depends on the orientation of the optical axis. Unlike the conventional defect modes, the magnetic field of this defect mode is localized around the defect layer.

  14. Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials.

    PubMed

    Ibbotson, Lindsey A; Demetriadou, Angela; Croxall, Stephen; Hess, Ortwin; Baumberg, Jeremy J

    2015-02-09

    Metallic woodpile photonic crystals and metamaterials operating across the visible spectrum are extremely difficult to construct over large areas, because of the intricate three-dimensional nanostructures and sub-50 nm features demanded. Previous routes use electron-beam lithography or direct laser writing but widespread application is restricted by their expense and low throughput. Scalable approaches including soft lithography, colloidal self-assembly, and interference holography, produce structures limited in feature size, material durability, or geometry. By multiply stacking gold nanowire flexible gratings, we demonstrate a scalable high-fidelity approach for fabricating flexible metallic woodpile photonic crystals, with features down to 10 nm produced in bulk and at low cost. Control of stacking sequence, asymmetry, and orientation elicits great control, with visible-wavelength band-gap reflections exceeding 60%, and with strong induced chirality. Such flexible and stretchable architectures can produce metamaterials with refractive index near zero, and are easily tuned across the IR and visible ranges.

  15. Optical nano-woodpiles: large-area metallic photonic crystals and metamaterials

    PubMed Central

    Ibbotson, Lindsey A.; Demetriadou, Angela; Croxall, Stephen; Hess, Ortwin; Baumberg, Jeremy J.

    2015-01-01

    Metallic woodpile photonic crystals and metamaterials operating across the visible spectrum are extremely difficult to construct over large areas, because of the intricate three-dimensional nanostructures and sub-50 nm features demanded. Previous routes use electron-beam lithography or direct laser writing but widespread application is restricted by their expense and low throughput. Scalable approaches including soft lithography, colloidal self-assembly, and interference holography, produce structures limited in feature size, material durability, or geometry. By multiply stacking gold nanowire flexible gratings, we demonstrate a scalable high-fidelity approach for fabricating flexible metallic woodpile photonic crystals, with features down to 10 nm produced in bulk and at low cost. Control of stacking sequence, asymmetry, and orientation elicits great control, with visible-wavelength band-gap reflections exceeding 60%, and with strong induced chirality. Such flexible and stretchable architectures can produce metamaterials with refractive index near zero, and are easily tuned across the IR and visible ranges. PMID:25660667

  16. From metamaterials to metadevices.

    PubMed

    Zheludev, Nikolay I; Kivshar, Yuri S

    2012-11-01

    Metamaterials, artificial electromagnetic media that are structured on the subwavelength scale, were initially suggested for the negative-index 'superlens'. Later metamaterials became a paradigm for engineering electromagnetic space and controlling propagation of waves: the field of transformation optics was born. The research agenda is now shifting towards achieving tunable, switchable, nonlinear and sensing functionalities. It is therefore timely to discuss the emerging field of metadevices where we define the devices as having unique and useful functionalities that are realized by structuring of functional matter on the subwavelength scale. In this Review we summarize research on photonic, terahertz and microwave electromagnetic metamaterials and metadevices with functionalities attained through the exploitation of phase-change media, semiconductors, graphene, carbon nanotubes and liquid crystals. The Review also encompasses microelectromechanical metadevices, metadevices engaging the nonlinear and quantum response of superconductors, electrostatic and optomechanical forces and nonlinear metadevices incorporating lumped nonlinear components.

  17. Sensing with toroidal metamaterial

    NASA Astrophysics Data System (ADS)

    Gupta, Manoj; Srivastava, Yogesh Kumar; Manjappa, Manukumara; Singh, Ranjan

    2017-03-01

    Localized electromagnetic excitation in the form of toroidal dipoles has recently been observed in metamaterial systems. The origin of the toroidal dipole lies in the currents flowing on the surface of a torus. Thus, the exotic toroidal excitations play an important role in determining the optical properties of a system. Toroidal dipoles also contribute towards enabling high quality factor subwavelength resonances in metamaterial systems which could be an excellent platform for probing the light matter interaction. Here, we demonstrate sensing with toroidal resonance in a two-dimensional terahertz metamaterial in which a pair of mirrored asymmetric Fano resonators possesses anti-aligned magnetic moments at an electromagnetic resonance that gives rise to a toroidal dipole. Our proof of concept demonstration opens up an avenue to explore the interaction of matter with toroidal multipoles that could have strong applications in the sensing of dielectrics and biomolecules.

  18. Mid-infrared tunable metamaterials

    SciTech Connect

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  19. Ultralow-power all-optical tunable dual Fano resonances in nonlinear metamaterials

    SciTech Connect

    Zhang, Fan; Zhu, Yu; Yang, Hong; Hu, Xiaoyong E-mail: qhgong@pku.edu.cn; Gong, Qihuang E-mail: qhgong@pku.edu.cn

    2013-11-04

    Dual Fano resonances are realized in a nonlinear photonic metamaterial consisting of periodic arrays of asymmetrical meta-molecules etched in a gold film coated with azobenzene polymer layer made of poly[(methyl methacrylate)-co-(disperse red 13 acrylate)]. Enormously enhanced photoisomerization associated with resonant excitation brings about a large refractive index variation in the azobenzene polymer. Under excitation of a weak pump light as low as 0.61 kW/cm{sup 2}, a large shift of 50 nm in the Fano resonance wavelength is obtained. Compared with previous reports, the threshold pump intensity is reduced by seven orders of magnitude while a large tunability is maintained simultaneously.

  20. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances

    PubMed Central

    Tuniz, Alessandro; Kaltenecker, Korbinian J.; Fischer, Bernd M.; Walther, Markus; Fleming, Simon C.; Argyros, Alexander; Kuhlmey, Boris T.

    2013-01-01

    Using conventional materials, the resolution of focusing and imaging devices is limited by diffraction to about half the wavelength of light, as high spatial frequencies do not propagate in isotropic materials. Wire array metamaterials, because of their extreme anisotropy, can beat this limit; however, focusing with these has only been demonstrated up to microwave frequencies and using propagation over a few wavelengths only. Here we show that the principle can be scaled to frequencies orders of magnitudes higher and to considerably longer propagation lengths. We demonstrate imaging through straight and tapered wire arrays operating in the terahertz spectrum, with unprecedented propagation of near field information over hundreds of wavelengths and focusing down to 1/28 of the wavelength with a net increase in power density. Applications could include in vivo terahertz-endoscopes with resolution compatible with imaging individual cells. PMID:24162458

  1. Stimulated Brillouin scattering in metamaterials

    NASA Astrophysics Data System (ADS)

    Smith, M. J. A.; Wolff, C.; Martijn de Sterke, C.; Lapine, M.; Kuhlmey, B. T.; Poulton, C. G.

    2016-10-01

    We compute the SBS gain for a metamaterial comprising a cubic lattice of dielectric spheres suspended in a background dielectric material. Theoretical methods are presented to calculate the optical, acoustic, and opto-acoustic parameters that describe the SBS properties of the material at long wavelengths. Using the electromagnetic and strain energy densities we accurately characterise the optical and acoustic properties of the metamaterial. From a combination of energy density methods and perturbation theory, we recover the appropriate terms of the photoelastic tensor for the metamaterial. We demonstrate that electrostriction is not necessarily the dominant mechanism in the enhancement and suppression of the SBS gain coefficient in a metamaterial, and that other parameters, such as the Brillouin linewidth, can dominate instead. Examples are presented that exhibit an order of magnitude enhancement in the SBS gain as well as perfect suppression.

  2. Theory, experiment and applications of metamaterials

    NASA Astrophysics Data System (ADS)

    Tang, WenXuan; Mei, ZhongLei; Cui, TieJun

    2015-12-01

    In this review article, a brief introduction on the theory, experiments and applications of metamaterials is presented. The main focuses are concentrated on the composing meta-atoms, the method of transformation optics, the experimental demonstration of negative refraction, and the realizations of invisibility cloaks and electromagnetic black hole. At the end of this review, some typical applications of metamaterials, including high-performance antennas made of zero-refractive-index materials, inhomogeneous metamaterial lenses, and planar metasurfaces, are introduced in details.

  3. Designing optical metamaterial with hyperbolic dispersion based on an Al:ZnO/ZnO nano-layered structure using the atomic layer deposition technique.

    PubMed

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-10

    Nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8 μm wavelength.

  4. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    DOE PAGES

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less

  5. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    SciTech Connect

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8 μm wavelength.

  6. Hyperbolic polaritonic crystals based on nanostructured nanorod metamaterials.

    PubMed

    Dickson, Wayne; Beckett, Stephen; McClatchey, Christina; Murphy, Antony; O'Connor, Daniel; Wurtz, Gregory A; Pollard, Robert; Zayats, Anatoly V

    2015-10-21

    Surface plasmon polaritons usually exist on a few suitable plasmonic materials; however, nanostructured plasmonic metamaterials allow a much broader range of optical properties to be designed. Here, bottom-up and top-down nanostructuring are combined, creating hyperbolic metamaterial-based photonic crystals termed hyperbolic polaritonic crystals, allowing free-space access to the high spatial frequency modes supported by these metamaterials.

  7. All-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  8. All-dielectric metamaterials.

    PubMed

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  9. Metamaterials and imaging.

    PubMed

    Kim, Minkyung; Rho, Junsuk

    2015-01-01

    Resolution of the conventional lens is limited to half the wavelength of the light source by diffraction. In the conventional optical system, evanescent waves, which carry sub-diffraction spatial information, has exponentially decaying amplitude and therefore cannot reach to the image plane. New optical materials called metamaterials have provided new ways to overcome diffraction limit in imaging by controlling the evanescent waves. Such extraordinary electromagnetic properties can be achieved and controlled through arranging nanoscale building blocks appropriately. Here, we review metamaterial-based lenses which offer the new types of imaging components and functions. Perfect lens, superlenses, hyperlenses, metalenses, flat lenses based on metasurfaces, and non-optical lenses including acoustic hyperlens are described. Not all of them offer sub-diffraction imaging, but they provide new imaging mechanisms by controlling and manipulating the path of light. The underlying physics, design principles, recent advances, major limitations and challenges for the practical applications are discussed in this review.

  10. Metamaterials and imaging

    NASA Astrophysics Data System (ADS)

    Kim, Minkyung; Rho, Junsuk

    2015-11-01

    Resolution of the conventional lens is limited to half the wavelength of the light source by diffraction. In the conventional optical system, evanescent waves, which carry sub-diffraction spatial information, has exponentially decaying amplitude and therefore cannot reach to the image plane. New optical materials called metamaterials have provided new ways to overcome diffraction limit in imaging by controlling the evanescent waves. Such extraordinary electromagnetic properties can be achieved and controlled through arranging nanoscale building blocks appropriately. Here, we review metamaterial-based lenses which offer the new types of imaging components and functions. Perfect lens, superlenses, hyperlenses, metalenses, flat lenses based on metasurfaces, and non-optical lenses including acoustic hyperlens are described. Not all of them offer sub-diffraction imaging, but they provide new imaging mechanisms by controlling and manipulating the path of light. The underlying physics, design principles, recent advances, major limitations and challenges for the practical applications are discussed in this review.

  11. Terahertz metamaterials

    SciTech Connect

    Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.

    2014-08-12

    Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.

  12. Designed Ultrafast Optical Nonlinearity in a Plasmonic Nanorod Metamaterial Enhanced by Nonlocality

    DTIC Science & Technology

    2011-01-01

    interactions in conventional materials, particularly at high switching rates3. Here, we show that the recently discovered nonlocal optical behaviour of... power all-optical information processing in subwavelength-scale devices. An increased photon–photon interaction and, consequently, the nonlinear optical...behaviour of the optical properties of metals is very fast, ranging from tens of femtoseconds to a few picoseconds in different regimes, depending on the

  13. Collapse of optical wave arrested by cross-phase modulation in nonlinear metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Jinggui; Li, Ying; Xiang, Yuanjiang; Lei, Dajun; Zhang, Lifu

    2016-03-01

    In this article, we put forward a novel strategy to realize the management of wave collapse through designing probe-pump configuration where probe wave is assumed to propagate in the positive-index region of metamaterials (MMs), while pump wave is assumed to propagate in the negative-index region. We disclose that cross-phase modulation (XPM) in MMs as a new physical mechanism that can be used to arrest the collapse of probe wave in the positive-index region by copropagating it together with pump wave in the negative-index region. Further, we observe that pump wave will evolve into a ring while probe wave will develop a side lob in the wings during the course of coupled waves propagation, different from the corresponding counterpart in the ordinary positive-index materials (OMs) where they simultaneously exhibit the catastrophic self-focusing behavior. Meanwhile, we also discuss how to control the collapse of probe wave by adjusting intensity-detuned pump wave. Our analysis is performed by directly numerically solving the coupled nonlinear Schrödinger equations, as well as using the variational approximation, both showing consistent results. The finding demonstrates XPM as a specific physical mechanism in MMs can provide us unique opportunities unattainable in OMs to manipulate self-focusing of high-power laser.

  14. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-02-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.

  15. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation

    PubMed Central

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-01-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields. PMID:28205589

  16. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation.

    PubMed

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-02-13

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.

  17. Novel frontier in quantum metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj K.

    2016-09-01

    Metamaterials are artificial materials with exotic physical, chemical and optical properties not found in natural materials. In the past decade they have attracted monumental attention from the scientific community owing to their applications ranging from physics to engineering. However, the conventional solid-state metamaterial platforms suffer from inevitable optical loss, defects which severely curtain their application at few-photon level. The quest for quantum optical applications with metamaterial-based technologies has stimulated researchers to engineer novel lossless materials and construct new platforms. Recently, by integrating two important and timely realms of science - trapped atom physics and metamaterials -, we proposed and theoretically demonstrated a topologically reconfigurable and lossless quantum metamaterial. The atomic lattice quantum metamaterial is immune to aforementioned critical challenges and can be employed at a single-photon level. Moreover, in stark contrast to conventional solid-state platforms, optical lattices provide the necessary freedom to precisely localize (within few nanometer of uncertainty) a probe atom, inside the atomic lattice quantum metamaterial to harness its exotic optical properties. In addition to its aforementioned novel characteristics, our atomic lattice quantum metamaterial offers a unique degree of freedom, namely all-optical control on ultrafast time scales over the photonic topological transition of isofrequency contours using weak fields, not possible with previous solid-state platforms. In this work, we leverage the tools, techniques, scientific advances in the field of atomic, molecular and optical physics, integrated with the concepts used in metamaterials to propose and theoretically demonstrate a novel platform towards quantum metamaterial with novel functionalities by bringing together the best of two worlds.

  18. Transforming guided waves with metamaterial waveguide cores

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.

    2016-04-01

    Metamaterials make use of subwavelength building blocks to enhance our control on the propagation of light. To determine the required material properties for a given functionality, i.e., a set of desired light flows inside a metamaterial device, metamaterial designs often rely on a geometrical design tool known as transformation optics. In recent years, applications in integrated photonics motivated several research groups to develop two-dimensional versions of transformation optics capable of routing surface waves along graphene-dielectric and metal-dielectric interfaces. Although guided electromagnetic waves are highly relevant to applications in integrated optics, no consistent transformation-optical framework has so far been developed for slab waveguides. Indeed, the conventional application of transformation optics to dielectric slab waveguides leads to bulky three-dimensional devices with metamaterial implementations both inside and outside of the waveguide's core. In this contribution, we develop a transformationoptical framework that still results in thin metamaterial waveguide devices consisting of a nonmagnetic metamaterial core of varying thickness [Phys. Rev. B 93.8, 085429 (2016)]. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities: a beam bender, a beam splitter and a conformal lens. Our devices perform well on a qualitative (comparison of fields) and quantitative (comparison of transmitted power) level compared to their bulky counterparts. As a result, the geometrical toolbox of transformation optics may lead to a plethora of integrated metamaterial devices to route guided waves along optical chips.

  19. Acoustic metamaterial with negative parameter

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Yan, Fei; Gu, Hao; Li, Ying

    2014-03-01

    In this paper we present theoretical results on an acoustic metamaterial beam and a bar that exhibit negative effective mass and negative effective stiffness. A one-dimensional acoustic metamaterial with an array of spring-mass subsystems was fabricated. The frequency of the acoustic one dimensional metamaterial structure has the same form as that of the permittivity in metals due to the plasma oscillation. We also provide a theory to explain the simulation results. And we use the concept of conventional mechanical vibration absorbers to reveal the actual working mechanism of the acoustic metamaterials. We explain the two vibrate modes which are optical mode and acoustic mode in detail. When the incoming elastic wave in the acoustic metamaterials to resonate the integrated spring-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the beam and stop the wave propagation. Moreover, we explain the negative parameter in acoustic metamaterials.

  20. Predictive simulation of the optical properties of metal-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Belousov, S. A.; Bogdanova, M. V.; Valuev, I. A.; Deinega, A. V.; Eiderman, S. L.; Knizhnik, A. A.; Polischuk, I. Ya.; Lozovik, Yu. E.; Potapkin, B. V.; Uspenskii, Yu. A.; Kulatov, É. T.; Titov, A. A.; Zalyubovsky, S.; Ramamurthi, B.

    2009-11-01

    A method of predictive simulation of the optical properties of photonic crystals has been developed. Firstprinciple calculations of the optical properties have been performed for various materials over a wide temperature range. Absorption spectra have been calculated for tungsten opals with various geometric parameters. The influence of imperfections of a photonic crystal on its optical characteristics has been investigated. The calculation results agree with experimental data.

  1. Metamaterial, plasmonic and nanophotonic devices.

    PubMed

    Monticone, Francesco; Alù, Andrea

    2017-03-01

    The field of metamaterials has opened landscapes of possibilities in basic science, and a paradigm shift in the way we think about and design emergent material properties. In many scenarios, metamaterial concepts have helped overcome long-held scientific challenges, such as the absence of optical magnetism and the limits imposed by diffraction in optical imaging. As the potential of metamaterials, as well as their limitations, become clearer, these advances in basic science have started to make an impact on several applications in different areas, with far-reaching implications for many scientific and engineering fields. At optical frequencies, the alliance of metamaterials with the fields of plasmonics and nanophotonics can further advance the possibility of controlling light propagation, radiation, localization and scattering in unprecedented ways. In this review article, we discuss the recent progress in the field of metamaterials, with particular focus on how fundamental advances in this field are enabling a new generation of metamaterial, plasmonic and nanophotonic devices. Relevant examples include optical nanocircuits and nanoantennas, invisibility cloaks, superscatterers and superabsorbers, metasurfaces for wavefront shaping and wave-based analog computing, as well as active, nonreciprocal and topological devices. Throughout the paper, we highlight the fundamental limitations and practical challenges associated with the realization of advanced functionalities, and we suggest potential directions to go beyond these limits. Over the next few years, as new scientific breakthroughs are translated into technological advances, the fields of metamaterials, plasmonics and nanophotonics are expected to have a broad impact on a variety of applications in areas of scientific, industrial and societal significance.

  2. Metamaterial, plasmonic and nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Monticone, Francesco; Alù, Andrea

    2017-03-01

    The field of metamaterials has opened landscapes of possibilities in basic science, and a paradigm shift in the way we think about and design emergent material properties. In many scenarios, metamaterial concepts have helped overcome long-held scientific challenges, such as the absence of optical magnetism and the limits imposed by diffraction in optical imaging. As the potential of metamaterials, as well as their limitations, become clearer, these advances in basic science have started to make an impact on several applications in different areas, with far-reaching implications for many scientific and engineering fields. At optical frequencies, the alliance of metamaterials with the fields of plasmonics and nanophotonics can further advance the possibility of controlling light propagation, radiation, localization and scattering in unprecedented ways. In this review article, we discuss the recent progress in the field of metamaterials, with particular focus on how fundamental advances in this field are enabling a new generation of metamaterial, plasmonic and nanophotonic devices. Relevant examples include optical nanocircuits and nanoantennas, invisibility cloaks, superscatterers and superabsorbers, metasurfaces for wavefront shaping and wave-based analog computing, as well as active, nonreciprocal and topological devices. Throughout the paper, we highlight the fundamental limitations and practical challenges associated with the realization of advanced functionalities, and we suggest potential directions to go beyond these limits. Over the next few years, as new scientific breakthroughs are translated into technological advances, the fields of metamaterials, plasmonics and nanophotonics are expected to have a broad impact on a variety of applications in areas of scientific, industrial and societal significance.

  3. Metamaterials and Conformal Antenna Technologies

    DTIC Science & Technology

    2013-03-01

    1.0 MET AMA TERIALS BASED OPTICAL COMPONENTS .............................................. ...... 2 1.1 Superresolution Imaging Using a 3D...several entirely new optical components including superlenses with superresolution imaging, and lenses that achieve superfocussing, using...metamaterials. 1.1 SUPERRESOLUTION IMAGING USING A 3D MET AMA TERIAL NANOLENS Superresolution imaging beyond Abbe’s diffraction limit can be achieved by

  4. Negative refraction in semiconductor metamaterials.

    PubMed

    Hoffman, Anthony J; Alekseyev, Leonid; Howard, Scott S; Franz, Kale J; Wasserman, Dan; Podolskiy, Viktor A; Narimanov, Evgenii E; Sivco, Deborah L; Gmachl, Claire

    2007-12-01

    An optical metamaterial is a composite in which subwavelength features, rather than the constituent materials, control the macroscopic electromagnetic properties of the material. Recently, properly designed metamaterials have garnered much interest because of their unusual interaction with electromagnetic waves. Whereas nature seems to have limits on the type of materials that exist, newly invented metamaterials are not bound by such constraints. These newly accessible electromagnetic properties make these materials an excellent platform for demonstrating unusual optical phenomena and unique applications such as subwavelength imaging and planar lens design. 'Negative-index materials', as first proposed, required the permittivity, epsilon, and permeability, mu, to be simultaneously less than zero, but such materials face limitations. Here, we demonstrate a comparatively low-loss, three-dimensional, all-semiconductor metamaterial that exhibits negative refraction for all incidence angles in the long-wave infrared region and requires only an anisotropic dielectric function with a single resonance. Using reflection and transmission measurements and a comprehensive model of the material, we demonstrate that our material exhibits negative refraction. This is furthermore confirmed through a straightforward beam optics experiment. This work will influence future metamaterial designs and their incorporation into optical semiconductor devices.

  5. Dispersion management with metamaterials

    DOEpatents

    Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.

    2017-03-07

    An apparatus, system, and method to counteract group velocity dispersion in fibers, or any other propagation of electromagnetic signals at any wavelength (microwave, terahertz, optical, etc.) in any other medium. A dispersion compensation step or device based on dispersion-engineered metamaterials is included and avoids the need of a long section of specialty fiber or the need for Bragg gratings (which have insertion loss).

  6. Electrically tunable infrared metamaterial devices

    SciTech Connect

    Brener, Igal; Jun, Young Chul

    2015-07-21

    A wavelength-tunable, depletion-type infrared metamaterial optical device is provided. The device includes a thin, highly doped epilayer whose electrical permittivity can become negative at some infrared wavelengths. This highly-doped buried layer optically couples with a metamaterial layer. Changes in the transmission spectrum of the device can be induced via the electrical control of this optical coupling. An embodiment includes a contact layer of semiconductor material that is sufficiently doped for operation as a contact layer and that is effectively transparent to an operating range of infrared wavelengths, a thin, highly doped buried layer of epitaxially grown semiconductor material that overlies the contact layer, and a metallized layer overlying the buried layer and patterned as a resonant metamaterial.

  7. Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color

    NASA Astrophysics Data System (ADS)

    Dellinger, Jean; Van Do, K.; Le Roux, Xavier; de Fornel, Frédérique; Cassan, Eric; Cluzel, Benoît

    2012-10-01

    Using a scanning near-field optical microscope operating with a hyperspectral detection scheme, we report the direct observation of the mirage effect within an on-chip integrated artificial material made of a two dimensional graded photonic crystal. The light rainbow due to the material dispersion is quantified experimentally and quantitatively compared to three dimensional plane wave assisted Hamiltonian optics predictions of light propagation.

  8. Radar illusion via metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  9. Multiscale metallic metamaterials

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoyu; Smith, William; Jackson, Julie; Moran, Bryan; Cui, Huachen; Chen, Da; Ye, Jianchao; Fang, Nicholas; Rodriguez, Nicholas; Weisgraber, Todd; Spadaccini, Christopher M.

    2016-10-01

    Materials with three-dimensional micro- and nanoarchitectures exhibit many beneficial mechanical, energy conversion and optical properties. However, these three-dimensional microarchitectures are significantly limited by their scalability. Efforts have only been successful only in demonstrating overall structure sizes of hundreds of micrometres, or contain size-scale gaps of several orders of magnitude. This results in degraded mechanical properties at the macroscale. Here we demonstrate hierarchical metamaterials with disparate three-dimensional features spanning seven orders of magnitude, from nanometres to centimetres. At the macroscale they achieve high tensile elasticity (>20%) not found in their brittle-like metallic constituents, and a near-constant specific strength. Creation of these materials is enabled by a high-resolution, large-area additive manufacturing technique with scalability not achievable by two-photon polymerization or traditional stereolithography. With overall part sizes approaching tens of centimetres, these unique nanostructured metamaterials might find use in a broad array of applications.

  10. Realization of tellurium-based all dielectric optical metamaterials using a multi-cycle deposition-etch process

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Ihlefeld, Jon F.; Dominguez, Jason; Gonzales, Edward F.; Eric Bower, John; Bruce Burckel, D.; Sinclair, Michael B.; Brener, Igal

    2013-04-01

    Tellurium (Te) dielectric resonator metamaterials for thermal infrared applications were fabricated using a multi-cycle deposition-etch process that circumvents pinch-off issues during deposition. Deposition and etching of Te were studied in detail. Metamaterial samples with varying resonator dimensions were fabricated using this technique. All the samples showed two transmission minima corresponding to magnetic and electric dipole resonances. Longer resonant wavelengths were observed as the resonator dimension was increased. Observation of spectral overlap between magnetic and electric resonances gives us the potential opportunity to realize a negative refractive index material.

  11. Low-Loss and Broadband Metamaterials for Negative Index and Transformational Optics Applications

    DTIC Science & Technology

    2012-05-22

    the temporal electric field, multiplying by ǫ(ω), and then inverse Fourier transforming the result. The quantities ∂wE/∂t and ∂qE/∂t were formed...force occurs in a material with gain. Imaging and antenna opportunities are described for metal-insulator stack lenses, and analytic models are...and Transformational Optics Applications Award Number: W911NF-10-1-0492 Kevin J. Webb School of Electrical and Computer Engineering Purdue University

  12. Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials.

    PubMed

    Sikdar, Debabrata; Hasan, Shakeeb B; Urbakh, Michael; Edel, Joshua B; Kornyshev, Alexei A

    2016-07-27

    Mirror-on-mirror platforms based on arrays of metallic nanoparticles, arranged top-down or self-assembled on a thin metallic film, have interesting optical properties. Interaction of localized surface-plasmons in nanoparticles with propagating surface-plasmons in the film underpins the exotic features of such platforms. Here, we present a comprehensive theoretical framework which emulates such a system using a five-layer-stack model and calculate its reflectance, transmittance, and absorbance spectra. The theory rests on dipolar quasi-static approximations incorporating image-forces and effective medium theory. Systematically tested against full-wave simulations, this simple approach proves to be adequate within its obvious applicability limits. It is used to study optical signals as a function of nanoparticle dimensions, interparticle separation, metal film thickness, the gap between the film and nanoparticles, and incident light characteristics. Several peculiar features are found, e.g., quenching of reflectivity in certain frequency domains or shift of the reflectivity spectra. Schemes are proposed to tailor those as functions of the mentioned parameters. Calculating the system's optical responses in seconds, as compared to much longer running simulations, this theory helps to momentarily unravel the role of each system parameter in light reflection, transmission, and absorption, facilitating thereby the design and optimisation of novel mirror-on-mirror systems.

  13. Pattern formation without diffraction matching in optical parametric oscillators with a metamaterial.

    PubMed

    Tassin, Philippe; Van der Sande, Guy; Veretennicoff, Irina; Kockaert, Pascal; Tlidi, Mustapha

    2009-05-25

    We consider a degenerate optical parametric oscillator containing a left-handed material. We show that the inclusion of a left-handed material layer allows for controlling the strength and sign of the diffraction coefficient at either the pump or the signal frequency. Subsequently, we demonstrate the existence of stable dissipative structures without diffraction matching, i.e., without the usual relationship between the diffraction coefficients of the signal and pump fields. Finally, we investigate the size scaling of these light structures with decreasing diffraction strength.

  14. Manipulating Complex Light with Metamaterials

    PubMed Central

    Zeng, Jinwei; Wang, Xi; Sun, Jingbo; Pandey, Apra; Cartwright, Alexander N.; Litchinitser, Natalia M.

    2013-01-01

    Recent developments in the field of metamaterials have revealed unparalleled opportunities for “engineering” space for light propagation; opening a new paradigm in spin- and quantum-related phenomena in optical physics. Here we show that unique optical properties of metamaterials (MMs) open unlimited prospects to “engineer” light itself. We propose and demonstrate for the first time a novel way of complex light manipulation in few-mode optical fibers using optical MMs. Most importantly, these studies highlight how unique properties of MMs, namely the ability to manipulate both electric and magnetic field components of electromagnetic (EM) waves, open new degrees of freedom in engineering complex polarization states of light at will, while preserving its orbital angular momentum (OAM) state. These results lay the first steps in manipulating complex light in optical fibers, likely providing new opportunities for high capacity communication systems, quantum information, and on-chip signal processing. PMID:24084836

  15. Perfect selective metamaterial solar absorbers.

    PubMed

    Wang, Hao; Wang, Liping

    2013-11-04

    In this work, we numerically investigate the radiative properties of metamaterial nanostructures made of two-dimensional tungsten gratings on a thin dielectric spacer and an opaque tungsten film from UV to mid-infrared region as potential selective solar absorbers. The metamaterial absorber with single-sized tungsten patches exhibits high absorptance in the visible and near-infrared region due to several mechanisms such as surface plasmon polaritons, magnetic polaritons, and intrinsic bandgap absorption of tungsten. Geometric effects on the resonance wavelengths and the absorptance spectra are studied, and the physical mechanisms are elucidated in detail. The absorptance could be further enhanced in a broader spectral range with double-sized metamaterial absorbers. The total solar absorptance of the optimized metamaterial absorbers at normal incidence could be more than 88%, while the total emittance is less than 3% at 100°C, resulting in total photon-to-heat conversion efficiency of 86% without any optical concentration. Moreover, the metamaterial solar absorbers exhibit quasi-diffuse behaviors as well as polarization independence. The results here will facilitate the design of novel highly efficient solar absorbers to enhance the performance of various solar energy conversion systems.

  16. Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances

    NASA Astrophysics Data System (ADS)

    Zhu, Hai; Yi, Fei; Cubukcu, Ertugrul

    2016-11-01

    Metamaterials are artificial materials that exhibit unusual properties for electromagnetic and sound waves. The quanta, namely photons and phonons, of these waves interact resonantly with these exotic man-made materials enabling many applications. For instance, resonant light absorption in photonic metamaterials can efficiently convert optical energy into heat based on the photothermal effect. Here, we present a plasmonic metamaterial that simultaneously supports thermomechanically coupled optical and mechanical resonances for controlling mechanical damping with light. In this metamaterial absorber with voltage-tunable Fano resonances, we experimentally achieve optically pumped coherent mechanical oscillations based on a plasmomechanical parametric gain mechanism over an ∼4 THz bandwidth. Through the reverse effect, optical damping of mechanical resonance is also achieved. Our results provide a metamaterial-based approach for optical manipulation of the dynamics of mechanical oscillators.

  17. Controlling metamaterial resonances with light

    SciTech Connect

    Chakrabarti, Sangeeta; Ramakrishna, S. Anantha; Wanare, Harshawardhan

    2010-08-15

    We investigate the use of coherent optical fields as a means of dynamically controlling the resonant behavior of a variety of composite metamaterials, wherein the metamaterial structures are embedded in a dispersive dielectric medium. Control and switching are implemented by coherently driving the resonant permittivity of the embedding medium with applied optical radiation. The effect of embedding split ring resonators in a frequency-dispersive medium with Lorentz-like dispersion or with dispersion engineered by electromagnetically induced transparency (EIT) is manifested in the splitting of the negative-permeability band, the modified (frequency-dependent) filling fractions, and the dissipation factors. The modified material parameters are strongly linked to the resonant frequencies of the medium, and for an embedding medium exhibiting EIT also to the strength and detuning of the control field. The robustness of control against the deleterious influence of dissipation associated with the metallic structures as well as the inhomogeneous broadening due to structural imperfections is demonstrated. Studies on plasmonic metamaterials that consist of metallic nanorods arranged in loops and exhibit a collective magnetic response at optical frequencies are presented. Control and switching in this class of plasmonic nanorod metamaterials is shown to be possible, for example, by embedding these arrays in a Raman-active liquid like CS{sub 2} and utilizing the inverse Raman effect.

  18. Hong-Ou-Mandel interference mediated by the magnetic plasmon waves in a three-dimensional optical metamaterial.

    PubMed

    Wang, S M; Mu, S Y; Zhu, C; Gong, Y X; Xu, P; Liu, H; Li, T; Zhu, S N; Zhang, X

    2012-02-27

    We studied the quantum properties of magnetic plasmon waves in a three-dimensional coupled metamaterial. A Hong-Ou-Mandel dip of two-photon interference with a visibility of 86 ± 6.0% was explicitly observed, when the sample was inserted into one of the two arms of the interferometer. This meant that the quantum interference property survived in such a magnetic plasmon wave-mediated transmission process, thus testifying the magnetic plasmon waves owned a quantum nature. A full quantum model was utilized to describe our experimental results. The results showed that the metamaterials could not only steer the classical light but also the non-classical light and they might have potential application in the future quantum information.

  19. Hot carrier metamaterial detectors and energy converters

    NASA Astrophysics Data System (ADS)

    Krayer, Lisa; Munday, Jeremy N.

    Metamaterials can be used to manipulate the flow of light in ways not typically available with traditional materials. Beyond their optical properties, metamaterials can be used as the basis for optoelectronic devices through the incorporation of a metal-semiconductor interface. The absorbed radiation in the metal can excite surface plasmons, which nonradiatively decay into hot electrons or holes that can be injected into the base semiconductor and contribute to photocurrent generation. In this talk, we will present our latest work on metamaterial photo-detectors and solar energy converters.

  20. Interaction between graphene and metamaterials: split rings vs. wire pairs.

    PubMed

    Zou, Yanhong; Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M

    2012-05-21

    We have recently shown that graphene is unsuitable to replace metals in the current-carrying elements of metamaterials. At the other hand, experiments have demonstrated that a layer of graphene can modify the optical response of a metal-based metamaterial. Here we study this electromagnetic interaction between metamaterials and graphene. We show that the weak optical response of graphene can be modified dramatically by coupling to the strong resonant fields in metallic structures. A crucial element determining the interaction strength is the orientation of the resonant fields. If the resonant electric field is predominantly parallel to the graphene sheet (e.g., in a complementary split-ring metamaterial), the metamaterial's resonance can be strongly damped. If the resonant field is predominantly perpendicular to the graphene sheet (e.g., in a wire-pair metamaterial), no significant interaction exists.

  1. Reconfiguring photonic metamaterials with currents and magnetic fields

    SciTech Connect

    Valente, João Ou, Jun-Yu; Plum, Eric; Youngs, Ian J.; Zheludev, Nikolay I.

    2015-03-16

    We demonstrate that spatial arrangement and optical properties of metamaterial nanostructures can be controlled dynamically using currents and magnetic fields. Mechanical deformation of metamaterial arrays is driven by both resistive heating of bimorph nanostructures and the Lorentz force that acts on charges moving in a magnetic field. With electrically controlled transmission changes of up to 50% at sub-mW power levels, our approaches offer high contrast solutions for dynamic control of metamaterial functionalities in optoelectronic devices.

  2. Chains of Metamaterials for Guiding and Antenna Applications

    DTIC Science & Technology

    2011-04-01

    Italy, April 11-15, 2011, (invited talk). C2. Y. Zhao, and A. Alù, “Broadband Circular Polarizer Formed by Stacked Plasmonic Metasurfaces ,” in...in the Homogenization of Metamaterials and Metasurfaces ,” in Proceedings of Metamaterials 2010, Karlsruhe, Germany, September 16-19, 2010, (invited...talk). C6. P. Y. Chen, and A. Alù, “Optical Metamaterials and Metasurfaces Formed by Nanoantennas Loaded by Nonlinear Materials,” in Proceedings of

  3. Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials.

    PubMed

    Ao, Xianyu; Chan, C T

    2008-02-01

    A kind of two-dimensional acoustic metamaterial is designed so that it exhibits strong anisotropy along two orthogonal directions. Based on the rectangular equal frequency contour of this metamaterial, magnifying lenses for acoustic waves, analogous to electromagnetic hyperlenses demonstrated recently in the optical regime, can be realized. Such metamaterial may offer applications in imaging for systems that obey scalar wave equations.

  4. Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry

    NASA Astrophysics Data System (ADS)

    Clemmen, Stéphane; Hermans, Artur; Solano, Eduardo; Dendooven, Jolien; Koskinen, Kalle; Kauranen, Martti; Brainis, Edouard; Detavernier, Christophe; Baets, Roel

    2015-11-01

    We report the fabrication of artificial unidimensional crystals exhibiting an effective bulk second-order nonlinearity. The crystals are created by cycling atomic layer deposition of three dielectric materials such that the resulting metamaterial is non-centrosymmetric in the direction of the deposition. Characterization of the structures by second-harmonic generation Maker-fringe measurements shows that the main component of their nonlinear susceptibility tensor is about 5 pm/V which is comparable to well-established materials and more than an order of magnitude greater than reported for a similar crystal [1-Alloatti et al, arXiv:1504.00101[cond-mat.mtrl- sci

  5. Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials

    PubMed Central

    Andryieuski, Andrei; Kuznetsova, Svetlana M.; Zhukovsky, Sergei V.; Kivshar, Yuri S.; Lavrinenko, Andrei V.

    2015-01-01

    We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric resonances in a metamaterial consisting of periodically positioned water-filled reservoirs. The proposed water-based metamaterials can find applications not only as cheap and ecological microwave devices, but also in optical and terahertz metamaterials prototyping and educational lab equipment. PMID:26311410

  6. Nonlinear Light-Matter Interactions in Metamaterials

    NASA Astrophysics Data System (ADS)

    O'Brien, Kevin Patrick

    Metamaterials possess extraordinary linear optical properties never observed in natural materials such as a negative refractive index, enabling exciting applications such as super resolution imaging and cloaking. In this thesis, we explore the equally extraordinary nonlinear properties of metamaterials. Nonlinear optics, the study of light-matter interactions where the optical fields are strong enough to change material properties, has fundamental importance to physics, chemistry, and material science as a non-destructive probe of material properties and has important technological applications such as entangled photon generation and frequency conversion. Due to their ability to manipulate both linear and nonlinear light matter interactions through sub-wavelength structuring, metamaterials are a promising direction for both fundamental and applied nonlinear optics research. We perform the first experiments on nonlinear propagation in bulk zero and negative index optical metamaterials and demonstrate that a zero index material can phase match four wave mixing processes in ways not possible in finite index materials. In addition, we demonstrate the ability of nonlinear scattering theory to describe the geometry dependence of second and third harmonic generation in plasmonic nanostructures. As an application of nonlinear metamaterials, we propose a phase matching technique called "resonant phase matching" to increase the gain and bandwidth of Josephson junction traveling wave parametric amplifiers. With collaborators, we demonstrate a best in class amplifier for superconducting qubit readout--over 20 dB gain with near quantum limited noise performance with a bandwidth and dynamic range an order of magnitude larger than alternative devices. In conclusion, we have demonstrated several ways in which nonlinear metamaterials surpass their natural counterparts. We look forward to the future of the field where nonlinear and quantum metamaterials will enable further new

  7. Active terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong

    2009-01-01

    We demonstrate planar terahertz metamaterial devices enabling actively controllable transmission amplitude, phase, or frequency at room temperature via carrier depletion or photoexcitation in the semiconductor substrate or in semiconductor materials incorporated into the metamaterial structure.

  8. Hybrid metamaterials for electrically triggered multifunctional control

    PubMed Central

    Liu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H.

    2016-01-01

    Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems. PMID:27807342

  9. Photonic simulation of topological excitations in metamaterials

    PubMed Central

    Tan, Wei; Sun, Yong; Chen, Hong; Shen, Shun-Qing

    2014-01-01

    Condensed matter systems with topological order and metamaterials with left-handed chirality have attracted recently extensive interests in the fields of physics and optics. So far the topological order and chirality of electromagnetic wave are two independent concepts, and there is no work to address their connection. Here we propose to establish the relation between the topological order in condensed matter systems and the chirality in metamaterials, by mapping explicitly Maxwell's equations to the Dirac equation in one dimension. We report an experimental implement of the band inversion in the Dirac equation, which accompanies change of chirality of electromagnetic wave in metamaterials, and the first microwave measurement of topological excitations and topological phases in one dimension. Our finding provides a proof-of-principle example that electromagnetic wave in the metamaterials can be used to simulate the topological order in condensed matter systems and quantum phenomena in relativistic quantum mechanics in a controlled laboratory environment. PMID:24452532

  10. Dielectric Metamaterials with Toroidal Dipolar Response

    NASA Astrophysics Data System (ADS)

    Basharin, Alexey A.; Kafesaki, Maria; Economou, Eleftherios N.; Soukoulis, Costas M.; Fedotov, Vassili A.; Savinov, Vassili; Zheludev, Nikolay I.

    2015-01-01

    Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here, we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. We show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials' macroscopic response. Because of the unique field configuration of the toroidal mode, the proposed metamaterials could serve as a platform for sensing or enhancement of light absorption and optical nonlinearities.

  11. Photonic simulation of topological excitations in metamaterials

    NASA Astrophysics Data System (ADS)

    Tan, Wei; Sun, Yong; Chen, Hong; Shen, Shun-Qing

    2014-01-01

    Condensed matter systems with topological order and metamaterials with left-handed chirality have attracted recently extensive interests in the fields of physics and optics. So far the topological order and chirality of electromagnetic wave are two independent concepts, and there is no work to address their connection. Here we propose to establish the relation between the topological order in condensed matter systems and the chirality in metamaterials, by mapping explicitly Maxwell's equations to the Dirac equation in one dimension. We report an experimental implement of the band inversion in the Dirac equation, which accompanies change of chirality of electromagnetic wave in metamaterials, and the first microwave measurement of topological excitations and topological phases in one dimension. Our finding provides a proof-of-principle example that electromagnetic wave in the metamaterials can be used to simulate the topological order in condensed matter systems and quantum phenomena in relativistic quantum mechanics in a controlled laboratory environment.

  12. Hybrid metamaterials for electrically triggered multifunctional control

    NASA Astrophysics Data System (ADS)

    Liu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H.

    2016-10-01

    Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems.

  13. Design of Metamaterials for control of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Koschny, Thomas

    2014-03-01

    Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response

  14. Hyperbolic metamaterials: fundamentals and applications.

    PubMed

    Shekhar, Prashant; Atkinson, Jonathan; Jacob, Zubin

    2014-01-01

    Metamaterials are nano-engineered media with designed properties beyond those available in nature with applications in all aspects of materials science. In particular, metamaterials have shown promise for next generation optical materials with electromagnetic responses that cannot be obtained from conventional media. We review the fundamental properties of metamaterials with hyperbolic dispersion and present the various applications where such media offer potential for transformative impact. These artificial materials support unique bulk electromagnetic states which can tailor light-matter interaction at the nanoscale. We present a unified view of practical approaches to achieve hyperbolic dispersion using thin film and nanowire structures. We also review current research in the field of hyperbolic metamaterials such as sub-wavelength imaging and broadband photonic density of states engineering. The review introduces the concepts central to the theory of hyperbolic media as well as nanofabrication and characterization details essential to experimentalists. Finally, we outline the challenges in the area and offer a set of directions for future work.

  15. Structuring Light by Concentric-Ring Patterned Magnetic Metamaterial Cavities.

    PubMed

    Zeng, Jinwei; Gao, Jie; Luk, Ting S; Litchinitser, Natalia M; Yang, Xiaodong

    2015-08-12

    Ultracompact and tunable beam converters pose a significant potential for modern optical technologies ranging from classical and quantum communication to optical manipulation. Here we design and demonstrate concentric-ring patterned structures of magnetic metamaterial cavities capable of tailoring both polarization and phase of light by converting circularly polarized light into a vector beam with an orbital angular momentum. We experimentally illustrate the realization of both radially and azimuthally polarized vortex beams using such concentric-ring patterned magnetic metamaterials. These results contribute to the advanced complex light manipulation with optical metamaterials, making it one step closer to realizing the simultaneous control of polarization and orbital angular momentum of light on a chip.

  16. Analysis of magneto-optical properties for three-dimensional photonic crystals in high-symmetry arrangement doped by metamaterials and uniaxial materials

    NASA Astrophysics Data System (ADS)

    Yu, Bing; Li, Heming; Wang, Shenyun; Wan, Fayu; Ge, Junxiang

    2016-11-01

    In this paper, we use a modified plane wave expansion (PWE) method to investigate the properties of photonic band gaps (PBGs) for the extraordinary mode in the three-dimensional (3D) photonic crystals (PCs) which are composed of the anisotropic dielectric (the uniaxial materials) spheres immersed in the homogeneous metamaterials (epsilon-negative materials) background with high-symmetry (body-centered-cubic) lattices, as the magneto-optical Voigt effects are considered. The equations for calculating the PBGs in the first irreducible Brillouin zone are theoretically derived. It is numerically illustrated that the anisotropic PBGs and two flattened band regions can be achieved. The influences of the ordinary-refractive index, extraordinary-refractive index, filling factor of dielectric spheres, electronic plasma frequency and cyclotron frequency on the magneto-optical properties of such 3D PCs also are studied in detail, respectively, and some corresponding physical explanations are given. The numerical results demonstrate that the anisotropy can open partial band gaps in the proposed PCs, and the complete PBGs can be obtained compared with the conventional PCs only containing the isotropic material with similar structures. The bandwidths of PBGs can be tuned by introducing the epsilon-negative materials into such PCs containing the uniaxial materials. The anisotropic PBGs can be manipulated by the parameters as mentioned above. As the proposed PCs with high-symmetry lattices, the complete PBGs can be obtained by introducing the uniaxial materials.

  17. Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry.

    PubMed

    Clemmen, Stéphane; Hermans, Artur; Solano, Eduardo; Dendooven, Jolien; Koskinen, Kalle; Kauranen, Martti; Brainis, Edouard; Detavernier, Christophe; Baets, Roel

    2015-11-15

    We report the fabrication of artificial unidimensional crystals exhibiting an effective bulk second-order nonlinearity. The crystals are created by cycling atomic layer deposition of three dielectric materials such that the resulting metamaterial is noncentrosymmetric in the direction of the deposition. Characterization of the structures by second-harmonic generation Maker-fringe measurements shows that the main component of their nonlinear susceptibility tensor is about 5 pm/V, which is comparable to well-established materials and more than an order of magnitude greater than reported for a similar crystal [Appl. Phys. Lett.107, 121903 (2015)APPLAB0003-695110.1063/1.4931492]. Our demonstration opens new possibilities for second-order nonlinear effects on CMOS-compatible nanophotonic platforms.

  18. Active terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; O' Hara, John F; Taylor, Antoinette J

    2009-01-01

    In this paper we present an overview of research in our group in terahertz (THz) metamaterials and their applications. We have developed a series of planar metamaterials operating at THz frequencies, all of which exhibit a strong resonant response. By incorporating natural materials, e.g. semiconductors, as the substrates or as critical regions of metamaterial elements, we are able to effectively control the metamaterial resonance by the application of external stimuli, e.g., photoexcitation and electrical bias. Such actively controllable metamaterials provide novel functionalities for solid-state device applications with unprecedented performance, such as THz spectroscopy, imaging, and many others.

  19. Interaction between graphene and metamaterials: split rings vs. wire pairs

    SciTech Connect

    Zou, Yanhong; Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas

    2012-05-14

    We have recently shown that graphene is unsuitable to replace metals in the current-carrying elements of metamaterials. At the other hand, experiments have demonstrated that a layer of graphene can modify the optical response of a metal-based metamaterial. Here we study this electromagnetic interaction between metamaterials and graphene. We show that the weak optical response of graphene can be modified dramatically by coupling to the strong resonant fields in metallic structures. A crucial element determining the interaction strength is the orientation of the resonant fields. If the resonant electric field is predominantly parallel to the graphene sheet (e.g., in a complementary split-ring metamaterial), the metamaterial’s resonance can be strongly damped. If the resonant field is predominantly perpendicular to the graphene sheet (e.g., in a wire-pair metamaterial), no significant interaction exists.

  20. Experimental demonstration of metamaterial "multiverse" in a ferrofluid.

    PubMed

    Smolyaninov, Igor I; Yost, Bradley; Bates, Evan; Smolyaninova, Vera N

    2013-06-17

    Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2 + 1 dimensional Minkowski spacetime. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm.

  1. Distillation of photon entanglement using a plasmonic metamaterial.

    PubMed

    Asano, Motoki; Bechu, Muriel; Tame, Mark; Kaya Özdemir, Şahin; Ikuta, Rikizo; Güney, Durdu Ö; Yamamoto, Takashi; Yang, Lan; Wegener, Martin; Imoto, Nobuyuki

    2015-12-16

    Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks.

  2. Distillation of photon entanglement using a plasmonic metamaterial

    PubMed Central

    Asano, Motoki; Bechu, Muriel; Tame, Mark; Kaya Özdemir, Şahin; Ikuta, Rikizo; Güney, Durdu Ö.; Yamamoto, Takashi; Yang, Lan; Wegener, Martin; Imoto, Nobuyuki

    2015-01-01

    Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks. PMID:26670790

  3. Photoexcited broadband blueshift tunable perfect terahertz metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Xu, Zong-Cheng; Gao, Run-Mei; Ding, Chun-Feng; Wu, Liang; Zhang, Ya-Ting; Yao, Jian-Quan

    2015-04-01

    We present an demonstration of optically tunable metamaterial absorber at terahertz frequencies. The metamaterials are based on two split ring resonators (SSRs) that can be tuned by integrating photoconductive silicon into the metamaterial unit cell. Filing the gap between the resonator arm with a semiconductor (silicon), leads to easy modification of its optical response through a pump beam which changes conductivity of Si. The conductivity of silicon is a function of incident pump power. Therefore, the conductivity of silicon is tuned effectively by applying an external pump power. We demonstrate that a blueshift of the resonance frequency under illumination can be accomplished and a broadband switch of absorption frequencies varying from 0.68 to 1.41 THz, with a tuning range of 51.8%. The realization of broadband blueshift tunable metamaterial absorber offers opportunities for achieving switchable metamaterial absorber and could be implemented in terahertz devices to achieve additional functionalities.

  4. Microelectromechanically tunable multiband metamaterial with preserved isotropy.

    PubMed

    Pitchappa, Prakash; Ho, Chong Pei; Qian, You; Dhakar, Lokesh; Singh, Navab; Lee, Chengkuo

    2015-06-26

    We experimentally demonstrate a micromachined reconfigurable metamaterial with polarization independent characteristics for multiple resonances in terahertz spectral region. The metamaterial unit cell consists of eight out-of-plane deformable microcantilevers placed at each corner of an octagon ring. The octagon shaped unit cell geometry provides the desired rotational symmetry, while the out-of-plane movable cantilevers preserves the symmetry at different configurations of the metamaterial. The metamaterial is shown to provide polarization independent response for both electrical inductive-capacitive (eLC) resonance and dipolar resonance at all states of actuation. The proposed metamaterial has a switching range of 0.16 THz and 0.37 THz and a transmission intensity change of more than 0.2 and 0.7 for the eLC and dipolar resonances, respectively for both TE and TM modes. Further optimization of the metal layer thickness, provides an improvement of up to 80% modulation at 0.57 THz. The simultaneously tunable dual band isotropic metamaterial will enable the realization of high performance electro-optic devices that would facilitate numerous terahertz applications such as compressive terahertz imaging, miniaturized terahertz spectroscopy and next generation high speed wireless communication possible in the near future.

  5. Microelectromechanically tunable multiband metamaterial with preserved isotropy

    PubMed Central

    Pitchappa, Prakash; Ho, Chong Pei; Qian, You; Dhakar, Lokesh; Singh, Navab; Lee, Chengkuo

    2015-01-01

    We experimentally demonstrate a micromachined reconfigurable metamaterial with polarization independent characteristics for multiple resonances in terahertz spectral region. The metamaterial unit cell consists of eight out-of-plane deformable microcantilevers placed at each corner of an octagon ring. The octagon shaped unit cell geometry provides the desired rotational symmetry, while the out-of-plane movable cantilevers preserves the symmetry at different configurations of the metamaterial. The metamaterial is shown to provide polarization independent response for both electrical inductive-capacitive (eLC) resonance and dipolar resonance at all states of actuation. The proposed metamaterial has a switching range of 0.16 THz and 0.37 THz and a transmission intensity change of more than 0.2 and 0.7 for the eLC and dipolar resonances, respectively for both TE and TM modes. Further optimization of the metal layer thickness, provides an improvement of up to 80% modulation at 0.57 THz. The simultaneously tunable dual band isotropic metamaterial will enable the realization of high performance electro-optic devices that would facilitate numerous terahertz applications such as compressive terahertz imaging, miniaturized terahertz spectroscopy and next generation high speed wireless communication possible in the near future. PMID:26115416

  6. Direct Writing of Metamaterials Using Atomic Calligraphy

    NASA Astrophysics Data System (ADS)

    Stark, Thomas; Reeves, Jeremy; Barrett, Lawrence; Lally, Richard; Bishop, David

    The trend toward creating metamaterials with spectral features at shorter wavelengths demands a concomitant decrease in the minimum feature size. Many fabrication techniques have been developed to meet this challenge, all of which must address competition between resolution and throughput. We fabricate metamaterials using atomic calligraphy, a technique that tackles both the throughput and resolution challenges, and present optical characterization of the metamaterials we fabricate. Atomic calligraphy is a microelectromechanical systems (MEMS) based moveable stencil used to fabricate nanostructures. We increase the throughput of this technique by using many stencils in parallel and work toward further enhancing throughput by using a stage system to step the MEMS and repeat fabrication over large areas. Finally, we characterize the infrared response of the metamaterials that we fabricated. This technology can be used to fabricate metamaterials on a host of substrates, including those that are chemically incompatible with or have topological features that preclude them from use with conventional nanofabrication techniques, such as mechanical scaffolds that enable tuning of the metamaterial spectral response. This work is funded by the DARPA A2P Program.

  7. Engineering electromagnetic metamaterials and methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yen, Tajen

    2005-07-01

    Electromagnetic metamaterials represent a group of artificial structures, whose dimensions are smaller than subwavelength. Due to electromagnetic metamaterials' collective response to the applied fields, they can exhibit unprecedented properties to fascinate researchers' eyes. For instance, artificial magnetism above terahertz frequencies and beyond, negative magnetic response, and artificial plasma lower than ultraviolet and visible frequencies. Our goal is to engineer those novel properties aforementioned at interested frequency regions and further optimize their performance. To fulfill this task, we developed exclusive micro/nano fabrication techniques to construct magnetic metamaterials (i.e., split-ring resonators and L-shaped resonators) and electric metamaterials (i.e., plasmonic wires) and also employed Taguchi method to study the optimal design of electromagnetic metamaterials. Moreover, by integrating magnetic and electric metamaterials, we have been pursuing to fabricate so-called negative index media---the Holy Grail enables not only to reverse conventional optical rules such as Snell's law, Doppler shift, and Cerenkov radiation, but also to smash the diffraction limit to realize the superlensing effect. In addition to electromagnetic metamaterials, in this dissertation we also successfully miniaturize silicon-based methanol fuel cells by means of micro-electrical-mechanical-system technique, which promise to provide an integrated micro power source with excellent performance. Our demonstrated power density and energy density are one of the highest in reported documents. Finally, based on the results of metamaterials and micro fuel cells, we intend to supply building blocks to complete an omnipotent device---a system with sensing, communication, computing, power, control, and actuation functions.

  8. Propagation characteristics of silver and tungsten subwavelength annular aperture generated sub-micron non-diffraction beams.

    PubMed

    Cheng, Tsung-Dar; Lin, Ding-Zheng; Yeh, Jyi-Tyan; Liu, Jonq-Min; Yeh, Chau-Shioung; Lee, Chih-Kung

    2009-03-30

    We examined the optical properties such as propagation modes, focal length, side lobes, etc. of metallic subwavelength annular apertures (SAA) and used finite-difference time-domain (FDTD) simulation to compare our experimental findings. Using two different metals, silver and tungsten, we examined the different optical transmission properties of the two metallic SAA structures. The far-field propagation of the silver SAA structure was found to be a type of quasi-Bessel beam when compared with a quasi-Bessel beam generated by a perfect axicon. The propagation characteristics of these two beams were found to match qualitatively. The far-field transmitted light generated by the silver SAA structure was found to possess a 390 nm sub-micron focal spot with a 24 microm depth of focus, which was much smaller than the focal spot generated by a perfect axicon. We also found that a silver SAA structure can generate a sub-micron quasi- Bessel beam that has a much lower far-field side-lobe when compared to that of non-diffraction beams generated by a tungsten SAA structure.

  9. Nonlinear metamaterials for holography

    NASA Astrophysics Data System (ADS)

    Almeida, Euclides; Bitton, Ora; Prior, Yehiam

    2016-08-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency--the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed.

  10. Nonlinear metamaterials for holography

    PubMed Central

    Almeida, Euclides; Bitton, Ora

    2016-01-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency—the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed. PMID:27545581

  11. Superconductors and Complex Transition Metal Oxides for Tunable THz Plasmonic Metamaterials

    SciTech Connect

    Singh, Ranjan; Xiong, Jie; Azad, Md A.; Yang, Hao; Trugman, Stuart A.; Jia, Quanxi; Taylor, Antoinette; Chen, Houtong

    2012-07-13

    The outline of this presentation are: (1) Motivation - Non-tunability of metal metamaterials; (2) Superconductors for temperature tunable metamaterials; (3) Ultrafast optical switching in superconductor metamaterials; (4) Controlling the conductivity with infrared pump beam; (5) Complex metal oxides as active substrates - Strontium Titanate; and (6) Conclusion. Conclusions are: (1) High Tc superconductors good for tunable and ultrafast metamaterials; (2) Large frequency and amplitude tunability in ultrathin superconductor films; (3) Such tunable properties cannot be accessed using metals; (4) Complex metal oxides can be used as active substrates - large tunability; (5) Complex oxides fail to address the issue of radiation losses in THz metamaterials.

  12. Topological mechanics of gyroscopic metamaterials.

    PubMed

    Nash, Lisa M; Kleckner, Dustin; Read, Alismari; Vitelli, Vincenzo; Turner, Ari M; Irvine, William T M

    2015-11-24

    Topological mechanical metamaterials are artificial structures whose unusual properties are protected very much like their electronic and optical counterparts. Here, we present an experimental and theoretical study of an active metamaterial--composed of coupled gyroscopes on a lattice--that breaks time-reversal symmetry. The vibrational spectrum displays a sonic gap populated by topologically protected edge modes that propagate in only one direction and are unaffected by disorder. We present a mathematical model that explains how the edge mode chirality can be switched via controlled distortions of the underlying lattice. This effect allows the direction of the edge current to be determined on demand. We demonstrate this functionality in experiment and envision applications of these edge modes to the design of one-way acoustic waveguides.

  13. Interference and Chaos in Metamaterials Cavities

    NASA Astrophysics Data System (ADS)

    Litchinitser, Natalia; Jose, Jorge

    2014-03-01

    Optical metamaterials are engineered artificial nanostructures that possess optical properties not available in nature. As metamaterials research continues to mature, their practical applications as well as fundamental questions on wave propagation in these materials attract significant interest. In this talk we focus on wave propagation and interference in chaotic wave cavities with negative or near-zero index of refraction and in double-slit configurations. In this context, we explicitly consider an incomplete two-dimensional D-cavity previously studied, which shows chaotic ray propagation together with scars. We have addressed the question as to how that type of wave propagation is modified by adding metamaterials in these chaotic cavities. We find that the wave interference patterns show significant qualitatively and quantitative changes depending on the effective parameters of the cavity, illumination conditions (planes waves versus beams), and geometry of the system. We will discuss possible experimental setups where these results may be validated.

  14. Design and fabrication of diverse metamaterial structures by holographic lithography.

    PubMed

    Yang, Yi; Li, Qiuze; Wang, Guo Ping

    2008-07-21

    We demonstrate a holographic lithography for the fabrication of diverse metamaterial structures by using an optical prism. Cylindrical nanoshells, U-shaped resonator arrays, and double-split ring arrays are obtained experimentally by real time modulating the phase relation of the interference beams. This easy-to-use method may provide a roadway for the design and fabrication of future metamaterials requiring diverse structures for effectively manipulating electromagnetic properties at optical frequencies.

  15. On the origin of chirality in nanoplasmonic gyroid metamaterials.

    PubMed

    Oh, Sang Soon; Demetriadou, Angela; Wuestner, Sebastian; Hess, Ortwin

    2013-01-25

    Metallic single gyroids, a new class of self-assembled nanoplasmonic metamaterials, are analyzed on the basis of a tri-helical metamaterial model. The physical mechanisms underlying the chiral optical behavior of the nanoplasmonic single gyroid are identified and it is shown that the optical chirality in this metallic structure is primarily determined by structural chirality and the connectivity of helices along the main cubic axes.

  16. Complex periodic non-diffracting beams generated by superposition of two identical periodic wave fields

    NASA Astrophysics Data System (ADS)

    Gao, Yuanmei; Wen, Zengrun; Zheng, Liren; Zhao, Lina

    2017-04-01

    A method has been proposed to generate complex periodic discrete non-diffracting beams (PDNBs) via superposition of two identical simple PDNBs at a particular angle. As for special cases, we studied the superposition of the two identical squares (;4+4;) and two hexagonal (;6+6;) periodic wave fields at specific angles, respectively, and obtained a series of interesting complex PDNBs. New PDNBs were also obtained by modulating the initial phase difference between adjacent interfering beams. In the experiment, a 4 f Fourier filter system and a phase-only spatial light modulator imprinting synthesis phase patterns of these PDNBs were used to produce desired wave fields.

  17. Tunable Mechanical Metamaterials

    DTIC Science & Technology

    2011-03-31

    Mechanical Metamaterials 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0709 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Siavouche Nemat...creating mechanical metamaterials over a broad range of frequencies. We have shown that it is possible to have stress waves with negative dynamic...scattering can be controlled, and energy can be focused or dissipated. 15. SUBJECT TERMS Mechanical Metamaterials , Tunability 16. SECURITY

  18. Micro-electro-mechanically switchable near infrared complementary metamaterial absorber

    SciTech Connect

    Pitchappa, Prakash; Pei Ho, Chong; Kropelnicki, Piotr; Singh, Navab; Kwong, Dim-Lee; Lee, Chengkuo

    2014-05-19

    We experimentally demonstrate a micro-electro-mechanically switchable near infrared complementary metamaterial absorber by integrating the metamaterial layer to be the out of plane movable microactuator. The metamaterial layer is electrostatically actuated by applying voltage across the suspended complementary metamaterial layer and the stationary bottom metallic reflector. Thus, the effective spacing between the metamaterial layer and bottom metal reflector is varied as a function of applied voltage. With the reduction of effective spacing between the metamaterial and reflector layers, a strong spectral blue shift in the peak absorption wavelength can be achieved. With spacing change of 300 nm, the spectral shift of 0.7 μm in peak absorption wavelength was obtained for near infrared spectral region. The electro-optic switching performance of the device was characterized, and a striking switching contrast of 1500% was achieved at 2.1 μm. The reported micro-electro-mechanically tunable complementary metamaterial absorber device can potentially enable a wide range of high performance electro-optical devices, such as continuously tunable filters, modulators, and electro-optic switches that form the key components to facilitate future photonic circuit applications.

  19. Metamaterials with conformational nonlinearity

    PubMed Central

    Lapine, Mikhail; Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.

    2011-01-01

    Within a decade of fruitful development, metamaterials became a prominent area of research, bridging theoretical and applied electrodynamics, electrical engineering and material science. Being man-made structures, metamaterials offer a particularly useful playground to develop interdisciplinary concepts. Here we demonstrate a novel principle in metamaterial assembly which integrates electromagnetic, mechanical, and thermal responses within their elements. Through these mechanisms, the conformation of the meta-molecules changes, providing a dual mechanism for nonlinearity and offering nonlinear chirality. Our proposal opens a wide road towards further developments of nonlinear metamaterials and photonic structures, adding extra flexibility to their design and control. PMID:22355655

  20. Nonlinear magnetic metamaterials.

    PubMed

    Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S

    2008-12-08

    We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission.

  1. Holographic duality in nonlinear hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.

    2014-07-01

    According to the holographic principle, the description of a volume of space can be thought of as encoded on its boundary. Holographic principle establishes equivalence, or duality, between theoretical description of volume physics, which involves gravity, and the gravity-free field theory, which describes physics on its surface. While generally accepted as a theoretical framework, so far there was no known experimental system which would exhibit explicit holographic duality and be amenable to direct experimental testing. Here we demonstrate that nonlinear optics of hyperbolic metamaterials admits such a dual holographic description. Wave equation which describes propagation of extraordinary light through the volume of metamaterial exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the material. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational interaction between extraordinary photons. On the other hand, a holographic dual theory may be formulated on the metamaterial surface, which describes its nonlinear optics via interaction of cylindrical surface plasmons possessing conserved charges proportional to their angular momenta. Potential implications of this duality for superconductivity of hyperbolic metamaterials are discussed.

  2. Coherently Tunable Triangular Trefoil Phaseonium Metamaterial.

    PubMed

    Nguyen, D M; Soci, Cesare; Ooi, C H Raymond

    2016-02-16

    Phaseonium is a three-level Λ quantum system, in which a coherent microwave and an optical control (pump) beams can be used to actively modulate the dielectric response. Here we propose a new metamaterial structure comprising of a periodic array of triangular phaseonium metamolecules arranged as a trefoil. We present a computational study of the spatial distribution of magnetic and electric fields of the probe light and the corresponding transmission and reflection, for various parameters of the optical and microwave beams. For specific values of the probing frequencies and control fields, the phaseonium can display either metallic or dielectric optical response. We find that, in the metallic regime, the phaseonium metamaterial structure supports extremely large transmission, with optical amplification at large enough intensity of the microwave thanks to strong surface plasmon coupling; while, in the dielectric regime without microwave excitation, the transmission bandwidth can be tuned by varying the control beam intensity. Implementation of such phaseonium metamaterial structure in solid-state systems, such as patterned crystals doped with rare-earth elements or dielectric matrices embedded with quantum dots, could enable a new class of actively tunable quantum metamaterials.

  3. Chiral Block Copolymer Structures for Metamaterial Applications

    DTIC Science & Technology

    2015-01-27

    Final 3. DATES COVERED (From - To) 25-August-2011 to 24-August-2014 4. TITLE AND SUBTITLE Chiral Block Copolymer Structures for...researchers focused o synthesis and processing, morphology and physical characterization of chiral block copolymer (BCP) materials. Such materials a...valuable for both their optical and mechanical properties, particularly for their potential as chiral metamaterials and lightweig energy absorbing

  4. Metamaterial microwave holographic imaging system.

    PubMed

    Hunt, John; Gollub, Jonah; Driscoll, Tom; Lipworth, Guy; Mrozack, Alex; Reynolds, Matthew S; Brady, David J; Smith, David R

    2014-10-01

    We demonstrate a microwave imaging system that combines advances in metamaterial aperture design with emerging computational imaging techniques. The flexibility inherent to guided-wave, complementary metamaterials enables the design of a planar antenna that illuminates a scene with dramatically varying radiation patterns as a function of frequency. As frequency is swept over the K-band (17.5-26.5 GHz), a sequence of pseudorandom radiation patterns interrogates a scene. Measurements of the return signal versus frequency are then acquired and the scene is reconstructed using computational imaging methods. The low-cost, frequency-diverse static aperture allows three-dimensional images to be formed without mechanical scanning or dynamic beam-forming elements. The metamaterial aperture is complementary to a variety of computational imaging schemes, and can be used in conjunction with other sensors to form a multifunctional imaging platform. We illustrate the potential of multisensor fusion by integrating an infrared structured-light and optical image sensor to accelerate the microwave scene reconstruction and to provide a simultaneous visualization of the scene.

  5. Design of Metamaterials for Microwave Frequencies

    DTIC Science & Technology

    2008-10-09

    substituted barium ferrite BaFe12-x (Ti0.5Co0.5)xO19 by citrate precursor method and compositional dependence of their magnetic properties. J. Magn. Magn...Report 3. DATES COVERED (From – To) 1 July 2007 - 28-Jan-10 4. TITLE AND SUBTITLE DESIGN OF METAMATERIALS FOR MICROWAVE FREQUENCIES 5a. CONTRACT...homogeneous metamaterial at microwave frequencies that is easy to realize and has possibility of extension to infrared and optical frequencies. The project

  6. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    PubMed

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

  7. Controlling electromagnetic scattering with wire metamaterial resonators.

    PubMed

    Filonov, Dmitry S; Shalin, Alexander S; Iorsh, Ivan; Belov, Pavel A; Ginzburg, Pavel

    2016-10-01

    Manipulation of radiation is required for enabling a span of electromagnetic applications. Since properties of antennas and scatterers are very sensitive to the surrounding environment, macroscopic artificially created materials are good candidates for shaping their characteristics. In particular, metamaterials enable controlling both dispersion and density of electromagnetic states, available for scattering from an object. As a result, properly designed electromagnetic environments could govern wave phenomena and tailor various characteristics. Here electromagnetic properties of scattering dipoles, situated inside a wire medium (metamaterial), are analyzed both numerically and experimentally. The effect of the metamaterial geometry, dipole arrangement inside the medium, and frequency of the incident radiation on the scattering phenomena is studied in detail. It is shown that the resonance of the dipole hybridizes with Fabry-Perot modes of the metamaterial, giving rise to a complete reshaping of electromagnetic properties. Regimes of controlled scattering suppression and super-scattering are experimentally observed. Numerical analysis is in agreement with the experiment, performed at the GHz spectral range. The reported approach to scattering control with metamaterials could be directly mapped into optical and infrared spectral ranges by employing scalability properties of Maxwell's equations.

  8. Invisible Hyperbolic Metamaterial Nanotube at Visible Frequency.

    PubMed

    Kim, Kyoung-Ho; No, You-Shin; Chang, Sehwan; Choi, Jae-Hyuck; Park, Hong-Gyu

    2015-11-02

    Subwavelength-scale metal and dielectric nanostructures have served as important building blocks for electromagnetic metamaterials, providing unprecedented opportunities for manipulating the optical response of the matter. Recently, hyperbolic metamaterials have been drawing particular interest because of their unusual optical properties and functionalities, such as negative refraction and hyperlensing of light. Here, as a promising application of a hyperbolic metamaterial at visible frequency, we propose an invisible nanotube that consists of metal and dielectric alternating thin layers. The theoretical study of the light scattering of the layered nanotube reveals that almost-zero scattering can be achieved at a specific wavelength when the transverse-electric- or transverse-magnetic-polarized light is incident to the nanotube. In addition, the layered nanotube can be described as a radial-anisotropic hyperbolic metamaterial nanotube. The low scattering occurs when the effective permittivity of the hyperbolic nanotube in the angular direction is near zero, and thus the invisibility of the layered nanotube can be efficiently obtained by analyzing the equivalent hyperbolic nanotube. Our new method to design and tune an invisible nanostructure represents a significant step toward the practical implementation of unique nanophotonic devices such as invisible photodetectors and low-scattering near-field optical microscopes.

  9. Invisible Hyperbolic Metamaterial Nanotube at Visible Frequency

    PubMed Central

    Kim, Kyoung-Ho; No, You-Shin; Chang, Sehwan; Choi, Jae-Hyuck; Park, Hong-Gyu

    2015-01-01

    Subwavelength-scale metal and dielectric nanostructures have served as important building blocks for electromagnetic metamaterials, providing unprecedented opportunities for manipulating the optical response of the matter. Recently, hyperbolic metamaterials have been drawing particular interest because of their unusual optical properties and functionalities, such as negative refraction and hyperlensing of light. Here, as a promising application of a hyperbolic metamaterial at visible frequency, we propose an invisible nanotube that consists of metal and dielectric alternating thin layers. The theoretical study of the light scattering of the layered nanotube reveals that almost-zero scattering can be achieved at a specific wavelength when the transverse-electric- or transverse-magnetic-polarized light is incident to the nanotube. In addition, the layered nanotube can be described as a radial-anisotropic hyperbolic metamaterial nanotube. The low scattering occurs when the effective permittivity of the hyperbolic nanotube in the angular direction is near zero, and thus the invisibility of the layered nanotube can be efficiently obtained by analyzing the equivalent hyperbolic nanotube. Our new method to design and tune an invisible nanostructure represents a significant step toward the practical implementation of unique nanophotonic devices such as invisible photodetectors and low-scattering near-field optical microscopes. PMID:26522815

  10. Thermal hyperbolic metamaterials.

    PubMed

    Guo, Yu; Jacob, Zubin

    2013-06-17

    We explore the near-field radiative thermal energy transfer properties of hyperbolic metamaterials. The presence of unique electromagnetic states in a broad bandwidth leads to super-planckian thermal energy transfer between metamaterials separated by a nano-gap. We consider practical phonon-polaritonic metamaterials for thermal engineering in the mid-infrared range and show that the effect exists in spite of the losses, absorption and finite unit cell size. For thermophotovoltaic energy conversion applications requiring energy transfer in the near-infrared range we introduce high temperature hyperbolic metamaterials based on plasmonic materials with a high melting point. Our work paves the way for practical high temperature radiative thermal energy transfer applications of hyperbolic metamaterials.

  11. Mass Separation by Metamaterials

    NASA Astrophysics Data System (ADS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-02-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices.

  12. Magnetic resonances in nano-scale metamaterials

    NASA Astrophysics Data System (ADS)

    Hao, Zhao; Liddle, Alex; Martin, Michael

    2006-03-01

    We have designed, fabricated, and optically measured several different kinds of nano-scale metamaterials. We make use e-beam nano-lithography technology at LBNL's Center for X-Ray Optics for fabricating these structures on extremely thin SiN substrates so that they are close to free-standing. Optical properties were measured as a function of incidence angle and polarization. We directly observe a strong magnetic resonance consistent with a negative magnetic permeability in our samples at mid- and near-IR optical frequencies. We will discuss the results in comparison with detailed simulations, and will discuss the electric dipole or quadrupole resonances observed in the samples. Finally, we will report on our progress towards constructing a fully negative index of refraction meta-material.

  13. Electric levitation using ϵ-near-zero metamaterials.

    PubMed

    Rodríguez-Fortuño, Francisco J; Vakil, Ashkan; Engheta, Nader

    2014-01-24

    The ability to manufacture metamaterials with exotic electromagnetic properties has potential for surprising new applications. Here we report how a specific type of metamaterial--one whose permittivity is near zero--exerts a repulsive force on an electric dipole source, resulting in levitation of the dipole. The phenomenon relies on the expulsion of the time-varying electric field from the metamaterial interior, resembling the perfect diamagnetic expulsion of magnetostatic fields. Leveraging this concept, we study some realistic requirements for the levitation or repulsion of a polarized particle radiating at any frequency, from microwave to optics.

  14. Nano-Engineering of Active Metamaterials

    DTIC Science & Technology

    2014-10-29

    follows for silicon-organic hybrid (SOH) and plasmonic silicon-organic hybrid (PSOH) devices: For SOH devices, the following performance has been...H. Steier, Harold R. Fetterman, Pierre Berini, and Larry R. Dalton, “Active Plasmonic and Metamaterials and Devices,” Proc SPIE, 7754, 775403 1-10...Embedded Plasmonic Metal-Slotted Polymer Electro-Optic Waveguide Modulator,” Proc. 2011 Conf. on Laser and Electro-Optics, pp. 1-3 (2011). 24. H. Figi

  15. Scattering of light from metamaterial gratings with finite length.

    PubMed

    Grünhut, Vivian; Cuevas, Mauro; Depine, Ricardo A

    2012-06-01

    Using an integral equation approach based on the Rayleigh hypothesis, we investigate the scattering of a plane wave at the rough surface of a metamaterial with a finite number of sinusoidal grooves. To show the adequacy of the model, we present results that are in agreement with the predictions of physical optics and that quantitatively reproduce the polarization and angular dependences predicted by the C-formalism for metamaterial gratings with an infinite number of grooves.

  16. Metamaterials Application in Sensing

    PubMed Central

    Chen, Tao; Li, Suyan; Sun, Hui

    2012-01-01

    Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized. PMID:22736975

  17. Broadband Acoustic Hyperbolic Metamaterial.

    PubMed

    Shen, Chen; Xie, Yangbo; Sui, Ni; Wang, Wenqi; Cummer, Steven A; Jing, Yun

    2015-12-18

    In this Letter, we report on the design and experimental characterization of a broadband acoustic hyperbolic metamaterial. The proposed metamaterial consists of multiple arrays of clamped thin plates facing the y direction and is shown to yield opposite signs of effective density in the x and y directions below a certain cutoff frequency, therefore, yielding a hyperbolic dispersion. Partial focusing and subwavelength imaging are experimentally demonstrated at frequencies between 1.0 and 2.5 kHz. The proposed metamaterial could open up new possibilities for acoustic wave manipulation and may find usage in medical imaging and nondestructive testing.

  18. Combinatorial Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin

    The structure of most mechanical metamaterials is periodic so that their design space is that of the unit cell. Here we introduce a combinatorial strategy to create a vast number of distinct mechanical metamaterials, each with a unique spatial texture and response. These are aperiodic stackings of anisotropic building blocks, and their functionality rests on both the block design and their stacking configuration which is governed by a tiling problem. We realize such metamaterials by 3D printing, and show that they act as soft machines, capable of pattern recognition and pattern analysis.

  19. MEMS tunable terahertz metamaterials using out-of-plane mechanisms

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Sheng; Pitchappa, Prakash; Ho, Chong Pei; Lee, Chengkuo

    2015-03-01

    The tunable terahertz metamaterial (TTM) has attracted intense research interest, since the electromagnetic response of the metamaterial can be actively controlled through external stimulus, which is of great significance in real time applications. The active control of metamaterial characteristics is crucial in order to provide a flexible and versatile platform for mimicking fundamental physical effects. To realize the electromagnetic tunability, various approaches have been demonstrated to increase the flexibility in applications, such as changing the effective electromagnetic properties. Alternatively, MEMS-based techniques are well developed. The structural reconfiguration is a straightforward way to control the electromagnetic properties. The metamaterial properties can be directly modified by reconfiguring the unit cell which is the fundamental building block of metamaterials. Currently, our research works are focusing on MEMS-based TTM adopting stress-induced curved actuators (SICA) to adjust the resonant frequency of devices. Herein, the proposed TTM designs are double split-ring resonator (DSRR), electric split-ring resonator (eSRR), Omega-ring metamaterial (ORM), symmetric and asymmetric T-shape metamaterial (STM and ATM), respectively. We demonstrated these TTM can be active, continuous, and recoverable control the resonant frequency by using electrostatic or electrothermal actuation mechanism. Therefore, the TTM devices can be effectively used for sensors, optical switches, and filters applications.

  20. Foam metal metamaterial panel for mechanical waves isolation

    NASA Astrophysics Data System (ADS)

    Hua, Lei; Sun, Hongwei; Gu, Jinliang

    2016-04-01

    This paper presents modeling, analysis techniques and experiment of foam metal metamaterial panel for Broadband Vibration Absorption. For a unit cell of an infinite foam metal metamaterial panel, governing equations are derived using the extended Hamilton principle. The concepts of negative effective mass and stiffness and how the spring-mass-damper subsystems create a stopband are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed metamaterial panel is based on the concept of conventional mechanical vibration absorbers. It uses the incoming elastic wave in the panel to resonate the integrated membrane-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the panel and stop the wave propagation. Moreover, a two-dimension acoustic foam metal metamaterial panel consisting of lumped mass and elastic membrane is proposed in the lab. We do experiments on the model and The results validate the concept and show that, for two-dimension acoustic foam metal metamaterial panel do exist two vibration modes. For the wave absorption, the mass of each cell should be considered in the design. With appropriate design calculations, the proposed two-dimension acoustic foam metal metamaterial panel can be used for absorption of low-frequency waves and hence expensive micro-manufacturing techniques are not needed for design and manufacturing of such foam metal metamaterial panel for low-frequency waves absorption/isolation.

  1. Nonmagnetic metamaterial landscapes for guided electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Ginis, V.; Danckaert, J.; Tassin, P.

    2016-09-01

    Transformation optics provides a geometry-based tool to create new components taking advantage of artificial metamaterials with optical properties that are not available in nature. Unfortunately, although guided electromagnetic waves are crucial for optical circuitry, transformation optics is not yet compatible with two-dimensional slab waveguides. Indeed, after determining the propagation of confined waves along the waveguide with a two-dimensional coordinate transformation, the conventional application of transformation optics results in metamaterials whose properties are insensitive to the coordinate perpendicular to the waveguide, leading to bulky, and therefore impractical, designs. In this contribution, we formulate an alternative framework that leads to feasible coordinate-based designs of two-dimensional waveguides. To this end, we characterize a guided transverse-magnetic light mode by relevant electromagnetic equations: a Helmholtz equation to account for wave propagation and a dispersion relation to impose a continuous light profile at the interface. By considering how two-dimensional conformal transformations transform these equations, we are able to materialize the coordinate-designed flows with a nonmagnetic metamaterial core of varying thickness, obtaining a two-dimensional device. We numerically demonstrate the effectiveness and versatility of our equivalence relations with three crucial functionalities, a beam bender, a beam splitter and a conformal lens, on a qualitative and quantitative level, by respectively comparing the electromagnetic fields inside and the transmission of our two-dimensional metamaterial devices to that of their three-dimensional counterparts at telecom wavelengths. As a result, we envision that one coordinate-based multifunctional waveguide component may seamlessly split and bend light beams on the landscape of an optical chip.

  2. Emission modulation and other applications of nonlocal plasmonic nanowire metamaterials

    NASA Astrophysics Data System (ADS)

    Wells, Brian Michael

    Nanowire metamaterials are a class of composite photonic media formed by arrays of aligned plasmonic nanowires incorporated in dielectric substrates. Numerous applications in modern optics can be realized through the study and understanding of light's interaction with nanowire metamaterials. Depending on exact composition, geometry, and excitation wavelength, nanowire structures are known to exhibit elliptical, hyperbolic, or epsilon-near-zero (ENZ) responses. It was shown, however that the optical properties of these composites deviate from the predictions of effective-medium theories (EMTs). The reason for this deviation is a longitudinal electromagnetic wave that only exists in nonlocal systems. It has been previously shown that this wave originates from the coupling of cylindrical surface plasmon modes propagating along the nanowires. An analytical technique has been developed that provides an adequate description of the optical response of wire-based metamaterials. In this dissertation a simplified analytical approach is developed that can be used to approximate the dispersion of the longitudinal wave in the wire-based metamaterials, avoiding numerical solutions to an eigenvalue problem. Using this developed formalism, it is demonstrated that the incorporation of nonlocal nanowire metamaterials into Salisbury screens allows for a substantial reduction of the dependence of incident angle on the absorption maximum. It is also illustrated that the enhancement of electric field in a non-magnetic, anisotropic, transition metamaterial with a hyperbolic transition layer is largely overestimated by local effective medium calculations. Nonlocal effects must be taken into account to appropriately describe the enhancement. Finally, light emission in plasmonic nanowire metamaterials is analyzed analytically and computationally. The emission lifetime is demonstrated to be a complex function of geometrical and material parameters of the system that can not be reduced to the

  3. Metamaterial enhances natural cooling

    NASA Astrophysics Data System (ADS)

    2017-03-01

    A new metamaterial film that uses passive radiative cooling to dissipate heat from an object and provides cooling without a power input has been developed by a team at the University of Colorado Boulder in the US.

  4. Multispectral metamaterial absorber.

    PubMed

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging.

  5. Eliminating material constraints for nonlinearity with plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Neira, Andres D.; Olivier, Nicolas; Nasir, Mazhar E.; Dickson, Wayne; Wurtz, Gregory A.; Zayats, Anatoly V.

    2015-07-01

    Nonlinear optical materials comprise the foundation of modern photonics, offering functionalities ranging from ultrafast lasers to optical switching, harmonic and soliton generation. Optical nonlinearities are typically strong near the electronic resonances of a material and thus provide limited tuneability for practical use. Here we show that in plasmonic nanorod metamaterials, the Kerr-type nonlinearity is not limited by the nonlinear properties of the constituents. Compared with gold's nonlinearity, the measured nonlinear absorption and refraction demonstrate more than two orders of magnitude enhancement over a broad spectral range that can be engineered via geometrical parameters. Depending on the metamaterial's effective plasma frequency, either a focusing or defocusing nonlinearity is observed. The ability to obtain strong and fast optical nonlinearities in a given spectral range makes these metamaterials a flexible platform for the development of low-intensity nonlinear applications.

  6. Thermochromic Infrared Metamaterials.

    PubMed

    Liu, Xinyu; Padilla, Willie J

    2016-02-03

    An infrared artificial thermochromic material composed of a metamaterial emitter and a bimaterial micro-electro-mechanical system is investigated. A differential emissivity of over 30% is achieved between 623 K and room temperature. The passive metamaterial device demonstrates the ability to independently control the peak wavelength and temperature dependence of the emissivity, and achieves thermal emission following a super Stefan-Boltzmann power curve.

  7. Resonant dielectric metamaterials

    DOEpatents

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  8. Negative-Refraction Metamaterials: Fundamental Principles and Applications

    NASA Astrophysics Data System (ADS)

    Eleftheriades, G. V.; Balmain, K. G.

    2005-06-01

    Learn about the revolutionary new technology of negative-refraction metamaterials Negative-Refraction Metamaterials: Fundamental Principles and Applications introduces artificial materials that support the unusual electromagnetic property of negative refraction. Readers will discover several classes of negative-refraction materials along with their exciting, groundbreaking applications, such as lenses and antennas, imaging with super-resolution, microwave devices, dispersion-compensating interconnects, radar, and defense. The book begins with a chapter describing the fundamentals of isotropic metamaterials in which a negative index of refraction is defined. In the following chapters, the text builds on the fundamentals by describing a range of useful microwave devices and antennas. Next, a broad spectrum of exciting new research and emerging applications is examined, including: Theory and experiments behind a super-resolving, negative-refractive-index transmission-line lens 3-D transmission-line metamaterials with a negative refractive index Numerical simulation studies of negative refraction of Gaussian beams and associated focusing phenomena Unique advantages and theory of shaped lenses made of negative-refractive-index metamaterials A new type of transmission-line metamaterial that is anisotropic and supports the formation of sharp steerable beams (resonance cones) Implementations of negative-refraction metamaterials at optical frequencies Unusual propagation phenomena in metallic waveguides partially filled with negative-refractive-index metamaterials Metamaterials in which the refractive index and the underlying group velocity are both negative This work brings together the best minds in this cutting-edge field. It is fascinating reading for scientists, engineers, and graduate-level students in physics, chemistry, materials science, photonics, and electrical engineering.

  9. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial.

    PubMed

    Lewandowski, Wiktor; Fruhnert, Martin; Mieczkowski, Józef; Rockstuhl, Carsten; Górecka, Ewa

    2015-03-17

    The availability of metamaterials with properties that can be actively tuned is crucial for the future development of various metamaterial-based technologies. Here we show that by using silver nanoparticles equipped with a thermally responsive organic coating a metamaterial is obtained with reversibly switchable properties. The material investigated exhibits dynamic self-assembly resulting from temperature-dependent changes of organic coating shape, which translates to a switchable spatial distribution of the silver nanoparticles. This in turn strongly influences the optical properties of the entire material. The measured optical characteristics of the material are in excellent agreement with theoretical calculations, which allow us to use the latter to predict a dynamically tunable epsilon-near-zero behaviour of the metamaterial. The suggested methodology opens new routes for tunable metamaterials that operate in the visible region and will enable various applications for soft-matter-based optical devices.

  10. Metamaterials and plasmonics: From nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials

    NASA Astrophysics Data System (ADS)

    Francesco, Monticone; Andrea, Alù

    2014-04-01

    The rise of plasmonic metamaterials in recent years has unveiled the possibility of revolutionizing the entire field of optics and photonics, challenging well-established technological limitations and paving the way to innovations at an unprecedented level. To capitalize the disruptive potential of this rising field of science and technology, it is important to be able to combine the richness of optical phenomena enabled by nanoplasmonics in order to realize metamaterial components, devices, and systems of increasing complexity. Here, we review a few recent research directions in the field of plasmonic metamaterials, which may foster further advancements in this research area. We will discuss the anomalous scattering features enabled by plasmonic nanoparticles and nanoclusters, and show how they may represent the fundamental building blocks of complex nanophotonic architectures. Building on these concepts, advanced components can be designed and operated, such as optical nanoantennas and nanoantenna arrays, which, in turn, may be at the basis of metasurface devices and complex systems. Following this path, from basic phenomena to advanced functionalities, the field of plasmonic metamaterials offers the promise of an important scientific and technological impact, with applications spanning from medical diagnostics to clean energy and information processing.

  11. Large-Scale All-Dielectric Metamaterial Perfect Reflectors

    SciTech Connect

    Moitra, Parikshit; Slovick, Brian A.; li, Wei; Kravchencko, Ivan I.; Briggs, Dayrl P.; Krishnamurthy, S.; Valentine, Jason

    2015-05-08

    All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. In this paper, we take advantage of the low absorption loss as well as the simple unit cell geometry to demonstrate large-scale (centimeter-sized) all-dielectric metamaterial perfect reflectors made from silicon cylinder resonators. These perfect reflectors, operating in the telecommunications band, were fabricated using self-assembly based nanosphere lithography. In spite of the disorder originating from the self-assembly process, the average reflectance of the metamaterial perfect reflectors is 99.7% at 1530 nm, surpassing the reflectance of metallic mirrors. Moreover, the spectral separation of the electric and magnetic resonances can be chosen to achieve the required reflection bandwidth while maintaining a high tolerance to disorder. Finally, the scalability of this design could lead to new avenues of manipulating light for low-loss and large-area photonic applications.

  12. Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides.

    PubMed

    Vasilantonakis, Nikolaos; Nasir, Mazhar E; Dickson, Wayne; Wurtz, Gregory A; Zayats, Anatoly V

    2015-05-01

    Hyperbolic metamaterials comprised of an array of plasmonic nanorods provide a unique platform for designing optical sensors and integrating nonlinear and active nanophotonic functionalities. In this work, the waveguiding properties and mode structure of planar anisotropic metamaterial waveguides are characterized experimentally and theoretically. While ordinary modes are the typical guided modes of the highly anisotropic waveguides, extraordinary modes, below the effective plasma frequency, exist in a hyperbolic metamaterial slab in the form of bulk plasmon-polaritons, in analogy to planar-cavity exciton-polaritons in semiconductors. They may have very low or negative group velocity with high effective refractive indices (up to 10) and have an unusual cut-off from the high-frequency side, providing deep-subwavelength (λ0/6-λ0/8 waveguide thickness) single-mode guiding. These properties, dictated by the hyperbolic anisotropy of the metamaterial, may be tuned by altering the geometrical parameters of the nanorod composite.

  13. Scaffold metamaterial and its application as strain sensor

    SciTech Connect

    Wu, Wei; Ren, Mengxin Pi, Biao; Cai, Wei Xu, Jingjun; Wu, Yang

    2015-08-31

    In this paper, strain sensors based on planar scaffold metamaterial design are demonstrated. The optical properties of such metamaterials are studied, which are proved to be highly dependent on the deformation of the structure. Fabricating such metamaterial on compliant polymeric substrate, the geometric parameters could be tuned with external strain and hence are found to control the reflection resonance condition of the metamaterial. Such mechanical tunability provides the opportunity to realize efficient strain sensors and about 27 nm resonance wavelength shift is observed by applying as much as 37% tensile strain. Furthermore, distinct from most of the previous works, our structures are based on “intaglio” design, which could be manufactured directly by one step fabrication using focused ion beam cutting, hence makes the fabrication process much simpler.

  14. Infrared Energy Harvesting for Optoplasmonics from Nanostructured Metamaterials

    NASA Astrophysics Data System (ADS)

    Forcherio, Gregory Thomas

    Metamaterials exhibit unique optical resonance characteristics which permit precise engineering of energy pathways within a device. The ability of plasmonic nanostructures to guide electromagnetism offers a platform to reduce global dependence on fossil fuels by harvesting waste heat, which comprises 60% of generated energy around the world. Plasmonic metamaterials were hypothesized to support an exchange of energy between resonance modes, enabling generation of higher energy photons from waste infrared energy. Infrared irradiation of a metamaterial at the Fano coupling lattice resonance was anticipated to re-emit as higher energy visible light at the plasmon resonance. Photonic signals from harvested thermal energy could be used to power wearable medical monitors or off-grid excursions, for example. This thesis developed the design, fabrication, and characterization methods to realize nanostructured metamaterials which permit resonance exchange for infrared energy harvesting applications.

  15. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  16. Large-Scale All-Dielectric Metamaterial Perfect Reflectors

    DOE PAGES

    Moitra, Parikshit; Slovick, Brian A.; li, Wei; ...

    2015-05-08

    All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. In this paper, we take advantage of the low absorption loss as well as the simple unit cell geometry to demonstrate large-scale (centimeter-sized) all-dielectric metamaterial perfect reflectors made from silicon cylinder resonators. These perfect reflectors, operating in the telecommunications band, were fabricated using self-assembly based nanosphere lithography. In spite of the disorder originating from the self-assembly process, the average reflectance of the metamaterial perfect reflectors is 99.7% at 1530 nm, surpassing the reflectance of metallic mirrors. Moreover, the spectral separation of the electric and magnetic resonances canmore » be chosen to achieve the required reflection bandwidth while maintaining a high tolerance to disorder. Finally, the scalability of this design could lead to new avenues of manipulating light for low-loss and large-area photonic applications.« less

  17. Coherence-Driven Topological Transition in Quantum Metamaterials.

    PubMed

    Jha, Pankaj K; Mrejen, Michael; Kim, Jeongmin; Wu, Chihhui; Wang, Yuan; Rostovtsev, Yuri V; Zhang, Xiang

    2016-04-22

    We introduce and theoretically demonstrate a quantum metamaterial made of dense ultracold neutral atoms loaded into an inherently defect-free artificial crystal of light, immune to well-known critical challenges inevitable in conventional solid-state platforms. We demonstrate an all-optical control, on ultrafast time scales, over the photonic topological transition of the isofrequency contour from an open to closed topology at the same frequency. This atomic lattice quantum metamaterial enables a dynamic manipulation of the decay rate branching ratio of a probe quantum emitter by more than an order of magnitude. Our proposal may lead to practically lossless, tunable, and topologically reconfigurable quantum metamaterials, for single or few-photon-level applications as varied as quantum sensing, quantum information processing, and quantum simulations using metamaterials.

  18. Dynamic mode coupling in terahertz metamaterials

    PubMed Central

    Su, Xiaoqiang; Ouyang, Chunmei; Xu, Ningning; Tan, Siyu; Gu, Jianqiang; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Yan, Fengping; Han, Jiaguang; Zhang, Weili

    2015-01-01

    The near and far field coupling behavior in plasmonic and metamaterial systems have been extensively studied over last few years. However, most of the coupling mechanisms reported in the past have been passive in nature which actually fail to control the coupling mechanism dynamically in the plasmonic metamaterial lattice array. Here, we demonstrate a dynamic mode coupling between resonators in a hybrid metal-semiconductor metamaterial comprised of metallic concentric rings that are physically connected with silicon bridges. The dielectric function of silicon can be instantaneously modified by photodoped carriers thus tailoring the coupling characteristics between the metallic resonators. Based on the experimental results, a theoretical model is developed, which shows that the optical responses depend on mode coupling that originates from the variation of the damping rate and coupling coefficient of the resonance modes. This particular scheme enables an in-depth understanding of the fundamental coupling mechanism and, therefore, the dynamic coupling enables functionalities and applications for designing on-demand reconfigurable metamaterial and plasmonic devices. PMID:26035057

  19. Conformal plasmonic and hyperbolic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Riley, Conor T.; Smalley, Joseph S. T.; Fainman, Yeshaiahu; Sirbuly, Donald J.; Liu, Zhaowei

    2016-09-01

    The majority of plasmonic and metamaterials research utilizes noble metals such as gold and silver which commonly operate in the visible region. However, these materials are not well suited for many applications due to their low melting temperature and polarization response at longer wavelengths. A viable alternative is aluminum doped zinc oxide (AZO); a high melting point, low loss, visibly transparent conducting oxide which can be tuned to show strong plasmonic behavior in the near-infrared region. Due to it's ultrahigh conformality, atomic layer deposition (ALD) is a powerful tool for the fabrication of the nanoscale features necessary for many nanoplasmonic and optical metamaterials. Despite many attempts, high quality, low loss AZO has not been achieved with carrier concentrations high enough to support plasmonic behavior at the important telecommunication wavelengths (ca. 1550 nm) by ALD. Here, we present a simple process for synthesizing high carrier concentration, thin film AZO with low losses via ALD that match the highest quality films created by all other methods. We show that this material is tunable by thermal treatment conditions, altering aluminum concentration, and changing buffer layer thickness. The use of this process is demonstrated by creating hyperbolic metamaterials with both a multilayer and embedded nanowire geometry. Hyperbolic dispersion is proven by negative refraction and numerical calculations in agreement with the effective medium approximation. This paves the way for fabricating high quality hyperbolic metamaterial coatings on high aspect ratio nanostructures that cannot be created by any other method.

  20. A seismic metamaterial: The resonant metawedge

    NASA Astrophysics Data System (ADS)

    Colombi, Andrea; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V.

    2016-06-01

    Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrate, the metawedge can either mode convert incident surface Rayleigh waves into bulk elastic shear waves or reflect the Rayleigh waves creating a “seismic rainbow” effect analogous to the optical rainbow for electromagnetic metasurfaces. Time-domain spectral element simulations demonstrate the broadband efficacy of the metawedge in mode conversion while an analytical model is developed to accurately describe and predict the seismic rainbow effect; allowing the metawedge to be designed without the need for extensive parametric studies and simulations. The efficiency of the resonant metawedge shows that large-scale mechanical metamaterials are feasible, will have application, and that the time is ripe for considering many optical devices in the seismic and geophysical context.

  1. A seismic metamaterial: The resonant metawedge.

    PubMed

    Colombi, Andrea; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V

    2016-06-10

    Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrate, the metawedge can either mode convert incident surface Rayleigh waves into bulk elastic shear waves or reflect the Rayleigh waves creating a "seismic rainbow" effect analogous to the optical rainbow for electromagnetic metasurfaces. Time-domain spectral element simulations demonstrate the broadband efficacy of the metawedge in mode conversion while an analytical model is developed to accurately describe and predict the seismic rainbow effect; allowing the metawedge to be designed without the need for extensive parametric studies and simulations. The efficiency of the resonant metawedge shows that large-scale mechanical metamaterials are feasible, will have application, and that the time is ripe for considering many optical devices in the seismic and geophysical context.

  2. A seismic metamaterial: The resonant metawedge

    PubMed Central

    Colombi, Andrea; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V.

    2016-01-01

    Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrate, the metawedge can either mode convert incident surface Rayleigh waves into bulk elastic shear waves or reflect the Rayleigh waves creating a “seismic rainbow” effect analogous to the optical rainbow for electromagnetic metasurfaces. Time-domain spectral element simulations demonstrate the broadband efficacy of the metawedge in mode conversion while an analytical model is developed to accurately describe and predict the seismic rainbow effect; allowing the metawedge to be designed without the need for extensive parametric studies and simulations. The efficiency of the resonant metawedge shows that large-scale mechanical metamaterials are feasible, will have application, and that the time is ripe for considering many optical devices in the seismic and geophysical context. PMID:27283587

  3. Metamaterial Absorbers for Microwave Detection

    DTIC Science & Technology

    2015-06-01

    a) Depiction of metamaterial array of square resonators atop FR4. (b) Metamaterial dimensions and structure...comparison for varying resonator array dimension sizes. ..............23 Figure 12. Absorption derived from raw reflection data...36 x Figure 23. Metamaterial absorber array where resonator dimensions control the detection frequencies and

  4. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial.

    PubMed

    Zhang, Jianfa; MacDonald, Kevin F; Zheludev, Nikolay I

    2013-11-04

    Optical responses in conventional metamaterials based on plasmonic metal nanostructures are inevitably accompanied by Joule losses, which obstruct practical applications by limiting resonance quality factors and compromising the efficiency of metamaterial devices. Here we experimentally demonstrate a fully-dielectric metamaterial that exhibits a 'trapped mode' resonance at optical frequencies, founded upon the excitation by incident light of anti-parallel displacement currents in meta-molecules comprising pairs of parallel, geometrically dissimilar dielectric nano-bars. The phenomenon is demonstrated in the near-infrared part of the spectrum using silicon, showing that in principle strong, lossless resonant responses are possible anywhere in the optical spectral range.

  5. Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials

    NASA Astrophysics Data System (ADS)

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki

    2015-10-01

    Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research.

  6. Quantitative study of the enhancement of bulk nonlinearities in metamaterials

    SciTech Connect

    Rose, Alec; Larouche, Stephane; Smith, David R.

    2011-11-15

    Artificially structured metamaterials offer a means to enhance the weak optical nonlinearities of natural materials. The enhancement results from the inhomogeneous nature of the metamaterial unit cell, over which the local field distribution can likewise be strongly inhomogeneous, with highly localized and concentrated field regions. We investigate the nonlinear enhancement effect in metamaterials through a numerical study of four nonlinear metamaterial designs comprising arrays of metallic structures embedded in nonlinear dielectrics and operating around 10 THz. Through full-wave simulations and by employing an extended version of the transfer-matrix-based nonlinear parameter retrieval method, we confirm and quantify the enhanced nonlinearities, showing bulk quadratic nonlinear properties that are up to two orders of magnitude larger, and cubic nonlinear properties that are up to four orders of magnitude larger than the bulk nonlinear dielectric alone. Furthermore, the proposed nonlinear metamaterials support a variety of configurable nonlinear properties and regimes, including electric, magnetic, broadband, and low loss, depending on the particular geometry chosen. Finally, we use the retrieved parameters in a coupled-mode theory to predict the optimal crystal lengths and conversion efficiencies of these structures, displaying the possibility of efficient and subwavelength nonlinear devices based on metamaterials.

  7. Two-dimensional acoustic metamaterial structure for potential image processing

    NASA Astrophysics Data System (ADS)

    Sun, Hongwei; Han, Yu; Li, Ying; Pai, Frank

    2015-12-01

    This paper presents modeling, analysis techniques and experiment of for two-Dimensional Acoustic metamaterial Structure for filtering acoustic waves. For a unit cell of an infinite two-Dimensional Acoustic metamaterial Structure, governing equations are derived using the extended Hamilton principle. The concepts of negative effective mass and stiffness and how the spring-mass-damper subsystems create a stopband are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed acoustic metamaterial structure is based on the concept of conventional mechanical vibration absorbers. It uses the incoming wave in the structure to resonate the integrated membrane-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the panel and stop the wave propagation. Moreover, a two-dimension acoustic metamaterial structure consisting of lumped mass and elastic membrane is fabricated in the lab. We do experiments on the model and The results validate the concept and show that, for two-dimension acoustic metamaterial structure do exist two vibration modes. For the wave absorption, the mass of each cell should be considered in the design. With appropriate design calculations, the proposed two-dimension acoustic metamaterial structure can be used for absorption of low-frequency waves. Hence this special structure can be used in filtering the waves, and the potential using can increase the ultrasonic imaging quality.

  8. Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials

    PubMed Central

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki

    2015-01-01

    Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research. PMID:26424484

  9. Predicting nonlinear properties of metamaterials from the linear response.

    PubMed

    O'Brien, Kevin; Suchowski, Haim; Rho, Junsuk; Salandrino, Alessandro; Kante, Boubacar; Yin, Xiaobo; Zhang, Xiang

    2015-04-01

    The discovery of optical second harmonic generation in 1961 started modern nonlinear optics. Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Miller's Rule, allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials, have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation, new quasi-phase matching capabilities and large nonlinear susceptibilities. However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.

  10. Active terahertz metamaterial devices

    DOEpatents

    Chen, Houtong; Padilla, Willie John; Averitt, Richard Douglas; O'Hara, John F.; Lee, Mark

    2010-11-02

    Metamaterial structures are taught which provide for the modulation of terahertz frequency signals. Each element within an array of metamaterial (MM) elements comprises multiple loops and at least one gap. The MM elements may comprise resonators with conductive loops and insulated gaps, or the inverse in which insulated loops are present with conductive gaps; each providing useful transmissive control properties. The metamaterial elements are fabricated on a semiconducting substrate configured with a means of enhancing or depleting electrons from near the gaps of the MM elements. An on to off transmissivity ratio of about 0.5 is achieved with this approach. Embodiments are described in which the MM elements incorporated within a Quantum Cascade Laser (QCL) to provide surface emitting (SE) properties.

  11. Tensional acoustomechanical soft metamaterials

    NASA Astrophysics Data System (ADS)

    Xin, Fengxian; Lu, Tianjian

    2016-06-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability.

  12. Tensional acoustomechanical soft metamaterials.

    PubMed

    Xin, Fengxian; Lu, Tianjian

    2016-06-06

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability.

  13. THz-metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Tuong Pham, Van; Park, J. W.; Vu, Dinh Lam; Zheng, H. Y.; Rhee, J. Y.; Kim, K. W.; Lee, Y. P.

    2013-03-01

    An ultrabroad-band metamaterial absorber was investigated in mid-IR regime based on a similar model in previous work. The high absorption of metamaterial was obtained in a band of 8-11.7 THz with energy loss distributed in SiO2, which is appropriate potentially for solar-cell applications. A perfect absorption peak was provided by using a sandwich structure with periodical anti-dot pattern in the IR region, getting closed to visible-band metamaterials. The dimensional parameters were examined for the corresponding fabrication. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  14. Tensional acoustomechanical soft metamaterials

    PubMed Central

    Xin, Fengxian; Lu, Tianjian

    2016-01-01

    We create acoustomechanical soft metamaterials whose response to uniaxial tensile stressing can be easily tailored by programming acoustic wave inputs, resulting in force versus stretch curves that exhibit distinct monotonic, s-shape, plateau and non-monotonic snapping behaviors. We theoretically demonstrate this unique metamaterial by considering a thin soft material sheet impinged by two counter-propagating ultrasonic wave inputs across its thickness and stretched by an in-plane uniaxial tensile force. We establish a theoretical acoustomechanical model to describe the programmable mechanics of such soft metamaterial, and introduce the first- and second-order tangential stiffness of its force versus stretch curve to boundary different behaviors that appear during deformation. The proposed phase diagrams for the underlying nonlinear mechanics show promising prospects for designing tunable and switchable photonic/phononic crystals and microfluidic devices that harness snap-through instability. PMID:27264106

  15. Topological mechanics of gyroscopic metamaterials

    PubMed Central

    Nash, Lisa M.; Kleckner, Dustin; Read, Alismari; Vitelli, Vincenzo; Turner, Ari M.; Irvine, William T. M.

    2015-01-01

    Topological mechanical metamaterials are artificial structures whose unusual properties are protected very much like their electronic and optical counterparts. Here, we present an experimental and theoretical study of an active metamaterial—composed of coupled gyroscopes on a lattice—that breaks time-reversal symmetry. The vibrational spectrum displays a sonic gap populated by topologically protected edge modes that propagate in only one direction and are unaffected by disorder. We present a mathematical model that explains how the edge mode chirality can be switched via controlled distortions of the underlying lattice. This effect allows the direction of the edge current to be determined on demand. We demonstrate this functionality in experiment and envision applications of these edge modes to the design of one-way acoustic waveguides. PMID:26561580

  16. Radio Frequency and Optical Metamaterials

    DTIC Science & Technology

    2013-03-01

    was observed in the random nanodot medium, but polariton behavior was observed by probing the medium with transverse magnetic (TM) mode...Figure 16: Dispersion for Gold Nanodot Media S- and P- polarization, Cylindrical Lens, and Polariton Behavior The dispersion for the nanodot...inflection point at approximately 445 THz. The line shape of the p-polarized dispersion curve indicates that there is a plasmon- polariton [12] response at

  17. Three-dimensional metamaterials

    SciTech Connect

    Burckel, David Bruce

    2012-06-12

    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  18. Hierarchical honeycomb auxetic metamaterials.

    PubMed

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan

    2015-12-16

    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson's ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson's ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.

  19. Graphene plasmonics for tunable terahertz metamaterials.

    PubMed

    Ju, Long; Geng, Baisong; Horng, Jason; Girit, Caglar; Martin, Michael; Hao, Zhao; Bechtel, Hans A; Liang, Xiaogan; Zettl, Alex; Shen, Y Ron; Wang, Feng

    2011-09-04

    Plasmons describe collective oscillations of electrons. They have a fundamental role in the dynamic responses of electron systems and form the basis of research into optical metamaterials. Plasmons of two-dimensional massless electrons, as present in graphene, show unusual behaviour that enables new tunable plasmonic metamaterials and, potentially, optoelectronic applications in the terahertz frequency range. Here we explore plasmon excitations in engineered graphene micro-ribbon arrays. We demonstrate that graphene plasmon resonances can be tuned over a broad terahertz frequency range by changing micro-ribbon width and in situ electrostatic doping. The ribbon width and carrier doping dependences of graphene plasmon frequency demonstrate power-law behaviour characteristic of two-dimensional massless Dirac electrons. The plasmon resonances have remarkably large oscillator strengths, resulting in prominent room-temperature optical absorption peaks. In comparison, plasmon absorption in a conventional two-dimensional electron gas was observed only at 4.2 K (refs 13, 14). The results represent a first look at light-plasmon coupling in graphene and point to potential graphene-based terahertz metamaterials.

  20. Random access actuation of nanowire grid metamaterial

    NASA Astrophysics Data System (ADS)

    Cencillo-Abad, Pablo; Ou, Jun-Yu; Plum, Eric; Valente, João; Zheludev, Nikolay I.

    2016-12-01

    While metamaterials offer engineered static optical properties, future artificial media with dynamic random-access control over shape and position of meta-molecules will provide arbitrary control of light propagation. The simplest example of such a reconfigurable metamaterial is a nanowire grid metasurface with subwavelength wire spacing. Recently we demonstrated computationally that such a metadevice with individually controlled wire positions could be used as dynamic diffraction grating, beam steering module and tunable focusing element. Here we report on the nanomembrane realization of such a nanowire grid metasurface constructed from individually addressable plasmonic chevron nanowires with a 230 nm × 100 nm cross-section, which consist of gold and silicon nitride. The active structure of the metadevice consists of 15 nanowires each 18 μm long and is fabricated by a combination of electron beam lithography and ion beam milling. It is packaged as a microchip device where the nanowires can be individually actuated by control currents via differential thermal expansion.

  1. Designing Phoxonic Metamaterials with Fractal Geometry

    NASA Astrophysics Data System (ADS)

    Ni, Sisi; Koh, Cheong Yang; Kooi, Steve; Thomas, Edwin

    2012-02-01

    Recently, the concepts of fractal geometry have been introduced into electromagnetic and plasmonic metamaterials. With their self-similarity, structures based on fractal geometry should exhibit multi-band character with high Q factors due to the scaling law. However, there exist few studies of phononic metamaterials based on fractal geometry. We use COMSOL to investigate the wave propagation in two dimensional systems possessing fractal geometries. The simulations of these systems, guided by our recently developed general design framework, help to understand the role of design in determining the phononic properties of the structures. Proposed structures are being fabricated via standard lithographic or 3D printing techniques. The wave behavior of the structures can be characterized using Brillouin Light Scattering, Scanning Acoustic Microscope and Near-field Scanning Optical Microscopy. Due to their sparse spatial distribution, fractal phononic structures show potential fir ``smart skin'', where multifunctional components can be fabricated on the same platform.

  2. Discrete breathers in nonlinear magnetic metamaterials.

    PubMed

    Lazarides, N; Eleftheriou, M; Tsironis, G P

    2006-10-13

    Magnetic metamaterials composed of split-ring resonators or U-type elements may exhibit discreteness effects in THz and optical frequencies due to weak coupling. We consider a model one-dimensional metamaterial formed by a discrete array of nonlinear split-ring resonators where each ring interacts with its nearest neighbors. On-site nonlinearity and weak coupling among the individual array elements result in the appearance of discrete breather excitations or intrinsic localized modes, both in the energy-conserved and the dissipative system. We analyze discrete single and multibreather excitations, as well as a special breather configuration forming a magnetization domain wall and investigate their mobility and the magnetic properties their presence induces in the system.

  3. Microwave memristive behavior in split-ring resonator metamaterials

    NASA Astrophysics Data System (ADS)

    Wu, H. Y.; Shi, S. K.; Wang, C. H.; Jiang, X. J.; Yu, G.; Qin, G. Q.; Fu, H.; Zhou, J.

    2016-07-01

    Photonic memristors, which behave as memristors operating with electromagnetic fields, present an effective means to achieve all-optical networking, and can promote the development of optical communications and computer technology. In this paper, we report a microwave memristive phenomenon at room temperature in metamaterials consisting of negative temperature coefficient thermistor ceramic disk and split-ring resonator (SRR). Hysteretic transmission-incident field power loops, the area of which varies with the scan rate of power, (similar to the fingerprint of memristors) were observed in the metamaterials. These effects are attributed to the increasing conductivity of the ceramic disk with increasing temperature generated by the interaction between electromagnetic waves and metamaterials. This work offers new opportunities for the development of photonic memristors.

  4. Hyperbolic metamaterial antenna for second-harmonic generation tomography.

    PubMed

    Segovia, Paulina; Marino, Giuseppe; Krasavin, Alexey V; Olivier, Nicolas; Wurtz, Gregory A; Belov, Pavel A; Ginzburg, Pavel; Zayats, Anatoly V

    2015-11-30

    The detection and processing of information carried by evanescent field components are key elements for subwavelength optical microscopy as well as single molecule sensing applications. Here, we numerically demonstrate the potential of a hyperbolic medium in the design of an efficient metamaterial antenna enabling detection and tracking of a nonlinear object, with an otherwise hidden second-harmonic signature. The presence of the antenna provides 103-fold intensity enhancement of the second harmonic generation (SHG) from a nanoparticle through a metamaterial-assisted access to evanescent second-harmonic fields. Alternatively, the observation of SHG from the metamaterial itself can be used to detect and track a nanoparticle without a nonlinear response. The antenna allows an optical resolution of several nanometers in tracking the nanoparticle's location via observations of the far-field second-harmonic radiation pattern.

  5. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect

    NASA Astrophysics Data System (ADS)

    Robles-Uriza, A. X.; Reyes Gómez, F.; Mejía-Salazar, J. R.

    2016-09-01

    We report the existence of multiple omnidirectional defect modes in the zero-nbar gap of photonic stacks, made of alternate layers of conventional dielectric and double-negative metamaterial, with a polaritonic defect layer. In the case of nonlinear magnetic metamaterials, the optical bistability phenomenon leads to switching from negligible to perfect transmission around these defect modes. We hope these findings have potential applications in the design and development of multichannel optical filters, power limiters, optical-diodes and optical-transistors.

  6. Dual-band unidirectional circular polarizer with opposite handedness filtration using hybridized metamaterial.

    PubMed

    Kang, Ming; Wang, Hui-Tian; Zhu, Weiren

    2014-04-21

    We theoretically propose a unidirectional dual-band circular polarizer using a subwavelength hybridized metamaterial. By fulfilling the critical requirements of left-/right-handed circular polarizer design at each band, the polarization handedness filtration can be flipped in the same structure at different operation frequency band. The physics behind this exotic performance is further explained by a simple analytical model. Our investigation expands the capabilities of metamaterials in getting intriguing optical properties. The proposed metamaterial polarizer is helpful in effective and fruitful optical polarization manipulation and is highly valuable for the development of nanophotonic devices.

  7. Nonunity permeability in metamaterial-based GaInAsP/InP multimode interferometers.

    PubMed

    Amemiya, T; Shindo, T; Takahashi, D; Myoga, S; Nishiyama, N; Arai, S

    2011-06-15

    We demonstrated an InP-based optical multimode interferometer (MMI) combined with metamaterials consisting of minute split-ring resonators (SRRs) arrayed on the MMI. The MMI could operate at an optical fiber communication wavelength of 1.5 μm. Magnetic resonance occurred between the SRR metamaterial and light at 1.5 μm, and the relative permeability of the metamaterial increased to 2.4 around this wavelength. This result shows that it is possible to use new materials with nonunity permeability to construct semiconductor-based photonic devices.

  8. Broadband circular polarizers constructed using helix-like chiral metamaterials

    NASA Astrophysics Data System (ADS)

    Ji, Ruonan; Wang, Shao-Wei; Liu, Xingxing; Chen, Xiaoshuang; Lu, Wei

    2016-08-01

    In this paper, one kind of helix-like chiral metamaterial which can be realized by multiple conventional lithography or electron beam lithographic techniques is proposed to have a broadband bianisotropic optical response analogous to helical metamaterials. On the basis of twisted metamaterials, via tailoring the relative orientation within the lattice, the anisotropy of arcs is converted into magneto-electric coupling of closely spaced arc pairs, which leads to a broad bianisotropic optical response. By connecting the adjacent upper and lower arcs, the coupling of metasurface pairs is transformed into the coupling of the three-dimensional inclusions, and provides a much broader and higher bianisotropic optical response. For only a four-layer helix-like metamaterial, the maximum extinction ratio can reach 19.7. The operation band is in the wavelength range of 4.69 μm to 8.98 μm with an average extinction ratio of 6.9. And the transmittance for selective polarization is above 0.8 in the entire operation band. Such a structure is a promising candidate for integratable and scalable broadband circular polarizers, especially it has great potential to act as a broadband circular micropolarizer in the field of the full-Stokes division of focal plane polarimeters.In this paper, one kind of helix-like chiral metamaterial which can be realized by multiple conventional lithography or electron beam lithographic techniques is proposed to have a broadband bianisotropic optical response analogous to helical metamaterials. On the basis of twisted metamaterials, via tailoring the relative orientation within the lattice, the anisotropy of arcs is converted into magneto-electric coupling of closely spaced arc pairs, which leads to a broad bianisotropic optical response. By connecting the adjacent upper and lower arcs, the coupling of metasurface pairs is transformed into the coupling of the three-dimensional inclusions, and provides a much broader and higher bianisotropic optical

  9. Metamaterials: Prime time

    NASA Astrophysics Data System (ADS)

    Alù, Andrea

    2016-12-01

    In the past decade, artificial materials with unusual wave interactions have significantly evolved and matured. In honour of the tenth anniversary of the premiere metamaterials conference, we look at the directions in which this field is evolving, and its impact on technology.

  10. Unravelling Origami Metamaterial Behavior

    NASA Astrophysics Data System (ADS)

    Eidini, Maryam; Paulino, Glaucio

    2015-03-01

    Origami has shown to be a substantial source of inspiration for innovative design of mechanical metamaterials for which the material properties arise from their geometry and structural layout. Most research on origami-inspired materials relies on known patterns, especially on classic Miura-ori pattern. In the present research, we have created origami-inspired metamaterials and we have shown that the folded materials possess properties as remarkable as those of Miura-ori on which there is a lot of recent research. We have also introduced and placed emphasis on several important concepts that are confused or overlooked in the literature, e.g. concept of planar Poisson's ratio for folded materials from different conceptual viewpoints, and we have clarified the importance of such concepts by applying them to the folded sheet metamaterials introduced in our research. The new patterns are appropriate for a broad range of applications, from mechanical metamaterials to deployable and kinetic structures, at both small and large scales.

  11. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties.

    PubMed

    Prinz, Victor Ya; Naumova, Elena V; Golod, Sergey V; Seleznev, Vladimir A; Bocharov, Andrey A; Kubarev, Vitaliy V

    2017-03-03

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis.

  12. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties

    PubMed Central

    Prinz, Victor Ya.; Naumova, Elena V.; Golod, Sergey V.; Seleznev, Vladimir A.; Bocharov, Andrey A.; Kubarev, Vitaliy V.

    2017-01-01

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis. PMID:28256587

  13. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties

    NASA Astrophysics Data System (ADS)

    Prinz, Victor Ya.; Naumova, Elena V.; Golod, Sergey V.; Seleznev, Vladimir A.; Bocharov, Andrey A.; Kubarev, Vitaliy V.

    2017-03-01

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis.

  14. High-resolution electrohydrodynamic jet printing for the direct fabrication of 3D multilayer terahertz metamaterial of high refractive index

    NASA Astrophysics Data System (ADS)

    Teguh Yudistira, Hadi; Pradhipta Tenggara, Ayodya; Oh, Sang Soon; Nguyen, VuDat; Choi, Muhan; Choi, Choon-gi; Byun, Doyoung

    2015-04-01

    The fabrication of 3D metamaterials, such as multilayer structures, is of great interest in practical applications of the metamaterial. Here we present an electrohydrodynamic jet printing technique as a direct fabrication method of 3D multilayer metamaterial. By alignment of the nozzle movement, we could fabricate multiple layers of the metamaterial. Controlling an electrical pulse to make droplets on-demand, we fabricated a high refractive index metamaterial and compared the optical performances of a single layer and multiple layers, with 10 µm width and 5 µm gap of I-shaped meta-atoms on the polyimide substrate. The peak refractive index was 25.7 at 0.46 THz for a four-layer metamaterial.

  15. Experimental demonstration of near-infrared epsilon-near-zero multilayer metamaterial slabs.

    PubMed

    Yang, Xiaodong; Hu, Changyu; Deng, Huixu; Rosenmann, Daniel; Czaplewski, David A; Gao, Jie

    2013-10-07

    Near-infrared epsilon-near-zero (ENZ) metamaterial slabs based on silver-germanium (Ag-Ge) multilayers are experimentally demonstrated. Transmission, reflection and absorption spectra are characterized and used to determine the complex refractive indices and the effective permittivities of the ENZ metamaterial slabs, which match the results obtained from both the numerical simulations and the optical nonlocalities analysis. A rapid post-annealing process is used to reduce the collision frequency of silver and therefore decrease the optical absorption loss of multilayer metamaterial slabs. Furthermore, multilayer grating structures are studied to enhance the optical transmission and also tune the location of ENZ wavelength. The demonstrated near-infrared ENZ multilayer metamaterial slabs are important for realizing many exotic applications, such as phase front shaping and engineering of photonic density of states.

  16. Terahertz polarimetry based on metamaterial devices

    NASA Astrophysics Data System (ADS)

    Metcalfe, Grace D.; Wraback, Michael; Strikwerda, Andrew; Fan, Kebin; Zhang, Xin; Averitt, Richard

    2012-05-01

    Polarimetry is a well-developed technique in radar based applications and stand-off spectroscopic analysis at optical frequencies. Extension to terahertz (THz) frequencies could provide a breakthrough in spectroscopic methods since the THz portion of the electromagnetic spectrum provides unique spectral signatures of chemicals and biological molecules, useful for filling gaps in detection and identification. Distinct advantages to a THz polarimeter include enhanced image-contrast based on differences in scattering of horizontally and vertically polarized radiation, and measurements of the dielectric response, and thereby absorption, of materials in reflection in real-time without the need of a reference measurement. To implement a prototype THz polarimeter, we have developed low profile, high efficiency metamaterial-based polarization control components at THz frequencies. Static metamaterial-based half- and quarter-wave plates operating at 0.35 THz frequencies were modeled and fabricated, and characterized using a MHz resolution, continuous-wave spectrometer operating in the 0.09 to 1.2 THz range to verify the design parameters such as operational frequency and bandwidth, insertion loss, and phase shift. The operation frequency was chosen to be in an atmospheric window (between water absorption lines) but can be designed to function at any frequency. Additional advantages of metamaterial devices include their compact size, flexibility, and fabrication ease over large areas using standard microfabrication processing. Wave plates in both the transmission and reflection mode were modeled, tested, and compared. Data analysis using Jones matrix theory showed good agreement between experimental data and simulation.

  17. Fabrication of THz Sensor with Metamaterial Absorber

    NASA Astrophysics Data System (ADS)

    Gonzalez, Hugo; Alves, Fabio; Karunasiri, Gamani

    The terahertz (THz) portion of the electromagnetic spectrum (0.1-10 THz) has not been fully utilized due to the lack of sensitive detectors. Real-time imaging in this spectral range has been demonstrated using uncooled infrared microbolometer cameras and external illumination provided by quantum cascade laser (QCL) based THz sources. However, the microbolometer pixels in the cameras have not been optimized to achieve high sensitivity in THz frequencies. Recently, we have developed a highly sensitive micromechanical THz sensor employing bi-material effect with an integrated metamaterial absorber tuned to the THz frequency of interest. The use of bi-material structures causes deflection on the sensor to as the absorbed THz radiation increases its temperature, which can be monitored optically by reflecting a light beam. This approach eliminates the integration of readout electronics needed in microbolometers. The absorption of THz by metamaterial can be tailored by controlling geometrical parameters. The sensors can be fabricated using conventional microelectronic materials and incorporated into pixels to form focal plane arrays (FPAs). In this presentation, characterization and readout of a THz sensor with integrated metamaterial structure will be described. Supported by DoD.

  18. Advances In Microwave Metamaterials

    NASA Astrophysics Data System (ADS)

    Wigle, James A.

    2011-12-01

    Metamaterials are a new area of research showing significant promise for an entirely new set of materials, and material properties. Only recently has three-fourths of the entire electromagnetic material space been made available for discoveries, research, and applications. This thesis is a culmination of microwave metamaterial research that has transpired over numerous years at the University of Colorado. New work is presented; some is complete while other work has yet to be finished. Given the significant work efforts, and potential for new and interesting results, I have included some of my partial work to be completed in the future. This thesis begins with background theory to assist readers in fully understanding the mechanisms that drove my research and results obtained. I illustrate the design and manufacture of a metamaterial that can operate within quadrants I and II of the electromagnetic material space (epsilon r > 0 and mur > 0 or epsilonr < 0 and mu r > 0, respectively). Another metamaterial design is presented for operation within quadrant III of the electromagnetic material space (epsilonr < 0 and mur < 0). Lorentz reciprocity is empirically demonstrated for a quadrant I and II metamaterial, as well as a metamaterial enhanced antenna, or meta-antenna. Using this meta-antenna I demonstrate improved gain and directivity, and illuminate how the two are not necessarily coincident in frequency. I demonstrate a meta-lens which provides a double beam pattern for a normally hemispherical antenna, which also provides a null where the antenna alone would provide a peak on boresight. The thesis also presents two related, but different, novel tests intended to be used to definitively illustrate the negative angle of refraction for indices of refraction less than zero. It will be shown how these tests can be used to determine most bulk electromagnetic material properties of the material under test, for both right handed and left handed materials, such as epsilonr

  19. Graphene active plasmonic metamaterials for new types of terahertz lasers

    NASA Astrophysics Data System (ADS)

    Otsuji, Taiichi; Watanabe, Takayuki; Satou, Akira; Popov, Vyacheslav; Ryzhii, Victor

    2013-05-01

    This paper reviews recent advances in graphene active plasmonic metamaterials for new types of terahertz lasers. We theoretically discovered that when the population of Dirac Fermionic carriers in graphene are inverted by optical or electrical pumping the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned in a micro- or nano-ribbon array by grating gate metallization, the structure acts as an active plasmonic metamaterial, providing a super-radiant plasmonic lasing with giant gain at the plasmon modes in a wide THz frequency range.

  20. Quasi-dielectric characteristics of stacked metallic metamaterials

    NASA Astrophysics Data System (ADS)

    Tokuda, Yasunori; Takano, Keisuke; Yamaguchi, Yuki; Sakaguchi, Koichiro; Nakajima, Makoto

    2017-03-01

    We investigated the optical transmission properties of quasi-dielectric metamaterials composed of a stack of metallic sub-wavelength slit-array slabs. First, we used simulations to predict the transmission properties, and showed that these characteristics are basically equivalent to those of triple-layered dielectrics below the diffraction-limit frequency. Next, for the experimental demonstrations, we fabricated the metallic slit arrays, and then measured the transmission spectra. By comparison of the theoretical and experimental results, we demonstrated that each slit array acts as an individual quasi-dielectric in the stacked system. Using these metamaterials, a variety of transmission characteristics can be obtained in the terahertz region.

  1. Infrared perfect absorber based on nanowire metamaterial cavities.

    PubMed

    He, Yingran; Deng, Huixu; Jiao, Xiangyang; He, Sailing; Gao, Jie; Yang, Xiaodong

    2013-04-01

    An infrared perfect absorber based on a gold nanowire metamaterial cavities array on a gold ground plane is designed. The metamaterial made of gold nanowires embedded in an alumina host exhibits an effective permittivity with strong anisotropy, which supports cavity resonant modes of both electric dipole and magnetic dipole. The impedance of the cavity modes matches the incident plane wave in free space, leading to nearly perfect light absorption. The incident optical energy is efficiently converted into heat so that the local temperature of the absorber will increase. Results show that the designed absorber is polarization-insensitive and nearly omnidirectional for the incident angle.

  2. Transformable topological mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming

    2017-01-01

    Mechanical metamaterials are engineered materials whose structures give them novel mechanical properties, including negative Poisson's ratios, negative compressibilities and phononic bandgaps. Of particular interest are systems near the point of mechanical instability, which recently have been shown to distribute force and motion in robust ways determined by a nontrivial topological state. Here we discuss the classification of and propose a design principle for mechanical metamaterials that can be easily and reversibly transformed between states with dramatically different mechanical and acoustic properties via a soft strain. Remarkably, despite the low energetic cost of this transition, quantities such as the edge stiffness and speed of sound can change by orders of magnitude. We show that the existence and form of a soft deformation directly determines floppy edge modes and phonon dispersion. Finally, we generalize the soft strain to generate domain structures that allow further tuning of the material.

  3. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  4. Origami based Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Lv, Cheng; Krishnaraju, Deepakshyam; Konjevod, Goran; Yu, Hongyu; Jiang, Hanqing

    2014-08-01

    We describe mechanical metamaterials created by folding flat sheets in the tradition of origami, the art of paper folding, and study them in terms of their basic geometric and stiffness properties, as well as load bearing capability. A periodic Miura-ori pattern and a non-periodic Ron Resch pattern were studied. Unexceptional coexistence of positive and negative Poisson's ratio was reported for Miura-ori pattern, which are consistent with the interesting shear behavior and infinity bulk modulus of the same pattern. Unusually strong load bearing capability of the Ron Resch pattern was found and attributed to the unique way of folding. This work paves the way to the study of intriguing properties of origami structures as mechanical metamaterials.

  5. Origami based Mechanical Metamaterials

    PubMed Central

    Lv, Cheng; Krishnaraju, Deepakshyam; Konjevod, Goran; Yu, Hongyu; Jiang, Hanqing

    2014-01-01

    We describe mechanical metamaterials created by folding flat sheets in the tradition of origami, the art of paper folding, and study them in terms of their basic geometric and stiffness properties, as well as load bearing capability. A periodic Miura-ori pattern and a non-periodic Ron Resch pattern were studied. Unexceptional coexistence of positive and negative Poisson's ratio was reported for Miura-ori pattern, which are consistent with the interesting shear behavior and infinity bulk modulus of the same pattern. Unusually strong load bearing capability of the Ron Resch pattern was found and attributed to the unique way of folding. This work paves the way to the study of intriguing properties of origami structures as mechanical metamaterials. PMID:25099402

  6. Hierarchical honeycomb auxetic metamaterials

    NASA Astrophysics Data System (ADS)

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan

    2015-12-01

    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.

  7. Transformable topological mechanical metamaterials

    PubMed Central

    Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming

    2017-01-01

    Mechanical metamaterials are engineered materials whose structures give them novel mechanical properties, including negative Poisson's ratios, negative compressibilities and phononic bandgaps. Of particular interest are systems near the point of mechanical instability, which recently have been shown to distribute force and motion in robust ways determined by a nontrivial topological state. Here we discuss the classification of and propose a design principle for mechanical metamaterials that can be easily and reversibly transformed between states with dramatically different mechanical and acoustic properties via a soft strain. Remarkably, despite the low energetic cost of this transition, quantities such as the edge stiffness and speed of sound can change by orders of magnitude. We show that the existence and form of a soft deformation directly determines floppy edge modes and phonon dispersion. Finally, we generalize the soft strain to generate domain structures that allow further tuning of the material. PMID:28112155

  8. Hierarchical honeycomb auxetic metamaterials

    PubMed Central

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan

    2015-01-01

    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners. PMID:26670417

  9. Advanced solitonic metamaterial structures under external magnetophotonic control

    NASA Astrophysics Data System (ADS)

    Boardman, A. D.; Egan, P.

    2013-09-01

    Metamaterial research is an extremely important global activity that promises to change our lives in many different ways, including making objects invisible and having a very dramatic impact upon the energy and medical sectors of society. Behind all of the applications, however, lies the design of metamaterials and this can be led by elegant routes that include nonlinearity, waveguide complexity and structured light. The associated optical device formats often involve coupling to soliton behavior. Vortex formation is going to be a critical feature for future applications focusing attention upon the role of angular momentum in special metamaterial-driven light beams. In this context nonlinear diffraction must be assessed and some discussion of a magnetooptical environment will be included. Solitonic behavior of light beams will be mentioned, including what have now become known as Peregrine solitons.

  10. Broadband high efficiency asymmetric transmission of achiral metamaterials.

    PubMed

    Fan, Wenjun; Wang, Yanrong; Zheng, Ruqiang; Liu, Dahe; Shi, Jinwei

    2015-07-27

    Asymmetric transmission (AT) effect has attracted great interest in recent years, due to its potential application in integrated photonics from GHz to optical frequency. To realize AT effect, numerous metamaterials have been proposed, mainly based on the chirality of the structure. In this paper, we demonstrate that achiral metamaterials can also have AT effect. Furthermore, it is shown that modal conversion is more essential than chirality to achieve AT effect. In particular, we have proposed a mirror symmetric metamaterial with broadband high efficiency AT effect for circular polarization wave operating at THz region. With further optimization of the unit cell, >80% of the central frequency bandwidth and average 74.05 (maximum150) transmission ratio can be obtained. The idea demonstrated here can also be applied to other frequency regions.

  11. Metamaterial-based single pixel imaging system (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Padilla, Willie; Watts, Claire M.; Nadell, Christian; Montoya, John A.; Krishna, Sanjay

    2015-09-01

    Single pixel cameras are useful imaging devices where it is difficult or infeasible to fashion focal plan arrays. For example in the Far Infrared (FIR) it is difficult to perform imaging by conventional detector arrays, owing to the cost and size of such an array. The typical single pixel camera uses a spatial light modulator (SLM) - placed in the conjugate image plane - and is used to sample various portions of the image. The spatially modulated light emerging from the SLM is then sent to a single detector where the light is condensed with suitable optics for detection. Conventional SLMs are either based on liquid crystals or digital mirror devices. As such these devices are limited in modulation speeds of order 30 kHz. Further there is little control over the type of light that is modulated. We present metamaterial based spatial light modulators which provide the ability to digitally encode images - with various measurement matrix coefficients - thus permitting high speed and fidelity imaging capability. In particular we use the Hadamard matrix and related S-matrix to encode images for single pixel imaging. Metamaterials thus permit imaging in regimes of the electromagnetic spectrum where conventional SLMs are not available. Additionally, metamaterials offer several salient features that are not available with commercial SLMs. For example, metamaterials may be used to enable hyperspectral, polarimetric, and phase sensitive imaging. We present the theory and experimental results of single pixel imaging with digital metamaterials in the far infrared and highlight the future of this exciting field.

  12. Bidimensional phase-varying metamaterial for steering beam antenna

    NASA Astrophysics Data System (ADS)

    Ourir, Abdelwaheb; Burokur, Shah Nawaz; de Lustrac, André

    2007-05-01

    Dielectric substrates supporting planar periodic subwavelength metamaterial-based metallic arrays and presenting frequency dispersive phase characteristics are applied to ultra-compact high-gain and high-directivity planar antennas. In this paper, different models of metamaterial-based surfaces introducing a zero degree reflection phase shift to incident waves are firstly studied numerically using finite-element method analysis where the bandwidth and operation frequency are predicted. These surfaces are then applied in a resonant Fabry-Perot type cavity and a ray optics analysis is used to design different models of ultra-compact high-gain microstrip printed antennas. Firstly, a cavity antenna of thickness λ/60 based on the use of a microstrip patch antenna and two bidimensional metamaterial-based surfaces, the first one acting as a High Impedance Surface (HIS) and the second one acting as a Partially Reflecting Surface (PRS) is designed. This cavity is then optimized for easier fabrication process and loss reduction by the use of only one bidimensionnal composite metamaterial-based surface acting as a PRS. Secondly, another surface presenting a variable phase by the use of a non periodic metamaterial-based metallic strips array is designed for a passive low-profile steering beam antenna application. Finally, a switchable operation frequency cavity by the implementation of varicap diodes is designed and fabricated. All these cavity antennas operate on subwavelength modes, the smallest cavity thickness being of the order of λ/60.

  13. Evanescent field enhancement due to plasmonic resonances of a metamaterial slab.

    PubMed

    Chiu, K P; Kao, T S; Tsai, D P

    2008-02-01

    The characteristics of plasmonic resonance in a dielectric-sandwiched metamaterial film at visible wavelengths of 650 and 568 nm have been investigated (for both p- and s-polarized light). Our calculated results demonstrate that each mode of plasmonic resonance has maximum resonance strength at a particular film thickness of the metamaterial. We also demonstrated that the effect of evanescent field enhancement is due to plasmonic resonances of the sandwiched metamaterial system. And the stronger the plasmonic resonance strength the larger the evanescent field is enhanced at the interfaces of the metamaterial film. Also we see that the plasmonic resonances in a sandwiched metamaterial are influenced not only by the materials that constitute the interfaces but also by the thickness of surrounding dielectrics or distance between evanescent light source and metamaterial film. Finally, our results show that there might be an effective light propagation length that will let the coupling efficiency between evanescent light source and SPs resonance become a maximum. These properties of plasmonic resonances to structure parameters of metamaterial film and its surrounding dielectrics provide a useful way to control the optical responses of an optoelectronic device when the wavelength of light source is fixed. That is, by suitably choosing light polarizations, thickness of the metamaterial thin film or the surrounding dielectrics and the position of evanescent light source, it is possible to modulate the plasmonic resonance wavenumber or resonance strength of the system. Therefore, the optical responses of the system can be modulated. Our results will be helpful for the structure design to control the behaviours of coupled plasmonic resonances and consequently the optical properties of the dielectric-sandwiched metamaterial film.

  14. Snapping mechanical metamaterials under tension.

    PubMed

    Rafsanjani, Ahmad; Akbarzadeh, Abdolhamid; Pasini, Damiano

    2015-10-21

    A snapping mechanical metamaterial is designed, which exhibits a sequential snap-through behavior under tension. The tensile response of this mechanical metamaterial can be altered by tuning the architecture of the snapping segments to achieve a range of nonlinear mechanical responses, including monotonic, S-shaped, plateau, and non-monotonic snap-through behavior.

  15. Modeling of causality with metamaterials

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor I.

    2013-02-01

    Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space-time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space-time. While this model may be used to build interesting space-time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space-time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler-Feynman absorber theory of causality.

  16. Chiral Metamaterials: retrieval of the effective parameters with and without substrate

    SciTech Connect

    Zhao, Rongkuo; Koschny, Thomas; Soukoulis, Costas M.

    2010-06-23

    After the prediction that strong enough optical activity may result in negative refraction and negative reflection, more and more artificial chiral metamaterials were designed and fabricated at difference frequency ranges from microwaves to optical waves. Therefore, a simple and robust method to retrieve the effective constitutive parameters for chiral metamaterials is urgently needed. Here, we analyze the wave propagation in chiral metamaterials and follow the regular retrieval procedure for ordinary metamaterials and apply it in chiral metamaterial slabs. Then based on the transfer matrix technique, the parameter retrieval is extended to treat samples with not only the substrate but also the top layers. After the parameter retrieval procedure, we take two examples to check our method and study how the substrate influences on the thin chiral metamaterials slabs. We find that the substrate may cause the homogeneous slab to be inhomogeneous, i.e. the reflections in forward and backward directions are different. However, the chiral metamaterial where the resonance element is embedded far away from the substrate is insensitive to the substrate.

  17. Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.

    PubMed

    Azari, Mina; Hatami, Mohsen; Meygoli, Vahid; Yousefi, Elham

    2016-11-01

    Over the past decades, scientists have presented ways to manipulate the macroscopic properties of a material at levels unachieved before, and called them metamaterials. This research can be considered an important step forward in electromagnetics and optics. In this study, higher-order nonlinear coupled equations in a special kind of metamaterial waveguides (a planar waveguide with metamaterial core) will be derived from both electric and magnetic components of the transverse electric mode of electromagnetic pulse propagation. On the other hand, achieving the refractive index in this research is worthwhile. It is also shown that the coupled equations are not symmetric with respect to the electric and magnetic fields, unlike these kinds of equations in fiber optics and dielectric waveguides. Simulations on the propagation of a fundamental soliton pulse in a nonlinear metamaterial waveguide near the resonance frequency (a little lower than the magnetic resonant frequency) are performed to study its behavior. These pulses are recommended to practice in optical communications in controlled switching by external voltage, even in low power.

  18. Symmetry breaking in metallic cut wire pairs metamaterials for negative refractive index

    NASA Astrophysics Data System (ADS)

    Burokur, Shah Nawaz; Sellier, Alexandre; Kanté, Boubacar; de Lustrac, André

    2009-05-01

    Metamaterials made of exclusively metallic cut wire pairs have been experimentally demonstrated to exhibit a negative refractive index at optical frequencies. However, other related works have not shown a negative index. In this paper, we propose an easy way to manipulate the magnetic and electric resonances of these metamaterials to produce a negative index. We show that judiciously breaking the symmetry of the structure allows tuning of both resonances leading to an overlapping between the negative permeability and negative permittivity regions. Numerical and experimental parametric studies of several cut wire pairs metamaterials are presented to validate our method at microwave frequencies.

  19. Bottom-up metamaterials with an isotropic magnetic response in the visible

    NASA Astrophysics Data System (ADS)

    Mühlig, Stefan; Dintinger, José; Cunningham, Alastair; Scharf, Toralf; Bürgi, Thomas; Rockstuhl, Carsten; Lederer, Falk

    A theoretical framework to analyze the optical properties of amorphous metamaterials made from meta-atoms which are amenable for a fabrication with bottom-up technologies is introduced. The achievement of an isotropic magnetic resonance in the visible is investigated by suggesting suitable designs for the meta-atoms. Furthermore, two meta-atoms are discussed in detail that were fabricated by self-assembling plasmonic nanoparticles using techniques from the field of colloidal nanochemistry. The metamaterials are experimentally characterized by spectroscopic means and the excitation of the magnetic dipole moment is clearly revealed. Advantages and disadvantages of metamaterials made from such meta-atoms are discussed.

  20. Selective coherent perfect absorption in metamaterials

    SciTech Connect

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  1. Polymeric matrix materials for infrared metamaterials

    SciTech Connect

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  2. Bianisotropic Negative-Index Metamaterial Embedded in a Symmetric Medium

    DTIC Science & Technology

    2009-12-01

    fishnet structure, it is necessary to measure the optical properties with symmetric substrate and superstrate bounding layers. This is accomplished in...this report using an index- matching fluid and identical substrate and superstrate glass materials. © 2009 Optical Society of America OCIS codes...which gives rise to bianisotropy and to differences in the reflec- tivity measured from the substrate and superstrate sides of the metamaterial [8,13–18

  3. Designing Multipolar Resonances in Dielectric Metamaterials

    PubMed Central

    Butakov, Nikita A.; Schuller, Jon A.

    2016-01-01

    Dielectric resonators form the building blocks of nano-scale optical antennas and metamaterials. Due to their multipolar resonant response and low intrinsic losses they offer design flexibility and high-efficiency performance. These resonators are typically described in terms of a spherical harmonic decomposition with Mie theory. In experimental realizations however, a departure from spherical symmetry and the use of high-index substrates leads to new features appearing in the multipolar response. To clarify this behavior, we present a systematic experimental and numerical characterization of Silicon disk resonators. We demonstrate that for disk resonators on low-index quartz substrates, the electric and magnetic dipole modes are easily identifiable across a wide range of aspect-ratios, but that higher order peaks cannot be unambiguously associated with any specific multipolar mode. On high-index Silicon substrates, even the fundamental dipole modes do not have a clear association. When arranged into arrays, resonances are shifted and pronounced preferential forward and backward scattering conditions appear, which are not as apparent in individual resonators and may be associated with interference between multipolar modes. These findings present new opportunities for engineering the multipolar scattering response of dielectric optical antennas and metamaterials, and provide a strategy for designing nano-optical components with unique functionalities. PMID:27929038

  4. Designing Multipolar Resonances in Dielectric Metamaterials

    NASA Astrophysics Data System (ADS)

    Butakov, Nikita A.; Schuller, Jon A.

    2016-12-01

    Dielectric resonators form the building blocks of nano-scale optical antennas and metamaterials. Due to their multipolar resonant response and low intrinsic losses they offer design flexibility and high-efficiency performance. These resonators are typically described in terms of a spherical harmonic decomposition with Mie theory. In experimental realizations however, a departure from spherical symmetry and the use of high-index substrates leads to new features appearing in the multipolar response. To clarify this behavior, we present a systematic experimental and numerical characterization of Silicon disk resonators. We demonstrate that for disk resonators on low-index quartz substrates, the electric and magnetic dipole modes are easily identifiable across a wide range of aspect-ratios, but that higher order peaks cannot be unambiguously associated with any specific multipolar mode. On high-index Silicon substrates, even the fundamental dipole modes do not have a clear association. When arranged into arrays, resonances are shifted and pronounced preferential forward and backward scattering conditions appear, which are not as apparent in individual resonators and may be associated with interference between multipolar modes. These findings present new opportunities for engineering the multipolar scattering response of dielectric optical antennas and metamaterials, and provide a strategy for designing nano-optical components with unique functionalities.

  5. SPR optimization using metamaterials in a D-type PCF refractive index sensor

    NASA Astrophysics Data System (ADS)

    Santos, D. F.; Guerreiro, A.; Baptista, J. M.

    2017-01-01

    Using the finite element method (FEM), this paper presents a numerical investigation of the performance analysis of a D-type photonic crystal fiber (D-type PCF) for refractive index sensing, based on surface plasmon resonance (SPR) with a planar structure made out of a metamaterial. COMSOL Multiphysics was used to evaluate the design of the referred refractive index optical fiber sensor, with higher accuracy and considerable economy of time and resources. A study of different metamaterials concentrations conformed by aluminum oxide (Al2O3) and silver (Ag) is carried out. Another structural parameters, which influences the refractive index sensor performance, the thickness of the metamaterial, is also investigated. The results indicate that the use of metamaterials provides a way of improving the performance of SPR sensors on optical fibers and allows to tailor the working parameters of the sensor.

  6. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs.

    PubMed

    Yue, Weisheng; Wang, Zhihong; Whittaker, John; Schedin, Fredrik; Wu, Zhipeng; Han, Jiaguang

    2016-02-05

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  7. Properties of group delay for photon tunneling through dispersive metamaterial barriers

    NASA Astrophysics Data System (ADS)

    Wang, Xinglin; Wang, Huisheng; Zheng, Fanong

    2017-01-01

    We make a detailed investigation on properties of the group delay for photon tunneling through dispersive metamaterial barriers by employing stationary phase method. Due to the anomalous dispersion of the different barriers, it is found that the group delay is positive for double negative metamaterial (DNM) barrier, while for single negative metamaterial (SNM) and negative-zero-positive index metamaterial (NZPIM) barriers, they can change from negative to positive with variations of both frequency and incident angle. The lateral shift for the photon tunneling has also been studied, whose sign is found not to dominate the sign of the group delay. It is further confirmed that the group delay tends to a saturation value with increasing barrier length because of Hartman effect. These results may provide some ideas for further study on the photon tunneling, suggest the analogous phenomena of valence electron in graphene, and produce some potential application in integrated optics and optical devices.

  8. Optical fiber metamagnetics.

    PubMed

    Wang, Xi; Venugopal, Gayatri; Zeng, Jinwei; Chen, Yinnan; Lee, Dong Ho; Litchinitser, Natalia M; Cartwright, Alexander N

    2011-10-10

    To date, magnetic and negative-index metamaterials at optical frequencies were realized on bulk substrates in the form of thin films with thicknesses on the order of, or less than, optical wavelengths. In this work, we design and experimentally demonstrate, for the first time, fiber-coupled magnetic metamaterials integrated on the transverse cross-section of an optical fiber. Such fiber-metamaterials integration may provide fundamentally new solutions for photonic-on-a-chip systems for sensing, subwavelength imaging, image processing, and biomedical applications.

  9. Transforming two-dimensional guided light using nonmagnetic metamaterial waveguides

    NASA Astrophysics Data System (ADS)

    Viaene, Sophie; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2016-02-01

    Almost a decade ago, transformation optics established a geometrical perspective to describe the interaction of light with structured matter, enhancing our understanding and control of light. However, despite their huge technological relevance in applications such as optical circuitry, optical detection, and actuation, guided electromagnetic waves along dielectric waveguides have not yet benefited from the flexibility and conceptual simplicity of transformation optics. Indeed, transformation optics inherently imposes metamaterials not only inside the waveguide's core but also in the surrounding substrate and cladding. Here we restore the two-dimensional nature of guided electromagnetic waves by introducing a thickness variation on an anisotropic dielectric core according to alternative two-dimensional equivalence relations. Our waveguides require metamaterials only inside the core with the additional advantage that the metamaterials need not be magnetic and, hence, our purely dielectric waveguides are low loss. We verify the versatility of our theory with full wave simulations of three crucial functionalities: beam bending, beam splitting, and lensing. Our method opens up the toolbox of transformation optics to a plethora of waveguide-based devices.

  10. Sensor based on Fano resonances of plane metamaterial with narrow slits

    NASA Astrophysics Data System (ADS)

    Huang, Wan-Xia; Guo, Juan-Juan; Wang, Mao-Sheng; Zhao, Guo-Ren

    2017-03-01

    The optical properties of a composite metamaterial composed of narrow slits and nano hole pairs have been investigated experimentally and numerically. The strength of the transmission peak originating from the interference between the coupled surface plasmon polaritons (SPP) of the narrow slit and the SPP modes of the hole array is modulated by the degree of symmetry breaking. Some SPP modes can be inhibited by controlling the spacer layer thickness. Our metamaterial has potential applications in sensing and weak signal detection.

  11. Ultrafast modulation of near-field heat transfer with tunable metamaterials

    NASA Astrophysics Data System (ADS)

    Cui, Longji; Huang, Yong; Wang, Ju; Zhu, Ke-Yong

    2013-02-01

    We propose a mechanism of active near-field heat transfer modulation relying on externally tunable metamaterials. A large modulation effect is observed and can be explained by the coupling of surface modes, which is dramatically varied in the presence of controllable magnetoelectric coupling in metamaterials. We finally discuss how a practical picosecond-scale thermal modulator can be made. This modulator allows manipulating nanoscale heat flux in an ultrafast and noncontact (by optical means) manner.

  12. Tunable Composite Metamaterials with Imbedded Coherently Controllable Atomic or Molecular Materials

    DTIC Science & Technology

    2010-10-07

    important issue related to the practical design and manufacture of controllable metamaterials. This pertains to the inherent distribution in sizes... new transmission band that develops below ωp, for the D1 and D2 lines in the presence (solid) and in the absence (dotted) of an appropriate...understanding of composite metamaterials at optical and near-infra-red frequencies by involving suitable atomic / molecular media in the construction the

  13. Novel Metamaterial Blueprints and Elements for Electromagnetic Applications

    NASA Astrophysics Data System (ADS)

    Odabasi, Hayrettin

    In the first part of this dissertation, we explore the metric invariance of Maxwell's equations to design metamaterial blueprints for three novel electromagnetic devices. The metric invariance of Maxwell's equations here means that the effects of an (hypothetical) distortion of the background spatial domain on the electromagnetic fields can be mimicked by properly chosen material constitutive tensors. The exploitation of such feature of Maxwell's equations to derive metamaterial devices has been denoted as `transformation optics' (TO). The first device proposed here consists of metamaterial blueprints of waveguide claddings for (waveguide) miniaturization. These claddings provide a precise control of mode distribution and frequency cut-off. The proposed claddings are distinct from conventional dielectric loadings as the former do not support hybrid modes and are impedance-matched to free-space. We next derive a class of metamaterial blueprints designed for low-profile antenna applications, whereby a simple spatial transformation is used to yield uniaxial metamaterial substrate with electrical height higher than its physical height and surface waves are not supported, which is an advantage for patch antenna applications. We consider the radiation from horizontal wire and patch antennas in the presence of such substrates. Fundamental characteristics such as return loss and radiation pattern of the antennas are investigated in detail. Finally, transformation optics is also applied to design cylindrical impedance-matched absorbers. In this case, we employ a complex-valued transformation optics approach (in the Fourier domain) as opposed to the conventional real-valued approach. A connection of such structures with perfectly matched layers and recently proposed optical pseudo black-hole devices is made. In the second part of this dissertation, we move from the derivation of metamaterial blueprints to the application of pre-defined unit-cell metamaterial structures for

  14. Realization of mid-infrared graphene hyperbolic metamaterials.

    PubMed

    Chang, You-Chia; Liu, Che-Hung; Liu, Chang-Hua; Zhang, Siyuan; Marder, Seth R; Narimanov, Evgenii E; Zhong, Zhaohui; Norris, Theodore B

    2016-02-04

    While metal is the most common conducting constituent element in the fabrication of metamaterials, graphene provides another useful building block, that is, a truly two-dimensional conducting sheet whose conductivity can be controlled by doping. Here we report the experimental realization of a multilayer structure of alternating graphene and Al2O3 layers, a structure similar to the metal-dielectric multilayers commonly used in creating visible wavelength hyperbolic metamaterials. Chemical vapour deposited graphene rather than exfoliated or epitaxial graphene is used, because layer transfer methods are easily applied in fabrication. We employ a method of doping to increase the layer conductivity, and our analysis shows that the doped chemical vapour deposited graphene has good optical properties in the mid-infrared range. We therefore design the metamaterial for mid-infrared operation; our characterization with an infrared ellipsometer demonstrates that the metamaterial experiences an optical topological transition from elliptic to hyperbolic dispersion at a wavelength of 4.5 μm.

  15. Realization of mid-infrared graphene hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Chang, You-Chia; Liu, Che-Hung; Liu, Chang-Hua; Zhang, Siyuan; Marder, Seth R.; Narimanov, Evgenii E.; Zhong, Zhaohui; Norris, Theodore B.

    2016-02-01

    While metal is the most common conducting constituent element in the fabrication of metamaterials, graphene provides another useful building block, that is, a truly two-dimensional conducting sheet whose conductivity can be controlled by doping. Here we report the experimental realization of a multilayer structure of alternating graphene and Al2O3 layers, a structure similar to the metal-dielectric multilayers commonly used in creating visible wavelength hyperbolic metamaterials. Chemical vapour deposited graphene rather than exfoliated or epitaxial graphene is used, because layer transfer methods are easily applied in fabrication. We employ a method of doping to increase the layer conductivity, and our analysis shows that the doped chemical vapour deposited graphene has good optical properties in the mid-infrared range. We therefore design the metamaterial for mid-infrared operation; our characterization with an infrared ellipsometer demonstrates that the metamaterial experiences an optical topological transition from elliptic to hyperbolic dispersion at a wavelength of 4.5 μm.

  16. Realization of mid-infrared graphene hyperbolic metamaterials

    PubMed Central

    Chang, You-Chia; Liu, Che-Hung; Liu, Chang-Hua; Zhang, Siyuan; Marder, Seth R.; Narimanov, Evgenii E.; Zhong, Zhaohui; Norris, Theodore B.

    2016-01-01

    While metal is the most common conducting constituent element in the fabrication of metamaterials, graphene provides another useful building block, that is, a truly two-dimensional conducting sheet whose conductivity can be controlled by doping. Here we report the experimental realization of a multilayer structure of alternating graphene and Al2O3 layers, a structure similar to the metal-dielectric multilayers commonly used in creating visible wavelength hyperbolic metamaterials. Chemical vapour deposited graphene rather than exfoliated or epitaxial graphene is used, because layer transfer methods are easily applied in fabrication. We employ a method of doping to increase the layer conductivity, and our analysis shows that the doped chemical vapour deposited graphene has good optical properties in the mid-infrared range. We therefore design the metamaterial for mid-infrared operation; our characterization with an infrared ellipsometer demonstrates that the metamaterial experiences an optical topological transition from elliptic to hyperbolic dispersion at a wavelength of 4.5 μm. PMID:26843149

  17. An elasto-mechanical unfeelability cloak made of pentamode metamaterials.

    PubMed

    Bückmann, T; Thiel, M; Kadic, M; Schittny, R; Wegener, M

    2014-06-19

    Metamaterial-based cloaks make objects different from their surrounding appear just like their surrounding. To date, cloaking has been demonstrated experimentally in many fields of research, including electrodynamics at microwave frequencies, optics, static electric conduction, acoustics, fluid dynamics, thermodynamics and quasi two-dimensional solid mechanics. However, cloaking in the seemingly simple case of three-dimensional solid mechanics is more demanding. Here, inspired by invisible core-shell nanoparticles in optics, we design an approximate elasto-mechanical core-shell 'unfeelability' cloak based on pentamode metamaterials. The resulting three-dimensional polymer microstructures with macroscopic overall volume are fabricated by rapid dip-in direct laser writing optical lithography. We quasi-statically deform cloak and control samples in the linear regime and map the displacement fields by autocorrelation-based analysis of recorded movies. The measured and the calculated displacement fields show very good cloaking performance. This means that one can elastically hide objects along these lines.

  18. Acoustic metamaterial with negative modulus.

    PubMed

    Lee, Sam Hyeon; Park, Choon Mahn; Seo, Yong Mun; Wang, Zhi Guo; Kim, Chul Koo

    2009-04-29

    We present experimental and theoretical results on an acoustic metamaterial that exhibits a negative effective modulus in a frequency range from 0 to 450 Hz. A one-dimensional acoustic metamaterial with an array of side holes on a tube was fabricated. We observed that acoustic waves above 450 Hz propagated well in this structure, but no sound below 450 Hz passed through. The frequency characteristics of the metamaterial has the same form as that of the permittivity in metals due to the plasma oscillation. We also provide a theory to explain the experimental results.

  19. Seismic Waveguide of Metamaterials

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Hoon; Das, Mukunda P.

    We developed a new method of an earthquake-resistant design to support conventional aseismic system using acoustic metamaterials. The device is an attenuator of a seismic wave that reduces the amplitude of the wave exponentially. Constructing a cylindrical shell-type waveguide composed of many Helmholtz resonators that creates a stop-band for the seismic frequency range, we convert the seismic wave into an attenuated one without touching the building that we want to protect. It is a mechanical way to convert the seismic energy into sound and heat.

  20. Nanoporous plasmonic metamaterials

    SciTech Connect

    Biener, J; Nyce, G W; Hodge, A M; Biener, M M; Hamza, A V; Maier, S A

    2007-05-24

    We review different routes for the generation of nanoporous metallic foams and films exhibiting well-defined pore size and short-range order. Dealloying and templating allows the generation of both two- and three-dimensional structures which promise a well defined plasmonic response determined by material constituents and porosity. Viewed in the context of metamaterials, the ease of fabrication of samples covering macroscopic dimensions is highly promising, and suggests more in-depth investigations of the plasmonic and photonic properties of this material system for photonic applications.

  1. Meta-Optics

    NASA Astrophysics Data System (ADS)

    Engheta, Nader

    2014-03-01

    As the fields of metamaterial and plasmonic nanophotonics reach certain levels of development, new directions and novel vistas appear in the horizon. Modularization, parameterization and functionalization of metamaterials may be exploited to provide new functionalities and applications stemming from such interesting platforms of ``meta-optics.'' Indeed, the metamaterial ``forms'' may lead to novel ``functions.'' These may include metamaterial ``bits'' and ``bytes'' as building blocks for digitizing metamaterials, ``optical metatronics'' - metamaterial-inspired optical nanocircuitry - formed by judicious arrangement of nanostructures capable of optical processing at the nanoscale, ``meta-systems'' formed by metamaterials and metasurfaces providing wave-based signal handling and processing, graphene metatronics as one-atom-thick mid IR circuits, and nonreciprocal metastructures for unusual control over flow of photons, to name a few. We are exploring various features and characteristics of these concepts, topics, and directions in the paradigms of meta-optics and are investigating new classes of potential applications such paradigms may provide. We will present an overview of our most recent results from a sample of these topics and will discuss future directions and potentials.

  2. Metamaterials for Remote Generation of Spatially Controllable Two Dimensional Array of Microplasma

    PubMed Central

    Singh, Pramod K.; Hopwood, Jeffrey; Sonkusale, Sameer

    2014-01-01

    Since the initial demonstration of negative refraction and cloaking using metamaterials, there has been enormous interest and progress in making practical devices based on metamaterials such as electrically small antennas, absorbers, modulators, detectors etc that span over a wide range of electromagnetic spectrum covering microwave, terahertz, infrared (IR) and optical wavelengths. We present metamaterial as an active substrate where each unit cell serves as an element for generation of plasma, the fourth state of matter. Sub-wavelength localization of incident electromagnetic wave energy, one of the most interesting properties of metamaterials is employed here for generating high electric field to ignite and sustain microscale plasmas. Frequency selective nature of the metamaterial unit cells make it possible to generate spatially localized microplasma in a large array using multiple resonators. A dual resonator topology is shown for the demonstration. Since microwave energy couples to the metamaterial through free space, the proposed approach is naturally wireless. Such spatially controllable microplasma arrays provide a fundamentally new material system for future investigations in novel applications, e.g. nonlinear metamaterials. PMID:25098976

  3. Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers.

    PubMed

    Ishikawa, Atsushi; Tanaka, Takuo

    2015-07-31

    The emerging field of plasmonic metamaterials has introduced new degree of freedom to manipulate optical field from nano to macroscopic scale, offering an attractive platform for sensing applications. So far, metamaterial sensor concepts, however, have focused on hot-spot engineering to improve the near-field enhancement, rather than fully exploiting tailored material properties. Here, we present a novel spectroscopic technique based on the metamaterial infrared (IR) absorber allowing for a low-background detection scheme as well as significant plasmonic enhancement. Specifically, we experimentally demonstrate the resonant coupling of plasmonic modes of a metamaterial absorber and IR vibrational modes of a molecular self-assembled monolayer. The metamaterial consisting of an array of Au/MgF2/Au structures exhibits an anomalous absorption at ~ 3000 cm(-1), which spectrally overlaps with C-H stretching vibrational modes. Symmetric/asymmetric C-H stretching modes of a 16-Mercaptohexadecanoic acid monolayer are clearly observed as Fano-like anti-resonance peaks within a broad plasmonic absorption of the metamaterial. Spectral analysis using Fano line-shape fitting reveals the underlying resonant interference in plasmon-molecular coupled systems. Our metamaterial approach achieves the attomole sensitivity with a large signal-to-noise ratio in the far-field measurement, thus may open up new avenues for realizing ultrasensitive IR inspection technologies.

  4. Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers

    PubMed Central

    Ishikawa, Atsushi; Tanaka, Takuo

    2015-01-01

    The emerging field of plasmonic metamaterials has introduced new degree of freedom to manipulate optical field from nano to macroscopic scale, offering an attractive platform for sensing applications. So far, metamaterial sensor concepts, however, have focused on hot-spot engineering to improve the near-field enhancement, rather than fully exploiting tailored material properties. Here, we present a novel spectroscopic technique based on the metamaterial infrared (IR) absorber allowing for a low-background detection scheme as well as significant plasmonic enhancement. Specifically, we experimentally demonstrate the resonant coupling of plasmonic modes of a metamaterial absorber and IR vibrational modes of a molecular self-assembled monolayer. The metamaterial consisting of an array of Au/MgF2/Au structures exhibits an anomalous absorption at ~3000 cm−1, which spectrally overlaps with C-H stretching vibrational modes. Symmetric/asymmetric C-H stretching modes of a 16-Mercaptohexadecanoic acid monolayer are clearly observed as Fano-like anti-resonance peaks within a broad plasmonic absorption of the metamaterial. Spectral analysis using Fano line-shape fitting reveals the underlying resonant interference in plasmon-molecular coupled systems. Our metamaterial approach achieves the attomole sensitivity with a large signal-to-noise ratio in the far-field measurement, thus may open up new avenues for realizing ultrasensitive IR inspection technologies. PMID:26229011

  5. Metamaterial mirrors in optoelectronic devices.

    PubMed

    Esfandyarpour, Majid; Garnett, Erik C; Cui, Yi; McGehee, Michael D; Brongersma, Mark L

    2014-07-01

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror (φ = π) to that of a perfect magnetic mirror (φ = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band.

  6. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    SciTech Connect

    Wang, Bingnan

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  7. III-V semiconductor nanoresonators-a new strategy for passive, active, and nonlinear all-dielectric metamaterials

    DOE PAGES

    Liu, Sheng; Keeler, Gordon A.; Reno, John L.; ...

    2016-06-10

    We demonstrate 2D and multilayer dielectric metamaterials made from III–V semiconductors using a monolithic fabrication process. The resulting structures could be used to recompress chirped femtosecond optical pulses and in a variety of other optical applications requiring low loss. Moreover, these III–V all-dielectric metamaterials could enable novel active applications such as efficient nonlinear frequency converters, light emitters, detectors, and modulators.

  8. Shape morphing Kirigami mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Neville, Robin M.; Scarpa, Fabrizio; Pirrera, Alberto

    2016-08-01

    Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson’s ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures.

  9. Shape morphing Kirigami mechanical metamaterials.

    PubMed

    Neville, Robin M; Scarpa, Fabrizio; Pirrera, Alberto

    2016-08-05

    Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson's ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures.

  10. Acoustic metamaterials for sound mitigation

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2016-05-01

    We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved.

  11. Shape morphing Kirigami mechanical metamaterials

    PubMed Central

    Neville, Robin M.; Scarpa, Fabrizio; Pirrera, Alberto

    2016-01-01

    Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson’s ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures. PMID:27491945

  12. Discrete solitons in graphene metamaterials

    NASA Astrophysics Data System (ADS)

    Bludov, Yu. V.; Smirnova, D. A.; Kivshar, Yu. S.; Peres, N. M. R.; Vasilevskiy, M. I.

    2015-01-01

    We study nonlinear properties of multilayer metamaterials created by graphene sheets separated by dielectric layers. We demonstrate that such structures can support localized nonlinear modes described by the discrete nonlinear Schrödinger equation and that its solutions are associated with stable discrete plasmon solitons. We also analyze the nonlinear surface modes in truncated graphene metamaterials being a nonlinear analog of surface Tamm states.

  13. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared.

    PubMed

    Ou, Jun-Yu; Plum, Eric; Zhang, Jianfa; Zheludev, Nikolay I

    2013-04-01

    Current efforts in metamaterials research focus on attaining dynamic functionalities such as tunability, switching and modulation of electromagnetic waves. To this end, various approaches have emerged, including embedded varactors, phase-change media, the use of liquid crystals, electrical modulation with graphene and superconductors, and carrier injection or depletion in semiconductor substrates. However, tuning, switching and modulating metamaterial properties in the visible and near-infrared range remain major technological challenges: indeed, the existing microelectromechanical solutions used for the sub-terahertz and terahertz regimes cannot be shrunk by two to three orders of magnitude to enter the optical spectral range. Here, we develop a new type of metamaterial operating in the optical part of the spectrum that is three orders of magnitude faster than previously reported electrically reconfigurable metamaterials. The metamaterial is actuated by electrostatic forces arising from the application of only a few volts to its nanoscale building blocks-the plasmonic metamolecules-that are supported by pairs of parallel strings cut from a flexible silicon nitride membrane of nanoscale thickness. These strings, of picogram mass, can be driven synchronously to megahertz frequencies to electromechanically reconfigure the metamolecules and dramatically change the transmission and reflection spectra of the metamaterial. The metamaterial's colossal electro-optical response (on the order of 10(-5)-10(-6) m V(-1)) allows for either fast continuous tuning of its optical properties (up to 8% optical signal modulation at up to megahertz rates) or high-contrast irreversible switching in a device only 100 nm thick, without the need for external polarizers and analysers.

  14. Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser

    NASA Astrophysics Data System (ADS)

    Sarychev, Andrey K.; Tartakovsky, Gennady

    2006-08-01

    We consider plasmonic nanoantennas immersed in active host medium. Specifically shaped metal nanoantennas can exhibit strong magnetic properties in the optical spectral range due to the excitation of Magnetic Resonance Plasmons (MRP). A case when a metamaterial comprising such nanoantennas can demonstrate both "left-handiness" and negative permeability in the optical range is considered. We show that high losses predicted for optical "left-handed" materials can be compensated in the gain medium. Gains required to achieve local generation in such magnetic active metamaterials are calculated for real metals

  15. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    SciTech Connect

    Basu, Soumyadipta Yang, Yue; Wang, Liping

    2015-01-19

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  16. Active control of chirality in nonlinear metamaterials

    SciTech Connect

    Zhu, Yu; Chai, Zhen; Yang, Hong; Hu, Xiaoyong Gong, Qihuang

    2015-03-02

    An all-optical tunabe chirality is realized in a photonic metamaterial, the metamolecule of which consists of a nonlinear nano-Au:polycrystalline indium-tin oxide layer sandwiched between two L-shaped gold nano-antennas twisted 90° with each other. The maximum circular dichroism reached 30%. Under excitation of a 40 kW/cm{sup 2} weak pump light, the peak in the circular dichroism shifts 45 nm in the short-wavelength direction. An ultrafast response time of 35 ps is maintained. This work not only opens up the possibility for the realization of ultralow-power and ultrafast all-optical tunable chirality but also offers a way to construct ultrahigh-speed on-chip biochemical sensors.

  17. Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields

    NASA Astrophysics Data System (ADS)

    Han, Tiancheng; Qiu, Cheng-Wei

    2016-04-01

    The full control of single or even multiple physical fields has attracted intensive research attention in the past decade, thanks to the development of metamaterials and transformation optics. Significant progress has been made in vector fields (e.g., optics, electromagnetics, and acoustics), leading to a host of strikingly functional metamaterials, such as invisibility cloaks, illusion devices, concentrators, and rotators. However, metamaterials in vector fields, designed through coordinate transformation of Maxwell’s equations, usually require extreme parameters and impose challenges on the actual realization. In this context, metamaterials in scalar fields (e.g., thermal and dc fields), which are mostly governed by the Laplace equation, lead to more plausible and facile implementations, since there are native insulators and excellent conductors (serving as two extreme cases). This paper therefore is particularly dedicated to reviewing the most recent advances in Laplacian metamaterials in manipulating thermal (both transient and steady states) and dc fields, separately and (or) simultaneously. We focus on the theory, design, and realization of thermal/dc functional metamaterials that can be used to control heat flux and electric current at will. We also provide an outlook toward the challenges and future directions in this fascinating area.

  18. Fabrication of Metamaterials by Drawing Techniques

    DTIC Science & Technology

    2012-10-27

    modes in uniaxial metamaterial clad fibers ,” Meta’12 — 3rd International Conference on Metamaterials, Photonic Crystals and Plasmonics, (Paris, April...Fleming and B T. Kuhlmey “ Hollow - core uniaxial metamaterial clad fibers : Part I – modal equations and guidance conditions” [11] S. Atakaramians, A...Argyros, S. C. Fleming and B T. Kuhlmey “ Hollow - core uniaxial metamaterial clad fibers : Part II – dispersive metamaterials”

  19. Metamaterial Resonant Absorbers for Terahertz Sensing

    DTIC Science & Technology

    2015-12-01

    and their periodic nature , finite element (FE) modeling is the preferable means of designing metamaterials. In order to use metamaterials in sensors ...will incorporate the metamaterial absorber design of this research into a more efficient, cost effective, bi-material THz sensor that can be employed...in a variety of naval applications. 14. SUBJECT TERMS terahertz sensors , metamaterials, uncooled detectors 15. NUMBER OF PAGES 73 16

  20. Ultrafast refractive index control of a terahertz graphene metamaterial.

    PubMed

    Lee, Seung Hoon; Choi, Jeongmook; Kim, Hyeon-Don; Choi, Hyunyong; Min, Bumki

    2013-01-01

    Modulation of the refractive index of materials is elementary, yet it is crucial for the manipulation of electromagnetic waves. Relying on the inherent properties of natural materials, it has been a long-standing challenge in device engineering to increase the index-modulation contrast. Here, we demonstrate a significant amount of ultrafast index modulation by optically exciting non-equilibrium Dirac fermions in the graphene layer integrated onto a high-index metamaterial. Furthermore, an extremely-large electrical modulation of refractive index up to Δn ~ -3.4 (at 0.69 THz) is achieved by electrical tuning of the density of the equilibrium Dirac fermion in the graphene metamaterial. This manifestation, otherwise remaining elusive in conventional semiconductor devices, fully exploits the characteristic ultrafast charge relaxation in graphene as well as the strong capacitive response of the metamaterial, both of which enable us to drastically increase the light-matter interaction of graphene and the corresponding index contrast in the graphene metamaterials.

  1. Switching terahertz waves with gate-controlled active graphene metamaterials.

    PubMed

    Lee, Seung Hoon; Choi, Muhan; Kim, Teun-Teun; Lee, Seungwoo; Liu, Ming; Yin, Xiaobo; Choi, Hong Kyw; Lee, Seung S; Choi, Choon-Gi; Choi, Sung-Yool; Zhang, Xiang; Min, Bumki

    2012-11-01

    The extraordinary electronic properties of graphene provided the main thrusts for the rapid advance of graphene electronics. In photonics, the gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of photons with graphene, which has recently sparked keen interest in graphene plasmonics. However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications owing to its non-resonant Drude-like behaviour. Here, we demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated. The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances of the metamaterial. Although the thickness of the embedded single-layer graphene is more than six orders of magnitude smaller than the wavelength (<λ/1,000,000), the one-atom-thick layer, in conjunction with the metamaterial, can modulate both the amplitude of the transmitted wave by up to 47% and its phase by 32.2° at room temperature. More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, which is indicative of persistent photonic memory effects.

  2. Fabricating metamaterials using the fiber drawing method.

    PubMed

    Tuniz, Alessandro; Lwin, Richard; Argyros, Alexander; Fleming, Simon C; Kuhlmey, Boris T

    2012-10-18

    Metamaterials are man-made composite materials, fabricated by assembling components much smaller than the wavelength at which they operate (1). They owe their electromagnetic properties to the structure of their constituents, instead of the atoms that compose them. For example, sub-wavelength metal wires can be arranged to possess an effective electric permittivity that is either positive or negative at a given frequency, in contrast to the metals themselves (2). This unprecedented control over the behaviour of light can potentially lead to a number of novel devices, such as invisibility cloaks (3), negative refractive index materials (4), and lenses that resolve objects below the diffraction limit (5). However, metamaterials operating at optical, mid-infrared and terahertz frequencies are conventionally made using nano- and micro-fabrication techniques that are expensive and produce samples that are at most a few centimetres in size (6-7). Here we present a fabrication method to produce hundreds of meters of metal wire metamaterials in fiber form, which exhibit a terahertz plasmonic response (8). We combine the stack-and-draw technique used to produce microstructured polymer optical fiber (9) with the Taylor-wire process (10), using indium wires inside polymethylmethacrylate (PMMA) tubes. PMMA is chosen because it is an easy to handle, drawable dielectric with suitable optical properties in the terahertz region; indium because it has a melting temperature of 156.6 °C which is appropriate for codrawing with PMMA. We include an indium wire of 1 mm diameter and 99.99% purity in a PMMA tube with 1 mm inner diameter (ID) and 12 mm outside diameter (OD) which is sealed at one end. The tube is evacuated and drawn down to an outer diameter of 1.2 mm. The resulting fiber is then cut into smaller pieces, and stacked into a larger PMMA tube. This stack is sealed at one end and fed into a furnace while being rapidly drawn, reducing the diameter of the structure by a factor

  3. Hierarchical Auxetic Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.

    2015-02-01

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  4. Dual broadband metamaterial absorber.

    PubMed

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  5. Hierarchical Auxetic Mechanical Metamaterials

    PubMed Central

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I.; Azzopardi, Keith M.; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N.

    2015-01-01

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts. PMID:25670400

  6. Hierarchical auxetic mechanical metamaterials.

    PubMed

    Gatt, Ruben; Mizzi, Luke; Azzopardi, Joseph I; Azzopardi, Keith M; Attard, Daphne; Casha, Aaron; Briffa, Joseph; Grima, Joseph N

    2015-02-11

    Auxetic mechanical metamaterials are engineered systems that exhibit the unusual macroscopic property of a negative Poisson's ratio due to sub-unit structure rather than chemical composition. Although their unique behaviour makes them superior to conventional materials in many practical applications, they are limited in availability. Here, we propose a new class of hierarchical auxetics based on the rotating rigid units mechanism. These systems retain the enhanced properties from having a negative Poisson's ratio with the added benefits of being a hierarchical system. Using simulations on typical hierarchical multi-level rotating squares, we show that, through design, one can control the extent of auxeticity, degree of aperture and size of the different pores in the system. This makes the system more versatile than similar non-hierarchical ones, making them promising candidates for industrial and biomedical applications, such as stents and skin grafts.

  7. Doped Chiral Polymer Metamaterials

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.

  8. Multistability and switching in a superconducting metamaterial.

    PubMed

    Jung, P; Butz, S; Marthaler, M; Fistul, M V; Leppäkangas, J; Koshelets, V P; Ustinov, A V

    2014-04-28

    The field of metamaterial research revolves around the idea of creating artificial media that interact with light in a way unknown from naturally occurring materials. This is commonly achieved using sub-wavelength lattices of electronic or plasmonic structures, so-called meta-atoms. One of the ultimate goals for these tailored media is the ability to control their properties in situ. Here we show that superconducting quantum interference devices can be used as fast, switchable meta-atoms. We find that their intrinsic nonlinearity leads to simultaneously stable dynamic states, each of which is associated with a different value and sign of the magnetic susceptibility in the microwave domain. Moreover, we demonstrate that it is possible to switch between these states by applying nanosecond-long pulses in addition to the microwave-probe signal. Apart from potential applications for this all-optical metamaterial switch, the results suggest that multistability can also be utilized in other types of nonlinear meta-atoms.

  9. Random access actuation of nanowire grid metamaterial.

    PubMed

    Cencillo-Abad, Pablo; Ou, Jun-Yu; Plum, Eric; Valente, João; Zheludev, Nikolay I

    2016-12-02

    While metamaterials offer engineered static optical properties, future artificial media with dynamic random-access control over shape and position of meta-molecules will provide arbitrary control of light propagation. The simplest example of such a reconfigurable metamaterial is a nanowire grid metasurface with subwavelength wire spacing. Recently we demonstrated computationally that such a metadevice with individually controlled wire positions could be used as dynamic diffraction grating, beam steering module and tunable focusing element. Here we report on the nanomembrane realization of such a nanowire grid metasurface constructed from individually addressable plasmonic chevron nanowires with a 230 nm × 100 nm cross-section, which consist of gold and silicon nitride. The active structure of the metadevice consists of 15 nanowires each 18 μm long and is fabricated by a combination of electron beam lithography and ion beam milling. It is packaged as a microchip device where the nanowires can be individually actuated by control currents via differential thermal expansion.

  10. Binary metal and semiconductor quantum dot metamaterials with negative optical dielectric constant and compensated loss for small volume waveguides, modulators and switches

    NASA Astrophysics Data System (ADS)

    Ponizovskaya, Ekaterina; Thylen, Lars; Bratkovsky, Alexander; Fu, Ying

    2009-06-01

    We study numerically and analytically a binary mixture of quantum dots exhibiting gain and loss. For a mixture of gain quantum dots and silver nanoparticles, we find conditions when the composite shows negative dielectric constant operation and lossless operation. The composites of this kind may be used for dense integration of photonic components as well as modulation and switching in optical interconnect systems

  11. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  12. Acoustic metamaterial structures based on multi-frequency vibration absorbers

    NASA Astrophysics Data System (ADS)

    Pai, P. Frank; Peng, Hao

    2014-03-01

    This paper presents a new metamaterial beam based on multi-frequency vibration absorbers for broadband vibration absorption. The proposed metamaterial beam consists of a uniform isotropic beam and small two-mass spring-mass- damper subsystems at many locations along the beam to act as multi-frequency vibration absorbers. For an infinite metamaterial beam, governing equations of a unit cell are derived using the extended Hamilton principle. The existence of two stopbands is demonstrated using a model based on averaging material properties over a cell length and a model based on finite element modeling and the Bloch-Floquet theory for periodic structures. For a finite metamaterial beam, because these two idealized models cannot be used for finite beams and/or elastic waves having short wavelengths, a finite-element method is used for detailed modeling and analysis. The concepts of negative effective mass and effective stiffness and how the spring-mass-damper subsystem creates two stopbands are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed metamaterial beam is based on the concept of conventional mechanical vibration absorbers. For an incoming wave with a frequency in one of the two stopbands, the absorbers are excited to vibrate in their optical modes to create shear forces to straighten the beam and stop the wave propagation. For an incoming wave with a frequency outside of but between the two stopbands, it can be efficiently damped out by the damper with the second mass of each absorber. Hence, the two stopbands are connected into a wide stopband. Numerical examples validate the concept and show that the structure's boundary conditions do not have significant influence on the absorption of high-frequency waves. However, for absorption of low-frequency waves, the structure's boundary conditions and resonance frequencies and the location and spatial distribution of absorbers need to be considered in design, and it

  13. Multi-band slow light metamaterial.

    PubMed

    Zhu, Lei; Meng, Fan-Yi; Fu, Jia-Hui; Wu, Qun; Hua, Jun

    2012-02-13

    In this paper, a multi-band slow light metamaterial is presented and investigated. The metamaterial unit cell is composed of three cut wires of different sizes and parallel to each other. Two transparency windows induced by two-two overlaps of absorption bands of three cut wires are observed. The multi-band transmission characteristics and the slow light properties of metamaterial are verified by numerical simulation, which is in a good agreement with theoretical predictions. The impacts of structure parameters on transparency windows are also investigated. Simulation results show the spectral properties can be tuned by adjusting structure parameters of metamaterial. The equivalent circuit model and the synthesis method of the multi-band slow light metamaterial are presented. It is seen from simulation results that the synthesis method accurately predicts the center frequency of the multi-band metamaterial, which opens a door to a quick and accurate construction for multi-band slow light metamaterial.

  14. Self-Assembled Epitaxial Au–Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials

    SciTech Connect

    Li, Leigang; Sun, Liuyang; Gomez-Diaz, Juan Sebastian; Hogan, Nicki L.; Lu, Ping; Khatkhatay, Fauzia; Zhang, Wenrui; Jian, Jie; Huang, Jijie; Su, Qing; Fan, Meng; Jacob, Clement; Li, Jin; Zhang, Xinghang; Jia, Quanxi; Sheldon, Matthew; Alù, Andrea; Li, Xiaoqin; Wang, Haiyan

    2016-05-17

    Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal–oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned gold (Au) nanopillars (~20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. In conclusion, our studies suggest that these self-assembled metal–oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales.

  15. Self-Assembled Epitaxial Au–Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials

    DOE PAGES

    Li, Leigang; Sun, Liuyang; Gomez-Diaz, Juan Sebastian; ...

    2016-05-17

    Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal–oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned goldmore » (Au) nanopillars (~20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. In conclusion, our studies suggest that these self-assembled metal–oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales.« less

  16. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain

    PubMed Central

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-01-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system. PMID:26891795

  17. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-02-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.

  18. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain.

    PubMed

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-02-19

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.

  19. Three-component gyrotropic metamaterial

    NASA Astrophysics Data System (ADS)

    Tralle, Igor; ZiÈ©ba, Paweł; Paśko, Wioletta

    2014-06-01

    All of the proposed ever since designs of metamaterials are characterized by ever-increasing sophistication of fabrication methods. Here, a comparatively simple recipe for the fabrication of a metamaterial, which is both gyrotropic and of the simultaneously negative permittivity and permeability, is proposed. The idea is to make a mixture of three ingredients, where one of them would be responsible for the negativity of μ, while the other two would be responsible for the negativity of ɛ. The first component of the mixture is the "swarm" of single-domain ferromagnetic nano-particles, immersed in a mixture of other two, silver and mercury cadmium telluride. By carrying out the computer simulations, the domains of gyromagnetic metamaterial exist, relative to all parameters characterizing the model, that is, the temperature, external magnetic field, parameters of nano-particles, and the fraction of cadmium in Hg1-xCdxTe-compound as well as relative concentrations of the mixture components are established.

  20. Tunable hyperbolic metamaterials utilizing phase change heterostructures

    SciTech Connect

    Krishnamoorthy, Harish N. S.; Menon, Vinod M.; Zhou, You; Ramanathan, Shriram; Narimanov, Evgenii

    2014-03-24

    We present a metal-free tunable anisotropic metamaterial where the iso-frequency surface is tuned from elliptical to hyperbolic dispersion by exploiting the metal-insulator phase transition in the correlated material vanadium dioxide (VO{sub 2}). Using VO{sub 2}-TiO{sub 2} heterostructures, we demonstrate the transition in the effective dielectric constant parallel to the layers to undergo a sign change from positive to negative as the VO{sub 2} undergoes the phase transition. The possibility to tune the iso-frequency surface in real time using external perturbations such as temperature, voltage, or optical pulses creates new avenues for controlling light-matter interaction.

  1. Wave-based liquid-interface metamaterials

    NASA Astrophysics Data System (ADS)

    Francois, N.; Xia, H.; Punzmann, H.; Fontana, P. W.; Shats, M.

    2017-02-01

    The control of matter motion at liquid-gas interfaces opens an opportunity to create two-dimensional materials with remotely tunable properties. In analogy with optical lattices used in ultra-cold atom physics, such materials can be created by a wave field capable of dynamically guiding matter into periodic spatial structures. Here we show experimentally that such structures can be realized at the macroscopic scale on a liquid surface by using rotating waves. The wave angular momentum is transferred to floating micro-particles, guiding them along closed trajectories. These orbits form stable spatially periodic patterns, the unit cells of a two-dimensional wave-based material. Such dynamic patterns, a mirror image of the concept of metamaterials, are scalable and biocompatible. They can be used in assembly applications, conversion of wave energy into mean two-dimensional flows and for organising motion of active swimmers.

  2. Wave-based liquid-interface metamaterials

    PubMed Central

    Francois, N; Xia, H; Punzmann, H; Fontana, P W; Shats, M

    2017-01-01

    The control of matter motion at liquid–gas interfaces opens an opportunity to create two-dimensional materials with remotely tunable properties. In analogy with optical lattices used in ultra-cold atom physics, such materials can be created by a wave field capable of dynamically guiding matter into periodic spatial structures. Here we show experimentally that such structures can be realized at the macroscopic scale on a liquid surface by using rotating waves. The wave angular momentum is transferred to floating micro-particles, guiding them along closed trajectories. These orbits form stable spatially periodic patterns, the unit cells of a two-dimensional wave-based material. Such dynamic patterns, a mirror image of the concept of metamaterials, are scalable and biocompatible. They can be used in assembly applications, conversion of wave energy into mean two-dimensional flows and for organising motion of active swimmers. PMID:28181490

  3. Tunable acoustic double negativity metamaterial.

    PubMed

    Liang, Z; Willatzen, M; Li, J; Christensen, J

    2012-01-01

    Man-made composite materials called "metamaterials" allow for the creation of unusual wave propagation behavior. Acoustic and elastic metamaterials in particular, can pave the way for the full control of sound in realizing cloaks of invisibility, perfect lenses and much more. In this work we design acousto-elastic surface modes that are similar to surface plasmons in metals and on highly conducting surfaces perforated by holes. We combine a structure hosting these modes together with a gap material supporting negative modulus and collectively producing negative dispersion. By analytical techniques and full-wave simulations we attribute the observed behavior to the mass density and bulk modulus being simultaneously negative.

  4. Magnetically tunable metamaterial perfect absorber

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Feng, Ningyue; Wang, Qingmin; Hao, Yanan; Huang, Shanguo; Bi, Ke

    2016-06-01

    A magnetically tunable metamaterial perfect absorber (MPA) based on ferromagnetic resonance is experimentally and numerically demonstrated. The ferrite-based MPA is composed of an array of ferrite rods and a metallic ground plane. Frequency dependent absorption of the ferrite-based MPA under a series of applied magnetic fields is discussed. An absorption peak induced by ferromagnetic resonance appears in the range of 8-12 GHz under a certain magnetic field. Both the simulated and experimental results demonstrate that the absorption frequency of the ferrite-based MPA can be tuned by the applied magnetic field. This work provides an effective way to fabricate the magnetically tunable metamaterial perfect absorber.

  5. Universality and scaling in metamaterials

    NASA Astrophysics Data System (ADS)

    Felbacq, Didier

    2016-09-01

    It has been demonstrated by many theoretical and experimentals works that Mie resonances are at the heart of the effective properties of dielectric metamaterials. These resonances indeed allow for the onset of tailorable macroscopic magnetic properties. They were shown to provide a convenient way to study the transition between photonic crystals and metamaterials. In the present work, we show that the band structure linked to theses resonances is largely scale invariant and also, to some extend, robust with regard to disorder. These results do not rely heavily on a specific type of wave, suggesting that the same kind of results can be obtained for acoustic or gravity waves.

  6. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul; Chen, Hou-tong; Peralta, Xomalin G; Brener, Igal

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at tcrahertz frequencies, it may find applications in other frequency ranges as well.

  7. Metamaterials for terahertz polarimetric devices

    SciTech Connect

    O'hara, John F; Taylor, Antoinette J; Smirnova, Evgenya; Azad, Abul

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at terahertz frequencies, it may find applications in other frequency ranges as well.

  8. Collective behavior of quantum resonators coupled to a metamaterial

    NASA Astrophysics Data System (ADS)

    Felbacq, Didier; Rousseau, Emmanuel

    2016-09-01

    We study a device that consist of quantum resonators coupled to a mesoscopic photonic structure, such as a metasurface or a 2D metamaterial. For metasurfaces, we use surface Bloch modes in order to reach various coupling regimes between the metasurface and a quantum emitter, modelized semi-classically by an oscillator. Using multiple scattering theory and complex plane techniques, we show that the coupling can be characterized by means of a pole-and-zero structure. The regime of strong coupling is shown to be reached when the pole-and- zero pair is broken. For 2D metamaterial, we show the possibility of controlling optically the opening or closing of a gap.

  9. Role of surface electromagnetic waves in metamaterial absorbers.

    PubMed

    Chen, Wen-Chen; Cardin, Andrew; Koirala, Machhindra; Liu, Xianliang; Tyler, Talmage; West, Kevin G; Bingham, Christopher M; Starr, Tatiana; Starr, Anthony F; Jokerst, Nan M; Padilla, Willie J

    2016-03-21

    Metamaterial absorbers have been demonstrated across much of the electromagnetic spectrum and exhibit both broad and narrow-band absorption for normally incident radiation. Absorption diminishes for increasing angles of incidence and transverse electric polarization falls off much more rapidly than transverse magnetic. We unambiguously demonstrate that broad-angle TM behavior cannot be associated with periodicity, but rather is due to coupling with a surface electromagnetic mode that is both supported by, and well described via the effective optical constants of the metamaterial where we achieve a resonant wavelength that is 19.1 times larger than the unit cell. Experimental results are supported by simulations and we highlight the potential to modify the angular response of absorbers by tailoring the surface wave.

  10. Controlling third harmonic generation with gammadion-shaped chiral metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Li, Zhi-Qin; Yang, Xin; Chen, Zhuo; Wang, Zhenlin

    2016-12-01

    We theoretically investigated third harmonic generation (THG) from planar chiral metamaterials consisting of a square array of gammadion-shaped metal-insulator-metal multilayered nanostructures. We show that there exists strong circular dichroism (CD) for THG on the proposed chiral metamaterials. We also demonstrate that geometrically mirroring the gammadion -shaped meta-atoms can result in reversal of the THG-CD effect. Based on these CD effects in the optical nonlinear regime, we propose a design of a Fresnel zone plate (FZP) for intense focusing of the THG signals, in which adjacent zones of the FZP consist of gammadions with mirror symmetry and generate circularly polarized THG with opposite handedness. Furthermore, we demonstrate that the relative phase of the THG can be continuously changed by rotating the gammadion around its rotational axis, which could be used in the FZP to control the polarization of the output THG signals.

  11. Improved transmittance in metal-dielectric metamaterials using diffraction grating

    SciTech Connect

    Sreekanth, K. V. E-mail: gxs284@case.edu; De Luca, A.; Strangi, G. E-mail: gxs284@case.edu

    2014-04-28

    In this Letter, we experimentally demonstrate the possibility to obtain an improved transmittance from metal-dielectric multilayer metamaterials at optical frequencies. In order to achieve this goal, a properly designed one-dimensional silver diffraction grating has been fabricated on top of two different multilayer structures such as Au/Al{sub 2}O{sub 3} and Au/SiO{sub 2}. It has been observed that the improved transmittance at various resonant wavelength bands is possible from the metal-dielectric metamaterials when it is coupled with a properly designed metallic diffraction grating. The obtained results can be expected to find variety of potential applications including high-efficiency solar cells.

  12. Dynamic frequency tuning of electric and magnetic metamaterial response

    SciTech Connect

    O'Hara, John F; Averitt, Richard; Padilla, Willie; Chen, Hou-Tong

    2014-09-16

    A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in metamaterials and/or frequency selective surfaces, potentially with sub-picosecond response times. Additionally, the methods taught here can be applied to discrete geometrically modifiable circuit components such as inductors and capacitors. Principally, controlled conductivity regions, using either reversible photodoping or voltage induced depletion activation, are used to modify the geometries of circuit components, thus allowing frequency tuning of resonators without otherwise affecting the bulk substrate electrical properties. The concept is valid over any frequency range in which metamaterials are designed to operate.

  13. Large-Scale and Defect-Free Silicon Metamaterials with Magnetic Response

    PubMed Central

    Yi, Ningbo; Sun, Shang; Gao, Yisheng; Wang, Kaiyang; Gu, Zhiyuan; Sun, Siwu; Song, Qinghai; Xiao, Shumin

    2016-01-01

    All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. Here, we experimentally demonstrate a silicon based large-scale magnetic metamaterial, which is fabricated with standard photolithography and conventional reactive ion etching process. The periodically arrayed silicon sub-wavelength structures possess electric and magnetic responses with low loss in mid-infrared wavelength range. We investigate the electric and magnetic resonances dependencies on the structural parameters and demonstrate the possibility of obtaining strong dielectric-based magnetic resonance through a broad band range. The optical responses are quite uniform over a large area about 2 × 2 cm2. The scalability of this design and compatibility fabrication method with highly developed semiconductor devices process could lead to new avenues of manipulating light for low-loss, large-area and real integrated photonic applications. PMID:27194105

  14. Full characterization of planar infrared metamaterials from far field diffraction pattern

    NASA Astrophysics Data System (ADS)

    Kanté, Boubacar; Burokur, Shah Nawaz; Gadot, Frédérique; de Lustrac, André

    2008-04-01

    Since the event of metamaterials, a considerable effort has been performed to fabricate them in the infrared and optical regimes. However, apart from the experimental demonstration and observation of H. J. Lezec et al based on surface plasma polariton, direct visualisation of negative refraction based on metal-dielectric resonances have not been performed experimentally so far in the infrared or visible regime (photonic crystals with periodicity on the order of the wavelength are not considered here). Very often only simulations have given the needed phase information for the retrieval methods in optical experiments. In this paper, a metamaterial composed of SRR (Split Ring Resonators) and a continuous wire is considered. We extract the phase information from the transmission and the reflection measurements through a diffraction grating made of the metamaterial to be characterized and silicon or gold. This retrieval allows a unambiguous retrieval of the effective parameters under conditions discussed in the paper at IR and visible wavelengths.

  15. Experimental realization of a polarization-independent ultraviolet/visible coaxial plasmonic metamaterial.

    PubMed

    van de Haar, M A; Maas, R; Schokker, H; Polman, A

    2014-11-12

    We report the experimental realization of an optical metamaterial composed of a hexagonal array of coaxial plasmonic metal/insulator/metal waveguides that shows strong polarization-independent optical mode index dispersion in the ultraviolet/blue. The metamaterial is composed of silicon coaxes with a well-defined diameter in the range of 150-168 nm with extremely thin sidewalls (13-15 nm), embedded in a silver film, fabricated using a combination of electron beam lithography, physical vapor deposition, reactive ion etching, and focused ion beam polishing. Using a Mach-Zehnder interferometer the phase advance is measured on several metamaterial samples with different dimensions in the UV/visible part of the spectrum. For all geometries the spectral features as well as the geometry dependence of the data correspond well with numerical finite-difference time domain simulations and the calculated waveguide dispersion diagram, showing a negative mode index between 440 and 500 nm.

  16. Large-Scale and Defect-Free Silicon Metamaterials with Magnetic Response

    NASA Astrophysics Data System (ADS)

    Yi, Ningbo; Sun, Shang; Gao, Yisheng; Wang, Kaiyang; Gu, Zhiyuan; Sun, Siwu; Song, Qinghai; Xiao, Shumin

    2016-05-01

    All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. Here, we experimentally demonstrate a silicon based large-scale magnetic metamaterial, which is fabricated with standard photolithography and conventional reactive ion etching process. The periodically arrayed silicon sub-wavelength structures possess electric and magnetic responses with low loss in mid-infrared wavelength range. We investigate the electric and magnetic resonances dependencies on the structural parameters and demonstrate the possibility of obtaining strong dielectric-based magnetic resonance through a broad band range. The optical responses are quite uniform over a large area about 2 × 2 cm2. The scalability of this design and compatibility fabrication method with highly developed semiconductor devices process could lead to new avenues of manipulating light for low-loss, large-area and real integrated photonic applications.

  17. Goos-Hänchen effect in epsilon-near-zero metamaterials

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Chan, C. T.; Chen, Huanyang

    2015-03-01

    Light reflection and refraction at an interface between two homogeneous media is analytically described by Snell's law. For a beam with a finite waist, it turns out that the reflected wave experiences a lateral displacement from its position predicted by geometric optics. Such Goos-Hänchen (G-H) effect has been extensively investigated among all kinds of optical media, such as dielectrics, metals, photonic crystals and metamaterials. As a fundamental physics phenomenon, the G-H effect has been extended to acoustics and quantum mechanics. Here we report the unusual G-H effect in zero index metamaterials. We show that when linearly polarized light is obliquely incident from air to epsilon-near-zero metamaterials, no G-H effect could be observed for p polarized light. While for s polarization, the G-H shift is a constant value for any incident angle.

  18. Goos-Hänchen effect in epsilon-near-zero metamaterials

    PubMed Central

    Xu, Yadong; Chan, C. T.; Chen, Huanyang

    2015-01-01

    Light reflection and refraction at an interface between two homogeneous media is analytically described by Snell's law. For a beam with a finite waist, it turns out that the reflected wave experiences a lateral displacement from its position predicted by geometric optics. Such Goos-Hänchen (G-H) effect has been extensively investigated among all kinds of optical media, such as dielectrics, metals, photonic crystals and metamaterials. As a fundamental physics phenomenon, the G-H effect has been extended to acoustics and quantum mechanics. Here we report the unusual G-H effect in zero index metamaterials. We show that when linearly polarized light is obliquely incident from air to epsilon-near-zero metamaterials, no G-H effect could be observed for p polarized light. While for s polarization, the G-H shift is a constant value for any incident angle. PMID:25731726

  19. Goos-Hänchen effect in epsilon-near-zero metamaterials.

    PubMed

    Xu, Yadong; Chan, C T; Chen, Huanyang

    2015-03-03

    Light reflection and refraction at an interface between two homogeneous media is analytically described by Snell's law. For a beam with a finite waist, it turns out that the reflected wave experiences a lateral displacement from its position predicted by geometric optics. Such Goos-Hänchen (G-H) effect has been extensively investigated among all kinds of optical media, such as dielectrics, metals, photonic crystals and metamaterials. As a fundamental physics phenomenon, the G-H effect has been extended to acoustics and quantum mechanics. Here we report the unusual G-H effect in zero index metamaterials. We show that when linearly polarized light is obliquely incident from air to epsilon-near-zero metamaterials, no G-H effect could be observed for p polarized light. While for s polarization, the G-H shift is a constant value for any incident angle.

  20. Modeling highly-dispersive transparency in planar nonlinear metamaterials

    NASA Astrophysics Data System (ADS)

    Potravkin, N. N.; Makarov, V. A.; Perezhogin, I. A.

    2017-02-01

    We consider propagation of light in planar optical metamaterial, which basic element is composed of two silver stripes, and it possesses strong dispersion in optical range. Our method of numerical modeling allows us to take into consideration the nonlinearity of the material and the effects of light self-action without considerable increase of the calculation time. It is shown that plasmonic resonances originating in such a structure result in multiple enhancement of local field and high sensitivity of the transmission coefficient to the intensity of incident monochromatic wave.

  1. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies

    PubMed Central

    Fan, Wen; Yan, Bing; Wang, Zengbo; Wu, Limin

    2016-01-01

    Although all-dielectric metamaterials offer a low-loss alternative to current metal-based metamaterials to manipulate light at the nanoscale and may have important applications, very few have been reported to date owing to the current nanofabrication technologies. We develop a new “nano–solid-fluid assembly” method using 15-nm TiO2 nanoparticles as building blocks to fabricate the first three-dimensional (3D) all-dielectric metamaterial at visible frequencies. Because of its optical transparency, high refractive index, and deep-subwavelength structures, this 3D all-dielectric metamaterial-based solid immersion lens (mSIL) can produce a sharp image with a super-resolution of at least 45 nm under a white-light optical microscope, significantly exceeding the classical diffraction limit and previous near-field imaging techniques. Theoretical analysis reveals that electric field enhancement can be formed between contacting TiO2 nanoparticles, which causes effective confinement and propagation of visible light at the deep-subwavelength scale. This endows the mSIL with unusual abilities to illuminate object surfaces with large-area nanoscale near-field evanescent spots and to collect and convert the evanescent information into propagating waves. Our all-dielectric metamaterial design strategy demonstrates the potential to develop low-loss nanophotonic devices at visible frequencies. PMID:27536727

  2. Radiative engineering with refractory epsilon-near-zero metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dyachenko, Pavel N.; Molesky, Sean; Petrov, Alexander Y.; Störmer, Michael; Krekeler, Tobias; Lang, Slawa; Ritter, Martin; Jacob, Zubin; Eich, Manfred

    2016-04-01

    Improvement in high-temperature stable spectrally selective absorbers and emitters is integral for the further development of thermophotovoltaic (TPV), lighting and solar thermal applications. However, the high operational temperatures (T>1000oC) required for efficient energy conversion, along with application specific criteria such as the operational range of low bandgap semiconductors, greatly restrict what can be accomplished with natural materials. Motivated by this challenge, we demonstrate the first example of high temperature thermal radiation engineering with metamaterials. By employing the naturally selective thermal excitation of radiative modes that occurs near topological transitions, we show that thermally stable highly selective emissivity features are achieved for temperatures up to 1000°C with low angular dependence in a sub-micron thick refractory tungsten/hafnium dioxide epsilon-near-zero (ENZ) metamaterial. We also investigate the main mechanisms of thermal degradation of the fabricated refractory metamaterial both in terms of optical performance and structural stability using spectral analysis and energy-dispersive X-ray spectroscopy (EDS) techniques. Importantly, we observe chemical stability of the constituent materials for temperatures up to 1000°C and structural stability beyond 1100°C. The scalable fabrication, requiring magnetron sputtering, and thermally robust optical properties of this metamaterial approach are ideally suited to high temperature emitter applications such as lighting or TPV. Our findings provide a first concrete proof of radiative engineering with high temperature topological transition in ENZ metamaterials, and establish a clear path for implementation in TPV energy harvesting applications.

  3. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies.

    PubMed

    Fan, Wen; Yan, Bing; Wang, Zengbo; Wu, Limin

    2016-08-01

    Although all-dielectric metamaterials offer a low-loss alternative to current metal-based metamaterials to manipulate light at the nanoscale and may have important applications, very few have been reported to date owing to the current nanofabrication technologies. We develop a new "nano-solid-fluid assembly" method using 15-nm TiO2 nanoparticles as building blocks to fabricate the first three-dimensional (3D) all-dielectric metamaterial at visible frequencies. Because of its optical transparency, high refractive index, and deep-subwavelength structures, this 3D all-dielectric metamaterial-based solid immersion lens (mSIL) can produce a sharp image with a super-resolution of at least 45 nm under a white-light optical microscope, significantly exceeding the classical diffraction limit and previous near-field imaging techniques. Theoretical analysis reveals that electric field enhancement can be formed between contacting TiO2 nanoparticles, which causes effective confinement and propagation of visible light at the deep-subwavelength scale. This endows the mSIL with unusual abilities to illuminate object surfaces with large-area nanoscale near-field evanescent spots and to collect and convert the evanescent information into propagating waves. Our all-dielectric metamaterial design strategy demonstrates the potential to develop low-loss nanophotonic devices at visible frequencies.

  4. Buckling in a topological metamaterial

    NASA Astrophysics Data System (ADS)

    Meeussen, Anne; Paulose, Jayson; Vitelli, Vincenzo

    2015-03-01

    Controlling the nonlinear response of mechanical metamaterials paves the way toward designing materials with adaptive and tunable mechanical properties. Buckling, a change in load-bearing state from axial compression to off-axis deformation, is a ubiquitous nonlinear instability that is often exploited to change the local or global mechanical response in metamaterials composed of slender elements. We create localized buckling regions in cellular metamaterials by engineering states of self-stress, regions where the response is dominated by stretching or compression of the constituent beams rather than bending at the stiff hinges connecting them. Unique to our approach is the use of topological states of self-stress, which originate in a topological invariant that characterizes the vibrational spectrum of the repeating unit cell. Unlike typical states of self-stress which result from additional geometric constraints induced by excess beams in a region, these topological states do not change the number of beams at each hinge. We demonstrate the phenomenon through numerical calculations of the linear response of the proposed metamaterial, and through experiments probing the nonlinear regime including localized buckling at specific regions.

  5. Embedded Meta-Material Antennas

    DTIC Science & Technology

    2009-01-31

    of electronic warfare signal and information processing systems. To realize such systems, the key is to miniaturize antennas that transmit and...single aperture, which can provide significant miniaturization and flexibility to the entire system. To design such miniaturized antennas , new materials...and technologies have to be incorporated. For this purpose, the PI has designed and demonstrated miniaturized antennas by introducing metamaterials

  6. Terahertz antireflection coatings using metamaterials

    SciTech Connect

    Chen, Hou-tong; Zhou, Jiangfeng; O' Hara, John F; Azad, Abul K; Chen, Frank; Taylor, Antoinette J

    2010-01-01

    We demonstrate terahertz metamaterial antireflection coatings (ARCs) that significantly reduce the reflection and enhance the transmission at an interface of dielectric media. They are able to operate over a wide range of incidence angles for both TM and TE polarizations. Experiments and finite-element simulations will be presented and discussed.

  7. Programmable Kiri-Kirigami Metamaterials.

    PubMed

    Tang, Yichao; Lin, Gaojian; Yang, Shu; Yi, Yun Kyu; Kamien, Randall D; Yin, Jie

    2017-03-01

    Programmable kirigami metamaterials with controllable local tilting orientations on demand through prescribed notches are constructed through a new approach of kiri-kirgami, and their actuation of pore opening via both mechanical stretching and temperature, along with their potential application as skins for energy-saving buildings, is discussed.

  8. On the possibility of using metamaterials in a ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Veselago, V. G.; Dianov, E. M.; Kuryatov, V. N.; Malykin, G. B.; Volpian, O. D.

    2016-06-01

    An approach is proposed that ensures a theoretically unlimited improvement in the sensitivity of ring laser gyroscopes (RLGs) to rotation. Basic to this approach is the filling of the optical path in an RLG (outside its gain element) with two different optical media: a conventional optical medium with a refractive index n > 1 and a so-called metamaterial with n < 0. We consider effects that limit the real sensitivity of the proposed approach.

  9. Electrically switchable metamaterials and devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Hou-Tong

    2016-09-01

    The promise of metamaterials lies in the realization of desirable electromagnetic functionalities simply through tailoring the geometric structure and deliberate arrangement of metal/dielectric building blocks (meta-atoms) to yield envisaged material properties that may be difficult or impossible to accomplish using natural materials. Integration of functional materials into metamaterial structures further extends switchable and frequency tunable functionalities through applying an external stimulus such as temperature change, photoexcitation, and voltage bias. Among them electrically switchable metamaterials are of particular interest for a host of applications. In this work we present our recent progress in this direction. More specifically, hybrid terahertz metamaterials can be formed through integrating semiconducting Schottky junctions into the metallic resonators, enabling highly efficient, electrically switchable resonant response. Such hybrid terahertz metamaterials can be applied in creating terahertz spatial light modulators and active diffraction gratings. Furthermore, graphene can be used to extend the active metamaterials to the mid-infrared frequency range.

  10. Casimir interactions between graphene sheets and metamaterials

    SciTech Connect

    Drosdoff, D.; Woods, Lilia M.

    2011-12-15

    The Casimir force between graphene sheets and metamaterials is studied. Theoretical results based on the Lifshitz theory for layered, planar, two-dimensional systems in media are presented. We consider graphene-graphene, graphene-metamaterial, and metal-graphene-metamaterial configurations. We find that quantum effects of the temperature-dependent force are not apparent until the submicron range. In contrast to results with bulk dielectric and bulk metallic materials, no Casimir repulsion is found when graphene is placed on top of a magnetically active metamaterial substrate, regardless of the strength of the low-frequency magnetic response. In the case of the metal-graphene-metamaterial setting, repulsion between the metamaterial and the metal-graphene system is possible only when the dielectric response from the metal contributes significantly.

  11. Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials

    NASA Astrophysics Data System (ADS)

    Xiao, Meng; Lin, Qian; Fan, Shanhui

    2016-07-01

    We report the existence of Weyl points in a class of noncentral symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its nonlocal response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl points.

  12. Three Dimensional Micro and Nano Fabrication of Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhou, Fan

    The concept of artificially structured metamateials arises as a promising solution to offer broad tunability of material properties. Rather than on its chemical composition, macroscopic properties of metamateirals depend on the hierarchical assembly of the "artificial atoms" of the structure. Many novel designs have been reported to enable exotic properties of metamaterials. However, experimental realization of these designs is facing a great challenge due to stringent requirements on precise fabrication of subwavelength fine features in three dimensional (3D). In this dissertation, we aim to create powerful and reliable 3D fabrication approaches to bridge the gap between design and realization. Three dimensional fabrication of terahertz (THz) metamaterial and optical metamaterial by additive manufacturing approaches are demonstrated. For fabricating THz metamaterials, the design and testing of a scalable projection micro-stereo-lithography system that offers the 3D fabrication capability is presented. By taking advantage of transformation optics theory, a study in design, fabrication, and characterization of the THz invisibility cloak was performed. The cloak successfully concealed both the geometrical and spectroscopic signatures of an alpha-lactose monohydrate absorber, making it undetectable from 0.3 to 0.6 THz. Following this successful demonstration, we further created the broadband 3D flattened Luneburg lens for THz imaging. The lens is transformed from its original spherical shape and can focus THz plane waves from ultra-wide angles at the focal plane without geometrical aberrations, and vice versa. 2D imaging independent of polarizations is demonstrated. For optical metamaterial, we developed nanoimprint lithography and nanotransfer printing process to realize 3D nano-grating structure in an additive fashion. Based on this method, we successfully designed and created the upright U-shaped spit ring resonators (SRRs) showing artificial magnetism beyond the

  13. Extreme-angle broadband metamaterial lens.

    PubMed

    Kundtz, Nathan; Smith, David R

    2010-02-01

    For centuries, the conventional approach to lens design has been to grind the surfaces of a uniform material in such a manner as to sculpt the paths that rays of light follow as they transit through the interfaces. Refractive lenses formed by this procedure of bending the surfaces can be of extremely high quality, but are nevertheless limited by geometrical and wave aberrations that are inherent to the manner in which light refracts at the interface between two materials. Conceptually, a more natural--but usually less convenient--approach to lens design would be to vary the refractive index throughout an entire volume of space. In this manner, far greater control can be achieved over the ray trajectories. Here, we demonstrate how powerful emerging techniques in the field of transformation optics can be used to harness the flexibility of gradient index materials for imaging applications. In particular we design and experimentally demonstrate a lens that is broadband (more than a full decade bandwidth), has a field-of-view approaching 180 degrees and zero f-number. Measurements on a metamaterial implementation of the lens illustrate the practicality of transformation optics to achieve a new class of optical devices.

  14. Flexible frequency selective metamaterials for microwave applications.

    PubMed

    Gao, Bo; Yuen, Matthew M F; Ye, Terry Tao

    2017-03-21

    Metamaterials have attracted more and more research attentions recently. Metamaterials for electromagnetic applications consist of sub-wavelength structures designed to exhibit particular responses to an incident EM (electromagnetic) wave. Traditional EM (electromagnetic) metamaterial is constructed from thick and rigid structures, with the form-factor suitable for applications only in higher frequencies (above GHz) in microwave band. In this paper, we developed a thin and flexible metamaterial structure with small-scale unit cell that gives EM metamaterials far greater flexibility in numerous applications. By incorporating ferrite materials, the thickness and size of the unit cell of metamaterials have been effectively scaled down. The design, mechanism and development of flexible ferrite loaded metamaterials for microwave applications is described, with simulation as well as measurements. Experiments show that the ferrite film with permeability of 10 could reduce the resonant frequency. The thickness of the final metamaterials is only 0.3mm. This type of ferrite loaded metamaterials offers opportunities for various sub-GHz microwave applications, such as cloaks, absorbers, and frequency selective surfaces.

  15. Flexible frequency selective metamaterials for microwave applications

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Yuen, Matthew M. F.; Ye, Terry Tao

    2017-03-01

    Metamaterials have attracted more and more research attentions recently. Metamaterials for electromagnetic applications consist of sub-wavelength structures designed to exhibit particular responses to an incident EM (electromagnetic) wave. Traditional EM (electromagnetic) metamaterial is constructed from thick and rigid structures, with the form-factor suitable for applications only in higher frequencies (above GHz) in microwave band. In this paper, we developed a thin and flexible metamaterial structure with small-scale unit cell that gives EM metamaterials far greater flexibility in numerous applications. By incorporating ferrite materials, the thickness and size of the unit cell of metamaterials have been effectively scaled down. The design, mechanism and development of flexible ferrite loaded metamaterials for microwave applications is described, with simulation as well as measurements. Experiments show that the ferrite film with permeability of 10 could reduce the resonant frequency. The thickness of the final metamaterials is only 0.3mm. This type of ferrite loaded metamaterials offers opportunities for various sub-GHz microwave applications, such as cloaks, absorbers, and frequency selective surfaces.

  16. Characterization of anisotropic acoustic metamaterial slabs

    NASA Astrophysics Data System (ADS)

    Park, Jun Hyeong; Lee, Hyung Jin; Kim, Yoon Young

    2016-01-01

    In an anisotropic acoustic metamaterial, the off-diagonal components of its effective mass density tensor should be considered in order to describe the anisotropic behavior produced by arbitrarily shaped inclusions. However, few studies have been carried out to characterize anisotropic acoustic metamaterials. In this paper, we propose a method that uses the non-diagonal effective mass density tensor to determine the behavior of anisotropic acoustic metamaterials. Our method accurately evaluates the effective properties of anisotropic acoustic metamaterials by separately dealing with slabs made of single and multiple unit cells along the thickness direction. To determine the effective properties, the reflection and transmission coefficients of an acoustic metamaterial slab are calculated, and then the wave vectors inside of the slab are determined using these coefficients. The effective material properties are finally determined by utilizing the spatial dispersion relation of the anisotropic acoustic metamaterial. Since the dispersion relation of an anisotropic acoustic metamaterial is explicitly used, its effective properties can be easily determined by only using a limited number of normal and oblique plane wave incidences into a metamaterial slab, unlike existing approaches requiring a large number of wave incidences. The validity of the proposed method is verified by conducting wave simulations for anisotropic acoustic metamaterial slabs with Z-shaped elastic inclusions of tilted principal material axes.

  17. Electron beam coupling to a metamaterial structure

    SciTech Connect

    French, David M.; Shiffler, Don; Cartwright, Keith

    2013-08-15

    Microwave metamaterials have shown promise in numerous applications, ranging from strip lines and antennas to metamaterial-based electron beam driven devices. In general, metamaterials allow microwave designers to obtain electromagnetic characteristics not typically available in nature. High Power Microwave (HPM) sources have in the past drawn inspiration from work done in the conventional microwave source community. In this article, the use of metamaterials in an HPM application is considered by using an effective medium model to determine the coupling of an electron beam to a metamaterial structure in a geometry similar to that of a dielectric Cerenkov maser. Use of the effective medium model allows for the analysis of a wide range of parameter space, including the “mu-negative,”“epsilon-negative,” and “double negative” regimes of the metamaterial. The physics of such a system are modeled analytically and by utilizing the particle-in-cell code ICEPIC. For this geometry and effective medium representation, optimum coupling of the electron beam to the metamaterial, and thus the optimum microwave or RF production, occurs in the epsilon negative regime of the metamaterial. Given that HPM tubes have been proposed that utilize a metamaterial, this model provides a rapid method of characterizing a source geometry that can be used to quickly understand the basic physics of such an HPM device.

  18. Flexible frequency selective metamaterials for microwave applications

    PubMed Central

    Gao, Bo; Yuen, Matthew M. F; Ye, Terry Tao

    2017-01-01

    Metamaterials have attracted more and more research attentions recently. Metamaterials for electromagnetic applications consist of sub-wavelength structures designed to exhibit particular responses to an incident EM (electromagnetic) wave. Traditional EM (electromagnetic) metamaterial is constructed from thick and rigid structures, with the form-factor suitable for applications only in higher frequencies (above GHz) in microwave band. In this paper, we developed a thin and flexible metamaterial structure with small-scale unit cell that gives EM metamaterials far greater flexibility in numerous applications. By incorporating ferrite materials, the thickness and size of the unit cell of metamaterials have been effectively scaled down. The design, mechanism and development of flexible ferrite loaded metamaterials for microwave applications is described, with simulation as well as measurements. Experiments show that the ferrite film with permeability of 10 could reduce the resonant frequency. The thickness of the final metamaterials is only 0.3mm. This type of ferrite loaded metamaterials offers opportunities for various sub-GHz microwave applications, such as cloaks, absorbers, and frequency selective surfaces. PMID:28322338

  19. Metamaterial absorber with random dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhu, Weiren; Zhao, Xiaopeng

    2010-05-01

    The metamaterial absorber composed of random dendritic cells has been investigated at microwave frequencies. It is found that the absorptivities come to be weaker and the resonant frequency get red shift as the disordered states increasing, however, the random metamaterial absorber still presents high absorptivity more than 95%. The disordered structures can help understanding of the metamaterial absorber and may be employed for practical design of infrared metamaterial absorber, which may play important roles in collection of radiative heat energy and directional transfer enhancement.

  20. Chiral metamaterials with negative refractive index based on four “U” split ring resonators

    SciTech Connect

    Li, Zhaofeng; Zhao, Rongkuo; Koschny, Thomas; Kafesaki, Maria; Alici, Kamil Boratay; Colak, Evrim; Caglayan, Humeyra; Ozbay, Ekmel; Soukoulis, C.M.

    2010-08-23

    A uniaxial chiral metamaterial is constructed by double-layered four 'U' split ring resonators mutually twisted by 90{sup o}. It shows a giant optical activity and circular dichroism. The retrieval results reveal that a negative refractive index is realized for circularly polarized waves due to the large chirality. The experimental results are in good agreement with the numerical results.

  1. Dual-polarity metamaterial circular polarizer based on giant extrinsic chirality.

    PubMed

    Shi, J H; Shi, Q C; Li, Y X; Nie, G Y; Guan, C Y; Cui, T J

    2015-11-12

    Chirality is ubiquitous in nature. The associated optical activity has received much attention due to important applications in spectroscopy, analytical chemistry, crystallography and optics, however, artificial chiral optical materials are complex and difficult to fabricate, especially in the optical range. Here, we propose an ultrathin dual-polarity metamaterial circular polarizer by exploiting the mechanism of giant extrinsic chirality. The polarity of the circular polarizer with large suppression of linear anisotropy can be switched by changing the sign of incident angle. The microwave experiments and optical simulations demonstrate that the large angle of incidence facilitates the high-efficiency circular polarizer, which can be realized in the whole spectra from microwave to visible frequencies. The ultrathin single-layer metamaterials with extrinsic chirality will be a promising candidate for circular polarization devices.

  2. Extreme sensitivity biosensing platform based on hyperbolic metamaterials

    PubMed Central

    Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; ElKabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; De Luca, Antonio; Strangi, Giuseppe

    2016-01-01

    Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin–biotin. PMID:27019384

  3. Extreme sensitivity biosensing platform based on hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; Elkabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; de Luca, Antonio; Strangi, Giuseppe

    2016-06-01

    Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin-biotin.

  4. Enhancement of Single-Photon Sources with Metamaterials

    NASA Astrophysics Data System (ADS)

    Shalaginov, M. Y.; Bogdanov, S.; Vorobyov, V. V.; Lagutchev, A. S.; Kildishev, A. V.; Akimov, A. V.; Boltasseva, A.; Shalaev, V. M.

    2015-06-01

    Scientists are looking for new, breakthrough solutions that can greatly advance computing and networking systems. These solutions will involve quantum properties of matter and light as promised by the ongoing experimental and theoretical work in the areas of quantum computation and communication. Quantum photonics is destined to play a central role in the development of such technologies due to the high transmission capacity and outstanding low-noise properties of photonic information channels. Among the vital problems to be solved in this direction, are efficient generation and collection of single photons. One approach to tackle these problems is based on engineering emission properties of available single-photon sources using metamaterials. Metamaterials are artificially engineered structures with sub-wavelength features whose optical properties go beyond the limitations of conventional materials. As promising single-photon sources, we have chosen nitrogen-vacancy (NV) color centers in diamond, which are capable to operate stably in a single-photon regime at room temperature in a solid state environment. In this chapter, we report both theoretical and experimental studies of the radiation from a nanodiamond single NV center placed near a hyperbolic metamaterial (HMM). In particular, we derive the reduction of excited-state lifetime and the enhancement of collected single-photon emission rate and compare them with the experimental observations. These results could be of great impact for future integrated quantum sources, especially owing to a CMOS-compatible approach to HMM synthesis.

  5. Propagation characteristics of an extremely anisotropic metamaterial loaded helical guide.

    PubMed

    Sharma, Dushyant K; Pathak, Surya K

    2016-12-26

    In this study, we report slow wave propagation characteristics of an extremely anisotropic metamaterial loaded helical guide (EAMLHG). An analytical expression has been theoretically derived and numerically computed to get exact solutions of all possible guided modes of propagation. Anisotropy is defined in terms of positive longitudinal permittivity (ϵz > 0) and negatives transverse permittivity value (ϵt < 0). The waveguide supports hybrid (HE) mode propagation and possesses characteristics of backward wave (BW) mode, forward wave (FW) mode, zero-group velocity and mode-degeneracy. The large value of effective index of BW mode and mode-degeneracy mechanism leads to slowing and trapping of electromagnetic (EM) wave. Closed-form guided mode energy propagation expressions has been also derived and computed which exhibits zero power flow at mode degeneracy point. A comparative study is also carried out between extremely anisotropic metamaterial helical waveguide (EAMLHG) and conventional extremely anisotropic metamaterial cylindrical guide (EAMCG), which reveals enhanced slow wave behaviour. Engineering feasible design and analysis is also presented by combining alternate disks of silver and glass as an extremely anisotropic medium which exhibits lossy and dispersive properties. This type of waveguide can find applications as a filter, phase shifter, and delay lines in microwave to THz applications and, as an optical buffer in optoelectronics applications.

  6. Pioneers in metamaterials: John Pendry and Victor Veselago

    NASA Astrophysics Data System (ADS)

    Boardman, Allan

    2011-02-01

    This article is a tribute designed to praise two great scientists who have set the world alight by stimulating boundless curiosity about metamaterials. It is stated early on that it is not intended to be a technical review but one from which it is possible to understand what the excitement is about. To achieve this outcome some simple discussions of refractive index are used as a means of getting to the now famous concept of negative index. After some selective, quasi-historical, development, the article moves on to a specific section about the pioneers themselves. It presents some impressions of their backgrounds, including the fact that John Pendry is now known now as Sir John Pendry. This flows from the recognition of his work by Queen Elizabeth. It is acknowledged that Victor Veselago truly guided the world along the track of negative refraction with a remarkable display of prescience. It is asserted that metamaterials have a brilliant future and that very important work is progressing towards the production of loss-free and active negative index and other forms of metamaterials. It pointed out that the control of light paths through the distortion of space is currently a major outcome from the groundbreaking work of the pioneers and that, in fact, light concentrators and optical black holes may well be life-transforming consequences. Indeed, in the conclusion, it is stated, unreservedly, that the whole world is indebted to John Pendry and Victor Veselago.

  7. Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array.

    PubMed

    Xie, Yangbo; Shen, Chen; Wang, Wenqi; Li, Junfei; Suo, Dingjie; Popa, Bogdan-Ioan; Jing, Yun; Cummer, Steven A

    2016-10-14

    Acoustic holographic rendering in complete analogy with optical holography are useful for various applications, ranging from multi-focal lensing, multiplexed sensing and synthesizing three-dimensional complex sound fields. Conventional approaches rely on a large number of active transducers and phase shifting circuits. In this paper we show that by using passive metamaterials as subwavelength pixels, holographic rendering can be achieved without cumbersome circuitry and with only a single transducer, thus significantly reducing system complexity. Such metamaterial-based holograms can serve as versatile platforms for various advanced acoustic wave manipulation and signal modulation, leading to new possibilities in acoustic sensing, energy deposition and medical diagnostic imaging.

  8. Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Shen, Chen; Wang, Wenqi; Li, Junfei; Suo, Dingjie; Popa, Bogdan-Ioan; Jing, Yun; Cummer, Steven A.

    2016-10-01

    Acoustic holographic rendering in complete analogy with optical holography are useful for various applications, ranging from multi-focal lensing, multiplexed sensing and synthesizing three-dimensional complex sound fields. Conventional approaches rely on a large number of active transducers and phase shifting circuits. In this paper we show that by using passive metamaterials as subwavelength pixels, holographic rendering can be achieved without cumbersome circuitry and with only a single transducer, thus significantly reducing system complexity. Such metamaterial-based holograms can serve as versatile platforms for various advanced acoustic wave manipulation and signal modulation, leading to new possibilities in acoustic sensing, energy deposition and medical diagnostic imaging.

  9. Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array

    PubMed Central

    Xie, Yangbo; Shen, Chen; Wang, Wenqi; Li, Junfei; Suo, Dingjie; Popa, Bogdan-Ioan; Jing, Yun; Cummer, Steven A.

    2016-01-01

    Acoustic holographic rendering in complete analogy with optical holography are useful for various applications, ranging from multi-focal lensing, multiplexed sensing and synthesizing three-dimensional complex sound fields. Conventional approaches rely on a large number of active transducers and phase shifting circuits. In this paper we show that by using passive metamaterials as subwavelength pixels, holographic rendering can be achieved without cumbersome circuitry and with only a single transducer, thus significantly reducing system complexity. Such metamaterial-based holograms can serve as versatile platforms for various advanced acoustic wave manipulation and signal modulation, leading to new possibilities in acoustic sensing, energy deposition and medical diagnostic imaging. PMID:27739472

  10. Liquid crystal hyperbolic metamaterial for wide-angle negative-positive refraction and reflection.

    PubMed

    Pawlik, G; Tarnowski, K; Walasik, W; Mitus, A C; Khoo, I C

    2014-04-01

    We show that nanosphere dispersed liquid crystal (NDLC) metamaterial can be characterized in near IR spectral region as an indefinite medium whose real parts of effective ordinary and extraordinary permittivities are opposite in signs. Based on this fact we designed an electro-optic effect: an external electric-field-driven switch between normal refraction, negative refraction, and reflection of TM incident electromagnetic wave from the boundary vacuum/NDLC. A detailed analysis of its functionality is given based on effective medium theory combined with a study of negative refraction in anisotropic metamaterials and finite elements simulations.

  11. Quasi-phase-matched backward second-harmonic generation by complementary media in nonlinear metamaterials.

    PubMed

    Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2012-10-01

    High efficiency of the second-harmonic and sum-frequency generation can be obtained in optical superlattice by using the conventional quasi-phase-matched (QPM) method. Although this trick can be played on the acoustic wave, the media with negative nonlinear parameters are not common in acoustics. Furthermore, the QPM method used in acoustic metamaterials has been less studied. In this work, a protocol is provided to realize the QPM method by using nonlinear complementary media in acoustic metamaterials in order to obtain large backward second-harmonic generation. Compared with the conventional method, the method gains a broader bandwidth and can be used in both acoustic and electromagnetic waves.

  12. Electromagnetic field manipulation in planar nanorod antennas metamaterial for slow light application

    NASA Astrophysics Data System (ADS)

    Wang, Junqiao; Zhang, Jia; Fan, Chunzhen; Mu, Kaijun; Liang, Erjun; Ding, Pei

    2017-01-01

    We numerically investigated the optical properties of planar nanorod antennas metamaterial that exhibits plasmon-induced transparency (PIT) effect. The designed metamaterial is made of a silver nanorod dimer antenna surrounded by two parallel silver nanorods. The interaction between two parallel nanorods and middle nanorod dimer antenna leads to a single PIT band in the transmission spectrum. Moreover, the double PIT windows and slow light can be realized by breaking the structure symmetry. The multi-bands PIT effect offers an excellent potential to manipulate the light speed at multi-frequencies.

  13. Surface Plasmons in Coaxial Metamaterial Cables

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.; Djafari-Rouhani, Bahram

    2013-07-01

    Thanks to Victor Veselago for his hypothesis of negative index of refraction, meta-materials — engineered composites — can be designed to have properties difficult or impossible to find in nature: they can have both electrical permittivity (ɛ) and magnetic permeability (μ) simultaneously negative. The metamaterials — henceforth negative-index materials (NIMs) — owe their properties to subwavelength structure rather than to their chemical composition. The tailored electromagnetic response of the NIMs has had a dramatic impact on classical optics: they are becoming known to have changed many basic notions related with electromagnetism. The present article is focused on gathering and reviewing fundamental characteristics of plasmon propagation in coaxial cables fabricated of the right-handed medium (RHM) (with ɛ > 0, μ > 0) and the left-handed medium (LHM) (with ɛ < 0, μ < 0) in alternate shells starting from the innermost cable. Such structures as conceived here may pave the way to some interesting effects in relation to, for example, optical science exploiting the cylindrical symmetry of coaxial waveguides that make it possible to perform all major functions of an optical fiber communication system in which the light is born, manipulated, and transmitted without ever leaving the fiber environment, with precise control over the polarization rotation and pulse broadening. This review also covers briefly the nomenclature, classification, potential applications, and the limitations (related, for example, to the inherent losses) of the NIMs and their impact on classical electrodynamics in general, and in designing the cloaking devices in particular. A recent surge in efforts on invisibility and the cloaking devices seems to have spoiled the researchers worldwide: proposals include not only a way to hide an object without having to wrap the cloak around it, but also to replace a given object with another, thus adding to the deception even further! All this

  14. Fluctuational electrodynamics of hyperbolic metamaterials

    SciTech Connect

    Guo, Yu; Jacob, Zubin

    2014-06-21

    We give a detailed account of equilibrium and non-equilibrium fluctuational electrodynamics of hyperbolic metamaterials. We show the unifying aspects of two different approaches; one utilizes the second kind of fluctuation dissipation theorem and the other makes use of the scattering method. We analyze the near-field of hyperbolic media at finite temperatures and show that the lack of spatial coherence can be attributed to the multi-modal nature of super-Planckian thermal emission. We also adopt the analysis to phonon-polaritonic super-lattice metamaterials and describe the regimes suitable for experimental verification of our predicted effects. The results reveal that far-field thermal emission spectra are dominated by epsilon-near-zero and epsilon-near-pole responses as expected from Kirchoff's laws. Our work should aid both theorists and experimentalists to study complex media and engineer equilibrium and non-equilibrium fluctuations for applications in thermal photonics.

  15. Liquid crystal tunable metamaterial absorber.

    PubMed

    Shrekenhamer, David; Chen, Wen-Chen; Padilla, Willie J

    2013-04-26

    We present an experimental demonstration of electronically tunable metamaterial absorbers in the terahertz regime. By incorporation of active liquid crystal into strategic locations within the metamaterial unit cell, we are able to modify the absorption by 30% at 2.62 THz, as well as tune the resonant absorption over 4% in bandwidth. Numerical full-wave simulations match well to experiments and clarify the underlying mechanism, i.e., a simultaneous tuning of both the electric and magnetic response that allows for the preservation of the resonant absorption. These results show that fundamental light interactions of surfaces can be dynamically controlled by all-electronic means and provide a path forward for realization of novel applications.

  16. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces

    SciTech Connect

    Cong, Longqing; Singh, Ranjan; Tan, Siyu; Yahiaoui, Riad; Yan, Fengping; Zhang, Weili

    2015-01-19

    Planar metasurfaces and plasmonic resonators have shown great promise for sensing applications across the electromagnetic domain ranging from the microwaves to the optical frequencies. However, these sensors suffer from lower figure of merit and sensitivity due to the radiative and the non-radiative loss channels in the plasmonic metamaterial systems. We demonstrate a metamaterial absorber based ultrasensitive sensing scheme at the terahertz frequencies with significantly enhanced sensitivity and an order of magnitude higher figure of merit compared to planar metasurfaces. Magnetic and electric resonant field enhancement in the impedance matched absorber cavity enables stronger interaction with the dielectric analyte. This finding opens up opportunities for perfect metamaterial absorbers to be applied as efficient sensors in the finger print region of the electromagnetic spectrum with several organic, explosive, and bio-molecules that have unique spectral signature at the terahertz frequencies.

  17. Tunable trapping and releasing light in graded graphene-silica metamaterial waveguide.

    PubMed

    Liu, Yu; Jian, Shuisheng

    2014-10-06

    We present a detailed study on trapping and releasing of light in a graded graphene-silica metamaterial waveguide. By applying proper gate voltages onto the graphene layers, the metamaterial with graded-permittivity has the ability to trap the light due to the vanishing of normalized optical power flow between forward and backward modes. Based on the effective medium theory, the distributions of modes and the transmission characteristics of normalized power flows are investigated. Theoretical investigation shows that the waveguide has the ability to turn on or off the mid-infrared light from 5400 nm to 5800 nm. Moreover, adjusting the voltages on graphene layers can alter the bandwidth of trapped light. The graded metamaterial waveguide can be the candidate for multi-wavelength absorber based on the light trapping effect.

  18. Impact of Substrate and Bright Resonances on Group Velocity in Metamaterial without Dark Resonator.

    PubMed

    Hokmabadi, Mohammad Parvinnezhad; Kim, Ju-Hyung; Rivera, Elmer; Kung, Patrick; Kim, Seongsin M

    2015-09-23

    Manipulating the speed of light has never been more exciting since electromagnetic induced transparency and its classical analogs led to slow light. Here, we report the manipulation of light group velocity in a terahertz metamaterial without needing a dark resonator, but utilizing instead two concentric split-ring bright resonators (meta-atoms) exhibiting a bright Fano resonance in close vicinity of a bright Lorentzian resonance to create a narrowband transmittance. Unlike earlier reports, the bright Fano resonance does not stem from an asymmetry of meta-atoms or an interaction between them. Additionally, we develop a method to determine the metamaterial "effective thickness", which quantifies the influence of the substrate on the metamaterial response and has remained challenging to estimate so far. By doing so, very good agreement between simulated and measured group delays and velocities is accomplished. The proposed structure and method will be useful in designing optical buffers, delay lines, and ultra-sensitive sensors.

  19. Formation and properties of 3D metamaterial composites fabricated using nanometer scale laser lithography (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Prokes, Sharka M.; Perkins, Frank K.; Glembocki, Orest J.

    2015-08-01

    Metamaterials designed for the visible or near IR wavelengths require patterning on the nanometer scale. To achieve this, e-beam lithography is used, but it is extremely difficult and can only produce 2D structures. A new alternative technique to produce 2D and 3D structures involves laser fabrication using the Nanoscribe 3D laser lithography system. This is a direct laser writing technique which can form arbitrary 3D nanostructures on the nanometer scale and is based on multi-photon polymerization. We are creating 2D and 3D metamaterials via this technique, and subsequently conformally coating them using Atomic Layer Deposition of oxides and Ag. We will discuss the optical properties of these novel composite structures and their potential for dual resonant metamaterials.

  20. Waves in hyperbolic and double negative metamaterials including rogues and solitons.

    PubMed

    Boardman, Allan D; Alberucci, Alessandro; Assanto, Gaetano; Grimalsky, Vladimir; Kibler, Bertrand; McNiff, Jim; Nefedov, Igor; Rapoport, Yuriy; Valagiannopoulos, Costas

    2017-03-17

    The topics here deal with some current progress in electromagnetic wave propagation in a family of substances known as metamaterials. To begin with, it is discussed how a pulse can develop a leading edge that steepens and it is emphasised that such self-steepening is an important inclusion within a metamaterial environment together with Raman scattering and third-order dispersion whenever very short pulses are being investigated. It is emphasised that the self-steepening parameter is highly metamaterial-driven compared to Raman scattering, which is associated with a coefficient of the same form whether a normal positive phase, or a metamaterial waveguide is the vehicle for any soliton propagation. It is also shown that, for leading outcomes, including the fascinating rogue waves, the influence of magnetooptics provides a beautiful and important control mechanism for metamaterial pointing to devices and that, in the future, will have a significant impact upon the manner in which data control systems will behave for optical computing.

  1. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.

    PubMed

    Jiang, Zhi Hao; Yun, Seokho; Toor, Fatima; Werner, Douglas H; Mayer, Theresa S

    2011-06-28

    Metamaterials offer a new approach to create surface coatings with highly customizable electromagnetic absorption from the microwave to the optical regimes. Thus far, efficient metamaterial absorbers have been demonstrated at microwave frequencies, with recent efforts aimed at much shorter terahertz and infrared wavelengths. The present infrared absorbers have been constructed from arrays of nanoscale metal resonators with simple circular or cross-shaped geometries, which provide a single band response. In this paper, we demonstrate a conformal metamaterial absorber with a narrow band, polarization-independent absorptivity of >90% over a wide ±50° angular range centered at mid-infrared wavelengths of 3.3 and 3.9 μm. The highly efficient dual-band metamaterial was realized by using a genetic algorithm to identify an array of H-shaped nanoresonators with an effective electric and magnetic response that maximizes absorption in each wavelength band when patterned on a flexible Kapton and Au thin film substrate stack. This conformal metamaterial absorber maintains its absorption properties when integrated onto curved surfaces of arbitrary materials, making it attractive for advanced coatings that suppress the infrared reflection from the protected surface.

  2. Three-component gyrotropic metamaterial

    SciTech Connect

    Tralle, Igor Ziȩba, Paweł; Paśko, Wioletta

    2014-06-21

    All of the proposed ever since designs of metamaterials are characterized by ever-increasing sophistication of fabrication methods. Here, a comparatively simple recipe for the fabrication of a metamaterial, which is both gyrotropic and of the simultaneously negative permittivity and permeability, is proposed. The idea is to make a mixture of three ingredients, where one of them would be responsible for the negativity of μ, while the other two would be responsible for the negativity of ε. The first component of the mixture is the “swarm” of single-domain ferromagnetic nano-particles, immersed in a mixture of other two, silver and mercury cadmium telluride. By carrying out the computer simulations, the domains of gyromagnetic metamaterial exist, relative to all parameters characterizing the model, that is, the temperature, external magnetic field, parameters of nano-particles, and the fraction of cadmium in Hg{sub 1−x}Cd{sub x}Te-compound as well as relative concentrations of the mixture components are established.

  3. Isotropic Negative Thermal Expansion Metamaterials.

    PubMed

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  4. Topological design of torsional metamaterials

    NASA Astrophysics Data System (ADS)

    Vitelli, Vincenzo; Paulose, Jayson; Meeussen, Anne; Topological Mechanics Lab Team

    Frameworks - stiff elements with freely hinged joints - model the mechanics of a wide range of natural and artificial structures, including mechanical metamaterials with auxetic and topological properties. The unusual properties of the structure depend crucially on the balance between degrees of freedom associated with the nodes, and the constraints imposed upon them by the connecting elements. Whereas networks of featureless nodes connected by central-force springs have been well-studied, many real-world systems such as frictional granular packings, gear assemblies, and flexible beam meshes incorporate torsional degrees of freedom on the nodes, coupled together with transverse shear forces exerted by the connecting elements. We study the consequences of such torsional constraints on the mechanics of periodic isostatic networks as a foundation for mechanical metamaterials. We demonstrate the existence of soft modes of topological origin, that are protected against disorder or small perturbations of the structure analogously to their counterparts in electronic topological insulators. We have built a lattice of gears connected by rigid beams that provides a real-world demonstration of a torsional metamaterial with topological edge modes and mechanical Weyl modes.

  5. Numerical analysis of Swiss roll metamaterials.

    PubMed

    Demetriadou, A; Pendry, J B

    2009-08-12

    A Swiss roll metamaterial is a resonant magnetic medium, with a negative magnetic permeability for a range of frequencies, due to its self-inductance and self-capacitance components. In this paper, we discuss the band structure, S-parameters and effective electromagnetic parameters of Swiss roll metamaterials, with both analytical and numerical results, which show an exceptional convergence.

  6. Investigation of Thermal Management and Metamaterials

    DTIC Science & Technology

    2010-03-01

    create a metasurface (a 2-D metamaterial). This metasurface could have variable electrical and thermal conductivity via switching (opening/closing) of...selected for AFIT’s first thermal metamaterial design. The first potential application of this metasurface includes use as a thin film (less

  7. Design of a programmable active acoustics metamaterial

    NASA Astrophysics Data System (ADS)

    Smoker, Jason J.

    Metamaterials are artificial materials engineered to provide properties which may not be readily available in nature. The development of such class of materials constitutes a new area of research that has grown significantly over the past decade. Acoustic metamaterials, specifically, are even more novel than their electromagnetic counterparts arising only in the latter half of the decade. Acoustic metamaterials provide a new tool in controlling the propagation of pressure waves. However, physical design and frequency tuning, is still a large obstacle when creating a new acoustic metamaterial. This dissertation describes active and programmable design for acoustic metamaterials which allows the same basic physical design principles to be used for a variety of application. With cloaking technology being of a great interest to the US Navy, the proposed design approach would enable the development of a metamaterial with spatially changing effective parameters while retaining a uniform physical design features. The effective parameters would be controlled by tuning smart actuators embedded inside the metamaterial structure. Since this design is based on dynamic effective parameters that can be electrically controlled, material property ranges of several orders of magnitude could potentially be achieved without changing any physical parameters. With such unique capabilities, physically realizable acoustic cloaks can be achieved and objects treated with these active metamaterials can become acoustically invisible.

  8. Broadband Tunable Transparency in rf SQUID Metamaterial

    NASA Astrophysics Data System (ADS)

    Zhang, Daimeng; Trepanier, Melissa; Mukhanov, Oleg; Jung, Philipp; Butz, Susanne; Ustinov, Alexey; Anlage, Steven

    2015-03-01

    We demonstrate a metamaterial with broadband tunable transparency in microwave electromagnetic fields. This metamaterial is made of Radio Frequency Superconducting QUantum Interference Devices (rf SQUIDs). We show both experimentally and theoretically that the resonance of this metamaterial totally disappears when illuminated with electromagnetic waves of certain power ranges, so that waves can propagate through the metamaterial with little dissipation in a wide frequency spectrum. Unlike traditional electromagnetically induced transparency, high transmission through this metamaterial is due to the intrinsic nonlinearity of the rf SQUID. Transparency occurs when the metamaterial enters its bistability regime. We can control the metamaterial to be transparent or opaque by switching between the two states depending on the initial conditions and signal scanning directions. We also show that the degree of transparency can be tuned by temperature, power of the incident wave, and dc magnetic field and discuss analytical and numerical models that reveal how to systematically control the transparency regime. The metamaterial has potential application in fast tunable digital filter, power limiter and auto-cloaking. This work is supported by the NSF-GOALI and OISE programs through grant # ECCS-1158644, and CNAM.

  9. Subwavelength silicon through-hole arrays as an all-dielectric broadband terahertz gradient index metamaterial

    SciTech Connect

    Park, Sang-Gil; Jeong, Ki-Hun; Lee, Kanghee; Han, Daehoon; Ahn, Jaewook

    2014-09-01

    Structuring at subwavelength scales brings out artificial media with anomalous optical features called metamaterials. All-dielectric metamaterials have high potential for practical applications over the whole electromagnetic spectrum owing to low loss and optical isotropy. Here, we report subwavelength silicon through-hole arrays as an all-dielectric gradient index metamaterial with broadband THz operation. The unit cell consists of a single subwavelength through-hole on highly resistive monocrystalline silicon. Depending on the fill-factor and period, the effective index was linearly modulated at 0.3–1.6 THz. The experimental results also demonstrate silicon gradient refractive index (Si-GRIN) lenses with parabolic index profiles through the spatial modification of a single unit cell along the radial direction. Si-GRIN lenses either focus 0.4–1.6 THz beam to the diffraction-limit or serve as a flat and thin solid immersion lens on the backside of THz photoconductive antenna for highly efficient pulse extraction. This all-dielectric gradient index metamaterial opens up opportunities for integrated THz GRIN optics.

  10. Tunable beam steering enabled by graphene metamaterials.

    PubMed

    Orazbayev, B; Beruete, M; Khromova, I

    2016-04-18

    We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.

  11. A d.c. magnetic metamaterial.

    PubMed

    Magnus, F; Wood, B; Moore, J; Morrison, K; Perkins, G; Fyson, J; Wiltshire, M C K; Caplin, D; Cohen, L F; Pendry, J B

    2008-04-01

    Electromagnetic metamaterials are a class of materials that have been artificially structured on a subwavelength scale. They are currently the focus of a great deal of interest because they allow access to previously unrealizable properties such as a negative refractive index. Most metamaterial designs have so far been based on resonant elements, such as split rings, and research has concentrated on microwave frequencies and above. Here, we present the first experimental realization of a non-resonant metamaterial designed to operate at zero frequency. Our samples are based on a recently proposed template for an anisotropic magnetic metamaterial consisting of an array of superconducting plates. Magnetometry experiments show a strong, adjustable diamagnetic response when a field is applied perpendicular to the plates. We have calculated the corresponding effective permeability, which agrees well with theoretical predictions. Applications for this metamaterial may include non-intrusive screening of weak d.c. magnetic fields.

  12. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  13. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  14. Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform.

    PubMed

    Esposito, Marco; Tasco, Vittorianna; Todisco, Francesco; Cuscunà, Massimo; Benedetti, Alessio; Scuderi, Mario; Nicotra, Giuseppe; Passaseo, Adriana

    2016-09-14

    The capability to fully control the chiro-optical properties of metamaterials in the visible range enables a number of applications from integrated photonics to life science. To achieve this goal, a simultaneous control over complex spatial and localized structuring as well as material composition at the nanoscale is required. Here, we demonstrate how circular dichroic bands and optical rotation can be effectively and independently tailored throughout the visible regime as a function of the fundamental meta-atoms properties and of their three dimensional architecture in a the helix-shaped metamaterials. The record chiro-optical effects obtained in the visible range are accompanied by an additional control over optical efficiency, even in the plasmonic context. These achievements pave the way toward fully integrated chiral photonic devices.

  15. Graphene-Based Active Random Metamaterials for Cavity-Free Lasing.

    PubMed

    Marini, A; García de Abajo, F J

    2016-05-27

    Manipulating and controlling the optical energy flow inside random media is a research frontier of photonics and the basis of novel laser designs. Here, we show that a metamaterial consisting of randomly dispersed graphene nanoflakes embedded within an optically pumped gain medium (rhodamine 6G) can operate as a cavity-free laser thanks to its extraordinarily low threshold for saturable absorption. The emitted light is self-organized into a well-determined spatial pattern, which depends on the graphene flake density and can be externally controlled through the optical pump. We provide different examples of tunable laser operation ranging from stable single-mode to chaoticlike behavior. Our metamaterial design holds great potential for the optical control of light amplification, as well as for the development of single-mode beam-engineered cavity-free lasers.

  16. Graphene-Based Active Random Metamaterials for Cavity-Free Lasing

    NASA Astrophysics Data System (ADS)

    Marini, A.; García de Abajo, F. J.

    2016-05-01

    Manipulating and controlling the optical energy flow inside random media is a research frontier of photonics and the basis of novel laser designs. Here, we show that a metamaterial consisting of randomly dispersed graphene nanoflakes embedded within an optically pumped gain medium (rhodamine 6G) can operate as a cavity-free laser thanks to its extraordinarily low threshold for saturable absorption. The emitted light is self-organized into a well-determined spatial pattern, which depends on the graphene flake density and can be externally controlled through the optical pump. We provide different examples of tunable laser operation ranging from stable single-mode to chaoticlike behavior. Our metamaterial design holds great potential for the optical control of light amplification, as well as for the development of single-mode beam-engineered cavity-free lasers.

  17. Shrinking an arbitrary object as one desires using metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei Xiang; Cui, Tie Jun; Yang, Xin Mi; Ma, Hui Feng; Cheng, Qiang

    2011-05-01

    Based on transformation optics, we present a shrinking device, which can transform an arbitrary object virtually into a small-size object with different material parameters as one desires. Such an illusion device will confuse the detectors or the viewers, and hence the real size and material parameters of the enclosed object cannot be perceived. We fabricated and measured a shrinking device by using metamaterials, which works at the nonresonant frequency and has low loss. The device has been validated by both numerical simulations and experiments on circular and square objects. Good shrinking performance has been demonstrated.

  18. Tunable bulk polaritons of graphene-based hyperbolic metamaterials.

    PubMed

    Zhang, Liwei; Zhang, Zhengren; Kang, Chaoyang; Cheng, Bei; Chen, Liang; Yang, Xuefeng; Wang, Jian; Li, Weibing; Wang, Baoji

    2014-06-02

    The tunable hyperbolic metamaterial (HMM) based on the graphene-dielectric layered structure at THz frequency is presented, and the surface and bulk polaritons of the graphene-based HMM are theoretically studied. It is found that the dispersions of the polaritons can be tuned by varying the Fermi energy of graphene sheets, the graphene-dielectric layers and the layer number of graphene sheets. In addition, the highly confined bulk polariton mode can be excited and is manifested in an attenuated total reflection configuration as a sharp drop in the reflectance. Such properties can be used in tunable optical reflection modulation with the assistance of bulk polaritons.

  19. Low loss and magnetic field-tunable superconducting terahertz metamaterial.

    PubMed

    Jin, Biaobing; Zhang, Caihong; Engelbrecht, Sebastian; Pimenov, Andrei; Wu, Jingbo; Xu, Qinyin; Cao, Chunhai; Chen, Jian; Xu, Weiwei; Kang, Lin; Wu, Peiheng

    2010-08-02

    Superconducting terahertz (THz) metamaterial (MM) made from niobium (Nb) film has been investigated using a continuous-wave THz spectroscopy. The quality factors of the resonance modes at 0.132 THz and 0.418 THz can be remarkably increased when the working temperature is below the superconducting transition temperature of Nb, indicating that the use of superconducting Nb is a possible way to achieve low loss performance of a THz MM. In addition, the tuning of superconducting THz MM by a magnetic field is also demonstrated, which offers an alternative tuning method apart from the existing electric, optical and thermal tuning methods.

  20. Nonlinear Optical Pulsed Control of Composite Metamaterials

    DTIC Science & Technology

    2011-10-07

    polariton . 15. SUBJECT TERMS composite materials, Field Tunable Materials, meta materials 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same...localized plasmon as well as propagating surface plasmon polariton resonance and the argument also supported through FDTD simulation (for