Science.gov

Sample records for non-equilibrium air plasma

  1. Aerospace Applications of Non-Equilibrium Plasma

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  2. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    NASA Astrophysics Data System (ADS)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno

    2016-04-01

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N2 and 20% O2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 1013 cm-3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the flash

  3. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    SciTech Connect

    Maulois, Melissa; Azaïs, Bruno

    2016-04-15

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N{sub 2} and 20% O{sub 2}) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 10{sup 13 }cm{sup −3} is formed a few nanoseconds after the peak of X-ray flash intensity

  4. Radiation temperature of non-equilibrium plasmas

    SciTech Connect

    Arunasalam, V.

    1991-07-01

    In fusion devices measurements of the radiation temperature T{sub r} ({omega}, k) near the electron cyclotron frequency {omega}{sub C} and the second harmonic 2{omega}{sub C} in directions nearly perpendicular to the confining magnetic field B (i.e., k {approx} k {perpendicular}) serve to map out the electron temperature profiles T{sub e}(r,t). For optically thick plasma at thermodynamic equilibrium T{sub r} = T{sub e}. However, there is increasing experimental evidence for the presence of non-equilibrium electron distributions (such as a drifting Maxwellian with appreciable values of the streaming parameter {omicron} = v{sub d}/v{sub t}, a bi- Maxwellian, and anisotropic Maxwellian with T {perpendicular} {ne} T {parallel}, etc.,) in tokamak plasmas, especially in the presence of radio-frequency heating. Here, we examine (both non-relativistically and relativistically) the dependence of T{sub r} on {omicron}, T{perpendicular}/T{parallel}, T{sub h}/T{sub b}, n{sub h}/n{sub b}etc., where n{sub b}, n{sub h}, T{sub b}, T{sub h} are the densities and temperatures, respectively, of the bulk and the hot components of the bi-Maxwellian plasma. Our bi-Maxwellian results predict that the ratio T{sub r}/T{sub e} is a very sensitive function of the ratios n{sub h}/n{sub b} and T{sub h}/T{sub b}. Further, these relativistic and non-relativistic results satisfy the well-known limit c {yields} {infinity} correspondence principle'', showing that the intensity of the emission and absorption line is independent of the line broadening mechanism. 44 refs., 2 figs.

  5. Modeling of non-equilibrium and non-thermal plasma discharge in air: Three temperature modeling approach

    NASA Astrophysics Data System (ADS)

    Mahamud, Rajib; Farouk, Tanvir

    2014-10-01

    The rapid progress in atmospheric pressure non-thermal plasma discharge has made air to be a preferable choice for feed gas. Despite the ease of operation of such discharges in air, the preference of air provides added complexity to modeling and simulations in terms of kinetics and different temperature modes. The diatomic nature of both N2 and O2 contributes to this complexity. In this work we report simulation results from a one-dimensional multi-physics model. A dc driven air plasma discharge operating at atmospheric and higher pressure is simulated. The model considers 50 species and 200 elementary reactions. The reaction scheme considers electron introduced and heavy particle reactions for N2 and O2 as well as interactions between nitrogen and oxygen. In addition to the species conservation equations, poisson's equation three different temperature's are resolved - electron, vibrational and translational. A special focus has been the coupling between the different temperatures to accurately resolve the energy cascade. The predictions from the model are found to be in good qualitative agreement against experimental measurements available in the literature. Work was supported by DARPA under Army Research Office (ARO) Grant No. W911NF1210007.

  6. Large Volume Non-Equilibrium Air Plasma at Atmospheric Pressure: A Novel Method with Low Power Requirements

    DTIC Science & Technology

    2007-02-28

    or dental gums. Unlike other known plasma "jet" devices, which generate very short plumes in the millimeter range, and at temperatures that can reach...of magnitude in size. Also unlike corona -like devices such as the plasma needle, which generates 2-3 mm long plasma at the tip of a sharp wire...delicate objects and materials including skin and dental gum without causing any heating or painful sensation. Various bacteria were inactivated by the

  7. Non-equilibrium plasma prevention of Schistosoma japonicum transmission

    NASA Astrophysics Data System (ADS)

    Wang, Xing-Quan; Wang, Feng-Peng; Chen, Wei; Huang, Jun; Bazaka, Kateryna; Ostrikov, Kostya (Ken)

    2016-10-01

    Schistosoma japonicum is a widespread human and animal parasite that causes intestinal and hepatosplenic schistosomiasis linked to colon, liver and bladder cancers, and anemia. Estimated 230 million people are currently infected with Schistosoma spp, with 779 million people at risk of contracting the parasite. Infection occurs when a host comes into contact with cercariae, a planktonic larval stage of the parasite, and can be prevented by inactivating the larvae, commonly by chemical treatment. We investigated the use of physical non-equilibrium plasma generated at atmospheric pressure using custom-made dielectric barrier discharge reactor to kill S. japonicum cercariae. Survival rate decreased with treatment time and applied power. Plasmas generated in O2 and air gas discharges were more effective in killing S. japonicum cercariae than that generated in He, which is directly related to the mechanism by which cercariae are inactivated. Reactive oxygen species, such as O atoms, abundant in O2 plasma and NO in air plasma play a major role in killing of S. japonicum cercariae via oxidation mechanisms. Similar level of efficacy is also shown for a gliding arc discharge plasma jet generated in ambient air, a system that may be more appropriate for scale-up and integration into existing water treatment processes.

  8. Non-equilibrium plasma prevention of Schistosoma japonicum transmission

    PubMed Central

    Wang, Xing-Quan; Wang, Feng-Peng; Chen, Wei; Huang, Jun; Bazaka, Kateryna; Ostrikov, Kostya (Ken)

    2016-01-01

    Schistosoma japonicum is a widespread human and animal parasite that causes intestinal and hepatosplenic schistosomiasis linked to colon, liver and bladder cancers, and anemia. Estimated 230 million people are currently infected with Schistosoma spp, with 779 million people at risk of contracting the parasite. Infection occurs when a host comes into contact with cercariae, a planktonic larval stage of the parasite, and can be prevented by inactivating the larvae, commonly by chemical treatment. We investigated the use of physical non-equilibrium plasma generated at atmospheric pressure using custom-made dielectric barrier discharge reactor to kill S. japonicum cercariae. Survival rate decreased with treatment time and applied power. Plasmas generated in O2 and air gas discharges were more effective in killing S. japonicum cercariae than that generated in He, which is directly related to the mechanism by which cercariae are inactivated. Reactive oxygen species, such as O atoms, abundant in O2 plasma and NO in air plasma play a major role in killing of S. japonicum cercariae via oxidation mechanisms. Similar level of efficacy is also shown for a gliding arc discharge plasma jet generated in ambient air, a system that may be more appropriate for scale-up and integration into existing water treatment processes. PMID:27739459

  9. Non-equilibrium plasma prevention of Schistosoma japonicum transmission.

    PubMed

    Wang, Xing-Quan; Wang, Feng-Peng; Chen, Wei; Huang, Jun; Bazaka, Kateryna; Ostrikov, Kostya Ken

    2016-10-14

    Schistosoma japonicum is a widespread human and animal parasite that causes intestinal and hepatosplenic schistosomiasis linked to colon, liver and bladder cancers, and anemia. Estimated 230 million people are currently infected with Schistosoma spp, with 779 million people at risk of contracting the parasite. Infection occurs when a host comes into contact with cercariae, a planktonic larval stage of the parasite, and can be prevented by inactivating the larvae, commonly by chemical treatment. We investigated the use of physical non-equilibrium plasma generated at atmospheric pressure using custom-made dielectric barrier discharge reactor to kill S. japonicum cercariae. Survival rate decreased with treatment time and applied power. Plasmas generated in O2 and air gas discharges were more effective in killing S. japonicum cercariae than that generated in He, which is directly related to the mechanism by which cercariae are inactivated. Reactive oxygen species, such as O atoms, abundant in O2 plasma and NO in air plasma play a major role in killing of S. japonicum cercariae via oxidation mechanisms. Similar level of efficacy is also shown for a gliding arc discharge plasma jet generated in ambient air, a system that may be more appropriate for scale-up and integration into existing water treatment processes.

  10. Non-equilibrium in low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Taccogna, Francesco; Dilecce, Giorgio

    2016-11-01

    The wide range of applications of cold plasmas originates from their special characteristic of being a physical system out of thermodynamic equilibrium. This property enhances its reactivity at low gas temperature and allows to obtain macroscopic effects with a moderate energy consumption. In this review, the basic concepts of non-equilibrium in ionized gases are treated by showing why and how non-equilibrium functions of the degrees of freedom are formed in a variety of natural and man-made plasmas with particular emphasis on the progress made in the last decade. The modern point of view of a molecular basis of non-equilibrium and of a state-to-state kinetic approach is adopted. Computational and diagnostic techniques used to investigate the non-equilibrium conditions are also surveyed.

  11. Experimental approaches for studying non-equilibrium atmospheric plasma jets

    SciTech Connect

    Shashurin, A.; Keidar, M.

    2015-12-15

    This work reviews recent research efforts undertaken in the area non-equilibrium atmospheric plasma jets with special focus on experimental approaches. Physics of small non-equilibrium atmospheric plasma jets operating in kHz frequency range at powers around few Watts will be analyzed, including mechanism of breakdown, process of ionization front propagation, electrical coupling of the ionization front with the discharge electrodes, distributions of excited and ionized species, discharge current spreading, transient dynamics of various plasma parameters, etc. Experimental diagnostic approaches utilized in the field will be considered, including Rayleigh microwave scattering, Thomson laser scattering, electrostatic streamer scatterers, optical emission spectroscopy, fast photographing, etc.

  12. Plasma diagnostics of non-equilibrium atmospheric plasma jets

    NASA Astrophysics Data System (ADS)

    Shashurin, Alexey; Scott, David; Keidar, Michael; Shneider, Mikhail

    2014-10-01

    Intensive development and biomedical application of non-equilibrium atmospheric plasma jet (NEAPJ) facilitates rapid growth of the plasma medicine field. The NEAPJ facility utilized at the George Washington University (GWU) demonstrated efficacy for treatment of various cancer types (lung, bladder, breast, head, neck, brain and skin). In this work we review recent advances of the research conducted at GWU concerned with the development of NEAPJ diagnostics including Rayleigh Microwave Scattering setup, method of streamer scattering on DC potential, Rogowski coils, ICCD camera and optical emission spectroscopy. These tools allow conducting temporally-resolved measurements of plasma density, electrical potential, charge and size of the streamer head, electrical currents flowing though the jet, ionization front propagation speed etc. Transient dynamics of plasma and discharge parameters will be considered and physical processes involved in the discharge will be analyzed including streamer breakdown, electrical coupling of the streamer tip with discharge electrodes, factors determining NEAPJ length, cross-sectional shape and propagation path etc.

  13. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    NASA Technical Reports Server (NTRS)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  14. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    NASA Technical Reports Server (NTRS)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  15. Non-equilibrium Plasma-Assisted Combustion

    NASA Astrophysics Data System (ADS)

    Sun, Wenting

    As a promising method to enhance combustion, plasma-assisted combustion has drawn considerable attention. Due to the fast electron impact excitation and dissociation of molecules at low temperatures, plasma introduces new reaction pathways, changes fuel oxidation timescales, and can dramatically modify the combustion processes. In this dissertation, the radical generation from the plasma and its effect on flame extinction and ignition were investigated experimentally together with detailed numerical simulation on a counterflow CH4 diffusion flame. It was found that the atomic oxygen production played a dominant role in enhancing the chain-branching reaction pathways and accelerating fuel oxidation at near limit flame conditions. To understand the direct coupling effect between plasma and flame, a novel plasma-assisted combustion system with in situ discharge in a counterflow diffusion flame was developed. The ignition and extinction characteristics of CH4/O 2/He diffusion flames were investigated. For the first time, it was demonstrated that the strong plasma-flame coupling in in situ discharge could significantly modify the ignition/extinction characteristics and create a new fully stretched ignition S-curve. To understand low temperature kinetics of combustion, it is critical to measure the formation and decomposition of H2O2. A molecular beam mass spectrometry (MBMS) system was developed and integrated with a laminar flow reactor. H2O2 measurements were directly calibrated, and compared to kinetic models. The results confirmed that low and intermediate temperature DME oxidation produced significant amounts of H2O2. The experimental characterizations of important intermediate species including H2O2, CH2O and CH3OCHO provided new capabilities to investigate and improve the chemical kinetics especially at low temperatures. A numerical scheme for model reduction was developed to improve the computational efficiency in the simulation of combustion with detailed

  16. Non-equilibrium plasma experiments at The Pennsylvania State University

    NASA Astrophysics Data System (ADS)

    Knecht, Sean; Bilen, Sven; Micci, Michael

    2013-10-01

    The authors have recently established the capability at The Pennsylvania State University to generate non-equilibrium plasma in atmospheric-pressure air and liquids such as water and saline. The plasma is generated using a high-voltage pulser (Pacific-Electronics PT-55), which is capable of voltage pulses of 75-ns width, peak voltage >50 kV, with rise-times on the order of nanoseconds. The electrodes are tungsten wires of various diameters (50 μm, 175 μm, 254 μm) insulated with nylon tubing. The spacing of the electrodes is controlled with translating mounts with resolution of tens of microns. Spectroscopy (Ocean Optics Model HR2000) is presently used for line identification only. Current and voltage vs. time will be measured with a 500-MHz bandwidth oscilloscope, a high-voltage probe and a shunt resistor connected to the ground side of the circuit. Research directions presently being pursued include the effects of solution electrical conductivity on plasma production and propellant ignition studies. Data from several types of experiments will be presented.

  17. Tailoring non-equilibrium atmospheric pressure plasmas for healthcare technologies

    NASA Astrophysics Data System (ADS)

    Gans, Timo

    2012-10-01

    Non-equilibrium plasmas operated at ambient atmospheric pressure are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. This includes the unique opportunity to deliver short-lived highly reactive species such as atomic oxygen and atomic nitrogen. Reactive oxygen and nitrogen species can initiate a wide range of reactions in biochemical systems, both therapeutic and toxic. The toxicological implications are not clear, e.g. potential risks through DNA damage. It is anticipated that interactions with biological systems will be governed through synergies between two or more species. Suitable optimized plasma sources are improbable through empirical investigations. Quantifying the power dissipation and energy transport mechanisms through the different interfaces from the plasma regime to ambient air, towards the liquid interface and associated impact on the biological system through a new regime of liquid chemistry initiated by the synergy of delivering multiple energy carrying species, is crucial. The major challenge to overcome the obstacles of quantifying energy transport and controlling power dissipation has been the severe lack of suitable plasma sources and diagnostic techniques. Diagnostics and simulations of this plasma regime are very challenging; the highly pronounced collision dominated plasma dynamics at very small dimensions requires extraordinary high resolution - simultaneously in space (microns) and time (picoseconds). Numerical simulations are equally challenging due to the inherent multi-scale character with very rapid electron collisions on the one extreme and the transport of chemically stable species characterizing completely different domains. This presentation will discuss our recent progress actively combining both advance optical diagnostics and multi-scale computer simulations.

  18. Non-equilibrium Neutrino in the Early Universe Plasma

    SciTech Connect

    Kirilova, D.

    2009-04-26

    We discuss the evolution of cosmic neutrinos, participating in neutrino oscillations and interacting with the fermions of the hot plasma during pre-BBN and BBN epoch. The neutrino evolution and the neutrino oscillations effects depend on the type of oscillations: oscillation channels, the degree of equilibrium of oscillating neutrinos and on the plasma characteristics. Neutrino spectrum distortion by neutrino oscillations in medium is discussed in detail. Non-equilibrium decays and their effect on electron neutrino spectrum distortion and nucleons kinetics during pre-BBN epoch are briefly discussed. BBN model with such decays and active-inert neutrino oscillations may resolve the tension between BBN and LSS preferred numbers of neutrino types. Cosmological constraints on neutrino characteristics are presented.

  19. Interaction of non-equilibrium oxygen plasma with sintered graphite

    NASA Astrophysics Data System (ADS)

    Cvelbar, Uroš

    2013-03-01

    Samples made from sintered graphite with grain size of about 10 μm were exposed to highly non-equilibrium oxygen plasma created in a borosilicate glass tube by an electrodeless RF discharge. The density of charged particles was about 7 × 1015 m-3 and the neutral oxygen atom density 6 × 1021 m-3. The sample temperature was determined by a calibrated IR detector while the surface modifications were quantified by XPS and water drop techniques. The sample surface was rapidly saturated with carbonyl groups. Prolonged treatment of samples caused a decrease in concentration of the groups what was explained by thermal destruction. Therefore, the created functional groups were temperature dependent. The heating of samples resulted in extensive chemical interaction between the O atoms and samples what was best monitored by decreasing of the O atom density with increasing sample temperature. The saturation with functional groups could be restored only after cooling down of the samples and repeated short plasma treatment at low temperature.

  20. Numerical Simulation of Non-Equilibrium Plasma Discharge for High Speed Flow Control

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Ramakrishnan; Anandhanarayanan, Karupannasamy; Krishnamurthy, Rajah; Chakraborty, Debasis

    2017-06-01

    Numerical simulation of hypersonic flow control using plasma discharge technique is carried out using an in-house developed code CERANS-TCNEQ. The study is aimed at demonstrating a proof of concept futuristic aerodynamic flow control device. The Kashiwa Hypersonic and High Temperature wind tunnel study of plasma discharge over a flat plate had been considered for numerical investigation. The 7-species, 18-reaction thermo-chemical non-equilibrium, two-temperature air-chemistry model due Park is used to model the weakly ionized flow. Plasma discharge is modeled as Joule heating source terms in both the translation-rotational and vibrational energy equations. Comparison of results for plasma discharge at Mach 7 over a flat plate with the reference data reveals that the present study is able to mimic the exact physics of complex flow such as formation of oblique shock wave ahead of the plasma discharge region with a resultant rise in surface pressure and vibrational temperature up to 7000 K demonstrating the use of non-equilibrium plasma discharge for flow control at hypersonic speeds.

  1. Numerical Simulation of Non-Equilibrium Plasma Discharge for High Speed Flow Control

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Ramakrishnan; Anandhanarayanan, Karupannasamy; Krishnamurthy, Rajah; Chakraborty, Debasis

    2016-06-01

    Numerical simulation of hypersonic flow control using plasma discharge technique is carried out using an in-house developed code CERANS-TCNEQ. The study is aimed at demonstrating a proof of concept futuristic aerodynamic flow control device. The Kashiwa Hypersonic and High Temperature wind tunnel study of plasma discharge over a flat plate had been considered for numerical investigation. The 7-species, 18-reaction thermo-chemical non-equilibrium, two-temperature air-chemistry model due Park is used to model the weakly ionized flow. Plasma discharge is modeled as Joule heating source terms in both the translation-rotational and vibrational energy equations. Comparison of results for plasma discharge at Mach 7 over a flat plate with the reference data reveals that the present study is able to mimic the exact physics of complex flow such as formation of oblique shock wave ahead of the plasma discharge region with a resultant rise in surface pressure and vibrational temperature up to 7000 K demonstrating the use of non-equilibrium plasma discharge for flow control at hypersonic speeds.

  2. Non-Equilibrium Modeling of Inductively Coupled RF Plasmas

    DTIC Science & Technology

    2015-01-01

    other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...Navier-Stokes and Maxwell equa- tions [2]. In literature, the Local Thermodynamic Equi- librium (LTE) assumption is often used to describe the state of...the gas in the discharge region [4–17]. However, Non Local Thermodynamic Equilibrium (NLTE) simula- tions of Argon [18, 19] and air plasmas [20], have

  3. A non-equilibrium diffuse discharge in atmospheric pressure air* A non-equilibrium diffuse discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir; Lu, Xinpei; Malott, Chad M.

    2003-02-01

    The generation and maintenance of non-thermal air plasmas at atmospheric pressure with low power requirements remain formidable challenges. Here, we report on a promising method allowing the production of an air plasma between a planar disc-shaped metal electrode and a second electrode made of a static volume of water contained in a shallow glass dish. Currently, we have used only tap water as one of the electrodes. However, other liquids with low conductivity could also be used. In this paper, the power requirements, gas temperature measurements, and atomic and molecular emission bands of the discharge will be presented. Potential applications of this atmospheric pressure discharge include decontamination, radiation sources, etc.

  4. Non-Equilibrium Radiation from Shock-Heated Air

    DTIC Science & Technology

    1991-07-01

    v- n 260nm LTER" vkT 4e_-. W 4 e IW- l watts (1) 2 (Q r)u cm3 sr cm - I r 0 I I .l I 1 I I I j 0 2 4 6 8 10 12 14 16 18 20 22 where CALCULATED ...Measurements, 210 nm 293 6 Radiation Measurements, 2 0 nm 30 7 Infrared Radiation Matrix, Experiment and Calculation 31 8 Three Temporal Parameters...Characterizing Non-equilibrium 32 I Infrared Radiation 9 Infrared Incubation Time, Experiment and Calculation 33 1 1 0 Infrared Time-To-Half-Peak

  5. Synthesis of Silane and Silicon in a Non-equilibrium Plasma Jet

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.

    1978-01-01

    The original objective of this program was to determine the feasibility of high volume, low-cost production of high purity silane or solar cell grade silicon using a non equilibrium plasma jet. The emphasis was changed near the end of the program to determine the feasibility of preparing photovoltaic amorphous silicon films directly using this method. The non equilibrium plasma jet should be further evaluated as a technique for producing high efficiency photovoltaic amorphous silicon films.

  6. Classical molecular dynamics simulations for non-equilibrium correlated plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Talin, B.

    2017-03-01

    A classical molecular dynamics model was recently extended to simulate neutral multi-component plasmas where various charge states of the same atom and electrons coexist. It is used to investigate the plasma effects on the ion charge and on the ionization potential in dense plasmas. Different simulated statistical properties will show that the concept of isolated particles is lost in such correlated plasmas. The charge equilibration is discussed for a carbon plasma at solid density and investigation on the charge distribution and on the ionization potential depression (IPD) for aluminum plasmas is discussed with reference to existing experiments.

  7. Diagnostics of transient non-equilibrium atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter

    2015-09-01

    Atmospheric pressure plasmas have received a renewed interest in last decades for a variety of applications ranging from environmental remediation, material processing and synthesis to envisioned medical applications such as wound healing. While most low pressure plasmas are diffuse, atmospheric pressure plasmas are often filamentary in nature. The existence of these filaments is correlated with strong gradients in plasma properties both in space and time that can significantly affect the plasma chemistry. As these filaments are often randomly appearing in space and time, it poses great challenges for diagnostics often requiring the stabilization of the filament to study the in situ plasma kinetics. In this contribution, diagnostics of a stabilized nanosecond pulsed plasma filament in a pin-pin geometry and a filament in a nanosecond pulsed atmospheric pressure plasma jet will be presented. We will focus on electron kinetics and OH and H radical production in water containing plasmas. The extension of these diagnostics to plasmas in liquids will also be discussed. The author acknowledges support from NSF PHYS1500135, Department of Energy Plasma Science Center through the U.S. Department of Energy, Office of Fusion Energy Sciences (Contract No. DE-SC0001939), University of Minnesota and STW (Netherlands).

  8. Emission properties of non-equilibrium krypton plasma in the water-window region

    NASA Astrophysics Data System (ADS)

    Zakharov, Vassily S.

    2017-01-01

    The line emission properties of non-equilibrium krypton plasma are examined and the optimal emission temperature conditions for soft x-ray emission output in the water-window region are explored. The kinetic parameters for non-equilibrium plasma including major inelastic ion interaction processes, radiation and emission data are obtained with an approach based on the Hartree-Fock-Slater (HFS) quantum-statistical model and a distorted wave approximation. A nonmaxwellian electron distribution is used as well for calculating collisional rates. At a temperature of 70 eV the emission spectral efficiency for Kr equilibrium plasma is about 10%, and it jumps to a value greater than 70% at 100 eV. A similar spectral efficiency is achieved at a lower temperature e.g. 80 eV in non-equilibrium plasma with 7.5 keV fast electron average energy.

  9. Spectroscopic temperature measurements of non-equilibrium plasmas

    SciTech Connect

    Back, C.A.; Glenzer, S.H.; Lee, R.W.; MacGowan, B.J.

    1996-04-24

    The characterization of laser-produced plasmas has required the application of spectroscopic techniques to non-standard conditions where kinetics models have not been extensively tested. The plasmas are produced by the Nova laser for the study of inertial confinement fusion, can be mm in size, and evolve on sub-nanosecond time scales. These targets typically achieve electron temperatures from 2-4 keV and electron densities of 10{sup 20}-10{sup 22} cm{sup {minus}3}. The authors have measured the electron temperature of two types of targets: bags of gas and hohlraums, Au cylinders with laser entrance holes in the flat ends. By comparing data from different targets, they examine the time-dependence of spectroscopic plasma diagnostics.

  10. Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows

    NASA Astrophysics Data System (ADS)

    Bhatia, Ankush; Roy, Subrata; Gosse, Ryan

    2014-10-01

    A numerical study employing discontinuous Galerkin method demonstrating net surface heat reduction for a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators to inject momentum near the stagnation point. A 5 species finite rate air chemistry model completes the picture by analyzing the effect of the actuator on the flow chemistry. With low velocity near the stagnation point, the plasma actuator sufficiently modifies the fluid momentum. This results in redistribution of the integrated surface heating load on the body. Specifically, a particular configuration of normally pinching plasma actuation is predicted to reduce the surface heat flux at the stagnation point. An average reduction of 0.246% for the integrated and a maximum reduction of 7.68% are reported for the surface heat flux. The temperature contours in the fluid flow (with maximum temperature over 12 000 K) are pinched away from the stagnation point, thus resulting in reduced thermal load. Plasma actuation in this configuration also affects the species concentration distribution near the wall, in addition to the temperature gradient. The combined effect of both, thus results in an average reduction of 0.0986% and a maximum reduction of 4.04% for non-equilibrium calculations. Thus, this study successfully demonstrates the impact of sinusoidal dielectric barrier discharge plasma actuation on the reduction of thermal load on a hypersonic body.

  11. Causal kinetic equation of non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2017-05-01

    Statistical plasma theory far from thermal equilibrium is subject to Liouville's equation, which is at the base of the BBGKY hierarchical approach to plasma kinetic theory, from which, in the absence of collisions, Vlasov's equation follows. It is also at the base of Klimontovich's approach which includes single-particle effects like spontaneous emission. All these theories have been applied to plasmas with admirable success even though they suffer from a fundamental omission in their use of the electrodynamic equations in the description of the highly dynamic interactions in many-particle conglomerations. In the following we extend this theory to taking into account that the interaction between particles separated from each other at a distance requires the transport of information. Action needs to be transported and thus, in the spirit of the direct-interaction theory as developed by Wheeler and Feynman (1945), requires time. This is done by reference to the retarded potentials. We derive the fundamental causal Liouville equation for the phase space density of a system composed of a very large number of charged particles. Applying the approach of Klimontovich (1967), we obtain the retarded time evolution equation of the one-particle distribution function in plasmas, which replaces Klimontovich's equation in cases when the direct-interaction effects have to be taken into account. This becomes important in all systems where the distance between two points |Δq| ˜ ct is comparable to the product of observation time and light velocity, a situation which is typical in cosmic physics and astrophysics.

  12. Carbon Dioxide reduction by non-equilibrium electrocatalysis plasma reactor

    NASA Astrophysics Data System (ADS)

    Amouroux, J.; Cavadias, S.; Doubla, A.

    2011-03-01

    A possible strategy to increase the added value from CCS, is to consider it as a raw material for the production of liquid fuels, or chemical products. The most studied ways related to CO2 reduction, with formation of molecules such as CH3OH or syngas, is the reaction with H2 (exothermic reaction needing catalytic activation), or CH4 (endothermic reaction taking place at high temperature) with the use of a catalyst. The synthesis of CH3OH is performed on Lewis acid type sites (default of electrons) Cu/Zn/Al2O3. However the products of the reaction i.e. the water and methanol molecules, are very polar, resulting in a very low desorption rate. So in this reaction the key step is water desorption (Lewis basis). The increase of temperature in order to increase this desorption rate, leads to a cracking and the deposition of carbon in the catalyst, limiting its lifetime. Plasma driven catalysis allows firstly, a vibrational activation of CO2, H2 or CH4 through electron-molecule collisions, making easier their dissociation at low temperature and secondly expels water from the catalyst sites by supplying electrons (electropolarisation). The results show an increase of the yield in CH3OH with plasma and catalyst, confirming the action of the plasma. However energy consumption remains relatively high.

  13. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  14. Non-linear optical diagnostic studies of high pressure non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Lempert, Walter

    2012-10-01

    Picosecond Coherent Anti-Stokes Raman Spectroscopy (CARS) is used for study of vibrational energy loading and relaxation kinetics in high pressure nitrogen and air nsec pulsed non-equilibrium plasmas in a pin-to-pin geometry. It is found that ˜33% of total discharge energy in a single pulse in air at 100 torr couples directly to nitrogen vibration by electron impact, in good agreement with master equation modeling predictions. However in the afterglow the total quanta in vibrational levels 0 -- 9 is found to increase by a factor of approximately 2 and 4 in nitrogen and air, respectively, a result in direct contrast to modeling results which predict the total number of quanta to be essentially constant. More detailed comparison between experiment and model show that the VDF predicted by the model during, and directly after, the discharge pulse is in good agreement with that determined experimentally, however for time delays exceeding ˜10 μsec the experimental and predicted VDFs diverge rapidly, particularly for levels v = 2 and greater. Specifically modeling predicts a rapid drop in population of high levels due to net downward V-V energy transfer whereas the experiment shows an increase in population in levels 2 and 3 and approximately constant population for higher levels. It is concluded that a collisional process is feeding high vibrational levels at a rate which is comparable to the rate at which population of the high levels is lost due to net downward V-V. A likely candidate for the source of additional vibrational quanta is the quenching of metastable electronic states of nitrogen to highly excited vibrational levels of the ground electronic state. Recent progress in the development and application of psec coherent Raman electric field and spontaneous Thomson scattering diagnostics for study of high pressure nsec pulsed plasmas will also be presented.

  15. A numerical model of non-equilibrium thermal plasmas. II. Governing equations

    SciTech Connect

    Li HePing; Zhang XiaoNing; Xia Weidong

    2013-03-15

    Governing equations and the corresponding physical properties of the plasmas are both prerequisites for studying the fundamental processes in a non-equilibrium thermal plasma system numerically. In this paper, a kinetic derivation of the governing equations used for describing the complicated thermo-electro-magneto-hydrodynamic-chemical coupling effects in non-equilibrium thermal plasmas is presented. This derivation, which is achieved using the Chapman-Enskog method, is completely consistent with the theory of the transport properties reported in the previous paper by the same authors. It is shown, based on this self-consistent theory, that the definitions of the specific heat at constant pressure and the reactive thermal conductivity of two-temperature plasmas are not necessary. The governing equations can be reduced to their counterparts under local thermodynamic equilibrium (LTE) and local chemical equilibrium (LCE) conditions. The general method for the determination of the boundary conditions of the solved variables is also discussed briefly. The two papers establish a self-consistent physical-mathematical model that describes the complicated physical and chemical processes in a thermal plasma system for the cases both in LTE or LCE conditions and under non-equilibrium conditions.

  16. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Lani, A.; Panesi, M.

    2016-07-01

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  17. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    SciTech Connect

    Zhang, W.; Panesi, M.; Lani, A.

    2016-07-15

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  18. Search for a non-equilibrium plasma in the merging galaxy cluster Abell 754

    NASA Astrophysics Data System (ADS)

    Inoue, Shota; Hayashida, Kiyoshi; Ueda, Shutaro; Nagino, Ryo; Tsunemi, Hiroshi; Koyama, Katsuji

    2016-06-01

    Abell 754 is a galaxy cluster in which an ongoing merger is evident on the plane of the sky, from the southeast to the northwest. We study the spatial variation of the X-ray spectra observed with Suzaku along the merging direction, centering on the Fe Ly α/Fe He α line ratio to search for possible deviation from ionization equilibrium. Fitting with a single-temperature collisional non-equilibrium plasma model shows that the electron temperature increases from the southeast to the northwest. The ionization parameter is consistent with that in equilibrium (net > 1013 s cm-3) except for the specific region with the highest temperature (kT=13.3_{-1.1}^{+1.4}keV) where n_et=10^{11.6_{-1.7}^{+0.6}}s cm-3. The elapsed time from the plasma heating estimated from the ionization parameter is 0.36-76 Myr at the 90% confidence level. This timescale is quite short but consistent with the traveling time of a shock to pass through that region. We thus interpret that the non-equilibrium ionization plasma in Abell 754 observed is a remnant of the shock heating in the merger process. However, we note that the X-ray spectrum of the specific region where the non-equilibrium is found can also be fitted with a collisional ionization plasma model with two temperatures, low kT=4.2^{+4.2}_{-1.5}keV and very high kT >19.3 keV. The very high temperature component is alternatively fitted with a power-law model. Either of these spectral models is interpreted as a consequence of the ongoing merger process as in the case of the non-equilibrium ionization plasma.

  19. Multi-Modality Pulsed AC Source for Medical Applications of Non-Equilibrium Plasmas

    NASA Astrophysics Data System (ADS)

    Friedrichs, Daniel; Gilbert, James

    2014-10-01

    A burgeoning field has developed around the use of non-equilibrium (``cold'') plasmas for various medical applications, including wound treatment, surface sterilization, non-thermal hemostasis, and selective cell destruction. Proposed devices typically utilize pulsed DC power sources, which have no other therapeutic utility, and may encounter significant regulatory restrictions regarding their safety for use in patient care. Additionally, dedicated capital equipment is difficult for healthcare facilities to justify. In this work, we have demonstrated for the first time the generation of non-equilibrium plasma using pulsed AC output from a specially-designed electrosurgical generator. The ability to power novel non-equilibrium plasma devices from a piece of equipment already ubiquitous in operating theatres should significantly reduce the barriers to adoption of plasma devices. We demonstrate the ability of a prototype device, coupled to this source, to reduce bacterial growth in vitro. Such a system could allow a single surgical instrument to provide both non-thermal sterilization and thermal tissue dissection.

  20. Gas-Liquid Interfacial Non-Equilibrium Plasmas for Structure Controlled Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro

    2013-10-01

    Plasmas generated in liquid or in contact with liquid have attracted much attention as a novel reactive field in the nano-bio material creation because the brand-new chemical and biological reactions are yielded at the gas-liquid interface, which are induced by the physical actions of the non-equilibrium plasmas. In this study, first, size- and structure-controlled gold nanoparticles (AuNPs) covered with DNA are synthesized using a pulse-driven gas-liquid interfacial discharge plasma (GLIDP) for the application to next-generation drug delivery systems. The size and assembly of the AuNPs are found to be easily controlled by changing the plasma parameters and DNA concentration in the liquid. On the other hand, the mono-dispersed, small-sized, and interval-controlled AuNPs are synthesized by using the carbon nanotubes (CNTs) as a template, where the CNTs are functionalized by the ion and radical irradiation in non-equilibrium plasmas. These new materials are now widely applied to the solar cell, optical devices, and so on. Second, highly-ordered periodic structures of the AuNPs are formed by transcribing the periodic plasma structure to the surface of the liquid, where the spatially selective synthesis of the AuNPs is realized. This phenomenon is well explained by the reduction and oxidation effects of the radicals which are generated by the non-equilibrium plasma irradiation to the liquid and resultant dissociation of the liquid. In addition, it is attempted to form nano- or micro-scale periodic structures of the AuNPs based on the self-organizing behavior of turbulent plasmas generated by the nonlinear development of plasma fluctuations at the gas-liquid interface.

  1. Influence of dielectric materials on radial uniformity in non-equilibrium atmospheric pressure helium plasma

    NASA Astrophysics Data System (ADS)

    Oda, Akinori; Komori, Kyohei

    2015-09-01

    Non-equilibrium atmospheric pressure plasma has been utilized for various technological applications such as surface treatment, materials processing, bio-medical and bio-logical applications. For optimum control of the plasma for the above applications, numerous experimental and theoretical investigations on the plasma have been reported. Especially, controlling radial uniformity of the plasma are very important for utilizing materials processing. In this paper, an axially-symmetric three-dimensional fluid model, which is composed of the continuity equation for charged and neutral species, the Poisson equation, and the energy conservation equation for electrons, of non-equilibrium atmospheric pressure helium plasma has been developed. Then, influence of dielectric properties (e.g. relative permittivity, secondary electron emission coefficient, etc.) of dielectric materials on radial plasma uniformity (i.e. radial distributions of electron density, ion density, electric field in the plasma) was examined. This work was partly supported by KAKENHI (No. 26420247), and a ``Grant for Advanced Industrial Technology Development (No. 11B06004d)'' in 2011 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

  2. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    NASA Astrophysics Data System (ADS)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  3. Laser induced plasma on copper target, a non-equilibrium model

    SciTech Connect

    Oumeziane, Amina Ait Liani, Bachir; Parisse, Jean-Denis

    2014-02-15

    The aim of this work is to present a comprehensive numerical model for the UV laser ablation of metal targets, it focuses mainly on the prediction of laser induced plasma thresholds, the effect of the laser-plasma interaction, and the importance of the electronic non-equilibrium in the laser induced plume and its expansion in the background gas. This paper describes a set of numerical models for laser-matter interaction between 193-248 and 355 nm lasers and a copper target. Along with the thermal effects inside the material resulting from the irradiation of the latter with the pulsed laser, the laser-evaporated matter interaction and the plasma formation are thoroughly modelled. In the laser induced plume, the electronic nonequilibrium and the laser beam absorption have been investigated. Our calculations of the plasmas ignition thresholds on copper targets have been validated and compared to experimental as well as theoretical results. Comparison with experiment data indicates that our results are in good agreement with those reported in the literature. Furthermore, the inclusion of electronic non-equilibrium in our work indicated that this important process must be included in models of laser ablation and plasma plume formation.

  4. Atmospheric Pressure Non-Equilibrium Plasma as a Green Tool to Crosslink Gelatin Nanofibers

    PubMed Central

    Liguori, Anna; Bigi, Adriana; Colombo, Vittorio; Focarete, Maria Letizia; Gherardi, Matteo; Gualandi, Chiara; Oleari, Maria Chiara; Panzavolta, Silvia

    2016-01-01

    Electrospun gelatin nanofibers attract great interest as a natural biomaterial for cartilage and tendon repair despite their high solubility in aqueous solution, which makes them also difficult to crosslink by means of chemical agents. In this work, we explore the efficiency of non-equilibrium atmospheric pressure plasma in stabilizing gelatin nanofibers. We demonstrate that plasma represents an innovative, easy and environmentally friendly approach to successfully crosslink gelatin electrospun mats directly in the solid state. Plasma treated gelatin mats display increased structural stability and excellent retention of fibrous morphology after immersion in aqueous solution. This method can be successfully applied to induce crosslinking both in pure gelatin and genipin-containing gelatin electrospun nanofibers, the latter requiring an even shorter plasma exposure time. A complete characterization of the crosslinked nanofibres, including mechanical properties, morphological observations, stability in physiological solution and structural modifications, has been carried out in order to get insights on the occurring reactions triggered by plasma. PMID:27924840

  5. Atmospheric Pressure Non-Equilibrium Plasma as a Green Tool to Crosslink Gelatin Nanofibers

    NASA Astrophysics Data System (ADS)

    Liguori, Anna; Bigi, Adriana; Colombo, Vittorio; Focarete, Maria Letizia; Gherardi, Matteo; Gualandi, Chiara; Oleari, Maria Chiara; Panzavolta, Silvia

    2016-12-01

    Electrospun gelatin nanofibers attract great interest as a natural biomaterial for cartilage and tendon repair despite their high solubility in aqueous solution, which makes them also difficult to crosslink by means of chemical agents. In this work, we explore the efficiency of non-equilibrium atmospheric pressure plasma in stabilizing gelatin nanofibers. We demonstrate that plasma represents an innovative, easy and environmentally friendly approach to successfully crosslink gelatin electrospun mats directly in the solid state. Plasma treated gelatin mats display increased structural stability and excellent retention of fibrous morphology after immersion in aqueous solution. This method can be successfully applied to induce crosslinking both in pure gelatin and genipin-containing gelatin electrospun nanofibers, the latter requiring an even shorter plasma exposure time. A complete characterization of the crosslinked nanofibres, including mechanical properties, morphological observations, stability in physiological solution and structural modifications, has been carried out in order to get insights on the occurring reactions triggered by plasma.

  6. Atmospheric Pressure Non-Equilibrium Plasma as a Green Tool to Crosslink Gelatin Nanofibers.

    PubMed

    Liguori, Anna; Bigi, Adriana; Colombo, Vittorio; Focarete, Maria Letizia; Gherardi, Matteo; Gualandi, Chiara; Oleari, Maria Chiara; Panzavolta, Silvia

    2016-12-07

    Electrospun gelatin nanofibers attract great interest as a natural biomaterial for cartilage and tendon repair despite their high solubility in aqueous solution, which makes them also difficult to crosslink by means of chemical agents. In this work, we explore the efficiency of non-equilibrium atmospheric pressure plasma in stabilizing gelatin nanofibers. We demonstrate that plasma represents an innovative, easy and environmentally friendly approach to successfully crosslink gelatin electrospun mats directly in the solid state. Plasma treated gelatin mats display increased structural stability and excellent retention of fibrous morphology after immersion in aqueous solution. This method can be successfully applied to induce crosslinking both in pure gelatin and genipin-containing gelatin electrospun nanofibers, the latter requiring an even shorter plasma exposure time. A complete characterization of the crosslinked nanofibres, including mechanical properties, morphological observations, stability in physiological solution and structural modifications, has been carried out in order to get insights on the occurring reactions triggered by plasma.

  7. Effects of non-equilibrium plasma in the treatment of ligature-induced peri-implantitis.

    PubMed

    Shi, Qi; Song, Ke; Zhou, Xincai; Xiong, Zilan; Du, Tianfeng; Lu, Xinpei; Cao, Yingguang

    2015-05-01

    To evaluate the effects of non-equilibrium plasma in the treatment of ligature-induced peri-implantitis in beagle dogs. Six beagles received 12 implants installed in the position of the fourth mandibular premolars. Ligature-induced peri-implantitis was initiated at 3 months post-implantation. When approximately 40% of the supporting bone was lost, the ligatures were removed. The implants were subjected to the muco-periosteal scaling and chlorhexidine irrigation with or without plasma irrigation. Three months later, clinical, radiographic and microbiological analyses were performed. Block biopsies were prepared for micro-CT and histomorphometric analysis. The primary outcome was the difference in bone healing of peri-implant sites, and the secondary outcomes included changes in clinical parameters (SBI, PD) and bacterial detection. At baseline, no significant differences were observed between the two groups. At 3 months post-treatment, the plasma group showed a significantly higher bone level than the control group (p < 0.05), a significantly decreased detection of bacteria (Porphyromonas gingivalis and Tannerella forsythia) (p < 0.05), and a significant improvement in clinical examination (p < 0.05). Within the limits of this study, non-equilibrium plasma treatment as an adjunct to the conventional therapy is a feasible approach for the treatment of peri-implantitis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Synthesis of silane and silicon in a non-equilibrium plasma jet

    NASA Technical Reports Server (NTRS)

    Calcote, H. F.; Felder, W.

    1977-01-01

    The feasibility of using a non-equilibrium hydrogen plasma jet as a chemical synthesis tool was investigated. Four possible processes were identified for further study: (1) production of polycrystalline silicon photovoltaic surfaces, (2) production of SiHCl3 from SiCl4, (3) production of SiH4 from SiHCl3, and (4) purification of SiCl4 by metal impurity nucleation. The most striking result was the recognition that the strongly adhering silicon films, amorphous or polycrystalline, produced in our studies could be the basis for preparing a photovoltaic surface directly; this process has potential advantages over other vapor deposition processes.

  9. Development of Non-Equilibrium Plasma-Flame Kinetic Mechanism and its Validation Using Gliding Arc Integrated with Counterflow Burner

    DTIC Science & Technology

    2010-02-21

    FINAL REPORT: FA9550-07-1-0136, Dec. 2006 – Nov. 2009 Development of Non-Equilibrium Plasma-Flame Kinetic Mechanism and its...Non-Equilibrium Plasma-Flame Kinetic 5a. CONTRACT NUMBER Mechanism and its Validation Using Gliding Arc Integrated with FA9550-07-1...DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES Kinetic enhancements of NOx, O3, and O2(a1Δg) on ignition and flame propagation

  10. Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Muraoka, Sumihiro; Nihei, Takashi; Abe, Seiya

    2017-06-01

    We investigated the excitation temperature of atmospheric-pressure non-equilibrium (cold) plasma using a line-pair method. An atmospheric cold plasma was intermittently generated using a quartz tube, a rare gas, and a foil electrode by applying high-voltage alternating current. Because the plasma occurred intermittently, an interval appeared between each generated plasma bullet. We assessed the time-averaged effective intensity from the observed intensity at each wavelength measured using a spectrometer. When the exposure time of the spectrometer is longer than the observed period of the plasma emission light, the time-averaged effective intensity at each wavelength decreases because it includes the interval with no plasma emission light. The difference in intensity between wavelengths changes with frequency, because changing the frequency changes the interval between plasma bullets. Consequently, even if the plasma electron temperature does not depend on the frequency of the applied voltage, the excitation temperature estimated from the difference in intensity changes with the frequency. The plasma electron temperature can be estimated from the duty ratio of the observed period of plasma emission light, and we estimated the electron temperature in the helium and argon cold plasmas to be 1.0 eV.

  11. Non-equilibrium Thermodynamic Processes: Space Plasmas and the Inner Heliosheath

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; McComas, D. J.

    2012-04-01

    Recently, empirical kappa distribution, commonly used to describe non-equilibrium systems like space plasmas, has been connected with non-extensive statistical mechanics. Here we show how a consistent definition of the temperature and pressure is developed for stationary states out of thermal equilibrium, so that the familiar ideal gas state equation still holds. In addition to the classical triplet of temperature, pressure, and density, this generalization requires the kappa index as a fourth independent thermodynamic variable that characterizes the non-equilibrium stationary states. All four of these thermodynamic variables have key roles in describing the governing thermodynamical processes and transitions in space plasmas. We introduce a novel characterization of isothermal and isobaric processes that describe a system's transition into different stationary states by varying the kappa index. In addition, we show how the variation of temperature or/and pressure can occur through an "iso-q" process, in which the system remains in a fixed stationary state (fixed kappa index). These processes have been detected in the proton plasma in the inner heliosheath via specialized data analysis of energetic neutral atom (ENA) observations from Interstellar Boundary Explorer. In particular, we find that the temperature is highly correlated with (1) kappa, asymptotically related to isothermal (~1,000,000 K) and iso-q (κ ~ 1.7) processes; and (2) density, related to an isobaric process, which separates the "Ribbon," P ≈ 3.2 pdyn cm-2, from the globally distributed ENA flux, P ≈ 2 pdyn cm-2.

  12. Application of extremely non-equilibrium plasmas in the processing of nano and biomedical materials

    NASA Astrophysics Data System (ADS)

    Mozetič, Miran; Primc, Gregor; Vesel, Alenka; Zaplotnik, Rok; Modic, Martina; Junkar, Ita; Recek, Nina; Klanjšek-Gunde, Marta; Guhy, Lukus; Sunkara, Mahendra K.; Assensio, Maria C.; Milošević, Slobodan; Lehocky, Marian; Sedlarik, Vladimir; Gorjanc, Marija; Kutasi, Kinga; Stana-Kleinschek, Karin

    2015-02-01

    Some applications of extremely non-equilibrium oxygen plasma for tailoring the surface properties of organic as well as inorganic materials are presented. Plasma of low or moderate ionization fraction and very high dissociation fraction is created by high frequency electrodeless discharges created in chambers made from a material of low recombination coefficient. The O atom density often exceeds 1021 m-3 which allows for rapid functionalization of carbon-containing materials. Surface saturation with polar oxygen-rich groups is achieved in a fraction of a second and further exposure leads to etching. The etching is often non-uniform and results in nano-structuring of surface morphology. A combination of rich morphology and saturation with polar functional groups allows for a super-hydrophilic character of originally hydrophobic materials. Polymer composites are etched selectively so the polymer component is removed from the sample surface, leading to modified surface properties. Furthermore, such a treatment allows for distinguishing the distribution and orientation of fillers inside the polymer matrix. The exposure of inorganic materials to non-equilibrium oxygen plasma causes one-dimensional growth of metal oxide nanoparticles, thus representing a unique technique for the rapid catalyser-free growth of nanowires.

  13. On non-equilibrium atmospheric pressure plasma jets and plasma bullet

    NASA Astrophysics Data System (ADS)

    Lu, Xinpei

    2012-10-01

    Because of the enhanced plasma chemistry, atmospheric pressure nonequilibrium plasmas (APNPs) have been widely studied for several emerging applications such as biomedical applications. For the biomedical applications, plasma jet devices, which generate plasma in open space (surrounding air) rather than in confined discharge gaps only, have lots of advantages over the traditional dielectric barrier discharge (DBD) devices. For example, it can be used for root canal disinfection, which can't be realized by the traditional plasma device. On the other hand, currently, the working gases of most of the plasma jet devices are noble gases or the mixtures of the noble gases with small amount of O2, or air. If ambient air is used as the working gas, several serious difficulties are encountered in the plasma generation process. Amongst these are high gas temperatures and disrupting instabilities. In this presentation, firstly, a brief review of the different cold plasma jets developed to date is presented. Secondly, several different plasma jet devices developed in our lab are reported. The effects of various parameters on the plasma jets are discussed. Finally, one of the most interesting phenomena of APNP-Js, the plasma bullet is discussed and its behavior is described. References: [1] X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012); [2] Y. Xian, X. Lu, S. Wu, P. Chu, and Y. Pan, Appl. Phys. Lett. 100, 123702 (2012); [3] X. Pei, X. Lu, J. Liu, D. Liu, Y. Yang, K. Ostrikov, P. Chu, and Y. Pan, J. Phys. D 45, 165205 (2012).

  14. Non-equilibrium plasma jet induced thermo-acoustic resistivity imaging for higher contrast and resolution.

    PubMed

    Guo, Liang; Li, Linbo; Dong, Fanqing; Jiang, Wencong

    2017-08-25

    A thermo-acoustic imaging modality induced by non-equilibrium atmospheric pressure plasma jet is reported. A tiny plasma jet is generated by a fast-rising pulsed dielectric barrier discharge and applied to the surface of the biological tissues. The pulsed conductive current induced by the conductive plasma jet is injected into the biological tissues. The Joule heating inside the tissue stimulates the ultrasound signals effectively. The amplitude of the ultrasound is related to the resistivity of the biological tissues near the contact point and takes the maximum at the certain conductivity of the certain frequency. Accordingly the thermo-acoustic resistivity imaging modality of high contrast and resolution is demonstrated theoretically and experimentally.

  15. Dynamic Wetting in a Non-Equilibrium Gas: The Effect of Gas Pressure on Air Entrainment

    NASA Astrophysics Data System (ADS)

    Sprittles, James

    2014-11-01

    Experimentally, it is now well established that lowering the pressure of an ambient gas can suppress wetting failures, or ``air entrainment,'' at a liquid-solid-gas moving contact-line in both coating processes and drop impact dynamics. In this work, we consider the possibility that non-equilibrium effects in the gas are responsible for such phenomena. These can be included into a continuum framework by allowing for slip at both the solid-gas and liquid-gas interfaces, caused by Knudsen layers attached to these boundaries, which is related to the mean free path in the gas, and hence the ambient pressure. This model has been incorporated into a computational framework developed for dynamic wetting phenomena, which resolves all scales in the problem, so that these new effects can be investigated. It is shown that reductions in gas pressure, and hence increases in slip, can dramatically modify the flow field in the gas-film in front of a moving contact-line so that air entrainment is prevented. Specifically, in a dip-coating setup it is shown that the new model (a) describes experimental results for the critical wetting speed at a given gas pressure and (b) allows us to identify new parameters associated with the non-equilibrium gas dynamics which govern the contact-line's motion.

  16. Application of non-equilibrium plasmas in treatment of wool fibers and seeds

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran

    2003-10-01

    While large effort is under way to achieve stable, large area, non-equilibrium plasma reactors operating at atmospheric pressure we should still consider application of low pressure reactors, which provide well defined, easily controlled reactive plasmas. Therefore, the application of low pressure rf plasmas for the treatment of wool and seed was investigated. The studies were aimed at establishing optimal procedure to achieve better wettability, dyeability and printability of wool. Plasma treatment led to a modification of wool fiber topography and formation of new polar functional groups inducing the increase of wool hydrophylicity. Plasma activation of fiber surface was also used to achieve better binding of biopolymer chitosan to wool in order to increase the content of favorable functional groups and thus improving sorption properties of recycled wool fibers for heavy metal ions and acid dyes. In another study, the increase of germination percentage of seeds induced by plasmas was investigated. We have selected dry (unimbibed) Empress tree seeds (Paulownia tomentosa Steud.). Empress tree seed has been studied extensively and its mechanism of germination is well documented. Germination of these seeds is triggered by light in a limited range of wavelengths. Interaction between activated plasma particles and seed, inside the plasma reactor, leads to changes in its surface topography, modifies the surface layer and increases the active surface area. Consequently, some bioactive nitrogeneous compounds could be bound to the activated surface layer causing the increment of germination percentage.

  17. Effects of ROS and RNS in non-equilibrium plasma enhanced oxidizing and nitriding

    NASA Astrophysics Data System (ADS)

    Datsyuk, Vitaly; Izmailov, Igor; Naumov, Vadym; Khomich, Vladimir; Tsiolko, Vyacheslav

    2016-09-01

    Plasma enhanced oxidizing and nitriding processes are of great interest for physics and applications. However, despite all advances in plasma technology, mechanisms of non-equilibrium plasma chemistry are not quite clear, particularly concerning reactive oxygen and nitrogen species (ROS/RNS) in metastable states. We tried to study this matter more detail. Experiments were done in a low temperature magnetron with a non-self-sustained glow discharge in oxygen/nitrogen/argon mixtures, employing electrical and optical diagnostics. Measurements showed that plasma processing is accompanied by the formation of electronically excited particles ROS/RNS. Computer modeling by using 0D-kinetic and 1D-fluid models including ionization, excitation, dissociation-recombination, vibrational relaxation, collisional quenching and radiation revealed the most probable mechanisms of plasma-chemical transformations. Effects of metastables of singlet oxygen O2*(a,b)and nitrogen N2*(A)as well as small but important radicals O*(1 D), N*(2 D) were also examined. Our study confirms the role of ROS/RNS in plasma kinetics and indicates the way toward more efficient oxygen and nitrogen plasma processing.

  18. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    SciTech Connect

    Munafò, A. Alfuhaid, S. A. Panesi, M.; Cambier, J.-L.

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.

  19. NON-EQUILIBRIUM THERMODYNAMIC PROCESSES: SPACE PLASMAS AND THE INNER HELIOSHEATH

    SciTech Connect

    Livadiotis, G.; McComas, D. J.

    2012-04-10

    Recently, empirical kappa distribution, commonly used to describe non-equilibrium systems like space plasmas, has been connected with non-extensive statistical mechanics. Here we show how a consistent definition of the temperature and pressure is developed for stationary states out of thermal equilibrium, so that the familiar ideal gas state equation still holds. In addition to the classical triplet of temperature, pressure, and density, this generalization requires the kappa index as a fourth independent thermodynamic variable that characterizes the non-equilibrium stationary states. All four of these thermodynamic variables have key roles in describing the governing thermodynamical processes and transitions in space plasmas. We introduce a novel characterization of isothermal and isobaric processes that describe a system's transition into different stationary states by varying the kappa index. In addition, we show how the variation of temperature or/and pressure can occur through an 'iso-q' process, in which the system remains in a fixed stationary state (fixed kappa index). These processes have been detected in the proton plasma in the inner heliosheath via specialized data analysis of energetic neutral atom (ENA) observations from Interstellar Boundary Explorer. In particular, we find that the temperature is highly correlated with (1) kappa, asymptotically related to isothermal ({approx}1,000,000 K) and iso-q ({kappa} {approx} 1.7) processes; and (2) density, related to an isobaric process, which separates the 'Ribbon', P Almost-Equal-To 3.2 pdyn cm{sup -2}, from the globally distributed ENA flux, P Almost-Equal-To 2 pdyn cm{sup -2}.

  20. Inactivation Process of Penicillium digitatum Spores Treated with Non-equilibrium Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Ohta, Takayuki; Mori, Takumi; Iseki, Sachiko; Hori, Masaru; Ito, Masafumi

    2013-05-01

    To investigate the inactivation process of Penicillium digitatum spores treated with a non-equilibrium atmospheric pressure plasma, the spores were observed using a fluorescent microscope and compared with those treated with ultraviolet (UV) light or moist heat. The treated spores were stained with two fluorescent dyes, 1,1'-dioctadecyl-3,3,Y,3'-tetramethylindocarbocyanine perchlorate (DiI) and diphenyl-1-pyrenylphosphine (DPPP). The intracellular organelles as well as cell membranes in the spores treated with the plasma were stained with DiI without a major morphological change of the membranes, while the organelles were never stained in the spores treated with UV light or moist heat. Moreover, DPPP staining revealed that organelles were oxidized by plasma treatment unlike UV light or moist heat treatments. These results suggest that only plasma treatment induces a minor structural change or functional inhibition of cell membranes, which leads to the oxidation of the intracellular organelles without a major deformation of the membranes through the penetration of reactive oxygen species generated by the plasma into the cell.

  1. Non-Equilibrium Plasma Processing for the Preparation of Antibacterial Surfaces

    PubMed Central

    Sardella, Eloisa; Palumbo, Fabio; Camporeale, Giuseppe; Favia, Pietro

    2016-01-01

    Non-equilibrium plasmas offer several strategies for developing antibacterial surfaces that are able to repel and/or to kill bacteria. Due to the variety of devices, implants, and materials in general, as well as of bacteria and applications, plasma assisted antibacterial strategies need to be tailored to each specific surface. Nano-composite coatings containing inorganic (metals and metal oxides) or organic (drugs and biomolecules) compounds can be deposited in one step, and used as drug delivery systems. On the other hand, functional coatings can be plasma-deposited and used to bind antibacterial molecules, for synthesizing surfaces with long lasting antibacterial activity. In addition, non-fouling coatings can be produced to inhibit the adhesion of bacteria and reduce the formation of biofilm. This paper reviews plasma-based strategies aimed to reduce bacterial attachment and proliferation on biomedical materials and devices, but also onto materials used in other fields. Most of the activities described have been developed in the lab of the authors. PMID:28773637

  2. Effect of ozone on sterilization of Penicillium digitatum using non-equilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Ohta, Takayuki; Iseki, Sachiko; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru

    2008-10-01

    Methyl bromide has been sprayed to the crops for protecting from insects and virus, but has high ozone depletion potential. Thus, the development of substitute-technology has been strongly required. We have investigated a plasma sterilization for spores of Penicillium digitatum, which causes green mold disease of the crops, using non-equilibrium atmospheric pressure plasma. The sterilization was caused by UV light, ozone, O and OH radicals. In this study, ozone density was measured and the effect to sterilization was discussed. The plasma was generated at an alternative current of 6kV and Ar gas flow rate of 3L/min. In order to investigate the sterilization mechanism of ozone, the absolute density of ozone was measured using ultraviolet absorption spectroscopy and was from 2 to 8 ppm. The sterilization by this plasma was larger than that by the ozonizer (03:600ppm). It is confirmed that the effect of ozone to the sterilization of Penicillium digitatum would be small.

  3. Influence of Penning effect on the plasma features in a non-equilibrium atmospheric pressure plasma jet

    SciTech Connect

    Chang, Zhengshi; Zhang, Guanjun; Jiang, Nan; Cao, Zexian

    2014-03-14

    Non-equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications. The influence of Penning effect on the formation, propagation, and other physical properties of the plasma bullets in APPJ remains a debatable topic. By using a 10 cm wide active electrode and a frequency of applied voltage down to 0.5 Hz, the Penning effect caused by preceding discharges can be excluded. It was found that the Penning effect originating in a preceding discharge helps build a conductive channel in the gas flow and provide seed electrons, thus the discharge can be maintained at a low voltage which in turn leads to a smaller propagation speed for the plasma bullet. Photographs from an intensified charge coupled device reveal that the annular structure of the plasma plume for He is irrelevant to the Penning ionization process arising from preceding discharges. By adding NH{sub 3} into Ar to introduce Penning effect, the originally filamentous discharge of Ar can display a rather extensive plasma plume in ambient as He. These results are helpful for the understanding of the behaviors of non-equilibrium APPJs generated under distinct conditions and for the design of plasma jet features, especially the spatial distribution and propagation speed, which are essential for application.

  4. Influence of Penning effect on the plasma features in a non-equilibrium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Chang, Zhengshi; Jiang, Nan; Zhang, Guanjun; Cao, Zexian

    2014-03-01

    Non-equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications. The influence of Penning effect on the formation, propagation, and other physical properties of the plasma bullets in APPJ remains a debatable topic. By using a 10 cm wide active electrode and a frequency of applied voltage down to 0.5 Hz, the Penning effect caused by preceding discharges can be excluded. It was found that the Penning effect originating in a preceding discharge helps build a conductive channel in the gas flow and provide seed electrons, thus the discharge can be maintained at a low voltage which in turn leads to a smaller propagation speed for the plasma bullet. Photographs from an intensified charge coupled device reveal that the annular structure of the plasma plume for He is irrelevant to the Penning ionization process arising from preceding discharges. By adding NH3 into Ar to introduce Penning effect, the originally filamentous discharge of Ar can display a rather extensive plasma plume in ambient as He. These results are helpful for the understanding of the behaviors of non-equilibrium APPJs generated under distinct conditions and for the design of plasma jet features, especially the spatial distribution and propagation speed, which are essential for application.

  5. Physics and chemistry of non-equilibrium, atmospheric pressure plasmas containing fluorine

    NASA Astrophysics Data System (ADS)

    Yang, Xiawan

    The physics and chemistry of low temperature, atmospheric pressure plasmas containing fluorine have been investigated with current, voltage, and power measurements, infrared absorption spectroscopy, and optical emission spectroscopy. The plasma source consisted of two closely spaced metal electrodes, supplied with radio-frequency power at 13.56 MHz. The fluorine atom concentration was measured in the downstream region of a carbon tetrafluoride and helium plasma using infrared spectroscopy. The gas discharge generated 1.2 x 10 15 cm-3 of F atoms, which is ˜100 times higher than that found in low-pressure plasmas. A numerical model of the plasma indicated that most of the F atoms were generated by the reaction of CF4 with metastable helium atoms. It was discovered that the atmospheric pressure, radio-frequency plasma could be made to undergo sheath breakdown with conversion from an alpha- to a gamma-mode discharge. With 0.4 vol% nitrogen in helium, this transition was accompanied by a 40% drop in voltage, a 12% decrease in current, and a surge in power density from 25 to 2083 W/cm3. The shift in intense plasma emission from the bulk gas to the surface of the electrodes was documented by optical techniques. When the plasma was operated in the alpha and gamma modes, 5.2% and 15.2% of the N2 was dissociated into atoms, respectively. In the latter case, the low dissociation efficiency was ascribed to the nonuniform structure of the plasma across the gap. In plasmas containing 1.0 vol% carbon tetrafluoride and sulfur hexafluoride, the alpha to gamma transition occurred smoothly with no discharge contraction. The electron density in these plasmas equaled 6.0 x 1011 cm-3, compared to 1.9 x 1013 cm -3 in pure helium. The drop in plasma density was due to fast electron attachment processes caused by the electronegative molecules, which also resulted in a high density of negative ions, up to 1013 cm-3. In addition, the non-equilibrium, atmospheric pressure plasma was used to

  6. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  7. State-to-state modeling of non equilibrium low-temperature atomic plasmas

    NASA Astrophysics Data System (ADS)

    Bultel, Arnaud; Morel, Vincent; Annaloro, Julien; Druguet, Marie-Claude

    2017-03-01

    The most relevant approach leading to a thorough understanding of the behavior of non equilibrium atomic plasmas is to elaborate state-to-state models in which the mass conservation equation is applied directly to atoms or ions on their excited states. The present communication reports the elaboration of such models and the results obtained. Two situations close to each other are considered. First, the plasmas produced behind shock fronts obtained in ground test facilities (shock tubes) or during planetary atmospheric entries of spacecrafts are discussed. We focused our attention on the nitrogen case for which a complete implementation of the CoRaM-N2 collisional-radiative model has been performed in a steady one-dimensional computation code based on the Rankine-Hugoniot assumptions. Second, the plasmas produced by the interaction between an ultra short laser pulse and a tungsten sample are discussed in the framework of the elaboration of the Laser-Induced Breakdown Spectroscopy (LIBS) technique. In the present case, tungsten has been chosen in the purpose of validating an in situ experimental method able to provide the elemental composition of the divertor wall of a tokamak like WEST or ITER undergoing high energetic deuterium and tritium nuclei fluxes.

  8. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    SciTech Connect

    Zhang XiaoNing; Xia WeiDong; Li HePing; Murphy, Anthony B.

    2013-03-15

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  9. Developments in Power efficient dissociation of CO2 using non-equilibrium plasma activation

    NASA Astrophysics Data System (ADS)

    van de Sanden, Richard

    2013-09-01

    Sustainable energy generation by means of, either photovoltaic conversion, concentrated solar power or wind, will certainly form a significant part of the energy mix in 2025. The intermittency as well as the temporal variation and the regional spread of this energy source, however, requires a means to store and transport energy on a large scale. In this presentation the means of storage will be addressed of sustainable energy transformed into fuels and the prominent role plasma science and technology can play in this great challenge. The storage of sustainable energy in these so called solar fuels, e.g. hydrocarbons and alcohols, by means of artificial photosynthesis from the feedstock CO2 and H2O, will enable a CO2 neutral power generation infrastructure, which is close to the present infrastructure based on fossil fuels. The challenge will be to achieve power efficient dissociation of CO2 or H2O or both, after which traditional chemical conversion (Fisher-Tropsch, Sabatier, etc.) towards fuels can take place. A promising route is the dissociation or activation of CO2 by means of plasma, possible combined with catalysis. Taking advantage of non-equilibrium plasma conditions to reach optimal energy efficiency we have started a solar fuels program at the beginning of 2012 focusing on CO2 plasma dissociation into CO and O2. The plasma is generated in a low loss microwave cavity with microwave powers up to 10 kW using a supersonic expansion to quench the plasma and prevent vibrational-translational relaxation losses. New ideas on the design of the facility and results on power efficient conversion (more then 50%) of large CO2 flows (up to 75 standard liter per minute with 11% conversion) at low gas temperatures will be presented.

  10. Development of Non-Equilibrium Plasma-Flame Kinetic Mechanism and its Validation Using Gliding Arc Integrated with Counterflow Burner

    DTIC Science & Technology

    2010-02-21

    FINAL REPORT: FA9550-07-1-0136, Dec. 2006 – Nov. 2009 Development of Non-Equilibrium Plasma-Flame Kinetic Mechanism and its...U) Development of Non-Equilibrium Plasma-Flame Kinetic Mechanism and its Validation Using Gliding Arc Integrated with Counterflow Burner 5a...13. SUPPLEMENTARY NOTES 14. ABSTRACT Kinetic enhancements of NOx, O3, and O2(a1Δg) on ignition and flame propagation of CH4 and H2, C3H8 and

  11. Flow reactor studies of non-equilibrium plasma-assisted oxidation of n-alkanes.

    PubMed

    Tsolas, Nicholas; Lee, Jong Guen; Yetter, Richard A

    2015-08-13

    The oxidation of n-alkanes (C1-C7) has been studied with and without the effects of a nanosecond, non-equilibrium plasma discharge at 1 atm pressure from 420 to 1250 K. Experiments have been performed under nearly isothermal conditions in a flow reactor, where reactive mixtures are diluted in Ar to minimize temperature changes from chemical reactions. Sample extraction performed at the exit of the reactor captures product and intermediate species and stores them in a multi-position valve for subsequent identification and quantification using gas chromatography. By fixing the flow rate in the reactor and varying the temperature, reactivity maps for the oxidation of fuels are achieved. Considering all the fuels studied, fuel consumption under the effects of the plasma is shown to have been enhanced significantly, particularly for the low-temperature regime (T<800 K). In fact, multiple transitions in the rates of fuel consumption are observed depending on fuel with the emergence of a negative-temperature-coefficient regime. For all fuels, the temperature for the transition into the high-temperature chemistry is lowered as a consequence of the plasma being able to increase the rate of fuel consumption. Using a phenomenological interpretation of the intermediate species formed, it can be shown that the active particles produced from the plasma enhance alkyl radical formation at all temperatures and enable low-temperature chain branching for fuels C3 and greater. The significance of this result demonstrates that the plasma provides an opportunity for low-temperature chain branching to occur at reduced pressures, which is typically observed at elevated pressures in thermal induced systems.

  12. Silicon surface modifications produced by non-equilibrium He, Ne and Kr plasma jets

    NASA Astrophysics Data System (ADS)

    Engelhardt, Max; Kartaschew, Konstantin; Bibinov, Nikita; Havenith, Martina; Awakowicz, Peter

    2017-01-01

    In this publication the interaction of non-equilibrium plasma jets (N-APPJs) with silicon surfaces is studied. The N-APPJs are operated with He, Ne and Kr gas flows under atmospheric pressure conditions. Plasma bullets are produced by the He and Ne N-APPJs, while a filamentary discharge is ignited in the Kr flow. All these N-APPJs produce remarkable traces on silicon wafer surfaces treated in their effluents. Different types of etching tracks, blisters and crystals are observed on the treated surfaces. The observed traces and surface modifications of silicon wafers are analyzed with optical, atomic-force, scanning electron and Raman microscopes. Based on the material composition within the etching tracks and the position and dimension of blisters and crystals, the traces observed on the silicon wafer surfaces are interpreted as traces of micro-plasmoids. Amorphous silicon is found in the etching tracks. Blisters are produced through the formation of cracks inside the silicon crystal by the interaction with micro-plasmoids. The reason for these modifications is not clear now. The density of micro-plasmoids traces on the treated silicon surface and the depth and length of the etching tracks depends strongly on the type of the used carrier gas of the N-APPJ.

  13. Application Of Highly Non-Equilibrium Plasma For Modification Of Biomedical Samples

    NASA Astrophysics Data System (ADS)

    Mozetic, M.

    2010-07-01

    Non-equilibrium processing of organic materials enables modification of surface properties without changing bulk characteristics of materials. Heavily nonequilibrium state of gas is obtained in a variety of discharges, but electrode-less high frequency discharges are particularly useful. Such discharges often provide plasma with a low ionization fraction (often below 10^-5), but the dissociation fraction is often close to 100%. Neutral atoms readily react with organic materials even at room temperature. Depending on the type of organic material, both surface morphology and functionality are modified. The technique is particularly suitable for improvement of biocompatibility as well as for controlled degradation of biological cells. Several examples on the functionalization of polymer materials will be presented. Furthermore, extremely high etching selectivity of neutral oxygen atoms allows for modification of the surface roughness which, in combination with extremely high density of polar surface functional groups leads to super-hydrophilic character of some polymers. An interesting application of such technology is for modification of the surface properties of vascular grafts. Plasma treated artificial blood vessels exhibit excellent anti-thrombogenic properties as well as good ability for growing of endothelial cells. The same technique is applied for selective removal of some organic materials from biological cells. Proper treatment allows for revealing the internal structure of biological cells. Examples of treatment of different bacteria are presented.

  14. Analyses on the Ionization Instability of Non-Equilibrium Seeded Plasma in an MHD Generator

    NASA Astrophysics Data System (ADS)

    Le, Chi Kien

    2016-06-01

    Recently, closed cycle magnetohydrodynamic power generation system research has been focused on improving the isentropic efficiency and the enthalpy extraction ratio. By reducing the cross-section area ratio of the disk magnetohydrodynamic generator, it is believed that a high isentropic efficiency can be achieved with the same enthalpy extraction. In this study, the result relating to a plasma state which takes into account the ionization instability of non-equilibrium seeded plasma is added to the theoretical prediction of the relationship between enthalpy extraction and isentropic efficiency. As a result, the electron temperature which reaches the seed complete ionization state without the growth of ionization instability can be realized at a relatively high seed fraction condition. However, the upper limit of the power generation performance is suggested to remain lower than the value expected in the low seed fraction condition. It is also suggested that a higher power generation performance may be obtained by implementing the electron temperature range which reaches the seed complete ionization state at a low seed fraction.

  15. Radicals and Non-Equilibrium Processes in Low-Temperature Plasmas

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran; Mason, Nigel; Hamaguchi, Satoshi; Radmilović-Radjenović, Marija

    2007-06-01

    Serbian Academy of Sciences and Arts and Institute of Physics, Belgrade. Each Symposium has sought to highlight a key topic of plasma research and the 5th EU - Japan symposium explored the role of Radicals and Non-Equilibrium Processes in Low-Temperature Plasmas since these are key elements of plasma processing. Other aspects of technologies for manufacturing integrated circuits were also considered. Unlike bio-medicine and perhaps politics, in plasma processing free radicals are `good radicals' but their kinetics are difficult to understand since there remains little data on their collisions with electrons and ions. One of the goals of the symposium was to facilitate communication between experimentalists and theorists in binary collision physics with plasma modellers and practitioners of plasma processing in order to optimize efforts to provide much needed data for both molecules and radicals of practical importance. The non-equilibrium nature of plasmas is critical in the efficient manufacturing of high resolution structures by anisotropic plasma etching on Si wafers since they allow separate control of the directionality and energy of ions and provide a high level of separation between the mean energies of electrons and ions. As nanotechnologies become practical, plasma processing may play a key role, not only in manufacturing of integrated circuits, but also for self-organization of massively parallel manufacturing of nanostructures. In this Symposium the key issues that are hindering the development of such new, higher resolution technologies were discussed and some possible solutions were proposed. In particular, damage control, fast neutral etching, processes at surface and modeling of profiles were addressed in several of the lectures. A wide range of topics are covered in this book including atomic and molecular collision physics - primarily focused towards formation and analysis of radicals, basic swarm data and breakdown kinetics, basic kinetics of RF and DC

  16. Effects of Non-Equilibrium Plasmas on Low-Pressure, Premixed Flames. Part 1: CH* Chemiluminescence, Temperature, and OH

    DTIC Science & Technology

    2017-08-15

    showed significant increases in O-atom concentration and an extension of the extinction limits in the presence of the plasma discharge. In a recent...Carter, C.D., and Ju, Y. Effects of Non- Equilibrium Plasma Discharge of Counterflow Diffusion Flame Extinction . Proc. Combust. Inst. 33(2), 3211...Oxidation on Diffusion Flame Extinction Limits. Combust. Flame, 159, 221 31. Sun, W., Won, S., Ombrello, T., Carter, C., Ju, Y., Direct ignition and S

  17. Practical and theoretical considerations on the use of ICCD imaging for the characterization of non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Gherardi, Matteo; Puač, Nevena; Marić, Dragana; Stancampiano, Augusto; Malović, Gordana; Colombo, Vittorio; Petrović, Zoran Lj

    2015-12-01

    Over the past decade the use of ICCD cameras as a means for characterizing non-equilibrium plasmas has been steadily increasing. Due to their high sensitivity and high speed gateability, ICCD cameras enable time-resolved studies of the anatomy and, when adopted in conjunction with filters, monochromators, spectrometers or laser systems, time-resolved investigation of physical and chemical properties of non-equilibrium plasma discharges. This paper is meant as an introduction to ICCD technology and its use as a plasma diagnostic technique, discussing the experimental problems typically associated with its use and providing the readers with practical examples and suggestions on how to address them. In particular, the issues of ICCD camera synchronization with the voltage pulse driving the plasma discharge and of investigating small volume discharges are addressed, focusing mainly on the case of non-equilibrium atmospheric pressure plasma jets. Finally, a possible way to achieve absolute calibration of plasma discharge emission is presented and discussed. A wide range of data, mostly unpublished, is provided here to illustrate the points.

  18. Bacterial-killing effect of atmospheric pressure non-equilibrium plasma jet and oral mucosa response.

    PubMed

    Liu, Dexi; Xiong, Zilan; Du, Tianfeng; Zhou, Xincai; Cao, Yingguang; Lu, Xinpei

    2011-12-01

    Recently, plasma sterilization has attracted increasing attention in dental community for the atmospheric pressure non-equilibrium plasma jet (APNPs), which is driven by a kilohertz pulsed DC power, may be applied to the dental and oral diseases. However, it is still in doubt whether APNPs can effectively kill pathogenic bacteria in the oral cavity and produce no harmful effects on normal oral tissues, especially on normal mucosa. The aim of this study was to evaluate the bacterial-killing effect of APNPs in the biofilms containing a single breed of bacteria (Porphyromonas gingivalis, P.g.), and the pathological changes of the oral mucosa after treatment by APNPs. P.g. was incubated to form the biofilms in vitro, and the samples were divided into three groups randomly: group A (blank control); group B in which the biofilms were treated by APNPs (the setting of the equipment: 10 kHz, 1600 ns and 8 kV); group C in which the biofilms were exposed only to a gas jet without ignition of the plasma. Each group had three samples and each sample was processed for up to 5 min. The biofilms were then fluorescently stained, observed and photographed under a laser scanning confocal microscope. In the animal experiment, six male Japanese white rabbits were divided into two groups randomly (n=3 in each group) in terms of the different post-treatment time (1-day group and 5-day group). The buccal mucosa of the left side and the mucosa of the ventral surface of the tongue were treated by APNPs for 10 min in the same way as the bacterial biofilm experiment in each rabbit, and the corresponding mucosa of the other sides served as normal control. The clinical manifestations of the oral mucosa were observed and recorded every day. The rabbits were sacrificed one or five day(s) after APNPs treatment. The oral mucosa were harvested and prepared to haematoxylin and eosin-stained sections. Clinical observation and histopathological scores were used to assess mucosal changes. The results

  19. Enhancement of Combustion and Flame Stabilization Using Transient Non-Equilibrium Plasma

    DTIC Science & Technology

    2007-03-31

    were several possible outcomes: a.) successful ignition kernel evolution to a large flame; b.) extinction of the ignition kernel ; and c.) a self...extinguishing outward propagating flame. The successful transition from an ignition kernel to a propagating flame was strongly dependent on the transport...properties of the fuel-air mixture (Lewis number) and the radiation Fig. 56 Ignition kernel heat loss from the hot ignition kernel (by the plasma

  20. Measurement of Radiative Non-Equilibrium for Air Shocks Between 7-9 Km/s

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Brandis, Aaron M.

    2016-01-01

    This paper describes a recent characterization of non-equilibrium radiation for shock speeds between 7 and 9 km/s in the NASA Ames Electric Arc Shock Tube (EAST) Facility. Data is spectrally resolved from 190- 1450 nm and spatially resolved behind the shock front. Comparisons are made to DPLR/NEQAIR simulations using different modeling options and recommendations for future study are made based on these comparisons.

  1. Kinetic Effects of Non-Equilibrium Plasma on Partially Premixed Flame Extinction

    DTIC Science & Technology

    2011-01-01

    dissociative attachment processes. The Boltzmann equation calculates the rate coefficients of the electron impact elementary reactions by averaging the...ion-ion neutralization processes, ion-molecule reactions, and electron attachment and detachment processes. Note that the present model does not solve...partially premixed methane flames was studied at 60 Torr by blending 2% CH4 into the oxidizer stream. The non-equilibrium discharge accelerated

  2. Energy Conversion in High Enthalpy Flows and Non-equilibrium Plasmas

    DTIC Science & Technology

    2014-01-01

    emission intensity on each lasing vibrational transition as a function of time. The laser cavity model is a simple Fabry – Perot model, with the optical...into a flowing plenum section. Gases are supplied at plenum pressures of P0 = 0.5-1.0 atm. Steady-state non- equilibrium supersonic flow in the wind...tunnel is produced by sustaining a high- pressure electric discharge in the plenum. Here, two pairs of electrodes are arranged to provide orthogonal

  3. Decomposition of poly(amide-imide) film enameled on solid copper wire using atmospheric pressure non-equilibrium plasma.

    PubMed

    Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko

    2009-01-01

    The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.

  4. Vacuum ultraviolet spectroscopic analysis of AC excited non-equilibrium atmospheric pressure Ar plasma jet

    NASA Astrophysics Data System (ADS)

    Takeda, Keigo; Ishikawa, Kenji; Tanaka, Hiromasa; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2014-10-01

    Plasma biomedical treatments with atmospheric pressure plasma jets (APPJ) have attracted very much. In the treatments, reactive species and high energy photons emitted from APPJ are important factors to realize the performance. Vacuum ultraviolet (VUV) spectroscopy is one of useful techniques to measure quantitative behaviors of atomic radicals and high energy photons. In this study, an AC excited APPJ with Ar gas has been investigated by using the spectroscopy. The Ar APPJ was generated under open air condition, and VUV emission spectra was measured by using a VUV monochromator. The spectra of atomic species such as O (130.4 nm), N (120.0, 174.3 nm), and H (121.6 nm) were observed. The emission intensity of N atom (174.3 nm) in the plasma remote region exponentially decreased with increasing the distance from the plasma jet. The absorption coefficient was estimated to be 1.8 cm-1, over 20 mm distance from the plasma jet, the coefficient increase to 4.2 cm-1 which is almost same with value due to atmosphere. We will discuss behaviors of reactive species and high energy photons emitted from the AC excited Ar APPJ on the basis of the results measured by VUV spectroscopy.

  5. Non-equilibrium solid-to-plasma transition dynamics using XANES diagnostic

    NASA Astrophysics Data System (ADS)

    Dorchies, F.; Recoules, V.

    2016-10-01

    The advent of femtosecond lasers has shed new light on non-equilibrium high energy density physics. The ultrafast energy absorption by electrons and the finite rate of their energy transfer to the lattice creates non-equilibrium states of matter, triggering a new class of non-thermal processes from the ambient solid up to extreme conditions of temperature and pressure, referred as the warm dense matter regime. The dynamical interplay between electron and atomic structures is the key issue that drives the ultrafast phase transitions dynamics. Bond weakening or bond hardening are predicted, but strongly depends on the material considered. Many studies have been conducted but this physics is still poorly understood. The experimental tools used up-to-now have provided an incomplete insight. Pure optical techniques measure only indirectly atomic motion through changes in the dielectric function whereas X-ray or electron diffraction only probes the average long-range order. This review is dedicated to recent developments in time-resolved X-ray absorption near-edge spectroscopy, which is expected to give a more complete picture by probing simultaneously the modifications of the near-continuum electron and local atomic structures. Results are reported for three different types of metals (simple, transition and noble metals) in which a confrontation has been carried out between measurements and ab initio simulations.

  6. Non-Equilibrium Plasma Applications for Water Purification Supporting Human Spaceflight and Terrestrial Point-of-Use

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.; Foster, John E.; Adamovsky, Grigory

    2016-01-01

    2016 NASA Glenn Technology Day Panel Presentation on May 24, 2016. The panel description is: Environmental Impact: NASA Glenn Water Capabilities Both global water scarcity and water treatment concerns are two of the most predominant environmental issues of our time. Glenn researchers share insights on a snow sensing technique, hyper spectral imaging of Lake Erie algal blooms, and a discussion on non-equilibrium plasma applications for water purification supporting human spaceflight and terrestrial point-of-use. The panel moderator will be Bryan Stubbs, Executive Director of the Cleveland Water Alliance.

  7. Synthesis of calcium oxalate crystals in culture medium irradiated with non-equilibrium atmospheric-pressure plasma

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Mizuno, Masaaki; Yamanishi, Yoko; Hori, Masaru

    2016-09-01

    Octahedral particulates several tens of microns in size were synthesized in a culture medium irradiated through contact with a plume of non-equilibrium atmospheric-pressure plasma (NEAPP). The particulates were identified in the crystalline phase as calcium oxalate dihydrate (COD). The original medium contained constituents such as NaCl, d-glucose, CaCl2, and NaHCO3 but not oxalate or oxalic acid. The oxalate was clearly synthesized and crystallized in the medium as thermodynamically unstable COD crystals after the NEAPP irradiation.

  8. Heating effects of a non-equilibrium RF corona discharge in atmospheric air

    NASA Astrophysics Data System (ADS)

    Auzas, F.; Tardiveau, P.; Puech, V.; Makarov, M.; Agneray, A.

    2010-12-01

    Electrical and thermal properties of a single electrode configuration corona discharge generated under radiofrequency high voltage inside an open air gap at pressures above 1 bar is investigated. Time-resolved imaging of the discharge shows a four-step development of the discharge at atmospheric pressure starting by streamers' inception and propagation, evolving in heating waves and stabilizing in a stationary regime until the power supply is switched off. The mean gas temperature reaches about 1700 K in tens of microseconds with electrical energy release around tens of millijoules. Heating has been attributed to ion collisions and excited species relaxation, promoted by the successive time periods of the power supply. At higher pressures, beyond 3 bar, this behaviour changes and heating occurs at the same time as the discharge propagates. It leads to hot channels which constrict near the electrode as long as the voltage pulse is applied. Temperature gets higher and saturates at 2600 K whatever the voltage and the pressure. Considering the change in the electrical energy density released within the plasma channels with pressure and voltage, temperature saturation seems to be an effect of heat confining within the channels due to pressure. The large and non-thermal plasma generated by the RF corona discharge is a very good candidate for car engine lean mixtures ignition issues.

  9. Production of CW High-Density Non-Equilibrium Plasma in the Atmosphere Using Microgap Discharge Excited by Microwave

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro; Sugiyama, Tomohiko; Goto, Toshio; Furuhashi, Hideo; Uchida, Yoshiyuki

    2001-03-01

    A new technique for cw production of high-pressure, high-density, non-equilibrium plasma is presented. Using microwave excitation at 2.45 GHz, a stable atmospheric glow discharge was sustained between two knife-edge electrodes, having a length of 10 mm and facing each other across a ˜100 μm microgap. Laser Thomson scattering diagnostics indicates that the plasma density in the microgap is as high as 1.6× 1015 cm-3 at a microwave power of 100 W. The optical emission of the N2 second positive band indicates that the gas temperature in the microgap is 1800 K, much lower than the electron temperature.

  10. Non-Equilibrium Magnetohydrodynamic Behavior of Plasmas having Complex, Evolving Morphology

    SciTech Connect

    Bellan, Paul M.

    2014-03-13

    Our main activity has been doing lab experiments where plasmas having morphology and behavior similar to solar and astrophysical plasmas are produced and studied. The solar experiment is mounted on one end of a large vacuum chamber while the astrophysical jet experiment is mounted on the other end. Diagnostics are shared between the two experiments. The solar experiment produces arched plasma loops that behave very much like solar corona loops. The astrophysical jet experiment produces plasma jets that are very much like astrophysical jets. We have also done work on plasma waves, including general wave dispersions, and specific properties of kinetic Alfven waves and of whistler waves.

  11. Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows

    DTIC Science & Technology

    2014-10-28

    alternative, we propose the use of micro- second pulsed Dielectric Barrier Discharge (DBD) plasma actuator7,20–23 for the net reduction of thermal load...include counter-flow plasma jets , energy deposition methods using high energy beams like electron and micro-wave, and gas heating using arc or electric...actuators have been implemented in nanosecond and microsecond pulse widths. Nanosecond pulsed DBD plasma actuators have also been successful in high

  12. Thomson scattering on non-equilibrium low density plasmas: principles, practice and challenges

    NASA Astrophysics Data System (ADS)

    Carbone, Emile; Nijdam, Sander

    2015-01-01

    In this paper, we review the main challenges related to laser Thomson scattering on low temperature plasmas. The main features of the triple grating spectrometer used to discriminate Thomson and Raman scattering signals from Rayleigh scattering and stray light are presented. The main parameters influencing the detection limit of Thomson scattering are reviewed. Laser stray light and plasma emission are two limiting factors, but Raman scattering from molecules inside the plasma will further decrease it. In the case of non-thermal plasmas at high pressure, Thomson scattering is the only technique which allows us to obtain the electron density without any prior knowledge of the plasma properties. Moreover, very high 3D spatial and temporal resolutions can easily be achieved. However, special care still needs to be taken to verify that Thomson scattering is non intrusive. The mechanisms that will lead to possible measurement errors are discussed. The wavelength-resolved scattering signal also allows us to get direct information about the electron energy distribution function in the case of incoherent light scattering. Finally, we discuss some recent applications of Thomson scattering on atmospheric pressure plasma jets, but also in the field of electron collision kinetics. Thomson scattering can be applied on atomic but also molecular plasmas. In the latter case, one needs to take into account the possible contribution of rotational Raman scattering.

  13. Analysis of H atoms in a negative ion source plasma with the non-equilibrium electron energy distribution function.

    PubMed

    Koga, S; Shibata, T; Terasaki, R; Kameyama, N; Hatayama, A; Bacal, M; Tsumori, K

    2012-02-01

    In negative ion sources for the neutral beam injection, it is important to calculate H atom flux onto the plasma grid (PG) surface for the evaluation of H(-) production on the PG surface. We have developed a neutral (H(2) molecules and H atoms) transport code. In the present study, the neutral transport code is applied to the analysis of the H(2) and H transport in a NIFS-R&D ion source in order to calculate the flux onto the PG surface. Taking into account non-equilibrium feature of the electron energy distribution function (EEDF), i.e., the fast electron component, we have done the neutral transport simulation. The results suggest that the precise evaluation of the EEDF, especially in the energy range 15 eV < E < 30 eV is important for the dissociation rate of H(2) molecules by the electron impact collision and the resultant H atom flux on the PG.

  14. Non-equilibrium effects in the processing of materials using plasmas

    SciTech Connect

    Mangolini, Lorenzo

    2016-06-02

    We have provided experimental evidence that nanoparticles in plasma are heated to temperatures that are significantly higher than that of the background gas. This result gives experimental confirmation to a number of theoretical/computational studies that predicted this behavior. Moreover, this study has provided with the first measurement of the temperature of nanoparticles in a processing dusty plasma, i.e. under conditions that are relevant for the growth and modification of nanopowders.

  15. Development of a non-equilibrium 60 MHz plasma jet with a long discharge plume

    NASA Astrophysics Data System (ADS)

    Uchida, Giichiro; Kawabata, Kazufumi; Ito, Taiki; Takenaka, Kosuke; Setsuhara, Yuichi

    2017-07-01

    High-frequency plasma jets driven by voltages in the frequency range of 6-60 MHz are developed. A long plasma jet, 40 mm in length, is successfully produced by using a pair of ring electrodes outside a quartz tube. The electrode pair consists of a wide power electrode and a narrow ground electrode that is positioned at the head of the tube. The ratio of the length of the ground electrode to the length of the power electrode must be small in order to produce long plasma jets. The high-frequency plasma jet is operated in a non-thermal-equilibrium state at a gas temperature of around 60 °C. Operation at the very-high-frequency of 60 MHz leads to a lower discharge voltage and lower electron energy compared to lower frequencies of 6 and 13.56 MHz. The ability of the very-high-frequency (60 MHz) plasma jet to produce reactive oxygen and nitrogen species in water is also investigated. High H2O2 and NO3- concentrations of more than 1 mmol/l are realized by irradiating 3 ml of deionized water with the plasma for a short period of 2 min.

  16. Non-equilibrium reaction rates in air flows behind shock waves. State-to-state and three-temperature description

    NASA Astrophysics Data System (ADS)

    Kunova, O.; Nagnibeda, E.; Sharafutdinov, I.

    2016-11-01

    Non-equilibrium reaction rates in the flows of the five-component air mixture N2/O2/NO/N/O in the relaxation zone behind shock waves are studied on the basis of the state-to-state, three-temperature and one-temperature kinetic theory approaches. State-dependent rate coefficients for N2 and O2 dissociation and Zeldovich exchange reactions are averaged using 1) state-to-state vibrational distributions, 2) two-temperature Treanor distributions and 3) thermal equilibrium distributions. Variation of global reaction rate coefficients obtained in different approaches along the relaxation zone is studied numerically for free stream Mach number M = 13 and difflerences between reaction rate coefficients found in the frame of the state-to-state and more simple kinetic models are evaluated.

  17. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.

    PubMed

    Snezhko, Alexey

    2011-04-20

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.

  18. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey

    2011-04-01

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.

  19. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.

    SciTech Connect

    Snezhko, A.

    2011-04-20

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.

  20. Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Babayan, S. E.; Jeong, J. Y.; Schütze, A.; Tu, V. J.; Moravej, Maryam; Selwyn, G. S.; Hicks, R. F.

    2001-11-01

    Silicon dioxide films were grown using an atmospheric-pressure plasma jet that was produced by flowing oxygen and helium between two coaxial metal electrodes that were driven by 13.56 MHz radio frequency power. The plasma exiting from between the electrodes was mixed with tetraethoxysilane (TEOS), and directed onto a silicon substrate held at 115-350 °C. Silicon dioxide films were deposited at rates ranging from 20±2 to 300±25 nm min-1. The deposition rate increased with decreasing temperature and increasing TEOS pressure, oxygen pressure and RF power. For the latter two variables, the rate increased as follows: Rd∝P0.3O2(RF)1.4. Films grown at 115 °C were porous and contained adsorbed hydroxyl groups, whereas films grown at 350 °C were smooth, dense and free of impurities. These results suggest that the mechanism in the atmospheric pressure plasma is the same as that in low-pressure plasmas.

  1. Gallium nitride nanoneedles grown in extremely non-equilibrium nitrogen plasma

    SciTech Connect

    Mangla, O.; Roy, S.

    2016-05-23

    In the present work, gallium nitride (GaN) nanoneedles are grown on quartz substrates using the high fluence ions of GaN produced by hot, dense and extremely non-equlibrium nitrogen plasma in a modified dense plasma focus device. The formation of nanoneedles is obtained from the scanning electron microscopy with mean size of the head of nanoneedles ~ 70 nm. The nanoneedles are found to be poly-crystalline when studied structurally through the X-ray diffraction. The optical properties of nanoneedles studied using absorption spectra which show more absorption for nanoneedles depsoited one shot of ions irradiation. In addition, the band gap of nanoneedles is found to be increased as compared to bulk GaN. The obtained nanoneedles with increased band gap have potential applications in detector systems.

  2. Thermo-chemical dynamics and chemical quasi-equilibrium of plasmas in thermal non-equilibrium

    NASA Astrophysics Data System (ADS)

    Massot, Marc; Graille, Benjamin; Magin, Thierry E.

    2011-05-01

    We examine both processes of ionization by electron and heavy-particle impact in spatially uniform plasmas at rest in the absence of external forces. A singular perturbation analysis is used to study the following physical scenario, in which thermal relaxation becomes much slower than chemical reactions. First, electron-impact ionization is investigated. The dynamics of the system rapidly becomes close to a slow dynamics manifold that allows for defining a unique chemical quasi-equilibrium for two-temperature plasmas and proving that the second law of thermodynamics is satisfied. Then, all ionization reactions are taken into account simultaneously, leading to a surprising conclusion: the inner layer for short time scale (or time boundary layer) directly leads to thermal equilibrium. Global thermo-chemical equilibrium is reached within a short time scale, involving only chemical reactions, even if thermal relaxation through elastic collisions is assumed to be slow.

  3. Generalized x-ray scattering cross section from non-equilibrium solids and plasmas

    SciTech Connect

    Gregori, G; Glenzer, S H; Landen, O L

    2006-02-07

    We propose a modified x-ray form factor that describes the scattering cross section in warm dense matter valid for both the plasma and the solid (crystalline) state. Our model accounts for the effect of lattice correlations on the electron-electron dynamic structure, as well as provides a smooth transition between the solid and the plasma scattering cross sections. In addition, we generalize the expression of the dynamic structure in the case of a two-temperature system (with different electron and ion temperatures). This work provides a unified description of the x-ray scattering processes in warm and dense matter, as the one encountered in inertial confinement fusion, laboratory astrophysics, material science, and high-energy density physics and it can be used to verify temperature relaxation mechanisms in such environments.

  4. Thermo-chemical dynamics and chemical quasi-equilibrium of plasmas in thermal non-equilibrium

    SciTech Connect

    Massot, Marc; Graille, Benjamin; Magin, Thierry E.

    2011-05-20

    We examine both processes of ionization by electron and heavy-particle impact in spatially uniform plasmas at rest in the absence of external forces. A singular perturbation analysis is used to study the following physical scenario, in which thermal relaxation becomes much slower than chemical reactions. First, electron-impact ionization is investigated. The dynamics of the system rapidly becomes close to a slow dynamics manifold that allows for defining a unique chemical quasi-equilibrium for two-temperature plasmas and proving that the second law of thermodynamics is satisfied. Then, all ionization reactions are taken into account simultaneously, leading to a surprising conclusion: the inner layer for short time scale (or time boundary layer) directly leads to thermal equilibrium. Global thermo-chemical equilibrium is reached within a short time scale, involving only chemical reactions, even if thermal relaxation through elastic collisions is assumed to be slow.

  5. Kinetic Effects of Non-Equilibrium Plasma-Assisted Methane Oxidation on Diffusion Flame Extinction Limits

    DTIC Science & Technology

    2011-01-01

    measured using the Two-photon Absorption Laser-Induced Fluorescence (TALIF) method (for atomic oxygen, O), Fourier Transform Infrared ( FTIR ) spectroscopy...photon Absorption Laser-Induced Fluorescence (TALIF) method (for atomic oxygen, O), Fourier Transform Infrared ( FTIR ) spectroscopy and Gas...and ozone (O3) from other plasma related species and shown that both (at concentrations of several thousand ppm) can enhance flame speeds by a few

  6. Development of a Hybrid Model for Non-Equilibrium High-Energy Plasmas

    DTIC Science & Technology

    2007-11-02

    performance electric propulsion systems , high-power conditioning, novel diagnostics methods, material fabrication, etc. The plasma conditions in these new...velocity distribution function (DF) that describes the system and its dynamics, i.e. solving the Boltzmann equation: )’,( ffCRfaff t vx =∇⋅+∇⋅+ ∂ ∂ ρρρρ...effects. However, a complete knowledge of the system DF is not possible given the current and even foreseeable computing capabilities, due to the

  7. Non-equilibrium radiation during SiC-CO2 plasma interaction

    NASA Astrophysics Data System (ADS)

    Brémare, Noémie; Jouen, Samuel; Boubert, Pascal

    2016-04-01

    The radiation of a pure CO2 inductive plasma was recorded between 190 and 920 nm during its interaction with a SiC sample under a pressure equal to 6 kPa and an estimated global specific enthalpy close to 12 MJ kg-1. The plasma electronic excitation was found to be out of equilibrium. The main radiators were found to be O, C, C2 and, mainly, CO. The radiation is especially significant where the plasma chemically interacts with the material revealing a stronger electronic excitation close to the surface. Excitation temperatures were also found to increase in the chemical boundary layer, which is four times smaller than the thermal boundary layer. This raises questions about the energy exchange processes of the excited states and about chemical behaviour independent of their respective ground states. The surface is found to be covered by an inhomogeneous silica layer revealing a passive oxidation, but also by bubble structures, indicative of the transition towards active oxidation. The surface temperature is estimated to be 1800-1900 K. Raman spectroscopy measurements on the surface and optical spectroscopy measurements in the boundary layer provide proof of carbon production coming from the SiC.

  8. Computation of non-equilibrium flow downstream of a plasma torch

    NASA Technical Reports Server (NTRS)

    Harle, Christophe; Varghese, Philip L.; Carey, Graham F.

    1992-01-01

    Numerical solutions of the Navier-Stokes equations for compressible reacting flow in an axisymmetric geometry are presented for a nitrogen plasma torch with both thermal and chemical nonequilibrium. The Navier-Stokes equations are solved using a new axisymmetric finite element/finite volume formulation in which the convective flux is treated by an extension of the approximate Riemann solver due to Osher. The numerical scheme is validated by comparison with a previous solution of the same problem using a different computational scheme. Results obtained using two different models of nonthermal dissociation rates are compared to experimental data.

  9. Computation of non-equilibrium flow downstream of a plasma torch

    NASA Technical Reports Server (NTRS)

    Harle, Christophe; Varghese, Philip L.; Carey, Graham F.

    1992-01-01

    Numerical solutions of the Navier-Stokes equations for compressible reacting flow in an axisymmetric geometry are presented for a nitrogen plasma torch with both thermal and chemical nonequilibrium. The Navier-Stokes equations are solved using a new axisymmetric finite element/finite volume formulation in which the convective flux is treated by an extension of the approximate Riemann solver due to Osher. The numerical scheme is validated by comparison with a previous solution of the same problem using a different computational scheme. Results obtained using two different models of nonthermal dissociation rates are compared to experimental data.

  10. Electric Field Measurements in Non-Equilibrium Electric Discharge Plasmas Using Picosecond Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.

    This dissertation presents the results of development of a picosecond four wave mixing technique and its use for electric field measurements in nanosecond pulse discharges. This technique is similar to coherent anti-Stokes Raman spectroscopy and is well suited for electric field measurements in high pressure plasmas with high spatial and temporal resolution. The results show that the signal intensity scales proportionally to the square of the electric field, the signal is emitted as a coherent beam, and is polarized parallel to the electric field vector, making possible electric field vector component measurements. The signal is generated when a collinear pair of pump and Stokes beams, which are generated in a stimulated Raman shifting cell (SRS), generate coherent excitation of molecules into a higher energy level, hydrogen for the present work. The coherent excitation mixes with a dipole moment induced by an external electric field. The mixing of these three "waves'" allows the molecules to radiate at their Raman frequency, producing a fourth, signal, wave which is proportional to the square of the electric field. The time resolution of this technique is limited by the coherence decay time of the molecules, which is a few hundred picoseconds.

  11. Thermophysical properties of nitrogen plasmas under thermal equilibrium and non-equilibrium conditions

    SciTech Connect

    Wang Weizong; Rong Mingzhe; Yan, J. D.; Spencer, Joseph W.; Murphy, A. B.

    2011-11-15

    Calculated thermophysical properties of nitrogen plasmas in and out of thermal equilibrium are presented. The cut-off of the partition functions due to the lowering of the ionization potential has been taken into account, together with the contributions from different core excited electronic states. The species composition and thermodynamic properties are determined numerically using the Newton-Raphson iterative method, taking into account the corrections due to Coulomb interactions. The transport properties including diffusion coefficient, viscosity, thermal conductivity, and electrical conductivity are calculated using the most recent collision interaction potentials by adopting Devoto's electron and heavy particle decoupling approach, expanded to the third-order approximation (second-order for viscosity) in the framework of Chapman-Enskog method. Results are presented in the pressure range of 0.1 atm-10 atm and in electron temperature range from 300 to 40 000 K, with the ratio of electron temperature to heavy-particle temperature varied from 1 to 20. Results are compared with those from previous works, and the influences of different definitions of the Debye length are discussed.

  12. Direct exposure of non-equilibrium atmospheric pressure plasma confers simultaneous oxidative and ultraviolet modifications in biomolecules

    PubMed Central

    Okazaki, Yasumasa; Wang, Yue; Tanaka, Hiromasa; Mizuno, Masaaki; Nakamura, Kae; Kajiyama, Hiroaki; Kano, Hiroyuki; Uchida, Koji; Kikkawa, Fumitaka; Hori, Masaru; Toyokuni, Shinya

    2014-01-01

    Thermal plasmas and lasers are used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, little research has been done into the use of this technique for conventional free radical biology. Recently, we developed a NEAPP device with high electron density. Electron spin resonance spin-trapping revealed •OH as a major product. To obtain evidence of NEAPP-induced oxidative modifications in biomolecules and standardize them, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and α-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also observed after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in saline produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. PMID:25411528

  13. Enhanced nonlinear iterative techniques applied to a non-equilibrium plasma flow

    SciTech Connect

    Knoll, D.A.; McHugh, P.R.

    1996-12-31

    We study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially-ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales, and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. We use Newton`s method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. We investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, one-way multigrid and a pseudo-transient continuation technique are used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with Incomplete Lower-Upper(ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a one-way multigrid implementation provides significant CPU savings for fine grid calculations. Performance comparisons of the modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented.

  14. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  15. Antibody immobilization on poly(L-lactic acid) nanofibers advantageously carried out by means of a non-equilibrium atmospheric plasma process

    NASA Astrophysics Data System (ADS)

    Dolci, L. S.; Liguori, A.; Merlettini, A.; Calzà, L.; Castellucci, M.; Gherardi, M.; Colombo, V.; Focarete, M. L.

    2016-07-01

    In the present study, the comparison between a conventional wet-chemical method and a non-equilibrium atmospheric pressure plasma process for the conjugation of biomolecules on the surface of poly(L-lactic acid) (PLLA) electrospun fibers is reported. Physico-chemical and morphological characteristics of chemically and plasma functionalized mats are studied and compared with those of pristine mats. The efficiency in biomolecules immobilization is assessed by the covalent conjugation of an antibody (anti-CD10) on the functionalized PLLA fibers. The achieved results highlight that the proposed plasma process enables antibodies to be successfully immobilized on the surface of PLLA fibers, demonstrating that non-equilibrium atmospheric pressure plasma can be an effective, highly flexible and environmentally friendly alternative to the still widely employed wet-chemical methods for the conjugation of biomolecules onto biomaterials.

  16. Kinetics of plasma-assisted combustion: effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures

    NASA Astrophysics Data System (ADS)

    Popov, N. A.

    2016-08-01

    A review of experimental and theoretical investigations of the effect of atomic particles, and electronically and vibrationally excited molecules on the induction delay time and on the shift in the ignition temperature threshold of combustible mixtures is presented. The addition of oxygen and hydrogen atoms to combustible mixtures may cause a significant reduction in the ignition delay time. However, at relatively low initial temperatures, the non-equilibrium effect of the addition of atomic particles in ground electronic states is not pronounced. At the same time, the effect of excited O(1D) atoms on the oxidation and reforming of combustible mixtures is quite significant due to the high rates of reactions of O(1D) atoms with hydrogen and hydrocarbon molecules. In fuel-air mixtures, collisions with O(1D) atoms determine, under certain conditions, the dissociation of hydrocarbon molecules. Singlet oxygen molecules, O2(a1Δ g ), participate both in chain initiation and chain branching reactions, but the effect of O2(a1Δ g ) on the ignition processes is generally less important compared to oxygen atoms. The reactions of vibrationally excited molecules and the processes of VT-relaxation in combustible mixtures are discussed. The production of vibrationally excited N 2(v) molecules in fuel-air mixtures at relatively low electric field is very important. However, at the moment, the effect of the reactions of N 2(v) molecules on the oxidation and ignition of combustible mixtures is not completely clear, and requires further investigation. Therefore, with present knowledge, to reduce the ignition delay time and decrease the temperature threshold of combustive mixtures, the use of gas discharge systems with relatively high E/N values is recommended. In this case the reactions of electronically excited {{\\text{N}}2}≤ft(\\text{A}{}3Σu+,\\text{B}{}3{{\\Pi}g},\\text{C}{}3{{\\Pi}u},\\text{a}{}\\prime 1Σu-\\right) molecules, and atomic particles in ground and

  17. Measurement and Prediction of Radiative Non-Equilibrium for Air Shocks Between 7-9 km/s

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Brandis, Aaron M.

    2017-01-01

    The present paper describes a recent characterization of thermochemical non-equilibrium for shock speeds between 7 and 9 km/s in the NASA Ames Electric Arc Shock Tube (EAST) Facility. Data are spectrally resolved from 190-1450 nm and spatially resolved behind the shock front. The data are analyzed in terms of a spectral non-equilibrium metric, defined as the average radiance within +/- 2 cm of the peak. Simulations with DPLR/NEQAIR using different rate chemistries show these conditions to be poorly replicated. The sources of discrepancy are examined, leading to an update to the NEQAIR non-Boltzmann model and DPLR rate chemistry. New parameters for the rate chemistry and non-Boltzmann modeling are reported.

  18. Measurement and Prediction of Radiative Non-Equilibrium for Air Shocks Between 7-9 km/s

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Brandis, Aaron M.

    2017-01-01

    The present paper describes a recent characterization of thermochemical non-equilibrium for shock speeds between 7 and 9 km/s in the NASA Ames Electric Arc Shock Tube (EAST) Facility. Data are spectrally resolved from 190-1450 nm and spatially resolved behind the shock front. The data are analyzed in terms of a spectral non-equilibrium metric, defined as the average radiance within +/-2 cm of the peak. Simulations with DPLR/NEQAIR using different rate chemistries show these conditions to be poorly replicated. The sources of discrepancy are examined, leading to an update to the NEQAIR non-Boltzmann model and DPLR rate chemistry. New parameters for the rate chemistry and non-Boltzmann modeling are reported.

  19. Non-equilibrium modeling of UV laser induced plasma on a copper target in the presence of Cu{sup 2+}

    SciTech Connect

    Ait Oumeziane, Amina Liani, Bachir; Parisse, Jean-Denis

    2016-03-15

    This work is a contribution to the understanding of UV laser ablation of a copper sample in the presence of Cu{sup 2+} species as well as electronic non-equilibrium in the laser induced plasma. This particular study extends a previous paper and develops a 1D hydrodynamic model to describe the behavior of the laser induced plume, including the thermal non-equilibrium between electrons and heavy particles. Incorporating the formation of doubly charged ions (Cu{sup 2+}) in such an approach has not been considered previously. We evaluate the effect of the presence of doubly ionized species on the characteristics of the plume, i.e., temperature, pressure, and expansion velocity, and on the material itself by evaluating the ablation depth and plasma shielding effects. This study evaluates the effects of the doubly charged species using a non-equilibrium hydrodynamic approach which comprises a contribution to the understanding of the governing processes of the interaction of ultraviolet nanosecond laser pulses with metals and the parameter optimization depending on the intended application.

  20. Modifications of aluminum film caused by micro-plasmoids and plasma spots in the effluent of an argon non-equilibrium plasma jet

    NASA Astrophysics Data System (ADS)

    Engelhardt, Max; Ries, Stefan; Hermanns, Patrick; Bibinov, Nikita; Awakowicz, Peter

    2017-09-01

    A smooth layer of hard aluminium film is deposited onto a glass substrate with a multi-frequency CCP discharge and then treated in the effluent of a non-equilibrium atmospheric pressure plasma jet (N-APPJ) operated with Ar flow. A thin filament is formed in the argon N-APPJ through contraction of a diffuse feather-like discharge. The aluminium surface treated in the effluents of the N-APPJ is significantly modified. Erosion tracks of different forms and micro-balls composed of aluminium are observed on the treated surface. Based on CCD images of active plasma discharge channels, SEM images of the treated surface and current-voltage characteristics, these surface modifications are interpreted as traces of plasma spots and plasmoids. Plasma spots are focused plasma channels, which are characterized by an intense emission in CCD images at the contact point of a plasma channel with the treated metal surface and by deep short tracks on the aluminium surface, observed in SEM images. Plasmoids are plasma objects without contact to any power supply which can produce long, thin and shallow traces, as can be observed on the treated surface using electron microscopy. Based on observed traces and numerous transformations of plasma spots to plasmoids and vice versa, it is supposed that both types of plasma objects are formed by an extremely high axial magnetic field and differ from each other due to the existence or absence of contact to a power supply and the consequential transport of electric current. The reason for the magnetic field at the axis of these plasma objects is possibly a circular current of electron pairs in vortices, which are formed in plasma by the interaction of ionization waves with the substrate surface. The extremely high magnetic field of plasma spots and plasmoids leads to a local destruction of the metal film and top layer of the glass substrate and to an attraction of paramagnetic materials, namely aluminium and oxygen. The magnetic attraction of

  1. Basic Studies on High Pressure Air Plasmas

    DTIC Science & Technology

    2006-08-30

    33, 2268 (2000). [3] Non- Equilibrium Air Plasmas at Atmospheric Pressure, K.H. Becker, U. Kogelschatz, K.H. Schoenbach, and R.J. Barker, eds., IOP...10). Note that LIFBASE assumes local thermodynamic equilibrium . 120 100 oExperimentalm Siuation 80 60 20- 0 -J ~ LkXi 3060 3070 3080 3090 3100...Dual laser interferometer for plasma density measurements on large tokamaks >>, Rev. Sci. Instrum. 49 p.919 (1978) [5] C.W. Gowers, C. Lamb, « A

  2. Stark broadening for diagnostics of the electron density in non-equilibrium plasma utilizing isotope hydrogen alpha lines

    SciTech Connect

    Yang, Lin; Tan, Xiaohua; Wan, Xiang; Chen, Lei; Jin, Dazhi; Qian, Muyang; Li, Gongping

    2014-04-28

    Two Stark broadening parameters including FWHM (full width at half maximum) and FWHA (full width at half area) of isotope hydrogen alpha lines are simultaneously introduced to determine the electron density of a pulsed vacuum arc jet. To estimate the gas temperature, the rotational temperature of the C{sub 2} Swan system is fit to 2500 ± 100 K. A modified Boltzmann-plot method with b{sub i}-factor is introduced to determine the modified electron temperature. The comparison between results of atomic and ionic lines indicates the jet is in partial local thermodynamic equilibrium and the electron temperature is close to 13 000 ± 400 K. Based on the computational results of Gig-Card calculation, a simple and precise interpolation algorithm for the discrete-points tables can be constructed to obtain the traditional n{sub e}-T{sub e} diagnostic maps of two Stark broadening parameters. The results from FWHA formula by the direct use of FWHM = FWHA and these from the diagnostic map are different. It can be attributed to the imprecise FWHA formula form and the deviation between FWHM and FWHA. The variation of the reduced mass pair due to the non-equilibrium effect contributes to the difference of the results derived from two hydrogen isotope alpha lines. Based on the Stark broadening analysis in this work, a corrected method is set up to determine n{sub e} of (1.10 ± 0.08) × 10{sup 21} m{sup −3}, the reference reduced mass μ{sub 0} pair of (3.30 ± 0.82 and 1.65 ± 0.41), and the ion kinetic temperature of 7900 ± 1800 K.

  3. NON-EQUILIBRIUM MODELING OF THE FE XVII 3C/3D LINE RATIO IN AN INTENSE X-RAY FREE-ELECTRON LASER EXCITED PLASMA

    SciTech Connect

    Loch, S. D.; Ballance, C. P.; Li, Y.; Fogle, M.; Fontes, C. J.

    2015-03-01

    Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe xvii 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe xvii spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.

  4. State-by-state emission spectra fitting for non-equilibrium plasmas: OH spectra of surface barrier discharge at argon/water interface

    NASA Astrophysics Data System (ADS)

    Voráč, Jan; Synek, Petr; Procházka, Vojtěch; Hoder, Tomáš

    2017-07-01

    Optical emission spectroscopy applied to non-equilibrium plasmas in molecular gases can give important information on basic plasma parameters, including the rotational and vibrational temperatures and densities of the investigated radiative states. In order to precisely understand the non-equilibrium of rotational-vibrational state distribution from the investigated spectra without limiting presumptions, a state-by-state temperature-independent fitting procedure is the ideal approach. In this paper, we present a novel software tool developed for this purpose, freely available for the scientific community. The introduced tool offers a convenient way to construct Boltzmann plots even from partially overlapping spectra, in a user-friendly environment. We apply the novel software to the challenging case of OH spectra in surface streamer discharges generated from the triple-line of the argon/water/dielectrics interface. After the barrier discharge is characterised by ICCD and electrical measurements, the spatially and phase resolved rotational temperatures from N2(C-B) and OH(A-X) spectra are determined and compared. The precise analysis shows that OH(A) states with quantum numbers ≤ft({{v}\\prime}=0,~9≤slant {{N}\\prime}≤slant 13\\right) are overpopulated with respect to the found two-Boltzmann distribution. We hypothesise that fast vibrational-energy transfer is responsible for this phenomenon, observed here for the first time. Finally, the vibrational temperature of the plasma and the relative populations of hot and cold OH(A) states are quantified spatially and phase resolved.

  5. Influence of Additive Gas on Electrical and Optical Characteristics of Non-equilibrium Atmospheric Pressure Argon Plasma Jet

    NASA Astrophysics Data System (ADS)

    Fei, Xiaomeng; Shin-ichi, Kuroda; Yuki, Kondo; Tamio, Mori; Katsuhiko, Hosoi

    2011-10-01

    Electrical and optical properties of an argon plasma jet were characterized. In particular, effects of an additive gas, namely nitrogen or oxygen, on these properties were studied in detail. The plasma jet was found to be of a glow-like discharge, which scarcely changed upon the injection of an additive gas, either directly or through a glass capillary. Optical emission spectroscopy characterization revealed that excited argon atoms were the predominant active species in this plasma jet. Metastable argon atoms were highly quenched, and N2(C3Πu) became the main energy carrier following nitrogen injection. When oxygen was added to the afterglow zone through a glass capillary, no significant quenching effect was observed and the number of oxygen atoms decreased with the increase in oxygen concentration. Finally, to demonstrate an application of this plasma jet, a high-density polyethylene surface was treated with argon, argon/nitrogen, and argon/oxygen plasmas.

  6. Non-equilibrium proteins.

    PubMed

    Klonowski, W

    2001-07-01

    There exist no methodical studies concerning non-equilibrium systems in cellular biology. This paper is an attempt to partially fill this shortcoming. We have undertaken an extensive data-mining operation in the existing scientific literature to find scattered information about non-equilibrium subcellular systems, in particular concerning fast proteins, i.e. those with short turnover half-time. We have advanced the hypothesis that functionality in fast proteins emerges as a consequence of their intrinsic physical instability that arises due to conformational strains resulting from co-translational folding (the interdependence between chain elongation and chain folding during biosynthesis on ribosomes). Such intrinsic physical instability, a kind of conformon (Klonowski-Klonowska conformon, according to Ji, (Molecular Theories of Cell Life and Death, Rutgers University Press, New Brunswick, 1991)) is probably the most important feature determining functionality and timing in these proteins. If our hypothesis is true, the turnover half-time of fast proteins should be positively correlated with their molecular weight, and some experimental results (Ames et al., J. Neurochem. 35 (1980) 131) indeed demonstrated such a correlation. Once the native structure (and function) of a fast protein macromolecule is lost, it may not be recovered--denaturation of such proteins will always be irreversible; therefore, we searched for information on irreversible denaturation. Only simulation and modeling of protein co-translational folding may answer the questions concerning fast proteins (Ruggiero and Sacile, Med. Biol. Eng. Comp. 37 (Suppl. 1) (1999) 363). Non-equilibrium structures may also be built up of protein subunits, even if each one taken by itself is in thermodynamic equilibrium (oligomeric proteins; sub-cellular sol-gel dissipative network structures).

  7. Reaction of carbon tetrachloride with methane in a non-equilibrium plasma at atmospheric pressure, and characterisation of the polymer thus formed.

    PubMed

    Gaikwad, Vaibhav; Kennedy, Eric; Mackie, John; Holdsworth, Clovia; Molloy, Scott; Kundu, Sazal; Stockenhuber, Michael; Dlugogorski, Bogdan

    2014-09-15

    In this paper we focus on the development of a methodology for treatment of carbon tetrachloride utilising a non-equilibrium plasma operating at atmospheric pressure, which is not singularly aimed at destroying carbon tetrachloride but rather at converting it to a non-hazardous, potentially valuable commodity. This method encompasses the reaction of carbon tetrachloride and methane, with argon as a carrier gas, in a quartz dielectric barrier discharge reactor. The reaction is performed under non-oxidative conditions. Possible pathways for formation of major products based on experimental results and supported by quantum chemical calculations are outlined in the paper. We elucidate important parameters such as carbon tetrachloride conversion, product distribution, mass balance and characterise the chlorinated polymer formed in the process.

  8. Evaluation of Penicillium digitatum sterilization using non-equilibrium atmospheric pressure plasma by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Hiraoka, Takehiro; Ebizuka, Noboru; Takeda, Keigo; Ohta, Takayuki; Kondo, Hiroki; Ishikawa, Kenji; Kawase, Kodo; Ito, Masafumi; Sekine, Makoto; Hori, Masaru

    2011-10-01

    Recently, the plasma sterilization has attracted much attention as a new sterilization technique that takes the place of spraying agricultural chemicals. The conventional methods for sterilization evaluation, was demanded to culture the samples for several days after plasma treatment. Then, we focused on Terahertz time-domain spectroscopy (THz-TDS). At the THz region, vibrational modes of biological molecules and fingerprint spectra of biologically-relevant molecules were also observed. In this study, our purpose was measurement of the fingerprint spectrum of the Penicillium digitatum (PD) spore and establishment of sterilization method by THz-TDS. The sample was 40mg/ml PD spore suspensions which dropped on cover glass. The atmospheric pressure plasma generated under the conditions which Ar gas flow was 3slm, and alternating voltage of 6kV was applied. The samples were exposed the plasma from 10mm distance for 10 minutes. We could obtain the fingerprint spectrum of the PD spore from 0.5 to 0.9THz. This result indicated the possibility of in-situ evaluation for PD sterilization using THz-TDS.

  9. Kinetic modelling of NH3 production in N2-H2 non-equilibrium atmospheric-pressure plasma catalysis

    NASA Astrophysics Data System (ADS)

    Hong, Jungmi; Pancheshnyi, Sergey; Tam, Eugene; Lowke, John J.; Prawer, Steven; Murphy, Anthony B.

    2017-04-01

    Detailed plasma kinetics modelling is presented of a low electron energy N2-H2 atmospheric-pressure discharge for ammonia synthesis. The model considers both electron and vibrational kinetics, including excited N2(X, ν) and H2(X, ν) species, and surface reactions such as those occurring by the Eley-Rideal and Langmuir-Hinshelwood mechanisms and dissociative adsorption of molecules. The predictions of the model are compared to the measured NH3 concentration produced in a packed-bed dielectric barrier discharge reactor as a function of process parameters such as input gas composition and applied voltage. Unlike typical low-pressure plasma processes, under the plasma conditions considered here (reduced electric field E/N in the range 30-50 Td, electron density of the order 108 cm-3), the influence of ions is not significant. Instead, the reactions between radicals and vibrationally-excited molecules are more important. The active species in surface reactions, such as surface-adsorbed atomic nitrogen N(s) or hydrogen H(s), are found to be predominantly generated through the dissociative adsorption of molecules, in contrast to previously proposed mechanisms for plasma catalysis under low-pressure, high-E/N conditions. It is found that NH radicals play an important role at the early stages of the NH3-generation process, NH in turn is produced from N and H2(ν). Electron kinetics is shown to play a critical role in the molecular dissociation and vibrational excitation reactions that produce these precursors. It is further found that surface-adsorbed atomic hydrogen H(s) takes a leading role in the formation of NH3, which is another significant difference from the mechanisms in conventional thermo-chemical processes and low-pressure plasmas. The applied voltage, the gas temperature, the N2:H2 ratio in the input gas mixture and the reactivity of the surface material are all found to influence the ammonia production. The calculated results reproduce the observed trends in

  10. Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation.

    PubMed

    Cheng, Qijin; Tam, Eugene; Xu, Shuyan; Ostrikov, Kostya Ken

    2010-04-01

    Nanophase nc-Si/a-SiC films that contain Si quantum dots (QDs) embedded in an amorphous SiC matrix were deposited on single-crystal silicon substrates using inductively coupled plasma-assisted chemical vapor deposition from the reactive silane and methane precursor gases diluted with hydrogen at a substrate temperature of 200 degrees C. The effect of the hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen-to-silane plus methane gases), ranging from 0 to 10.0, on the morphological, structural, and compositional properties of the deposited films, is extensively and systematically studied by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier-transform infrared absorption spectroscopy, and X-ray photoelectron spectroscopy. Effective nanophase segregation at a low hydrogen dilution ratio of 4.0 leads to the formation of highly uniform Si QDs embedded in the amorphous SiC matrix. It is also shown that with the increase of X, the crystallinity degree and the crystallite size increase while the carbon content and the growth rate decrease. The obtained experimental results are explained in terms of the effect of hydrogen dilution on the nucleation and growth processes of the Si QDs in the high-density plasmas. These results are highly relevant to the development of next-generation photovoltaic solar cells, light-emitting diodes, thin-film transistors, and other applications.

  11. Non-equilibrium of charged particles in swarms and plasmas—from binary collisions to plasma effects

    NASA Astrophysics Data System (ADS)

    Petrović, Z. Lj; Simonović, I.; Marjanović, S.; Bošnjaković, D.; Marić, D.; Malović, G.; Dujko, S.

    2017-01-01

    In this article we show three quite different examples of low-temperature plasmas, where one can follow the connection of the elementary binary processes (occurring at the nanoscopic scale) to the macroscopic discharge behavior and to its application. The first example is on the nature of the higher-order transport coefficient (second-order diffusion or skewness); how it may be used to improve the modelling of plasmas and also on how it may be used to discern details of the relevant cross sections. A prerequisite for such modeling and use of transport data is that the hydrodynamic approximation is applicable. In the second example, we show the actual development of avalanches in a resistive plate chamber particle detector by conducting kinetic modelling (although it may also be achieved by using swarm data). The current and deposited charge waveforms may be predicted accurately showing temporal resolution, which allows us to optimize detectors by adjusting the gas mixture composition and external fields. Here kinetic modeling is necessary to establish high accuracy and the details of the physics that supports fluid models that allows us to follow the transition to streamers. Finally, we show an example of positron traps filled with gas that, for all practical purposes, are a weakly ionized gas akin to swarms, and may be modelled in that fashion. However, low pressures dictate the need to apply full kinetic modelling and use the energy distribution function to explain the kinetics of the system. In this way, it is possible to confirm a well established phenomenology, but in a manner that allows precise quantitative comparisons and description, and thus open doors to a possible optimization.

  12. Femtosecond, two-photon-absorption, laser-induced-fluorescence (fs-TALIF) imaging of atomic hydrogen and oxygen in non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob B.; Roy, Sukesh; Kulatilaka, Waruna D.; Shkurenkov, Ivan; Adamovich, Igor V.; Lempert, Walter R.; Gord, James R.

    2017-01-01

    Femtosecond, two-photon-absorption laser-induced fluorescence (fs-TALIF) is employed to measure space- and time-resolved distributions of atomic hydrogen and oxygen in moderate-pressure, non-equilibrium, nanosecond-duration pulsed-discharge plasmas. Temporally and spatially resolved hydrogen and oxygen TALIF images are obtained over a range of low-temperature plasmas in mixtures of helium and argon at 100 Torr total pressure. The high-peak-intensity, low-average-energy fs pulses combined with the increased spectral bandwidth compared to traditional ns-duration laser pulses provide a large number of photon pairs that are responsible for the two-photon excitation, which results in an enhanced TALIF signal. Krypton and xenon TALIF are used for quantitative calibration of the hydrogen and oxygen concentrations, respectively, with similar excitation schemes being employed. This enables 2D collection of atomic-hydrogen and -oxygen TALIF signals with absolute number densities ranging from 2  ×  1012 cm-3 to 6  ×  1015 cm-3 and 1  ×  1013 cm-3 to 3  ×  1016 cm-3, respectively. These 2D images are the first application of TALIF imaging in moderate-pressure plasma discharges. 1D self-consistent modeling predictions show agreement with experimental results within the estimated experimental error of 25%. The present results can be used to further the development of higher fidelity kinetic models while quantifying plasma-source characteristics.

  13. The Effect of Contact Non-equilibrium Plasma on Structural and Magnetic Properties of Mn X Fe3 - X O4 Spinels

    NASA Astrophysics Data System (ADS)

    Frolova, L. A.; Derhachov, M. P.

    2017-08-01

    Nano-sized manganese ferrites Mn x Fe3 - x O4 ( x = 0-1.3) were prepared using contact non-equilibrium plasma (CNP) in two different pH (11.5 and 12.5). The influence of synthesis conditions (e.g., cation ratio and initial pH) on phase composition, crystallite size, and magnetic properties were investigated employing X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurement techniques. The formation of monodispersed faceted ferrite particles at x = 0-0.8 was shown. The FTIR spectra revealed reflection in region 1200-1700 cm-1 caused by the presence of water adsorbed on the surface of Fe3 - x Mn x O4 micro-granules or embedded into their crystal lattice. The most sensitivity of reflection spectra to the composition changes takes place within a 400-1200 cm-1 range, typical to the stretching vibrations of Fe(Mn)-O (up to 700 cm-1 ), Fe(Mn)-OH, and Fe(Mn)-OH2 bonds (over 700 cm-1). The XRD results showed that the nanocrystalline Mn x Fe3 - x O4 (0 < x < 1.0) had cubic spinel crystal structure with average crystallite size 48-49 A. The decrease of crystalline size with the x increase was also observed.

  14. Non-equilibrium nanosecond-pulsed plasma generation in the liquid phase (water, PDMS) without bubbles: fast imaging, spectroscopy and leader-type model

    NASA Astrophysics Data System (ADS)

    Dobrynin, Danil; Seepersad, Yohan; Pekker, Mikhail; Shneider, Mikhail; Friedman, Gary; Fridman, Alexander

    2013-03-01

    In this paper we report the results on study of the non-equilibrium nanosecond discharge generation in liquid media. Here we studied the discharge in both water and silicon transformer oil, and present our findings on discharge behaviour depending on global (applied) electric, discharge emission spectrum and shadow imaging of the discharge. We also discuss possible scenarios of non-equilibrium nanosecond discharge development and suggest that the discharge operates in a leader-type regime supported by the electrostriction effect—creation of nano-sized pores in liquid due to high local electric field.

  15. Non-Equilibrium Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ciccotti, Giovanni; Kapral, Raymond; Sergi, Alessandro

    Statistical mechanics provides a well-established link between microscopic equilibrium states and thermodynamics. If one considers systems out of equilibrium, the link between microscopic dynamical properties and non-equilibrium macroscopic states is more difficult to establish [1,2]. For systems lying near equilibrium, linear response theory provides a route to derive linear macroscopic laws and the microscopic expressions for the transport properties that enter the constitutive relations. If the system is displaced far from equilibrium, no fully general theory exists to treat such systems. By restricting consideration to a class of non-equilibrium states which arise from perturbations (linear or non-linear) of an equilibrium state, methods can be developed to treat non-equilibrium states. Furthermore, non-equilibrium molecular dynamics (NEMD) simulation methods can be devised to provide estimates for the transport properties of these systems.

  16. Pulse-Periodic Regimes of Kinetic Instabilities in the Non-Equilibrium Plasma of an Electron Cyclotron Resonance Discharge Maintained by Continuous-Wave Radiation of a 24 GHz Gyrotron

    NASA Astrophysics Data System (ADS)

    Mansfeld, D. A.; Viktorov, M. E.; Vodopyanov, A. V.

    2017-01-01

    We have experimentally discovered an instability, which manifests itself as precipitations of hot electrons occurring synchronously with generation of bursts of electromagnetic radiation, in the plasma of an electron cyclotron resonance discharge maintained by a high-power, continuous-wave radiation of a 24 GHz gyrotron, for the first time. The observed instability has the kinetic nature and is determined by the formation of the non-equilibrium velocity distribution of hot particles. Two possible explanations are proposed for the mechanism of wave excitation in a two-component plasma with a stationary source of non-equilibrium particles. The results of the studies performed are of interest for modeling of the dynamics of magnetospheric cyclotron masers.

  17. Supersonic Jet Mixing with Vibrational Non-Equilibrium

    NASA Astrophysics Data System (ADS)

    Reising, Heath H.; Kc, Utsav; Varghese, Philip L.; Clemens, Noel T.

    2013-11-01

    A new study has been initiated to study the effect of vibrational non-equilibrium on turbulent mixing and combustion. This work is relevant to high-speed, high-temperature environments, such as scramjet combustors, where shocks and mixing can lead to high degrees of vibrational non-equilibrium. In this experimental study, a new facility has been developed that consists of a perfectly-expanded axisymmetric Mach 1.5 turbulent air jet issuing into an electrically heated co-flow of air for precise control of the temperature and thus vibrationally-active population. This hot flow can be brought into non-equilibrium when the co-flow fluid is rapidly mixed with the colder supersonic jet fluid. Effects of the non-equilibrium can be isolated by replacing the nitrogen in the flow with argon. The degree of non-equilibrium in the jet shear layers is quantified by using high-spectral resolution time-averaged spontaneous Raman scattering centered on the Stokes-shifted Q branch line of N2 at 607 nm. In this first phase of the study, the effect of non-equilibrium on the mixing field will be investigated, but future work will focus on H2-air combustion. Planar Rayleigh thermometry is utilized to investigate the effects of vibrational non-equilibrium on the turbulent structures and thermal dissipation field. This work was funded by the Air Force Office of Scientific Research under BRI grant FA9550-12-0460.

  18. Non-equilibrium supramolecular polymerization.

    PubMed

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-03-28

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  19. Non-equilibrium Majorana fluctuations

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2017-06-01

    Non-equilibrium physics of random events, or fluctuations, is a unique fingerprint of a given system. Here we demonstrate that in non-interacting systems with dynamics driven essentially by Majorana states the effective charge {e}* , characterizing the electric current fluctuations, is fractional. This is in contrast to non-interacting Dirac systems with the trivial electronic charge {e}* =e. In the Majorana state, however, we predict two different fractional effective charges at low and high energies, {e}{{l}}* =e/2 and {e}{{h}}* =3e/2, accessible at low and high bias voltages, respectively. We show that while the low-energy effective charge {e}{{l}}* is sensitive to thermal fluctuations of the current, the high-energy effective charge {e}{{h}}* is robust against thermal noise. A unique fluctuation signature of Majorana fermions is therefore encoded in the high-voltage tails of the electric current noise easily accessible in experiments on strongly non-equilibrium systems even at high temperatures.

  20. Open problems in non-equilibrium physics

    SciTech Connect

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  1. Non-equilibrium many body dynamics

    SciTech Connect

    Creutz, M.; Gyulassy, M.

    1997-09-22

    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.

  2. Local non-equilibrium thermodynamics.

    PubMed

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-16

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation.

  3. Non-equilibrium in cosmology

    NASA Astrophysics Data System (ADS)

    Pietroni, M.

    2009-02-01

    All the non-trivial features of the Universe we see around us, such as particles, stars, galaxies, and clusters of galaxies, are the result of non-equilibrium processes in the cosmic evolution. These lectures aim to provide some general background in cosmology and to examine specific, and notable, examples of departures from thermal equilibrium. They are organized as follows: 1) Overview of the thermal history of the Universe after the Big Bang: the relevant time-scales and the mechanism of particle decoupling from the themal bath; 2) Explicit examples of cosmic relics: nucleosynthesis, photons and the cosmic microwave background, neutrinos, and cold dark matter; 3) Baryogenesis: the generation of the baryon asymmetry of the Universe; 4) The formation of cosmic structures (galaxies, clusters of galaxies): from the Vlasov equation to the renormalization group.

  4. Local non-equilibrium thermodynamics

    PubMed Central

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  5. Simulation of a non-equilibrium helium plasma bullet emerging into oxygen at high pressure (250-760 Torr) and interacting with a substrate

    NASA Astrophysics Data System (ADS)

    Yan, Wen; Economou, Demetre J.

    2016-09-01

    A two-dimensional computational study of a plasma bullet emanating from a helium gas jet in oxygen ambient at high pressure (250-760 Torr) was performed, with emphasis on the bullet interaction with a substrate. Power was applied in the form of a trapezoidal +5 kV pulse lasting 150 ns. A neutral gas transport model was employed to predict the concentration distributions of helium and oxygen in the system. These were then used in a plasma dynamics model to investigate the characteristics of the plasma bullet during its propagation and interaction with a substrate. Upon ignition, the discharge first propagated as a surface wave along the inner wall of the containing tube, and then exited the tube with a well-defined ionization front (streamer or plasma bullet). The plasma bullet evolved from a hollow (donut-shaped) feature to one where the maximum of ionization was on axis. The bullet propagated in the gap between the tube exit and the substrate with an average speed of ˜2 × 105 m/s. Upon encountering a metal substrate, the bullet formed a conductive channel to the substrate. Upon encountering a dielectric substrate, the bullet turned into an ionization wave propagating radially along the substrate surface. For a conductive substrate, the radial species fluxes to the surface peaked on the symmetry axis. For a dielectric substrate, a ring-shaped flux distribution was observed. The "footprint" of plasma-surface interaction increased either by decreasing the gap between tube exit and substrate, decreasing the relative permittivity of an insulating substrate, or decreasing pressure. As the system pressure was lowered from 760 to 250 Torr, the discharge was initiated earlier, and the plasma bullet propagation speed increased. A reverse electric field developed during the late stages of the ramp-down of the pulse, which accelerated electrons forming a brief backward discharge.

  6. Relativistic Doppler reflection as a probe for the initial relaxation of a non-equilibrium electron-hole plasma in silicon

    NASA Astrophysics Data System (ADS)

    Thomson, Mark D.; Meng, Fanqi; Sernelius, Bo E.; Roskos, Hartmut G.

    2015-10-01

    This paper reviews the status of investigations of the relativistic Doppler reflection of a broadband terahertz pulse at a counter-propagating plasma front of photo-excited charge carriers in undoped silicon. When a THz pulse with 20-THz bandwidth impinges onto a moving plasma front with a carrier density in the range of 1019 per cm3, one observes a spectral up-shift, which is, however, much less pronounced than expected from simulations assuming a Drude plasma characterized by a single carrier relaxation time τ of the order of 15-100 fs. Qualitative agreement between simulations and experiments can be achieved if τ is chosen to be less than 5 fs. In order to explore carrier relaxation in more detail, optical-pump/THz-probe experiments in the conventional co-propagation geometry were performed. If the pump-probe delay is long enough for monitoring of the equilibrium value of the scattering time, τ ranges from 200 fs at low carrier density to 20 fs in the 1019-cm-3 density range. For small (sub-picosecond) pump-probe delay, the data reveal a significantly faster scattering, which slows down during energy relaxation of the charge carriers.

  7. Modeling of thermal and chemical non-equilibrium in a laser-induced aluminum plasma by means of a Collisional-Radiative model

    NASA Astrophysics Data System (ADS)

    Morel, V.; Bultel, A.; Chéron, B. G.

    2010-09-01

    A 0D numerical approach including a Collisional-Radiative model is elaborated in the purpose of describing the behavior of the nascent plasma resulting from the interaction between a 4 ns/65 mJ/532 nm Q-switched Nd:YAG laser pulse and an aluminum sample in vacuum. The heavy species considered are Al, Al +, Al 2+ and Al 3+ on their different excited states and free electrons. The translation temperatures of free electrons and heavy species are assumed different ( T e and TA respectively). Numerous elementary processes are accounted for as electron impact induced excitation and ionization, elastic collisions, multiphoton ionization and inverse Bremsstrahlung. Atoms passing from the sample to gas phase are described by using classical vaporization theory so that the surface temperature is arbitrarily limited to values less than the critical point one at 6700 K. The laser flux density considered in the study is therefore moderate with a fluence lower than 7 J cm - 2 . This model puts forward the major influence of multiphoton ionization in the plasma formation, whereas inverse Bremsstrahlung turns out to be quasi negligible. The increase of electron temperature is mainly due to multiphoton ionization and Te does not exceed 10,000 K. The electron induced collisions play an important role during the subsequent phase which corresponds to the relaxation of the excited states toward Boltzmann equilibrium. The electron density reaches its maximum during the laser pulse with a value ≈ 10 22, 10 23 m - 3 depending highly on the sample temperature. The ionization degree is of some percents in our conditions.

  8. Atomic physics and non-equilibrium plasmas

    SciTech Connect

    Weisheit, J.C.

    1986-04-25

    Three lectures comprise the report. The lecture, Atomic Structure, is primarily theoretical and covers four topics: (1) Non-relativistic one-electron atom, (2) Relativistic one-electron atom, (3) Non-relativistic many-electron atom, and (4) Relativistic many-electron atom. The lecture, Radiative and Collisional Transitions, considers the problem of transitions between atomic states caused by interactions with radiation or other particles. The lecture, Ionization Balance: Spectral Line Shapes, discusses collisional and radiative transitions when ionization and recombination processes are included. 24 figs., 11 tabs.

  9. Gas-discharge plasma initiated in air by a radiation pulse

    SciTech Connect

    Butakyi, V.I.; Tel'nikin, A.A.

    1985-08-01

    The authors consider the formation of a non-equilibrium gas-discharge plasma in air under the action of a radiation at a wavelength of 10.6 micrometers with a duration of 10/sup -6/ seconds. They show that the air discharge occurs under nonequilibrium conditions by formation of an autoionization complex with subsequent oscillatory excitation of molecules. They use the diffusion approximation to find the molecular distribution function over oscillatory degrees of freedom. They calculate the electron temperature and concentration in the breakdown plasma with consideration of multistep ionization of molecules and dissociative recombination of charged particles. In conclusion, they find that experimental results agree with their calculations.

  10. Characterization of non equilibrium effects on high quality critical flows

    SciTech Connect

    Camelo, E.; Lemonnier, H.; Ochterbeck, J.

    1995-09-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.

  11. Non-equilibrium Thermodynamics of Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sengupta, Aditi; Sengupta, Soumyo; Bhole, Ashish; Shruti, K. S.

    2016-04-01

    Here, the fundamental problem of Rayleigh-Taylor instability (RTI) is studied by direct numerical simulation (DNS), where the two air masses at different temperatures, kept apart initially by a non-conducting horizontal interface in a 2D box, are allowed to mix. Upon removal of the partition, mixing is controlled by RTI, apart from mutual mass, momentum, and energy transfer. To accentuate the instability, the top chamber is filled with the heavier (lower temperature) air, which rests atop the chamber containing lighter air. The partition is positioned initially at mid-height of the box. As the fluid dynamical system considered is completely isolated from outside, the DNS results obtained without using Boussinesq approximation will enable one to study non-equilibrium thermodynamics of a finite reservoir undergoing strong irreversible processes. The barrier is removed impulsively, triggering baroclinic instability by non-alignment of density, and pressure gradient by ambient disturbances via the sharp discontinuity at the interface. Adopted DNS method has dispersion relation preservation properties with neutral stability and does not require any external initial perturbations. The complete inhomogeneous problem with non-periodic, no-slip boundary conditions is studied by solving compressible Navier-Stokes equation, without the Boussinesq approximation. This is important as the temperature difference between the two air masses considered is high enough (Δ T = 70 K) to invalidate Boussinesq approximation. We discuss non-equilibrium thermodynamical aspects of RTI with the help of numerical results for density, vorticity, entropy, energy, and enstrophy.

  12. Non-equilibrium spatial dynamics of ecosystems.

    PubMed

    Guichard, Frederic; Gouhier, Tarik C

    2014-09-01

    Ecological systems show tremendous variability across temporal and spatial scales. It is this variability that ecologists try to predict and that managers attempt to harness in order to mitigate risk. However, the foundations of ecological science and its mainstream agenda focus on equilibrium dynamics to describe the balance of nature. Despite a rich body of literature on non-equilibrium ecological dynamics, we lack a well-developed set of predictions that can relate the spatiotemporal heterogeneity of natural systems to their underlying ecological processes. We argue that ecology needs to expand its current toolbox for the study of non-equilibrium ecosystems in order to both understand and manage their spatiotemporal variability. We review current approaches and outstanding questions related to the study of spatial dynamics and its application to natural ecosystems, including the design of reserves networks. We close by emphasizing the importance of ecosystem function as a key component of a non-equilibrium ecological theory, and of spatial synchrony as a central phenomenon for its inference in natural systems.

  13. Optical Properties in Non-equilibrium Phase Transitions

    SciTech Connect

    Ao, T; Ping, Y; Widmann, K; Price, D F; Lee, E; Tam, H; Springer, P T; Ng, A

    2006-01-05

    An open question about the dynamical behavior of materials is how phase transition occurs in highly non-equilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to non-thermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reaches a critical value.

  14. Non-equilibrium Dynamics of DNA Nanotubes

    NASA Astrophysics Data System (ADS)

    Hariadi, Rizal Fajar

    Can the fundamental processes that underlie molecular biology be understood and simulated by DNA nanotechnology? The early development of DNA nanotechnology by Ned Seeman was driven by the desire to find a solution to the protein crystallization problem. Much of the later development of the field was also driven by envisioned applications in computing and nanofabrication. While the DNA nanotechnology community has assembled a versatile tool kit with which DNA nanostructures of considerable complexity can be assembled, the application of this tool kit to other areas of science and technology is still in its infancy. This dissertation reports on the construction of non-equilibrium DNA nanotube dynamic to probe molecular processes in the areas of hydrodynamics and cytoskeletal behavior. As the first example, we used DNA nanotubes as a molecular probe for elongational flow measurement in different micro-scale flow settings. The hydrodynamic flow in the vicinity of simple geometrical objects, such as a rigid DNA nanotube, is amenable to rigorous theoretical investigation. We measured the distribution of elongational flows produced in progressively more complex settings, ranging from the vicinity of an orifice in a microfluidic chamber to within a bursting bubble of Pacific ocean water. This information can be used to constrain theories on the origin of life in which replication involves a hydrodynamically driven fission process, such as the coacervate fission proposed by Oparin. A second theme of this dissertation is the bottom-up construction of a de novo artificial cytoskeleton with DNA nanotubes. The work reported here encompasses structural, locomotion, and control aspects of non-equilibrium cytoskeletal behavior. We first measured the kinetic parameters of DNA nanotube assembly and tested the accuracy of the existing polymerization models in the literature. Toward recapitulation of non-equilibrium cytoskeletal dynamics, we coupled the polymerization of DNA

  15. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  16. Turbulence modeling for non-equilibrium flow

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1995-01-01

    The work performed during this year has involved further assessment and extension of the k-epsilon-v(exp 2) model, and initiation of work on scalar transport. The latter is introduced by the contribution of Y. Shabany to this volume. Flexible, computationally tractable models are needed for engineering CFD. As computational technology has progressed, the ability and need to use elaborate turbulence closure models has increased. The objective of our work is to explore and develop new analytical frameworks that might extend the applicability of the modeling techniques. In past years the development of a method for near-wall modeling was described. The method has been implemented into a CFD code and its viability has been demonstrated by various test cases. Further tests are reported herein. Non-equilibrium near-wall models are needed for some heat transfer applications. Scalar transport seems generally to be more sensitive to non-equilibrium effects than is momentum transport. For some applications turbulence anisotropy plays a role and an estimate of the full Reynolds stress tensor is needed. We have begun work on scalar transport per se, but in this brief I will only report on an extension of the k-epsilon-v(exp 2) model to predict the Reynolds stress tensor.

  17. In command of non-equilibrium.

    PubMed

    Roduner, Emil; Radhakrishnan, Shankara Gayathri

    2016-05-21

    The second law of thermodynamics is well known for determining the direction of spontaneous processes in the laboratory, life and the universe. It is therefore often called the arrow of time. Less often discussed but just as important is the effect of kinetic barriers which intercept equilibration and preserve highly ordered, high energy non-equilibrium states. Examples of such states are many modern materials produced intentionally for technological applications. Furthermore, all living organisms fuelled directly by photosynthesis and those fuelled indirectly by living on high energy nutrition represent preserved non-equilibrium states. The formation of these states represents the local reversal of the arrow of time which only seemingly violates the second law. It has been known since the seminal work of Prigogine that the stabilisation of these states inevitably requires the dissipation of energy in the form of waste heat. It is this feature of waste heat dissipation following the input of energy that drives all processes occurring at a non-zero rate. Photosynthesis, replication of living organisms, self-assembly, crystal shape engineering and distillation have this principle in common with the well-known Carnot cycle in the heat engine. Drawing on this analogy, we subsume these essential and often sophisticated driven processes under the term machinery of life.

  18. Why Non-Equilibrium is Different

    NASA Astrophysics Data System (ADS)

    Dorfman, J. Robert; Kirkpatrick, Theodore R.; Sengers, Jan V.

    The 1970 paper, "Decay of the Velocity Correlation Function" [Phys. Rev. A1, 18 (1970), see also Phys. Rev. Lett. 18, 988, (1967)] by Berni Alder and Tom Wainwright, demonstrated, by means of computer simulations, that the velocity autocorrelation function for a particle moving diffusively in a gas of hard disks decays algebraically in time as t-1, and as t-3/2 for a gas of hard spheres. These decays appear in non-equilibrium fluids and have no counterpart in fluids in thermodynamic equilibrium. The work of Alder and Wainwright stimulated theorists to find explanations for these "long time tails" using kinetic theory or a mesoscopic mode-coupling theory. This paper has had a profound influence on our understanding of the non-equilibrium properties of fluid systems. Here we discuss the kinetic origins of the long time tails, the microscopic foundations of modecoupling theory, and the implications of these results for the physics of fluids. We also mention applications of the long time tails and mode-coupling theory to other, seemingly unrelated, fields of physics. We are honored to dedicate this short review to Berni Alder on the occasion of his 90th birthday!

  19. Non-Equilibrium Ionization Modeling of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Rimple, Remington; Murphy, Nicholas Arnold; Shen, Chengcai

    2017-01-01

    Coronal Mass Ejections, or CMEs, are solar events that eject plasma and magnetic flux into interplanetary space. Contemporary sources have noted that the onset of CMEs are caused by some instability of the coronal magnetic field, and further allows heating of plasma upon expansion. Additionally, plasma that leaves the lower solar corona does not remain in ionization equilibrium due to the rapid expansion of plasma. We investigate the evolution of charge states of CME plasma using non-equilibrium ionization (NEI) modeling. These NEI models include radiative cooling and serve as baseline studies for special cases where no heat is being added to the plasma. Each of the simulated CMEs have initial conditions characteristic of active regions. Various function inputs, such as initial temperature, density and final velocity, allow us to examine the influence of certain parameters on the charge state evolution. The results of our project show that plasma originating from active regions display charge state evolutions substantially dependent on initial density and temperature. The CMEs starting with higher plasma density often show an abundance of lower charge states above the freeze-in height. Simulations starting from higher temperatures often show abundance peaks at charge states with closed electron shells.

  20. Screening in humid air plasmas

    NASA Astrophysics Data System (ADS)

    Filippov, Anatoly; Derbenev, Ivan; Dyatko, Nikolay; Kurkin, Sergey

    2016-09-01

    Low temperature air plasmas containing H2O molecules are of high importance for atmospheric phenomena, climate control, biomedical applications, surface processing, and purification of air and water. Humid air plasma created by an external ionization source is a good model of the troposphere where ions are produced by the galactic cosmic rays and decay products of air and soil radioactive elements such as Rn222. The present paper is devoted to study the ionic composition and the screening in an ionized humid air at atmospheric pressure and room temperature. The ionization rate is varied in the range of 101 -1018 cm-3s-1. The humid air with 0 - 1 . 5 % water admixture that corresponds to the relative humidity of 0 - 67 % at the air temperature equal to 20°C is considered. The ionic composition is determined on the analysis of more than a hundred processes. The system of 41 non-steady state particle number balance equations is solved using the 4th order Runge-Kutta method. The screening of dust particle charge in the ionized humid air are studied within the diffusion-drift approach. The screening constants are well approximated by the inverse Debye length and characteristic lengths of recombination and attachment processes. This work was supported by the Russian Science Foundation, Project No. 16-12-10424.

  1. High-Fidelity Real Gas Model for RF Excited Plasma Flow Control - A Three Dimensional Analysis With Air Chemistry

    DTIC Science & Technology

    2008-05-31

    code for mitigating inert gas flow separation using rf-driven dielectric barrier discharge. In this effort we: (l) develop multi-dimensional first...such detailed plasma kinetics based effort has not been reported before. During the development of this project we have worked in close collaboration... develop multi-dimensional first principles based N2/GŖair chemistry models for the non-equilibrium real gas discharge, and (2) implement it in a finite

  2. NON-EQUILIBRIUM ELECTRONS IN THE OUTSKIRTS OF GALAXY CLUSTERS

    SciTech Connect

    Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T.; Nelson, Kaylea E-mail: camille.avestruz@yale.edu

    2015-08-01

    The analysis of X-ray and Sunyaev–Zel’dovich measurements of the intracluster medium (ICM) assumes that electrons are in thermal equilibrium with ions in the plasma. However, in the outskirts of galaxy clusters, the electron–ion equilibration timescale can become comparable to the Hubble time, leading to systematic biases in cluster mass estimates and mass-observable scaling relations. To quantify an upper limit of the impact of non-equilibrium electrons, we use a mass-limited sample of simulated galaxy clusters taken from a cosmological simulation with a two-temperature model that assumes the Spitzer equilibration time for the electrons and ions. We show that the temperature bias is more pronounced in more massive and rapidly accreting clusters. For the most extreme case, we find that the bias is of the order of 10% at half of the cluster virial radius and increases to 40% at the edge of the cluster. Gas in filaments is less susceptible to the non-equilibrium effect, leading to azimuthal variations in the temperature bias at large cluster-centric radii. Using mock Chandra observations of simulated clusters, we show that the bias manifests in ultra-deep X-ray observations of cluster outskirts and quantify the resulting biases in hydrostatic mass and cluster temperature derived from these observations. We provide a mass-dependent fitting function for the temperature bias profile, which can be useful for modeling the effect of electron-ion equilibration in galaxy clusters.

  3. Non-equilibrium Thermodynamics of Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sengupta, Aditi; Shruti, K. S.; Sengupta, Soumyo; Bhole, Ashish

    2016-10-01

    Rayleigh-Taylor instability (RTI) has been studied here as a non-equilibrium thermodynamics problem. Air masses with temperature difference of 70K, initially with heavier air resting on lighter air isolated by a partition, are allowed to mix by impulsively removing the partition. This results in interface instabilities, which are traced here by solving two dimensional (2D) compressible Navier-Stokes equation (NSE), without using Boussinesq approximation (BA henceforth). The non-periodic isolated system is studied by solving NSE by high accuracy, dispersion relation preserving (DRP) numerical methods described in Sengupta T.K.: High Accuracy Computing Method (Camb. Univ. Press, USA, 2013). The instability onset is due to misaligned pressure and density gradients and is evident via creation and evolution of spikes and bubbles (when lighter fluid penetrates heavier fluid and vice versa, associated with pressure waves). Assumptions inherent in compressible formulation are: (i) Stokes' hypothesis that uses zero bulk viscosity assumption and (ii) the equation of state for perfect gas which is a consequence of equilibrium thermodynamics. Present computations for a non-equilibrium thermodynamic process do not show monotonic rise of entropy with time, as one expects from equilibrium thermodynamics. This is investigated with respect to the thought-experiment. First, we replace Stokes' hypothesis, with another approach where non-zero bulk viscosity of air is taken from an experiment. Entropy of the isolated system is traced, with and without the use of Stokes' hypothesis. Without Stokes' hypothesis, one notes the rate of increase in entropy to be higher as compared to results with Stokes' hypothesis. We show this using the total entropy production for the thermodynamically isolated system. The entropy increase from the zero datum is due to mixing in general; punctuated by fluctuating entropy due to creation of compression and rarefaction fronts originating at the interface

  4. A numerical study of high-pressure non-equilibrium streamers for combustion ignition application

    NASA Astrophysics Data System (ADS)

    Breden, Douglas; Raja, Laxminarayan L.; Idicheria, Cherian A.; Najt, Paul M.; Mahadevan, Shankar

    2013-08-01

    We present a computational simulation study of non-equilibrium streamer discharges in a coaxial electrode and a corona geometry for automotive combustion ignition applications. The streamers propagate in combustible fuel-air mixtures at high pressures representative of internal combustion engine conditions. The study was performed using a self-consistent, two-temperature plasma model with finite-rate plasma chemical kinetics. Positive high voltage pulses of order tens of kV and duration of tens of nanoseconds were applied to the powered inner cylindrical electrode which resulted in the formation and propagation of a cathode-directed streamer. The resulting spatial and temporal production of active radical species such as O, H, and singlet delta oxygen is quantified and compared for lean and stoichiometric fuel-air mixtures. For the coaxial electrode geometry, the discharge is characterized by a primary streamer that bridges the inter-electrode gap and a secondary streamer that develops in the wake of the primary streamer. Most of the radicals are produced in the secondary streamer. For the corona geometry, only the primary streamer is observed and the radicals are produced throughout the length of the primary streamer column. The stoichiometry of the mixture was observed to have a relatively small effect on both the plasma discharge structure and the resulting yield of radical species.

  5. Dissipation in non-equilibrium turbulence

    NASA Astrophysics Data System (ADS)

    Bos, Wouter; Rubinstein, Robert

    2016-11-01

    For about a decade, experimental and numerical studies have reported on the existence of an anomalous behaviour of the viscous dissipation rate in unsteady turbulence (see for instance Vassilicos, Annu. Rev. Fluid Mech. 2015). It appears that the short-time transient dynamics can be described by a universal power law, incompatible with Taylor's 1935 dissipation rate estimate. We show that these results can be explained using a non-equilibrium energy distribution, obtained from a low-frequency perturbative expansion of simple spectral closure. The resulting description is fairly simple. In particular, during the transient, according to the predictions, the normalized dissipation rate Cɛ evolves as a function of the Taylor-scale Reynolds number Rλ following the relation Cɛ Rλ- 15 / 14 , in close agreement with experimental and numerical observations.

  6. Non-equilibrium quantum heat machines

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  7. Non-equilibrium phenomena in disordered colloidal solids

    NASA Astrophysics Data System (ADS)

    Yunker, Peter

    Colloidal particles are a convenient tool for studying a variety of non-equilibrium phenomena. I will discuss experiments that investigate the aging and non-equilibrium growth of disordered solids. In the first set of experiments, colloidal glasses are rapidly formed to study aging in jammed packings. A colloidal fluid, composed of micron-sized temperature-sensitive pNIPAM particles, is rapidly quenched into a colloidal glass. After the glass is formed, collective rearrangements occur as the glass ages. Particles that undergo irreversible rearrangements, which break nearest-neighbor pairings and allow the glass to relax, are identified. These irreversible rearrangements are accompanied by large clusters of fast moving particles; the number of particles involved in these clusters increases as the glass ages, leading to the slowing of dynamics that is characteristic of aging. In the second set of experiments, we study the role particle shape, and thus, interparticle interaction, plays in the formation of disordered solids with different structural and mechanical properties. Aqueous suspensions of colloidal particles with different shapes evaporate on glass slides. Convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow heterogeneously from the edge on the air-water interface. Three distinct growth processes were discovered in the evaporating colloidal suspensions by tuning particle shape-dependent capillary interactions and thus varying the microscopic rules of deposition. Mechanical testing of these particulate deposits reveals that the deposit bending rigidity increases as particles become more anisotropic in shape.

  8. Non equilibrium statistical mechanics of geophysical flows

    NASA Astrophysics Data System (ADS)

    Bouchet, F.

    2012-04-01

    Onsager first proposed to explain the self organization of turbulent flows using the statistical mechanics framework. Generalization of those ideas to the class of 2D-Euler and Quasi-Gestrophic models led to the Robert-Sommeria-Miller theory. This approach was successful in modeling many geophysical phenomena: the Great Red Spot of Jupiter [2, 1], drift of mesoscale ocean vortices [3, 1], self-organization of Quasi-Geostrophic dynamics in mid-basin jets similar to the Gulf-Stream and the Kuroshio [3, 1], and so on. However, this type of equilibrium theories fail to take into account forces and dissipation. This is a strong limitation for many geophysical phenomena. Interestingly, it is possible to circumvent these difficulties using the most modern theoretical development of non-equilibrium statistical mechanics: large deviation [4] and instanton theories. As an example, we will discuss geophysical turbulent flows which have more than one attractor (bistability or mutistability). For instance, paths of the Kuroshio [5], the Earth's magnetic field reversal, atmospheric flows [6], MHD experiments [7], 2D turbulence experiments [8, 9], 3D flows [10] show this kind of behavior. On Navier-Stokes and Quasi-Geostrophic turbulent flows, we predict the conditions for existence of rare transitions between attractors, and the dynamics of those transitions. We discuss how these results are probably connected to the long debated existence of multi-stability in the atmosphere and oceans, and how non-equilibrium statistical mechanics can allow to settle this issue. Generalization of statistical mechanics to more comprehensive hydrodynamical models, which include gravity wave dynamics and allow for the possibility of energy transfer through wave motion, would be extremely interesting. Namely, both are essential in understanding energy balance of geophysical flows. However, due to difficulties in essential theoretical parts of the statistical mechanics approach, previous methods

  9. Non-equilibrium thermodynamics of gravitational screens

    NASA Astrophysics Data System (ADS)

    Freidel, Laurent; Yokokura, Yuki

    2015-11-01

    We study the Einstein gravity equations projected on a timelike surface, which represents the time evolution of what we call a gravitational screen. We show that such a screen behaves like a viscous bubble with a surface tension and an internal energy, and that the Einstein equations take the same forms as non-equilibrium thermodynamic equations for a viscous bubble. We provide a consistent dictionary between gravitational and thermodynamic variables. In the non-viscous cases there are three thermodynamic equations that characterize a bubble dynamics: these are the first law, the Marangoni flow equation and the Young-Laplace equation. In all three equations the surface tension plays a central role: in the first law it appears as a work term per unit area, in the Marangoni flow its gradient drives a force, and in the Young-Laplace equation it contributes to a pressure proportional to the surface curvature. The gravity equations appear as a natural generalization of these bubble equations when the bubble itself is viscous and dynamical. In particular, this approach shows that the mechanism of entropy production for the viscous bubble is mapped onto the production of gravitational waves. We also review the relationship between surface tension and temperature, and discuss black-hole thermodynamics.

  10. Gibbsian Stationary Non-equilibrium States

    NASA Astrophysics Data System (ADS)

    De Carlo, Leonardo; Gabrielli, Davide

    2017-09-01

    We study the structure of stationary non-equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible transition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated with functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.

  11. Tomographic optical emission spectroscopy of a high enthalpy air plasma flow.

    PubMed

    Hermann, Tobias; Löhle, Stefan; Fasoulas, Stefanos; Andrianatos, Andreas

    2016-12-20

    A method is presented allowing for locally resolved emission spectroscopy using a tomographic setup. The approach presented in this work is applied to a high enthalpy air plasma flow. The resulting data sets allow for a three-dimensional (3D) representation of the non-symmetric flow field using photographs of the test section and 2D representation of the spectrally resolved radiance of the flow field. An analysis of different exposure times shows that transient fluctuations of the plasma can result in substantial asymmetry that approaches symmetry only for longer exposure times when the temporal averaging of the emission is significant. The spectral data allows the analysis of species selective excitation and emission. A non-equilibrium between atomic and molecular excitation temperatures is concluded for the investigated air plasma flow field. The spatial distribution of atomic electronic excitation temperatures are close to rotational symmetry while molecular rotational and vibrational temperatures exhibit asymmetric behavior.

  12. FAST TRACK COMMUNICATION: Plasma agents in bio-decontamination by dc discharges in atmospheric air

    NASA Astrophysics Data System (ADS)

    Machala, Zdenko; Chládeková, Lenka; Pelach, Michal

    2010-06-01

    Bio-decontamination of water and surfaces contaminated by bacteria (Salmonella typhimurium) was investigated in two types of positive dc discharges in atmospheric pressure air, in needle-to-plane geometry: the streamer corona and its transition to a novel regime called transient spark with short high current pulses of limited energy. Both generate a cold non-equilibrium plasma. Electro-spraying of treated water through a needle electrode was applied for the first time and resulted in fast bio-decontamination. Experiments providing separation of various biocidal plasma agents, along with the emission spectra and coupled with oxidation stress measurements in the cell membranes helped to better understand the mechanisms of microbial inactivation. The indirect exposure of contaminated surfaces to neutral active species was almost as efficient as the direct exposure to the plasma, whereas applying only UV radiation from the plasma had no biocidal effects. Radicals and reactive oxygen species were identified as dominant biocidal agents.

  13. Influence of metallic vapours on thermodynamic and transport properties of two-temperature air plasma

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Wang, Xiaohua; Cressault, Yann; Teulet, Philippe; Rong, Mingzhe

    2016-09-01

    The metallic vapours (i.e., copper, iron, and silver in this paper) resulting from walls and/or electrode surfaces can significantly affect the characteristics of air plasma. Different from the previous works assuming local thermodynamic equilibrium, this paper investigates the influence of metallic vapours on two-temperature (2 T) air plasma. The 2 T compositions of air contaminated by Cu, Fe, and Ag are first determined based on Saha's and Guldberg-Waage's laws. The thermodynamic properties (including mass density, specific enthalpy, and specific heat) are then calculated according to their definitions. After determining the collision integrals for each pair of species in air-metal mixtures using the newly published methods and source data, the transport coefficients (including electrical conductivity, viscosity, and thermal conductivity) are calculated for air-Cu, air-Fe, and air-Ag plasmas with different non-equilibrium degree θ (Te/Th). The influences of metallic contamination as well as non-equilibrium degree are discussed. It is found that copper, iron, and silver exist mainly in the form of Cu2, FeO, and AgO at low temperatures. Generally, the metallic vapours increase mass density at most temperatures, reduce the specific enthalpy and specific heat in the whole temperature range, and affect the transport properties remarkably from 5000 K to 20 000 K. The effect arising from the type of metals is little except for silver at certain temperatures. Besides, the departure from thermal equilibrium results in the delay of dissociation and ionization reactions, leading to the shift of thermodynamic and transport properties towards a higher temperature.

  14. Measurements of Vibrational Non-equilibrium in Supersonic Jet Mixing and Combustion

    NASA Astrophysics Data System (ADS)

    Reising, Heath; Haller, Timothy; Clemens, Noel; Varghese, Philip

    2014-11-01

    A new experimental facility has been constructed to study the effects of thermal non-equilibrium on supersonic mixing and combustion. The facility consists of a Mach 1.5 turbulent jet issuing into an electrically heated coflow. The degree of non-equilibrium in the jet shear layer is quantified using high spectral resolution time-averaged spontaneous Raman scattering. Since the Raman spectra are time-averaged, they are susceptible to non-linear weighting effects induced by temperature fluctuations. The effect of local turbulent temperature fluctuations on the Raman fitting procedure is quantified by using spectral simulations that use the actual temperature fluctuations present in the flow measured by instantaneous Rayleigh scattering thermometry. It is shown that the temperature fluctuations are not large enough to induce significant errors in the vibrational temperature fitting results. Vibrational non-equilibrium is shown to occur in the jet shear layer, and its magnitude and trend are shown to be similar to recent large-eddy-simulation results. Since CO2 is known to cause faster vibrational relaxation of N2, a series of experiments were conducted to verify that the non-equilibrium effects could be controlled by CO2 addition. This work is being extended to reacting flows, to assess the impact of non-equilibrium on supersonic shear-layer combustion. This work was supported by the Air Force Office of Scientific Research.

  15. Upwind methods for flows with non-equilibrium chemistry and thermodynamics

    NASA Astrophysics Data System (ADS)

    Grossman, B.; Cinnella, P.

    The numerical computation of gas flows with non-equilibrium thermodynamics and chemistry is considered. Several thermodynamic models are discussed, including an equilibrium model, a general non-equilibrium model and a simplified model based upon vibrational relaxation. The effects of the various models on the state equation and the homogeneity property of the Euler equations is described. Flux-splitting procedures are developed for the fully-coupled inviscid equations involving fluid dynamics, chemical production and internal energy relaxation processes. New forms of flux-vector split and flux-difference split algorithms valid for non-equilibrium flow, are embodied in a fully coupled, implicit, large-block structure. Several numerical examples in one space dimension are presented, including high-temperature nozzle flows with hydrogen-air chemistry.

  16. Non equilibrium electronic transport in multilayered nanostructures

    NASA Astrophysics Data System (ADS)

    Cruz-Rojas, Jesus

    Recent advances in strongly correlated materials have produced systems with novel and interesting properties like high Tc superconductors, Mott insulators and others. These novel properties have sparked an interest in industry as well as in academia as new devices are being developed. One such kind of device that can be fabricated is a heterostructure, in which layers of different compounds are stacked in a single direction. Modern deposition techniques like electron beam epitaxy, in which atomic layers of different materials are deposited one at a time creating the device, are capable of fabricating heterostructures with atomic precision. We propose a technique to study heterostructures composed of strongly correlated materials out of equilibrium. By using the Keldysh Green's function formalism in the dynamical mean field theory (DMFT) framework the properties of a multilayered device are analyzed. The system is composed of infinite dimensional 2D lattices, stacked in the z direction. The first and last planes are then connected to a bulk reservoir, and several metallic planes are used to connect the bulk reservoir to the barrier region. The barrier region is the system of interest, also known as the device. The device is composed of a number of planes where the system correlations have been turned on. The correlations are then model by using the Falicov-Kimball Hamiltonian. The device is then connected to the bulk once again from the opposite side using metallic planes creating a symmetric system. In order to study the non equilibrium properties of the device a linear vector potential A(t) = A0 + tE is turned on a long time in the past for a unit of time and then turned off. This in turn will create a current in the bulk, in effect current biasing the device, as opposed to a voltage bias in which opposite sides of the device are held to a different potential. In this document we will explain the importance of the subject, we will derive and develop the algorithm

  17. Topologically protected modes in non-equilibrium stochastic systems

    PubMed Central

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2017-01-01

    Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function. PMID:28071644

  18. Topologically protected modes in non-equilibrium stochastic systems

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2017-01-01

    Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.

  19. Topologically protected modes in non-equilibrium stochastic systems.

    PubMed

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2017-01-10

    Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.

  20. Non-equilibrium modelling of transferred arcs

    NASA Astrophysics Data System (ADS)

    Haidar, J.

    1999-02-01

    A two-temperature, variable-density, arc model has been developed for description of high-current free-burning arcs, including departures from thermodynamic and chemical equilibrium in the plasma. The treatment includes the arc, the anode and the cathode and considers the separate energy balance of the electrons and the heavy particles, together with the continuity equations for these species throughout the plasma. The output includes a two-dimensional distribution for the temperatures and densities both of the electrons and of the heavy particles, plasma velocity, current density and electrical potential throughout the arc. For a 200 A arc in pure argon at 1 atm, we calculate large differences between the temperatures of the electrons and the heavy particles in the plasma region near the cathode tip, together with large departures from local chemical plasma equilibrium. In the main body of the arc at high plasma temperatures, we predict minor differences between the temperatures of the electrons and the heavy particles, which are inconsistent with recent measurements using laser-scattering techniques showing differences of up to several thousand degrees. However, we find that, for the region in front of the cathode tip, the ground-state level of the neutral atoms is overpopulated relative to the corresponding populations under conditions of LTE, in agreement with experimental observations. These departures from LTE are caused by the injection of a large mass flow of cold gas into the arc core due to arc constriction at the tip of the cathode.

  1. Non-equilibrium Ionization Modeling of Simulated Pseudostreamers in a Solar Corona Model

    NASA Astrophysics Data System (ADS)

    Shen, Chengcai; Raymond, John C.; Mikić, Zoran; Linker, Jon; Reeves, Katharine K.; Murphy, Nicholas A.

    2015-04-01

    Time-dependent ionization is important for diagnostics of coronal streamers, where the thermodynamic time scale could be shorter than the ionization or recombination time scales, and ions are therefor in non-equilibrium ionization states. In this work, we perform post-processing time-dependent ionization calculations for a three dimensional solar corona and inner heliosphere model from Predictive Sciences Inc. (Mikić & Linker 1999) to analyze the influence of non-equilibrium ionization on emission from coronal streamers. Using the plasma temperature, density, velocity and magnetic field distributions provided by the 3D MHD simulation covering the Whole Sun Month (Carrington rotation CR1913, 1996 August 22 to September 18), we calculate non-equilibrium ionization states in the region around a pseudostreamer. We then obtain the synthetic emissivities with the non-equilibrium ion populations. Under the assumption that the corona is optically thin, we also obtain intensity profiles of several emission lines. We compare our calculations with intensities of Lyman-alpha lines and OVI lines from SOHO/Ultraviolet Coronagraph Spectrometer (UVCS) observations at 14 different heights. The results show that intensity profiles of both Lyman-alpha and OVI lines match well UVCS observations at low heights. At large heights, OVI intensites are higher for non-equilibrium ionization than equilibrium ionization inside this pseudostreamer. The assumption of ionization equilibrium would lead to a underestimate of the OVI intensity by about ten percent at a height of 2 solar radii, and the difference between these two ionization cases increases with height. The intensity ratio of OVI 1032 line to OVI 1037 lines is also obtained for non-equilibrium ionization modeling.

  2. Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskii, Iu. M.; Moiseev, V. N.; Rovinskii, R. E.; Tsenina, I. S.

    1993-01-01

    The ambient-pressure dependences of the dynamic and optical characteristics of a laser plasma generated by CO2-laser irradiation of an obstacle are investigated experimentally. The change of the sample's surface roughness after irradiation is investigated as a function of air pressure. It is concluded that the transition from the air plasma to the erosion plasma takes place at an air pressure of about 1 mm Hg. The results confirm the existing theory of plasma formation near the surface of an obstacle under the CO2-laser pulse effect in air.

  3. Portable nanosecond pulsed air plasma jet

    SciTech Connect

    Walsh, J. L.; Kong, M. G.

    2011-08-22

    Low-temperature atmospheric pressure plasmas are of great importance in many emerging biomedical and materials processing applications. The redundancy of a vacuum system opens the gateway for highly portable plasma systems, for which air ideally becomes the plasma-forming gas and remote plasma processing is preferred to ensure electrical safety. Typically, the gas temperature observed in air plasma greatly exceeds that suitable for the processing of thermally liable materials; a large plasma-sample distance offers a potential solution but suffers from a diluted downstream plasma chemistry. This Letter reports a highly portable air plasma jet system which delivers enhanced downstream chemistry without compromising the low temperature nature of the discharge, thus forming the basis of a powerful tool for emerging mobile plasma applications.

  4. Hydraulic non-equilibrium during infiltration induced by structural connectivity

    NASA Astrophysics Data System (ADS)

    Schlüter, Steffen; Vanderborght, Jan; Vogel, Hans-Jörg

    2012-08-01

    Water infiltration into heterogeneous, structured soil leads to hydraulic non-equilibrium across the infiltration front. That is, the water content and pressure head are not in equilibrium according to some static water retention curve. The water content increases more rapidly in more conductive regions followed by a slow relaxation towards an equilibrium state behind the front. An extreme case is preferential infiltration into macropores. Since flow paths adapt to the structural heterogeneity of the porous medium, there is a direct link between structure and non-equilibrium. The aim of our study is to develop an upscaled description of water dynamics which conserves the macroscopic effects of non-equilibrium and which can be directly linked to structural properties of the material. A critical question is how to define averaged state variables at the larger scale. We propose a novel approach based on flux-weighted averaging of pressure head, and compare its performance to alternative methods for averaging. Further, we suggest some meaningful indicators of hydraulic non-equilibrium that can be related to morphological characteristics of infiltration fronts in quantitative terms. These methods provide a sound basis to assess the impact of structural connectivity on hydraulic non-equilibrium. We demonstrate our approach using numerical case studies for infiltration into two-dimensional heterogeneous media using three different structure models with distinct differences in connectivity. Our results indicate that an increased isotropic, short-range connectivity reduces non-equilibrium, whereas anisotropic structures that are elongated in the direction of flow enforce it. We observe a good agreement between front morphology and effective hydraulic non-equilibrium. A detailed comparison of averaged state variables with results from an upscaled model that includes hydraulic non-equilibrium outlines potential improvements in the description of non-equilibrium dynamics

  5. Hydraulic non-equilibrium during infiltration induced by structural connectivity

    NASA Astrophysics Data System (ADS)

    Schlüter, S.; Vanderborght, J.; Vogel, H.-J.

    2012-04-01

    Water infiltration into heterogeneous, structured soil leads to hydraulic non-equilibrium across the infiltration front. That is the water content and water potential is not in equilibrium according to some static water retention curve. The water content increases more rapidly in more conductive regions followed by a slow relaxation towards an equilibrium state. An extreme case is preferential infiltration into macro-pores. As flow paths adapt to the structural heterogeneity of the subsurface, there is a direct link between structure and non-equilibrium. The aim of our study is to develop an upscaled description of water dynamics which conserves the macroscopic effects of non-equilibrium and which can be linked to structural properties of the material. However, this relationship cannot be rigorously examined without an upscaling approach that conserves non-equilibrium during averaging of state variables. We achieve this with a novel approach, that is based on flux-weighted averaging of hydraulic potential, and compare its performance to existing averaging approaches by means of infiltration simulations. Further, we set up some meaningful indicators of hydraulic non-equilibrium that can be easily compared to morphological characteristics of the infiltration front. These methods provide a sound basis to assess the impact of structural connectivity on hydraulic non-equilibrium. We generate several realizations of two-dimensional random fields originating from three heterogeneity models with distinct differences in connectivity of high-K areas and conduct infiltration simulations with them. Our results indicate, that an increased isotropic, short-range connectivity reduces non-equilibrium, whereas anisotropic, macropore-like structures enforce it. We observed a good agreement between front morphology and upscaled non-equilibrium. Our findings encourage to use flux-weighted potentials for upscaling of state variables during transient conditions. We demonstrate, that

  6. Hydraulic non-equilibrium during infiltration induced by structural connectivity

    NASA Astrophysics Data System (ADS)

    Schlüter, S.; Vogel, H.

    2011-12-01

    Water infiltration into heterogeneous, structured soil leads to hydraulic non-equilibrium across the infiltration front. That is the water content and water potential is not in equilibrium according to some static water retention curve. The water content increases more rapidly in more conductive regions followed by a slow relaxation towards an equilibrium state. An extreme case is preferential infiltration into macro-pores. As flowpaths adapt to the structural heterogeneity of the subsurface, there is a direct link between structure and non-equilibrium. The aim of our study is to develop an upscaled description of water dynamics which conserves the macroscopic effects of non-equilibrium and which can be linked to structural properties of the material. However, this relationship cannot be rigorously examined without an upscaling approach that conserves non-equilibrium during averaging of state variables. We achieve this with a novel approach, that is based on flux-weighted averaging of hydraulic potential, and compare its performance to existing averaging approaches by means of infiltration simulations. Further, we set up some meaningful indicators of hydraulic non-equilibrium that can be easily compared to morphological characteristics of the infiltration front. These methods provide a sound basis to assess the impact of structural connectivity on hydraulic non-equilibrium. We generate several realizations of two-dimensional random fields originating from three heterogeneity models with distinct differences in connectivity of high-K areas and conduct infiltration simulations with them. Our results indicate, that an increased isotropic, short-range connectivity reduces non-equilibrium, whereas anisotropic, macropore-like structures enforce it. We observed a good agreement between front morphology and upscaled non-equilibrium. Our findings encourage to use flux-weighted potentials for upscaling of state variables during transient conditions. We demonstrate, that this

  7. Electrolytes: transport properties and non-equilibrium thermodynamics

    SciTech Connect

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions.

  8. Non-equilibrium dynamics from RPMD and CMD

    NASA Astrophysics Data System (ADS)

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C.; Miller, Thomas F.

    2016-11-01

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O (t4) and O (t1) , respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O (t5) and O (t2) , respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  9. Non-equilibrium dynamics from RPMD and CMD.

    PubMed

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F

    2016-11-28

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t(4)) and O(t(1)), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t(5)) and O(t(2)), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  10. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.

    PubMed

    Vetterick, Gregory A; Gruber, Jacob; Suri, Pranav K; Baldwin, Jon K; Kirk, Marquis A; Baldo, Pete; Wang, Yong Q; Misra, Amit; Tucker, Garritt J; Taheri, Mitra L

    2017-09-25

    Many methods used to produce nanocrystalline (NC) materials leave behind non-equilibrium grain boundaries (GBs) containing excess free volume and higher energy than their equilibrium counterparts with identical 5 degrees of freedom. Since non-equilibrium GBs have increased amounts of both strain and free volume, these boundaries may act as more efficient sinks for the excess interstitials and vacancies produced in a material under irradiation as compared to equilibrium GBs. The relative sink strengths of equilibrium and non-equilibrium GBs were explored by comparing the behavior of annealed (equilibrium) and as-deposited (non-equilibrium) NC iron films on irradiation. These results were coupled with atomistic simulations to better reveal the underlying processes occurring on timescales too short to capture using in situ TEM. After irradiation, NC iron with non-equilibrium GBs contains both a smaller number density of defect clusters and a smaller average defect cluster size. Simulations showed that excess free volume contribute to a decreased survival rate of point defects in cascades occurring adjacent to the GB and that these boundaries undergo less dramatic changes in structure upon irradiation. These results suggest that non-equilibrium GBs act as more efficient sinks for defects and could be utilized to create more radiation tolerant materials in future.

  11. Microwave Probing of Air-Plasma and Plasma Metamaterials

    NASA Astrophysics Data System (ADS)

    Schneider, Katherine; Rock, Ben; Helle, Mike

    2016-10-01

    Plasma metamaterials are of recent interest due to their unique ability to be engineered with specific electromagnetic responses. One potential metamaterial architecture is based on a `forest' of plasma rods that can be produced using intense laser plasma filaments. In our work, we use a continuous microwave source at 26.5 GHz to measure a single air plasma filament characteristics generated from a 5 mJ laser pulse within a cylindrical hole in a Ka-band waveguide. Preliminary results show the air plasma produces a strong shock and acts to reflect microwave radiation. A computational comparison using 3D EM modeling is performed to examine the reflection and transmission properties of a single plasma rod, and further, to investigate an array of plasma rods as a potential plasma based metamaterial.

  12. Electron Energy Distribution and Transfer Phenomena in Non-Equilibrium Gases

    DTIC Science & Technology

    2016-09-01

    AFRL-RQ-WP-TR-2016-0130 ELECTRON ENERGY DISTRIBUTION AND TRANSFER PHENOMENA IN NON-EQUILIBRIUM GASES Steven F. Adams and Bradley S...2. REPORT TYPE 3. DATES COVERED (From - To) September 2016 Final 15 March 2010 – 16 September 2016 4. TITLE AND SUBTITLE ELECTRON ENERGY DISTRIBUTION...and ultimately control the distribution of electronic and kinetic energies within low temperature plasmas and enhance the understanding of phenomena

  13. New phenomena in non-equilibrium quantum physics

    NASA Astrophysics Data System (ADS)

    Kitagawa, Takuya

    From its beginning in the early 20th century, quantum theory has become progressively more important especially due to its contributions to the development of technologies. Quantum mechanics is crucial for current technology such as semiconductors, and also holds promise for future technologies such as superconductors and quantum computing. Despite of the success of quantum theory, its applications have been mostly limited to equilibrium or static systems due to 1. lack of experimental controllability of non-equilibrium quantum systems 2. lack of theoretical frameworks to understand non-equilibrium dynamics. Consequently, physicists have not yet discovered too many interesting phenomena in non-equilibrium quantum systems from both theoretical and experimental point of view and thus, non-equilibrium quantum physics did not attract too much attentions. The situation has recently changed due to the rapid development of experimental techniques in condensed matter as well as cold atom systems, which now enables a better control of non-equilibrium quantum systems. Motivated by this experimental progress, we constructed theoretical frameworks to study three different non-equilibrium regimes of transient dynamics, steady states and periodically drives. These frameworks provide new perspectives for dynamical quantum process, and help to discover new phenomena in these systems. In this thesis, we describe these frameworks through explicit examples and demonstrate their versatility. Some of these theoretical proposals have been realized in experiments, confirming the applicability of the theories to realistic experimental situations. These studies have led to not only the improved fundamental understanding of non-equilibrium processes in quantum systems, but also suggested entirely different venues for developing quantum technologies.

  14. Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kim, Pilbum

    Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to

  15. Antimicrobial Applications of Ambient--Air Plasmas

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew John

    The emerging field of plasma biotechology studies the applications of the plasma phase of matter to biological systems. "Ambient-condition" plasmas created at or near room temperature and atmospheric pressure are especially promising for biomedical applications because of their convenience, safety to patients, and compatibility with existing medical technology. Plasmas can be created from many different gases; plasma made from air contains a number of reactive oxygen and nitrogen species, or RONS, involved in various biological processes, including immune activity, signaling, and gene expression. Therefore, ambient-condition air plasma is of particular interest for biological applications. To understand and predict the effects of treating biological systems with ambient-air plasma, it is necessary to characterize and measure the chemical species that these plasmas produce. Understanding both gaseous chemistry and the chemistry in plasma-treated aqueous solution is important because many biological systems exist in aqueous media. Existing literature about ambient-air plasma hypothesizes the critical role of reactive oxygen and nitrogen species; a major aim of this dissertation is to better quantify RONS by produced ambient-air plasma and understand how RONS chemistry changes in response to different plasma processing conditions. Measurements imply that both gaseous and aqueous chemistry are highly sensitive to operating conditions. In particular, chemical species in air treated by plasma exist in either a low-power ozone-dominated mode or a high-power nitrogen oxide-dominated mode, with an unstable transition region at intermediate discharge power and treatment time. Ozone (O3) and nitrogen oxides (NO and NO2, or NOx) are mutually exclusive in this system and that the transition region corresponds to the transition from ozone- to nitrogen oxides-mode. Aqueous chemistry agrees well with to air plasma chemistry, and a similar transition in liquid-phase composition

  16. Global dynamics of non-equilibrium gliding in animals.

    PubMed

    Yeaton, Isaac J; Socha, John J; Ross, Shane D

    2017-03-17

    Gliding flight-moving horizontally downward through the air without power-has evolved in a broad diversity of taxa and serves numerous ecologically relevant functions such as predator escape, expanding foraging locations, and finding mates, and has been suggested as an evolutionary pathway to powered flight. Historically, gliding has been conceptualized using the idealized conditions of equilibrium, in which the net aerodynamic force on the glider balances its weight. While this assumption is appealing for its simplicity, recent studies of glide trajectories have shown that equilibrium gliding is not the norm for most species. Furthermore, equilibrium theory neglects the aerodynamic differences between species, as well as how a glider can modify its glide path using control. To investigate non-equilibrium glide behavior, we developed a reduced-order model of gliding that accounts for self-similarity in the equations of motion, such that the lift and drag characteristics alone determine the glide trajectory. From analysis of velocity polar diagrams of horizontal and vertical velocity from several gliding species, we find that pitch angle, the angle between the horizontal and chord line, is a control parameter that can be exploited to modulate glide angle and glide speed. Varying pitch results in changing locations of equilibrium glide configurations in the velocity polar diagram that govern passive glide dynamics. Such analyses provide a new mechanism of interspecies comparison and tools to understand experimentally-measured kinematics data and theory. In addition, this analysis suggests that the lift and drag characteristics of aerial and aquatic autonomous gliders can be engineered to passively alter glide trajectories with minimal control effort.

  17. Detection of Non-Equilibrium Fluctuations in Active Gels

    NASA Astrophysics Data System (ADS)

    Bacanu, Alexandru; Broedersz, Chase; Gladrow, Jannes; Mackintosh, Fred; Schmidt, Christoph; Fakhri, Nikta

    Active force generation at the molecular scale in cells can result in stochastic non-equilibrium dynamics on mesoscpopic scales. Molecular motors such as myosin can drive steady-state stress fluctuations in cytoskeletal networks. Here, we present a non-invasive technique to probe non-equilibrium fluctuations in an active gel using single-walled carbon nanotubes (SWNTs). SWNTs are semiflexible polymers with intrinsic fluorescence in the near infrared. Both thermal and active motor-induced forces in the network induce transverse fluctuations of SWNTs. We demonstrate that active driven shape fluctuations of the SWNTs exhibit dynamics that reflect the non-equilibrium activity, in particular the emergence of correlations between the bending modes. We discuss the observation of breaking of detailed balance in this configurational space of the SWNT probes. Supported by National Defense Science and Engineering Graduate Student Fellowship (NDSEG).

  18. Free energy for non-equilibrium quasi-stationary states

    NASA Astrophysics Data System (ADS)

    Allahverdyan, A. E.; Martirosyan, N. H.

    2017-03-01

    We study a class of non-equilibrium quasi-stationary states for a Markov system interacting with two different thermal baths. We show that the work done under a slow, external change of parameters admits a potential, i.e., the free energy. Three conditions are needed for the existence of free energy in this non-equilibrium system: time-scale separation between variables of the system, partial controllability (external fields couple only with the slow variable), and an effective detailed balance. These conditions are facilitated in the continuous limit for the slow variable. In contrast to its equilibrium counterpart, the non-equilibrium free energy can increase with temperature. One example of this is that entropy reduction by means of external fields (cooling) can be easier (in the sense of the work cost) if it starts from a higher temperature.

  19. Non-equilibrium vibrational and electron energy distribution functions in mtorr, high-electron-density nitrogen discharges and afterglows

    NASA Astrophysics Data System (ADS)

    Capitelli, M.; Colonna, G.; D’Ammando, G.; Laricchiuta, A.; Pietanza, L. D.

    2017-03-01

    Non-equilibrium vibrational distributions (vdf) and non-equilibrium electron energy distribution functions (eedf) in a nitrogen plasma at low pressure (mtorr) have been calculated by using a time-dependent plasma physics model coupled to the Boltzmann equation and heavy particle kinetics. Different case studies have been selected showing the non-equilibrium character of both vdf and eedf under discharge and post-discharge conditions in the presence of large concentrations of electrons. Particular attention is devoted to the electron-molecule resonant vibrational excitation cross sections acting in the whole vibrational ladder. The results in the post-discharge conditions show the interplay of superelastic vibrational and electronic collisions in forming structures in the eedf. The link between the present results in the mtorr afterglow regime with the existing eedf in the torr and atmospheric regimes is discussed.

  20. Landscape and flux theory of non-equilibrium open economy

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wang, Jin

    2017-09-01

    The economy is open and never in true equilibrium due to the exchanges with outside. However, most of the quantitative studies have been focused on the equilibrium economy. Despite of the recent efforts, it is still challenging to formulate a quantitative theory for uncovering the principles of non-equilibrium open economy. In this study, we developed a landscape and flux theory for non-equilibrium economy. We quantified the states of economy and identify the multi-stable states as the basins of attractions on the underlying landscape. We found the global driving force of the non-equilibrium economy is determined by both the underlying landscape gradient and the curl probability flux measuring the degree of non-equilibriumness through the detailed balance breaking. The non-equilibrium thermodynamics, the global stability, the optimal path and speed of the non-equilibrium economy can be formulated and quantified. In the conventional economy, the supply and demand usually has only one equilibrium. By considering nonlinear supply-demand dynamics, we found that both bi-stable states and limit cycle oscillations can emerge. By shifting the slope of demand curve, we can see how the bi-stability transforms to the limit cycle dynamics and vice versa. By parallel shifting the demand curve, we can also see how the monopoly, the competition, and the bistable monopoly and competition states emerge and transform to one other. We can also see how the mono-stable monopoly, the limit cycle and the mono-stable competition states emerge and transform to one another.

  1. The influence of non-equilibrium pressure on rotating flows

    NASA Astrophysics Data System (ADS)

    Zardadkhan, Irfan Rashid

    This study was undertaken to investigate the influence of pressure relaxation on steady, incompressible flows with strong streamline curvature. In the early part of this dissertation research, the significance of non-equilibrium pressure forces in controlling the structure of a steady, two dimensional axial vortex was demonstrated. In order to extend the study of pressure relaxation influences on more complex rotating flows, this dissertation has examined other rotating flow features that can be associated with hurricanes, tornadoes and dust devils. To model these flows, modified boundary layer equations were developed for a fluid column rotating near a solid plane including the influence of non-equilibrium pressure forces. The far-field boundary conditions were inferred using the asymptotic behavior of the governing equations, and the boundary conditions for the axial and radial components of velocity were shown to be dependent on the pressure relaxation coefficient, η p, and the characteristic angular velocity of the rotating fluid column, ω. This research has shown for the first time that the inclusion of non-equilibrium pressure results in a free-standing stagnation plane at the top of a funnel shaped rotating fluid column, which is consistent with observational data for hurricanes, tornadoes and dust devils. It has also been shown that in the absence of non-equilibrium pressure, the stagnation plane for rotating flows cannot be observed. The velocity and pressure distributions resulting from incorporating non-equilibrium pressure effects were then compared with available observational data for tornadoes and dust devils. The general profiles of the velocity and pressure distributions were found to be in good agreement with physical measurements, which was not possible without introducing empirical turbulence effects, in the absence of non-equilibrium pressure effects.

  2. Non-equilibrium Thermodynamics and Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Hollands, Stefan; Longo, Roberto

    2017-07-01

    We present a model independent, operator algebraic approach to non-equilibrium quantum thermodynamics within the framework of two-dimensional Conformal Field Theory. Two infinite reservoirs in equilibrium at their own temperatures and chemical potentials are put in contact through a defect line, possibly by inserting a probe. As time evolves, the composite system then approaches a non-equilibrium steady state that we describe. In particular, we re-obtain recent formulas of Bernard and Doyon (Ann Henri Poincaré 16:113-161, 2015).

  3. Bright solitons in non-equilibrium coherent quantum matter

    PubMed Central

    Pinsker, F.; Flayac, H.

    2016-01-01

    We theoretically demonstrate a mechanism for bright soliton generation in spinor non-equilibrium Bose–Einstein condensates made of atoms or quasi-particles such as polaritons in semiconductor microcavities. We give analytical expressions for bright (half) solitons as minimizing functions of a generalized non-conservative Lagrangian elucidating the unique features of inter and intra-competition in non-equilibrium systems. The analytical results are supported by a detailed numerical analysis that further shows the rich soliton dynamics inferred by their instability and mutual cross-interactions. PMID:26997892

  4. Non-equilibrium critical behavior of thin Ising films

    NASA Astrophysics Data System (ADS)

    Medvedeva, Maria A.; Prudnikov, Pavel V.; Elin, Alexey S.

    2017-10-01

    In this paper we study the non-equilibrium properties of Ising ferromagnetic films using Monte Carlo simulations by short-time dynamic method. We have found thickness dependency of critical exponents z, θ ‧ and β / ν . Ageing effects were observed in non-equilibrium critical behavior. Former was carried out both from high-temperature and low-temperature initial states. A characteristic time of relaxation, which diverges at a transition temperature in the thermodynamic limit, is obtained as a function of the system size and waiting time.

  5. DSMC predictions of non-equilibrium reaction rates.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2010-04-01

    A set of Direct Simulation Monte Carlo (DSMC) chemical-reaction models recently proposed by Bird and based solely on the collision energy and the vibrational energy levels of the species involved is applied to calculate nonequilibrium chemical-reaction rates for atmospheric reactions in hypersonic flows. The DSMC non-equilibrium model predictions are in good agreement with theoretical models and experimental measurements. The observed agreement provides strong evidence that modeling chemical reactions using only the collision energy and the vibrational energy levels provides an accurate method for predicting non-equilibrium chemical-reaction rates.

  6. Optical Measurements in Non-Equilibrium Plasmas and Flows

    DTIC Science & Technology

    2009-09-01

    collision model, the exponent x is equal to 0.5, from simple kinetic theory. For most realistic inter-molecular potentials, the exponent x is in the range...Chemical Physics, Vol. 89, p. 5568 (1988). 9. Rosasco, G.J., Lempert, W., Hurst , W.S., and Fein, A., in “Spectral Line Shapes, Vol 2, Walter de Gruyter

  7. Pressure Scaling of Non-Equilibrium Phenomena in Plasmas

    DTIC Science & Technology

    2000-12-01

    4, Al(CH3)3, and Ga(CH3)3 are presented, as are the properties of the fire suppressants CF3Br and CF3I. Electron impact ionization in a simple...results at 50 eV. The primary reaction is that of Ar+ with C2F4 to produce C2F4+. This result might be anticipated on thermodynamic grounds, because...that is most likely to be responsible for CO bond formation is shown in figure 23: C2HF4+ + H2O C2HF2O+ + 2HF The thermodynamic

  8. Multiscale Numerical Methods for Non-Equilibrium Plasma

    DTIC Science & Technology

    2015-08-01

    Unified Device Architecture Programming Guide version 4.0, 2011. [2] T. Brandvik, G. Pullan, Acceleration of a 3D Euler Solver using Commodity...AIAA paper 2012-721, 2012. B. Cruden, H.P. Le, R. Martinez. Electron Density Measurement in Re-Entry Shocks for Lunar Return. AIAA paper 2011-3628...of inverting the matrix in that case is very large, and for the 3D case, directly inverting a septa-diagonal system is completely prohibitive

  9. Non-Equilibrium and Radiation in MPD Plasmas

    DTIC Science & Technology

    1991-05-31

    layers and electrothermal arcjets . 91-05930 (111111 l! 1!IIi i !) 11lI lt 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SFCURITY...work on transport effects, Hall effects magnetic layers and electrothermal arcjets . 1 1. Introduction This Final Report summarizes the results of our...with us, and a doctoral student, Mr Eric Gaidos, will be starting experimental MPD work at Edwards AFB this Summer. Also recently initiated is arcjet

  10. Optical Measurements of Air Plasma

    DTIC Science & Technology

    2008-05-05

    generated in air by means of an electron beam is highly efficient. Fast electrons propagating through air result in production of electron- ion pairs...through the mechanism of impact ionization, which requires 33.7 eV per electron- ion pair. The air pressure, concentration of variable species, such as...and polyatomic species. Because our time scales are in the 1 ms to 10 ms range, there is a strong possibility of obtaining real-time absorption

  11. Terahertz wave absorption via preformed air plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Ji; Zhang, LiangLiang; Wu, Tong; Zhang, CunLin; Zhao, YueJin

    2016-12-01

    Terahertz wave generation from laser-induced air plasma has continued to be an exciting field of research over the course of the past decade. In this paper, we report on an investigation concerning terahertz wave absorption with preformed plasma created by another laser pulse. We examine terahertz absorption behavior by varying the pump power and then analyze the polarization effect of the preplasma beam on terahertz wave absorption. The results of experiments conducted in which a type-I beta barium borate (BBO) crystal is placed before the preformed air plasma indicate that the fundamental (ω) and second harmonic (2ω) pulses can also influence terahertz absorption.

  12. Caloric and entropic temperatures in non-equilibrium steady states

    NASA Astrophysics Data System (ADS)

    Jou, D.; Restuccia, L.

    2016-10-01

    We examine the non-equilibrium consequences of two different definitions of temperature in systems out of equilibrium: one is based on the internal energy (caloric temperature), and the other one on the entropy (entropic temperature). We discuss the relation between the values obtained from these two definitions in ideal gases and in two-level systems.

  13. Strongly Non-equilibrium Dynamics of Nanochannel Confined DNA

    NASA Astrophysics Data System (ADS)

    Reisner, Walter

    Nanoconfined DNA exhibits a wide-range of fascinating transient and steady-state non-equilibrium phenomena. Yet, while experiment, simulation and scaling analytics are converging on a comprehensive picture regarding the equilibrium behavior of nanochannel confined DNA, non-equilibrium behavior remains largely unexplored. In particular, while the DNA extension along the nanochannel is the key observable in equilibrium experiments, in the non-equilibrium case it is necessary to measure and model not just the extension but the molecule's full time-dependent one-dimensional concentration profile. Here, we apply controlled compressive forces to a nanochannel confined molecule via a nanodozer assay, whereby an optically trapped bead is slid down the channel at a constant speed. Upon contact with the molecule, a propagating concentration ``shockwave'' develops near the bead and the molecule is dynamically compressed. This experiment, a single-molecule implementation of a macroscopic cylinder-piston apparatus, can be used to observe the molecule response over a range of forcings and benchmark theoretical description of non-equilibrium behavior. We show that the dynamic concentration profiles, including both transient and steady-state response, can be modelled via a partial differential evolution equation combining nonlinear diffusion and convection. Lastly, we present preliminary results for dynamic compression of multiple confined molecules to explore regimes of segregation and mixing for multiple chains in confinement.

  14. Evolution of a plasma vortex in air.

    PubMed

    Tsai, Cheng-Mu; Chu, Hong-Yu

    2016-01-01

    We report the generation of a vortex-shaped plasma in air by using a capacitively coupled dielectric barrier discharge system. We show that a vortex-shaped plasma can be produced inside a helium gas vortex and is capable of propagating for 3 cm. The fluctuation of the plasma ring shows a scaling relation with the Reynolds number of the vortex. The transient discharge reveals the property of corona discharge, where the conducting channel within the gas vortex and the blur plasma emission are observed at each half voltage cycle.

  15. Spontaneous Raman Scattering Measurements of Vibrational Non-Equilibrium in High-Speed Jets

    NASA Astrophysics Data System (ADS)

    Reising, Heath; Haller, Timothy; Clemens, Noel; Varghese, Philip

    2016-11-01

    Vibrational non-equilibrium is detected and quantified in a high-speed jet using spontaneous Raman scattering. The non-equilibrium is induced by rapid mixing of the different temperature streams of the jet and coflow which are approximately 500 K and 1000 K, respectively. Simultaneous measurements of vibrational and rotational temperatures are made using fits of time-averaged high-resolution Stokes spectra of both N2 and O2 to high fidelity models of the spectrum. Independent measurements of these two species temperatures show good agreement in rotational temperature while the vibrational temperatures show only N2 to have a strong non-equilibrium. This suggests that vibrational energy transfer between these two molecules is very inefficient at these conditions. Work is being conducted to extend the technique to single-shot measurements by employing a multiple-pass cell to increase the incident laser fluence in the measurement volume. This new capability will allow for statistics of vibrational temperature to be quantified. The instantaneous nature of the measurements will also allow the technique to be applied in regions of large temperature fluctuations, such as the base of a lifted turbulent jet flame, where time-average measurements are not valid. This work was supported by funding from the Air Force Office of Scientific Research.

  16. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  17. Investigation of Non-Equilibrium Radiation for Earth Entry

    NASA Technical Reports Server (NTRS)

    Brandis, Aaron; Johnston, Chris; Cruden, Brett

    2016-01-01

    This paper presents measurements and simulations of non-equilibrium shock layer radiation relevant to high-speed Earth entry data obtained in the NASA Ames Research Center's Electric Arc Shock Tube (EAST) facility. The experiments were aimed at measuring the spatially and spectrally resolved radiance at relevant entry conditions for both an approximate Earth atmosphere (79 N2 : 21 O2) as well as a more accurate composition featuring the trace species Ar and CO2 (78.08 N2 : 20.95 O2 : 0.04 CO2 : 0.93 Ar). The experiments were configured to target a wide range of conditions, of which shots from 8 to 11.5 km/s at 0.2 Torr (26.7 Pa) are examined in this paper. The non-equilibrium component was chosen to be the focus of this study as it can account for a significant percentage of the emitted radiation for Earth entry, and more importantly, non-equilibrium has traditionally been assigned a large uncertainty for vehicle design. The main goals of this study are to present the shock tube data in the form of a non-equilibrium metric, evaluate the level of agreement between the experiment and simulations, identify key discrepancies and to promote discussion about various aspects of modeling non-equilibrium radiating flows. Radiance profiles integrated over discreet wavelength regions, ranging from the VUV through to the NIR, were compared in order to maximize both the spectral coverage and the number of experiments that could be used in the analysis. A previously defined non-equilibrium metric has been used to allow comparisons with several shots and reveal trends in the data. Overall, LAURAHARA is shown to under-predict EAST by as much as 50 and over-predict by as much as 20 depending on the shock speed. DPLRNEQAIR is shown to under-predict EAST by as much as 40 and over-predict by as much as 12 depending on the shock speed. In terms of an upper bound estimate for the absolute error in wall-directed heat flux, at the lower speeds investigated in this paper, 8 to 9 km/s, even

  18. Non-equilibrium freezing behaviour of aqueous systems.

    PubMed

    MacKenzie, A P

    1977-03-29

    The tendencies to non-equilibrium freezing behaviour commonly noted in representative aqueous systems derive from bulk and surface properties according to the circumstances. Supercooling and supersaturation are limited by heterogeneous nucleation in the presence of solid impurities. Homogeneous nucleation has been observed in aqueous systems freed from interfering solids. Once initiated, crystal growth is ofter slowed and, very frequently, terminated with increasing viscosity. Nor does ice first formed always succeed in assuming its most stable crystalline form. Many of the more significant measurements on a given systeatter permitting the simultaneous representation of thermodynamic and non-equilibrium properties. The diagram incorporated equilibrium melting points, heterogeneous nucleation temperatures, homogeneous nucleation temperatures, glass transition and devitrification temperatures, recrystallization temperatures, and, where appropriate, solute solubilities and eutectic temperatures. Taken together, the findings on modle systems aid the identification of the kinetic and thermodynamic factors responsible for the freezing-thawing survival of living cells.

  19. Evolution of specialization under non-equilibrium population dynamics.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2013-03-21

    We analyze the evolution of specialization in resource utilization in a mechanistically underpinned discrete-time model using the adaptive dynamics approach. We assume two nutritionally equivalent resources that in the absence of consumers grow sigmoidally towards a resource-specific carrying capacity. The consumers use resources according to the law of mass-action with rates involving trade-off. The resulting discrete-time model for the consumer population has over-compensatory dynamics. We illuminate the way non-equilibrium population dynamics affect the evolutionary dynamics of the resource consumption rates, and show that evolution to the trimorphic coexistence of a generalist and two specialists is possible due to asynchronous non-equilibrium population dynamics of the specialists. In addition, various forms of cyclic evolutionary dynamics are possible. Furthermore, evolutionary suicide may occur even without Allee effects and demographic stochasticity.

  20. Construction of a Non-Equilibrium Thermal Boundary Layer Facility

    NASA Astrophysics Data System (ADS)

    Biles, Drummond; Ebadi, Alireza; Ma, Allen; White, Christopher

    2015-11-01

    A thermally conductive, electrically heated wall-plate forming the bottom wall of a wind tunnel has been constructed and validation tests have been performed. The wall-plate is a sectioned wall design, where each section is independently heated and controlled. Each section consists of an aluminum 6061 plate, an array of resistive heaters affixed to the bottom of the aluminum plate, and a calcium silicate holder used for thermal isolation. Embedded thermocouples in the aluminum plates are used to monitor the wall temperature and for feedback control of wall heating. The wall-plate is used to investigate thermal transport in both equilibrium and non-equilibrium boundary layers. The non-equilibrium boundary layer flow investigated is oscillatory flow produced by a rotor-stator mechanism placed downstream of the test section of the wind tunnel.

  1. Entropy Production and Non-Equilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    2013-01-01

    The long-term issue of entropy production in transport phenomena is solved by separating the symmetry of the non-equilibrium density matrix ρ(t) in the von Neumann equation, as ρ(t) = ρs(t) + ρa(t) with the symmetric part ρs(t) and antisymmetric part ρa(t). The irreversible entropy production (dS/dt)irr is given in M. Suzuki, Physica A 390(2011)1904 by (dS/dt)irr = Tr( {H}(dρ s{(t)/dt))}/T for the Hamiltonian {H} of the relevant system. The general formulation of the extended von Neumann equation with energy supply and heat extraction is reviewed from the author's paper (M. S.,Physica A391(2012)1074). irreversibility; entropy production; transport phenomena; electric conduction; thermal conduction; linear response; Kubo formula; steady state; non-equilibrium density matrix; energy supply; symmetry-separated von Neumann equation; unboundedness.

  2. Boltzmann equation solver adapted to emergent chemical non-equilibrium

    SciTech Connect

    Birrell, Jeremiah; Wilkening, Jon; Rafelski, Johann

    2015-01-15

    We present a novel method to solve the spatially homogeneous and isotropic relativistic Boltzmann equation. We employ a basis set of orthogonal polynomials dynamically adapted to allow for emergence of chemical non-equilibrium. Two time dependent parameters characterize the set of orthogonal polynomials, the effective temperature T(t) and phase space occupation factor ϒ(t). In this first paper we address (effectively) massless fermions and derive dynamical equations for T(t) and ϒ(t) such that the zeroth order term of the basis alone captures the particle number density and energy density of each particle distribution. We validate our method and illustrate the reduced computational cost and the ability to easily represent final state chemical non-equilibrium by studying a model problem that is motivated by the physics of the neutrino freeze-out processes in the early Universe, where the essential physical characteristics include reheating from another disappearing particle component (e{sup ±}-annihilation)

  3. Non-equilibrium Reaction Kinetics in Molecular Solids

    NASA Astrophysics Data System (ADS)

    Wood, Mitchell; Strachan, Alejandro

    We explore the possibility of non-statistical chemical reactions in condense-phase energetic materials via reactive molecular dynamics (MD) simulations. We characterize the response of three unique high energy density molecular crystals to different types of insults: electric fields of various frequencies (100-4000cm-1) and strengths and direct heating at various rates. We find that non-equilibrium states can be created for short timescales when energy input targets specific vibrations through the electric fields, and that equilibration eventually occurs even while the insults remain present. Interestingly, for strong fields these relaxation timescales are comparable to those of the initial chemical decomposition of the molecules. Details of how this vibrational energy localization affects the preferred uni- or multi-molecular reactions are discussed. These results provide insight into non-equilibrium or coherent initiation of chemistry in the condensed phase that would of interest in fields ranging from catalysis to explosives.

  4. Investigation of Non-Equilibrium Radiation for Earth Entry

    NASA Technical Reports Server (NTRS)

    Brandis, A. M.; Johnston, C. O.; Cruden, B. A.

    2016-01-01

    For Earth re-entry at velocities between 8 and 11.5 km/s, the accuracy of NASA's computational uid dynamic and radiative simulations of non-equilibrium shock layer radiation is assessed through comparisons with measurements. These measurements were obtained in the NASA Ames Research Center's Electric Arc Shock Tube (EAST) facility. The experiments were aimed at measuring the spatially and spectrally resolved radiance at relevant entry conditions for both an approximate Earth atmosphere (79% N2 : 21% O2 by mole) as well as a more accurate composition featuring the trace species Ar and CO2 (78.08% N2 : 20.95% O2 : 0.04% CO2 : 0.93% Ar by mole). The experiments were configured to target a wide range of conditions, of which shots from 8 to 11.5 km/s at 0.2 Torr (26.7 Pa) are examined in this paper. The non-equilibrium component was chosen to be the focus of this study as it can account for a significant percentage of the emitted radiation for Earth re-entry, and more importantly, non-equilibrium has traditionally been assigned a large uncertainty for vehicle design. The main goals of this study are to present the shock tube data in the form of a non-equilibrium metric, evaluate the level of agreement between the experiment and simulations, identify key discrepancies and to examine critical aspects of modeling non-equilibrium radiating flows. Radiance pro les integrated over discreet wavelength regions, ranging from the Vacuum Ultra Violet (VUV) through to the Near Infra-Red (NIR), were compared in order to maximize both the spectral coverage and the number of experiments that could be used in the analysis. A previously defined non-equilibrium metric has been used to allow comparisons with several shots and reveal trends in the data. Overall, LAURA/HARA is shown to under-predict EAST by as much as 40% and over-predict by as much as 12% depending on the shock speed. DPLR/NEQAIR is shown to under-predict EAST by as much as 50% and over-predict by as much as 20% depending

  5. Approach to non-equilibrium behaviour in quantum field theory

    SciTech Connect

    Kripfganz, J.; Perlt, H.

    1989-05-01

    We study the real-time evolution of quantum field theoretic systems in non-equilibrium situations. Results are presented for the example of scalar /lambda//phi//sup 4/ theory. The degrees of freedom are discretized by studying the system on a torus. Short-wavelength modes are integrated out to one-loop order. The long-wavelength modes considered to be the relevant degrees of freedom are treated by semiclassical phase-space methods. /copyright/ 1989 Academic Press, Inc.

  6. Novel mapping in non-equilibrium stochastic processes

    NASA Astrophysics Data System (ADS)

    Heseltine, James; Kim, Eun-jin

    2016-04-01

    We investigate the time-evolution of a non-equilibrium system in view of the change in information and provide a novel mapping relation which quantifies the change in information far from equilibrium and the proximity of a non-equilibrium state to the attractor. Specifically, we utilize a nonlinear stochastic model where the stochastic noise plays the role of incoherent regulation of the dynamical variable x and analytically compute the rate of change in information (information velocity) from the time-dependent probability distribution function. From this, we quantify the total change in information in terms of information length { L } and the associated action { J }, where { L } represents the distance that the system travels in the fluctuation-based, statistical metric space parameterized by time. As the initial probability density function’s mean position (μ) is decreased from the final equilibrium value {μ }* (the carrying capacity), { L } and { J } increase monotonically with interesting power-law mapping relations. In comparison, as μ is increased from {μ }*,{ L } and { J } increase slowly until they level off to a constant value. This manifests the proximity of the state to the attractor caused by a strong correlation for large μ through large fluctuations. Our proposed mapping relation provides a new way of understanding the progression of the complexity in non-equilibrium system in view of information change and the structure of underlying attractor.

  7. Non-equilibrium Numerical Analysis of Microwave-supported Detonation Threshold Propagating through Diatomic Gas

    NASA Astrophysics Data System (ADS)

    Shiraishi, Hiroyuki

    2015-09-01

    Microwave-supported Detonation (MSD), one type of Microwave-supported Plasma (MSP), is considered as one of the most important phenomena because it can generate high pressure and high temperature for beam-powered space propulsion systems. In this study, I numerically simulate MSD waves propagating through a diatomic gas. In order to evaluate the threshold of beam intensity, I use the physical-fluid dynamics scheme, which has been developed for simulating unsteady and non-equilibrium LSD waves propagating through a hydrogen gas.

  8. Novel non-equilibrium modelling of a DC electric arc in argon

    NASA Astrophysics Data System (ADS)

    Baeva, M.; Benilov, M. S.; Almeida, N. A.; Uhrlandt, D.

    2016-06-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current-voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7-2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A.

  9. Nanosecond pulsed humid Ar plasma jet in air: shielding, discharge characteristics and atomic hydrogen production

    NASA Astrophysics Data System (ADS)

    Yatom, Shurik; Luo, Yuchen; Xiong, Qing; Bruggeman, Peter J.

    2017-10-01

    Gas phase non-equilibrium plasmas jets containing water vapor are of growing interest for many applications. In this manuscript, we report a detailed study of an atmospheric pressure nanosecond pulsed Ar  +  0.26% H2O plasma jet. The plasma jet operates in an atmospheric pressure air surrounding but is shielded with a coaxial argon flow to limit the air diffusion into the jet effluent core. The jet impinges on a metal plate electrode and produces a stable plasma filament (transient spark) between the needle electrode in the jet and the metal plate. The stable plasma filament is characterized by spatially and time resolved electrical and optical diagnostics. This includes Rayleigh scattering, Stark broadening of the hydrogen Balmer lines and two-photon absorption laser induced fluorescence (TaLIF) to obtain the gas temperature, the electron density and the atomic hydrogen density respectively. Electron densities and atomic hydrogen densities up to 5 × 1022 m-3 and 2 × 1022 m-3 have been measured. This shows that atomic hydrogen is one of the main species in high density Ar-H2O plasmas. The gas temperature does not exceed 550 K in the core of the plasma. To enable in situ calibration of the H TaLIF at atmospheric pressure a previously published O density calibration scheme is extended to include a correction for the line profiles by including overlap integrals as required by H TaLIF. The line width of H TaLIF, due to collision broadening has the same trend as the neutral density obtained by Rayleigh scattering. This suggests the possibility to use this technique to in situ probe neutral gas densities.

  10. Air plasma effect on dental disinfection

    SciTech Connect

    Duarte, S.; Murata, R. M.; Saxena, D.; Kuo, S. P.; Chen, C. Y.; Huang, K. J.; Popovic, S.

    2011-07-15

    A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formation was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.

  11. Air plasma effect on dental disinfection

    NASA Astrophysics Data System (ADS)

    Duarte, S.; Kuo, S. P.; Murata, R. M.; Chen, C. Y.; Saxena, D.; Huang, K. J.; Popovic, S.

    2011-07-01

    A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formation was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.

  12. Measurement of mixing-induced thermal non-equilibrium in a supersonic shear layer using spontaneous Raman scattering

    NASA Astrophysics Data System (ADS)

    Reising, Heath H.; KC, Utsav; Clemens, Noel T.; Varghese, Philip L.

    2017-07-01

    Mixing-induced vibrational non-equilibrium of N2 is studied in the turbulent shear layer between a supersonic cold jet and a surrounding hot air coflow. The jet fluid is either air, N2, or Ar, and the heated coflow is air at a maximum temperature of 850 K. The rotational and vibrational temperatures of N2 are determined by fitting the measured time-averaged spontaneous Raman spectra to an analytical model that allows for different equilibrium distributions for the vibrational and rotational states. The mixing of the jet fluid with the coflow gases occurs over time scales of the order of 5 μs, which is found to be sufficiently fast to induce vibrational non-equilibrium in the mixture of hot and cold gases. Results show that the non-equilibrium can be measured, but not on the cold side of the shear layer where the vibrational population in the first hot band is negligible. The effect of fluctuating temperatures within the time-averaged Raman measurement was quantified with the use of Rayleigh thermometry and found to not significantly alter the Raman scattering results. It was also found that the non-equilibrium increases in the shear layer when N2 is removed from the jet fluid, indicating that the observed non-equilibrium is an averaged result of two competing processes that occur simultaneously at a molecular scale, i.e., vibrationally hot N2 is being cooled by a fast jet fluid and vibrationally cold jet fluid is being heated by a hot coflow fluid. An interesting inference of this view is that the averaging effect is always present, regardless of the measurement resolution.

  13. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    Detailed measurements and modeling of the spectral emission of an atmospheric pressure air plasma at temperatures up to -3400 K have been made. The cold gas injected in the plasma torch contained an estimated mole fraction of water vapor of approximately 4.5 x 10(exp -3) and an estimated carbon dioxide mole fraction of approximately 3.3 x 10(exp -4). Under these conditions, the minimum level of air plasma emission is found to be between 3.9 and 4.15 microns. Outside this narrow region, significant spectral emission is detected that can be attributed to the fundamental and overtone bands of NO and OH, and to the v(sub 3) and the (v(sub 1)+v(sub 3)) bands Of CO2. Special attention was paid to the effects of ambient air absorption in the optical path between the plasma and the detector. Excellent quantitative agreement is obtained between the measured and simulated spectra, which are both on absolute intensity scales, thus lending confidence in the radiation models incorporated into NEQAIR2-IR over the course of this research program.

  14. Non-equilibrium mechanisms of light in the microwave region

    NASA Astrophysics Data System (ADS)

    Mortenson, Juliana H. J.

    2011-09-01

    Quantum mechanics and quantum chemistry have taught for more than 100 years that "photons" associated with microwaves cannot exert photochemical effects because their "photon energies" are smaller than chemical bond energies. Those quantum theories have been strongly contradicted within the last few decades by physical experiments demonstrating non-equilibrium, photochemical and photomaterial activity by microwaves. Reactions among scientists to these real physical models and proofs have varied from disbelief and denial, to acceptance of the real physical phenomena and demands for revisions to quantum theory. At the previous "Nature of Light" meeting, an advance in the foundations of quantum mechanics was presented. Those discoveries have revealed the source of these conflicts between quantum theory and microwave experiments. Critical variables and constants were missing from quantum theory due to a minor mathematical inadvertence in Planck's original quantum work. As a result, erroneous concepts were formed nearly a century ago regarding the energetics and mechanisms of lower frequency light, such as in the microwave region. The new discoveries have revealed that the traditional concept of "photons" mistakenly attributed elementary particle status to what is actually an arbitrarily time-based collection of sub-photonic, elementary particles. In a mathematical dimensional sense, those time-based energy measurements cannot be mathematically equivalent to bond energies as historically believed. Only an "isolated quantity of energy", as De Broglie referred to it, can be equivalent to bond energy. With the aid of the new variables and constants, the non-equilibrium mechanisms of light in the microwave region can now be described. They include resonant absorption, splitting frequency stimulation leading to electronic excitation, and resonant acoustic transduction. Numerous practical engineering applications can be envisioned for non-equilibrium microwaves.

  15. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    This report describes progress during the second year of our research program on Infrared Signature Masking by Air Plasmas at Stanford University. This program is intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Our previous annual report described spectral measurements and modeling of the radiation emitted between 3.2 and 5.5 microns by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3100 K. One of our goals was to examine the spectral emission of secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million Of CO2, which is the natural CO2 concentration in atmospheric air at room temperature, and a small amount of water vapor with an estimated mole fraction of 3.8 x 10(exp -4). As can be seen from Figure 1, it was found that the measured spectrum exhibited intense spectral features due to the fundamental rovibrational bands of NO at 4.9 - 5.5 microns and the V(3) band of CO2 (antisymmetric stretch) at 4.2-4.8 microns. These observations confirmed the well-known fact that infrared signatures between 4.15 - 5.5 microns can be masked by radiative emission in the interceptor's bow-shock. Figure I also suggested that the range 3.2 - 4.15 microns did not contain any significant emission features (lines or continuum) that could mask IR signatures. However, the signal-to-noise level, close to one in that range, precluded definite conclusions. Thus, in an effort to further investigate the spectral emission in the range of interest to signature masking problem, new measurements were made with a higher signal-to-noise ratio and an extended wavelength range.

  16. Comment on the Article ``Relativistic Non-Equilibrium Thermodynamics Revisited''

    NASA Astrophysics Data System (ADS)

    Muschik, Wolfgang; von Borzeszkowski, Horst-Heino

    2007-05-01

    There are two problematic items in García-Colín and Sandoval-Villalbazo's approach to “relativistic non-equilibrium thermodynamics” (L.S. García- Colín and A. Sandoval-Villalbazo, J. Non-Equilib. Thermodyn. 31, 2006, pp. 11-22). The paper does not follow the fundamentals of relativity theory; according to them, the energy-momentum tensor (EMT) has to include all energies of the considered system. Secondly, strange thermodynamic consequences result by using the presuppositions made by the authors. The paper is critically discussed and some shortcomings are elucidated.

  17. Fluctuations and large deviations in non-equilibrium systems

    NASA Astrophysics Data System (ADS)

    Derrida, B.

    2005-05-01

    For systems in contact with two reservoirs at different densities or with two thermostats at different temperatures, the large deviation function of the density gives a possible way of extending the notion of free energy to non-equilibrium systems. This large deviation function of the density can be calculated explicitly for exclusion models in one dimension with open boundary conditions. For these models, one can also obtain the distribution of the current of particles flowing through the system and the results lead to a simple conjecture for the large deviation function of the current of more general diffusive systems.

  18. The non-equilibrium nature of culinary evolution

    NASA Astrophysics Data System (ADS)

    Kinouchi, Osame; Diez-Garcia, Rosa W.; Holanda, Adriano J.; Zambianchi, Pedro; Roque, Antonio C.

    2008-07-01

    Food is an essential part of civilization, with a scope that ranges from the biological to the economic and cultural levels. Here, we study the statistics of ingredients and recipes taken from Brazilian, British, French and Medieval cookery books. We find universal distributions with scale invariant behaviour. We propose a copy-mutate process to model culinary evolution that fits our empirical data very well. We find a cultural 'founder effect' produced by the non-equilibrium dynamics of the model. Both the invariant and idiosyncratic aspects of culture are accounted for by our model, which may have applications in other kinds of evolutionary processes.

  19. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    PubMed

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  20. NON-EQUILIBRIUM IONIZATION MODELING OF THE CURRENT SHEET IN A SIMULATED SOLAR ERUPTION

    SciTech Connect

    Shen Chengcai; Reeves, Katharine K.; Raymond, John C.; Murphy, Nicholas A.; Ko, Yuan-Kuen; Lin Jun; Mikic, Zoran; Linker, Jon A.

    2013-08-20

    The current sheet that extends from the top of flare loops and connects to an associated flux rope is a common structure in models of coronal mass ejections (CMEs). To understand the observational properties of CME current sheets, we generated predictions from a flare/CME model to be compared with observations. We use a simulation of a large-scale CME current sheet previously reported by Reeves et al. This simulation includes ohmic and coronal heating, thermal conduction, and radiative cooling in the energy equation. Using the results of this simulation, we perform time-dependent ionization calculations of the flow in a CME current sheet and construct two-dimensional spatial distributions of ionic charge states for multiple chemical elements. We use the filter responses from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory and the predicted intensities of emission lines to compute the count rates for each of the AIA bands. The results show differences in the emission line intensities between equilibrium and non-equilibrium ionization. The current sheet plasma is underionized at low heights and overionized at large heights. At low heights in the current sheet, the intensities of the AIA 94 A and 131 A channels are lower for non-equilibrium ionization than for equilibrium ionization. At large heights, these intensities are higher for non-equilibrium ionization than for equilibrium ionization inside the current sheet. The assumption of ionization equilibrium would lead to a significant underestimate of the temperature low in the current sheet and overestimate at larger heights. We also calculate the intensities of ultraviolet lines and predict emission features to be compared with events from the Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, including a low-intensity region around the current sheet corresponding to this model.

  1. Non-equilibrium configurational Prigogine-Defay ratio

    NASA Astrophysics Data System (ADS)

    Garden, Jean-Luc; Guillou, Hervé; Richard, Jacques; Wondraczek, Lothar

    2012-06-01

    Classically, the Prigogine-Defay (PD) ratio involves differences in isobaric heat capacity, isothermal compressibility, and isobaric thermal expansion coefficient between a super-cooled liquid and the corresponding glass at the glass transition. However, determining such differences by extrapolation of coefficients that have been measured for super-cooled liquid and glassy state, respectively, poses the problem that it does not exactly take into account the non-equilibrium character of the glass transition. In this paper, we assess this question by taking into account the time dependence of configurational contributions to the three thermodynamic coefficients in the glass transition range upon varying temperature and/or pressure. Macroscopic non-equilibrium thermodynamics is applied to obtain a generalised form of the PD ratio. The classical PD ratio can then be taken as a particular case of this generalisation. Under some assumptions, the configurational PD ratio (CPD ratio) can be expressed in terms of fictive temperature and fictive pressure which, hence, provides another possibility to experimentally verify this formalism.

  2. Non-equilibrium magnetic interactions in strongly correlated systems

    SciTech Connect

    Secchi, A.; Brener, S.; Lichtenstein, A.I.; Katsnelson, M.I.

    2013-06-15

    We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii–Moriya coupling, but is not due to spin–orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well. -- Highlights: •We develop a theory for magnetism of strongly correlated systems out of equilibrium. •Our theory is suitable for laser-induced ultrafast magnetization dynamics. •We write time-dependent exchange parameters in terms of electronic Green functions. •We find a new magnetic interaction, a “twist exchange”. •We give general expressions for magnetic noise in itinerant-electron systems.

  3. Macroscopic Fluctuation Theory for Stationary Non-Equilibrium States

    NASA Astrophysics Data System (ADS)

    Bertini, L.; de Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C.

    2002-05-01

    We formulate a dynamical fluctuation theory for stationary non-equilibrium states (SNS) which is tested explicitly in stochastic models of interacting particles. In our theory a crucial role is played by the time reversed dynamics. Within this theory we derive the following results: the modification of the Onsager-Machlup theory in the SNS; a general Hamilton-Jacobi equation for the macroscopic entropy; a non-equilibrium, nonlinear fluctuation dissipation relation valid for a wide class of systems; an H theorem for the entropy. We discuss in detail two models of stochastic boundary driven lattice gases: the zero range and the simple exclusion processes. In the first model the invariant measure is explicitly known and we verify the predictions of the general theory. For the one dimensional simple exclusion process, as recently shown by Derrida, Lebowitz, and Speer, it is possible to express the macroscopic entropy in terms of the solution of a nonlinear ordinary differential equation; by using the Hamilton-Jacobi equation, we obtain a logically independent derivation of this result.

  4. Mesoscopic non-equilibrium thermodynamic analysis of molecular motors.

    PubMed

    Kjelstrup, S; Rubi, J M; Pagonabarraga, I; Bedeaux, D

    2013-11-28

    We show that the kinetics of a molecular motor fueled by ATP and operating between a deactivated and an activated state can be derived from the principles of non-equilibrium thermodynamics applied to the mesoscopic domain. The activation by ATP, the possible slip of the motor, as well as the forward stepping carrying a load are viewed as slow diffusion along a reaction coordinate. Local equilibrium is assumed in the reaction coordinate spaces, making it possible to derive the non-equilibrium thermodynamic description. Using this scheme, we find expressions for the velocity of the motor, in terms of the driving force along the spacial coordinate, and for the chemical reaction that brings about activation, in terms of the chemical potentials of the reactants and products which maintain the cycle. The second law efficiency is defined, and the velocity corresponding to maximum power is obtained for myosin movement on actin. Experimental results fitting with the description are reviewed, giving a maximum efficiency of 0.45 at a myosin headgroup velocity of 5 × 10(-7) m s(-1). The formalism allows the introduction and test of meso-level models, which may be needed to explain experiments.

  5. Turbulence as a Problem in Non-equilibrium Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Goldenfeld, Nigel; Shih, Hong-Yan

    2016-12-01

    The transitional and well-developed regimes of turbulent shear flows exhibit a variety of remarkable scaling laws that are only now beginning to be systematically studied and understood. In the first part of this article, we summarize recent progress in understanding the friction factor of turbulent flows in rough pipes and quasi-two-dimensional soap films, showing how the data obey a two-parameter scaling law known as roughness-induced criticality, and exhibit power-law scaling of friction factor with Reynolds number that depends on the precise form of the nature of the turbulent cascade. These results hint at a non-equilibrium fluctuation-dissipation relation that applies to turbulent flows. The second part of this article concerns the lifetime statistics in smooth pipes around the transition, showing how the remarkable super-exponential scaling with Reynolds number reflects deep connections between large deviation theory, extreme value statistics, directed percolation and the onset of coexistence in predator-prey ecosystems. Both these phenomena reflect the way in which turbulence can be fruitfully approached as a problem in non-equilibrium statistical mechanics.

  6. Non-equilibrium thermodynamics analysis of transcriptional regulation kinetics

    NASA Astrophysics Data System (ADS)

    Hernández-Lemus, Enrique; Tovar, Hugo; Mejía, Carmen

    2014-12-01

    Gene expression in eukaryotic cells is an extremely complex and interesting phenomenon whose dynamics are controlled by a large number of subtle physicochemical processes commonly described by means of gene regulatory networks. Such networks consist in a series of coupled chemical reactions, conformational changes, and other biomolecular processes involving the interaction of the DNA molecule itself with a number of proteins usually called transcription factors as well as enzymes and other components. The kinetics behind the functioning of such gene regulatory networks are largely unknown, though its description in terms of non-equilibrium thermodynamics has been discussed recently. In this work we will derive general kinetic equations for a gene regulatory network from a non-equilibrium thermodynamical description and discuss its use in understanding the free energy constrains imposed in the network structure. We also will discuss explicit expressions for the kinetics of a simple model of gene regulation and show that the kinetic role of mRNA decay during the RNA synthesis stage (or transcription) is somehow limited due to the comparatively low values of decay rates. At the level discussed here, this implies a decoupling of the kinetics of mRNA synthesis and degradation a fact that may become quite useful when modeling gene regulatory networks from experimental data on whole genome gene expression.

  7. Non-equilibrium thermodynamics of harmonically trapped bosons

    NASA Astrophysics Data System (ADS)

    Ángel García-March, Miguel; Fogarty, Thomás; Campbell, Steve; Busch, Thomas; Paternostro, Mauro

    2016-10-01

    We apply the framework of non-equilibrium quantum thermodynamics to the physics of quenched small-sized bosonic quantum gases in a one-dimensional harmonic trap. We show that dynamical orthogonality can occur in these few-body systems with strong interactions after a quench and we find its occurrence analytically for an infinitely repulsive pair of atoms. We further show this phenomena is related to the fundamental excitations that dictate the dynamics from the spectral function. We establish a clear qualitative link between the amount of (irreversible) work performed on the system and the establishment of entanglement. We extend our analysis to multipartite systems by examining the case of three trapped atoms. We show the initial (pre-quench) interactions play a vital role in determining the dynamical features, while the qualitative features of the two particle case appear to remain valid. Finally, we propose the use of the atomic density profile as a readily accessible indicator of the non-equilibrium properties of the systems in question.

  8. Non-equilibrium theory of arrested spinodal decomposition

    SciTech Connect

    Olais-Govea, José Manuel; López-Flores, Leticia; Medina-Noyola, Magdaleno

    2015-11-07

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramŕez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504 (2010)] is applied to the description of the non-equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermodynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line, we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the formation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.

  9. Non-equilibrium theory of arrested spinodal decomposition.

    PubMed

    Olais-Govea, José Manuel; López-Flores, Leticia; Medina-Noyola, Magdaleno

    2015-11-07

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramŕez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504 (2010)] is applied to the description of the non-equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermodynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line, we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the formation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.

  10. Non-equilibrium theory of arrested spinodal decomposition

    NASA Astrophysics Data System (ADS)

    Olais-Govea, José Manuel; López-Flores, Leticia; Medina-Noyola, Magdaleno

    2015-11-01

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramŕez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504 (2010)] is applied to the description of the non-equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermodynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line, we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the formation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.

  11. Turbulence as a Problem in Non-equilibrium Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Goldenfeld, Nigel; Shih, Hong-Yan

    2017-05-01

    The transitional and well-developed regimes of turbulent shear flows exhibit a variety of remarkable scaling laws that are only now beginning to be systematically studied and understood. In the first part of this article, we summarize recent progress in understanding the friction factor of turbulent flows in rough pipes and quasi-two-dimensional soap films, showing how the data obey a two-parameter scaling law known as roughness-induced criticality, and exhibit power-law scaling of friction factor with Reynolds number that depends on the precise form of the nature of the turbulent cascade. These results hint at a non-equilibrium fluctuation-dissipation relation that applies to turbulent flows. The second part of this article concerns the lifetime statistics in smooth pipes around the transition, showing how the remarkable super-exponential scaling with Reynolds number reflects deep connections between large deviation theory, extreme value statistics, directed percolation and the onset of coexistence in predator-prey ecosystems. Both these phenomena reflect the way in which turbulence can be fruitfully approached as a problem in non-equilibrium statistical mechanics.

  12. Scalar Fluctuations from Extended Non-equilibrium Thermodynamic States

    NASA Astrophysics Data System (ADS)

    Nettleton, R. E.

    1985-10-01

    In the framework of extended non-equilibrium thermodynamics, the local non-equilibrium state of a liquid is described by the density, temperature, and a structural variable, ζ, and its rate-of-change. ζ is the ensemble average of a function A (Q) of the configuration co-ordinates, and it is assumed to relax to local equilibrium in a time short compared to the time for diffusion of an appreciable number of particles into the system. By a projection operator technique of Grabert, an equation is derived from the Liouville equation for the distribution of fluctuations in TV, the particle number, and in A and Ȧ. An approximate solution is proposed which exhibits nonequilibrium corrections to the Einstein function in the form of a sum of thermodynamic forces. For a particular structural model, the corresponding non-Einstein contributions to correlation functions are estimated to be very small. For variables of the type considered here, the thermodynamic pressure is found to equal the pressure trace.

  13. The non-equilibrium and energetic cost of sensory adaptation

    SciTech Connect

    Lan, G.; Sartori, Pablo; Tu, Y.

    2011-03-24

    Biological sensory systems respond to external signals in short time and adapt to permanent environmental changes over a longer timescale to maintain high sensitivity in widely varying environments. In this work we have shown how all adaptation dynamics are intrinsically non-equilibrium and free energy is dissipated. We show that the dissipated energy is utilized to maintain adaptation accuracy. A universal relation between the energy dissipation and the optimum adaptation accuracy is established by both a general continuum model and a discrete model i n the specific case of the well-known E. coli chemo-sensory adaptation. Our study suggests that cellular level adaptations are fueled by hydrolysis of high energy biomolecules, such as ATP. The relevance of this work lies on linking the functionality of a biological system (sensory adaptation) with a concept rooted in statistical physics (energy dissipation), by a mathematical law. This has been made possible by identifying a general sensory system with a non-equilibrium steady state (a stationary state in which the probability current is not zero, but its divergence is, see figure), and then numerically and analytically solving the Fokker-Planck and Master Equations which describe the sensory adaptive system. The application of our general results to the case of E. Coli has shed light on why this system uses the high energy SAM molecule to perform adaptation, since using the more common ATP would not suffice to obtain the required adaptation accuracy.

  14. Air Plasma Source for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Henriques, J.; Tatarova, E.; Dias, F. M.; Ferreira, C. M.; Gordiets, B.; IPFN-IST, 1049-001 LX, Portugal Team; Lebedev Physical Institute of the Russian Academy of Sciences Team

    2011-10-01

    Plasma interactions with living matter are presently at the frontiers of plasma research and development. Plasmas contain numerous agents that influence biological activity. They provide essentially two types of biocidal species: reactive species, such as oxygen atoms that lead to lethality of micro-organisms through erosion, and UV radiation that can damage the DNA strands. In this work we investigate a surface wave (2.45 GHz) driven discharge plasma in air, with a small admixture of water vapor, as a source of ground state O(3P) oxygen atoms, NO molecules and UV radiation. A theoretical model describing both the wave driven discharge zone and its flowing afterglow is used to analyze the performance of this plasma source. The predicted plasma-generated NO(X) and O(3P) concentrations and NO(γ) radiation intensity along the source are presented and discussed as a function of the microwave power and water vapor percentage in the gas mixture. To validate the theoretical predictions, the relative concentrations of species have been determined by Mass Spectrometry, Fourier Transform Infrared Spectroscopy and Optical Spectroscopy. Acknowledgment: This work was funded by the Portuguese Foundation for Science and Technology, under research contract PTDC/FIS/108411/2008.

  15. Etching of polymers, proteins and bacterial spores by atmospheric pressure DBD plasma in air

    NASA Astrophysics Data System (ADS)

    Kuzminova, A.; Kretková, T.; Kylián, O.; Hanuš, J.; Khalakhan, I.; Prukner, V.; Doležalová, E.; Šimek, M.; Biederman, H.

    2017-04-01

    Many studies proved that non-equilibrium discharges generated at atmospheric pressure are highly effective for the bio-decontamination of surfaces of various materials. One of the key processes that leads to a desired result is plasma etching and thus the evaluation of etching rates of organic materials is of high importance. However, the comparison of reported results is rather difficult if impossible as different authors use diverse sources of atmospheric plasma that are operated at significantly different operational parameters. Therefore, we report here on the systematic study of the etching of nine different common polymers that mimic the different structures of more complicated biological systems, bovine serum albumin (BSA) selected as the model protein and spores of Bacillus subtilis taken as a representative of highly resistant micro-organisms. The treatment of these materials was performed by means of atmospheric pressure dielectric barrier discharge (DBD) sustained in open air at constant conditions. All tested polymers, BSA and spores, were readily etched by DBD plasma. However, the measured etching rates were found to be dependent on the chemical structure of treated materials, namely on the presence of oxygen in the structure of polymers.

  16. Air plasma jet with hollow electrodes at atmospheric pressure

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2007-05-15

    Atmospheric-pressure plasma jet with air is produced through hollow electrodes and dielectric with a hole of 1 mm diam. The plasma jet device is operated by injecting pressurized air into the electrode hole. The air plasma jet device at average powers less than 5 W exhibits a cold plasma jet of about 2 cm in length and near the room temperature, being low enough to treat thermally sensitive materials. Preliminary studies on the discharge characteristics and application tests are also presented by comparing the air plasma jet with the nitrogen and argon plasma jet.

  17. Non-equilibrium phase transitions in a liquid crystal

    NASA Astrophysics Data System (ADS)

    Dan, K.; Roy, M.; Datta, A.

    2015-09-01

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  18. Non-equilibrium phase transitions in a liquid crystal.

    PubMed

    Dan, K; Roy, M; Datta, A

    2015-09-07

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min(-1), consistent with a glass transition, a clear peak for β ≤ 5 K min(-1) and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  19. Non-equilibrium dissipative supramolecular materials with a tunable lifetime

    PubMed Central

    Tena-Solsona, Marta; Rieß, Benedikt; Grötsch, Raphael K.; Löhrer, Franziska C.; Wanzke, Caren; Käsdorf, Benjamin; Bausch, Andreas R.; Müller-Buschbaum, Peter; Lieleg, Oliver; Boekhoven, Job

    2017-01-01

    Many biological materials exist in non-equilibrium states driven by the irreversible consumption of high-energy molecules like ATP or GTP. These energy-dissipating structures are governed by kinetics and are thus endowed with unique properties including spatiotemporal control over their presence. Here we show man-made equivalents of materials driven by the consumption of high-energy molecules and explore their unique properties. A chemical reaction network converts dicarboxylates into metastable anhydrides driven by the irreversible consumption of carbodiimide fuels. The anhydrides hydrolyse rapidly to the original dicarboxylates and are designed to assemble into hydrophobic colloids, hydrogels or inks. The spatiotemporal control over the formation and degradation of materials allows for the development of colloids that release hydrophobic contents in a predictable fashion, temporary self-erasing inks and transient hydrogels. Moreover, we show that each material can be re-used for several cycles. PMID:28719591

  20. Microscopic versus macroscopic approaches to non-equilibrium systems

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard

    2011-01-01

    The one-dimensional symmetric simple exclusion process (SSEP) is one of the very few exactly soluble models of non-equilibrium statistical physics. It describes a system of particles which diffuse with hard core repulsion on a one-dimensional lattice in contact with two reservoirs of particles at unequal densities. The goal of this paper is to review the two main approaches which lead to the exact expression of the large deviation functional of the density of the SSEP in its steady state: a microscopic approach (based on the matrix product ansatz and an additivity property) and a macroscopic approach (based on the macroscopic fluctuation theory of Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim).

  1. Non-equilibrium steady states in supramolecular polymerization

    NASA Astrophysics Data System (ADS)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.

    2017-06-01

    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  2. Non-Equilibrium Hyperbolic Transport in Transcriptional Regulation

    PubMed Central

    Hernández-Lemus, Enrique; Correa-Rodríguez, María D.

    2011-01-01

    In this work we studied memory and irreversible transport phenomena in a non-equilibrium thermodynamical model for genomic transcriptional regulation. Transcriptional regulation possess an extremely complex phenomenology, and it is, of course, of foremost importance in organismal cell development and in the pathogenesis of complex diseases. A better understanding of the way in which these processes occur is mandatory to optimize the construction of gene regulatory networks, but also to connect these networks with multi-scale phenomena (e.g. metabolism, signalling pathways, etc.) under an integrative Systems Biology-like vision. In this paper we analyzed three simple mechanisms of genetic stimulation: an instant pulse, a periodic biochemical signal and a saturation process with sigmoidal kinetics and from these we derived the system's thermodynamical response, in the form of, for example, anomalous transcriptional bursts. PMID:21754990

  3. Non-Equilibrium Conductivity at Quantum Critical Points

    NASA Astrophysics Data System (ADS)

    Berridge, Andrew; Bhaseen, M. J.; Green, A. G.

    2013-03-01

    The behaviour of quantum systems driven out of equilibrium is a field in which we are still searching for general principles and universal results. Quantum critical systems are useful in this search as their out of equilibrium steady states may inherit universal features from equilibrium. While this has been shown in some cases, the calculational techniques used often involve simplified models or calculational tricks, which can obscure some of the underlying physical processes. Here we use a Boltzmann transport approach to study the steady-state non-equilibrium properties - conductivity and current noise, of the Bose-Hubbard model head-on. We must explicitly consider heat-flow and rate limiting processes in the establishment of the steady-state to show that it can indeed be universal. Our analysis reveals the importance of the hydrodynamic limit and the limitations of current approaches.

  4. Non-equilibrium dissipative supramolecular materials with a tunable lifetime

    NASA Astrophysics Data System (ADS)

    Tena-Solsona, Marta; Rieß, Benedikt; Grötsch, Raphael K.; Löhrer, Franziska C.; Wanzke, Caren; Käsdorf, Benjamin; Bausch, Andreas R.; Müller-Buschbaum, Peter; Lieleg, Oliver; Boekhoven, Job

    2017-07-01

    Many biological materials exist in non-equilibrium states driven by the irreversible consumption of high-energy molecules like ATP or GTP. These energy-dissipating structures are governed by kinetics and are thus endowed with unique properties including spatiotemporal control over their presence. Here we show man-made equivalents of materials driven by the consumption of high-energy molecules and explore their unique properties. A chemical reaction network converts dicarboxylates into metastable anhydrides driven by the irreversible consumption of carbodiimide fuels. The anhydrides hydrolyse rapidly to the original dicarboxylates and are designed to assemble into hydrophobic colloids, hydrogels or inks. The spatiotemporal control over the formation and degradation of materials allows for the development of colloids that release hydrophobic contents in a predictable fashion, temporary self-erasing inks and transient hydrogels. Moreover, we show that each material can be re-used for several cycles.

  5. Relativistic hydrodynamics and non-equilibrium steady states

    NASA Astrophysics Data System (ADS)

    Spillane, Michael; Herzog, Christopher P.

    2016-10-01

    We review recent interest in the relativistic Riemann problem as a method for generating a non-equilibrium steady state. In the version of the problem under consideration, the initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The new double shock solutions are in contrast with older solutions that involve one shock and one rarefaction wave. We use numerical simulations to show that the older solutions are preferred. Briefly we discuss the effects of a conserved charge. Finally, we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids.

  6. Axisymmetric turbulent wakes with new non-equilibrium similarity scalings

    NASA Astrophysics Data System (ADS)

    Vassilicos, John Christos; Nedic, Jovan; Ganapathisubramani, Bharathram; TMFC, Imperial College London Team

    2013-11-01

    The recently discovered non-equilibrium turbulence dissipation law (Seoud & Vassilicos PoF 19, 2007, Mazellier & Vassilicos PoF 22, 2010, Valente & Vassilicos JFM 687, 2011, Valente & Vassilicos PRL 108, 2012, Gomes-Fernandes et al. JFM 711, 2012) implies the existence of axisymmetric turbulent wake regions where the mean flow velocity deficit decays as the inverse of the distance from the wake-generating body and the wake width grows as the square root of that distance. This behaviour is different from any documented boundary-free turbulent shear flow to date. Its existence is confirmed in wind tunnel experiments of wakes generated by plates with irregular fractal-like edges placed normal to an incoming free stream. EPSRC.

  7. Dynamical Systems Based Non Equilibrium Statistical Mechanics for Markov Chains

    NASA Astrophysics Data System (ADS)

    Prevost, Mireille

    We introduce an abstract framework concerning non-equilibrium statistical mechanics in the specific context of Markov chains. This framework encompasses both the Evans-Searles and the Gallavotti-Cohen fluctuation theorems. To support and expand on these concepts, several results are proven, among which a central limit theorem and a large deviation principle. The interest for Markov chains is twofold. First, they model a great variety of physical systems. Secondly, their simplicity allows for an easy introduction to an otherwise complicated field encompassing the statistical mechanics of Anosov and Axiom A diffeomorphisms. We give two examples relating the present framework to physical cases modelled by Markov chains. One of these concerns chemical reactions and links key concepts from the framework to their well known physical counterpart.

  8. Non-equilibrium Thermodynamics of the Longitudinal Spin Seebeck Effect

    NASA Astrophysics Data System (ADS)

    Basso, Vittorio; Ferraro, Elena; Sola, Alessandro; Magni, Alessandro; Kuepferling, Michaela; Pasquale, Massimo

    In this paper we employ non equilibrium thermodynamics of fluxes and forces to describe magnetization and heat transport. By the theory we are able to identify the thermodynamic driving force of the magnetization current as the gradient of the effective field ▿H*. This definition permits to define the spin Seebeck coefficient ɛM which relates ▿H* and the temperature gradient ▿T. By applying the theory to the geometry of the longitudinal spin Seebeck effect we are able to obtain the optimal conditions for generating large magnetization currents. Furthermore, by using the results of recent experiments, we obtain an order of magnitude for the value of ɛM ∼ 10-2 TK-1 for yttrium iron garnet (Y3Fe5O12).

  9. Complementary relations in non-equilibrium stochastic processes

    NASA Astrophysics Data System (ADS)

    Kim, Eun-jin; Nicholson, S. B.

    2015-08-01

    We present novel complementary relations in non-equilibrium stochastic processes. Specifically, by utilising path integral formulation, we derive statistical measures (entropy, information, and work) and investigate their dependence on variables (x, v), reference frames, and time. In particular, we show that the equilibrium state maximises the simultaneous information quantified by the product of the Fisher information based on x and v while minimising the simultaneous disorder/uncertainty quantified by the sum of the entropy based on x and v as well as by the product of the variances of the PDFs of x and v. We also elucidate the difference between Eulerian and Lagrangian entropy. Our theory naturally leads to Hamilton-Jacobi relation for forced-dissipative systems.

  10. A non-equilibrium formulation of food security resilience

    PubMed Central

    Vaitla, Bapu

    2017-01-01

    Resilience, the ability to recover from adverse events, is of fundamental importance to food security. This is especially true in poor countries, where basic needs are frequently threatened by economic, environmental and health shocks. An empirically sound formalization of the concept of food security resilience, however, is lacking. Here, we introduce a general non-equilibrium framework for quantifying resilience based on the statistical notion of persistence. Our approach can be applied to any food security variable for which high-frequency time-series data are available. We illustrate our method with per capita kilocalorie availability for 161 countries between 1961 and 2011. We find that resilient countries are not necessarily those that are characterized by high levels or less volatile fluctuations of kilocalorie intake. Accordingly, food security policies and programmes will need to be tailored not only to welfare levels at any one time, but also to long-run welfare dynamics. PMID:28280586

  11. Thermal Non-equilibrium Consistent with Widespread Cooling

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Lionello, R.; Mikic, Z.; Linker, J.; Mok, Y.

    2014-01-01

    Time correlation analysis has been used to show widespread cooling in the solar corona; this cooling has been interpreted as a result of impulsive (nanoflare) heating. In this work, we investigate wide-spread cooling using a 3D model for a solar active region which has been heated with highly stratified heating. This type of heating drives thermal non-equilibrium solutions, meaning that though the heating is effectively steady, the density and temperature in the solution are not. We simulate the expected observations in narrowband EUV images and apply the time correlation analysis. We find that the results of this analysis are qualitatively similar to the observed data. We discuss additional diagnostics that may be applied to differentiate between these two heating scenarios.

  12. Biological Implications of Dynamical Phases in Non-equilibrium Networks

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2016-03-01

    Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.

  13. A non-equilibrium formulation of food security resilience.

    PubMed

    Smerlak, Matteo; Vaitla, Bapu

    2017-01-01

    Resilience, the ability to recover from adverse events, is of fundamental importance to food security. This is especially true in poor countries, where basic needs are frequently threatened by economic, environmental and health shocks. An empirically sound formalization of the concept of food security resilience, however, is lacking. Here, we introduce a general non-equilibrium framework for quantifying resilience based on the statistical notion of persistence. Our approach can be applied to any food security variable for which high-frequency time-series data are available. We illustrate our method with per capita kilocalorie availability for 161 countries between 1961 and 2011. We find that resilient countries are not necessarily those that are characterized by high levels or less volatile fluctuations of kilocalorie intake. Accordingly, food security policies and programmes will need to be tailored not only to welfare levels at any one time, but also to long-run welfare dynamics.

  14. Modeling Inflation Using a Non-Equilibrium Equation of Exchange

    NASA Technical Reports Server (NTRS)

    Chamberlain, Robert G.

    2013-01-01

    Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Project

  15. Non-equilibrium dynamics of glass-forming liquid mixtures.

    PubMed

    Sánchez-Díaz, Luis Enrique; Lázaro-Lázaro, Edilio; Olais-Govea, José Manuel; Medina-Noyola, Magdaleno

    2014-06-21

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible processes in glass-forming liquids [P. Ramírez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010)] is extended here to multi-component systems. The resulting theory describes the statistical properties of the instantaneous local particle concentration profiles nα(r, t) of species α in terms of the coupled time-evolution equations for the mean value n̄α(r, t) and for the covariance σ(αβ)(r, r'; t) ≡ δn(α)(r, t)δn(β)(r', t) of the fluctuations δn(α)(r, t) = n(α)(r, t) - n̄α(r, t). As in the monocomponent case, these two coarse-grained equations involve a local mobility function bα(r, t) for each species, written in terms of the memory function of the two-time correlation function C(αβ)(r, r'; t, t') ≡ δn(α)(r, t)δn(β)(r', t'). If the system is constrained to remain spatially uniform and subjected to a non-equilibrium preparation protocol described by a given temperature and composition change program T(t) and n̄α(r, t), these equations predict the irreversible structural relaxation of the partial static structure factors Sαβ(k; t) and of the (collective and self) intermediate scattering functions Fαβ(k, τ; t) and F(αβ)(S)(k, τ; t). We illustrate the applicability of the resulting theory with two examples involving simple model mixtures subjected to an instantaneous temperature quench: an electroneutral binary mixture of equally sized and oppositely charged hard-spheres, and a binary mixture of soft-spheres of moderate size-asymmetry.

  16. Non-equilibrium dynamics of glass-forming liquid mixtures

    NASA Astrophysics Data System (ADS)

    Sánchez-Díaz, Luis Enrique; Lázaro-Lázaro, Edilio; Olais-Govea, José Manuel; Medina-Noyola, Magdaleno

    2014-06-01

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible processes in glass-forming liquids [P. Ramírez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010)] is extended here to multi-component systems. The resulting theory describes the statistical properties of the instantaneous local particle concentration profiles nα(r, t) of species α in terms of the coupled time-evolution equations for the mean value overline{n}_α ({r},t) and for the covariance σ _{α β }({r},{r}^' };t)equiv overline{δ n_α ({r},t)δ n_β ({r}^' },t)} of the fluctuations δ n_α ({r},t) = n_α ({r},t)- overline{n}_α ({r},t). As in the monocomponent case, these two coarse-grained equations involve a local mobility function bα(r, t) for each species, written in terms of the memory function of the two-time correlation function C_{α β }({r},{r}^' };t,t^' }) equiv overline{δ n_α ({r},t)δ n_β ({r}^' },t^' })}. If the system is constrained to remain spatially uniform and subjected to a non-equilibrium preparation protocol described by a given temperature and composition change program T(t) and overline{n}_α (t), these equations predict the irreversible structural relaxation of the partial static structure factors Sαβ(k; t) and of the (collective and self) intermediate scattering functions Fαβ(k, τ; t) and F^S_{α β }(k,τ ;t). We illustrate the applicability of the resulting theory with two examples involving simple model mixtures subjected to an instantaneous temperature quench: an electroneutral binary mixture of equally sized and oppositely charged hard-spheres, and a binary mixture of soft-spheres of moderate size-asymmetry.

  17. Plasma treatment of air pollution control residues.

    PubMed

    Amutha Rani, D; Gomez, E; Boccaccini, A R; Hao, L; Deegan, D; Cheeseman, C R

    2008-01-01

    Air pollution control (APC) residues from waste incineration have been blended with silica and alumina and the mix melted using DC plasma arc technology. The chemical composition of the fully amorphous homogeneous glass formed has been determined. Waste acceptance criteria compliance leach testing demonstrates that the APC residue derived glass releases only trace levels of heavy metals (Pb (<0.007mg/kg) and Zn (0.02mg/kg)) and Cl(-) (0.2mg/kg). These are significantly below the limit values for disposal to inert landfill. It is concluded that plasma treatment of APC residues can produce an inert glass that may have potential to be used either in bulk civil engineering applications or in the production of higher value glass-ceramic products.

  18. Numerical Analysis on Thermal Non-Equilibrium Process of Laser-Supported Detonation Wave in Axisymmetric Nozzle

    NASA Astrophysics Data System (ADS)

    Shiraishi, Hiroyuki

    2008-04-01

    Numerical Analyses on Laser-Supported Plasma (LSP) have been performed for researching the mechanism of laser absorption occurring in the laser propulsion system. Above all, Laser-Supported Detonation (LSD), categorized as one type of LSP, is considered as one of the most important phenomena because it can generate high pressure and high temperature for performing highly effective propulsion. For simulating generation and propagation of LSD wave, I have performed thermal non-equilibrium analyses by Navier-stokes equations, using a CO2 gasdynamic laser into an inert gas, where the most important laser absorption mechanism for LSD propagation is Inverse Bremsstrahlung. As a numerical method, TVD scheme taken into account of real gas effects and thermal non-equilibrium effects by using a 2-temperature model, is applied. In this study, I analyze a LSD wave propagating through a conical nozzle, where an inner space of an actual laser propulsion system is simplified.

  19. Numerical Analysis on Thermal Non-Equilibrium Process of Laser-Supported Detonation Wave in Axisymmetric Nozzle

    SciTech Connect

    Shiraishi, Hiroyuki

    2008-04-28

    Numerical Analyses on Laser-Supported Plasma (LSP) have been performed for researching the mechanism of laser absorption occurring in the laser propulsion system. Above all, Laser-Supported Detonation (LSD), categorized as one type of LSP, is considered as one of the most important phenomena because it can generate high pressure and high temperature for performing highly effective propulsion. For simulating generation and propagation of LSD wave, I have performed thermal non-equilibrium analyses by Navier-stokes equations, using a CO{sub 2} gasdynamic laser into an inert gas, where the most important laser absorption mechanism for LSD propagation is Inverse Bremsstrahlung. As a numerical method, TVD scheme taken into account of real gas effects and thermal non-equilibrium effects by using a 2-temperature model, is applied. In this study, I analyze a LSD wave propagating through a conical nozzle, where an inner space of an actual laser propulsion system is simplified.

  20. Impact of early stage non-equilibrium dynamics on photon production in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Oliva, L.; Ruggieri, M.; Plumari, S.; Scardina, F.; Greco, V.

    2017-04-01

    In this study we discuss our results on the spectrum of photons emitted from the quark-gluon plasma produced in heavy ion collisions at RHIC energies. Simulating the space-time evolution of the fireball by solving the relativistic Boltzmann transport equation and including two-particle scattering processes with photon emission allows us to make a first step in the description of thermal photons from the QGP as well as of those produced in the pre-equilibrium stage. Indeed, we consider not only a standard Glauber initial condition but also a model in which quarks and gluons are produced in the very early stage through the Schwinger mechanism by the decay of an initial color-electric field. In the latter approach relativistic kinetic equations are coupled in a self-consistent way to field equations. We aim at spotting the impact of early stage non-equilibrium dynamics on the photon production.

  1. Effects of non-equilibrium particle distributions in deuterium-tritium burning

    SciTech Connect

    Michta, D; Graziani, F; Pruet, J; Luu, T

    2009-08-18

    We investigate the effects of non-equilibrium particle distributions resulting from rapid deuterium-tritium burning in plasmas using a Fokker-Planck code that incorporates small-angle Coulomb scattering, Brehmsstrahlung, Compton scattering, and thermal-nuclear burning. We find that in inertial confinement fusion environments, deviations away from Maxwellian distributions for either deuterium or tritium ions are small and result in 1% changes in the energy production rates. The deuterium and tritium effective temperatures are not equal, but differ by only about 2.5% near the time of peak burn rate. Simulations with high Z (Xe) dopants show that the dopant temperature closely tracks that of the fuel. On the other hand, fusion product ion distributions are highly non-Maxwellian, and careful treatments of energy-exchange between these ions and other particles is important for determining burn rates.

  2. Properties of air-aluminum thermal plasmas

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Gleizes, A.; Riquel, G.

    2012-07-01

    We present the calculation and the main results of the properties of air-aluminum thermal plasmas, useful for complete modelling of arc systems involving aluminum contacts. The properties are calculated assuming thermal equilibrium and correspond to the equilibrium composition, thermodynamic functions, transport coefficients including diffusion coefficients and net emission coefficient representing the divergence of the radiative flux in the hottest plasma regions. The calculation is developed in the temperature range between 2000 and 30 000 K, for a pressure range from 0.1 to 1 bar and for several metal mass proportions. As in the case of other metals, the presence of aluminum vapours has a strong influence on three properties at intermediate temperatures: the electron number density, the electrical conductivity and the net emission coefficient. Some comparisons with other metal vapour (Cu, Fe and Ag) properties are made and show the original behaviour for Al-containing mixtures: mass density at high temperatures is low due to the low Al atomic mass; high electrical conductivity at T < 10 000 K due to low ionization potential (around 2 V less for Al than for the other metals); very strong self-absorption of ionized aluminum lines, leading to a net emission coefficient lower than that of pure air when T > 10 000 K, in contrast to copper or iron radiation.

  3. Non-equilibrium dynamics of artificial quantum matter

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash

    The rapid progress of the field of ultracold atoms during the past two decades has set new milestones in our control over matter. By cooling dilute atomic gases and molecules to nano-Kelvin temperatures, novel quantum mechanical states of matter can be realized and studied on a table-top experimental setup while bulk matter can be tailored to faithfully simulate abstract theoretical models. Two of such models which have witnessed significant experimental and theoretical attention are (1) the two-component Fermi gas with resonant s-wave interactions, and (2) the single-component Fermi gas with dipole-dipole interactions. This thesis is devoted to studying the non-equilibrium collective dynamics of these systems using the general framework of quantum kinetic theory. We present a concise review of the utilized mathematical methods in the first two chapters, including the Schwinger-Keldysh formalism of non-equilibrium quantum fields, two-particle irreducible (2PI) effective actions and the framework of quantum kinetic theory. We study the collective dynamics of the dipolar Fermi gas in a quasi-two-dimensional optical trap in chapter 3 and provide a detailed account of its dynamical crossover from the collisionless to the hydrodynamical regime. Chapter 4 is devoted to studying the dynamics of the attractive Fermi gas in the normal phase. Starting from the self-consistent T-matrix (pairing fluctuation) approximation, we systematically derive a set of quantum kinetic equations and show that they provide a globally valid description of the dynamics of the attractive Fermi gas, ranging from the weak-coupling Fermi liquid phase to the intermediate non-Fermi liquid pairing pseudogap regime and finally the strong-coupling Bose liquid phase. The shortcomings of the self-consistent T-matrix approximation in two spatial dimensions are discussed along with a proposal to overcome its unphysical behaviors. The developed kinetic formalism is finally utilized to reproduce and

  4. Non-equilibrium statistical mechanics of geophysical flows

    NASA Astrophysics Data System (ADS)

    Bouchet, F.; Simonnet, E.

    2010-12-01

    We describe the dynamics of two-dimensional and quasi-geostrophic flows with stochastic forces. It exhibits extremely long correlations times, related to multi-scale dynamics, and collective behaviors such as bistability and multistability. We show that in regimes of weak forces and dissipation, dominated by the large scales inertial dynamics, equilibrium statistical mechanics provides extremely precise predictions for the self-organized large scale flows. This is true for amuch larger range of parameters than would have been expected, explaining a renewed interest for statistical mechanics approaches. Non-equilibrium theory, based on kinetic theories (or equivalently Mori-Zwanzig projections) gives explicit predictions for algebraic correlations of the velocity field, and for the large scale mean flow. We also describe briefly recent applications to ocean jets and vortices, explaining the detailed structure of inertial mid-basin jets and both the structure, and westward and poleward drifts of oceans rings and eddies. References: F. BOUCHET and E. SIMONNET, Random Changes of Flow Topology in Two-Dimensional and Geophysical Turbulence, Physical Review Letters 102 (2009), no. 9, 094504-+. F. BOUCHET and J. SOMMERIA, Emergence of intense jets and Jupiter's Great Red Spot as maximum-entropy structures, Journal of Fluid Mechanics 464 (2002), 165-207. A. VENAILLE and F. BOUCHET, Ocean rings and jets as statistical equilibrium states, submitted to JPO F. BOUCHET and A. VENAILLE, Statistical mechanics of two-dimensional and geophysical flows, submitted to Physics Reports Non-equilibrium phase transitions in the dynamics of the 2D Navier-Stokes equations with stochastic forces in a doubly periodic domain of aspect ratio d. The two main plots are the time series and probability density functions (PDFs) of the modulus of the largest scale Fourrier component, illustrating random changes between dipoles (|z1| close to 0.55) and unidirectional flows (|z1| close to 0.). The small

  5. Non-equilibrium Aspects of Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Andrei, Natan

    The study of non-equilibrium dynamics of interacting many body systems is currently one of the main challenges of modern condensed matter physics, driven by the spectacular progress in the ability to create experimental systems - trapped cold atomic gases are a prime example - that can be isolated from their environment and be highly controlled. Many old and new questions can be addressed: thermalization of isolated systems, nonequilibrium steady states, the interplay between non equilibrium currents and strong correlations, quantum phase transitions in time, universality among others. In this talk I will describe nonequilibrium quench dynamics in integrable quantum systems. I'll discuss the time evolution of the Lieb-Liniger system, a gas of interacting bosons moving on the continuous infinite line and interacting via a short range potential. Considering a finite number of bosons on the line we find that for any value of repulsive coupling the system asymptotes towards a strongly repulsive gas for any initial state, while for an attractive coupling, the system forms a maximal bound state that dominates at longer times. In the thermodynamic limit -with the number of bosons and the system size sent to infinity at a constant density and the long time limit taken subsequently- I'll show that the density and density-density correlation functions for strong but finite positive coupling are described by GGE for translationally invariant initial states with short range correlations. As examples I'll discuss quenches from a Mott insulator initial state or a Newton's Cradle. Then I will show that if the initial state is strongly non translational invariant, e.g. a domain wall configuration, the system does not equilibrate but evolves into a nonequilibrium steady state (NESS). A related NESS arises when the quench consists of coupling a quantum dot to two leads held at different chemical potential, leading in the long time limit to a steady state current. Time permitting I

  6. Observing Organic Molecules in Interstellar Gases: Non Equilibrium Excitation.

    NASA Astrophysics Data System (ADS)

    Wiesenfeld, Laurent; Faure, Alexandre; Remijan, Anthony; Szalewicz, Krzysztof

    2014-06-01

    In order to observe quantitatively organic molecules in interstellar gas, it is necessary to understand the relative importance of photonic and collisional excitations. In order to do so, collisional excitation transfer rates have to be computed. We undertook several such studies, in particular for H_2CO and HCOOCH_3. Both species are observed in many astrochemical environments, including star-forming regions. We found that those two molecules behave in their low-lying rotational levels in an opposite way. For cis methyl-formate, a non-equilibrium radiative transfer treatment of rotational lines is performed, using a new set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5 to 30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH_3 -- He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud. A total of 2080 low-lying transitions of methyl formate, with upper levels below 25 K, were treated. These lines are found to probe a cold (30 K), moderately dense (n ˜ 104 cm-3) interstellar gas. In addition, our calculations indicate that all detected emission lines with a frequency below 30 GHz are collisionally pumped weak masers amplifying the background of Sgr B2(N). This result demonstrates the generality of the inversion mechanism for the low-lying transitions of methyl formate. For formaldehyde, we performed a similar non-equilibrium treatment, with H_2 as the collisional partner, thanks to the accurate H_2CO - H_2 potential energy surface . We found very different energy transfer rates for collisions with para-H_2 (J=0) and ortho-H_2 (J=1). The well-known absorption against the cosmological background of the 111→ 101 line is shown to depend critically on the difference of behaviour between para and ortho-H_2, for a wide range of H_2 density. We thank the CNRS-PCMI French national program for continuous support

  7. Non-Equilibrium Turbulence and Two-Equation Modeling

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert

    2011-01-01

    Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.

  8. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  9. Equilibrium and non-equilibrium metal-ceramic interfaces

    SciTech Connect

    Gao, Y.; Merkle, K.L.

    1991-01-01

    Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO{sub 2}) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO{sub 2} system, ZrO{sub 2} precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO{sub 2} phase. It appears that formation of the cubic ZrO{sub 2} is facilitated by alignment with the Au matrix. Most of the ZrO{sub 2} precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed (111) Au/ZrO{sub 2} interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent of semi-coherent. This indicates that there may be relatively strong bond between MgO and Au.

  10. Transient Memories in Non-Equilibrium Disordered Systems

    NASA Astrophysics Data System (ADS)

    Paulsen, Joseph; Nagel, Sidney

    2012-02-01

    Some non-equilibrium systems can store information of their external driving in an unexpected manner. They ``learn'' multiple driving amplitudes that can subsequently be read out. Notably, only one memory is retained after many driving cycles, even if all of the amplitudes are continually fed in. This behavior has been observed in diverse scenarios such as traveling charge-density waves [1] and simulations of sheared suspensions [2]. Here we explore this latter system experimentally using a suspension of neutrally buoyant non-Brownian particles in a very viscous fluid that is sheared cyclically in a Couette cell geometry. Starting from a random configuration, the particle trajectories are irreversible at first but, as had been shown [3], eventually settle into a configuration where they retrace their paths exactly during each cycle. We show that the resulting configuration comprises a memory of the driving amplitude, which can be read out by measuring the degree of particle reversibility versus shear amplitude. We also discuss this system's capacity for storing multiple memories.[4pt] [1] S. N. Coppersmith et al., PRL 78, 3983 (1997).[0pt] [2] N. C. Keim, S. R. Nagel, PRL 107, 010603 (2011).[0pt] [3] L. Cort'e, P. M. Chaikin, J. P. Gollub, D. J. Pine, Nature Phys. 4, 420 (2008).

  11. Non Equilibrium Transformations of Molecular Compounds Induced Mechanically

    SciTech Connect

    Descamps, M.; Willart, J. F.; Dudognon, E.

    2006-05-05

    Results clarifying the effects of mechanical milling on molecular solids are shortly reviewed. Special attention has been paid to the temperature of milling with regard to the glass transition temperature of the compounds. It is shown that decreasing the grinding temperature has for incidence to increase the amorphization tendency whereas milling above Tg produces a crystal-to-crystal transformation between polymorphic varieties. These observations contradict the usual proposition that grinding transforms the physical state only by a heating effect which induces a local melting. Equilibrium thermodynamics does not seem to be appropriate for describing the process. The driven alloys concept offers a more rational framework to interpret the effect of the milling temperature. Other results are presented which demonstrate the possibility for grinding to realize low temperature solid state alloying which offers new promising ways to stabilize amorphous molecular solids. In a second part the effect of dehydration of a molecular hydrate is described. It is shown that the rate of the dehydration process is a driving force for this other type of mechanical non equilibrium transformation.

  12. A non-equilibrium neutral model for analysing cultural change.

    PubMed

    Kandler, Anne; Shennan, Stephen

    2013-08-07

    Neutral evolution is a frequently used model to analyse changes in frequencies of cultural variants over time. Variants are chosen to be copied according to their relative frequency and new variants are introduced by a process of random mutation. Here we present a non-equilibrium neutral model which accounts for temporally varying population sizes and mutation rates and makes it possible to analyse the cultural system under consideration at any point in time. This framework gives an indication whether observed changes in the frequency distributions of a set of cultural variants between two time points are consistent with the random copying hypothesis. We find that the likelihood of the existence of the observed assemblage at the end of the considered time period (expressed by the probability of the observed number of cultural variants present in the population during the whole period under neutral evolution) is a powerful indicator of departures from neutrality. Further, we study the effects of frequency-dependent selection on the evolutionary trajectories and present a case study of change in the decoration of pottery in early Neolithic Central Europe. Based on the framework developed we show that neutral evolution is not an adequate description of the observed changes in frequency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Equilibrium and non-equilibrium metal-ceramic interfaces

    SciTech Connect

    Gao, Y.; Merkle, K.L.

    1991-12-31

    Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO{sub 2}) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO{sub 2} system, ZrO{sub 2} precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO{sub 2} phase. It appears that formation of the cubic ZrO{sub 2} is facilitated by alignment with the Au matrix. Most of the ZrO{sub 2} precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed [111] Au/ZrO{sub 2} interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent of semi-coherent. This indicates that there may be relatively strong bond between MgO and Au.

  14. Non-equilibrium Transport in Carbon based Adsorbate Systems

    NASA Astrophysics Data System (ADS)

    Fürst, Joachim; Brandbyge, Mads; Stokbro, Kurt; Jauho, Antti-Pekka

    2007-03-01

    We have used the Atomistix Tool Kit(ATK) and TranSIESTA[1] packages to investigate adsorption of iron atoms on a graphene sheet. The technique of both codes is based on density functional theory using local basis sets[2], and non-equilibrium Green's functions (NEGF) to calculate the charge distribution under external bias. Spin dependent electronic structure calculations are performed for different iron coverages. These reveal adsorption site dependent charge transfer from iron to graphene leading to screening effects. Transport calculations show spin dependent scattering of the transmission which is analysed obtaining the transmission eigenchannels for each spin type. The phenomena of electromigration of iron in these systems at finite bias will be discussed, estimating the so-called wind force from the reflection[3]. [1] M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro. Physical Review B (Condensed Matter and Materials Physics), 65(16):165401/11-7, 2002. [2] Jose M. Soler, Emilio Artacho, Julian D. Gale, Alberto Garcia, Javier Junquera, Pablo Ordejon, and Daniel Sanchez-Portal. Journal of Physics Condensed Matter, 14(11):2745-2779, 2002. [3] Sorbello. Theory of electromigration. Solid State Physics, 1997.

  15. Non-equilibrium thermodynamic effects during cell division

    NASA Astrophysics Data System (ADS)

    Jose, Jorge

    2009-03-01

    A mitotic spindle is a regular structure within a cell consisting of oriented microtubule fibers. It plays a fundamental role in chromosome separation during cell division. Forming a spindle pattern is a major structural step towards mitosis. We have developed biophysical non-equilibrium thermodynamic models to describe in vitro chromosome driven spindle formation experiments in Xenopus extracts. Our first 2D model calculations [1] successfully described the order of events seen in some of the Xenopus extracts experiments, where the chromosomes are replaced by chromatin-covered micrometer magnetic beads. I will describe more realistic 3D improvements in our modeling analysis, which include microtubule contact forces and excluded volume [2, 3]. There are, however, a number of challenges that must be addressed for spindle modeling to continue to be a useful tool for understanding this fundamental biological process, in particular the biophysical simulation times. In this talk I will describe some important problems needing better biological data and hypothesis. I will also discuss our most recent numerical algorithmic improvements that are expected to greatly increase the simulations speed and thus allowing a more realistic representation of the experimental situation in Xenopus extracts. [1] S. C. Schaffner and J. V. Jose, PNAS, 103, 11166 (2006), [2] ibid in ``Methods in Cell Biology'' (Elsevier- Academic Press)(2008)and [3]ibid(to be published).

  16. Non-equilibrium phase transitions of aqueous starch systems.

    PubMed

    Biliaderis, C G

    1991-01-01

    Experimental data on phase transitions of aqueous starch systems, obtained by thermal analysis (TA) methods, are often indicative of irreversible (non-equilibrium) processes involving various metastable states. The thermal responses usually reflect composite effects from contributions of several opposing processes [e.g. annealing, melting, and (re)crystallization] taking place concurrently during TA. It is important, therefore, to recognize the temperature- and time-dependence of the structure of starch materials, if non-isothermal techniques are used for their characterization. Identifying the pertinent morphological features (supermolecular structure) of each particular system, as well as recognizing the role of water as a plasticizer which depresses the Tg of the amorphous domains, is essential to predict heat/moisture-mediated transformations of this biopolymer. The phase transition behaviour of granular starch and amylose-lipid complexes, as revealed by Differential Scanning Calorimetry and Thermomechanical Analysis, and the metastability of these materials are considered herein with respect to the effects of water and low molecular weight solutes.

  17. Non-equilibrium control of complex solids by nonlinear phononics.

    PubMed

    Mankowsky, Roman; Först, Michael; Cavalleri, Andrea

    2016-06-01

    We review some recent advances in the use of optical fields at terahertz frequencies to drive the lattice of complex materials. We will focus on the control of low energy collective properties of solids, which emerge on average when a high frequency vibration is driven and a new crystal structure induced. We first discuss the fundamentals of these lattice rearrangements, based on how anharmonic mode coupling transforms an oscillatory motion into a quasi-static deformation of the crystal structure. We then discuss experiments, in which selectively changing a bond angle turns an insulator into a metal, accompanied by changes in charge, orbital and magnetic order. We then address the case of light induced non-equilibrium superconductivity, a mysterious phenomenon observed in some cuprates and molecular materials when certain lattice vibrations are driven. Finally, we show that the dynamics of electronic and magnetic phase transitions in complex-oxide heterostructures follow distinctly new physical pathways in case of the resonant excitation of a substrate vibrational mode.

  18. Non-equilibrium control of complex solids by nonlinear phononics

    NASA Astrophysics Data System (ADS)

    Mankowsky, Roman; Först, Michael; Cavalleri, Andrea

    2016-06-01

    We review some recent advances in the use of optical fields at terahertz frequencies to drive the lattice of complex materials. We will focus on the control of low energy collective properties of solids, which emerge on average when a high frequency vibration is driven and a new crystal structure induced. We first discuss the fundamentals of these lattice rearrangements, based on how anharmonic mode coupling transforms an oscillatory motion into a quasi-static deformation of the crystal structure. We then discuss experiments, in which selectively changing a bond angle turns an insulator into a metal, accompanied by changes in charge, orbital and magnetic order. We then address the case of light induced non-equilibrium superconductivity, a mysterious phenomenon observed in some cuprates and molecular materials when certain lattice vibrations are driven. Finally, we show that the dynamics of electronic and magnetic phase transitions in complex-oxide heterostructures follow distinctly new physical pathways in case of the resonant excitation of a substrate vibrational mode.

  19. A probability theory for non-equilibrium gravitational systems

    NASA Astrophysics Data System (ADS)

    Peñarrubia, Jorge

    2015-08-01

    This paper uses dynamical invariants to describe the evolution of collisionless systems subject to time-dependent gravitational forces without resorting to maximum-entropy probabilities. We show that collisionless relaxation can be viewed as a special type of diffusion process in the integral-of-motion space. In time-varying potentials with a fixed spatial symmetry the diffusion coefficients are closely related to virial quantities, such as the specific moment of inertia, the virial factor and the mean kinetic and potential energy of microcanonical particle ensembles. The non-equilibrium distribution function is found by convolving the initial distribution function with the Green function that solves Einstein's equation for freely diffusing particles. Such a convolution also yields a natural solution to the Fokker-Planck equations in the energy space. Our mathematical formalism can be generalized to potentials with a time-varying symmetry, where diffusion extends over multiple dimensions of the integral-of-motion space. The new probability theory is in many ways analogous to stochastic calculus, with two significant differences: (i) the equations of motion that govern the trajectories of particles are fully deterministic, and (ii) the diffusion coefficients can be derived self-consistently from microcanonical phase-space averages without relying on ergodicity assumptions. For illustration we follow the cold collapse of N-body models in a time-dependent logarithmic potential. Comparison between the analytical and numerical results shows excellent agreement in regions where the potential evolution does not depart too strongly from the adiabatic regime.

  20. Geometry and symmetry in non-equilibrium thermodynamic systems

    NASA Astrophysics Data System (ADS)

    Sonnino, Giorgio

    2017-06-01

    The ultimate aim of this series of works is to establish the closure equations, valid for thermodynamic systems out from the Onsager region, and to describe the geometry and symmetry in thermodynamic systems far from equilibrium. Geometry of a non-equilibrium thermodynamic system is constructed by taking into account the second law of thermodynamics and by imposing the validity of the Glansdorff-Prigogine Universal Criterion of Evolution. These two constraints allow introducing the metrics and the affine connection of the Space of the Thermodynamic Forces, respectively. The Lie group associated to the nonlinear Thermodynamic Coordinate Transformations (TCT) leaving invariant both the entropy production σ and the Glansdorff-Prigogine dissipative quantity P, is also described. The invariance under TCT leads to the formulation of the Thermodynamic Covariance Principle (TCP): The nonlinear closure equations, i.e. the flux-force relations, must be covariant under TCT. In other terms, the fundamental laws of thermodynamics should be manifestly covariant under transformations between the admissible thermodynamic forces (i.e. under TCT). The symmetry properties of a physical system are intimately related to the conservation laws characterizing the thermodynamic system. Noether's theorem gives a precise description of this relation. The macroscopic theory for closure relations, based on this geometrical description and subject to the TCP, is referred to as the Thermodynamic Field Theory (TFT). This theory ensures the validity of the fundamental theorems for systems far from equilibrium.

  1. Laser Initiation and Radiofrequency Sustainment of Seeded Air Plasmas

    DTIC Science & Technology

    2006-04-01

    Air 11 Plasmas at High Pressure A. Plasma System and Method of Operation 11 i.) Excimer laser and optic system 11 ii.) Gas flow system and plasma...mTorr of the seed gas is mixed with air, nitrogen, argon or helium at 760 Torr, the laser-produced density is in the range of 1-3 x 1013/cc and plasma...Plasmas at High Pressure A. Plasma System and Method of Operation i.) Excimer laser and optic system A schematic of the experimental setup is shown in

  2. EFFECT OF LASER LIGHT ON LASER PLASMAS: Laser plasma at low air pressure

    NASA Astrophysics Data System (ADS)

    Vas'kovskiĭ, Yu M.; Moiseev, V. N.; Rovinskiĭ, R. E.; Tsenina, I. S.

    1993-01-01

    The dynamic and optical characteristics of the laser plasma produced during the application of a CO2 laser pulse to a target have been studied as a function of the ambient air pressure. The changes in the surface roughness of the sample after bombardment were studied as a function of the air pressure. It is concluded from the results that a transition from an air plasma to an erosion plasma occurs at a residual air pressure on the order of 1 torr. The experiment data support the existing picture of the process by which a plasma is produced near the surface of a target in air by laser pulses.

  3. Step-wise pulling protocols for non-equilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Ngo, Van Anh

    The fundamental laws of thermodynamics and statistical mechanics, and the deeper understandings of quantum mechanics have been rebuilt in recent years. It is partly because of the increasing power of computing resources nowadays, that allow shedding direct insights into the connections among the thermodynamics laws, statistical nature of our world, and the concepts of quantum mechanics, which have not yet been understood. But mostly, the most important reason, also the ultimate goal, is to understand the mechanisms, statistics and dynamics of biological systems, whose prevailing non-equilibrium processes violate the fundamental laws of thermodynamics, deviate from statistical mechanics, and finally complicate quantum effects. I believe that investigations of the fundamental laws of non-equilibrium dynamics will be a frontier research for at least several more decades. One of the fundamental laws was first discovered in 1997 by Jarzynski, so-called Jarzynski's Equality. Since then, different proofs, alternative descriptions of Jarzynski's Equality, and its further developments and applications have been quickly accumulated. My understandings, developments and applications of an alternative theory on Jarzynski's Equality form the bulk of this dissertation. The core of my theory is based on stepwise pulling protocols, which provide deeper insight into how fluctuations of reaction coordinates contribute to free-energy changes along a reaction pathway. We find that the most optimal pathways, having the largest contribution to free-energy changes, follow the principle of detailed balance. This is a glimpse of why the principle of detailed balance appears so powerful for sampling the most probable statistics of events. In a further development on Jarzynski's Equality, I have been trying to use it in the formalism of diagonal entropy to propose a way to extract useful thermodynamic quantities such temperature, work and free-energy profiles from far

  4. PREFACE: International Symposium on Non-Equilibrium Soft Matter 2010 International Symposium on Non-Equilibrium Soft Matter 2010

    NASA Astrophysics Data System (ADS)

    Kawakatsu, T.; Matsuyama, A.; Ohta, T.; Tanaka, H.; Tanaka, S.

    2011-07-01

    Soft matter is a rapidly growing interdisciplinary research field covering a range of subject areas including physics, chemistry, biology, mathematics and engineering. Some of the important universal features of these materials are their mesoscopic structures and their dynamics. Due to the existence of such large-scale structures, which nevertheless exhibit interactions of the order of the thermal energy, soft matter can readily be taken out of equilibrium by imposing a weak external field such as an electric field, a mechanical stress or a shear flow. The importance of the coexistence of microscopic molecular dynamics and the mesoscopic/macroscopic structures and flows requires us to develop hierarchical approaches to understand the nonlinear and nonequilibrium phenomena, which is one of the central issues of current soft matter research. This special section presents selected contributions from the 'International Symposium on Non-Equilibrium Soft Matter 2010' held from 17-20 August 2010 in Nara, Japan, which aimed to describe recent advances in soft matter research focusing especially on its nonequilibrium aspects. The topics discussed cover statics and dynamics of a wide variety of materials ranging from traditional soft matter like polymers, gels, emulsions, liquid crystals and colloids to biomaterials such as biopolymers and biomembranes. Among these studies, we highlighted the physics of biomembranes and vesicles, which has attracted great attention during the last decade; we organized a special session for this active field. The work presented in this issue deals with (1) structure formation in biomembranes and vesicles, (2) rheology of polymers and gels, (3) mesophases in block copolymers, (4) mesoscopic structures in liquid crystals and ionic liquids, and (5) nonequilibrium dynamics. This symposium was organized as part of a research project supported by the Grant-in-Aid for the priority area 'Soft Matter Physics' (2006-2010) from the Ministry of Education

  5. Equilibrium sampling by re-weighting non-equilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting

    2015-12-01

    With the traditional equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space in complex systems, which are separated into some metastable conformational regions by high free energy barriers. The applied non-equilibrium process in simulations could enhance the transitions among these conformational regions, and the associated non-equilibrium effects can be removed by employing the Jarzynski equality (JE), then the global equilibrium distribution can be reproduced. However, the original JE requires the initial distribution of the non-equilibrium process is equilibrium, which largely limits the application of the non-equilibrium method in equilibrium sampling. By extending the previous method, the reweighted ensemble dynamics (RED), which re-weights many equilibrium simulation trajectories from arbitrary initial distribution to reproduce the global equilibrium, to non-equilibrium simulations, we present a method, named as re-weighted non-equilibrium ensemble dynamics (RNED), to generalize the JE in the non-equilibrium trajectories started from an arbitrary initial distribution, thus provide an efficient method to reproduce the equilibrium distribution based on multiple independent (short) non-equilibrium trajectories. We have illustrated the validity of the RNED in a one-dimensional toy model and in a Lennard-Jones system to detect the liquid-solid phase coexistence.

  6. Atomistic Simulation of Non-Equilibrium Phenomena in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Norman, Paul Erik

    The goal of this work is to model the heterogeneous recombination of atomic oxygen on silica surfaces, which is of interest for accurately predicting the heating on vehicles traveling at hypersonic speeds. This is accomplished by creating a finite rate catalytic model, which describes recombination with a set of elementary gas-surface reactions. Fundamental to a description of surface catalytic reactions are the in situ chemical structures on the surface where recombination can occur. Using molecular dynamics simulations with the Reax GSISiO potential, we find that the chemical sites active in direct gas-phase reactions on silica surfaces consist of a small number of specific structures (or defects). The existence of these defects on real silica surfaces is supported by experimental results and the structure and energetics of these defects have been verified with quantum chemical calculations. The reactions in the finite rate catalytic model are based on the interaction of molecular and atomic oxygen with these defects. Trajectory calculations are used to find the parameters in the forward rate equations, while a combination of detailed balance and transition state theory are used to find the parameters in the reverse rate equations. The rate model predicts that the oxygen recombination coefficient is relatively constant at T (300-1000 K), in agreement with experimental results. At T > 1000 K the rate model predicts a drop off in the oxygen recombination coefficient, in disagreement with experimental results, which predict that the oxygen recombination coefficient increases with temperature. A discussion of the possible reasons for this disagreement, including non-adiabatic collision dynamics, variable surface site concentrations, and additional recombination mechanisms is presented. This thesis also describes atomistic simulations with Classical Trajectory Calculation Direction Simulation Monte Carlo (CTC-DSMC), a particle based method for modeling non-equilibrium

  7. The unsaturated hydraulic conductivity: measurement and non-equilibrium effects

    NASA Astrophysics Data System (ADS)

    Weller, U.; Vogel, H.

    2010-12-01

    potential and water content shows hysteretic behavior, this is the fact not only for the initial relations, but also for the long-term, stable conditions. The non-equilibrium at transitional conditions has been observed before. It can be explained by a rearrangement of the liquid/gas interfaces: first these are dominated by the dynamic behavior and the accessibility of the pore space. The long term equilibrium then is more towards an energetic more favorable configuration. With our measurements we have now an easy tool to quantify it over a wide range of water saturation, and to describe quantitatively the dynamic of the process.

  8. Optical emission spectroscopy characterizations of micro-air plasma used for simulation of cell membrane poration

    NASA Astrophysics Data System (ADS)

    Zerrouki, A.; Motomura, H.; Ikeda, Y.; Jinno, M.; Yousfi, M.

    2016-07-01

    A micro-air corona discharge, which is one of the plasmas successfully used for gene transfection in terms of high transfection and cell viability rates, is characterized by optical emission spectroscopy. This non-equilibrium low temperature plasma is generated from the tip of a pulsed high voltage micro-tube (0.2 mm inner diameter and 0.7 mm for outer diameter) placed 2 mm in front of a petri dish containing deionized water and set on a grounded copper plate. The electron temperature, equal to about 6.75 eV near the electrode tip and decreased down to 3.4 eV near the plate, has been estimated, with an error bar of about 30%, from an interesting approach based on the experimental ratio of the closest nitrogen emission spectra of \\text{N}2+ (FNS) at 391.4 nm and N2(SPS) at 394.3 nm. This is based on one hand on a balance equation between creations and losses of the excited upper levels of these two UV spectra and on the other hand on the electron impact rates of the creation of these upper levels calculated from solution of the multi-term Boltzmann equation. Then using the measured Hα spectrum, electron density n e has been estimated from Stark broadening versus the inter-electrode position with an average error bar of about 50%. n e  ≈  1  ×  1015 cm-3 is near the tip coherent with the usual magnitude of electron density in the streamer head developed near the tip of the corona discharges. Rotational temperatures, estimated from comparison of synthetic and experimental spectra of OH(A  -  X), \\text{N}2+ (FNS) at 391.4 nm, and N2(SPS) at 337 nm are respectively equal to 2350 K, 2000 K and 700 K in the gap space. This clearly underlines a thermal non-equilibrium of the corresponding excited species generated inside the thin streamer filaments. But, due to the high dilution of these species in the background gas, these high rotational temperatures do not affect the mean gas temperature that remains close to 300

  9. Advanced Integrated TPS and Non Equilibrium Chemistry Instrumentation

    DTIC Science & Technology

    2007-06-01

    occur in interaction with numerical simulation. At IRS, the flow field solver URANUS and the plasma radiation database PARADE are used to rebuild...the URANUS code [27] in combination with a spectral simulation of the emission with the plasma radiation database PARADE [28]. Two grid lines were...line of sight yielding the simulated spectrometer response. Simulations with the URANUS code were performed for altitudes of 70 km/s where strong

  10. Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study.

    PubMed

    Maćkowiak, Sz; Heyes, D M; Dini, D; Brańka, A C

    2016-10-28

    The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (∼0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential

  11. Non-equilibrium phase behavior and friction of confined molecular films under shear: A non-equilibrium molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Maćkowiak, Sz.; Heyes, D. M.; Dini, D.; Brańka, A. C.

    2016-10-01

    The phase behavior of a confined liquid at high pressure and shear rate, such as is found in elastohydrodynamic lubrication, can influence the traction characteristics in machine operation. Generic aspects of this behavior are investigated here using Non-equilibrium Molecular Dynamics (NEMD) simulations of confined Lennard-Jones (LJ) films under load with a recently proposed wall-driven shearing method without wall atom tethering [C. Gattinoni et al., Phys. Rev. E 90, 043302 (2014)]. The focus is on thick films in which the nonequilibrium phases formed in the confined region impact on the traction properties. The nonequilibrium phase and tribological diagrams are mapped out in detail as a function of load, wall sliding speed, and atomic scale surface roughness, which is shown can have a significant effect. The transition between these phases is typically not sharp as the external conditions are varied. The magnitude of the friction coefficient depends strongly on the nonequilibrium phase adopted by the confined region of molecules, and in general does not follow the classical friction relations between macroscopic bodies, e.g., the frictional force can decrease with increasing load in the Plug-Slip (PS) region of the phase diagram owing to structural changes induced in the confined film. The friction coefficient can be extremely low (˜0.01) in the PS region as a result of incommensurate alignment between a (100) face-centered cubic wall plane and reconstructed (111) layers of the confined region near the wall. It is possible to exploit hysteresis to retain low friction PS states well into the central localization high wall speed region of the phase diagram. Stick-slip behavior due to periodic in-plane melting of layers in the confined region and subsequent annealing is observed at low wall speeds and moderate external loads. At intermediate wall speeds and pressure values (at least) the friction coefficient decreases with increasing well depth of the LJ potential

  12. Experimental and numerical analysis of atmospheric air plasma induced by multi-MeV pulsed X-ray

    NASA Astrophysics Data System (ADS)

    Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno

    2016-10-01

    Quantification of electromagnetic stresses on electronic systems, following irradiation of the air by ionizing radiations, requires a thorough study of the plasma generated. In this work, the temporal evolution of non-equilibrium air plasmas self-induced by energetic X-rays is experimentally and theoretically investigated at atmospheric pressure. Time resolved electron density measurements are based on transmission measurements of an electromagnetic wave in the microwave range. The electromagnetic wave is launched into a wave guide, which is irradiated by a high flux of multi-MeV pulsed X-rays. For different X-ray fluxes, the electron density is determined from the comparison between the transmitted microwave signal at the waveguide output, and the result of the calculation of the propagation of an electromagnetic wave through time varying plasma contained in a waveguide. These measurements require a priori assumptions on electron temperature, which is obtained and confirmed by a reaction kinetics model of the evolution of the electron energy and the densities of the different humid air plasma species inside the waveguide. The considered chemical kinetics scheme involves 39 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 265 selected reactions. A good agreement is observed between the calculated and measured time evolution of the transmitted signal for specific profiles of electron energy and density. In our experiments, the maximum electron density is of the order of few 1012 cm-3, for a mean electron energy of about 0.5 eV. For doses range from 3 Gy to 21 Gy, the discrepancies between the measurements and the model for the maximum of the electron density are within a factor of 2.

  13. Effects of Nonequilibrium Plasmas on Eukaryotic Cells

    DTIC Science & Technology

    2009-05-01

    on Eukaryotic Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-06-1-0004 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Mounir Laroussi, P.I., and...plume in room air. is a dielectric barrier discharge riptions we first present the effects types of eukaryotic microalgae. e cells are presented...preliminary results on the effects 15. SUBJECT TERMS Glow discharge, Atmospheric pressure, air plasma, eukaryote , cell , non-equilibrium 19a. NAME

  14. Fabry-Perot spectroscopy for kinetic temperature and velocity measurements of a high enthalpy air plasma flow

    NASA Astrophysics Data System (ADS)

    Zander, Fabian; Löhle, Stefan; Hermann, Tobias; Fulge, Hannes

    2017-08-01

    The atomic translational temperatures and velocities of a low pressure, high enthalpy air plasma are measured using Fabry-Perot spectroscopy. The measurements presented here are the first measurements using this system at this enthalpy level. The sub-picometre resolution of the unique system has allowed accurate translational temperature and velocity measurements of the atomic species in the plasma. The detection system allows the Doppler broadening of multiple atomic nitrogen and oxygen lines to be measured simultaneously. Additionally, having two optical paths, one perpendicular to the flow and one at 45 deg. allows the Doppler shift to be measured. Measurements were taken during three different plasma wind tunnel tests. Mean atomic nitrogen temperatures of 1.08+/- 0.11 × 104 K and atomic oxygen translational temperatures of 1.23+/- 0.12 ×104 K were measured. The thermal non-equilibrium determined verified earlier measurements of the same phenomena, however, the mechanism behind this has not yet been determined. The mean measured flow velocity was 3350+/- 840~m~s-1 and was consistent between the atomic species. The translational temperature and velocity contribute approximately 35% of the local enthalpy of the flow. The direct measurement of these parameters, removing previously required assumptions, increases the fidelity of the flow characterisation significantly. This allows high quality testing to be conducted in this flow field.

  15. Non-equilibrium steady states: fluctuations and large deviations of the density and of the current

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard

    2007-07-01

    These lecture notes give a short review of methods such as the matrix ansatz, the additivity principle or the macroscopic fluctuation theory, developed recently in the theory of non-equilibrium phenomena. They show how these methods allow us to calculate the fluctuations and large deviations of the density and the current in non-equilibrium steady states of systems like exclusion processes. The properties of these fluctuations and large deviation functions in non-equilibrium steady states (for example, non-Gaussian fluctuations of density or non-convexity of the large deviation function which generalizes the notion of free energy) are compared with those of systems at equilibrium.

  16. Experimental measurements of a non-equilibrium thermal boundary layer flow

    NASA Astrophysics Data System (ADS)

    Biles, Drummond; Ebadi, Alireza; Whie, Chris

    2016-11-01

    Data from a newly constructed non-equilibrium and thermal boundary layer wind tunnel is presented. The bottom wall of the tunnel is a sectioned-wall design composed of twelve aluminum 6061 plates with resistive heaters adhered to their underside. Each section is heated and controlled using independent feedback loop controllers. The freestream temperature is controlled by an upstream array of resistive heaters and a feedback controller. Experimental data with strong perturbations that produce non-equilibrium boundary layer flow behaviors is presented. Data for ZPG conditions are provided for validation purposes, and the effects of non-equilibrium behaviors on the transport of momentum and heat are discussed.

  17. Complexity Reduction of Collisional-Radiative Kinetics for Atomic Plasma

    DTIC Science & Technology

    2013-12-23

    or disclose the work. 14. ABSTRACT Thermal non- equilibrium processes in partially ionized plasmas can be most accurately modeled by collisional...prohibitively large, making multidimensional and unsteady simulations of non- equilibrium radiating plasma particularly challenging. In this paper, we...published online 23 December 2013) Thermal non- equilibrium processes in partially ionized plasmas can be most accurately modeled by collisional

  18. Non-equilibrium ionization modeling of the Local Bubble. I. Tracing Civ, Nv, and Ovi ions

    NASA Astrophysics Data System (ADS)

    de Avillez, M. A.; Breitschwerdt, D.

    2012-03-01

    Aims: We present the first high-resolution non-equilibrium ionization simulation of the joint evolution of the Local Bubble (LB) and Loop I superbubbles in the turbulent supernova-driven interstellar medium (ISM). The time variation and spatial distribution of the Li-like ions Civ, Nv, and Ovi inside the LB are studied in detail. Methods: This work uses the parallel adaptive mesh refinement code EAF-PAMR coupled to the newly developed atomic and molecular plasma emission module E(A+M)PEC, featuring the time-dependent calculation of the ionization structure of H through Fe, using the latest revision of solar abundances. The finest AMR resolution is 1 pc within a grid that covers a representative patch of the Galactic disk (with an area of 1 kpc2 in the midplane) and halo (extending up to 10 kpc above and below the midplane). Results: The evolution age of the LB is derived by the match between the simulated and observed absorption features of the Li-like ions Civ, Nv, and Ovi. The modeled LB current evolution time is bracketed between 0.5 and 0.8 Myr since the last supernova reheated the cavity in order to have N(Ovi) < 8 × 1012 cm-2, log [N(Civ)/N(Ovi)] < -0.9 and log [N(Nv)/N(Ovi)] < -1 inside the simulated LB cavity, as found in Copernicus, IUE, GHRS-IST and FUSE observations.

  19. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state.

    PubMed

    Gieseler, Jan; Quidant, Romain; Dellago, Christoph; Novotny, Lukas

    2014-05-01

    Fluctuation theorems are a generalization of thermodynamics on small scales and provide the tools to characterize the fluctuations of thermodynamic quantities in non-equilibrium nanoscale systems. They are particularly important for understanding irreversibility and the second law in fundamental chemical and biological processes that are actively driven, thus operating far from thermal equilibrium. Here, we apply the framework of fluctuation theorems to investigate the important case of a system relaxing from a non-equilibrium state towards equilibrium. Using a vacuum-trapped nanoparticle, we demonstrate experimentally the validity of a fluctuation theorem for the relative entropy change occurring during relaxation from a non-equilibrium steady state. The platform established here allows non-equilibrium fluctuation theorems to be studied experimentally for arbitrary steady states and can be extended to investigate quantum fluctuation theorems as well as systems that do not obey detailed balance.

  20. Microwave air plasmas in capillaries at low pressure II. Experimental investigation

    NASA Astrophysics Data System (ADS)

    Stancu, G. D.; Leroy, O.; Coche, P.; Gadonna, K.; Guerra, V.; Minea, T.; Alves, L. L.

    2016-11-01

    This work presents an experimental study of microwave (2.45 GHz excitation frequency) micro-plasmas, generated in dry air (N2 80%: O2 20%) within a small radius silica capillary (345 µm inner radius) at low pressure (300 Pa) and low powers (80-130 W). Experimental diagnostics are performed using optical emission spectroscopy calibrated in absolute intensity. Axial-resolved measurements (50 µm spatial resolution) of atomic transitions N(3p4S)  →  N(3s4P) O(3p5P)  →  O(3s5S) and molecular transitions N2(C,v‧)  →  N2(B,v″) \\text{N}2+ (B,v‧)  →  \\text{N}2+ (X,v″) allow us to obtain, as a function of the coupled power, the absolute densities of N(3p4S), O(3p5P), N2(C), N2(B) and \\text{N}2+ (B), as well as the gas (rotational) temperature (700-1000 K), the vibrational temperature of N2(C,v) (7000-10 000 K) and the excitation temperatures of N2(C) and N2(B) (11 000 K). The analysis of the H β line-width gives an upper limiting value of 1013 cm-3 for the electron density; its axial variation (4  ×  1011-6  ×  1012 cm-3) being estimated by solving the wave electrodynamics equations for the present geometry, plasma length and electron-neutral collision frequency. The experimental results were compared with the results from a 0D model, presented in companion paper I [1], which couples the system of rate balance equations for the dominant neutral and charged plasma species to the homogeneous two-term electron Boltzmann equation, taking the measured gas temperature and the estimated electron density as input parameters. Good qualitative agreement is found between the measurements and calculations of the local species densities for various powers and axial positions. The dissociation degree of oxygen is found above 10%. Moreover, both the measurements and calculations show evidence of the non-equilibrium behavior of low-temperature plasmas, with vibrational and excitation temperatures at least

  1. Radiofrequency plasma antenna generated by femtosecond laser filaments in air

    SciTech Connect

    Brelet, Y.; Houard, A.; Point, G.; Prade, B.; Carbonnel, J.; Andre, Y.-B.; Mysyrowicz, A.; Arantchouk, L.; Pellet, M.

    2012-12-24

    We demonstrate tunable radiofrequency emission from a meter-long linear plasma column produced in air at atmospheric pressure. A short-lived plasma column is initially produced by femtosecond filamentation and subsequently converted into a long-lived discharge column by application of an external high voltage field. Radiofrequency excitation is fed to the plasma by induction and detected remotely as electromagnetic radiation by a classical antenna.

  2. Effect of glow discharge air plasma on grain crops seed

    SciTech Connect

    Dubinov, A.E.; Lazarenko, E.M.; Selemir, V.D.

    2000-02-01

    Oat and barley seeds have been exposed to both continuous and pulsed glow discharge plasmas in air to investigate the effects on germination and sprout growth. Statistical analysis was used to evaluate the effect of plasma exposure on the percentage germination and length of sprout growth. A stimulating effect of plasma exposure was found together with a strong dependence on whether continuous or pulsed discharges were used.

  3. Evolution of Zinc Oxide Nanostructures from Non-Equilibrium Deposition Conditions

    DTIC Science & Technology

    2016-07-11

    AFRL-AFOSR-VA-TR-2016-0247 Evolution of Zinc Oxide Nanostructures from Non-Equilibrium Deposition Conditions XUDONG WANG UNIVERSITY OF WISCONSIN...Oxide Nanostructures from Non-Equilibrium Deposition Conditions 5a. CONTRACT NUMBER FA9550-13-1-0168 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...6. AUTHOR(S) Wang, Xudong 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) BOARD OF

  4. Search for the Non-Equilibrium Ionization State in Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Inoue, Shota; Hayashida, Kiyoshi; Ueda, Shutaro; Nagino, Ryo; Tsunemi, Hiroshi; Koyama, Katsuji

    2015-08-01

    Galaxy clusters are considered that they have evolved by their merging. Many observations of the merging cluster with their shock wave are reported recently (e.g. Akamatsu et al. 2012, PASJ, 64, 67, Bourdin et al. 2013, ApJ, 764, 82). If the shock heats the plasma, the non-equilibrium ionization (NEI) state occurs. Even so, an intracluster medium (ICM) is assumed that it is in collisional ionization equilibrium state, because the timescale of the evolution of galaxy clusters is longer than the timescale that the NEI plasma reaches the equilibrium state. Actually, no observation of the NEI plasma in the ICM is reported. However, for the merging cluster, if its merging timescale is 108 yr, the condition of the NEI state of the ionization parameter (net <1013 s/cm3) is filled in the ICM with the electron density of ~10-3 /cm3. In fact, numerical simulation of the merging cluster shows that the NEI state in the ICM occurs due to the shock heating (e.g. Akahori & Yoshikawa 2010, PASJ, 62, 335). Our purpose is to detect the NEI plasma in the merging cluster, to estimate its timescale from the shock heating quantitatively by ionization parameter to reveal the cluster evolution.From this point, we have analyzed the ionization state of the merging cluster, Abell 754. We used the Suzaku observation data and measured the ratio of the intensities of He-like Fe and H-like Fe lines. As a result, we find that the temperature in the cluster increases from southeast to northwest along the direction of merging. Furthermore, at the specific region with highest temperature (kT = 13.3+1.41-1.14 keV), we find the plasma with ionization parameter, net = 6.98+14.57-3.92 x1011 s/cm3. Its timescale estimated by the ionization parameter is 7.7~54.4 Myr in 90% confidence level. We conclude that the plasma in this region is NEI state due to the recent shock heating. The Ionization state in the ICM can provide a physically meaningful way to estimate the phase and/or timescale of the merging

  5. Quantification of air plasma chemistry for surface disinfection

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew J.; Clark, Douglas S.; Graves, David B.

    2014-12-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O3) and nitrogen oxides (NO and NO2, or NOx) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NOx mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications.

  6. Thermal And Chemical Non-Equilibrium Effects In The Wake Of A Boundary-Layer Sized Object In Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Birrer, Marcel; Stemmer, Christian; Adams, Nikolaus N.

    2011-05-01

    Investigations of hypersonic boundary-layer flows around a cubical obstacle with a height in the order of half the boundary layer thickness were carried out in this work. Special interest was laid on the influence of chemical non-equilibrium effects on the wake flow of the obstacle. Direct numerical simulations were conducted using three different gas models, a caloric perfect, an equilibrium and a chemical non-equilibrium gas model. The geometry was chosen as a wedge with a six degree half angle, according to the aborted NASA HyBoLT free flight experiment. At 0.5 m downstream of the leading edge, a surface trip was positioned. The free-stream flow was set to Mach 8.5 with air conditions taken from the 1976 standard atmosphere at an altitude of 42 km according to the predicted flight path. The simulations were done in three steps for all models. First, two-dimensional calculations of the whole configuration including the leading edge and the obstacle were conducted. These provide constant span-wise profiles for detailed, steady three-dimensional simulations around the close vicinity of the obstacle. A free-stream Mach number of about 6.3 occurs behind the shock. A cross-section in the wake of the object then delivers the steady inflow for detailed unsteady simulations of the wake. Perturbations at unstable frequencies, obtained from a bi-global secondary stability analysis, were added to these profiles. The solutions are time-Fourier transformed to investigate the unsteady downstream development of the different modes due to the interaction with the base-flow containing two counter-rotating vortices. Results will be presented that show the influence of the presence of chemical non-equilibrium on the instability in the wake of the object leading to a laminar or a turbulent wake.

  7. Spectral Modeling in Astrophysics - The Physics of Non-equilibrium Clouds

    NASA Astrophysics Data System (ADS)

    Ferland, Gary; Williams, Robin

    2016-02-01

    Collisional-radiative spectral modeling plays a central role in astrophysics, probing phenomena ranging from the chemical evolution of the Universe to the energy production near supermassive black holes in distant quasars. The observed emission lines form in non-equilibrium clouds that have very low densities by laboratory standards, and are powered by energy sources which themselves are not in equilibrium. The spectrum is the result of a large number of microphysical processes, thermal statistics often do not apply, and analytical theory cannot be used. Numerical simulations are used to understand the physical state and the resulting spectrum. The greatest distinction between astrophysical modeling and conventional plasma simulations lies in the range of phenomena that must be considered. A single astronomical object will often have gas with kinetic temperatures of T˜10^6 K, 10^4 K, and T≤ 10^3 K, with the physical state ranging from molecular to fully ionized, and emitting over all wavelengths between the radio and x-ray. Besides atomic, plasma, and chemical physics, condensed matter physics is important because of the presence of small solid `grains' which affect the gas through catalytic reactions and the infrared emission they produce. The ionization, level populations, chemistry, and grain properties must be determined self-consistently, along with the radiation transport, to predict the observed spectrum. Although the challenge is great, so are the rewards. Numerical spectral simulations allow us to read the message contained in the spectrum emitted by objects far from the Earth that existed long ago.

  8. Scaled-Up Nonequilibrium Air Plasmas

    DTIC Science & Technology

    2009-10-01

    electrode pairs will be tested to increase the plasma volume. In addition, thermionic cathodes (LaCrO3, LaB6) will be examined to enhance the electron...measure the cathode fall in the glow discharge regime. Current density, electric field strength and other important plasma parameters will be...thermal nonequilibrium, and together with electrical discharge characteristics, estimating the electron density and reduced electric field strength (E/N

  9. Unsteady non-equilibrium model of laser induced detonation wave

    NASA Astrophysics Data System (ADS)

    Oshima, Takeharu; Fujiwara, Toshitaka

    1992-12-01

    Now that laser propulsion is hoped to become a next-generation space propulsion system, it is important to analyze the mechanisms of LSD (Laser-Supported Detonation) wave caused by laser absorption. The performance of laser propulsion is determined mainly by laser absorption efficiency. To absorb laser energy effectively, it is necessary to generate sufficient free electrons in the laser absorbing zone. Thus, the LSD wave must be monitored. At first, the incident laser energy vaporizes the solid propellant and produces free electrons. These free electrons start laser absorption and as a result produce high temperature and pressure. Then an ignition occurs and this grows into a detonation wave. Four types of physico-chemical processes take place in the LSD wave. First, laser energy is first absorbed by free electrons through inverse bremsstrahlung. Next this energy is distributed to heavy particles (atoms and ions) through elastic and inelastic collision processes, and is lost partly by bremsstrahlung as radiation energy. Based on such backgrounds, this LSD wave is simulated by using a plane one-dimensional numerical analysis to clarify the mechanism on the ignition phenomenon in a laser-sustained plasma. In this study, a TVD (Total Variation Diminishing) code which takes account of real gas effects is utilized.

  10. Evaporation from Soils Under Thermal Boundary Conditions: Experimental and Modeling Investigation to Compare Equilibrium and Non-Equilibrium Based Approaches

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Cihan, A.; Sakaki, T.; Illangasekare, T. H.

    2010-12-01

    In the shallow subsurface immediately below the land-atmosphere interface, it is widely recognized that the movement of water vapor is closely coupled to thermal processes. However, their mutual interactions are rarely considered in most soil water modeling efforts or in practical applications where it becomes necessary to understand and predict the spatial and temporal distribution of soil moisture. The validation of numerical models that are designed to capture these processes is difficult due to the inherent complexities of the problem in field systems and the scarcity of field or laboratory data with accurately known hydraulic and thermal parameters of soils, thus limiting the testing and refinement of heat and water transfer theories. In addition, it is often assumed in traditional soil physics applications that water vapor concentration in the air adjacent to the water phase in soil pores is always in equilibrium with liquid water, i.e., vaporization occurs instantaneously, which can result in over prediction of evaporation from soil. The goal of this work is to perform controlled experiments under transient conditions of soil moisture and temperature using soil with accurately known hydraulic/thermal properties and use this data to test existing theories and develop appropriate numerical models. In this work, water vapor flow under varying temperature gradients was implemented based on a concept that allows non-equilibrium liquid/gas phase change with gas phase vapor diffusion. In order to validate this new approach, we developed a long column apparatus equipped with a network of sensors and generated data under well-controlled thermal boundary conditions at the soil surface. Water saturation, capillary pressure, temperature, relative humidity and column weight to record total mass of water in the column were continuously monitored. Results from numerical simulations based on the conventional equilibrium and non-equilibrium approaches were compared with

  11. Air-Plasma Bullets Propagating Inside Microcapillaries and in Ambient Air

    NASA Astrophysics Data System (ADS)

    Lacoste, Deanna A.; Bourdon, Anne; Kuribara, Koichi; Urabe, Keiichiro; Stauss, Sven; Terashima, Kazuo

    2014-10-01

    We report on the characterization of air-plasma bullets formed inside microcapillary tubes and in ambient air, obtained without the use of inert or noble gases. The bullets are produced by nanosecond discharges, applied at 1 kHz in a dielectric barrier discharge configuration. The anode consists of a tungsten wire with a 50- μm diameter, centered in the microcapillary, while the cathode is a silver ring, fixed on the outer surface of the fused silica tube. The gap distance is kept constant at 1.35 mm. The microcapillary is fed with a 4-sccm flow of air at atmospheric pressure. In the tubes and in ambient air, the propagation of air plasma bullets is observed. The temporal evolution of the bullet propagation has been studied with the aid of an ICCD camera. The effect of the applied voltage (from 5.2 to 8.2 kV) and the inner diameter of the microcapillaries (from 100 to 500 μm) on the discharge dynamics are investigated. Inside the tubes, while the topology of the bullets seems to be strongly dependent on the diameter, their velocity (on the order of 1 to 5 ×105 ms-1) is only a function of the applied voltage. In ambient air, the air-plasma bullets propagate at a velocity of 1 . 25 ×105 ms-1. Possible mechanisms for the propagation of air-plasma bullets in ambient air are discussed.

  12. Analysis of processes in DC arc plasma torches for spraying that use air as plasma forming gas

    NASA Astrophysics Data System (ADS)

    Frolov, V.; Ivanov, D.; Toropchin, A.

    2014-11-01

    Developed in Saint Petersburg State Polytechnical University technological processes of air-plasma spraying of wear-resistant, regenerating, hardening and decorative coatings used in number of industrial areas are described. The article contains examples of applications of air plasma spraying of coatings as well as results of mathematical modelling of processes in air plasma torches for spraying.

  13. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    SciTech Connect

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit E-mail: mats.carlsson@astro.uio.no

    2016-02-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.

  14. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    NASA Astrophysics Data System (ADS)

    Rezai, Raheleh; Ebrahimi, Farshad

    2014-04-01

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron-electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current-voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron-electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U2 IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior.

  15. Non-equilibrium Helium Ionization in an MHD Simulation of the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Golding, Thomas Peter; Leenaarts, Jorrit; Carlsson, Mats

    2016-02-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11-18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.

  16. Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Larsson, Johan

    2013-01-01

    A dynamic non-equilibrium wall-model for large-eddy simulation at arbitrarily high Reynolds numbers is proposed and validated on equilibrium boundary layers and a non-equilibrium shock/boundary-layer interaction problem. The proposed method builds on the prior non-equilibrium wall-models of Balaras et al. [AIAA J. 34, 1111-1119 (1996)], 10.2514/3.13200 and Wang and Moin [Phys. Fluids 14, 2043-2051 (2002)], 10.1063/1.1476668: the failure of these wall-models to accurately predict the skin friction in equilibrium boundary layers is shown and analyzed, and an improved wall-model that solves this issue is proposed. The improvement stems directly from reasoning about how the turbulence length scale changes with wall distance in the inertial sublayer, the grid resolution, and the resolution-characteristics of numerical methods. The proposed model yields accurate resolved turbulence, both in terms of structure and statistics for both the equilibrium and non-equilibrium flows without the use of ad hoc corrections. Crucially, the model accurately predicts the skin friction, something that existing non-equilibrium wall-models fail to do robustly.

  17. Plasma kinetics in ethanol/water/air mixture in a 'tornado'-type electrical discharge

    NASA Astrophysics Data System (ADS)

    Levko, D.; Shchedrin, A.; Chernyak, V.; Olszewski, S.; Nedybaliuk, O.

    2011-04-01

    This paper presents the results of a theoretical and experimental study of plasma-assisted reforming of ethanol into molecular hydrogen in a modified 'tornado'-type electrical discharge. Numerical modelling clarifies the nature of non-thermal conversion and explains the kinetic mechanism of non-equilibrium plasma chemical transformations in the gas-liquid system and the evolution of hydrogen during the reforming as a function of discharge parameters and ethanol-to-water ratio in the mixture. We also propose a scheme of chemical reactions for plasma kinetics description. It is shown that some characteristics of the investigated reactor are at least not inferior to the characteristics of other plasma chemical reactors.

  18. Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2012-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.

  19. Interpolative Hyperbolic Realizable Moment Closures for Non-Equilibrium Flows with Heat Transfer

    NASA Astrophysics Data System (ADS)

    Tensuda, Boone Rudy

    The predictive capabilities of a novel, 14-moment, maximum-entropy-based, interpolative closure are explored for multi-dimensional non-equilibrium flows of a monatomic gas with heat transfer. Unlike the maximum-entropy closure on which it is based, the interpolative closure provides closed-form expressions for the closing fluxes while retaining a large region of hyperbolicity. Properties of the moment system are explored via a dispersion analysis and an implicit finite-volume solution procedure is proposed. Multi-dimensional applications of the closure are then examined for several canonical non-equilibrium flow problems in order to provide an assessment of its capabilities. The predictive capabilities of the closure were found to surpass those of the 10-moment Gaussian closure. It was also found to predict interesting non-equilibrium phenomena, such as counter-gradient heat flux. The proposed implicit solver showed improved computational performance compared to the previously studied semi-implicit technique.

  20. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    SciTech Connect

    Bolivar, A.O.

    2011-05-15

    Highlights: > Classical Brownian motion described by a non-Markovian Fokker-Planck equation. > Quantization process. > Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. > A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.

  1. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-09-01

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties.

  2. A non-equilibrium equation-of-motion approach to quantum transport utilizing projection operators.

    PubMed

    Ochoa, Maicol A; Galperin, Michael; Ratner, Mark A

    2014-11-12

    We consider a projection operator approach to the non-equilibrium Green function equation-of-motion (PO-NEGF EOM) method. The technique resolves problems of arbitrariness in truncation of an infinite chain of EOMs and prevents violation of symmetry relations resulting from the truncation (equivalence of left- and right-sided EOMs is shown and symmetry with respect to interchange of Fermi or Bose operators before truncation is preserved). The approach, originally developed by Tserkovnikov (1999 Theor. Math. Phys. 118 85) for equilibrium systems, is reformulated to be applicable to time-dependent non-equilibrium situations. We derive a canonical form of EOMs, thus explicitly demonstrating a proper result for the non-equilibrium atomic limit in junction problems. A simple practical scheme applicable to quantum transport simulations is formulated. We perform numerical simulations within simple models and compare results of the approach to other techniques and (where available) also to exact results.

  3. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots.

    PubMed

    Hess, H; Ross, Jennifer L

    2017-03-22

    Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.

  4. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene

    PubMed Central

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-01-01

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties. PMID:27609305

  5. The transformation dynamics towards equilibrium in non-equilibrium w/w/o double emulsions

    NASA Astrophysics Data System (ADS)

    Chao, Youchuang; Mak, Sze Yi; Shum, Ho Cheung

    2016-10-01

    We use a glass-based microfluidic device to generate non-equilibrium water-in-water-in-oil (w/w/o) double emulsions and study how they transform into equilibrium configurations. The method relies on using three immiscible liquids, with two of them from the phase-separated aqueous two-phase systems. We find that the transformation is accompanied by an expansion rim, while the characteristic transformation speed of the rim mainly depends on the interfacial tension between the innermost and middle phases, as well as the viscosity of the innermost phase when the middle phase is non-viscous. Remarkably, the viscosity of the outermost phase has little effect on the transformation speed. Our results account for the dynamics of non-equilibrium double emulsions towards their equilibrium structure and suggest a possibility to utilize the non-equilibrium drops to synthesize functional particles.

  6. Prehospital Air Medical Plasma (PAMPer) Trial

    DTIC Science & Technology

    2015-07-01

    diagnosis, prognosis, treatment and /or rehabilitation of a disease , injury or condition, or to improve the quality of life. This list may include...increase number of participating bases, we will work closely with Dr. Triulzi to minimize waste . The reference to thawed plasma every 3 days was...inaccurate. If the number of bases will increase at UPMC, this will be worked out with the blood bank (Dr. Triulzi) to find ways to not waste

  7. Effects of grid geometry on non-equilibrium dissipation in grid turbulence

    NASA Astrophysics Data System (ADS)

    Nagata, Koji; Saiki, Teppei; Sakai, Yasuhiko; Ito, Yasumasa; Iwano, Koji

    2017-01-01

    A total of 11 grids in four families, including single- and multi-scale grids, are tested to investigate the development and decay characteristics of grid-generated turbulence. Special attention has been focused on dissipation and non-equilibrium characteristics in the decay region. A wide non-equilibrium region is observed for fractal square grids with three and four iterations. The distributions of the Taylor microscale λ, integral length scale Lu, and dissipation coefficient Cɛ show that a simple combination of large and small grids does not reproduce elongated non-equilibrium regions as realized by the fractal square grid. On the other hand, a new kind of grid, quasi-fractal grids, in which the region of the smaller fractal elements (N =2 -4 ) of the fractal square grid is replaced by regular grids, successfully reproduce a similar flow field and non-equilibrium nature to that seen in the fractal square grid case. This suggests that the combination of large square grid and inhomogeneously arranged smaller grids produces an elongated non-equilibrium region. The dissipation coefficient Cɛ is better collapsed using R e0 =t0U∞ /ν (where t0 is the thickness of the largest grid bar, U∞ the inflow velocity, and ν the kinematic viscosity) as a global/inlet Reynolds number rather than R eM =M U∞ /ν (where M is the mesh size) [P. C. Valente and J. C. Vassilicos, "Universal dissipation scaling for non-equilibrium turbulence," Phys. Rev. Lett. 108, 214503 (2012)].

  8. Portable microwave air plasma device for wound healing

    NASA Astrophysics Data System (ADS)

    Kang, S. K.; Kim, H. Y.; Yun, G. S.; Lee, J. K.

    2015-06-01

    A portable microwave air plasma has been developed for safe and effective wound healing. The device is operated by a fixed microwave power and two different air gas flows (main and cooling air flow). It was found that the speeds of the two air flows determine the stability of the plasma jet and gas temperature and thereby regulate the concentrations of the individual reactive species. Two different regimes, i.e. the NO abundant (0.1 slm main air flow) and ozone abundant regimes (4 slm main air flow), were identified as suitable for wound healing without thermal damage and toxicity. These regimes show similar plasma characteristics (e.g. less than 40 °C at the treatment point, less than 4 ppm of NO2) except for different NO and ozone amounts. Both regimes show more than twice as fast wound healing speed compared with the untreated case without any histological damages. Faster healing speed with intrinsic ozone safety make the NO abundant regime the best operation regime for wound healing. Finally, the stability of the developed device was demonstrated by a one-hour continuous operation test with a 24 V battery.

  9. Correlations of the density and of the current in non-equilibrium diffusive systems

    NASA Astrophysics Data System (ADS)

    Sadhu, Tridib; Derrida, Bernard

    2016-11-01

    We use fluctuating hydrodynamics to analyze the dynamical properties in the non-equilibrium steady state of a diffusive system coupled with reservoirs. We derive the two-time correlations of the density and of the current in the hydrodynamic limit in terms of the diffusivity and the mobility. Within this hydrodynamic framework we discuss a generalization of the fluctuation dissipation relation in a non-equilibrium steady state where the response function is expressed in terms of the two-time correlations. We compare our results to an exact solution of the symmetric exclusion process. This exact solution also allows one to directly verify the fluctuating hydrodynamics equation.

  10. Non-equilibrium origin of high electrical conductivity in gallium zinc oxide thin films

    SciTech Connect

    Zakutayev, Andriy Ginley, David S.; Lany, Stephan; Perry, Nicola H.; Mason, Thomas O.

    2013-12-02

    Non-equilibrium state defines physical properties of materials in many technologies, including architectural, metallic, and semiconducting amorphous glasses. In contrast, crystalline electronic and energy materials, such as transparent conductive oxides (TCO), are conventionally thought to be in equilibrium. Here, we demonstrate that high electrical conductivity of crystalline Ga-doped ZnO TCO thin films occurs by virtue of metastable state of their defects. These results imply that such defect metastability may be important in other functional oxides. This finding emphasizes the need to understand and control non-equilibrium states of materials, in particular, their metastable defects, for the design of novel functional materials.

  11. Non-equilibrium processes by a gas phase synthesis of diamond

    NASA Astrophysics Data System (ADS)

    Rebrov, A. K.; Yudin, I. B.

    2016-11-01

    The analysis of influence of heterogeneous reactions in rarefied gas flows with dissociation and recombination is carried on for the first time, at least for hydrogen and methane flows. The flow in channels with heterogeneous reaction can be equilibrium and non-equilibrium, depending on a flow rate. Non-equilibrium effects are pronounced as a rule in the space between channel exit and substrate, where the activated gas flow to the surface of diamond deposition is formed. The gas dynamic analysis of gas jet deposition of diamond facilitates the optimization of experiments and their analysis.

  12. Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations

    SciTech Connect

    Bresme, F.; Armstrong, J.

    2014-01-07

    We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation.

  13. Non-Equilibrium Thermodynamic Chemistry and the Composition of the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Summers, M. E.

    2003-01-01

    A high priority objective of the Mars Exploration Program is to Determine if life exists today (MEPAG Goal I, Objective A). The measurement of gases of biogenic origin may be an approach to detect the presence of microbial life on the surface or subsurface of Mars. Chemical thermodynamic calculations indicate that on both Earth and Mars, certain gases should exist in extremely low concentrations, if at all. Microbial metabolic activity is an important non-equilibrium chemistry process on Earth, and if microbial life exists on Mars, may be an important nonequilibrium chemistry process on Mars. The non-equilibrium chemistry of the atmosphere of Mars is discussed in this paper.

  14. Studying non-equilibrium many-body dynamics using one-dimensional Bose gases

    SciTech Connect

    Langen, Tim; Gring, Michael; Kuhnert, Maximilian; Rauer, Bernhard; Geiger, Remi; Mazets, Igor; Smith, David Adu; Schmiedmayer, Jörg; Kitagawa, Takuya; Demler, Eugene

    2014-12-04

    Non-equilibrium dynamics of isolated quantum many-body systems play an important role in many areas of physics. However, a general answer to the question of how these systems relax is still lacking. We experimentally study the dynamics of ultracold one-dimensional (1D) Bose gases. This reveals the existence of a quasi-steady prethermalized state which differs significantly from the thermal equilibrium of the system. Our results demonstrate that the dynamics of non-equilibrium quantum many-body systems is a far richer process than has been assumed in the past.

  15. Non-Equilibrium Thermodynamic Chemistry and the Composition of the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Summers, M. E.

    2003-01-01

    A high priority objective of the Mars Exploration Program is to Determine if life exists today (MEPAG Goal I, Objective A). The measurement of gases of biogenic origin may be an approach to detect the presence of microbial life on the surface or subsurface of Mars. Chemical thermodynamic calculations indicate that on both Earth and Mars, certain gases should exist in extremely low concentrations, if at all. Microbial metabolic activity is an important non-equilibrium chemistry process on Earth, and if microbial life exists on Mars, may be an important nonequilibrium chemistry process on Mars. The non-equilibrium chemistry of the atmosphere of Mars is discussed in this paper.

  16. Non-equilibrium STLS approach to transport properties of single impurity Anderson model

    SciTech Connect

    Rezai, Raheleh Ebrahimi, Farshad

    2014-04-15

    In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron–electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current–voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron–electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U{sup 2} IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior. -- Highlights: •We introduce for the first time the non-equilibrium method of STLS for Hubbard type models. •We determine the transport properties of SIAM using the non-equilibrium STLS method. •We compare our results with order-U2 IPT and NRG. •We show that non-equilibrium STLS, contrary to the GW and self-consistent RPA, produces the two Hubbard peaks in DOS. •We show that the method keeps the universal scaling behavior and correct

  17. Numerical Analysis of Threshold between Laser-Supported Detonation and Combustion Wave Using Thermal Non-Equilibrium and Multi-Charged Ionization Model

    NASA Astrophysics Data System (ADS)

    Shiraishi, Hiroyuki; Kumagai, Yuya

    Laser-supported Detonation (LSD), which is one type of Laser-supported Plasma (LSP), is an important phenomenon because it can generate high pressures and temperatures for laser absorption. In this study, using thermal-non-equilibrium model, we numerically simulate LSPs, which are categorized as either LSDs or laser-supported combustion-waves (LSCs). For the analysis model, a two-temperature (heavy particle and electron-temperature) model has been used because the electronic mode excites first in laser absorption and a thermal non-equilibrium state easily arises. In the numerical analysis of the LSDs, laser absorption models are particularly important. Therefore, a multi-charged ionization model is considered to evaluate precisely the propagation and the structure transition of the LSD waves in the proximity of the LSC-LSD threshold. In the new model, the transition of the LSD construction near the threshold, which is indicated by the ionization delay length, becomes more practical.

  18. Air plasma treatment of liquid covered tissue: long timescale chemistry

    NASA Astrophysics Data System (ADS)

    Lietz, Amanda M.; Kushner, Mark J.

    2016-10-01

    Atmospheric pressure plasmas have shown great promise for the treatment of wounds and cancerous tumors. In these applications, the sample is usually covered by a thin layer of a biological liquid. The reactive oxygen and nitrogen species (RONS) generated by the plasma activate and are processed by the liquid before the plasma produced activation reaches the tissue. The synergy between the plasma and the liquid, including evaporation and the solvation of ions and neutrals, is critical to understanding the outcome of plasma treatment. The atmospheric pressure plasma sources used in these procedures are typically repetitively pulsed. The processes activated by the plasma sources have multiple timescales—from a few ns during the discharge pulse to many minutes for reactions in the liquid. In this paper we discuss results from a computational investigation of plasma-liquid interactions and liquid phase chemistry using a global model with the goal of addressing this large dynamic range in timescales. In modeling air plasmas produced by a dielectric barrier discharge over liquid covered tissue, 5000 voltage pulses were simulated, followed by 5 min of afterglow. Due to the accumulation of long-lived species such as ozone and N x O y , the gas phase dynamics of the 5000th discharge pulse are different from those of the first pulse, particularly with regards to the negative ions. The consequences of applied voltage, gas flow, pulse repetition frequency, and the presence of organic molecules in the liquid on the gas and liquid reactive species are discussed.

  19. Evaporation from soils under diurnal boundary conditions: Experimental and modeling investigation to evaluate Non-equilibrium-based approaches

    NASA Astrophysics Data System (ADS)

    Trautz, Andrew; Smits, Kathleen; Cihan, Abdullah; Illangasekare, Tissa

    2013-04-01

    Evaporation from bare soil is a key component of the hydrologic cycle and the process primarily responsible for governing water and energy exchanges between the land and atmosphere. Despite its importance, there is still a great deal of uncertainty associated with our current understanding of this complex multiphase phenomenon. A common approach when modeling the movement of liquid water, water vapor and heat in the soil immediately below the land-atmosphere interface is to assume that water vapor concentration in air is always in equilibrium with liquid water. However, this equilibrium assumption is called into question by experiments about liquid/gas phase change in porous media suggesting that the equilibrium establishment is not instantaneous; a volatilization or condensation time is observed at the macroscopic scale under certain conditions. Introduction of such a non-equilibrium mass transfer relationship is based on the Hertz-Knudsen equation (HKE) derived from the kinetic theory of gases. Multiple formulations have been presented to represent the rate of phase change between water and vapor, many relying on empirical fitting parameters due to limited experimental data. The purpose of this work is to perform an unbiased comparison between various conceptual and mathematical formulations for non-equilibrium phase change on evaporation and develop appropriate numerical models to be used in simulations. The key to such a comparison is the availability of accurate data. As such data at the scale of interest is not possible to obtain in field settings, a unique two-dimensional cell apparatus was developed. The test cell was equipped with a network of sensors for automated and continuous monitoring of soil moisture, soil and air temperature and relative humidity, and wind velocity to generate precision data. A fully-coupled numerical model to solve the governing equations for heat, liquid water and water vapor transport in soil was developed. The code implements a

  20. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  1. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  2. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  3. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  4. A time-accurate implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.

  5. Review Of Non-Equilibrium Atmospheric Entry In-Flight Instrumentations

    NASA Astrophysics Data System (ADS)

    Hendrich, Georg; Fertig, Markus; Fasoulas, Stefanos; Lohle, Stefan; Lein, Sebastian; Preci, Arianit; Steinbeck, Andreas

    2011-05-01

    The paper gives a very brief overview on non- equilibrium in-flight instrumentation. However, the limitation of the paper length leads to the fact that the authors concentrate on examples in which they were involved either by participating in the development of the instrumentation or by the performance of data analysis.

  6. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Liu, Yunqi; Gong, Yungui; Wang, Bin

    2016-02-01

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U (1) gauge field. We start with an asymptotic Anti-de-Sitter (AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T c , the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.

  7. Numerical modelling of non-equilibrium graded sediment transport in a curved open channel

    NASA Astrophysics Data System (ADS)

    Bui, Minh Duc; Rutschmann, Peter

    2010-06-01

    The computer code FAST3D has been developed to calculate flow and sediment transport in open channels. In the code, the flow field is calculated by solving the full Reynolds-averaged Navier-Stokes equations with k-ɛ turbulence model; the bed-load transport is simulated with a non-equilibrium model containing an important parameter, the so-called non-equilibrium adaptation length, which characterizes the distance for sediment to adjust from a non-equilibrium state to an equilibrium state; the bed deformation is obtained from an overall mass-balance equation for sediment transport. The governing equations are solved numerically with a finite volume method on an adaptive, non-staggered grid. The former model assumed uniform bed material. In order to take into account the influence of grain-size distribution of the bed-surface on the evolution of the bed topography and consequently also on the flow field, a sediment transport module has been presently developed by the authors at the Institute of Hydraulic and Water Resources Engineering, Technische Universität München, Germany, for fractional sediment transport using a multiple layer model. This paper presents the numerical results for sediment sorting and the bed deformation in a curved alluvial channel under unsteady-flow conditions according to Yen and Lee (1995). The calculations were compared with data from laboratory measurements. Further, the sensitivity of the simulated results to the non-equilibrium adaptation length is investigated.

  8. Information-theoretic tools for parametrized coarse-graining of non-equilibrium extended systems

    NASA Astrophysics Data System (ADS)

    Katsoulakis, Markos A.; Plecháč, Petr

    2013-08-01

    In this paper, we focus on the development of new methods suitable for efficient and reliable coarse-graining of non-equilibrium molecular systems. In this context, we propose error estimation and controlled-fidelity model reduction methods based on Path-Space Information Theory, combined with statistical parametric estimation of rates for non-equilibrium stationary processes. The approach we propose extends the applicability of existing information-based methods for deriving parametrized coarse-grained models to Non-Equilibrium systems with Stationary States. In the context of coarse-graining it allows for constructing optimal parametrized Markovian coarse-grained dynamics within a parametric family, by minimizing information loss (due to coarse-graining) on the path space. Furthermore, we propose an asymptotically equivalent method—related to maximum likelihood estimators for stochastic processes—where the coarse-graining is obtained by optimizing the information content in path space of the coarse variables, with respect to the projected computational data from a fine-scale simulation. Finally, the associated path-space Fisher Information Matrix can provide confidence intervals for the corresponding parameter estimators. We demonstrate the proposed coarse-graining method in (a) non-equilibrium systems with diffusing interacting particles, driven by out-of-equilibrium boundary conditions, as well as (b) multi-scale diffusions and the corresponding stochastic averaging limits, comparing them to our proposed methodologies.

  9. Modelling non-equilibrium thermodynamic systems from the speed-gradient principle

    NASA Astrophysics Data System (ADS)

    Khantuleva, Tatiana A.; Shalymov, Dmitry S.

    2017-03-01

    The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed. This article is part of the themed issue 'Horizons of cybernetical physics'.

  10. Rheology modulated non-equilibrium fluctuations in time-dependent diffusion processes

    NASA Astrophysics Data System (ADS)

    Maity, Debonil; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-11-01

    The effect of non-Newtonian rheology, manifested through a viscoelastic linearized Maxwell model, on the time-dependent non-equilibrium concentration fluctuations due to free diffusion as well as thermal diffusion of a species is analyzed theoretically. Contrary to the belief that non-equilibrium Rayleigh line is not influenced by viscoelastic effects, through rigorous calculations, we put forward the fact that viscoelastic effects do influence the non-equilibrium Rayleigh line, while the effects are absent for the equilibrium scenario. The non-equilibrium process is quantified through the concentration fluctuation auto-correlation function, also known as the structure factor. The analysis reveals that the effect of rheology is prominent for both the cases of free diffusion and thermal diffusion at long times, where the influence of rheology dictates not only the location of the peaks in concentration dynamic structure factors, but also the magnitudes; such peaks in dynamic structure factors are absent in the case of Newtonian fluid. At smaller times, for the case of free diffusion, presence of time-dependent peak(s) are observed, which are weakly dependent on the influence of rheology, a phenomenon which is absent in the case of thermal diffusion. Different regimes of the frequency dependent overall dynamic structure factor, depending on the interplay of the fluid relaxation time and momentum diffusivity, are evaluated. The static structure factor is not affected to a great extent for the case of free-diffusion and is unaffected for the case of thermal diffusion.

  11. Comparison of equilibrium and non-equilibrium distribution coefficients for the human drug carbamazepine

    USDA-ARS?s Scientific Manuscript database

    The distribution coefficient (KD) for the human drug carbamazepine was measured using a non-equilibrium technique. Repacked soil columns were prepared using an Airport silt loam (Typic Natrustalf) with an average organic matter content of 2.45%. Carbamazepine solutions were then leached through th...

  12. Modelling non-equilibrium thermodynamic systems from the speed-gradient principle.

    PubMed

    Khantuleva, Tatiana A; Shalymov, Dmitry S

    2017-03-06

    The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed.This article is part of the themed issue 'Horizons of cybernetical physics'.

  13. Jet quenching and gluon to hadron fragmentation function in non-equilibrium QCD at RHIC and LHC

    NASA Astrophysics Data System (ADS)

    Nayak, Gouranga C.

    2017-01-01

    Theoretical understanding of the observed jet quenching measurements at RHIC and LHC is challenging in QCD because it requires understanding of parton to hadron fragmentation function in non-equilibrium QCD. In this paper, by using closed-time path integral formalism, we derive the gauge invariant definition of the gluon to hadron fragmentation function in non-equilibrium QCD which is consistent with factorization theorem in non-equilibrium QCD from first principles.

  14. Leaching from MSWI bottom ash: evaluation of non-equilibrium in column percolation experiments.

    PubMed

    Hyks, Jiri; Astrup, Thomas; Christensen, Thomas H

    2009-02-01

    Impacts of non-equilibrium on results of percolation experiments on municipal solid waste incineration (MSWI) bottom ash were investigated. Three parallel column experiments were performed: two columns with undisturbed percolation and one column with two sets of 1-month-long flow interruptions applied at liquid-to-solid (L/S) ratios of L/S 2L/kg and 12L/kg, respectively. Concentrations of Na, K, Cl(-), Ca, Si, SO(4)(2-), Al, Cu, Ni, Mo, Ba, Pb, Zn, and dissolved organic carbon (DOC) were monitored throughout the entire leaching period; geochemical modeling was used to identify non-equilibrium-induced changes in the solubility control. Despite both physical and chemical non-equilibrium, the columns were found to provide adequate information for readily soluble compounds (i.e., Na, Cl(-), and K) and solubility-controlled elements (i.e., Ca, SO(4)(2-), Ba, Si, Al, Zn, and Pb). The leaching of Cu and Ni was shown to depend strongly on DOC leaching, which was likely affected by physical non-equilibrium during flow interruptions. Consequently, the leaching of Cu and Ni in the undisturbed columns was shown to be by about one order of magnitude lower compared with the interrupted column. The results indicate that the leaching of DOC-related metals in laboratory column experiments may be considerably underestimated compared with full-scale scenarios in which the impacts from non-equilibrium may be significantly lower. The leaching of Mo (or MoO(4)(2-)) may be controlled solely by its availability in the mobile zone, which in turn appeared to be controlled by diffusion from the stagnant zone; no Mo controlling minerals were predicted by the geochemical modeling.

  15. Pure air-plasma bullets propagating inside microcapillaries and in ambient air

    NASA Astrophysics Data System (ADS)

    Lacoste, Deanna A.; Bourdon, Anne; Kuribara, Koichi; Urabe, Keiichiro; Stauss, Sven; Terashima, Kazuo

    2014-12-01

    This paper reports on the characterization of air-plasma bullets in microcapillary tubes and in ambient air, obtained without the use of inert or noble gases. The bullets were produced by nanosecond repetitively pulsed discharges, applied in a dielectric barrier discharge configuration. The anode was a tungsten wire with a diameter of 50 µm, centered in the microcapillary, while the cathode was a silver ring, fixed on the outer surface of the fused silica tube. The effects of the applied voltage and the inner diameter of the microcapillary tube on the plasma behavior were investigated. Inside the tubes, while the topology of the bullets seems to be strongly dependent on the diameter, their velocity is only a function of the amplitude of the applied voltage. In ambient air, the propagation of air bullets with a velocity of about 1.25 × 105 m s-1 is observed.

  16. Inactivation of the biofilm by the air plasma containing water

    NASA Astrophysics Data System (ADS)

    Suganuma, Ryota; Yasuoka, Koichi; Yasuoka Takeuchi lab Team

    2014-10-01

    Biofilms are caused by environmental degradation in food factory and medical facilities. Inactivation of biofilm has the method of making it react to chemicals including chlorine, hydrogen peroxide, and ozone. Although inactivation by chemicals has the problem that hazardous property of a residual substance and hydrogen peroxide have slow reaction velocity. We achieved advanced oxidation process (AOP) with air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were able to be generated selectively by adjusting the amount of water supplied to the plasma. We inactivated Pseudomonas aeruginosa biofilm in five minutes with OH radicals generated by using hydrogen peroxide and ozone.

  17. Cold atmospheric pressure air plasma jet for medical applications

    SciTech Connect

    Kolb, J. F.; Price, R. O.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.; Mohamed, A.-A H.; Swanson, R. J.

    2008-06-16

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2 cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  18. Daily concentrations of air pollution and plasma fibrinogen in London.

    PubMed

    Pekkanen, J; Brunner, E J; Anderson, H R; Tiittanen, P; Atkinson, R W

    2000-12-01

    The reason for the association between air pollution and risk of cardiovascular diseases is unknown. The hypothesis was examined that daily concentrations of air pollution are associated with daily concentrations of fibrinogen, a risk factor for cardiovascular disease. Data on concentrations of plasma fibrinogen for 4982 male and 2223 female office workers, collected in a cross sectional survey in London between September 1991 and May 1993, were combined with data on concentrations of air pollution during the day of blood sampling and during the 3 preceding days. After adjustment for weather and other confounding factors, an increase in the 24 hour mean NO(2) during the previous day from the 10th to the 90th percentile (61.7 microg/m(3)) was associated with a 1.5% (95% confidence interval (95% CI) 0.4% to 2.5%) higher fibrinogen concentration. The respective increase for CO (1.6 mg/m(3)) was 1.5% (95% CI 0.5%, 2.5%). These associations tended to be stronger in the warm season (April to September). Significant associations were found for black smoke and particulate matter of diameter 10 microm (PM(10)) only in the warm season. No association with fibrinogen was found for SO(2) or ozone. The short term association between air pollution, possibly from traffic, and risk of cardiovascular events may be at least partly mediated through increased concentrations of plasma fibrinogen, possibly due to an inflammatory reaction caused by air pollution.

  19. On determining continuum quantities of non-equilibrium processes via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Fu, Yao

    In this dissertation, a high-fidelity atomistic-to-continuum link for highly non-equilibrium processes has been established by making several modifications to Hardy's theory. Although Hardy's thermomechanical quantities were derived analytically to conserve mass, momentum and energy, they have not been rigorously tested and validated numerically in the past. Hence the first task was to investigate the effectiveness of ensemble averaging in removing thermal fluctuations and compare with conventional time averaging for fcc crystals simulated using both equilibrium and non-equilibrium molecular dynamics (MD) simulations, where the non-equilibrium process was introduced by a shock impact. It has been found that the ensemble averaging has better convergence than time averaging due to the statistical independence of the thermomechanical quantities computed using ensemble averaging. The second task was to test the validity of Hardy's theory by checking if it is able to conserve mass, momentum and energy numerically. A few highly non-equilibrium processes were simulated using MD, including Gaussian wave and shock impact propagation in 1D and 3D fcc crystals. Based on the test results, a new normalization rule has been proposed so that the computed thermomechanical quantities can conserve the fundamental properties more accurately. To a large extent, Hardy's theory has been found to be valid regardless of the width of the localization function, the interatomic potential and crystal structure, and with and without ensemble averaging. To further test the validity of Hardy's theory for more complex non-equilibrium processes, where plastic deformation is accomplished through dislocation glide and slip band emission, a crack propagation problem in iron crystal with a pre-created center crack is simulated using MD. The computed Hardy's thermomechanical quantities can generally conserve mass, momentum and energy. Exceptions have been found around the crack region, where the

  20. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    NASA Technical Reports Server (NTRS)

    Yeh, Leehwa

    1993-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.

  1. Indoor air cleaning using a pulsed discharge plasma

    SciTech Connect

    Mizuno, Akira; Kisanuki, Yoshiyuki; Noguchi, Masanobu; Katsura, Shinji; Lee, S.H.; Hong, Y.K.; Shin, S.Y.; Kang, J.H.

    1999-12-01

    The purpose of this paper is to develop a high-efficiency air-cleaning system for air pollutants such as tobacco smoke found in indoor environments. The authors investigated the basic characteristics of treating particulate matter and acetaldehyde (CH{sub 3}CHO) in a one-pass test using a pulse generator and a plasma-driven catalyst reactor, both of which are attachable to an air conditioner. Using a circulation test, the decrease in acetaldehyde concentration was measured in a closed vessel where the reactor had been placed. The removal efficiencies of particulate matter and acetaldehyde in the one-pass test (residence time of 10 ms) were 70% and 27%, respectively. In the circulation test, 98% of the suspended particles were collected after 2 min of operation and the acetaldehyde concentration decreased by 70% after 50 mins. It is believed that the TiO{sub 2} catalyst is excited by plasma-induced high-energy particles (electrons, photons, and metastable molecules), resulting in an enhanced pollutant removal. These test results indicate that the combination of plasma with TiO{sub 2} is a potential alternative in treating the pollutants in environmental tobacco smoke.

  2. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    NASA Astrophysics Data System (ADS)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnOx, CoOx. The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnOx and CoOx catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition.

  3. Air spark-like plasma source for antimicrobial NOx generation

    NASA Astrophysics Data System (ADS)

    Pavlovich, M. J.; Ono, T.; Galleher, C.; Curtis, B.; Clark, D. S.; Machala, Z.; Graves, D. B.

    2014-12-01

    We demonstrate and analyse the generation of nitrogen oxides and their antimicrobial efficacy using atmospheric air spark-like plasmas. Spark-like discharges in air in a 1 L confined volume are shown to generate NOx at an initial rate of about 1.5  ×  1016 NOx molecules/J dissipated in the plasma. Such a discharge operating in this confined volume generates on the order of 6000 ppm NOx in 10 min. Around 90% of the NOx is in the form of NO2 after several minutes of operation in the confined volume, suggesting that NO2 is the dominant antimicrobial component. The strong antimicrobial action of the NOx mixture after several minutes of plasma operation is demonstrated by measuring rates of E. coli disinfection on surfaces and in water exposed to the NOx mixture. Some possible applications of plasma generation of NOx (perhaps followed by dissolution in water) include disinfection of surfaces, skin or wound antisepsis, and sterilization of medical instruments at or near room temperature.

  4. Fast Scanning Calorimetry study of non-equilibrium relaxation in fragile organic liquids

    NASA Astrophysics Data System (ADS)

    Sadtchenko, Vlad; Bhattacharya, Deepanjan; O'Reilly, Liam

    2013-03-01

    Fast scanning calorimetry (FSC), capable of heating rates in excess of 1000000 K/s, was combined with vapor deposition technique to investigate non-equilibrium relaxation in micrometer thick viscous liquid films of several organic compounds (e.g.2-ethyl-1-hexanol, Toluene, and 1-propanol) under high vacuum conditions. Rapid heating of samples, vapor deposited at temperatures above their standard glass softening transition (Tg), resulted in observable endotherms which onset temperatures were strongly dependent on heating rate and the deposition temperature. Furthermore, all of the studied compounds were characterized by distinct critical deposition temperatures at which observation of endotherm became impossible. Based on the results of these studies, we have developed a simple model which makes it possible to infer the equilibrium enthalpy relaxation times for liquids from FSC data. We will discuss implications of these studies for contemporary models of non-equilibrium relaxation in glasses and supercooled liquids. Supported by NSF Grant 1012692.

  5. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere

    NASA Astrophysics Data System (ADS)

    Millen, J.; Deesuwan, T.; Barker, P.; Anders, J.

    2014-06-01

    Einstein realized that the fluctuations of a Brownian particle can be used to ascertain the properties of its environment. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes, providing insight into soft matter physics and leading to applications from energy harvesting to medical imaging. Here, we use heated optically levitated nanospheres to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and provides a means for testing non-equilibrium thermodynamics.

  6. The non-equilibrium charge screening effects in diffusion-driven systems with pattern formation

    NASA Astrophysics Data System (ADS)

    Kuzovkov, V. N.; Kotomin, E. A.; de la Cruz, M. Olvera

    2011-07-01

    The effects of non-equilibrium charge screening in mixtures of oppositely charged interacting molecules on surfaces are analyzed in a closed system. The dynamics of charge screening and the strong deviation from the standard Debye-Hückel theory are demonstrated via a new formalism based on computing radial distribution functions suited for analyzing both short-range and long-range spacial ordering effects. At long distances the inhomogeneous molecular distribution is limited by diffusion, whereas at short distances (of the order of several coordination spheres) by a balance of short-range (Lennard-Jones) and long-range (Coulomb) interactions. The non-equilibrium charge screening effects in transient pattern formation are further quantified. It is demonstrated that the use of screened potentials, in the spirit of the Debye-Hückel theory, leads to qualitatively incorrect results.

  7. The non-equilibrium charge screening effects in diffusion-driven systems with pattern formation.

    PubMed

    Kuzovkov, V N; Kotomin, E A; Olvera de la Cruz, M

    2011-07-21

    The effects of non-equilibrium charge screening in mixtures of oppositely charged interacting molecules on surfaces are analyzed in a closed system. The dynamics of charge screening and the strong deviation from the standard Debye-Hückel theory are demonstrated via a new formalism based on computing radial distribution functions suited for analyzing both short-range and long-range spacial ordering effects. At long distances the inhomogeneous molecular distribution is limited by diffusion, whereas at short distances (of the order of several coordination spheres) by a balance of short-range (Lennard-Jones) and long-range (Coulomb) interactions. The non-equilibrium charge screening effects in transient pattern formation are further quantified. It is demonstrated that the use of screened potentials, in the spirit of the Debye-Hückel theory, leads to qualitatively incorrect results.

  8. On Non-Equilibrium Thermodynamics of Space-Time and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Munkhammar, Joakim

    Based on recent results from general relativistic statistical mechanics and black hole information transfer limits, a space-time entropy-action equivalence is proposed as a generalization of the holographic principle. With this conjecture, the action principle can be replaced by the second law of thermodynamics, and for the Einstein-Hilbert action the Einstein field equations are conceptually the result of thermodynamic equilibrium. For non-equilibrium situations, Jaynes' information-theoretic approach to maximum entropy production is adopted instead of the second law of thermodynamics. As it turns out for appropriate choices of constants, quantum gravity is obtained. For the special case of a free particle the Bekenstein-Verlinde entropy-to-displacement relation of holographic gravity and thus the traditional holographic principle emerges. Although Jacobson's original thermodynamic equilibrium approach proposed that gravity might not necessarily be quantized, this particular non-equilibrium treatment might require it.

  9. Development of a non-equilibrium quantum transport calculation method based on constrained density functional

    NASA Astrophysics Data System (ADS)

    Kim, Han Seul; Kim, Yong-Hoon

    2015-03-01

    We report on the development of a novel first-principles method for the calculation of non-equilibrium quantum transport process. Within the scheme, non-equilibrium situation and quantum transport within the open-boundary condition are described by the region-dependent Δ self-consistent field method and matrix Green's function theory, respectively. We will discuss our solutions to the technical difficulties in describing bias-dependent electron transport at complicated nanointerfaces and present several application examples. Global Frontier Program (2013M3A6B1078881), Basic Science Research Grant (2012R1A1A2044793), EDISON Program (No. 2012M3C1A6035684), and 2013 Global Ph.D fellowship program of the National Research Foundation. KISTI Supercomputing Center (KSC-2014-C3-021).

  10. Generalized Metropolis acceptance criterion for hybrid non-equilibrium molecular dynamics-Monte Carlo simulations.

    PubMed

    Chen, Yunjie; Roux, Benoît

    2015-01-14

    A family of hybrid simulation methods that combines the advantages of Monte Carlo (MC) with the strengths of classical molecular dynamics (MD) consists in carrying out short non-equilibrium MD (neMD) trajectories to generate new configurations that are subsequently accepted or rejected via an MC process. In the simplest case where a deterministic dynamic propagator is used to generate the neMD trajectories, the familiar Metropolis acceptance criterion based on the change in the total energy ΔE, min[1, exp{-βΔE}], guarantees that the hybrid algorithm will yield the equilibrium Boltzmann distribution. However, the functional form of the acceptance probability is more complex when the non-equilibrium switching process is generated via a non-deterministic stochastic dissipative propagator coupled to a heat bath. Here, we clarify the conditions under which the Metropolis criterion remains valid to rigorously yield a proper equilibrium Boltzmann distribution within hybrid neMD-MC algorithm.

  11. The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium.

    PubMed

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-02-09

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system.

  12. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    SciTech Connect

    Ma, Wen; Yildiz, Bilge; Herbert, F. William; Senanayake, Sanjaya D.

    2015-03-09

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr{sup 1+}, Zr{sup 2+}, and Zr{sup 3+} as non-equilibrium oxidation states, in addition to Zr{sup 4+} in the stoichiometric ZrO{sub 2}. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr{sup 0} and Zr{sup 4+} at the metal-oxide interface. The presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.

  13. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    DOE PAGES

    Ma, Wen; Senanayake, Sanjaya D.; Herbert, F. William; ...

    2015-03-11

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr1+, Zr2+, and Zr3+ as non-equilibrium oxidation states, in addition to Zr4+ in the stoichiometric ZrO2. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr0 and Zr4+ at the metal-oxide interface. As a result, the presence of local strong electric fields andmore » the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.« less

  14. Multiple scales approach to the gas-piston non-equilibrium themodynamics

    NASA Astrophysics Data System (ADS)

    Chiuchiù, D.; Gubbiotti, G.

    2016-05-01

    The non-equilibrium thermodynamics of a gas inside a piston is a conceptually simple problem where analytic results are rare. For example, it is hard to find in the literature analytic formulas that describe the heat exchanged with the reservoir when the system either relaxes to equilibrium or is compressed over a finite time. In this paper we derive this kind of analytic formula. To achieve this result, we take the equations derived by Cerino et al (2015 Phys. Rev. E 91 032128) describing the dynamic evolution of a gas-piston system, we cast them in a dimensionless form, and we solve the dimensionless equations with the multiple scales expansion method. With the approximated solutions we obtained, we express in a closed form the heat exchanged by the gas-piston system with the reservoir for a large class of relevant non-equilibrium situations.

  15. The new physics of non-equilibrium condensates: insights from classical dynamics.

    PubMed

    Eastham, P R

    2007-07-25

    We discuss the dynamics of classical Dicke-type models, aiming to clarify the mechanisms by which coherent states could develop in potentially non-equilibrium systems such as semiconductor microcavities. We present simulations of an undamped model which show spontaneous coherent states with persistent oscillations in the magnitude of the order parameter. These states are generalizations of superradiant ringing to the case of inhomogeneous broadening. They correspond to the persistent gap oscillations proposed in fermionic atomic condensates, and arise from a variety of initial conditions. We show that introducing randomness into the couplings can suppress the oscillations, leading to a limiting dynamics with a time-independent order parameter. This demonstrates that non-equilibrium generalizations of polariton condensates can be created even without dissipation. We explain the dynamical origins of the coherence in terms of instabilities of the normal state, and consider how it can additionally develop through scattering and dissipation.

  16. Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal

    NASA Astrophysics Data System (ADS)

    Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang

    2017-08-01

    Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.

  17. Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion.

    PubMed

    Bedeaux, D; Pagonabarraga, I; Ortiz de Zárate, J M; Sengers, J V; Kjelstrup, S

    2010-10-21

    We show how the law of mass action can be derived from a thermodynamic basis, in the presence of temperature gradients, chemical potential gradients and hydrodynamic flow. The solution gives the law of mass action for the forward and the reverse contributions to the net chemical reaction. In addition we derive the fluctuation-dissipation theorem for the fluctuating contributions to the reaction rate, heat flux and mass fluxes. All these results arise without any other assumptions than those which are common in mesoscopic non-equilibrium thermodynamics; namely quasi-stationary transport across a high activation energy barrier, and local equilibrium along the reaction coordinate. Arrhenius-type behaviour of the kinetic coefficients is recovered. The thermal conductivity, Soret coefficient and diffusivity are significantly influenced by the presence of a chemical reaction. We thus demonstrate how chemical reactions can be fully reconciled with non-equilibrium thermodynamics.

  18. Implementation of non-equilibrium vertex corrections in KKR: transport through disordered layers

    NASA Astrophysics Data System (ADS)

    Franz, Christian; Czerner, Michael; Heiliger, Christian

    2013-10-01

    The theoretical description of modern nanoelectronic devices requires a quantum mechanical treatment and often involves disorder, e.g. from alloys. Therefore, the ab initio theory of transport using non-equilibrium Green’s functions is extended to the case of disorder described by the coherent potential approximation. This requires the calculation of non-equilibrium vertex corrections. We implement the vertex corrections in a Korringa-Kohn-Rostoker multiple scattering scheme. In order to verify our implementation and to demonstrate the accuracy and applicability we investigate a system of an iron-cobalt alloy layer embedded in copper. The results obtained with the coherent potential approximation are compared to supercell calculations. It turns out that vertex corrections play an important role for this system.

  19. Numerical investigation of non-equilibrium effects in hypersonic turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Kim, Pilbum; Kim, John; Zhong, Xiaolin; Eldredge, Jeff

    2014-11-01

    Direct numerical simulations of a spatially developing hypersonic boundary layer have been conducted in order to investigate thermal and chemical non-equilibrium effects in a hypersonic turbulent boundary layer. Two different flows, pure oxygen and pure nitrogen flows with specific total enthalpy, h0 ,O2 = 9 . 5017 MJ/kg and h0 ,N2 = 19 . 1116 MJ/kg, respectively, have been considered. The boundary edge conditions were obtained from a separate calculation of a flow over a blunt wedge at free-stream Mach numbers M∞ ,O2 = 15 and M∞ ,N2 = 20 . The inflow conditions were obtained from a simulation of a turbulent boundary layer of a perfect gas. Non-equilibrium effects on turbulence statistics and near-wall turbulence structures were examined by comparing with those obtained in a simulation of the same boundary layer with a perfect-gas assumption.

  20. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere.

    PubMed

    Millen, J; Deesuwan, T; Barker, P; Anders, J

    2014-06-01

    Einstein realized that the fluctuations of a Brownian particle can be used to ascertain the properties of its environment. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes, providing insight into soft matter physics and leading to applications from energy harvesting to medical imaging. Here, we use heated optically levitated nanospheres to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and provides a means for testing non-equilibrium thermodynamics.

  1. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation

    PubMed Central

    Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai

    2016-01-01

    Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media. PMID:26876162

  2. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation.

    PubMed

    Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai

    2016-02-15

    Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media.

  3. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation

    NASA Astrophysics Data System (ADS)

    Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai

    2016-02-01

    Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media.

  4. The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium

    PubMed Central

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  5. From tunneling to contact in a magnetic atom: The non-equilibrium Kondo effect

    NASA Astrophysics Data System (ADS)

    Choi, Deung-Jang; Abufager, Paula; Limot, Laurent; Lorente, Nicolás

    2017-03-01

    A low-temperature scanning tunneling microscope was employed to study the differential conductance in an atomic junction formed by an adsorbed Co atom on a Cu(100) surface and a copper-covered tip. A zero-bias anomaly (ZBA) reveals spin scattering off the Co atom, which is assigned to a Kondo effect. The ZBA exhibits a characteristic asymmetric lineshape when electrons tunnel between tip and sample, while upon the tip-Co contact it symmetrizes and broadens. Through density functional theory calculations and the non-equilibrium non-crossing approximation, we show that the lineshape broadening is mainly a consequence of the additional coupling to the tip, while non-equilibrium effects only modify the large-bias tails of the ZBA.

  6. Non-equilibrium universality in the dynamics of dissipative cold atomic gases

    NASA Astrophysics Data System (ADS)

    Marcuzzi, M.; Levi, E.; Li, W.; Garrahan, J. P.; Olmos, B.; Lesanovsky, I.

    2015-07-01

    The theory of continuous phase transitions predicts the universal collective properties of a physical system near a critical point, which for instance manifest in characteristic power-law behaviours of physical observables. The well-established concept at or near equilibrium, universality, can also characterize the physics of systems out of equilibrium. The most fundamental instance of a genuine non-equilibrium phase transition is the directed percolation (DP) universality class, where a system switches from an absorbing inactive to a fluctuating active phase. Despite being known for several decades it has been challenging to find experimental systems that manifest this transition. Here we show theoretically that signatures of the DP universality class can be observed in an atomic system with long-range interactions. Moreover, we demonstrate that even mesoscopic ensembles—which are currently studied experimentally—are sufficient to observe traces of this non-equilibrium phase transition in one, two and three dimensions.

  7. Effect of thermochemical non-equilibrium on the aerodynamics of an osculating-cone waverider under different angles of attack

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Liu, Jun; Ding, Feng; Li, Kai; Xia, Zhixun

    2017-10-01

    In order to research the effect of thermochemical non-equilibrium on the aerodynamics of an osculating-cone waverider, thermochemical non-equilibrium flow and perfect gas model are employed to study the aerodynamics of an osculating-cone waverider under different angles of attack. The obtained results show that the slope of the oblique shock wave has little difference when considering the thermochemical non-equilibrium effect under the condition of zero angle of attack. However, under the condition of other attack angles, the slope of the oblique shock wave diminishes when considering the thermochemical non-equilibrium effect. Furthermore, the non-equilibrium effect moves the pressure center of the osculating-cone waverider forward by as much as 1.53% of the whole craft's length, which must be taken into consideration in the balance design of aircraft.

  8. Design and characterization of a novel coaxial VHF plasma source for air plasma formation

    NASA Astrophysics Data System (ADS)

    Byrns, Brandon; Wooten, Daniel; Shannon, Steven

    2011-10-01

    A key challenge in the expansion of atmospheric plasma applicators into new markets is the effective surface area that these systems can efficiently treat. To this end, a large area atmospheric air glow discharge, with approximately 9.5 cm2 cross sectional area, is obtained using a simple coaxial structure. The room air plasma is driven by a 162MHz generator at powers ranging from 300W-1000W. The VHF drive appears to produce a steady state glow void of streamers or arcs typically found in atmospheric air systems. Electrical measurements coupled with a global plasma model and transmission line theory allow for the calculation of electron density. Densities calculated for 400W are approximately 1011 cm-3. Spectroscopy data shows dominant emissions consist of OH, N2, and N2+,along with a continuum indicating neutral bremsstrahlung radiation; this is used for electron density calculations and model validation. In this presentation, source design, plasma characterization, and preliminary surface treatments of HDPE will be presented. A key challenge in the expansion of atmospheric plasma applicators into new markets is the effective surface area that these systems can efficiently treat. To this end, a large area atmospheric air glow discharge, with approximately 9.5 cm2 cross sectional area, is obtained using a simple coaxial structure. The room air plasma is driven by a 162MHz generator at powers ranging from 300W-1000W. The VHF drive appears to produce a steady state glow void of streamers or arcs typically found in atmospheric air systems. Electrical measurements coupled with a global plasma model and transmission line theory allow for the calculation of electron density. Densities calculated for 400W are approximately 1011 cm-3. Spectroscopy data shows dominant emissions consist of OH, N2, and N2+,along with a continuum indicating neutral bremsstrahlung radiation; this is used for electron density calculations and model validation. In this presentation, source design

  9. Mechanical responses and stress fluctuations of a supercooled liquid in a sheared non-equilibrium state.

    PubMed

    Mizuno, H; Yamamoto, R

    2012-04-01

    A steady shear flow can drive supercooled liquids into a non-equilibrium state. Using molecular dynamics simulations under steady shear flow superimposed with oscillatory shear strain for a probe, non-equilibrium mechanical responses are studied for a model supercooled liquid composed of binary soft spheres. We found that even in the strongly sheared situation, the supercooled liquid exhibits surprisingly isotropic responses to oscillating shear strains applied in three different components of the strain tensor. Based on this isotropic feature, we successfully constructed a simple two-mode Maxwell model that can capture the key features of the storage and loss moduli, even for highly non-equilibrium state. Furthermore, we examined the correlation functions of the shear stress fluctuations, which also exhibit isotropic relaxation behaviors in the sheared non-equilibrium situation. In contrast to the isotropic features, the supercooled liquid additionally demonstrates anisotropies in both its responses and its correlations to the shear stress fluctuations. Using the constitutive equation (a two-mode Maxwell model), we demonstrated that the anisotropic responses are caused by the coupling between the oscillating strain and the driving shear flow. Due to these anisotropic responses and fluctuations, the violation of the fluctuation-dissipation theorem (FDT) is distinct for different components. We measured the magnitude of this violation in terms of the effective temperature. It was demonstrated that the effective temperature is notably different between different components, which indicates that a simple scalar mapping, such as the concept of an effective temperature, oversimplifies the true nature of supercooled liquids under shear flow. An understanding of the mechanism of isotropies and anisotropies in the responses and fluctuations will lead to a better appreciation of these violations of the FDT, as well as certain consequent modifications to the concept of an

  10. Non-equilibrium growth patterns of carbohydrate and saccharin in gel media

    NASA Astrophysics Data System (ADS)

    Das, Ishwar; Sharma, Archana; Kumar, Anuj; Lall, R. S.

    1997-02-01

    Non-equilibrium growth patterns of mono-, di-saccharides and a sweetener saccharin have been developed on microslides in the presence of a dense matrix. Scanned pictures were analyzed and fractal dimensions calculated by a box counting method. Morphologies and fractal dimension were found to depend on the compound-dense matrix composition. In case of di-saccharides, the morphology depends on a linkage between the monomer units.

  11. On the transition of a non-equilibrium system to an equilibrium system

    NASA Astrophysics Data System (ADS)

    Cohen, E. G. D.

    2015-07-01

    It is shown that the most important feature of Non-Equilibrium Thermodynamics is not the entropy production, but the organization of the currents in order to flow. This is also needed to obtain the maximum entropy in the equilibrium state, as is required by Equilibrium Thermodynamics. This article is supplemented with comments by Hong Qian and Yves Pomeau and a final reply by the author.

  12. AC Power Consumption of Single-Walled Carbon Nanotube Interconnects: Non-Equilibrium Green's Function Simulation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takahiro; Sasaoka, Kenji; Watanabe, Satoshi

    2012-04-01

    We theoretically investigate the emittance and dynamic dissipation of a nanoscale interconnect consisting of a metallic single-walled carbon nanotube using the non-equilibrium Green's function technique for AC electronic transport. We show that the emittance and dynamic dissipation depend strongly on the contact conditions of the interconnect and that the power consumption can be reduced by adjusting the contact conditions. We propose an appropriate condition of contact that yields a high power factor and low apparent power.

  13. Invariance of specific mass increment in the case of non-equilibrium growth

    NASA Astrophysics Data System (ADS)

    Martyushev, L. M.; Sergeev, A. P.; Terentiev, P. S.

    2015-09-01

    The invariance of specific mass increments of crystalline structures that co-exist in the case of non-equilibrium growth is grounded for the first time by using the maximum entropy production principle. Based on the hypothesis of the existence of a universal growth equation, and through the dimensional analysis, an explicit form of the time-dependent specific mass increment is proposed. The applicability of the obtained results for describing growth in animate nature is discussed.

  14. The non-equilibrium allele frequency spectrum in a Poisson random field framework.

    PubMed

    Kaj, Ingemar; Mugal, Carina F

    2016-10-01

    In population genetic studies, the allele frequency spectrum (AFS) efficiently summarizes genome-wide polymorphism data and shapes a variety of allele frequency-based summary statistics. While existing theory typically features equilibrium conditions, emerging methodology requires an analytical understanding of the build-up of the allele frequencies over time. In this work, we use the framework of Poisson random fields to derive new representations of the non-equilibrium AFS for the case of a Wright-Fisher population model with selection. In our approach, the AFS is a scaling-limit of the expectation of a Poisson stochastic integral and the representation of the non-equilibrium AFS arises in terms of a fixation time probability distribution. The known duality between the Wright-Fisher diffusion process and a birth and death process generalizing Kingman's coalescent yields an additional representation. The results carry over to the setting of a random sample drawn from the population and provide the non-equilibrium behavior of sample statistics. Our findings are consistent with and extend a previous approach where the non-equilibrium AFS solves a partial differential forward equation with a non-traditional boundary condition. Moreover, we provide a bridge to previous coalescent-based work, and hence tie several frameworks together. Since frequency-based summary statistics are widely used in population genetics, for example, to identify candidate loci of adaptive evolution, to infer the demographic history of a population, or to improve our understanding of the underlying mechanics of speciation events, the presented results are potentially useful for a broad range of topics.

  15. Direct-Numerical and Large-Eddy Simulations of a Non-Equilibrium Turbulent Kolmogorov Flow

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Shebalin, J. V.; Hussaini, M. Y.

    1999-01-01

    A non-equilibrium form of turbulent Kolmogorov flow is set up by making an instantaneous change in the amplitude of the spatially-periodic forcing. It is found that the response of the flow to this instantaneous change becomes more dramatic as the wavenumber of the forcing is increased, and, at the same time, that the faithfulness with which the large-eddy-simulation results agree with the direct-numerical results decreases.

  16. Comparison of Thermodynamic Equilibrium and Non-Equilibrium Representation of Materials

    DTIC Science & Technology

    2007-03-22

    ability to use multiple EOSs, including the semi-emperical Mie-Gruneisen EOS and tabular Sesame EOS . Modeling high speed impacts necessi- tates modeling...to better determine the applicability of the Mie-Gruneisen EOS and the Sesame EOS in situations that in- clude non-equilibrium thermodynamics, the...high speed, uniaxial impacts between two iron bars are modeled in CTH. These impacts are modeled using the Mie-Gruneisen EOS , Sesame EOS and a two state

  17. Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity

    PubMed Central

    Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto

    2015-01-01

    Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer. PMID:26419420

  18. Quantitative analysis of non-equilibrium phase transition process by the catastrophe theory

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Wu, Jiu Hui; Zhong, H. B.

    2017-08-01

    Catastrophe theory is a highly generalized mathematical theory that summarizes the rules of non-equilibrium phase transition by several catastrophe models. This paper investigates the general non-equilibrium phase transition process quantitatively using catastrophe theory for the first time, to our knowledge. First, a new approach is proposed by combining the catastrophe theory with dimensionless analysis. Second, the new approach is applied to two classic examples: one is the turbulent phase transition and the other is the bottleneck effect of particle flow. For the turbulence phase transition process, the quantitative relationships are obtained. Comparing with Kolmogorov's turbulent theory, the new method proposed in this paper is able to evaluate not only the complete turbulence condition but also the development of turbulence, and Kolmogorov's turbulent theory is only a special case of our results by this new approach. For the particle flow bottleneck effect, the results obtained by this new method correspond with the empirical formulated results. Therefore, the proposed method can solve non-equilibrium phase transition process problems and has the potential to extend to fluid, aerodynamics, and so forth.

  19. An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators

    NASA Technical Reports Server (NTRS)

    Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei

    2006-01-01

    The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.

  20. Dynamical Detailed Balance and Local Kms Condition for Non-Equilibrium States

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi; Imafuku, Kentaro

    The principle of detailed balance is at the basis of equilibrium physics and is equivalent to the Kubo-Martin-Schwinger (KMS) condition (under quite general assumptions). In the present paper we prove that a large class of non-equilibrium quantum systems satisfies a dynamical generalization of the detailed balance condition (dynamical detailed balance) expressing the fact that all the micro-currents, associated to the Bohr frequencies are constant. The usual (equilibrium) detailed balance condition is characterized by the property that this constant is identically zero. From this we deduce a simple and experimentally measurable relation expressing the microcurrent associated to a transition between two levels ɛm→ɛn as a linear combination of the occupation probabilities of the two levels, with coefficients given by the generalized susceptivities (transport coefficients). We then give a second characterization of the dynamical detailed balance condition using a master equation rather than the microcurrents. Finally we show that these two conditions are equivalent to a "local" generalization of the usual KMS condition. Summing up: rather than postulating some ansatz on the basis of phenomenological models or of numerical simulations, we deduce, directly in the quantum domain and from fundamental principles, some natural and simple non equilibrium generalizations of the three main characterizations of equilibrium states. Then we prove that these three, apparently very far, conditions are equivalent. These facts support our convinction that these three equivalent conditions capture a universal aspect of non equilibrium phenomena.

  1. Second law considerations on the third law: From Boltzmann and Loschmidt paradox to non equilibrium temperature

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2016-02-01

    The balance of forces and processes between the system and the environment and the processes inside the system are the result of the flows of the quanta. Moreover, the transition between two thermodynamic states is the consequence of absorption or emission of quanta, but, during the transition, the entropy variation due to the irreversibility occurs and it breaks any symmetry of time. Consequently, the irreversibility is the result of a transition, a process, an interaction between the system and its environment. This interaction results completely time-irreversible for any real process because of irreversibility. As a consequence, a proof of the third law is obtained proving that the zero temperature state can be achieved only for an infinite work lost for dissipation or in an infinite time. The fundamental role of time both in equilibrium and in non equilibrium analysis is pointed out. Moreover, the non equilibrium temperature is related to the entropy generation and its fluctuation rate; indeed, non-stationary temperature means that the system has not yet attained free energy minimum state, i.e., the maximum entropy state; the consequence is that the zero temperature state can be achieved only for an infinite work lost for dissipation or in an infinite time. In engineering thermodynamics the efficiency is always obtained without any consideration on time, while, here, just the time is introduced as a fundamental quantity of the analysis of non equilibrium states.

  2. Non-equilibrium condensation of supercritical carbon dioxide in a converging-diverging nozzle

    NASA Astrophysics Data System (ADS)

    Ameli, Alireza; Afzalifar, Ali; Turunen-Saaresti, Teemu

    2017-03-01

    Carbon dioxide (CO2) is a promising alternative as a working fluid for future energy conversion and refrigeration cycles. CO2 has low global warming potential compared to refrigerants and supercritical CO2 Brayton cycle ought to have better efficiency than today’s counter parts. However, there are several issues concerning behaviour of supercritical CO2 in aforementioned applications. One of these issues arises due to non-equilibrium condensation of CO2 for some operating conditions in supercritical compressors. This paper investigates the non-equilibrium condensation of carbon dioxide in the course of an expansion from supercritical stagnation conditions in a converging-diverging nozzle. An external look-up table was implemented, using an in-house FORTRAN code, to calculate the fluid properties in supercritical, metastable and saturated regions. This look-up table is coupled with the flow solver and the non-equilibrium condensation model is introduced to the solver using user defined expressions. Numerical results are compared with the experimental measurements. In agreement with the experiment, the distribution of Mach number in the nozzle shows that the flow becomes supersonic in upstream region near the throat where speed of sound is minimum also the equilibrium reestablishment occurs at the outlet boundary condition.

  3. One-dimensional non-equilibrium shock wave structure analysis by simplified conventional Burnett equations

    NASA Astrophysics Data System (ADS)

    Shao, Chun; Zhao, Wenwen; Chen, Weifang

    2016-11-01

    The inner shock wave structure with non-equilibrium effect is difficult to be accurately simulated due to the great gradient of density and temperature. In this paper, simplified conventional Burnett (SCB) equations were formulated for the study of hypersonic shock wave structure in continuum-transition regime. The conventional Burnett equations were derived by using the second-order Chapman-Enskog expansion of the velocity distribution function in Boltzmann equation. By neglecting conventional Burnett terms which are inversely proportional to Mach number, the constitutive relations in SCB equations were simplified specifically for hypersonic flow. The rotational and vibrational energy balance equations were also introduced into the governing equations to study the non-equilibrium relaxation processes inside shock waves. Meanwhile, generalized Rankine-Hugoniot relations were established to obtain the post-shock flow parameters in non-equilibrium flow. The numerical methods included three-order Runge-Kutta time-splitting method and AUSMPW+ flux-difference splitting method with MUSCL scheme. One-dimensional Nitrogen shock wave structure at different Mach numbers was simulated using SCB and NS equations respectively. The results indicate that the SCB equations can capture the shock waves structures more precisely and the flow variables are in better agreement with the DSMC results than NS equations in high Mach number cases.

  4. Direct measurement of DNA bending by type IIA topoisomerases: implications for non-equilibrium topology simplification

    PubMed Central

    Hardin, Ashley H.; Sarkar, Susanta K.; Seol, Yeonee; Liou, Grace F.; Osheroff, Neil; Neuman, Keir C.

    2011-01-01

    Type IIA topoisomerases modify DNA topology by passing one segment of duplex DNA (transfer or T–segment) through a transient double-strand break in a second segment of DNA (gate or G–segment) in an ATP-dependent reaction. Type IIA topoisomerases decatenate, unknot and relax supercoiled DNA to levels below equilibrium, resulting in global topology simplification. The mechanism underlying this non-equilibrium topology simplification remains speculative. The bend angle model postulates that non-equilibrium topology simplification scales with the bend angle imposed on the G–segment DNA by the binding of a type IIA topoisomerase. To test this bend angle model, we used atomic force microscopy and single-molecule Förster resonance energy transfer to measure the extent of bending imposed on DNA by three type IIA topoisomerases that span the range of topology simplification activity. We found that Escherichia coli topoisomerase IV, yeast topoisomerase II and human topoisomerase IIα each bend DNA to a similar degree. These data suggest that DNA bending is not the sole determinant of non-equilibrium topology simplification. Rather, they suggest a fundamental and conserved role for DNA bending in the enzymatic cycle of type IIA topoisomerases. PMID:21421557

  5. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    PubMed

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  6. Non-equilibrium effects in atmospheric characteristic oscillations due to radiation balance

    NASA Astrophysics Data System (ADS)

    Nurgaliyeva, K. E.; Somsikov, V. M.

    2008-12-01

    Nowadays researches on global change of climate are faces the challenge of insufficient development of open system theory. In this connection the problem of energy and entropy exchange process between solar radiation and atmospheric gas influence on atmospheric dynamics in the frames of non-equilibrium thermodynamics was studied in this work. For this purpose the equations of flow [fluid] dynamics for interacting medium - gas and radiation - with taking into account the entropy production in atmosphere and its exchanging between gas and radiation were used in this work. Dispersion relation numerical analysis of atmospheric gravity waves (AGWs) in non-equilibrium atmosphere was carried out. It has been established that the spectra in the daytime hours shifts on high-frequency region in comparison with nighttime spectra. This difference can reach several percent in certain atmospheric regions. For the spectrum of the equilibrium model of the atmosphere the difference between the daytime and nighttime spectra makes up several fractions of percent. A comparison of the theoretical calculations of AGWs spectrum with observations confirmed the availability of non-equilibrium effects in the AGWs spectral composition. In particular, that concerns of Antarctic data results gave the difference is about 4 percent, Almaty data results ranges between 1.3 - 6 per cent in depends of season. Investigation of wave disturbances on sunset and sunrise periods of time shows that there is a tendency for low frequency region at evening-time spectra and high frequency region at morning- time spectra.

  7. Space charge corrected electron emission from an aluminum surface under non-equilibrium conditions

    SciTech Connect

    Wendelen, W.; Bogaerts, A.; Mueller, B. Y.; Rethfeld, B.; Autrique, D.

    2012-06-01

    A theoretical study has been conducted of ultrashort pulsed laser induced electron emission from an aluminum surface. Electron emission fluxes retrieved from the commonly employed Fowler-DuBridge theory were compared to fluxes based on a laser-induced non-equilibrium electron distribution. As a result, the two- and three-photon photoelectron emission parameters for the Fowler-DuBridge theory have been approximated. We observe that at regimes where photoemission is important, laser-induced electron emission evolves in a more smooth manner than predicted by the Fowler-DuBridge theory. The importance of the actual electron distribution decreases at higher laser fluences, whereas the contribution of thermionic emission increases. Furthermore, the influence of a space charge effect on electron emission was evaluated by a one dimensional particle-in-cell model. Depending on the fluences, the space charge reduces the electron emission by several orders of magnitude. The influence of the electron emission flux profiles on the effective electron emission was found to be negligible. However, a non-equilibrium electron velocity distribution increases the effective electron emission significantly. Our results show that it is essential to consider the non-equilibrium electron distribution as well as the space charge effect for the description of laser-induced photoemission.

  8. Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows

    SciTech Connect

    Kustova, E. V.; Oblapenko, G. P.

    2015-01-15

    In the present paper, reaction and energy relaxation rates as well as the normal stress are studied for viscous gas flows with vibrational and chemical non-equilibrium. Using the modified Chapman-Enskog method, multi-temperature models based on the Treanor and Boltzmann vibrational distributions are developed for the general case taking into account all kinds of vibrational energy transitions, exchange reactions, dissociation, and recombination. Integral equations specifying the first-order corrections to the normal mean stress and reaction rates are derived, as well as approximate systems of linear equations for their numerical computation. Generalized thermodynamic driving forces associated with all non-equilibrium processes are introduced. It is shown that normal stresses and rates of non-equilibrium processes can be expressed in terms of the same driving forces; the symmetry of kinetic coefficients in these expressions is proven. The developed general model is applied to a particular case of a pure N{sub 2} viscous flow with slow VT relaxation. Normal stress and rates of vibrational relaxation are studied for various ratios of vibrational and translational temperatures. The cross effects between different vibrational transitions in viscous flows are evaluated, along with the influence of anharmonicity and flow compressibility on the first-order corrections to the relaxation rate. Limits of validity for the widely used Landau–Teller model of vibrational relaxation are indicated.

  9. Shock and Laser Induced Non-Equilibrium Chemistry in Molecular Energetics

    NASA Astrophysics Data System (ADS)

    Wood, Mitchell; Cherukara, Mathew; Kober, Edward; Strachan, Alejandro

    2015-06-01

    In this study, we have used large scale reactive molecular dynamics (MD) simulations to study how contrasting initiation mechanisms from either shock or electromagnetic insults compare to traditional thermal initiation. We will show how insults of equal strength but different character can yield vastly different reaction profiles and thus the evolution of hot-spots. For shocked RDX (Up = 2km/s), we find that the collapse of a cylindrical 40 nm diameter pore leads to a significant amount of non-equilibrium reactions followed by the formation of a sustained deflagration wave. In contrast, a hot spot that is seeded into a statically compressed crystal with matching size and temperature will quench over the same timescale, highlighting the importance of insult type. Furthermore, MD simulations of electromagnetic insults coupled to intramolecular vibrations have shown, in some cases, mode specific initial chemistry and altered kinetics of the subsequent decomposition. By leveraging spectroscopic and chemical information gathered in our MD simulations, we have been able to identify and track non-equilibrium vibrational states of these materials and correlate them to these observed changes. Implications of insult dependent reactivity and non-equilibrium chemistry will be discussed.

  10. Energy flow and fluctuations in non-equilibrium conformal field theory on star graphs

    NASA Astrophysics Data System (ADS)

    Doyon, Benjamin; Hoogeveen, Marianne; Bernard, Denis

    2014-03-01

    We consider non-equilibrium quantum steady states in conformal field theory (CFT) on star-graph configurations, with a particular, simple connection condition at the vertex of the graph. These steady states occur after a large time as a result of initially thermalizing the legs of the graph at different temperatures, and carry energy flows. Using purely Virasoro algebraic calculations we evaluate the exact scaled cumulant generating function for these flows. We show that this function satisfies a generalization of the usual non-equilibrium fluctuation relations. This extends results by two of the authors to the case of more than two legs. It also provides an alternative derivation centered on Virasoro algebra operators rather than local fields, hence an alternative regularization scheme, thus confirming the validity and universality of the scaled cumulant generating function. Our derivation shows how the usual Virasoro algebra leads, in large volumes, to a continuous-index Virasoro algebra for which we develop diagrammatic principles, which may be of interest in other non-equilibrium contexts as well. Finally, our results shed light on the Poisson-process interpretation of the long-time energy transfer in CFT.

  11. Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity

    NASA Astrophysics Data System (ADS)

    Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto

    2015-09-01

    Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer.

  12. Dynamic scaling for the growth of non-equilibrium fluctuations during thermophoretic diffusion in microgravity.

    PubMed

    Cerbino, Roberto; Sun, Yifei; Donev, Aleksandar; Vailati, Alberto

    2015-09-30

    Diffusion processes are widespread in biological and chemical systems, where they play a fundamental role in the exchange of substances at the cellular level and in determining the rate of chemical reactions. Recently, the classical picture that portrays diffusion as random uncorrelated motion of molecules has been revised, when it was shown that giant non-equilibrium fluctuations develop during diffusion processes. Under microgravity conditions and at steady-state, non-equilibrium fluctuations exhibit scale invariance and their size is only limited by the boundaries of the system. In this work, we investigate the onset of non-equilibrium concentration fluctuations induced by thermophoretic diffusion in microgravity, a regime not accessible to analytical calculations but of great relevance for the understanding of several natural and technological processes. A combination of state of the art simulations and experiments allows us to attain a fully quantitative description of the development of fluctuations during transient diffusion in microgravity. Both experiments and simulations show that during the onset the fluctuations exhibit scale invariance at large wave vectors. In a broader range of wave vectors simulations predict a spinodal-like growth of fluctuations, where the amplitude and length-scale of the dominant mode are determined by the thickness of the diffuse layer.

  13. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  14. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  15. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    DTIC Science & Technology

    2016-02-29

    conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical...by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions...flow-field and electromagnetic phenomena inside an ICP torch requires, in theory, the coupled solution of the Navier-Stokes and the Maxwell equations

  16. Roles of bulk viscosity on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts

    NASA Astrophysics Data System (ADS)

    Sengupta, Tapan K.; Sengupta, Aditi; Sharma, Nidhi; Sengupta, Soumyo; Bhole, Ashish; Shruti, K. S.

    2016-09-01

    Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximation commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes' hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes' hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes' hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.

  17. Roles of bulk viscosity on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts

    SciTech Connect

    Sengupta, Tapan K. Bhole, Ashish; Shruti, K. S.; Sengupta, Aditi; Sharma, Nidhi; Sengupta, Soumyo

    2016-09-15

    Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximation commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes’ hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes’ hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes’ hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.

  18. Enhanced Plasma Lifetime of Air Plasmas Generated by Electron Beam Excitation

    NASA Astrophysics Data System (ADS)

    Vidmar, Robert; Stalder, Kenneth

    2002-10-01

    A kinetic model with an improved set of reaction rate coefficients for air constituents will be discussed. The model includes rates that vary with E/N for electron temperature, momentum transfer, three body attachment, singlet-delta formation, electron detachment from O2-, and ionization of O2. The electric field is assumed uniform and sustained either by external electrodes or return currents generated in an electron beam. Calculations show the plasma lifetime increases as E/N increases by reducing attachment, increasing detachment, and increasing ionization. Electric-field-free plasma lifetimes of 10-20 ns for air at sea level (depending on initial electron density) can be increased by a factor of almost 5 with an E/N of about 2 x 10-16 volt cm^2. The plasma lifetime at altitudes of 30,000 feet corresponds to 60-100 ns without electric field and increases by a factor of 5-20 with an E/N of 5 x 10-17 volt cm^2. The power to maintain these E/N values and to sustain a given level of plasma density will be discussed. This research is sponsored by the Air Force Research Laboratory, under agreement number F49620-01-1-0414.

  19. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    PubMed

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus.

  20. TiO2 anatase nanorods with non-equilibrium crystallographic {001} facets and their coatings exhibiting high photo-oxidation of NO gas.

    PubMed

    Habran, Margarita; Krambrock, Klaus; Maia da Costa, M E H; Morgado, Edisson; Marinkovic, Bojan A

    2017-03-08

    Development of highly active photocatalysts is mandatory for more widespread application of this alternative environmental technology. Synthesis of photocatalysts, such as anatase TiO2, with more reactive, non-equilibrium, crystallographic facets is theoretically justified by a more efficient interfacial charge transfer to reactive adsorbed species, increasing quantum efficiency of photocatalyst. Air and vacuum calcinations of protonated trititanate nanotubes lead to their transformation to anatase nanorods. The nanorods synthesized by air calcination demonstrate photo-oxidation of NO gas more than three times superior to the one presented by the benchmark P-25 photocatalyst. This performance has been explained in terms of 50% higher specific surface area and, more importantly, through the predominance of more reactive, non-equilibrium, {001} crystallographic facets of the anatase nanorods. These facets present a high density of undercoordinated Ti cations, which favors adsorption of reactant species, and strained Ti-O-Ti bonds, leading to more efficient photo-oxidation reactions. Reduced Ti species, such as Ti(3+), were not observed in the as-obtained nanorods, while reactive adsorbed molecules are scarce on the nanorods obtained through vacuum calcination. Dip-coating of TiO2 anatase nanorods (air calcined) over soda-lime glass plates was used to prepare visible light transparent, superhydrophilic and highly adherent photocatalytic coatings with homogenously distributed nanopores.

  1. Calcium influx through TRP channels induced by short-lived reactive species in plasma-irradiated solution

    PubMed Central

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2016-01-01

    Non-equilibrium helium atmospheric-pressure plasma (He-APP), which allows for a strong non-equilibrium chemical reaction of O2 and N2 in ambient air, uniquely produces multiple extremely reactive products, such as reactive oxygen species (ROS), in plasma-irradiated solution. We herein show that relatively short-lived unclassified reactive species (i.e., deactivated within approximately 10 min) generated by the He-APP irradiation can trigger physiologically relevant Ca2+ influx through ruthenium red- and SKF 96365-sensitive Ca2+-permeable channel(s), possibly transient receptor potential channel family member(s). Our results provide novel insight into understanding of the interactions between cells and plasmas and the mechanism by which cells detect plasma-induced chemically reactive species, in addition to facilitating development of plasma applications in medicine. PMID:27169489

  2. Calcium influx through TRP channels induced by short-lived reactive species in plasma-irradiated solution

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2016-05-01

    Non-equilibrium helium atmospheric-pressure plasma (He-APP), which allows for a strong non-equilibrium chemical reaction of O2 and N2 in ambient air, uniquely produces multiple extremely reactive products, such as reactive oxygen species (ROS), in plasma-irradiated solution. We herein show that relatively short-lived unclassified reactive species (i.e., deactivated within approximately 10 min) generated by the He-APP irradiation can trigger physiologically relevant Ca2+ influx through ruthenium red- and SKF 96365-sensitive Ca2+-permeable channel(s), possibly transient receptor potential channel family member(s). Our results provide novel insight into understanding of the interactions between cells and plasmas and the mechanism by which cells detect plasma-induced chemically reactive species, in addition to facilitating development of plasma applications in medicine.

  3. The dynamics of a non-equilibrium bubble near bio-materials.

    PubMed

    Ohl, S W; Klaseboer, E; Khoo, B C

    2009-10-21

    In many medical treatments oscillating (non-equilibrium) bubbles appear. They can be the result of high-intensity-focused ultrasound, laser treatments or shock wave lithotripsy for example. The physics of such oscillating bubbles is often not very well understood. This is especially so if the bubbles are oscillating near (soft) bio-materials. It is well known that bubbles oscillating near (hard) materials have a tendency to form a high speed jet directed towards the material during the collapse phase of the bubble. It is equally well studied that bubbles near a free interface (air) tend to collapse with a jet directed away from this interface. If the interface is neither 'free' nor 'hard', such as often occurs in bio-materials, the resulting flow physics can be very complex. Yet, in many bio-applications, it is crucial to know in which direction the jet will go (if there is a jet at all). Some applications require a jet towards the tissue, for example to destroy it. For other applications, damage due to impacting jets is to be prevented at all cost. This paper tries to address some of the physics involved in these treatments by using a numerical method, the boundary element method (BEM), to study the dynamics of such bubbles near several bio-materials. In the present work, the behaviour of a bubble placed in a water-like medium near various bio-materials (modelled as elastic fluids) is investigated. It is found that its behaviour depends on the material properties (Young's modulus, Poisson ratio and density) of the bio-material. For soft bio-materials (fat, skin, brain and muscle), the bubble tends to split into smaller bubbles. In certain cases, the resulting bubbles develop opposing jets. For hard bio-materials (cornea, cartilage and bone), the bubble collapses towards the interface with high speed jets (between 100 and about 250 m s(-1)). A summary graph is provided identifying the combined effects of the dimensionless elasticity (kappa) and density ratio (alpha

  4. The dynamics of a non-equilibrium bubble near bio-materials

    NASA Astrophysics Data System (ADS)

    Ohl, S. W.; Klaseboer, E.; Khoo, B. C.

    2009-10-01

    In many medical treatments oscillating (non-equilibrium) bubbles appear. They can be the result of high-intensity-focused ultrasound, laser treatments or shock wave lithotripsy for example. The physics of such oscillating bubbles is often not very well understood. This is especially so if the bubbles are oscillating near (soft) bio-materials. It is well known that bubbles oscillating near (hard) materials have a tendency to form a high speed jet directed towards the material during the collapse phase of the bubble. It is equally well studied that bubbles near a free interface (air) tend to collapse with a jet directed away from this interface. If the interface is neither 'free' nor 'hard', such as often occurs in bio-materials, the resulting flow physics can be very complex. Yet, in many bio-applications, it is crucial to know in which direction the jet will go (if there is a jet at all). Some applications require a jet towards the tissue, for example to destroy it. For other applications, damage due to impacting jets is to be prevented at all cost. This paper tries to address some of the physics involved in these treatments by using a numerical method, the boundary element method (BEM), to study the dynamics of such bubbles near several bio-materials. In the present work, the behaviour of a bubble placed in a water-like medium near various bio-materials (modelled as elastic fluids) is investigated. It is found that its behaviour depends on the material properties (Young's modulus, Poisson ratio and density) of the bio-material. For soft bio-materials (fat, skin, brain and muscle), the bubble tends to split into smaller bubbles. In certain cases, the resulting bubbles develop opposing jets. For hard bio-materials (cornea, cartilage and bone), the bubble collapses towards the interface with high speed jets (between 100 and about 250 m s-1). A summary graph is provided identifying the combined effects of the dimensionless elasticity (κ) and density ratio (α) of the

  5. An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators

    NASA Technical Reports Server (NTRS)

    Tew, Roy; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei

    2006-01-01

    The objective of this paper is to define empirical parameters (or closwre models) for an initial thermai non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two CFD codes currently being used at Glenn Research Center (GRC) for Stirling engine modeling are Fluent and CFD-ACE. The porous-media models available in each of these codes are equilibrium models, which assmne that the solid matrix and the fluid are in thermal equilibrium at each spatial location within the porous medium. This is believed to be a poor assumption for the oscillating-flow environment within Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, we non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location end time during the cycle. A NASA regenerator research grant has been providing experimental and computational results to support definition of various empirical coefficients needed in defining a noa-equilibrium, macroscopic, porous-media model (i.e., to define "closure" relations). The grant effort is being led by Cleveland State University, with subcontractor assistance from the University of Minnesota, Gedeon Associates, and Sunpower, Inc. Friction-factor and heat-transfer correlations based on data taken with the NASAlSunpower oscillating-flow test rig also provide experimentally based correlations that are useful in defining parameters for the porous-media model; these correlations are documented in Gedeon Associates' Sage Stirling-Code Manuals. These sources of experimentally based information were used to define the following terms and parameters needed in the non-equilibrium porous-media model: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity (including themal dispersion and estimate of tortuosity effects}, and fluid-solid heat transfer

  6. Generation Of Atmospheric Pressure Non-Thermal Plasma By Diffusive And Constricted Discharges In Rest And Flowing Gases (Air And Nitrogen)

    NASA Astrophysics Data System (ADS)

    Akishev, Y.; Grushin, M.; Karalnik, V.; Kochetov, I.; Napartovich A.; Trushkin N.

    2010-07-01

    Weekly ionized non-thermal plasma (NTP) is of great interest for many applications because of its strong non-equilibrium state wherein an average electron energy Te exceeds markedly gas temperature Tg, i.e. electrons in the NTP are strongly overheated compared to neutral gas. Energetic electrons due to frequent collisions with the neutrals excite and dissociate effectively atoms and molecules of the plasma-forming gas that results in a creation of physically-, and bio-chemically active gaseous medium in a practically cold background gas. At present there are many kinds of plasma sources working at low and atmospheric pressure and using MW, RF, low frequency, pulsed and DC power supplies for NTP generation. The NTP at atmospheric pressure is of considerable interest for practice. A reason is that sustaining the NTP at atmospheric pressure at first allows us to avoid the use of expensive vacuum equipment and second gives opportunity to use the NTP for treatment of the exhausted gases and polluted liquids. The second opportunity cannot be realized at all with use of the NTP at low pressure. Main subject of this talk is low current atmospheric pressure gas discharges powering with DC power supplies. Plasma forming gases are air and nitrogen which are much cheaper compared to rare gases like He or Ar. Besides, great interest to molecular nitrogen as plasma forming gas is caused first of all its unique capability to accumulate huge energy in vibration, electron (metastables) and dissociated (atomic) states providing high chemical reactivity of the activated nitrogen. All active particles mentioned above have a long lifetime, and they can be therefore transported for a long distance away from place of their generation. Different current modes (diffusive and constricted) of these discharges are discussed. Experimental and numerical results on generation of chemically active species in the diffusive and constricted mode are presented. Some data on the usage of the

  7. The energy cascade in grid-generated non-equilibrium decaying turbulence

    NASA Astrophysics Data System (ADS)

    Valente, P. C.; Vassilicos, J. C.

    2015-04-01

    We investigate non-equilibrium turbulence where the non-dimensionalised dissipation coefficient Cɛ scales as C ɛ ˜ R eM m / R eℓ n with m ≈ 1 ≈ n (ReM and Reℓ are global/inlet and local Reynolds numbers, respectively) by measuring the downstream evolution of the scale-by-scale energy transfer, dissipation, advection, production, and transport in the lee of a square-mesh grid, and compare with a region where Cɛ ≈ constant. These are the main terms of the inhomogeneous, anisotropic version of the von Kármán-Howarth-Monin equation. It is shown in the grid-generated turbulence studied here that, even in the presence of non-negligible turbulence production and transport, production and transport are large-scale phenomena that do not contribute to the scale-by-scale balance for scales smaller than about a third of the integral-length scale, ℓ, and therefore do not affect the energy transfer to the small-scales. In both the non-equilibrium region where C ɛ ˜ R eM m / R eℓ n and further downstream where Cɛ ≈ constant, the peak of the scale-by-scale energy transfer scales as ( u2 ¯ ) 3 / 2 / ℓ ( u 2 ¯ is the variance of the longitudinal fluctuating velocity). In the non-equilibrium case, this scaling implies an imbalance between the energy transfer to the small scales and the dissipation. This imbalance is reflected on the small-scale advection which becomes larger in proportion to the maximum energy transfer as the turbulence decays whereas it stays proportionally constant in the further downstream region where Cɛ ≈ constant even though Reℓ is lower.

  8. Upscaling of transport processes in porous media with biofilms in non-equilibrium conditions

    NASA Astrophysics Data System (ADS)

    Orgogozo, Laurent; Golfier, Fabrice; Buès, Michel; Quintard, Michel

    2010-05-01

    In this work, we derive two different Darcy-scale models for the transport of biodegradable solutes in porous media containing a microbial biomass that developed under the form of a biofilm. Biofilms are composed of bacterial populations and extra cellular polymeric substances, and grow attached to a solid-fluid interface, e.g. the pore walls of a water-saturated porous medium. We begin with the pore-scale description of mass transport, mass transfer between phases (fluid phase - generally water - and biofilm phase) and biologically-mediated reactions. Then, two limit cases of non-equilibrium transport are identified and characterized. Finally, these processes are upscaled using the method of volume averaging to obtain two different macroscale mass balance models. The models are derived for specific cases of non-equilibrium reactive transport (i.e., spatial concentration gradients may exist in one or both phases), for which mechanisms of mass transfer or reaction kinetics limit the rate of biodegradation. In both cases, a one-equation model can be developed even if non-equilibrium conditions exist. The validity domains of the two considered transport models (the Reaction-Rate Limited Consumption model - RRLC model - and the Mass Transfer Limited Consumption model - MTLC model) are established in terms of reactive and hydrodynamic conditions of transport (Damköhler number and Péclet number). The RRLC model is found to be consistent with direct numerical simulation (DNS) results at high Péclet and Damköhler numbers, while the applicability of the MTLC model is limited to high Damköhler numbers but low Péclet numbers.

  9. Upscaling of Compositional Flow Simulation based on a non-Equilibrium Formulation

    NASA Astrophysics Data System (ADS)

    Salehi, A.; Voskov, D.; Tchelepi, H. A.

    2012-12-01

    Modeling multiphase flow of large number of components in natural porous media is a challenging problem of strong interest across many disciplines. Even with the most advanced computational methods and computer platforms, compositional simulation using the fine-scale (so-called geocellular) model is often too expensive; as a result, upscaling methods for compositional flows are essential. We describe a consistent representation of the coarse-scale equations, and we introduce upscaled flow functions to account for the sub-scale variations in both the absolute and relative permeability, as well as, compressibility effects. Upscaling of the thermodynamic phase behavior is the main focus of this work. We assume instantaneous phase equilibrium at the fine scale, and we derive coarse-scale equations, in which the phase behavior is represented in a non-equilibrium form. Viscous fingering, gravity override, and channeling at the sub-grid scale are possible reasons for this non-equilibrium behavior. Coarse-scale thermodynamic functions are introduced to quantify the difference in chemical potential of each component among the different phases and to capture the deviation of coarse blocks from equilibrium. These upscaled functions transform the two-phase region of the fine-scale, formed by equilibrium tie-lines, to a modified region with tilted tie-lines. We quantify the effect of the degree of heterogeneity variance and heterogeneity patterns on the modified non-equilibrium phase space in the upscaled representation. We also analyze the interplay of phase behavior and numerical dispersion at the coarse-scale, and we demonstrate how the averaging of sub-scale heterogeneities and the use of larger grid blocks can alter the solution. The accuracy and efficiency of proposed methodology is tested for various challenging gas injection problems, and we show that the approach accurately reproduces the averaged fine-scale solutions.

  10. Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.

    PubMed

    Kleidon, Axel

    2010-01-13

    The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning. This journal is © 2010 The Royal Society

  11. Response theory for non-equilibrium systems: theory and applications (Outstanding Young Scientist Lecture)

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio

    2010-05-01

    We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity, and specific results are provided for the case of arbitrary order harmonic response. These results shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change. Along these lines, we present here the first evidence of the validity of these integral relations for the linear and the second harmonic response for the perturbed Lorenz 63 system, by showing that numerical simulations agree up to high degree of accuracy with the theoretical predictions. The numerical results confirm the conceptual validity of the nonlinear response theory, suggest that the theory can be extended for more general non equilibrium steady state systems, and shed new light on the applicability of very general tools, based only upon the principle of causality, for diagnosing the behavior of perturbed chaotic systems and reconstructing their output signals.

  12. Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

    SciTech Connect

    Cui, Xia Yuan, Guang-wei; Shen, Zhi-jun

    2016-05-15

    Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.

  13. Heat transfer in porous medium embedded with vertical plate: Non-equilibrium approach - Part A

    SciTech Connect

    Badruddin, Irfan Anjum; Quadir, G. A.

    2016-06-08

    Heat transfer in a porous medium embedded with vertical flat plate is investigated by using thermal non-equilibrium model. Darcy model is employed to simulate the flow inside porous medium. It is assumed that the heat transfer takes place by natural convection and radiation. The vertical plate is maintained at isothermal temperature. The governing partial differential equations are converted into non-dimensional form and solved numerically using finite element method. Results are presented in terms of isotherms and streamlines for various parameters such as heat transfer coefficient parameter, thermal conductivity ratio, and radiation parameter.

  14. Vibrational non-equilibrium in the hydrogen-oxygen reaction. Comparison with experiment

    NASA Astrophysics Data System (ADS)

    Skrebkov, Oleg V.

    2015-03-01

    A theoretical model is proposed for the chemical and vibrational kinetics of hydrogen oxidation based on consistent accounting of the vibrational non-equilibrium of the HO2 radical that forms as a result of the bimolecular recombination H+O2 → HO2. In the proposed model, the chain branching H+O2 = O+OH and inhibiting H+O2+M = HO2+M formal reactions are treated (in the terms of elementary processes) as a single multi-channel process of forming, intramolecular energy redistribution between modes, relaxation, and unimolecular decay of the comparatively long-lived vibrationally excited HO2 radical, which is able to react and exchange energy with the other components of the mixture. The model takes into account the vibrational non-equilibrium of the starting (primary) H2 and O2 molecules, as well as the most important molecular intermediates HO2, OH, O2(1Δ), and the main reaction product H2O. It is shown that the hydrogen-oxygen reaction proceeds in the absence of vibrational equilibrium, and the vibrationally excited HO2(v) radical acts as a key intermediate in a fundamentally important chain branching process and in the generation of electronically excited species O2(1Δ), O(1D), and OH(2Σ+). The calculated results are compared with the shock tube experimental data for strongly diluted H2-O2 mixtures at 1000 < T < 2500 K, 0.5 < p < 4 atm. It is demonstrated that this approach is promising from the standpoint of reconciling the predictions of the theoretical model with experimental data obtained by different authors for various compositions and conditions using different methods. For T < 1500 K, the nature of the hydrogen-oxygen reaction is especially non-equilibrium, and the vibrational non-equilibrium of the HO2 radical is the essence of this process. The quantitative estimation of the vibrational relaxation characteristic time of the HO2 radical in its collisions with H2 molecules has been obtained as a result of the comparison of different experimental data on

  15. Lyapunov Functions, Stationary Distributions, and Non-equilibrium Potential for Reaction Networks.

    PubMed

    Anderson, David F; Craciun, Gheorghe; Gopalkrishnan, Manoj; Wiuf, Carsten

    2015-09-01

    We consider the relationship between stationary distributions for stochastic models of reaction systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the well-known Lyapunov function of reaction network theory as a scaling limit of the non-equilibrium potential of the stationary distribution of stochastically modeled complex balanced systems. We extend this result to general birth-death models and demonstrate via example that similar scaling limits can yield Lyapunov functions even for models that are not complex or detailed balanced, and may even have multiple equilibria.

  16. Fundamental Properties of Non-equilibrium Laser-Supported Detonation Wave

    NASA Astrophysics Data System (ADS)

    Shiraishi, Hiroyuki

    2004-03-01

    For developing laser propulsion, it is very important to analyze the mechanism of Laser-Supported Detonation (LSD), because it can generate high pressure and high temperature to be used by laser propulsion can be categorized as one type of hypersonic reacting flows, where exothermicity is supplied not by chemical reaction but by radiation absorption. I have numerically simulated the 1-D and Quasi-1-D LSD waves propagating through an inert gas, which absorbs CO2 gasdynamic laser, using a 2-temperature model. Calculated results show the fundamental properties of the non-equilibrium LSD Waves.

  17. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    SciTech Connect

    Liu, Yen Vinokur, Marcel; Panesi, Marco; Sahai, Amal

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  18. Non-equilibrium conformational dynamics in the function of molecular chaperones.

    PubMed

    Barducci, Alessandro; De Los Rios, Paolo

    2015-02-01

    Why do chaperones need ATP hydrolysis to help proteins reach their native, functional states? In this review, we highlight the most recent experimental and theoretical evidences suggesting that ATP hydrolysis allows molecular chaperones to escape the bounds imposed by equilibrium thermodynamics. We argue here that energy consumption must be fully taken into account to understand the mechanism of these intrinsically non-equilibrium machines and we propose a novel perspective in the way the relation between function and ATP hydrolysis is viewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  20. Diffusive-convective transition in the non-equilibrium charging of an electric double layer

    NASA Astrophysics Data System (ADS)

    Lobaskin, Vladimir; Netz, Roland R.

    2016-12-01

    We study the non-equilibrium electrolyte kinetics in a planar nanocapacitor that is driven by periodically switching surfaces charges using simulations, theory and scaling analysis. The combined effects of inter-ionic charge correlations and hydrodynamic interactions lead to correlated convective behavior for weakly charged ions. These dynamic correlations, signaling the breakdown of the Poisson-Nernst-Planck theory, are distinct from static correlations that are manifested by the crossover from Poisson-Boltzmann to strong-coupling theory that occurs as the ion valency increases.

  1. Multiple superconducting ring ratchets for ultrasensitive detection of non-equilibrium noises

    SciTech Connect

    Gurtovoi, V. L.; Exarchos, M.; Antonov, V. N.; Nikulov, A. V.; Tulin, V. A.

    2016-07-18

    Magnetic quantum periodicity in the dc voltage is observed when asymmetric rings are switched between superconducting and normal state by a noise or ac current. This quantum effect is used for the detection of a non-equilibrium noise using a system of 667 asymmetric aluminum rings of 1 μm diameter connected in series. Any noise down to the equilibrium one can be detected with large number of asymmetric rings. The equilibrium noise can induce the dc voltage close to the superconducting transition. In our sample we observe the dc voltage oscillation only below the superconducting transition.

  2. On a variational formulation of the maximum energy dissipation principle for non-equilibrium chemical thermodynamics

    NASA Astrophysics Data System (ADS)

    Moroz, Adam

    2008-05-01

    In this work we revise the applicability of the optimal control and variational approach to the maximum energy dissipation (MED) principle in non-equilibrium thermodynamics. The optimal control analogies for the kinetical and potential parts of thermodynamic Lagrangian (in the form of a sum of the positively defined thermodynamic potential and positively defined dissipative function) have been considered. An interpretation of thermodynamic momenta is discussed with respect to standard optimal control applications, which employ dynamic constraints. Also included is interpretation in terms of the least action principle.

  3. Magnetic field applied to thermochemical non-equilibrium reentry flows in 2D - five species

    NASA Astrophysics Data System (ADS)

    Sávio de Góes Maciel, Edisson

    2015-07-01

    In this work, a study involving magnetic field actuation over reentry flows in thermochemical non-equilibrium is performed. The Euler and Navier-Stokes equations are studied. The proposed numerical algorithm is centred and second-order accurate. The hypersonic flow around a blunt body is simulated. Three time integration methods are tested. The reactive simulations involve Earth atmosphere of five species. The work of Gaitonde is the reference to couple the fluid dynamics and Maxwell equations of electromagnetism. The results have indicated that the Maciel scheme, using the Mavriplis dissipation model, yields the best prediction of the stagnation pressure.

  4. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  5. Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films

    NASA Astrophysics Data System (ADS)

    Chase, T.; Trigo, M.; Reid, A. H.; Li, R.; Vecchione, T.; Shen, X.; Weathersby, S.; Coffee, R.; Hartmann, N.; Reis, D. A.; Wang, X. J.; Dürr, H. A.

    2016-01-01

    We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.

  6. Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films

    SciTech Connect

    Chase, T.; Trigo, M.; Reid, A. H.; Dürr, H. A.; Li, R.; Vecchione, T.; Shen, X.; Weathersby, S.; Coffee, R.; Hartmann, N.; Wang, X. J.; Reis, D. A.

    2016-01-25

    We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.

  7. Electron Broadening of Isolated Lines with Stationary Non-Equilibrium Level Populations

    SciTech Connect

    Iglesias, C A

    2005-01-12

    It is shown that a quantum kinetic theory approach to line broadening, extended to stationary non-equilibrium states, yields corrections to the standard electron impact widths of isolated lines that depend on the population of the radiator internal levels. A consistent classical limit from a general quantum treatment of the perturbing electrons also introduces corrections to the isolated line widths. Both effects are essential in preserving detailed-balance relations. Preliminary analysis indicates that these corrections may resolve existing discrepancies between theoretical and experimental widths of isolated lines. An experimental test of the results is proposed.

  8. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.

    PubMed

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  9. Virial Theorem and Non-Equilibrium Canonical-Dissipative Distributions Characterizing Parkinson Tremor

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    The virial theorem and the concept of canonical-statistical distributions represent two fundamental elements of statistical physics. We apply these concepts to hand tremor oscillations recorded from six Parkinson patients. We find that the virial theorem holds for Parkinson tremor oscillations. In contrast, we find that the concept of canonical distributions fails to a certain extent and needs to be replaced by the notion of non-canonical (i.e., canonical-dissipative) distributions. In doing so, our analysis reveals both general statistical aspects and non-equilibrium aspects of Parkinson hand tremor.

  10. A numerical study of non-equilibrium flows with different vibrational relaxation models

    NASA Astrophysics Data System (ADS)

    Petrov, N. V.; Kirilovskiy, S. V.; Poplavskaya, T. V.; Shoev, G. V.

    2016-07-01

    Comparative analysis of a widely used Landau-Teller formula for small deviations from thermal equilibrium and its generalized form, derived from the kinetic theory of gaseous, for an arbitrary deviation from the thermal equilibrium is performed by numerical simulation. Thermally non-equilibrium flows of carbon dioxide near a sharp-edged plate, pure nitrogen flows between two symmetrically located wedges, and the N2/N mixture flow with vibrational relaxation and dissociation over a cone have been considered. A comparison has been performed with the available experimental data.

  11. Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films

    SciTech Connect

    Chase, T.; Trigo, M.; Reid, A. H.; Li, R.; Vecchione, T.; Shen, X.; Weathersby, S.; Coffee, R.; Hartmann, N.; Reis, D. A.; Wang, X. J.; Dürr, H. A.

    2016-01-25

    We use ultrafast electron diffraction to detect the temporal evolution of non-equilibrium phonons in femtosecond laser-excited ultrathin single-crystalline gold films. From the time-dependence of the Debye-Waller factor, we extract a 4.7 ps time-constant for the increase in mean-square atomic displacements. The observed increase in the diffuse scattering intensity demonstrates that the energy transfer from laser-heated electrons to phonon modes near the X and K points in the Au fcc Brillouin zone proceeds with timescales of 2.3 and 2.9 ps, respectively, faster than the Debye-Waller average mean-square displacement.

  12. A Computer Code to Calculate Emission and Transmission of Infrared Radiation through Non-Equilibrium Atmospheres.

    DTIC Science & Technology

    1983-07-08

    CALCULATE Sinii.ItrmEMISSION AND TRANSMISSION OF INFRARED Sinii.Itrm RADIATION THROUGH NON-EQUILIBRIUM G. PERFORMING O1G. REPORT NUMBER ATMOSPHERES ERP ...8217 669.726-3 .9144J.1. *S4!468E+14 .S6d36E*14 .99414E414 *669.7265 .695eOE.1. .921910E+14 .94616E+14 .97342E414 ’ Saa hit.tZi!tt f.73 1Eti- .IMU1 -4 SIACIF+±4

  13. The impact of non-equilibrium microstructure on the mechanical response of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Thomin, James D.

    2007-12-01

    Experiments have shown that polymer nanocomposites can have mechanical properties that are greatly reinforced compared to the pure polymer, or even to equivalent micro-composites. However, despite a wealth of experimental observations, exactly how this occurs is still under debate. Using Molecular Dynamics computer simulations, we have shown that three primary physical effects can be present, depending on the system specifics. First, attractive particle-polymer interactions lead to a slowing of polymer motion in the interfacial zone. This effect then leads to an overall increase in the stress relaxation curve, in proportion to the volume fraction of the interfacial zone. Second, at high volume fractions of particles, "jamming" can occur whereby the particles make direct contact. This leads to solid-like behavior that is not polymer-based. Jamming can also occur at low volume fractions when the polymer-particle attractions are strong enough that polymer molecules form a bound layer around the particles, increasing the effective diameter to above the percolation threshold. The third effect is polymer-based, and can result in the formation of a long-time plateau in the relaxation modulus, or a substantial increase in the entanglement plateau. It occurs when polymer-particle interactions are strong enough that polymers are immobilized on the particle surface, but at volume fractions where there is a separation between bulk and interfacial regions. When these conditions are met, interparticle bridges may form, which then lead to network reinforcement. These conditions are by nature non-equilibrium, meaning that there are glassy regions which do not relax within accessible time-scales. Therefore, the properties of the composite depend strongly on processing history. At the opposite extreme, when polymer-particle interactions are weak, non-equilibrium particle clustering occurs. In contrast to the melt structures which are glassy because of strong enthalpic interactions

  14. Non-equilibrium slave bosons approach to quantum pumping in interacting quantum dots

    NASA Astrophysics Data System (ADS)

    Citro, Roberta; Romeo, Francesco

    2016-03-01

    We review a time-dependent slave bosons approach within the non-equilibrium Green's function technique to analyze the charge and spin pumping in a strongly interacting quantum dot. We study the pumped current as a function of the pumping phase and of the dot energy level and show that a parasitic current arises, beyond the pure pumping one, as an effect of the dynamical constraints. We finally illustrate an all-electrical mean for spin-pumping and discuss its relevance for spintronics applications.

  15. Evolution of non-equilibrium entanglement networks in spincast thin polymer films

    NASA Astrophysics Data System (ADS)

    Dalnoki-Veress, Kari; McGraw, Joshua; Fowler, Paul

    2012-02-01

    Measuring the rheology of non-equilibrium thin polymer films has received significant attention recently. Experiments are typically performed on thin polymer films that inherit their structure from spin coating. While the results of several rheological experiments paint a clear picture, details of molecular configurations in spincast polymer films are still unknown. Here we present the results of crazing measurements which demonstrate that the effective entanglement density of thin polymer films changes as a function of annealing toward a stable equilibrium value. The effective entanglement density plateaus with a time scale on the same order as the bulk reptation time.

  16. Non-equilibrium Phenomenon between Electron and Lattice Systems Induced by the Peltier Effect

    NASA Astrophysics Data System (ADS)

    Iwasaki, Hideo; Hori, Hidenobu; Sasaki, Shosuke

    2005-08-01

    Temperature distributions of the electron and lattice systems induced by the Peltier effect have been precisely measured by improved Harman method, where the temperature differences (Δ Tel and Δ Tla) have been independently evaluated for several terminal lengths (LV) in thermoelectric materials (Bi,Sb)2Te3. Both temperature distributions have different behaviors in the stationary state, that is, the LV dependences of Δ Tel and Δ Tla show positive and negative curvatures, respectively. It is also indicated that the temperature difference has a linear relation to LV in the whole system and the observed non-equilibrium phenomenon is consistent with a law of the conservation of heat quantity.

  17. Fundamental Properties of Non-equilibrium Laser-Supported Detonation Wave

    SciTech Connect

    Shiraishi, Hiroyuki

    2004-03-30

    For developing laser propulsion, it is very important to analyze the mechanism of Laser-Supported Detonation (LSD), because it can generate high pressure and high temperature to be used by laser propulsion can be categorized as one type of hypersonic reacting flows, where exothermicity is supplied not by chemical reaction but by radiation absorption. I have numerically simulated the 1-D and Quasi-1-D LSD waves propagating through an inert gas, which absorbs CO2 gasdynamic laser, using a 2-temperature model. Calculated results show the fundamental properties of the non-equilibrium LSD Waves.

  18. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    SciTech Connect

    Cooper, F.

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  19. Remembrance of things past: non-equilibrium effects and the evolution of critical fluctuations near the QCD critical point

    NASA Astrophysics Data System (ADS)

    Mukherjee, Swagato; Venugopalan, Raju; Yin, Yi

    2016-12-01

    We report on recent progress in the study of the evolution of non-Gaussian cumulants of critical fluctuations. We explore the implications of non-equilibrium effects on the search for the QCD critical point.

  20. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    PubMed

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  1. Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, Tomaso; Cerminara, Matteo

    2016-10-01

    In the framework of the IAVCEI (International Association of Volcanology and Chemistry of the Earth Interior) initiative on volcanic plume models intercomparison, we discuss three-dimensional numerical simulations performed with the multiphase flow model PDAC (Pyroclastic Dispersal Analysis Code). The model describes the dynamics of volcanic and atmospheric gases (in absence of wind) and two pyroclastic phases by adopting a non-equilibrium Eulerian-Eulerian formulation. Accordingly, gas and particulate phases are treated as interpenetrating fluids, interacting with each other through momentum (drag) and heat exchange. Numerical results describe the time-wise and spatial evolution of weak (mass eruption rate: 1.5 × 106 kg/s) and strong (mass eruption rate: 1.5 × 109 kg/s) plumes. The two tested cases display a remarkably different phenomenology, associated with the different roles of atmospheric stratification, compressibility and mechanism of buoyancy reversal, reflecting in a different structure of the plume, of the turbulent eddies and of the atmospheric circulation. This also brings about different rates of turbulent mixing and atmospheric air entrainment. The adopted multiphase flow model allows to quantify temperature and velocity differences between the gas and particles, including settling, preferential concentration by turbulence and thermal non-equilibrium, as a function of their Stokes number, i.e., the ratio between their kinetic equilibrium time and the characteristic large-eddy turnover time of the turbulent plume. As a result, the spatial and temporal distribution of coarse ash in the atmosphere significantly differs from that of the fine ash, leading to a modification of the plume shape. Finally, three-dimensional numerical results have been averaged in time and across horizontal slices in order to obtain a one-dimensional picture of the plume in a stationary regime. For the weak plume, the results are consistent with one-dimensional models, at

  2. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems

    SciTech Connect

    Wu, Wei; Wang, Jin

    2014-09-14

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series.

  3. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems.

    PubMed

    Wu, Wei; Wang, Jin

    2014-09-14

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series.

  4. Modeling sulfur plugging of fractured wells under non-Darcy and non-equilibrium sulfur deposition

    NASA Astrophysics Data System (ADS)

    Qin, Peixin; Liu, Jingyan

    2017-06-01

    The issue of sulfur plugging has been a concern for engineers for a long time. Some conventional models for vertical wells have been presented by authors; however, analytical models of sulfur plugging for fractured wells have not been reported. Based on non-Darcy and non-equilibrium theory, this article presents a new sulfur deposition prediction model for fractured wells, and a new concept, named sulfur deposition equivalent wellbore radius (SDER), was induced into new equations to describe fractured well characteristics. In a conventional gas reservoir, the fracture conductivity is constant, but here it is changeable due to the presence of sulfur deposition. The SDER value will increase with the increasing fracture conductivity but will reach a stable point at a certain fracture conductivity value. The value of that stable point is equal to 0.5, which is just the value of the equivalent wellbore radius with infinite conductivity fractures. The influence of some important parameters on sulfur deposition was investigated, including gas production, relaxation time, water saturation, gas temperature, fracture conductivity, initial permeability, flow pressure, and radial distance. The results show that the plugging of the formation by deposited sulfur occurs later during the non-equilibrium process, occurs earlier when the flow rate is as high as expected, occurs earlier as the water saturation increases, occurs earlier under high temperature conditions, occurs earlier as the non-Darcy flow becomes stronger, and occurs earlier as the fracture conductivity becomes smaller.

  5. Non-equilibrium disordered Bose gases: condensation, superfluidity and dynamical Bose glass

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Liang, Zhaoxin; Hu, Ying; Zhang, Zhidong

    2016-01-01

    In an equilibrium three-dimensional (3D) disordered condensate, it is well established that disorder can generate an amount of normal fluid ρ n equaling to 4/3 of ρ ex , where ρ ex is a sum of interaction-induced quantum depletion and disorder-induced condensate deformation. The concept that the superfluid is more volatile to the existence of disorder than the condensate is crucial to the understanding of the Bose glass phase. In this work, we show that, by bringing a weakly disordered 3D condensate to non-equilibrium regime via a quantum quench in the interaction, disorder can destroy superfluid significantly more, leading to a steady state of Hamiltonian H f in which the ρ n far exceeds 4/3 of the ρ ex . This suggests the possibility of engineering Bose glass in the dynamic regime. Here, we refer to the dynamical Bose glass as the case where in the steady state of quenched condensate, the superfluid density goes to zero while the condensate density remains finite. As both the ρ n and ρ ex are measurable quantities, our results allow an experimental demonstration of the dramatized interplay between the disorder and interaction in the non-equilibrium scenario.

  6. Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications.

    PubMed

    Su, Xianli; Wei, Ping; Li, Han; Liu, Wei; Yan, Yonggao; Li, Peng; Su, Chuqi; Xie, Changjun; Zhao, Wenyu; Zhai, Pengcheng; Zhang, Qingjie; Tang, Xinfeng; Uher, Ctirad

    2017-01-23

    Considering only about one third of the world's energy consumption is effectively utilized for functional uses, and the remaining is dissipated as waste heat, thermoelectric (TE) materials, which offer a direct and clean thermal-to-electric conversion pathway, have generated a tremendous worldwide interest. The last two decades have witnessed a remarkable development in TE materials. This Review summarizes the efforts devoted to the study of non-equilibrium synthesis of TE materials with multi-scale structures, their transport behavior, and areas of applications. Studies that work towards the ultimate goal of developing highly efficient TE materials possessing multi-scale architectures are highlighted, encompassing the optimization of TE performance via engineering the structures with different dimensional aspects spanning from the atomic and molecular scales, to nanometer sizes, and to the mesoscale. In consideration of the practical applications of high-performance TE materials, the non-equilibrium approaches offer a fast and controllable fabrication of multi-scale microstructures, and their scale up to industrial-size manufacturing is emphasized here. Finally, the design of two integrated power generating TE systems are described-a solar thermoelectric-photovoltaic hybrid system and a vehicle waste heat harvesting system-that represent perhaps the most important applications of thermoelectricity in the energy conversion area.

  7. Non-Equilibrium Thermodynamic Analysis on the Performance of AN Irreversible Thermally Driven Brownian Motor

    NASA Astrophysics Data System (ADS)

    Gao, Tianfu; Chen, Jincan

    Based on the general model of thermally-driven Brownian motors, an equivalent cycle system is established and the Onsager coefficients and efficiency at the maximum power output of the system are analytically calculated from non-equilibrium thermodynamics. It is found that the Onsager reciprocity relation holds and the Onsager coefficients are affected by the main irreversibilities existing in practical systems. Only when the heat leak and the kinetic energy change of the particle in the system are negligible, can the determinant of the Onsager matrix vanish. It is also found that in the frame of non-equilibrium thermodynamics, the power output and efficiency of an irreversible Brownian motor can be expressed to be the same form as those of an irreversible Carnot heat engine, so the results obtained here are of general significance. Moreover, these results are used to analyze the performance characteristics of a class of thermally-driven Brownian motors so that some important conclusions in literature may be directly derived from the present paper.

  8. Giant THz photoconductivity and possible non-equilibrium superconductivity in metallic K3C60

    PubMed Central

    Mitrano, M.; Cantaluppi, A.; Nicoletti, D.; Kaiser, S.; Perucchi, A.; Lupi, S.; Di Pietro, P.; Pontiroli, D.; Riccò, M.; Clark, S. R.; Jaksch, D.; Cavalleri, A.

    2015-01-01

    The non-equilibrium control of emergent phenomena in solids is an important research frontier, encompassing effects like the optical enhancement of superconductivity 1 . Recently, nonlinear excitation 2 , 3 of certain phonons in bilayer cuprates was shown to induce superconducting-like optical properties at temperatures far above Tc 4,5,6. This effect was accompanied by the disruption of competing charge-density-wave correlations7,8, which explained some but not all of the experimental results. Here, we report a similar phenomenon in a very different compound. By exciting metallic K3C60 with mid-infrared optical pulses, we induce a large increase in carrier mobility, accompanied by the opening of a gap in the optical conductivity. Strikingly, these same signatures are observed at equilibrium when cooling metallic K3C60 below the superconducting transition temperature (Tc = 20 K). Although optical techniques alone cannot unequivocally identify non-equilibrium high-temperature superconductivity, we propose this scenario as a possible explanation of our results. PMID:26855424

  9. Non-equilibrium effect in the allosteric regulation of the bacterial flagellar switch

    NASA Astrophysics Data System (ADS)

    Wang, Fangbin; Shi, Hui; He, Rui; Wang, Renjie; Zhang, Rongjing; Yuan, Junhua

    2017-07-01

    The switching mechanism of the flagellar motor provides the basis for the motile behaviour of flagellated bacteria. Its highly sensitive response has previously been understood in terms of equilibrium models, either the classical two-state concerted allosteric model, or more generally, the Ising-type conformation spread model. Here, we systematically study motor switching under various load conditions from high to zero load, under different proton motive force (pmf) conditions and varying the number of torque-generating units (stators). In doing so, we reveal the signature of a non-equilibrium effect. To consistently account for the motor-switching dependence on each those conditions, a previously neglected non-equilibrium effect--the energy input from the motor torque--has to be incorporated into models of the flagellar switch. We further show that this effect increases the sensitivity of the flagellar switch. Exploiting a very small fraction of the energy expense of the flagellar motor for functional regulation increases its sensitivity greatly. Similar mechanisms are expected to be found in other protein complexes.

  10. A note on non-equilibrium work fluctuations and equilibrium free energies

    NASA Astrophysics Data System (ADS)

    Suman Kalyan, M.; Anjan Prasad, G.; Sastry, V. S. S.; Murthy, K. P. N.

    2011-04-01

    We consider in this paper, a few important issues in non-equilibrium work fluctuations and their relations to equilibrium free energies. First we show that the Jarzynski identity can be viewed as a cumulant expansion of work. For a switching process which is nearly quasistatic the work distribution is sharply peaked and Gaussian. We show analytically that dissipation given by average work minus reversible work WR, decreases when the process becomes more and more quasistatic. Eventually, in the quasistatic reversible limit, the dissipation vanishes. However the estimate of p, the probability of violation of the second law given by the integral of the tail of the work distribution from -∞ to WR, increases and takes a value of 0.5 in the quasistatic limit. We show this analytically employing Gaussian integrals given by error functions and the Callen-Welton theorem that relates fluctuations to dissipation in process that is nearly quasistatic. Then we carry out Monte Carlo simulation of non-equilibrium processes in a liquid crystal system in the presence of an electric field and present results on reversible work, dissipation, probability of violation of the second law and distribution of work.

  11. Molecular dynamics study of CO2 hydrate dissociation: Fluctuation-dissipation and non-equilibrium analysis

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Clarke, Elaine T.

    2013-09-01

    Equilibrium and non-equilibrium molecular dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar CO2 hydrate interfaces in liquid water at 300-320 K. Different guest compositions, at 85%, 95%, and 100% of maximum theoretical occupation, led to statistically-significant differences in the observed initial dissociation rates. The melting temperatures of each interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model developed previously was applied to fit the observed dissociation profiles, and this helps to identify clearly two distinct régimes of break-up; a second well-defined region is essentially independent of composition and temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. From equilibrium MD of the two-phase systems at their melting point, the relaxation times of the auto-correlation functions of fluctuations in number of enclathrated guest molecules were used as a basis for comparison of the variation in the underlying, non-equilibrium, thermal-driven dissociation rates via Onsager's hypothesis, and statistically significant differences were found, confirming the value of a fluctuation-dissipation approach in this case.

  12. Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity

    PubMed Central

    O'Meara, Brian C.; Smith, Stacey D.; Armbruster, W. Scott; Harder, Lawrence D.; Hardy, Christopher R.; Hileman, Lena C.; Hufford, Larry; Litt, Amy; Magallón, Susana; Smith, Stephen A.; Stevens, Peter F.; Fenster, Charles B.; Diggle, Pamela K.

    2016-01-01

    Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years. PMID:27147092

  13. New directions in fluid dynamics: non-equilibrium aerodynamic and microsystem flows.

    PubMed

    Reese, Jason M; Gallis, Michael A; Lockerby, Duncan A

    2003-12-15

    Fluid flows that do not have local equilibrium are characteristic of some of the new frontiers in engineering and technology, for example, high-speed high-altitude aerodynamics and the development of micrometre-sized fluid pumps, turbines and other devices. However, this area of fluid dynamics is poorly understood from both the experimental and simulation perspectives, which hampers the progress of these technologies. This paper reviews some of the recent developments in experimental techniques and modelling methods for non-equilibrium gas flows, examining their advantages and drawbacks. We also present new results from our computational investigations into both hypersonic and microsystem flows using two distinct numerical methodologies: the direct simulation Monte Carlo method and extended hydrodynamics. While the direct simulation approach produces excellent results and is used widely, extended hydrodynamics is not as well developed but is a promising candidate for future more complex simulations. Finally, we discuss some of the other situations where these simulation methods could be usefully applied, and look to the future of numerical tools for non-equilibrium flows.

  14. Fiber Bragg grating dynamic demodulation based on non-equilibrium interferometry

    NASA Astrophysics Data System (ADS)

    Yu, Qi; Jing, Zhenguo; Peng, Wei; Zhang, Xinpu; Liu, Yun; Xing, Chuanqi; Li, Hong; Yao, Wenjuan

    2011-12-01

    Non-equilibrium interferometric Fiber Bragg Grating (FBG) sensor is suitable for the accurate measurements of high-frequency dynamic stress, vibration, etc because of its high sensitivity and high frequency response compared to other types of FBG sensors. In this paper, a Phase Generation Carrier (PGC) demodulation technique of non-equilibrium interferometric FBG sensor that based on ARCTAN algorithm by using an arctangent algorithm with a simple method, has been investigated ,which can avoid the high-frequency noise increases, the error accumulation, the integrator signal jump of the integrator and other inherent weaknesses in the system. ARCTAN has a better response characteristic of the mutant signals, especially for low-frequency large-signal that can be demodulated with a greater range. The experimental result demonstrate that implementing measured resolution can up to 10nɛ/√Hz@500Hz in vibration strain, a signal sampling rate to 100 KHz and a frequency response range up to 1 KHz. This method can improve the performance of the system greatly which has potential significance for practical sensor application.

  15. Flux-split algorithms for flows with non-equilibrium chemistry and thermodynamics

    NASA Astrophysics Data System (ADS)

    Cinnella, Pasquale

    New flux-split algorithms are developed for high velocity, high temperature flow situations, when finite-rate chemistry and non-equilibrium thermodynamics greatly affect the physics of the problem. Two-vector-split algorithms, of the Steger-Warming and of the Van Leer type, and one flux-difference-split algorithm of the Roe type are established and utilized for the accurate numerical simulation of flows with dissociation, ionization, and combustion phenomena. Several thermodynamic models are used, including a simplified vibrational non-eqilibrium model and an equilibrium model based upon refined statistical mechanical properties. The framework provided is flexible enough to accommodate virtually any chemical model and a wide range of non-equilibrium, multi-temperature thermodynamic models. A theoretical study of the main features of flows with free electrons, for conditions that require the use of two translational temperatures in the thermal model, is developed. A simple but powerful asymptotic analysis is developed which allows the establishment of the fundamental gas dynamic properties of flows with multiple translational temperatures. The new algorithms developed demonstrate their accuracy and robustness for challenging flow problems. The influence of several assumptions on the chemical and thermal behavior of the flows is investigated, and a comparison with results obtained using different numerical approaches, in particular spectral methods, is provided, and proves to be favorable to the present techniques.

  16. Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

    NASA Astrophysics Data System (ADS)

    Cui, Xia; Yuan, Guang-wei; Shen, Zhi-jun

    2016-05-01

    Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion.

  17. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    SciTech Connect

    Choi, Jeong

    2011-01-01

    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these

  18. Single-molecule measurement of the effective temperature in non-equilibrium steady states

    NASA Astrophysics Data System (ADS)

    Dieterich, E.; Camunas-Soler, J.; Ribezzi-Crivellari, M.; Seifert, U.; Ritort, F.

    2015-11-01

    Temperature is a well-defined quantity for systems in equilibrium. For glassy systems, it has been extended to the non-equilibrium regime, showing up as an effective quantity in a modified version of the fluctuation-dissipation theorem. However, experimental evidence supporting this definition remains scarce. Here, we present the first direct experimental demonstration of the effective temperature by measuring correlations and responses in single molecules in non-equilibrium steady states generated under external random forces. We combine experiment, analytical theory and simulations for systems with different levels of complexity, ranging from a single bead in an optical trap to two-state and multiple-state DNA hairpins. From these data, we extract a unifying picture for the existence of an effective temperature based on the relative order of various timescales characterizing intrinsic relaxation and external driving. Our study thus introduces driven small systems as a fertile ground to address fundamental concepts in statistical physics, condensed-matter physics and biophysics.

  19. Non-equilibrium entropy and dynamics in a system with long-range interactions

    NASA Astrophysics Data System (ADS)

    Rocha Filho, T. M.

    2016-05-01

    We extend the core-halo approach of Levin et al (2014 Phys. Rep. 535, 1) for the violent relaxation of long-range interacting system with a waterbag initial condition, in the case of a widely studied Hamiltonian mean field model. The Gibbs entropy maximization principle is considered with the constraints of energy conservation and of coarse-grained Casimir invariants of the Vlasov equation. The core-halo distribution function depends only on the one-particle mean-field energy, as is expected from the Jeans theorem, and depends on a set of parameters which in our approach is completely determined without having to solve an envelope equation for the contour of the initial state, as required in the original approach. We also show that a different ansatz can be used for the core-halo distribution with similar results. This work also reveals a link between a parametric resonance causing the non-equilibrium phase transition in the model, a dynamical property, and a discontinuity of the (non-equilibrium) entropy of the system.

  20. Turbulent diffusion from a heated line source in non-equilibrium grid turbulence

    NASA Astrophysics Data System (ADS)

    Nedic, Jovan; Tavoularis, Stavros

    2015-11-01

    We have investigated turbulent diffusion of heat injected passively from a line source in equilibrium and non-equilibrium grid-generated turbulence, which are, respectively, flows in which the value of the non-dimensional rate of kinetic energy dissipation is constant or changes with streamwise distance from the grid. We used three grids with uniform square meshes and one fractal square grid (FSG), all of the same solidity, to generate non-equilibrium and equilibrium turbulence in a wind-tunnel. The regular grids have mesh sizes that are comparable to the first (RG160), second (RG80) and fourth (RG18) iterations of the fractal grid. The heated line source was inserted on the centre-plane of the grids at either of two downstream locations or an upstream one and it spanned the entire width of the wind-tunnel. We found that RG160 produced the greatest heat diffusion, followed by FSG, RG80 and RG18, in this order. The apparent turbulent diffusivity produced by the four grids also decreased in the same order. These findings conform with Taylor's theory of diffusion by continuous movements. Moreover, the present study demonstrates that the fractal space-scale unfolding (SSU) mechanism does not apply to grids with the same solidity but different effective mesh sizes. Supported by NSERC.