von Groote, Per M; Reinhardt, Jan D; Gutenbrunner, Christoph; DeLisa, Joel A; Melvin, John L; Bickenbach, Jerome E; Stucki, Gerold
2009-09-01
International non-governmental organizations (NGOs) in official relation with the World Health Organization (WHO) face organizational challenges against the background of legitimate representation of their membership and accountable procedures within the organization. Moreover, challenges arise in the light of such an international NGO's civil societal mandate to help reach the "health-for-all" goals as defined by WHO and to facilitate the implementation of the United Nations (UN) Convention on the Rights of Persons with Disabilities. The objective of this paper is to examine how such an international NGO using the International Society of Physical and Rehabilitation Medicine (ISPRM) as a case in point can address these challenges. The specific aims are to analyse ISPRM's structures and procedures of internal organs and external relations and to develop solutions. These possible solutions will be presented as internal organizational scenarios and a yearly schedule of meetings closely aligned to that of WHO to facilitate an efficient internal and external interaction.
2010-01-01
Background The species-specificity of male genitalia has been well documented in many insect groups and sexual selection has been proposed as the evolutionary force driving the often rapid, morphological divergence. The internal female genitalia, in sharp contrast, remain poorly studied. Here, we present the first comparative study of the internal reproductive system of Sepsidae. We test the species-specificity of the female genitalia by comparing recently diverged sister taxa. We also compare the rate of change in female morphological characters with the rate of fast-evolving, molecular and behavioral characters. Results We describe the ectodermal parts of the female reproductive tract for 41 species representing 21 of the 37 described genera and define 19 morphological characters with discontinuous variation found in eight structures that are part of the reproductive tract. Using a well-resolved molecular phylogeny based on 10 genes, we reconstruct the evolution of these characters across the family [120 steps; Consistency Index (CI): 0.41]. Two structures, in particular, evolve faster than the rest. The first is the ventral receptacle, which is a secondary sperm storage organ. It accounts for more than half of all the evolutionary changes observed (7 characters; 61 steps; CI: 0.46). It is morphologically diverse across genera, can be bi-lobed or multi-chambered (up to 80 chambers), and is strongly sclerotized in one clade. The second structure is the dorsal sclerite, which is present in all sepsids except Orygma luctuosum and Ortalischema albitarse. It is associated with the opening of the spermathecal ducts and is often distinct even among sister species (4 characters; 16 steps; CI: 0.56). Conclusions We find the internal female genitalia are diverse in Sepsidae and diagnostic for all species. In particular, fast-evolving structures like the ventral receptacle and dorsal sclerite are likely involved in post-copulatory sexual selection. In comparison to behavioral and molecular data, the female structures are evolving 2/3 as fast as the non-constant third positions of the COI barcoding gene. They display less convergent evolution in characters (CI = 0.54) than the third positions or sepsid mating behavior (CICOI = 0.36; CIBEHAV = 0.45). PMID:20831809
NASA Astrophysics Data System (ADS)
Gil, Michał; Douhal, Abderrazzak
2008-06-01
In this contribution, we report on fast and ultrafast dynamics of a non-steroidal anti-inflammatory drug, piroxicam (PX), in methyl acetate (MAC) and triacetin (TAC), two solvents of different viscosities. The enol form of PX undergoes a femtosecond (shorter than 100 fs) electronically excited state intramolecular proton-transfer reaction to produce keto tautomers. These structures exhibit an internal twisting motion to generate keto rotamers in ˜2-5 ps, a time being longer in TAC. The transient absorption/emission spectrum is very broad indicating that the potential-energy surface at the electronically excited state is very flat, and reflecting the involvement of several coordinates along which the wavepacket of the fs-produced structures evolve.
1994-06-01
the peaceful settlement of international disputes. Although peacekeeping was not explicitly provided for in the Charter, it has evolved since 1945...Prior to 1919, the justifications for resort to war had evolved from moral grounds to a legal basis. 3 The emergence of the state as a political structure...course overlapping and, importantly, as Professor Scheffer has noted, they are " evolving and reflect, with respect to the use of force under UN
Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour
NASA Astrophysics Data System (ADS)
Prior, C.; Yeates, A. R.
2016-06-01
Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a flux rope.
NASA Technical Reports Server (NTRS)
Sherwood, Brent
2006-01-01
This paper develops a conceptual model, adapted from the way research and development non-profits and universities tend to be organized, that could help amplify the reach and effectiveness of the international space architecture community. The model accommodates current activities and published positions, and increases involvement by allocating accountability for necessary professional and administrative activities. It coordinates messaging and other outreach functions to improve brand management. It increases sustainability by balancing volunteer workload. And it provides an open-ended structure that can be modified gracefully as needs, focus, and context evolve. Over the past 20 years, Space Architecture has attained some early signs of legitimacy as a discipline: an active, global community of practicing and publishing professionals; university degree programs; a draft undergraduate curriculum; and formal committee establishment within multiple professional organizations. However, the nascent field has few outlets for expression in built architecture, which exacerbates other challenges the field is experiencing in adolescence: obtaining recognition and inclusion as a unique contributor by the established aerospace profession; organizing and managing outreach by volunteers; striking a balance between setting admittance or performance credentials and attaining a critical mass of members; and knowing what to do, beyond sharing common interests, to actually increase the market demand for space architecture. This paper develops a conceptual model, adapted from the way research-anddevelopment non-profits and universities tend to be organized, that could help amplify the reach and effectiveness of the international space architecture community. The model accommodates current activities and published positions, and increases involvement by allocating accountability for necessary professional and administrative activities. It coordinates messaging and other outreach functions to improve brand management. It increases sustainability by balancing volunteer workload. And it provides an open-ended structure that can be modified gracefully as needs, focus, and context evolve. This organizational model is offered up for consideration, debate, and toughening by the space architecture community at large.
A theory of viscoplasticity accounting for internal damage
NASA Technical Reports Server (NTRS)
Freed, A. D.; Robinson, D. N.
1988-01-01
A constitutive theory for use in structural and durability analyses of high temperature isotropic alloys is presented. Constitutive equations based upon a potential function are determined from conditions of stability and physical considerations. The theory is self-consistent; terms are not added in an ad hoc manner. It extends a proven viscoplastic model by introducing the Kachanov-Rabotnov concept of net stress. Material degradation and inelastic deformation are unified; they evolve simultaneously and interactively. Both isotropic hardening and material degradation evolve with dissipated work which is the sum of inelastic work and internal work. Internal work is a continuum measure of the stored free energy resulting from inelastic deformation.
Emergence of a Communication System: International Sign
NASA Astrophysics Data System (ADS)
Rosenstock, Rachel
International Sign (henceforth IS) is a communication system that is used widely in the international Deaf Community. The present study is one of the first to research extensively the origin of both the IS lexicon and grammatical structures. Findings demonstrate that IS is both influenced by naturally evolved sign languages used in grown deaf communities (henceforth SLs) and relies heavily on iconic, universal structures. This paper shows that IS continues to develop from a simplistic iconic system into a conventionalized system with increasingly complex rules.
2012-01-01
Background Pyruvate-decarboxylase negative (Pdc-) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc- strains cannot grow on high glucose concentrations and require C2-compounds (ethanol or acetate) for growth under conditions with low glucose concentrations, which hitherto has limited application in industry. Results Genetic analysis of a Pdc- strain previously evolved to overcome these deficiencies revealed a 225bp in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc- strain enabled growth on 20 g l-1 glucose and 0.3% (v/v) ethanol at a maximum specific growth rate (0.24 h-1) similar to that of the evolved Pdc- strain (0.23 h-1). Furthermore, the reverse engineered Pdc- strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h-1) than the evolved strain (0.20 h-1). The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc-S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc- strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C2-compound auxotrophy. Conclusions In this study we have discovered and characterised a mutation in MTH1 enabling Pdc- strains to grow on glucose as the sole carbon source. This successful example of reverse engineering not only increases the understanding of the glucose tolerance of evolved Pdc-S. cerevisiae, but also allows introduction of this portable genetic element into various industrial yeast strains, thereby simplifying metabolic engineering strategies. PMID:22978798
Modelling conflicts with cluster dynamics in networks
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Rodgers, G. J.
2010-12-01
We introduce cluster dynamical models of conflicts in which only the largest cluster can be involved in an action. This mimics the situations in which an attack is planned by a central body, and the largest attack force is used. We study the model in its annealed random graph version, on a fixed network, and on a network evolving through the actions. The sizes of actions are distributed with a power-law tail, however, the exponent is non-universal and depends on the frequency of actions and sparseness of the available connections between units. Allowing the network reconstruction over time in a self-organized manner, e.g., by adding the links based on previous liaisons between units, we find that the power-law exponent depends on the evolution time of the network. Its lower limit is given by the universal value 5/2, derived analytically for the case of random fragmentation processes. In the temporal patterns behind the size of actions we find long-range correlations in the time series of the number of clusters and the non-trivial distribution of time that a unit waits between two actions. In the case of an evolving network the distribution develops a power-law tail, indicating that through repeated actions, the system develops an internal structure with a hierarchy of units.
Coarse-grained description of cosmic structure from Szekeres models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, Roberto A.; Gaspar, I. Delgado; Hidalgo, Juan Carlos, E-mail: sussman@nucleares.unam.mx, E-mail: ismael.delgadog@uaem.edu.mx, E-mail: hidalgo@fis.unam.mx
2016-03-01
We show that the full dynamical freedom of the well known Szekeres models allows for the description of elaborated 3-dimensional networks of cold dark matter structures (over-densities and/or density voids) undergoing ''pancake'' collapse. By reducing Einstein's field equations to a set of evolution equations, which themselves reduce in the linear limit to evolution equations for linear perturbations, we determine the dynamics of such structures, with the spatial comoving location of each structure uniquely specified by standard early Universe initial conditions. By means of a representative example we examine in detail the density contrast, the Hubble flow and peculiar velocities ofmore » structures that evolved, from linear initial data at the last scattering surface, to fully non-linear 10–20 Mpc scale configurations today. To motivate further research, we provide a qualitative discussion on the connection of Szekeres models with linear perturbations and the pancake collapse of the Zeldovich approximation. This type of structure modelling provides a coarse grained—but fully relativistic non-linear and non-perturbative —description of evolving large scale cosmic structures before their virialisation, and as such it has an enormous potential for applications in cosmological research.« less
Absorption of language concepts in the machine mind
NASA Astrophysics Data System (ADS)
Kollár, Ján
2016-06-01
In our approach, the machine mind is the applicative dynamic system represented by its algorithmically evolvable internal language. By other words, the mind and the language of mind are synonyms. Coming out from Shaumyan's semiotic theory of languages, we present the representation of language concepts in the machine mind as a result of our experiment, to show non-redundancy of the language of mind. To provide useful restriction for further research, we also introduce the hypothesis of semantic saturation in Computer-Computer communication, which indicates that a set of machines is not self-evolvable. The goal of our research is to increase the abstraction of Human-Computer and Computer-Computer communication. If we want humans and machines comunicate as a parent with the child, using different symbols and media, we must find the language of mind commonly usable by both machines and humans. In our opinion, there exist a kind of calm language of thinking, which we try to propose for machines in this paper. We separate the layers of a machine mind, we present the structure of the evolved mind and we discuss the selected properties. We are concentrating on the representation of symbolized concepts in the mind, that are languages, not just grammars, since they have meaning.
Hall, Amanda C.; Ostrowski, Lauren A.; Mekhail, Karim
2017-01-01
ABSTRACT Cells have evolved intricate mechanisms to maintain genome stability despite allowing mutational changes to drive evolutionary adaptation. Repetitive DNA sequences, which represent the bulk of most genomes, are a major threat to genome stability often driving chromosome rearrangements and disease. The major source of repetitive DNA sequences and thus the most vulnerable constituents of the genome are the rDNA (rDNA) repeats, telomeres, and transposable elements. Maintaining the stability of these loci is critical to overall cellular fitness and lifespan. Therefore, cells have evolved mechanisms to regulate rDNA copy number, telomere length and transposon activity, as well as DNA repair at these loci. In addition, non-canonical structure-forming DNA motifs can also modulate the function of these repetitive DNA loci by impacting their transcription, replication, and stability. Here, we discuss key mechanisms that maintain rDNA repeats, telomeres, and transposons in yeast and human before highlighting emerging roles for non-canonical DNA structures at these repetitive loci. PMID:28406751
Greenbury, Sam F.; Schaper, Steffen; Ahnert, Sebastian E.; Louis, Ard A.
2016-01-01
Mutational neighbourhoods in genotype-phenotype (GP) maps are widely believed to be more likely to share characteristics than expected from random chance. Such genetic correlations should strongly influence evolutionary dynamics. We explore and quantify these intuitions by comparing three GP maps—a model for RNA secondary structure, the HP model for protein tertiary structure, and the Polyomino model for protein quaternary structure—to a simple random null model that maintains the number of genotypes mapping to each phenotype, but assigns genotypes randomly. The mutational neighbourhood of a genotype in these GP maps is much more likely to contain genotypes mapping to the same phenotype than in the random null model. Such neutral correlations can be quantified by the robustness to mutations, which can be many orders of magnitude larger than that of the null model, and crucially, above the critical threshold for the formation of large neutral networks of mutationally connected genotypes which enhance the capacity for the exploration of phenotypic novelty. Thus neutral correlations increase evolvability. We also study non-neutral correlations: Compared to the null model, i) If a particular (non-neutral) phenotype is found once in the 1-mutation neighbourhood of a genotype, then the chance of finding that phenotype multiple times in this neighbourhood is larger than expected; ii) If two genotypes are connected by a single neutral mutation, then their respective non-neutral 1-mutation neighbourhoods are more likely to be similar; iii) If a genotype maps to a folding or self-assembling phenotype, then its non-neutral neighbours are less likely to be a potentially deleterious non-folding or non-assembling phenotype. Non-neutral correlations of type i) and ii) reduce the rate at which new phenotypes can be found by neutral exploration, and so may diminish evolvability, while non-neutral correlations of type iii) may instead facilitate evolutionary exploration and so increase evolvability. PMID:26937652
Plates and Mantle Convection: A Far-From Equilibrium Self-Organized System
NASA Astrophysics Data System (ADS)
King, S. D.; Lowman, J. P.; Gable, C. W.
2001-12-01
A common observation of plate tectonics is that plate velocities change over short time scales. Some have speculated that these reorganization events are triggered by evolving plate boundaries. This work presents an alternative mechanism, due to the interaction of mobil plates and internally heated convection. We present numerical models of 3D Cartesian convection in an internally-heated fluid with mobile plates that exhibit rapid changes in plate motion. A persistent feature of these calculations is that plate motion is relatively uniform punctuated by rapid reorganization events where plate speed and direction change over a short time period. The rapid changes in plate motion result solely from the interaction of internally-heated convection and the mobile plates. Without plates, the convective planform of an internally-heated fluid evolves into a pattern with a larger number of small cells. When plates are included, the fluid is dominated by plate-scale structures; however, isolated regions develop where heat builds up. These isolated regions are near the location of mature slabs where the plates are older and thicker. As the system evolves, the temperature (and buoyancy) in these isolated regions increases, they become unstable and, as they rise, the net force on the plate is no longer dominated by `slab pull' from the mature slab. The plate reorganization allows the system to transfer heat from the short-wavelength, internal-heating scale, to the longer-wavelength, plate-cooling scale. As we will demonstrate, the interaction between plate motions and the mantle is sufficiently dynamic that evolving plate boundaries are not necessary to achieve rapid changes in plate motion.
Vocational Psychology: An Analysis and Directions for the Future.
ERIC Educational Resources Information Center
Russell, Joyce E. A.
2001-01-01
Key areas of future research in vocational psychology include changing organizational structures, changing career attitudes, diversity of career development opportunities, international focus, increasing diversity, changing nature of technology, evolving educational systems, increased entrepreneurship, work and family issues, and career-leisure…
Albantakis, Larissa; Hintze, Arend; Koch, Christof; Adami, Christoph; Tononi, Giulio
2014-01-01
Natural selection favors the evolution of brains that can capture fitness-relevant features of the environment's causal structure. We investigated the evolution of small, adaptive logic-gate networks (“animats”) in task environments where falling blocks of different sizes have to be caught or avoided in a ‘Tetris-like’ game. Solving these tasks requires the integration of sensor inputs and memory. Evolved networks were evaluated using measures of information integration, including the number of evolved concepts and the total amount of integrated conceptual information. The results show that, over the course of the animats' adaptation, i) the number of concepts grows; ii) integrated conceptual information increases; iii) this increase depends on the complexity of the environment, especially on the requirement for sequential memory. These results suggest that the need to capture the causal structure of a rich environment, given limited sensors and internal mechanisms, is an important driving force for organisms to develop highly integrated networks (“brains”) with many concepts, leading to an increase in their internal complexity. PMID:25521484
Non-radial oscillation modes with long lifetimes in giant stars.
De Ridder, Joris; Barban, Caroline; Baudin, Frédéric; Carrier, Fabien; Hatzes, Artie P; Hekker, Saskia; Kallinger, Thomas; Weiss, Werner W; Baglin, Annie; Auvergne, Michel; Samadi, Réza; Barge, Pierre; Deleuil, Magali
2009-05-21
Towards the end of their lives, stars like the Sun greatly expand to become red giant stars. Such evolved stars could provide stringent tests of stellar theory, as many uncertainties of the internal stellar structure accumulate with age. Important examples are convective overshooting and rotational mixing during the central hydrogen-burning phase, which determine the mass of the helium core, but which are not well understood. In principle, analysis of radial and non-radial stellar oscillations can be used to constrain the mass of the helium core. Although all giants are expected to oscillate, it has hitherto been unclear whether non-radial modes are observable at all in red giants, or whether the oscillation modes have a short or a long mode lifetime, which determines the observational precision of the frequencies. Here we report the presence of radial and non-radial oscillations in more than 300 giant stars. For at least some of the giants, the mode lifetimes are of the order of a month. We observe giant stars with equally spaced frequency peaks in the Fourier spectrum of the time series, as well as giants for which the spectrum seems to be more complex. No satisfactory theoretical explanation currently exists for our observations.
NASA Technical Reports Server (NTRS)
Izmailov, Alexander; Myerson, Allan S.
1993-01-01
A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.
Global Transportation Energy Consumption Examination of Scenarios to 2040 using ITEDD
2017-01-01
Energy consumption in the transportation sector is evolving. Over the next 25 years, the U.S. Energy Information Administration’s (EIA) International Energy Outlook (IEO) 2016 Reference case projects that Organization for Economic Cooperation and Development (OECD) countries’ transportation energy consumption will remain relatively flat. In contrast, non-OECD countries will grow to levels higher than in OECD countries by the early 2020s. This rapid non-OECD growth results in continued transportation energy consumption growth through at least 2040.
Ownership strategies of multinational corporations: Towards designing effective global networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghunathan, S.P.
1992-01-01
The thesis of this research is that MNCs, attempting to implement different international strategies in response to several environmental factors, let their global networks evolve. The ownership structure of the network is therefore a function of the international strategy and environment of a firm. A particular strategy (configuration/coordination), given a certain environment, may be effective if associated with the appropriate structure. This study is based on a survey of 318 US manufacturing-sector MNCs using a questionnaire. The ownership structure of an MNC network was identified by studying the nature of ownership - method and form - of overseas subsidiaries. Usingmore » network theoretic methods, ownership structure was empirically related to international environment, strategy, and performance. Results of this study throw light on the design of global networks and enable a general theory of the design of MNCs to be eventually developed.« less
An evolving effective stress approach to anisotropic distortional hardening
Lester, B. T.; Scherzinger, W. M.
2018-03-11
A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less
An evolving effective stress approach to anisotropic distortional hardening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, B. T.; Scherzinger, W. M.
A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less
The AAVSO as a Resource for Variable Star Research
NASA Astrophysics Data System (ADS)
Kafka, Stella
2016-07-01
The AAVSO was formed in 1911 as a group of US-based amateur observers obtaining data in support of professional astronomy projects. Now, it has evolved into an International Organization with members and observers from both the professional and non-professional astronomical community, contributing photometry to a public photometric database of about 22,000 variable objects, and using it for research projects. As such, the AAVSO's main claim to fame is that it successfully engages backyard Astronomers, educators, students and professional astronomers in astronomical research. I will present the main aspects of the association and how it has evolved with time to become a premium resource for variable star researchers. I will also discuss the various means that the AAVSO is using to support cutting-edge variable star science, and how it engages its members in projects building a stronger international astronomical community.
A Work Revolution in U.S. Industry.
ERIC Educational Resources Information Center
Business Week, 1983
1983-01-01
Changes in work rules are moving the workplace away from rigid labor practices created by labor/management. A more flexible structure is evolving that can adapt to new technology and provide new products at competitive cost. Discusses the movement and the impact of international competition/deregulation on the trend. (JN)
NASA Astrophysics Data System (ADS)
Kim, Euiyoung; Cho, Maenghyo
2017-11-01
In most non-linear analyses, the construction of a system matrix uses a large amount of computation time, comparable to the computation time required by the solving process. If the process for computing non-linear internal force matrices is substituted with an effective equivalent model that enables the bypass of numerical integrations and assembly processes used in matrix construction, efficiency can be greatly enhanced. A stiffness evaluation procedure (STEP) establishes non-linear internal force models using polynomial formulations of displacements. To efficiently identify an equivalent model, the method has evolved such that it is based on a reduced-order system. The reduction process, however, makes the equivalent model difficult to parameterize, which significantly affects the efficiency of the optimization process. In this paper, therefore, a new STEP, E-STEP, is proposed. Based on the element-wise nature of the finite element model, the stiffness evaluation is carried out element-by-element in the full domain. Since the unit of computation for the stiffness evaluation is restricted by element size, and since the computation is independent, the equivalent model can be constructed efficiently in parallel, even in the full domain. Due to the element-wise nature of the construction procedure, the equivalent E-STEP model is easily characterized by design parameters. Various reduced-order modeling techniques can be applied to the equivalent system in a manner similar to how they are applied in the original system. The reduced-order model based on E-STEP is successfully demonstrated for the dynamic analyses of non-linear structural finite element systems under varying design parameters.
Classification of proteins with shared motifs and internal repeats in the ECOD database
Kinch, Lisa N.; Liao, Yuxing
2016-01-01
Abstract Proteins and their domains evolve by a set of events commonly including the duplication and divergence of small motifs. The presence of short repetitive regions in domains has generally constituted a difficult case for structural domain classifications and their hierarchies. We developed the Evolutionary Classification Of protein Domains (ECOD) in part to implement a new schema for the classification of these types of proteins. Here we document the ways in which ECOD classifies proteins with small internal repeats, widespread functional motifs, and assemblies of small domain‐like fragments in its evolutionary schema. We illustrate the ways in which the structural genomics project impacted the classification and characterization of new structural domains and sequence families over the decade. PMID:26833690
The origin of conodonts and of vertebrate mineralized skeletons
Murdock, Duncan J.E.; Dong, Xi-Ping; Repetski, John E.; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C.J.
2013-01-01
Conodonts are an extinct group of jawless vertebrates whose tooth-like elements are the earliest instance of a mineralized skeleton in the vertebrate lineage, inspiring the ‘inside-out’ hypothesis that teeth evolved independently of the vertebrate dermal skeleton and before the origin of jaws. However, these propositions have been based on evidence from derived euconodonts. Here we test hypotheses of a paraconodont ancestry of euconodonts using synchrotron radiation X-ray tomographic microscopy to characterize and compare the microstructure of morphologically similar euconodont and paraconodont elements. Paraconodonts exhibit a range of grades of structural differentiation, including tissues and a pattern of growth common to euconodont basal bodies. The different grades of structural differentiation exhibited by paraconodonts demonstrate the stepwise acquisition of euconodont characters, resolving debate over the relationship between these two groups. By implication, the putative homology of euconodont crown tissue and vertebrate enamel must be rejected as these tissues have evolved independently and convergently. Thus, the precise ontogenetic, structural and topological similarities between conodont elements and vertebrate odontodes appear to be a remarkable instance of convergence. The last common ancestor of conodonts and jawed vertebrates probably lacked mineralized skeletal tissues. The hypothesis that teeth evolved before jaws and the inside-out hypothesis of dental evolution must be rejected; teeth seem to have evolved through the extension of odontogenic competence from the external dermis to internal epithelium soon after the origin of jaws.
Conformable pressure vessel for high pressure gas storage
Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.
2016-01-12
A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.
Sochan, Anne M
2011-07-01
How should nursing knowledge advance? This exploration contextualizes its evolution past and present. In addressing how it evolved in the past, a probable historical evolution of its development draws on the perspectives of Frank & Gills's World System Theory, Kuhn's treatise on Scientific Revolutions, and Foucault's notions of Discontinuities in scientific knowledge development. By describing plausible scenarios of how nursing knowledge evolved, I create a case for why nursing knowledge developers should adopt a post-structural stance in prioritizing their research agenda(s). Further, by adopting a post-structural stance, I create a case on how nurses can advance their disciplinary knowledge using an engaging post-colonial strategy. Given an interrupted history caused by influence(s) constraining nursing's knowledge development by power structures external, and internal, to nursing, knowledge development can evolve in the future by drawing on post-structural interpretation, and post-colonial strategy. The post-structural writings of Deleuze & Guattari's understanding of 'Nomadology' as a subtle means to resist being constrained by existing knowledge development structures, might be a useful stance to understanding the urgency of why nursing knowledge should advance addressing the structural influences on its development. Furthermore, Bhabha's post-colonial elucidation of 'Hybridity' as an equally discreet means to change the culture of those constraining structures is an appropriate strategy to enact how nursing knowledge developers can engage with existing power structures, and simultaneously influence that engagement. Taken together, 'post-structural stance' and 'post-colonial strategy' can refocus nursing scholarship to learn from its past, in order to develop relevant disciplinary knowledge in its future. © 2011 Blackwell Publishing Ltd.
Lupše, Nik; Cheng, Ren-Chung; Kuntner, Matjaž
2016-08-17
In most animal groups, it is unclear how body size variation relates to genital size differences between the sexes. While most morphological features tend to scale with total somatic size, this does not necessarily hold for genitalia because divergent evolution in somatic size between the sexes would cause genital size mismatches. Theory predicts that the interplay of female-biased sexual size dimorphism (SSD) and sexual genital size dimorphism (SGD) should adhere to the 'positive genital divergence', the 'constant genital divergence', or the 'negative genital divergence' model, but these models remain largely untested. We test their validity in the spider family Nephilidae known for the highest degrees of SSD among terrestrial animals. Through comparative analyses of sex-specific somatic and genital sizes, we first demonstrate that 99 of the 351 pairs of traits are phylogenetically correlated. Through factor analyses we then group these traits for MCMCglmm analyses that test broader correlation patterns, and these reveal significant correlations in 10 out of the 36 pairwise comparisons. Both types of analyses agree that female somatic and internal genital sizes evolve independently. While sizes of non-intromittent male genital parts coevolve with male body size, the size of the intromittent male genital parts is independent of the male somatic size. Instead, male intromittent genital size coevolves with female (external and, in part, internal) genital size. All analyses also agree that SGD and SSD evolve independently. Internal dimensions of female genitalia evolve independently of female body size in nephilid spiders, and similarly, male intromittent genital size evolves independently of the male body size. The size of the male intromittent organ (the embolus) and the sizes of female internal and external genital components thus seem to respond to selection against genital size mismatches. In accord with these interpretations, we reject the validity of the existing theoretical models of genital and somatic size dimorphism in spiders.
Sproviero, Eduardo M; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S
2007-04-01
The annual production of 260 Gtonnes of oxygen, during the process of photosynthesis, sustains life on earth. Oxygen is produced in the thylakoid membranes of green-plant chloroplasts and the internal membranes of cyanobacteria by photocatalytic water oxidation at the oxygen-evolving complex (OEC) of photosystem II (PSII). Recent breakthroughs in X-ray crystallography and advances in quantum mechanics/molecular mechanics (QM/MM) hybrid methods have enabled the construction of chemically sensible models of the OEC of PSII. The resulting computational structural models suggest the complete ligation of the catalytic center by amino acid residues, water, hydroxide and chloride, as determined from the intrinsic electronic properties of the oxomanganese core and the perturbational influence of the surrounding protein environment. These structures are found to be consistent with available mechanistic data, and are also compatible with X-ray diffraction models and extended X-ray absorption fine structure measurements. It is therefore conjectured that these OEC models are particularly relevant for the elucidation of the catalytic mechanism of water oxidation.
NASA Astrophysics Data System (ADS)
Endrizzi, Marco
2018-01-01
X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.
Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, R; Gallagher, B; Neville, J
Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less
Collaborative Oceanography and Virtual Experiments
2013-09-30
Observing Laboratory ( EOL ), but also contains an internal architecture which will allow it to evolve into a collaborative communication tool...an additional 50,988 "common" products were generated (241 plot types), along with 47,600 overlays (101 plot types). From 52 non- EOL sources...24,471 products were collected, and from 1486 EOL data collections, 643,263 "federated" products were indexed and made available through itop.org
Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks.
Fogelmark, Karl; Peterson, Carsten; Troein, Carl
2016-01-01
Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks.
Hot Gas in Merging Subgroups; Probing the Early Stages of Structure Formation
NASA Astrophysics Data System (ADS)
Machacek, Marie
2014-08-01
To fully understand the growth of large scale structure in hierarchical cosmological models, we must first understand how their building blocks, low mass galaxy subgroups, evolve through mergers. These galaxy subgroups are X-ray faint and difficult to observe at high redshift. The study of near-by subgroup mergers may be used as templates to gain insight into the dominant dynamical processes that are at work in the early universe. We use Chandra observations of edges, tails and wings in a sample of near-by galaxy groups ( Pavo, Telescopium, Pegasus, NGC7618/UGC12491 to measure the properties of the diffuse gas, merger velocities, shocks and non-hydrostatic gas 'sloshing', as their common ICM envelopes evolves.
Nonlinear saturation of tearing mode islands.
Hastie, R J; Militello, F; Porcelli, F
2005-08-05
New, rigorous results for the tearing island saturation problem are presented. These results are valid for the realistic case where the magnetic island structure is non-symmetric about the reconnection surface and the electron temperature, on which the electrical resistivity depends, is evolved self-consistently with the island growth.
Storytelling, behavior planning, and language evolution in context.
McBride, Glen
2014-01-01
An attempt is made to specify the structure of the hominin bands that began steps to language. Storytelling could evolve without need for language yet be strongly subject to natural selection and could provide a major feedback process in evolving language. A storytelling model is examined, including its effects on the evolution of consciousness and the possible timing of language evolution. Behavior planning is presented as a model of language evolution from storytelling. The behavior programming mechanism in both directions provide a model of creating and understanding behavior and language. Culture began with societies, then family evolution, family life in troops, but storytelling created a culture of experiences, a final step in the long process of achieving experienced adults by natural selection. Most language evolution occurred in conversations where evolving non-verbal feedback ensured mutual agreements on understanding. Natural language evolved in conversations with feedback providing understanding of changes.
Storytelling, behavior planning, and language evolution in context
McBride, Glen
2014-01-01
An attempt is made to specify the structure of the hominin bands that began steps to language. Storytelling could evolve without need for language yet be strongly subject to natural selection and could provide a major feedback process in evolving language. A storytelling model is examined, including its effects on the evolution of consciousness and the possible timing of language evolution. Behavior planning is presented as a model of language evolution from storytelling. The behavior programming mechanism in both directions provide a model of creating and understanding behavior and language. Culture began with societies, then family evolution, family life in troops, but storytelling created a culture of experiences, a final step in the long process of achieving experienced adults by natural selection. Most language evolution occurred in conversations where evolving non-verbal feedback ensured mutual agreements on understanding. Natural language evolved in conversations with feedback providing understanding of changes. PMID:25360123
Internal Social Media at Marshall Space Flight Center - An Engineer's Snapshot
NASA Technical Reports Server (NTRS)
Scott, David W.
2013-01-01
In the brief span of about six years (2004-2010), social media radically enhanced people's ways of maintaining recreational friendships. Social media's impact on public affairs (PAO) and community engagement is equally striking: NASA has involved millions of non-NASA viewers in its activities via outward-facing social media, often in a very two-way street fashion. Use of social media as an internal working tool by NASA's tens of thousands of civil servants, onsite contractor employees, and external stakeholders is evolving more slowly. This paper examines, from an engineer's perspective, Marshall Space Flight Center s (MSFC) efforts to bring the power of social media to the daily working environment. Primary emphasis is on an internal Social Networking Service called Explornet that could be scaled Agency-wide. Other topics include MSFC use of other social media day-to-day for non-PAO purposes, some specialized uses of social techniques in space flight control operations, and how to help a community open up so it can discover and adopt what works well.
NASA Astrophysics Data System (ADS)
Perdigão, Rui A. P.; Hall, Julia; Pires, Carlos A. L.; Blöschl, Günter
2017-04-01
Classical and stochastic dynamical system theories assume structural coherence and dynamic recurrence with invariants of motion that are not necessarily so. These are grounded on the unproven assumption of universality in the dynamic laws derived from statistical kinematic evaluation of non-representative empirical records. As a consequence, the associated formulations revolve around a restrictive set of configurations and intermittencies e.g. in an ergodic setting, beyond which any predictability is essentially elusive. Moreover, dynamical systems are fundamentally framed around dynamic codependence among intervening processes, i.e. entail essentially redundant interactions such as couplings and feedbacks. That precludes synergistic cooperation among processes that, whilst independent from each other, jointly produce emerging dynamic behaviour not present in any of the intervening parties. In order to overcome these fundamental limitations, we introduce a broad class of non-recursive dynamical systems that formulate dynamic emergence of unprecedented states in a fundamental synergistic manner, with fundamental principles in mind. The overall theory enables innovations to be predicted from the internal system dynamics before any a priori information is provided about the associated dynamical properties. The theory is then illustrated to anticipate, from non-emergent records, the spatiotemporal emergence of multiscale hyper chaotic regimes, critical transitions and structural coevolutionary changes in synthetic and real-world complex systems. Example applications are provided within the hydro-climatic context, formulating and dynamically forecasting evolving hydro-climatic distributions, including the emergence of extreme precipitation and flooding in a structurally changing hydro-climate system. Validation is then conducted with a posteriori verification of the simulated dynamics against observational records. Agreement between simulations and observations is confirmed with robust nonlinear information diagnostics.
Low-temperature glasslike properties in (NaCl)1-x(NaCN)x
NASA Astrophysics Data System (ADS)
Watson, Susan K.; Pohl, R. O.
1995-04-01
Thermal conductivity, internal friction, transverse sound velocity (60 mK to 300 K), and specific-heat data (100 mK to 40 K) for (NaCl)1-x(NaCN)x (x=0, 0.025, 0.05, 0.1, 0.76, 1) show a progression from crystalline to glasslike behavior as the CN- concentration is increased from 0 to 76 %. The evolution of glasslike properties is compared to that in other crystals in which glasslike properties evolve with increasing disorder, e.g., (KBr)1-x(KCN)x and Ba1-xLaxF2-x. For (KBr)1-x(KCN)x, Sethna and Chow have shown that as the concentration of the almost freely rotating CN- ions is increased the average potential barrier for CN- reorientation also increases through elastic quadrupolar interactions. For x~0.5, only a small density of low-energy states is left, which equals that observed in structural glasses. In Ba1-xLaxF2-x, on the other hand, the crystal field for small doping x is so large that no atomic motion occurs at low temperatures. (NaCl)1-x(NaCN)x is shown to represent an intermediate case, in that the crystal field is non-negligible at small x, yet glasslike low-energy excitations indicative of very small potential barrier heights evolve with increasing x. It is argued that random internal strains cause a decrease of the barrier heights in these crystals, which lead to the low-energy excitations. It is proposed that random strains have a similar effect in other disordered crystals as in Ba1-xLaxF2-x, which for small x show no low-energy mobile states, yet which for large x become glasslike.
Reinhardt, Josephine A.; Wanjiru, Betty M.; Brant, Alicia T.; Saelao, Perot; Begun, David J.; Jones, Corbin D.
2013-01-01
How non-coding DNA gives rise to new protein-coding genes (de novo genes) is not well understood. Recent work has revealed the origins and functions of a few de novo genes, but common principles governing the evolution or biological roles of these genes are unknown. To better define these principles, we performed a parallel analysis of the evolution and function of six putatively protein-coding de novo genes described in Drosophila melanogaster. Reconstruction of the transcriptional history of de novo genes shows that two de novo genes emerged from novel long non-coding RNAs that arose at least 5 MY prior to evolution of an open reading frame. In contrast, four other de novo genes evolved a translated open reading frame and transcription within the same evolutionary interval suggesting that nascent open reading frames (proto-ORFs), while not required, can contribute to the emergence of a new de novo gene. However, none of the genes arose from proto-ORFs that existed long before expression evolved. Sequence and structural evolution of de novo genes was rapid compared to nearby genes and the structural complexity of de novo genes steadily increases over evolutionary time. Despite the fact that these genes are transcribed at a higher level in males than females, and are most strongly expressed in testes, RNAi experiments show that most of these genes are essential in both sexes during metamorphosis. This lethality suggests that protein coding de novo genes in Drosophila quickly become functionally important. PMID:24146629
NASA Astrophysics Data System (ADS)
Laaß, Michael; Schillinger, Burkhard; Werneburg, Ingmar
As having evolved on the stem line of mammals, the taxonomy and phylogeny of therapsids (Synapsida) are of special interest with respect to early mammalian evolution. Due to the fact that in most cases soft tissue of fossil vertebrates is not preserved, species can only be distinguished by diagnosis of morphological features of the skeleton. Moreover, investigations of vertebrate fossils are often obstructed, because internal cranial anatomy is usually hidden and parts of the fossils may be embedded in stone matrix. As a consequence, most species of non-mammalian synapsids were only defined on the basis of external skeletal features. Our investigations on Diictodon skulls (Therapsida, Anomodontia) show that non-destructive methods are very useful to clearly distinguish fossil species. We, therefore, propose using modern non-destructive techniques such as neutron tomography, synchrotron tomography, and micro-computed tomography (μCT) as standard tools for the investigation and virtual reconstruction of fossils and to include features of the internal cranial anatomy into morphological descriptions and phylogenetic analyses of fossil vertebrates.
An Evolved International Lunar Decade Global Exploration Roadmap
NASA Astrophysics Data System (ADS)
Dunlop, D.; Holder, K.
2015-10-01
An Evolved Global Exploration Roadmap (GER) reflecting a proposed International Lunar Decade is presented by an NSS chapter to address many of the omissions and new prospective commercial mission developments since the 2013 edition of the ISECG GER.
Evolution of Bow-Tie Architectures in Biology
Friedlander, Tamar; Mayo, Avraham E.; Tlusty, Tsvi; Alon, Uri
2015-01-01
Bow-tie or hourglass structure is a common architectural feature found in many biological systems. A bow-tie in a multi-layered structure occurs when intermediate layers have much fewer components than the input and output layers. Examples include metabolism where a handful of building blocks mediate between multiple input nutrients and multiple output biomass components, and signaling networks where information from numerous receptor types passes through a small set of signaling pathways to regulate multiple output genes. Little is known, however, about how bow-tie architectures evolve. Here, we address the evolution of bow-tie architectures using simulations of multi-layered systems evolving to fulfill a given input-output goal. We find that bow-ties spontaneously evolve when the information in the evolutionary goal can be compressed. Mathematically speaking, bow-ties evolve when the rank of the input-output matrix describing the evolutionary goal is deficient. The maximal compression possible (the rank of the goal) determines the size of the narrowest part of the network—that is the bow-tie. A further requirement is that a process is active to reduce the number of links in the network, such as product-rule mutations, otherwise a non-bow-tie solution is found in the evolutionary simulations. This offers a mechanism to understand a common architectural principle of biological systems, and a way to quantitate the effective rank of the goals under which they evolved. PMID:25798588
Investigating Evolved Compositions Around Wolf Crater
NASA Technical Reports Server (NTRS)
Greenhagen, B. T.; Cahill, J. T. S.; Jolliff, B. L.; Lawrence, S. J.; Glotch, T. D.
2017-01-01
Wolf crater is an irregularly shaped, approximately 25 km crater in the south-central portion of Mare Nubium on the lunar nearside. While not previously identified as a lunar "red spot", Wolf crater was identified as a Th anomaly by Lawrence and coworkers. We have used data from the Lunar Reconnaissance Orbiter (LRO) to determine the area surrounding Wolf crater has composition more similar to highly evolved, non-mare volcanic structures than typical lunar crustal lithology. In this presentation, we will investigate the geomorphology and composition of the Wolf crater and discuss implications for the origin of the anomalous terrain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.
The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less
Pfaus, James G; Quintana, Gonzalo R; Mac Cionnaith, Conall; Parada, Mayte
2016-01-01
The nature of a woman's orgasm has been a source of scientific, political, and cultural debate for over a century. Since the Victorian era, the pendulum has swung from the vagina to the clitoris, and to some extent back again, with the current debate stuck over whether internal sensory structures exist in the vagina that could account for orgasms based largely on their stimulation, or whether stimulation of the external glans clitoris is always necessary for orgasm. We review the history of the clitoral versus vaginal orgasm debate as it has evolved with conflicting ideas and data from psychiatry and psychoanalysis, epidemiology, evolutionary theory, feminist political theory, physiology, and finally neuroscience. A new synthesis is presented that acknowledges the enormous potential women have to experience orgasms from one or more sources of sensory input, including the external clitoral glans, internal region around the "G-spot" that corresponds to the internal clitoral bulbs, the cervix, as well as sensory stimulation of non-genital areas such as the nipples. With experience, stimulation of one or all of these triggering zones are integrated into a "whole" set of sensory inputs, movements, body positions, autonomic arousal, and partner- and contextual-related cues, that reliably induces pleasure and orgasm during masturbation and copulation. The process of integration is iterative and can change across the lifespan with new experiences of orgasm.
NASA Astrophysics Data System (ADS)
Geng, Lin; Bi, Chuan-Xing; Xie, Feng; Zhang, Xiao-Zheng
2018-07-01
Interpolated time-domain equivalent source method is extended to reconstruct the instantaneous surface normal velocity of a vibrating structure by using the time-evolving particle velocity as the input, which provides a non-contact way to overall understand the instantaneous vibration behavior of the structure. In this method, the time-evolving particle velocity in the near field is first modeled by a set of equivalent sources positioned inside the vibrating structure, and then the integrals of equivalent source strengths are solved by an iterative solving process and are further used to calculate the instantaneous surface normal velocity. An experiment of a semi-cylindrical steel plate impacted by a steel ball is investigated to examine the ability of the extended method, where the time-evolving normal particle velocity and pressure on the hologram surface measured by a Microflown pressure-velocity probe are used as the inputs of the extended method and the method based on pressure measurements, respectively, and the instantaneous surface normal velocity of the plate measured by a laser Doppler vibrometry is used as the reference for comparison. The experimental results demonstrate that the extended method is a powerful tool to visualize the instantaneous surface normal velocity of a vibrating structure in both time and space domains and can obtain more accurate results than that of the method based on pressure measurements.
Streamer discharges as advancing imperfect conductors: inhomogeneities in long ionized channels
NASA Astrophysics Data System (ADS)
Luque, A.; González, M.; Gordillo-Vázquez, F. J.
2017-12-01
A major obstacle for the understanding of long electrical discharges is the complex dynamics of streamer coronas, formed by many thin conducting filaments. Building macroscopic models for these filaments is one approach to attain a deeper knowledge of the discharge corona. Here, we present a one-dimensional, macroscopic model of a propagating streamer channel with a finite and evolving internal conductivity. We represent the streamer as an advancing finite-conductivity channel with a surface charge density at its boundary. This charge evolves self-consistently due to the electric current that flows through the streamer body and within a thin layer at its surface. We couple this electrodynamic evolution with a field-dependent set of chemical reactions that determine the internal channel conductivity. With this one-dimensional model, we investigate the formation of persisting structures in the wake of a streamer head. In accordance with experimental observations, our model shows that a within a streamer channel some regions are driven towards high fields that can be maintaned for tens of nanoseconds.
Collective action and the evolution of social norm internalization
Gavrilets, Sergey; Richerson, Peter J.
2017-01-01
Human behavior is strongly affected by culturally transmitted norms and values. Certain norms are internalized (i.e., acting according to a norm becomes an end in itself rather than merely a tool in achieving certain goals or avoiding social sanctions). Humans’ capacity to internalize norms likely evolved in our ancestors to simplify solving certain challenges—including social ones. Here we study theoretically the evolutionary origins of the capacity to internalize norms. In our models, individuals can choose to participate in collective actions as well as punish free riders. In making their decisions, individuals attempt to maximize a utility function in which normative values are initially irrelevant but play an increasingly important role if the ability to internalize norms emerges. Using agent-based simulations, we show that norm internalization evolves under a wide range of conditions so that cooperation becomes “instinctive.” Norm internalization evolves much more easily and has much larger effects on behavior if groups promote peer punishment of free riders. Promoting only participation in collective actions is not effective. Typically, intermediate levels of norm internalization are most frequent but there are also cases with relatively small frequencies of “oversocialized” individuals willing to make extreme sacrifices for their groups no matter material costs, as well as “undersocialized” individuals completely immune to social norms. Evolving the ability to internalize norms was likely a crucial step on the path to large-scale human cooperation. PMID:28533363
Collective action and the evolution of social norm internalization.
Gavrilets, Sergey; Richerson, Peter J
2017-06-06
Human behavior is strongly affected by culturally transmitted norms and values. Certain norms are internalized (i.e., acting according to a norm becomes an end in itself rather than merely a tool in achieving certain goals or avoiding social sanctions). Humans' capacity to internalize norms likely evolved in our ancestors to simplify solving certain challenges-including social ones. Here we study theoretically the evolutionary origins of the capacity to internalize norms. In our models, individuals can choose to participate in collective actions as well as punish free riders. In making their decisions, individuals attempt to maximize a utility function in which normative values are initially irrelevant but play an increasingly important role if the ability to internalize norms emerges. Using agent-based simulations, we show that norm internalization evolves under a wide range of conditions so that cooperation becomes "instinctive." Norm internalization evolves much more easily and has much larger effects on behavior if groups promote peer punishment of free riders. Promoting only participation in collective actions is not effective. Typically, intermediate levels of norm internalization are most frequent but there are also cases with relatively small frequencies of "oversocialized" individuals willing to make extreme sacrifices for their groups no matter material costs, as well as "undersocialized" individuals completely immune to social norms. Evolving the ability to internalize norms was likely a crucial step on the path to large-scale human cooperation.
Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks
Fogelmark, Karl; Peterson, Carsten; Troein, Carl
2016-01-01
Background Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. Methodology To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. Principal Findings We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks. PMID:26927540
Diffusion Tensor Imaging Correlates of Reading Ability in Dysfluent and Non-Impaired Readers
ERIC Educational Resources Information Center
Lebel, Catherine; Shaywitz, Bennett; Holahan, John; Shaywitz, Sally; Marchione, Karen; Beaulieu, Christian
2013-01-01
Many children and adults have specific reading disabilities; insight into the brain structure underlying these difficulties is evolving from imaging. Previous research highlights the left temporal-parietal white matter as important in reading, yet the degree of involvement of other areas remains unclear. Diffusion tensor imaging (DTI) and…
Non-linear structure formation in the `Running FLRW' cosmological model
NASA Astrophysics Data System (ADS)
Bibiano, Antonio; Croton, Darren J.
2016-07-01
We present a suite of cosmological N-body simulations describing the `Running Friedmann-Lemaïtre-Robertson-Walker' (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends Lambda cold dark matter (ΛCDM) with a time-evolving vacuum density, Λ(z), and time-evolving gravitational Newton's coupling, G(z). In this paper, we review the model and introduce the necessary analytical treatment needed to adapt a reference N-body code. Our resulting simulations represent the first realization of the full growth history of structure in the R-FLRW cosmology into the non-linear regime, and our normalization choice makes them fully consistent with the latest cosmic microwave background data. The post-processing data products also allow, for the first time, an analysis of the properties of the halo and sub-halo populations. We explore the degeneracies of many statistical observables and discuss the steps needed to break them. Furthermore, we provide a quantitative description of the deviations of R-FLRW from ΛCDM, which could be readily exploited by future cosmological observations to test and further constrain the model.
Unstable density distribution associated with equatorial plasma bubble
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kherani, E. A., E-mail: esfhan.kherani@inpe.br; Meneses, F. Carlos de; Bharuthram, R.
2016-04-15
In this work, we present a simulation study of equatorial plasma bubble (EPB) in the evening time ionosphere. The fluid simulation is performed with a high grid resolution, enabling us to probe the steepened updrafting density structures inside EPB. Inside the density depletion that eventually evolves as EPB, both density and updraft are functions of space from which the density as implicit function of updraft velocity or the density distribution function is constructed. In the present study, this distribution function and the corresponding probability distribution function are found to evolve from Maxwellian to non-Maxwellian as the initial small depletion growsmore » to EPB. This non-Maxwellian distribution is of a gentle-bump type, in confirmation with the recently reported distribution within EPB from space-borne measurements that offer favorable condition for small scale kinetic instabilities.« less
The precautionary principle and other non-tariff barriers to free and fair international food trade.
Lupien, John R
2002-07-01
International food trade and world population are growing rapidly. National legislation has been enacted and implemented in many countries to assure good quality and safe foods to meet increased demand. No country is fully self-sufficient in domestic food production to meet population demands, and all require some food imports. Current international food trade agreements call for free and fair food trade between all countries, developed and developing. National food legislation and food production, processing and marketing systems have evolved in most countries to ensure better quality and safer foods. At the international level the work of the FAO/ WHO Codex Alimentarius Commission (Codex) and the World Trade Organization Agreements on Sanitary and Phytosanitary Measures (SPS) and on Technical Barriers to Trade (TBT) and related Uruguay Round agreements have been agreed to by over 140 countries with the aim to promoting the free and fair trade of good quality and safe foods between all countries. The SPS and TBT agreements rely on science-based Codex standards, guidelines, and recommendations as benchmarks for judging international food trade disputes. A number of non-tariff barriers to trade, often related to agricultural subsidies and other food trade payments in developed countries, continue to give rise to complaints to WTO. They also continue to prevent free and fair trade, particularly for developing countries in international food trade. A number of these non-tariff barriers to trade are briefly examined, along with other domestic and international food trade problems, and recommendations for improvements are made.
De Zaeytijd, Jeroen; Van Damme, Els J. M.
2017-01-01
Ribosome-inactivating proteins (RIPs) are a class of cytotoxic enzymes that can depurinate rRNAs thereby inhibiting protein translation. Although these proteins have also been detected in bacteria, fungi, and even some insects, they are especially prevalent in the plant kingdom. This review focuses on the RIPs from cereals. Studies on the taxonomical distribution and evolution of plant RIPs suggest that cereal RIPs have evolved at an enhanced rate giving rise to a large and heterogeneous RIP gene family. Furthermore, several cereal RIP genes are characterized by a unique domain architecture and the lack of a signal peptide. This advanced evolution of cereal RIPs translates into distinct structures, activation mechanisms, and physiological roles. Several cereal RIPs are characterized by activation mechanisms that include the proteolytic removal of internal peptides from the N-glycosidase domain, a feature not documented for non-cereal RIPs. Besides their role in defense against pathogenic fungi or herbivorous insects, cereal RIPs are also involved in endogenous functions such as adaptation to abiotic stress, storage, induction of senescence, and reprogramming of the translational machinery. The unique properties of cereal RIPs are discussed in this review paper. PMID:28353660
Effects of varying obliquity on Martian sublimation thermokarst landforms
Dundas, Colin M.
2017-01-01
Scalloped depressions in the Martian mid-latitudes are likely formed by sublimation of ice-rich ground. The stability of subsurface ice changes with the planetary obliquity, generally becoming less stable at lower axial tilt. As a result, the relative rates of sublimation and creep change over time. A landscape evolution model shows that these variations produce internal structure in scalloped depressions, commonly in the form of arcuate ridges, which emerge as depressions resume growth after pausing or slowing. In other scenarios, the formation of internal structure is minimal. Significant uncertainties in past climate and model parameters permit a range of scenarios. Ridges observed in some Martian scalloped depressions could date from obliquity lows or periods of low ice stability occurring <5 Ma, suggesting that the pits are young features and may be actively evolving.
NASA Langley Research Center's Contributions to International Active Buffeting Alleviation Programs
NASA Technical Reports Server (NTRS)
Moses, Robert W.
2000-01-01
Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. By means of wind-tunnel and flight tests, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can be increased by structural enhancements to the airframe. In more recent years, buffeting alleviation through active control of smart materials has been highly researched in wind-tunnel proof-of-concept demonstrations and full-scale ground tests using the F/A-18 as a test bed. Because the F/A-18 resides in fleets outside as well as inside the United States, these tests have evolved into international collaborative research activities with Australia and Canada, coordinated by the Air Force Research Laboratory (AFRL) and conducted under the auspices of The Technical Cooperation Program (TTCP). With the recent successes and advances in smart materials, the main focus of these buffeting alleviation tests has also evolved to a new level: utilize the F/A-18 as a prototype to mature smart materials for suppressing vibrations of aerospace structures. The role of the NASA Langley Research Center (LaRC) in these programs is presented.
China’s Evolving Foreign Policy in Africa: A New Direction for China’s Non-Intervention Strategy?
2014-09-01
Xiaoping instituted economic reforms aimed at opening up China’s economy to international trade and China began on its path towards double- digit growth.99...rebellion by the nomadic Tuaregs in the north paved the way for Al Qaeda in the Lands of the Islamic Maghreb (AQIM)’s takeover of Northern Mali. The...marginalization through the creation of a formal state with formal, defined borders. The nomadic lifestyle of the Tuaregs was no longer accepted under
NASA Astrophysics Data System (ADS)
Gallet, Florian; Bolmont, Emeline; Mathis, Stéphane; Charbonnel, Corinne; Amard, Louis; Alibert, Yann
2017-10-01
Close-in planets represent a large fraction of the population of confirmed exoplanets. To understand the dynamical evolution of these planets, star-planet interactions must be taken into account. In particular, the dependence of the tidal interactions on the structural parameters of the star, its rotation, and its metallicity should be treated in the models. We quantify how the tidal dissipation in the convective envelope of rotating low-mass stars evolves in time. We also investigate the possible consequences of this evolution on planetary orbital evolution. In Gallet et al. (2017) and Bolmont et al. (2017) we generalized the work of Bolmont & Mathis (2016) by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution and non-solar metallicity. We find that during the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the star through the stellar contraction. On the main-sequence tidal dissipation is strongly driven by the evolution of the surface rotation that is impacted by magnetized stellar winds braking. Finally, during the more evolved phases, the tidal dissipation sharply decreases as radiative core retreats in mass and radius towards the red-giant branch. Using an orbital evolution model, we also show that changing the metallicity leads to diUerent orbital evolutions (e.g., planets migrate farther out from an initially fast rotating metal rich star). By using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more work still remain to be do so as to be able to quantitatively fit our results to the observations.
Communication Patterns in Adult-Infant Interactions in Western and Non-Western Cultures.
ERIC Educational Resources Information Center
Keller, Heidi; And Others
1988-01-01
Analyzes the early communication structure in adult-child interactions with two- to six-month old babies in Western (West Germany, Greece) and non-Western (Yanomami, Trobriand) societies. Discusses universal international verbal and non-verbal structures reflecting intuitive parenting programs. (FMW)
Yuvaraj, Jothi Kumar; Corcoran, Jacob A.; Andersson, Martin N.; Newcomb, Richard D.; Anderbrant, Olle; Löfstedt, Christer
2017-01-01
Abstract Pheromone receptors (PRs) are essential in moths to detect sex pheromones for mate finding. However, it remains unknown from which ancestral proteins these specialized receptors arose. The oldest lineages of moths, so-called non-ditrysian moths, use short-chain pheromone components, secondary alcohols, or ketones, so called Type 0 pheromones that are similar to many common plant volatiles. It is, therefore, possible that receptors for these ancestral pheromones evolved from receptors detecting plant volatiles. Hence, we identified the odorant receptors (ORs) from a non-ditrysian moth, Eriocrania semipurpurella (Eriocraniidae, Lepidoptera), and performed functional characterization of ORs using HEK293 cells. We report the first receptors that respond to Type 0 pheromone compounds; EsemOR3 displayed highest sensitivity toward (2S, 6Z)-6-nonen-2-ol, whereas EsemOR5 was most sensitive to the behavioral antagonist (Z)-6-nonen-2-one. These receptors also respond to plant volatiles of similar chemical structures, but with lower sensitivity. Phylogenetically, EsemOR3 and EsemOR5 group with a plant volatile-responding receptor from the tortricid moth Epiphyas postvittana (EposOR3), which together reside outside the previously defined lepidopteran PR clade that contains the PRs from more derived lepidopteran families. In addition, one receptor (EsemOR1) that falls at the base of the lepidopteran PR clade, responded specifically to β-caryophyllene and not to any other additional plant or pheromone compounds. Our results suggest that PRs for Type 0 pheromones have evolved from ORs that detect structurally-related plant volatiles. They are unrelated to PRs detecting pheromones in more derived Lepidoptera, which, in turn, also independently may have evolved a novel function from ORs detecting plant volatiles. PMID:29126322
Bankhead, Armand; Magnuson, Nancy S; Heckendorn, Robert B
2007-06-07
A computer simulation is used to model ductal carcinoma in situ, a form of non-invasive breast cancer. The simulation uses known histological morphology, cell types, and stochastic cell proliferation to evolve tumorous growth within a duct. The ductal simulation is based on a hybrid cellular automaton design using genetic rules to determine each cell's behavior. The genetic rules are a mutable abstraction that demonstrate genetic heterogeneity in a population. Our goal was to examine the role (if any) that recently discovered mammary stem cell hierarchies play in genetic heterogeneity, DCIS initiation and aggressiveness. Results show that simpler progenitor hierarchies result in greater genetic heterogeneity and evolve DCIS significantly faster. However, the more complex progenitor hierarchy structure was able to sustain the rapid reproduction of a cancer cell population for longer periods of time.
Genetic algorithms applied to the scheduling of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Sponsler, Jeffrey L.
1989-01-01
A prototype system employing a genetic algorithm (GA) has been developed to support the scheduling of the Hubble Space Telescope. A non-standard knowledge structure is used and appropriate genetic operators have been created. Several different crossover styles (random point selection, evolving points, and smart point selection) are tested and the best GA is compared with a neural network (NN) based optimizer. The smart crossover operator produces the best results and the GA system is able to evolve complete schedules using it. The GA is not as time-efficient as the NN system and the NN solutions tend to be better.
Nonconscious intelligence in the universe.
Raup, D M
1992-01-01
Animals lacking humanoid intelligence have evolved systems indistinguishable in function, if not in structure, from systems built by humans. Although radio communication has never been verified in animals, it is completely feasible biologically. If such systems are present in non-intelligent organisms on other planets, then our chances of detecting life in the universe by current SETI methods are greatly enhanced.
Nonconscious intelligence in the universe
NASA Technical Reports Server (NTRS)
Raup, D. M.
1992-01-01
Animals lacking humanoid intelligence have evolved systems indistinguishable in function, if not in structure, from systems built by humans. Although radio communication has never been verified in animals, it is completely feasible biologically. If such systems are present in non-intelligent organisms on other planets, then our chances of detecting life in the universe by current SETI methods are greatly enhanced.
Structure and Development of the List of Prohibited Substances and Methods.
Kinahan, Audrey; Budgett, Richard; Mazzoni, Irene
2017-01-01
The list of prohibited substances and methods (the List) is the international standard that determines what is prohibited in sport both in- and out-of-competition. Since 2004, the official text of the List is produced by the World Anti-Doping Agency (WADA), the international independent organization responsible for promoting, coordinating, and monitoring the fight against doping in sport. Originally based on the prohibited lists established by the International Olympic Committee, the List has evolved to incorporate new doping trends, distinguish permitted from prohibited routes of administration, and adjust to new analytical and pharmacological breakthroughs. In this chapter, the elements that compose the List as well as the updates over the years are presented. © 2017 S. Karger AG, Basel.
External Tank Program - Legacy of Success
NASA Technical Reports Server (NTRS)
Pilet, Jeffery C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle; Welzyn, Kenneth
2011-01-01
The largest single element of Space Shuttle is the External Tank (ET), which serves as the structural backbone of the vehicle during ascent and provides liquid propellants to the Orbiter s three Main Engines. The ET absorbs most of the seven million pounds of thrust exerted by the Solid Rocket Boosters and Main Engines. The design evolved through several block changes, reducing weight each time. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. The initial configuration, the standard weight tank, weighed 76,000 pounds and was an aluminum 2219 structure. The light weight tank weighed 66,000 pounds and flew 86 missions. The super light weight tank weighed 58,500 pounds and was primarily an aluminum-lithium structure. The final configuration and low weight enabled system level performance sufficient for assembly of the International Space Station in a high inclination orbit, vital for international cooperation. Another significant challenge was the minimization of ice formation on the cryogenic tanks. This was essential due to the system configuration and the choice of ceramic thermal protection system materials on the Orbiter. Ice would have been a major debris hazard. Spray on foam insulation materials served multiple functions including thermal insulation, conditioning of cryogenic propellants, and thermal protection for the tank structure during ascent and entry. The tank is large, and unique manufacturing facilities, tooling, and handling, and transportation operations were developed. Weld processes and tooling evolved with the design as it matured through several block changes. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the multi-decade program. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to simulate combined environments. The debris risk was reduced by two orders of magnitude. During this time a major natural disaster was overcome when hurricane Katrina damaged the manufacturing facility. Numerous lessons from these efforts, the manufacturing and material processing issues, the key design features, and evolution of the design will be discussed.
Structure and physical properties of silkworm cocoons
Chen, Fujia; Porter, David; Vollrath, Fritz
2012-01-01
Silkworm cocoons have evolved a wide range of different structures and combinations of physical and chemical properties in order to cope with different threats and environmental conditions. We present our observations and measurements on 25 diverse types of cocoons in a first attempt to correlate physical properties with the structure and morphology of the cocoons. These two architectural parameters appear to be far more important than the material properties of the silk fibres themselves. We consider tensile and compressive mechanical properties and gas permeation of the cocoon walls, and in each case identify mechanisms or models that relate these properties to cocoon structure, usually based upon non-woven fibre composites. These properties are of relevance also for synthetic non-woven composite materials and our studies will help formulate bio-inspired design principles for new materials. PMID:22552916
Li, Dawei; Lv, Bei; Zhang, Hao; Lee, Jasmine Yiqin; Li, Tianhu
2015-04-15
Unlike chemical damages on DNA, physical alterations of B-form of DNA occur commonly in organisms that serve as signals for specified cellular events. Although the modes of action for repairing of chemically damaged DNA have been well studied nowadays, the repairing mechanisms for physically altered DNA structures have not yet been understood. Our current in vitro studies show that both breakdown of stable non-B DNA structures and resumption of canonical B-conformation of DNA can take place during the courses of isothermal helicase-dependent amplification (HDA). The pathway that makes the non-B DNA structures repairable is presumably the relieving of the accumulated torsional stress that was caused by the positive supercoiling. Our new findings suggest that living organisms might have evolved this distinct and economical pathway for repairing their physically altered DNA structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao
2015-01-01
Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3MJ and a 6.3MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers. PMID:26230392
Yan, Chenguang; Hao, Zhiguo; Zhang, Song; Zhang, Baohui; Zheng, Tao
2015-01-01
Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3 MJ and a 6.3 MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers.
Gan, Rui; Perez, Jessica G; Carlson, Erik D; Ntai, Ioanna; Isaacs, Farren J; Kelleher, Neil L; Jewett, Michael C
2017-05-01
The ability to site-specifically incorporate non-canonical amino acids (ncAAs) into proteins has made possible the study of protein structure and function in fundamentally new ways, as well as the bio synthesis of unnatural polymers. However, the task of site-specifically incorporating multiple ncAAs into proteins with high purity and yield continues to present a challenge. At the heart of this challenge lies the lower efficiency of engineered orthogonal translation system components compared to their natural counterparts (e.g., translation elements that specifically use a ncAA and do not interact with the cell's natural translation apparatus). Here, we show that evolving and tuning expression levels of multiple components of an engineered translation system together as a whole enhances ncAA incorporation efficiency. Specifically, we increase protein yield when incorporating multiple p-azido-phenylalanine(pAzF) residues into proteins by (i) evolving the Methanocaldococcus jannaschii p-azido-phenylalanyl-tRNA synthetase anti-codon binding domain, (ii) evolving the elongation factor Tu amino acid-binding pocket, and (iii) tuning the expression of evolved translation machinery components in a single vector. Use of the evolved translation machinery in a genomically recoded organism lacking release factor one enabled enhanced multi-site ncAA incorporation into proteins. We anticipate that our approach to orthogonal translation system development will accelerate and expand our ability to site-specifically incorporate multiple ncAAs into proteins and biopolymers, advancing new horizons for synthetic and chemical biotechnology. Biotechnol. Bioeng. 2017;114: 1074-1086. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
One ring to bring them all--the role of Ku in mammalian non-homologous end joining.
Grundy, Gabrielle J; Moulding, Hayley A; Caldecott, Keith W; Rulten, Stuart L
2014-05-01
The repair of DNA double strand breaks is essential for cell survival and several conserved pathways have evolved to ensure their rapid and efficient repair. The non-homologous end joining pathway is initiated when Ku binds to the DNA break site. Ku is an abundant nuclear heterodimer of Ku70 and Ku80 with a toroidal structure that allows the protein to slide over the broken DNA end and bind with high affinity. Once locked into placed, Ku acts as a tool-belt to recruit multiple interacting proteins, forming one or more non-homologous end joining complexes that act in a regulated manner to ensure efficient repair of DNA ends. Here we review the structure and functions of Ku and the proteins with which it interacts during non-homologous end joining. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hekker, S.; Christensen-Dalsgaard, J.
2017-06-01
The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.
Pfaus, James G.; Quintana, Gonzalo R.; Mac Cionnaith, Conall; Parada, Mayte
2016-01-01
Background The nature of a woman’s orgasm has been a source of scientific, political, and cultural debate for over a century. Since the Victorian era, the pendulum has swung from the vagina to the clitoris, and to some extent back again, with the current debate stuck over whether internal sensory structures exist in the vagina that could account for orgasms based largely on their stimulation, or whether stimulation of the external glans clitoris is always necessary for orgasm. Method We review the history of the clitoral versus vaginal orgasm debate as it has evolved with conflicting ideas and data from psychiatry and psychoanalysis, epidemiology, evolutionary theory, feminist political theory, physiology, and finally neuroscience. Results A new synthesis is presented that acknowledges the enormous potential women have to experience orgasms from one or more sources of sensory input, including the external clitoral glans, internal region around the “G-spot” that corresponds to the internal clitoral bulbs, the cervix, as well as sensory stimulation of non-genital areas such as the nipples. Conclusions With experience, stimulation of one or all of these triggering zones are integrated into a “whole” set of sensory inputs, movements, body positions, autonomic arousal, and partner- and contextual-related cues, that reliably induces pleasure and orgasm during masturbation and copulation. The process of integration is iterative and can change across the lifespan with new experiences of orgasm. PMID:27791968
Fry, Bryan G; Scheib, Holger; van der Weerd, Louise; Young, Bruce; McNaughtan, Judith; Ramjan, S F Ryan; Vidal, Nicolas; Poelmann, Robert E; Norman, Janette A
2008-02-01
Venom is a key innovation underlying the evolution of advanced snakes (Caenophidia). Despite this, very little is known about venom system structural diversification, toxin recruitment event timings, or toxin molecular evolution. A multidisciplinary approach was used to examine the diversification of the venom system and associated toxins across the full range of the approximately 100 million-year-old advanced snake clade with a particular emphasis upon families that have not secondarily evolved a front-fanged venom system ( approximately 80% of the 2500 species). Analysis of cDNA libraries revealed complex venom transcriptomes containing multiple toxin types including three finger toxins, cobra venom factor, cysteine-rich secretory protein, hyaluronidase, kallikrein, kunitz, lectin, matrix metalloprotease, phospholipase A(2), snake venom metalloprotease/a disintegrin and metalloprotease, and waprin. High levels of sequence diversity were observed, including mutations in structural and functional residues, changes in cysteine spacing, and major deletions/truncations. Morphological analysis comprising gross dissection, histology, and magnetic resonance imaging also demonstrated extensive modification of the venom system architecture in non-front-fanged snakes in contrast to the conserved structure of the venom system within the independently evolved front-fanged elapid or viperid snakes. Further, a reduction in the size and complexity of the venom system was observed in species in which constriction has been secondarily evolved as the preferred method of prey capture or dietary preference has switched from live prey to eggs or to slugs/snails. Investigation of the timing of toxin recruitment events across the entire advanced snake radiation indicates that the evolution of advanced venom systems in three front-fanged lineages is associated with recruitment of new toxin types or explosive diversification of existing toxin types. These results support the role of venom as a key evolutionary innovation in the diversification of advanced snakes and identify a potential role for non-front-fanged venom toxins as a rich source for lead compounds for drug design and development.
"Genetically Engineered" Nanoelectronics
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas
2000-01-01
The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.
A Meta-Analysis of Institutional Theories
1989-06-01
GPOUP SUBGROUP Institutional Theory , Isomorphism, Administrative Difterpntiation, Diffusion of Change, Rational, Unit Of Analysis 19 ABSTRACT (Continue on... institutional theory may lead to better decision making and evaluation criteria on the part of managers in the non-profit sector. C. SCOPE This paper... institutional theory : I) Organizations evolving in environments with elabora- ted institutional rules create structure that conform to those rules. 2
Mesoscale Ionospheric Prediction
2006-09-30
Mesoscale Ionospheric Prediction Gary S. Bust 10000 Burnet Austin Texas, 78758 phone: (512) 835-3623 fax: (512) 835-3808 email: gbust...time-evolving non-linear numerical model of the mesoscale ionosphere , second to couple the mesoscale model to a mesoscale data assimilative analysis...third to use the new data-assimilative mesoscale model to investigate ionospheric structure and plasma instabilities, and fourth to apply the data
Variable investment, the Continuous Prisoner's Dilemma, and the origin of cooperation.
Killingback, T; Doebeli, M; Knowlton, N
1999-09-07
Cooperation is fundamental to many biological systems. A common metaphor for studying the evolution of cooperation is the Prisoner's Dilemma, a game with two strategies: cooperate or defect. However, cooperation is rare all or nothing, and its evolution probably involves the gradual extension of initially modest degrees of assistance. The inability of the Prisoner's Dilemma to capture this basic aspect limits its use for understanding the evolutionary origins of cooperation. Here we consider a framework for cooperation based on the concept of investment: an act which is costly, but which benefits other individuals, where the cost and benefit depend on the level of investment made. In the resulting Continuous Prisoner's Dilemma the essential problem of cooperation remains: in the absence of any additional structure non-zero levels of investment cannot evolve. However, if investments are considered in a spatially structured context, selfish individuals who make arbitrarily low investments can be invaded by higher-investing mutants. This results in the mean level of investment evolving to significant levels, where it is maintained indefinitely. This approach provides a natural solution to the fundamental problem of how cooperation gradually increases from a non-cooperative state.
Review of current status of smart structures and integrated systems
NASA Astrophysics Data System (ADS)
Chopra, Inderjit
1996-05-01
A smart structure involves distributed actuators and sensors, and one or more microprocessors that analyze the responses from the sensors and use distributed-parameter control theory to command the actuators to apply localized strains to minimize system response. A smart structure has the capability to respond to a changing external environment (such as loads or shape change) as well as to a changing internal environment (such as damage or failure). It incorporates smart actuators that allow the alteration of system characteristics (such as stiffness or damping) as well as of system response (such as strain or shape) in a controlled manner. Many types of actuators and sensors are being considered, such as piezoelectric materials, shape memory alloys, electrostrictive materials, magnetostrictive materials, electro- rheological fluids and fiber optics. These can be integrated with main load-carrying structures by surface bonding or embedding without causing any significant changes in the mass or structural stiffness of the system. Numerous applications of smart structures technology to various physical systems are evolving to actively control vibration, noise, aeroelastic stability, damping, shape and stress distribution. Applications range from space systems, fixed-wing and rotary-wing aircraft, automotive, civil structures and machine tools. Much of the early development of smart structures methodology was driven by space applications such as vibration and shape control of large flexible space structures, but now wider applications are envisaged for aeronautical and other systems. Embedded or surface-bonded smart actuators on an airplane wing or helicopter blade will induce alteration of twist/camber of airfoil (shape change), that in turn will cause variation of lift distribution and may help to control static and dynamic aeroelastic problems. Applications of smart structures technology to aerospace and other systems are expanding rapidly. Major barriers are: actuator stroke, reliable data base of smart material characteristics, non-availability of robust distributed parameter control strategies, and non-existent mathematical modeling of smart systems. The objective of this paper is to review the state-of-the-art of smart actuators and sensors and integrated systems and point out the needs for future research.
Knabe, Johannes F; Nehaniv, Chrystopher L; Schilstra, Maria J
2008-01-01
Methods that analyse the topological structure of networks have recently become quite popular. Whether motifs (subgraph patterns that occur more often than in randomized networks) have specific functions as elementary computational circuits has been cause for debate. As the question is difficult to resolve with currently available biological data, we approach the issue using networks that abstractly model natural genetic regulatory networks (GRNs) which are evolved to show dynamical behaviors. Specifically one group of networks was evolved to be capable of exhibiting two different behaviors ("differentiation") in contrast to a group with a single target behavior. In both groups we find motif distribution differences within the groups to be larger than differences between them, indicating that evolutionary niches (target functions) do not necessarily mold network structure uniquely. These results show that variability operators can have a stronger influence on network topologies than selection pressures, especially when many topologies can create similar dynamics. Moreover, analysis of motif functional relevance by lesioning did not suggest that motifs were of greater importance to the functioning of the network than arbitrary subgraph patterns. Only when drastically restricting network size, so that one motif corresponds to a whole functionally evolved network, was preference for particular connection patterns found. This suggests that in non-restricted, bigger networks, entanglement with the rest of the network hinders topological subgraph analysis.
Electrode Slurry Particle Density Mapping Using X-ray Radiography
Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.; ...
2017-01-05
The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less
Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyper, P. F., E-mail: peterw@maths.dundee.ac.uk; Pontin, D. I., E-mail: dpontin@maths.dundee.ac.uk
2014-10-15
In this work, the dynamic magnetic field within a tearing-unstable three-dimensional current sheet about a magnetic null point is described in detail. We focus on the evolution of the magnetic null points and flux ropes that are formed during the tearing process. Generally, we find that both magnetic structures are created prolifically within the layer and are non-trivially related. We examine how nulls are created and annihilated during bifurcation processes, and describe how they evolve within the current layer. The type of null bifurcation first observed is associated with the formation of pairs of flux ropes within the current layer.more » We also find that new nulls form within these flux ropes, both following internal reconnection and as adjacent flux ropes interact. The flux ropes exhibit a complex evolution, driven by a combination of ideal kinking and their interaction with the outflow jets from the main layer. The finite size of the unstable layer also allows us to consider the wider effects of flux rope generation. We find that the unstable current layer acts as a source of torsional magnetohydrodynamic waves and dynamic braiding of magnetic fields. The implications of these results to several areas of heliophysics are discussed.« less
Metamerism in cephalochordates and the problem of the vertebrate head.
Onai, Takayuki; Adachi, Noritaka; Kuratani, Shigeru
2017-01-01
The vertebrate head characteristically exhibits a complex pattern with sense organs, brain, paired eyes and jaw muscles, and the brain case is not found in other chordates. How the extant vertebrate head has evolved remains enigmatic. Historically, there have been two conflicting views on the origin of the vertebrate head, segmental and non-segmental views. According to the segmentalists, the vertebrate head is organized as a metameric structure composed of segments equivalent to those in the trunk; a metamere in the vertebrate head was assumed to consist of a somite, a branchial arch and a set of cranial nerves, considering that the head evolved from rostral segments of amphioxus-like ancestral vertebrates. Non-segmentalists, however, considered that the vertebrate head was not segmental. In that case, the ancestral state of the vertebrate head may be non-segmented, and rostral segments in amphioxus might have been secondarily gained, or extant vertebrates might have evolved through radical modifications of amphioxus-like ancestral vertebrate head. Comparative studies of mesodermal development in amphioxus and vertebrate gastrula embryos have revealed that mesodermal gene expressions become segregated into two domains anteroposteriorly to specify the head mesoderm and trunk mesoderm only in vertebrates; in this segregation, key genes such as delta and hairy, involved in segment formation, are expressed in the trunk mesoderm, but not in the head mesoderm, strongly suggesting that the head mesoderm of extant vertebrates is not segmented. Taken together, the above finding possibly adds a new insight into the origin of the vertebrate head; the vertebrate head mesoderm would have evolved through an anteroposterior polarization of the paraxial mesoderm if the ancestral vertebrate had been amphioxus-like.
Blended particle filters for large-dimensional chaotic dynamical systems
Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.
2014-01-01
A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886
Scharff, David E; Losso, Roberto; Setton, Lea
2017-02-01
Enrique Pichon Rivière's work, fundamental to Latin American and European psychoanalytic development, is largely unknown in English-language psychoanalysis. Pichon's central contribution, the link (el vinculo), describes relational bonds in all dimensions. People are born into, live in, and relate through links. Psychic structure is built of links that then influence external interaction. Links, expressed in mind, body and external action, continuously join internal and external worlds. Links have two axes: vertical axis links connect generations through unconscious transgenerational transmission; horizontal axis links connect persons to life partners, family, community and society. For Pichon, treatment constitutes a spiral process through which interpretation disrupts existent structures, promoting new emergent organizations at successively deeper levels. Psychic and link structures evolve over time unless repetitive cycles stunt growth. For Pichon, transference is constituted in the here-and-now-with-me because of the analytic link. Pichon also undertook family and group psychoanalysis where individuals become spokespersons for unconscious links and family secrets. He developed operative groups that apply psychoanalysis to both analytic and non-analytic tasks. After describing Pichon's major contributions, the paper compares Pichon Rivière's ideas with those of Klein, Fairbairn, Bion, Winnicott and Bowlby, and contemporary writers including Ogden, Kaës, and Ferro whose works echo Pichon Rivière's thought. Copyright © 2016 Institute of Psychoanalysis.
USSR Report World Economy and International Relations No. 11, November 1983.
1984-02-07
calculation is obvious: destroy the evolved structure of the Soviet nuclear potential, but keep its own hands free in the nuclear arms buildup...exploited and oppressed throughout the world an example of successful struggle for the right of each people to free and independent development and the...here are essentially of a cosmetic nature and more often than not amount to a simple increase in the number of simple operations or functions performed
1983-06-01
and flight activity in: ice protection systems, controls , nearly all general aviation icing instrumentation, experimental aircraft and helicopters can...34’ which approaches are also under evaluation for evolved from the simulated-ice-on-real- controlling galloping on bundle conduc- conductor experimental ...Resources and Electricity Board, State Power Systems, Middelthuns GT. 29, Oslo 3, Norway. 02-469800. Beatrice Felin, Group Leader - Meteorology, Hydro
NASA Astrophysics Data System (ADS)
Ram Prabhu, T.
2016-04-01
In the present study, the hot forging design of a typical landing gear barrel was evolved using finite element simulations and validated with experiments. A DEFORM3D software was used to evolve the forging steps to obtain the sound quality part free of defects with minimum press force requirements. The hot forging trial of a barrel structure was carried out in a 30 MN hydraulic press based on the simulation outputs. The tensile properties of the part were evaluated by taking samples from all three orientations (longitudinal, long transverse, short transverse). The hardness and microstructure of the part were also investigated. To study the soundness of the product, fluorescent penetrant inspection and ultrasonic testing were performed in order to identify any potential surface or internal defects in the part. From experiments, it was found that the part was formed successfully without any forging defects such as under filling, laps, or folds that validated the effectiveness of the process simulation. The tensile properties of the part were well above the specification limit (>10%) and the properties variation with respect to the orientation was less than 2.5%. The part has qualified the surface defects level of Mil Std 1907 Grade C and the internal defects level of AMS 2630 Class A (2 mm FBh). The microstructure shows mean grain length and width of 167 and 66 µm in the longitudinal direction. However, microstructure results revealed that the coarse grain structure was observed on the flat surface near the lug region due to the dead zone formation. An innovative and simple method of milling the surface layer after each pressing operation was applied to solve the problem of the surface coarse grain structure.
NASA Technical Reports Server (NTRS)
Shannon, G.; Wei, C.; Pohorille, A.
2017-01-01
Considering the range of functions proteins perform, it is surprising they fold into a relatively small set of structures or "folds" that facilitate such function. One explanation is that only a minority were fit enough to emerge from Darwinian selection during the early evolution of life. Alternatively, perhaps only a fraction of all possible folds were trialed. Understanding proto-catalyst selection will aid understanding of the origins and early evolution of life. To investigate which explanation is correct, we study a protein evolved in vitro to bind ATP by Jack Szostak (Fig. 1). This protein adopts a fold which is absent from nature. We are testing whether this fold would have possessed the capability to evolve that would have been essential to survive natural selection on early Earth. Folds that couldn't improve their fitness and evolve to perform new functions would have been replaced by rivals that could. To determine whether the fold is evolvable, we are attempting to change the function of the protein by rationally redesigning to bind GTP. Two design strategies in the region of the nucleobase have been implemented to provide hydrogen bonding partners for the ligand i) an insertion ii) a MET to ASN mutation. Redesigns are being studied computationally at Ames Research Center including free energy of binding calculations. Binding affinities of promising redesigns are to be validated by experimental collaborators at ForteBio using Super Streptavidin Biosensors. If the fold is found to be non-evolvable, this may suggest that many structures were trialed, but the majority were pruned on the basis of their evolvability. Alternatively, if the fold is demonstrated to be evolvable, it would be difficult to explain its absence from nature without considering the possibility that the fold simply wasn't sampled on early Earth. This would not only further our understanding of the origins of life on Earth but also suggest a common phe-nomenon of proto-catalyst evolution.
ERIC Educational Resources Information Center
Kidd, Ross, Ed.; Colletta, Nat, Ed.
Case studies and seminar reports are provided that were presented at an international seminar to examine field experiences in using a culture-based approach to nonformal education. Part I, containing an introductory paper and nine case studies, focuses on indigenous institutions and processes in health, family planning, agriculture, basic…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pooley, G.R.
In the aftermath of the Cold War it becomes necessary to explore the validity of nuclear deterrence as the cornerstone of the United States National Military Strategy for the upcoming period of transition in international relations. Using the current world situation as a starting point, the evolving trends in international relations, arms control and nuclear proliferation, the strategic threat and the evolution of technology will be analyzed in an effort to forecast the complexion of international relations twenty years hence. Then, within this context, nuclear deterrence and a non nuclear alternative nonoffensive defense, proposed by the Danish political scientist, Bjornmore » Moller, will be examined. In the final analysis, this project will suggest an appropriate direction for the evolution of the United States' National Military Strategy which, in the opinion of the author, provides the best probability for long term world peace.« less
Naef, Markus; Mouton, Wolfgang G; Wagner, Hans E
2010-12-01
Internal hernias are a specific cause of acute abdominal pain and are a well-known complication after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Although internal hernias are a rare cause of intestinal obstruction, they may evolve towards serious complications, such as extensive bowel ischemia and gangrene, with the need for bowel resection and sometimes for a challenging reconstruction of intestinal continuity. The antecolic position of the Roux limb is associated with a decrease in the incidence of small-bowel obstruction and internal hernias. The best prevention of the formation of these hernias is probably by closure of potential mesenteric defects at the initial operation with a non-absorbable running suture. We present a patient in late pregnancy with a small-bowel volvulus following laparoscopic Roux-en-Y gastric bypass for morbid obesity and discuss the available literature. For a favorable obstetric and neonatal outcome, it is crucial not to delay surgical exploration and an emergency operation usually is mandatory.
Non Linear Analyses for the Evaluation of Seismic Behavior of Mixed R.C.-Masonry Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liberatore, Laura; Tocci, Cesare; Masiani, Renato
2008-07-08
In this work the seismic behavior of masonry buildings with mixed structural system, consisting of perimeter masonry walls and internal r.c. frames, is studied by means of non linear static (pushover) analyses. Several aspects, like the distribution of seismic action between masonry and r.c. elements, the local and global behavior of the structure, the crisis of the connections and the attainment of the ultimate strength of the whole structure are examined. The influence of some parameters, such as the masonry compressive and tensile strength, on the structural behavior is investigated. The numerical analyses are also repeated on a building inmore » which the r.c. internal frames are replaced with masonry walls.« less
Sideris, Michail; Hanrahan, John; Tsoulfas, Georgios; Theodoulou, Iakovos; Dhaif, Fatema; Papalois, Vassilios; Papagrigoriadis, Savvas; Velmahos, George; Turner, Patricia; Papalois, Apostolos
2018-05-01
Essential Skills in the Management of Surgical Cases (ESMSC) is a novel 3-day international undergraduate surgical masterclass. Its current curriculum (Cores integrated for Research-Ci4R) is built on a tetracore, multiclustered architecture combining high-fidelity and low-fidelity simulation-based learning (SBL), with applied and basic science case-based workshops, and non-technical skills modules. We aimed to report our experience in setting up ESMSC during the global financial crisis. We report the evolution of our curriculum's methodology and summarised the research outcomes related to the objective performance improvement of delegates, the educational environment of the course and the use of mixed-fidelity SBL. Feedback from the last three series of the course was prospectively collected and analysed using univariate statistics on IBM SPSS V.23. 311 medical students across the European Union (EU) were selected from a competitive pool of 1280 applicants during seven series of the course between 2014 and 2017. During this period, curriculum 14 s evolved to the final Ci4R version, which integrates a tetracore structure combining 32 stations of in vivo, ex vivo and dry lab SBL with small group teaching workshops. Ci4R was positively perceived across different educational background students (p>0.05 for any comparison). ESMSC is considered an innovative and effective multidisciplinary teaching model by delegates, where it improves delegates objective performance in basic surgical skills. Our experience demonstrates provision of high-quality and free surgical education during a financial crisis, which evolved through a dynamic feedback mechanism. The prospective recording and subsequent analysis of curriculum evolution provides a blueprint to direct development of effective surgical education courses that can be adapted to local needs. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Toward a model of school inspections in a polycentric system.
Janssens, Frans J G; Ehren, Melanie C M
2016-06-01
Many education systems are developing towards more lateral structures where schools collaborate in networks to improve and provide (inclusive) education. These structures call for bottom-up models of network evaluation and accountability instead of the current hierarchical arrangements where single schools are evaluated by a central agency. This paper builds on available research about network effectiveness to present evolving models of network evaluation. Network effectiveness can be defined as the achievement of positive network level outcomes that cannot be attained by individual organizational participants acting alone. Models of network evaluation need to take into account the relations between network members, the structure of the network, its processes and its internal mechanism to enforce norms in order to understand the achievement and outcomes of the network and how these may evolve over time. A range of suitable evaluation models are presented in this paper, as well as a tentative school inspection framework which is inspired by these models. The final section will present examples from Inspectorates of Education in Northern Ireland and Scotland who have developed newer inspection models to evaluate the effectiveness of a range of different networks. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of internal duplication in the evolution of multi-domain proteins.
Nacher, J C; Hayashida, M; Akutsu, T
2010-08-01
Many proteins consist of several structural domains. These multi-domain proteins have likely been generated by selective genome growth dynamics during evolution to perform new functions as well as to create structures that fold on a biologically feasible time scale. Domain units frequently evolved through a variety of genetic shuffling mechanisms. Here we examine the protein domain statistics of more than 1000 organisms including eukaryotic, archaeal and bacterial species. The analysis extends earlier findings on asymmetric statistical laws for proteome to a wider variety of species. While proteins are composed of a wide range of domains, displaying a power-law decay, the computation of domain families for each protein reveals an exponential distribution, characterizing a protein universe composed of a thin number of unique families. Structural studies in proteomics have shown that domain repeats, or internal duplicated domains, represent a small but significant fraction of genome. In spite of its importance, this observation has been largely overlooked until recently. We model the evolutionary dynamics of proteome and demonstrate that these distinct distributions are in fact rooted in an internal duplication mechanism. This process generates the contemporary protein structural domain universe, determines its reduced thickness, and tames its growth. These findings have important implications, ranging from protein interaction network modeling to evolutionary studies based on fundamental mechanisms governing genome expansion.
NASA Astrophysics Data System (ADS)
Nicchio, Matheus A.; Nogueira, Francisco C. C.; Balsamo, Fabrizio; Souza, Jorge A. B.; Carvalho, Bruno R. B. M.; Bezerra, Francisco H. R.
2018-02-01
In this work we describe the deformation mechanisms and processes that occurred during the evolution of cataclastic deformation bands developed in the feldspar-rich conglomerates of the Rio do Peixe Basin, NE Brazil. We studied bands with different deformation intensities, ranging from single cm-thick tabular bands to more evolved clustering zones. The chemical identification of cataclastic material within deformation bands was performed using compositional mapping in SEM images, EDX and XRD analyses. Deformation processes were identified by microstructural analysis and by the quantification of comminution intensity, performed using digital image processing. The deformation bands are internally non homogeneous and developed during five evolutionary stages: (1) moderate grain size reduction, grain rotation and grain border comminution; (2) intense grain size reduction with preferential feldspar fragmentation; (3) formation of subparallel C-type slip zones; (4) formation of S-type structures, generating S-C-like fabric; and (5) formation of C‧-type slip zones, generating well-developed foliation that resembles S-C-C‧-type structures in a ductile environment. Such deformation fabric is mostly imparted by the preferential alignment of intensely comminuted feldspar fragments along thin slip zones developed within deformation bands. These processes were purely mechanical (i.e., grain crushing and reorientation). No clays or fluids were involved in such processes.
Humanitarian responses to mass violence perpetrated against vulnerable populations.
Gellert, G. A.
1995-01-01
This multidisciplinary review links three areas of legitimate inquiry for practitioners of medicine and public health. The first is occurrences of mass violence or genocide perpetrated against vulnerable populations, with a focus on the failure of national and international mechanisms to prevent or predict such violence. The second is evolving concepts of national sovereignty and an emerging framework in which the imperative to assist vulnerable populations supersedes a state's right to self determination. The last is how medical, public health, and other systems of surveillance and rapid assessment of mass violence can accelerate public awareness and facilitate structured, consistent political decision making to prevent mass violence and to provide international humanitarian assistance. Images p1000-a PMID:7580643
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhihui; Ma, Qiang; Wu, Junlin
2014-12-09
Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinatemore » points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body.« less
Evolution of the IBDM Structural Latch Development into a Generic Simplified Design
NASA Technical Reports Server (NTRS)
DeVriendt, K.; Dittmer, H.; Vrancken, D.; Urmston, P.; Gracia, O.
2010-01-01
This paper presents the evolution in the development of the structural latch for the International Berthing Docking Mechanism (IBDM, see Figure 1). It reports on the lessons learned since completion of the test program on the engineering development unit of the first generation latching system in 2007. The initial latch design has been through a second generation concept in 2008, and now evolved into a third generation of this mechanism. Functional and structural testing on the latest latch hardware has recently been completed with good results. The IBDM latching system will provide the structural connection between two mated space vehicles after berthing or docking. The mechanism guarantees that the interface seals become compressed to form a leak-tight pressure system that creates a passageway for the astronauts.
Autonomous learning by simple dynamical systems with delayed feedback.
Kaluza, Pablo; Mikhailov, Alexander S
2014-09-01
A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.
Exploring the Internal Dynamics of Globular Clusters
NASA Astrophysics Data System (ADS)
Watkins, Laura L.; van der Marel, Roeland; Bellini, Andrea; Luetzgendorf, Nora; HSTPROMO Collaboration
2018-01-01
Exploring the Internal Dynamics of Globular ClustersThe formation histories and structural properties of globular clusters are imprinted on their internal dynamics. Energy equipartition results in velocity differences for stars of different mass, and leads to mass segregation, which results in different spatial distributions for stars of different mass. Intermediate-mass black holes significantly increase the velocity dispersions at the centres of clusters. By combining accurate measurements of their internal kinematics with state-of-the-art dynamical models, we can characterise both the velocity dispersion and mass profiles of clusters, tease apart the different effects, and understand how clusters may have formed and evolved.Using proper motions from the Hubble Space Telescope Proper Motion (HSTPROMO) Collaboration for a set of 22 Milky Way globular clusters, and our discrete dynamical modelling techniques designed to work with large, high-quality datasets, we are studying a variety of internal cluster properties. We will present the results of theoretical work on simulated clusters that demonstrates the efficacy of our approach, and preliminary results from application to real clusters.
Function and application of a non-ester-hydrolyzing carboxylesterase discovered in tulip.
Nomura, Taiji
2017-01-01
Plants have evolved secondary metabolite biosynthetic pathways of immense rich diversity. The genes encoding enzymes for secondary metabolite biosynthesis have evolved through gene duplication followed by neofunctionalization, thereby generating functional diversity. Emerging evidence demonstrates that some of those enzymes catalyze reactions entirely different from those usually catalyzed by other members of the same family; e.g. transacylation catalyzed by an enzyme similar to a hydrolytic enzyme. Tuliposide-converting enzyme (TCE), which we recently discovered from tulip, catalyzes the conversion of major defensive secondary metabolites, tuliposides, to antimicrobial tulipalins. The TCEs belong to the carboxylesterase family in the α/β-hydrolase fold superfamily, and specifically catalyze intramolecular transesterification, but not hydrolysis. This non-ester-hydrolyzing carboxylesterase is an example of an enzyme showing catalytic properties that are unpredictable from its primary structure. This review describes the biochemical and physiological aspects of tulipalin biogenesis, and the diverse functions of plant carboxylesterases in the α/β-hydrolase fold superfamily.
Evolution of inviscid Kelvin-Helmholtz instability from a piecewise linear shear layer
NASA Astrophysics Data System (ADS)
Guha, Anirban; Rahmani, Mona; Lawrence, Gregory
2012-11-01
Here we study the evolution of 2D, inviscid Kelvin-Helmholtz instability (KH) ensuing from a piecewise linear shear layer. Although KH pertaining to smooth shear layers (eg. Hyperbolic tangent profile) has been thorough investigated in the past, very little is known about KH resulting from sharp shear layers. Pozrikidis and Higdon (1985) have shown that piecewise shear layer evolves into elliptical vortex patches. This non-linear state is dramatically different from the well known spiral-billow structure of KH. In fact, there is a little acknowledgement that elliptical vortex patches can represent non-linear KH. In this work, we show how such patches evolve through the interaction of vorticity waves. Our work is based on two types of computational methods (i) Contour Dynamics: a boundary-element method which tracks the evolution of the contour of a vortex patch using Lagrangian marker points, and (ii) Direct Numerical Simulation (DNS): an Eulerian pseudo-spectral method heavily used in studying hydrodynamic instability and turbulence.
The Topology of a Local Trade Web and Impacts of the us Financial Crisis
NASA Astrophysics Data System (ADS)
Feng, Xiaobing; Hu, Haibo; Wang, Xiaofan
In this paper a local trade web (LTW) in the Asia-Pacific region is examined using the data derived from the United Nations and the International Monetary Fund. The topology of the LTW has been specified, based upon which the impacts of US financial crisis on the structural and behavior pattern of the LTW are further investigated. The major findings are given as follows. Firstly, the LTW is much more integrated than the global trade web; secondly, after the financial crisis, the fundamental structure of the network remains relatively stable but the strength of the web has been changed and the structure of the web has evolved over time. Economic implications for what have been observed are also discussed.
Contribution of SELENE-2 geodetic measurements to constrain the lunar internal structure
NASA Astrophysics Data System (ADS)
Matsumoto, K.; Kikuchi, F.; Yamada, R.; Iwata, T.; Kono, Y.; Tsuruta, S.; Hanada, H.; Goossens, S. J.; Ishihara, Y.; Kamata, S.; Sasaki, S.
2012-12-01
Internal structure and composition of the Moon provide important clue and constraints on theories for how the Moon formed and evolved. The Apollo seismic network has contributed to the internal structure modeling. Efforts have been made to detect the lunar core from the noisy Apollo data (e.g., [1], [2]), but there is scant information about the structure below the deepest moonquakes at about 1000 km depth. On the other hand, there have been geodetic studies to infer the deep structure of the Moon. For example, LLR (Lunar Laser Ranging) data analyses detected a displacement of the lunar pole of rotation, indicating that dissipation is acting on the rotation arising from a fluid core [3]. Bayesian inversion using geodetic data (such as mass, moments of inertia, tidal Love numbers k2 and h2, and quality factor Q) also suggests a fluid core and partial melt in the lower mantle region [4]. Further improvements in determining the second-degree gravity coefficients (which will lead to better estimates of moments of inertia) and the Love number k2 will help us to better constrain the lunar internal structure. Differential VLBI (Very Long Baseline Interferometry) technique, which was used in the Japanese lunar exploration mission SELENE (Sept. 2007 - June 2009), is expected to contribute to better determining the second-degree potential Love number k2 and low-degree gravity coefficients. SELENE will be followed by the future lunar mission SELENE-2 which will carry both a lander and an orbiter. We propose to put the SELENE-type radio sources on these spacecraft in order to accurately estimate k2 and the low-degree gravity coefficients. By using the same-beam VLBI tracking technique, these parameters will be retrieved through precision orbit determination of the orbiter with respect to the lander which serves as a reference. The VLBI mission with the radio sources is currently one of the mission candidates for SELENE-2. We have conducted a preliminary simulation study on the anticipated k2 accuracy. With the assumed mission duration of about 3 months and the arc length of 14 days, the k2 accuracy is estimated to be better than 1 %, where the uncertainty is evaluated as 10 times the formal error considering the errors in the non-conservative force modeling and in the lander position. We carried out a feasibility study using Bayesian inversion on how well we can constrain the lunar internal structure by the geodetic data to be improved by SELENE-2. It will be shown that such improved geodetic data contribute to narrow the range of the plausible internal structure models, but there are still trade-offs among crust, mantle, and core structures. Preliminary simulation results will be presented to show that the accuracy of core structure estimation will be improved in consequence of better determination of the mantle structure by combining the geodetic data with the seismic data. References [1] Weber et al. (2011), Science, 331, 309-312, doi:10.1126/science.1199375 [2] Garcia eta l. (2011), PEPI, doi:10.1016/j.pepi.2011.06.015 [3] Williams et al. (2001), JGR, 106, E11, 27,933-27,968 [4] Khan and Mosegaard (2005), GRL, 32, L22203, doi:10.1029/2005GL023985
McNamara, Maria E; Zhang, Fucheng; Kearns, Stuart L; Orr, Patrick J; Toulouse, André; Foley, Tara; Hone, David W E; Rogers, Chris S; Benton, Michael J; Johnson, Diane; Xu, Xing; Zhou, Zhonghe
2018-05-25
Feathers are remarkable evolutionary innovations that are associated with complex adaptations of the skin in modern birds. Fossilised feathers in non-avian dinosaurs and basal birds provide insights into feather evolution, but how associated integumentary adaptations evolved is unclear. Here we report the discovery of fossil skin, preserved with remarkable nanoscale fidelity, in three non-avian maniraptoran dinosaurs and a basal bird from the Cretaceous Jehol biota (China). The skin comprises patches of desquamating epidermal corneocytes that preserve a cytoskeletal array of helically coiled α-keratin tonofibrils. This structure confirms that basal birds and non-avian dinosaurs shed small epidermal flakes as in modern mammals and birds, but structural differences imply that these Cretaceous taxa had lower body heat production than modern birds. Feathered epidermis acquired many, but not all, anatomically modern attributes close to the base of the Maniraptora by the Middle Jurassic.
1989-04-01
1 AD-A257 318 Proceedings of the Fourth International Symposium on the Interaction of Non-nuclear Munfftons with Structures (volume 2) DTIC S ELECTE...volume 2) 6. AUTHOR( S ) Captain Diane B. Miller (Symposium Project Officer) 7. PERFORMING ORGANIZATION NAME( S ) ANI) ADDRESS(ES) 8. PEBF()WING...MONITORING AGENCY NAME( S ) AND ADDRESS(ES) - 10. SPONSORINGiMONITORING AGENCY REPORT NUMBER (Same as 7) 11, SUPPLEMENTARY NOTES 12a. DISTRIBUTION
Monitoring the impacts of trade agreements on food environments.
Friel, S; Hattersley, L; Snowdon, W; Thow, A-M; Lobstein, T; Sanders, D; Barquera, S; Mohan, S; Hawkes, C; Kelly, B; Kumanyika, S; L'Abbe, M; Lee, A; Ma, J; Macmullan, J; Monteiro, C; Neal, B; Rayner, M; Sacks, G; Swinburn, B; Vandevijvere, S; Walker, C
2013-10-01
The liberalization of international trade and foreign direct investment through multilateral, regional and bilateral agreements has had profound implications for the structure and nature of food systems, and therefore, for the availability, nutritional quality, accessibility, price and promotion of foods in different locations. Public health attention has only relatively recently turned to the links between trade and investment agreements, diets and health, and there is currently no systematic monitoring of this area. This paper reviews the available evidence on the links between trade agreements, food environments and diets from an obesity and non-communicable disease (NCD) perspective. Based on the key issues identified through the review, the paper outlines an approach for monitoring the potential impact of trade agreements on food environments and obesity/NCD risks. The proposed monitoring approach encompasses a set of guiding principles, recommended procedures for data collection and analysis, and quantifiable 'minimal', 'expanded' and 'optimal' measurement indicators to be tailored to national priorities, capacity and resources. Formal risk assessment processes of existing and evolving trade and investment agreements, which focus on their impacts on food environments will help inform the development of healthy trade policy, strengthen domestic nutrition and health policy space and ultimately protect population nutrition. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.
the NDB archive or in the Non-Redundant list Advanced Search Search for structures based on structural features, chemical features, binding modes, citation and experimental information Featured Tools RNA 3D Motif Atlas, a representative collection of RNA 3D internal and hairpin loop motifs Non-redundant Lists
NASA Astrophysics Data System (ADS)
Hönnicke, M. G.; Cusatis, C.; Rigon, L.; Menk, R.-H.; Arfelli, F.; Foerster, L. A.; Rosado-Neto, G. H.
2010-08-01
Weevils (Coleoptera: Curculionidae) are identified by the external structure (dorsal, ventral and lateral features) and also by internal structure. The genitalia can be used to distinguish the sex and to identify the insects when the external structure appears identical. For this purpose, a destructive dissecting microscopy procedure is usually employed. In this paper, phase contrast X-ray imaging (radiography and tomography) is employed to investigate the internal structure (genitalia) of two entire species of weevils that presents very similar external structures ( Sitophilus oryzae and Sitophilus zeamais). The detection of features, which looks like the genital structure, shows that such non-destructive technique could be used as an alternative method for identification of insects. This method is especially useful in examining the internal features of precious species from museum collections, as already described in the recent literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.
We report on the identification of dynamic flaring non-potential structures on quiet Sun (QS) supergranular network scales. Data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory allow for the high spatial and temporal resolution of this diverse class of compact structures. The rapidly evolving non-potential events presented here, with lifetimes <10 minutes, are on the order of 10″ in length. Thus, they contrast significantly with well-known active region (AR) non-potential structures such as high-temperature X-ray and EUV sigmoids (>100″) and micro-sigmoids (>10″) with lifetimes on the order of hours to days. The photospheric magnetic field environment derivedmore » from the Helioseismic and Magnetic Imager shows a lack of evidence for these flaring non-potential fields being associated with significant concentrations of bipolar magnetic elements. Of much interest to our events is the possibility of establishing them as precursor signatures of eruptive dynamics, similar to notions for AR sigmoids and micro-sigmoids, but associated with uneventful magnetic network regions. We suggest that the mixed network flux of QS-like magnetic environments, though unresolved, can provide sufficient free magnetic energy for flaring non-potential plasma structuring. The appearance of non-potential magnetic fields could be a fundamental process leading to self-organized criticality in the QS-like supergranular network and contribute to coronal heating, as these events undergo rapid helicial and vortical relaxations.« less
Crystallography of rare galactic honeycomb structure near supernova 1987a
NASA Technical Reports Server (NTRS)
Noever, David A.
1994-01-01
Near supernova 1987a, the rare honeycomb structure of 20-30 galactic bubbles measures 30 x 90 light years. Its remarkable regularity in bubble size suggests a single-event origin which may correlate with the nearby supernova. To test the honeycomb's regularity in shape and size, the formalism of statistical crystallography is developed here for bubble sideness. The standard size-shape relations (Lewis's law, Desch's law, and Aboav-Weaire's law) govern area, perimeter and nearest neighbor shapes. Taken together, they predict a highly non-equilibrium structure for the galactic honeycomb which evolves as a bimodal shape distribution without dominant bubble perimeter energy.
A Strategy to Increase the International Visibility and Participation of a State University
ERIC Educational Resources Information Center
Lucas, Stephen R.; Miles, Benton E.
2007-01-01
This paper presents a strategy for expanding a university's international participation. An effort to correct international exchange imbalances evolved into a unique international program and partnership with Walt Disney World.
The immune system as a biomonitor: explorations in innate and adaptive immunity
Thomas, Niclas; Heather, James; Pollara, Gabriel; Simpson, Nandi; Matjeka, Theres; Shawe-Taylor, John; Noursadeghi, Mahdad; Chain, Benjamin
2013-01-01
The human immune system has a highly complex, multi-layered structure which has evolved to detect and respond to changes in the internal microenvironment of the body. Recognition occurs at the molecular or submolecular scale, via classical reversible receptor–ligand interactions, and can lead to a response with great sensitivity and speed. Remarkably, recognition is coupled to memory, such that responses are modulated by events which occurred years or even decades before. Although the immune system in general responds differently and more vigorously to stimuli entering the body from the outside (e.g. infections), this is an emergent property of the system: many of the recognition molecules themselves have no inherent bias towards external stimuli (non-self) but also bind targets found within the body (self). It is quite clear that the immune response registers pathophysiological changes in general. Cancer, wounding and chronic tissue injury are some obvious examples. Against this background, the immune system ‘state’ tracks the internal processes of the body, and is likely to encode information regarding both current and past disease processes. Moreover, the distributed nature of most immune responses (e.g. typically involving lymphoid tissue, non-lymphoid tissue, bone marrow, blood, extracellular interstitial spaces, etc.) means that many of the changes associated with immune responses are manifested systemically, and specifically can be detected in blood. This provides a very convenient route to sampling immune cells. We consider two different and complementary ways of querying the human immune ‘state’ using high-dimensional genomic screening methodologies, and discuss the potentials of these approaches and some of the technological and computational challenges to be overcome. PMID:24427535
NASA Astrophysics Data System (ADS)
Hu, Yuanyuan; Xu, Yingying; Hao, Qun; Hu, Yao
2013-12-01
The tubing internal thread plays an irreplaceable role in the petroleum equipment. The unqualified tubing can directly lead to leakage, slippage and bring huge losses for oil industry. For the purpose of improving efficiency and precision of tubing internal thread detection, we develop a new non-contact tubing internal thread measurement system based on the laser triangulation principle. Firstly, considering that the tubing thread had a small diameter and relatively smooth surface, we built a set of optical system with a line structured light to irradiate the internal thread surface and obtain an image which contains the internal thread profile information through photoelectric sensor. Secondly, image processing techniques were used to do the edge detection of the internal thread from the obtained image. One key method was the sub-pixel technique which greatly improved the detection accuracy under the same hardware conditions. Finally, we restored the real internal thread contour information on the basis of laser triangulation method and calculated tubing thread parameters such as the pitch, taper and tooth type angle. In this system, the profile of several thread teeth can be obtained at the same time. Compared with other existing scanning methods using point light and stepper motor, this system greatly improves the detection efficiency. Experiment results indicate that this system can achieve the high precision and non-contact measurement of the tubing internal thread.
Evolving nucleotide binding surfaces
NASA Technical Reports Server (NTRS)
Kieber-Emmons, T.; Rein, R.
1981-01-01
An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.
NASA Astrophysics Data System (ADS)
Zhang, Jinggui
2017-09-01
In this paper, we first derive a modified two-dimensional non-linear Schrödinger equation including high-order diffraction (HOD) suitable for the propagation of optical beam near the low-diffraction regime in Kerr non-linear media with spatial dispersion. Then, we apply our derived physical model to a designed two-dimensional configuration filled with alternate layers of a left-handed material (LHM) and a right-handed media by employing the mean-field theory. It is found that the periodic structure including LHM may experience diminished, cancelled, and even reversed diffraction behaviours through engineering the relative thickness between both media. In particular, the variational method analytically predicts that close to the zero-diffraction regime, such periodic structure can support stable diffraction-management solitons whose beamwidth and peak amplitude evolve periodically with the help of HOD effect. Numerical simulation based on the split-step Fourier method confirms the analytical results.
Rotational characterization of methyl methacrylate: Internal dynamics and structure determination
NASA Astrophysics Data System (ADS)
Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe
2018-01-01
Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.
Guillemot, Fabien; Mironov, Vladimir; Nakamura, Makoto
2010-03-01
The International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09) demonstrated that the field of bioprinting and biofabrication continues to evolve. The increasing number and broadening geography of participants, the emergence of new exciting bioprinting technologies, and the attraction of young investigators indicates the strong growth potential of this emerging field. Bioprinting can be defined as the use of computer-aided transfer processes for patterning and assembling living and non-living materials with a prescribed 2D or 3D organization in order to produce bio-engineered structures serving in regenerative medicine, pharmacokinetic and basic cell biology studies. The use of bioprinting technology for biofabrication of in vitro assay has been shown to be a realistic short-term application. At the same time, the principal feasibility of bioprinting vascularized human organs as well as in vivo bioprinting has been demonstrated. The bioprinting of complex 3D human tissues and constructs in vitro and especially in vivo are exciting, but long-term, applications. It was decided that the 5th International Conference on Bioprinting and Biofabrication would be held in Philadelphia, USA in October 2010. The specially appointed 'Eploratory Committee' will consider the possibility of turning the growing bioprinting community into a more organized entity by creating a new bioprinting and biofabrication society. The new journal Biofabrication was also presented at 3B'09. This is an important milestone per se which provides additional objective evidence that the bioprinting and biofabrication field is consolidating and maturing. Thus, it is safe to state that bioprinting technology is coming of age.
Massive stars in advanced evolutionary stages, and the progenitor of GW150914
NASA Astrophysics Data System (ADS)
Hamann, Wolf-Rainer; Oskinova, Lidia; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha
2017-11-01
The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these factors implies large uncertainties for models of stellar populations and their feedback. In this contribution we summarize our empirical studies of Wolf-Rayet populations at different metallicities by means of modern non-LTE stellar atmosphere models, and confront these results with the predictions of stellar evolution models. At the metallicity of our Galaxy, stellar winds are probably too strong to leave remnant masses as high as ~30 M⊙, but given the still poor agreement between evolutionary tracks and observation even this conclusion is debatable. At the low metallicity of the Small Magellanic Cloud, all WN stars which are (at least now) single are consistent with evolving quasi-homogeneously. O and B-type stars, in contrast, seem to comply with standard evolutionary models without strong internal mixing. Close binaries which avoided early merging could evolve quasi-homogeneously and lead to close compact remnants of relatively high masses that merge within a Hubble time.
Foldability of a Natural De Novo Evolved Protein.
Bungard, Dixie; Copple, Jacob S; Yan, Jing; Chhun, Jimmy J; Kumirov, Vlad K; Foy, Scott G; Masel, Joanna; Wysocki, Vicki H; Cordes, Matthew H J
2017-11-07
The de novo evolution of protein-coding genes from noncoding DNA is emerging as a source of molecular innovation in biology. Studies of random sequence libraries, however, suggest that young de novo proteins will not fold into compact, specific structures typical of native globular proteins. Here we show that Bsc4, a functional, natural de novo protein encoded by a gene that evolved recently from noncoding DNA in the yeast S. cerevisiae, folds to a partially specific three-dimensional structure. Bsc4 forms soluble, compact oligomers with high β sheet content and a hydrophobic core, and undergoes cooperative, reversible denaturation. Bsc4 lacks a specific quaternary state, however, existing instead as a continuous distribution of oligomer sizes, and binds dyes indicative of amyloid oligomers or molten globules. The combination of native-like and non-native-like properties suggests a rudimentary fold that could potentially act as a functional intermediate in the emergence of new folded proteins de novo. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nonextensivity in a Dark Maximum Entropy Landscape
NASA Astrophysics Data System (ADS)
Leubner, M. P.
2011-03-01
Nonextensive statistics along with network science, an emerging branch of graph theory, are increasingly recognized as potential interdisciplinary frameworks whenever systems are subject to long-range interactions and memory. Such settings are characterized by non-local interactions evolving in a non-Euclidean fractal/multi-fractal space-time making their behavior nonextensive. After summarizing the theoretical foundations from first principles, along with a discussion of entropy bifurcation and duality in nonextensive systems, we focus on selected significant astrophysical consequences. Those include the gravitational equilibria of dark matter (DM) and hot gas in clustered structures, the dark energy(DE) negative pressure landscape governed by the highest degree of mutual correlations and the hierarchy of discrete cosmic structure scales, available upon extremizing the generalized nonextensive link entropy in a homogeneous growing network.
Code of Federal Regulations, 2014 CFR
2014-10-01
... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...
Code of Federal Regulations, 2012 CFR
2012-10-01
... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...
Code of Federal Regulations, 2013 CFR
2013-10-01
... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...
Code of Federal Regulations, 2011 CFR
2011-10-01
... independent tanks 3 Wood hull ship and barge Unmanned deck cargo barge 4 Unmanned double hull freight barge 5....40-3(a)—Salt Water Service Vessels Examination Intervals in Years Single hull ship and barge Double... hull structure. 5 Applicable to unmanned/non-permissively manned double hull freight barges (double...
The American Society of Clinical Oncology's Efforts to Support Global Cancer Medicine
El-Saghir, Nagi S.; Cufer, Tanja; Cazap, Eduardo; de Guzman, Roselle; Othieno-Abinya, Nicholas Anthony; Sanchez, Jose Angel; Pyle, Doug
2016-01-01
Despite much progress in the management of malignant diseases, the number of new cases and cancer-related deaths continues to rise around the world. More than half of new cases occur in economically developing countries, where more than two thirds of cancer deaths are expected. However, implementation of all necessary steps to accomplish the dissemination of state-of-the-art prevention, diagnosis, and management will require increased allocation of resources, and, more importantly, harmonization of the efforts of hundreds of national and international public health agencies, policy-setting bodies, governments, pharmaceutical companies, and philanthropic organizations. More than 30% of the members of the American Society of Clinical Oncology (ASCO) reside and practice outside US borders, and more than half of attendees at all of the scientific congresses and symposia organized by ASCO are international. As cancer has become an increasingly global disease, ASCO has evolved as a global organization. The ASCO Board of Directors currently includes members from France, Brazil, and Canada. In 2013, the ASCO Board of Directors identified a number of strategic priorities for the future. Recognizing the importance of non-US members to the society, their first strategic priority was improving the society's service to non-US members and defining these members' identity in the international oncology community. This article reviews current ASCO activities in the international arena and its future plans in global oncology. PMID:26578614
Simulation in International Relations Education.
ERIC Educational Resources Information Center
Starkey, Brigid A.; Blake, Elizabeth L.
2001-01-01
Discusses the educational implications of simulations in international relations. Highlights include the development of international relations simulations; the role of technology; the International Communication and Negotiation Simulations (ICONS) project at the University of Maryland; evolving information technology; and simulating real-world…
Light-induced electronic non-equilibrium in plasmonic particles.
Kornbluth, Mordechai; Nitzan, Abraham; Seideman, Tamar
2013-05-07
We consider the transient non-equilibrium electronic distribution that is created in a metal nanoparticle upon plasmon excitation. Following light absorption, the created plasmons decohere within a few femtoseconds, producing uncorrelated electron-hole pairs. The corresponding non-thermal electronic distribution evolves in response to the photo-exciting pulse and to subsequent relaxation processes. First, on the femtosecond timescale, the electronic subsystem relaxes to a Fermi-Dirac distribution characterized by an electronic temperature. Next, within picoseconds, thermalization with the underlying lattice phonons leads to a hot particle in internal equilibrium that subsequently equilibrates with the environment. Here we focus on the early stage of this multistep relaxation process, and on the properties of the ensuing non-equilibrium electronic distribution. We consider the form of this distribution as derived from the balance between the optical absorption and the subsequent relaxation processes, and discuss its implication for (a) heating of illuminated plasmonic particles, (b) the possibility to optically induce current in junctions, and (c) the prospect for experimental observation of such light-driven transport phenomena.
Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W.; Disney, Matthew D.
2011-01-01
RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5′CUG/3′GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures are disclosed of a model DM1 triplet repeating construct, 5′r(UUGGGC(CUG)3GUCC)2, refined to 2.20 Å and 1.52 Å resolution. Here, differences in orientation of the 5′ dangling UU end between the two structures induce changes in the backbone groove width, which reveals that non-canonical 1×1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 Å structure, CUGa, the 5′UU forms one hydrogen-bonded pairs with a 5′UU of a neighboring helix in the unit cell to form a pseudo-infinite helix. The central 1×1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1×1 nucleotide UU internal loops each form a one hydrogen-bonded pair. In the 1.52 Å structure, CUGb, the 5′ UU dangling end is tucked into the major groove of the duplex. While the canonical paired bases show no change in base pairing, in CUGb the terminal 1×1 nucleotide UU internal loops form now two hydrogen-bonded pairs. Thus, the shift in major groove induced by the 5′UU dangling end alters non-canonical base patterns. Collectively, these structures indicate that 1×1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands. PMID:21988728
Contributions of paleorheumatology to understanding contemporary disease.
Rothschild, B
2002-01-01
As paleopathology has evolved from observational speculation to analysis of testable hypotheses, so too has recognition of its contribution to vertebrate paleontology. In the presence of significant structural and density variation (between matrix and osseous structures), x-rays provide an additional perspective of osseous response to stress and disease. As film techniques are time and cost expensive, fluoroscopy has proven a valuable alternative. Radiologic techniques also allow non-invasive "sectioning" of specimens, illustrating significant internal detail. The object can be "split" on a plane and the two portions rotated to "open" the image. This three-dimensional approach now can be applied to other forms of sequential data to their facilitate 3-dimensional representation graphically or with solid representations. Antigen and microstructure may be well preserved in fossils. Molecular preservation with retention of helical structure and sensitivity to collagenase has been demonstrated in 10,000 year old collagen. Antigen has been extracted from 100 million year old bone and documented, in situ, in 11,000 year old bone. If the appropriate site in the tissue is assessed, if antigen is still present, and if the appropriate antisera is utilized, fixation of the antibody to the specimen can be detected. Minute amounts of DNA can be amplified and analyzed. Recovery of DNA from a 40,000 year old mammoth, 17,000 year old bison and from 25 million year old insects provides opportunity for cloning and independent assessment of relationships. Implications of available technology focuses direction for development of collaborative approaches.
Internal structure analysis of particle-double network gels used in a gel organ replica
NASA Astrophysics Data System (ADS)
Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu
2016-04-01
In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.
Sports clubs as settings for health promotion: fundamentals and an overview to research.
Kokko, Sami
2014-11-01
This paper explores the efficacy and value of sports clubs as a setting for health promotion. Sports clubs for children and adolescents are the primary focus of the paper, and the aims are two-fold. Firstly, the paper aims to review the basis for and elements of the health promoting sports club (HPSC) concept. Secondly, the aim is to overview the international evolution of the HPSC concept and its usefulness in the research. The settings-based health promotion approach forms the basis for the HPSC concept and it is introduced first. Thereafter, both obligating and prospecting factors, to justify the importance for sports clubs to address health promotion, are expressed. Major prospecting factors relate to the facts that sports club activities reach a lot of children and adolescents, and that its educational nature is informal due to voluntary participation. The paper also presents multilevel structure of sports clubs, as well as the determinants affecting the settings-based work. The research concerning health promotion in sports-related settings is evolving worldwide, and Nordic countries are in the front line of this new-wave of settings-based health promotion. Indeed, it has been claimed that, for the settings approach to assimilate to current societal challenges, there is a need to widen the reach of the approach to non-traditional, non-institutional settings, like sports clubs. © 2014 the Nordic Societies of Public Health.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita
2006-01-01
The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.
External Tank - The Structure Backbone
NASA Technical Reports Server (NTRS)
Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle
2011-01-01
The External Tank forms the structural backbone of the Space Shuttle in the launch configuration. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. Choice of lightweight materials both for structure and thermal conditioning was necessary. The tank is large, and unique manufacturing facilities, tooling, handling, and transportation operations were required. Weld processes and tooling evolved with the design as it matured through several block changes, to reduce weight. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the 40 year program. The final configuration and tank weight enabled international space station assembly in a high inclination orbit allowing international cooperation with the Russian Federal Space Agency. Numerous process controls were implemented to assure product quality, and innovative proof testing was accomplished prior to delivery. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to simulate combined environments. Processing improvements included development and use of low spray guns for foam application, additional human factors considerations for production, use of high fidelity mockups during hardware processing with video review, improved tank access, extensive use of non destructive evaluation, and producibility enhancements. Design improvements included redesigned bipod fittings, a bellows heater, a feedline camera active during ascent flight, removal of the protuberance airload ramps, redesigned ice frost ramps, and titanium brackets replaced aluminum brackets on the liquid oxygen feedline. Post flight assessment improved due to significant addition of imagery assets, greatly improving situational awareness. The debris risk was reduced by two orders of magnitude. During this time a major natural disaster was overcome when Katrina damaged the manufacturing facility. Numerous lessons from these efforts are documented within the paper.
Thermodynamic stability of biomolecules and evolution.
Chakravarty, Ashim K
2017-08-01
The thermodynamic stability of biomolecules in the perspective of evolution is a complex issue and needs discussion. Intra molecular bonds maintain the structure and the state of internal energy (E) of a biomolecule at "local minima". In this communication, possibility of loss in internal energy level of a biomolecule through the changes in the bonds has been discussed, that might earn more thermodynamic stability for the molecule. In the process variations in structure and functions of the molecule could occur. Thus, E of a biomolecule is likely to have energy stature for minimization. Such change in energy status is an intrinsic factor for evolving biomolecules buying more stability and generating variations in the structure and function of DNA molecules undergoing natural selection. Thus, the variations might very well contribute towards the process of evolution. A brief discussion on conserved sequence in the light of proposition in this communication has been made at the end. Extension of the idea may resolve certain standing problems in evolution, such as maintenance of conserved sequences in genome of diverse species, pre- versus post adaptive mutations, 'orthogenesis', etc. Copyright © 2017 Elsevier Ltd. All rights reserved.
Meiosis evolves: adaptation to external and internal environments.
Bomblies, Kirsten; Higgins, James D; Yant, Levi
2015-10-01
306 I. 306 II. 307 III. 312 IV. 317 V. 318 319 References 319 SUMMARY: Meiosis is essential for the fertility of most eukaryotes and its structures and progression are conserved across kingdoms. Yet many of its core proteins show evidence of rapid or adaptive evolution. What drives the evolution of meiosis proteins? How can constrained meiotic processes be modified in response to challenges without compromising their essential functions? In surveying the literature, we found evidence of two especially potent challenges to meiotic chromosome segregation that probably necessitate adaptive evolutionary responses: whole-genome duplication and abiotic environment, especially temperature. Evolutionary solutions to both kinds of challenge are likely to involve modification of homologous recombination and synapsis, probably via adjustments of core structural components important in meiosis I. Synthesizing these findings with broader patterns of meiosis gene evolution suggests that the structural components of meiosis coevolve as adaptive modules that may change in primary sequence and function while maintaining three-dimensional structures and protein interactions. The often sharp divergence of these genes among species probably reflects periodic modification of entire multiprotein complexes driven by genomic or environmental changes. We suggest that the pressures that cause meiosis to evolve to maintain fertility may cause pleiotropic alterations of global crossover rates. We highlight several important areas for future research. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
A Study of Energy Partitioning Using A Set of Related Explosive Formulations
NASA Astrophysics Data System (ADS)
Lieber, Mark; Foster, Joseph C., Jr.; Stewart, D. Scott
2011-06-01
Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to kinetic energy during the detonation process. This energy is manifest in the internal thermodynamic energy and the translational flow of the products. Historically, the explosive design problem has focused on intramolecular stoichiometry providing prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employee intermolecular ingredients to alter the spatial and temporal distribution of energy release. CHEETA has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and flow energy in the detonation. The equation of state information from CHEETA has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.
Manipulating low-Reynolds-number flow by a watermill
NASA Astrophysics Data System (ADS)
Zhu, Lailai; Stone, Howard
2017-11-01
Cilia and filaments have evolved in nature to achieve swimming, mixing and pumping at low Reynolds number. Their unique capacity has inspired a variety of biomimetic strategies employing artificial slender structures to manipulate flows in microfluidic devices. Most of them have to rely on an external field, such as magnetic or electric fields to actuate the slender structures actively. In this talk, we will present a new approach of utilizing the underlying flow alone to drive these structures passively. We investigate theoretically and numerically a watermill composing several rigid slender rods in simple flows. Slender body theory with and without considering hydrodynamic interactions is adopted. The theoretical predictions agree qualitatively with the numerical results and quantitatively in certain configurations. A VR International Postdoc Grant from Swedish Research Council ``2015-06334'' (L.Z.) is gratefully acknowledged.
A possible Harappan astronomical observatory at Dholavira
NASA Astrophysics Data System (ADS)
Vahia, Mayank; Menon, Srikumar M.
2013-11-01
Astronomy arises very early in a civilisation and evolves as the civilisation advances. It is therefore reasonable to assume that a vibrant knowledge of astronomy would have been a feature of a civilisation the size of the Harappan Civilisation. We suggest that structures dedicated to astronomy existed in every major Harappan city. One such city was Dholavira, an important trading port that was located on an island in what is now the Rann of Kutch during the peak of the Harappan Civilisation. We have analysed an unusual structure at Dholavira that includes two circular rooms. Upon assuming strategically-placed holes in their ceilings we examine the internal movement of sunlight within these rooms and suggest that the larger structure of which they formed a part could have functioned as an astronomical observatory.
Were the original eubacteria thermophiles?
NASA Technical Reports Server (NTRS)
Achenbach-Richter, L.; Gupta, R.; Stetter, K. O.; Woese, C. R.; Johnson, P. C. (Principal Investigator)
1987-01-01
Thermotoga maritima is one of the more unusual eubacteria: It is highly thermophilic, growing at temperatures higher than any other eubacterium; its cell wall appears to have a unique structure and its lipids a unique composition; and the organism is surrounded by a loose-fitting sheath of unknown function. Its phenotypic uniqueness is matched by its phylogenetic position; Thermotoga maritima represents the deepest known branching in the eubacterial line of descent, as measured by ribosomal RNA sequence comparisons. T. maritima also represents the most slowly evolving of eubacterial lineages. The fact that the two deepest branchings in the eubacterial line of descent (the other, the green non-sulfur bacteria and relatives, i.e. Chloroflexus, Thermomicrobium, etc.) are both basically thermophilic and slowly evolving, strongly suggests that all eubacteria have ultimately arisen from a thermophilic ancestor.
Representation in dynamical agents.
Ward, Ronnie; Ward, Robert
2009-04-01
This paper extends experiments by Beer [Beer, R. D. (1996). Toward the evolution of dynamical neural networks for minimally cognitive behavior. In P. Maes, M. Mataric, J. Meyer, J. Pollack, & S. Wilson (Eds.), From animals to animats 4: Proceedings of the fourth international conference on simulation of adaptive behavior (pp. 421-429). MIT Press; Beer, R. D. (2003). The dynamics of active categorical perception in an evolved model agent (with commentary and response). Adaptive Behavior, 11 (4), 209-243] with an evolved, dynamical agent to further explore the question of representation in cognitive systems. Beer's environmentally-situated visual agent was controlled by a continuous-time recurrent neural network, and evolved to perform a categorical perception task, discriminating circles from diamonds. Despite the agent's high levels of discrimination performance, Beer found no evidence of internal representation in the best-evolved agent's nervous system. Here we examine the generality of this result. We evolved an agent for shape discrimination, and performed extensive behavioral analyses to test for representation. In this case we find that agents developed to discriminate equal-width shapes exhibit what Clark [Clark, A. (1997). The dynamical challenge. Cognitive Science, 21 (4), 461-481] calls "weak-substantive representation". The agent had internal configurations that (1) were understandably related to the object in the environment, and (2) were functionally used in a task relevant way when the target was not visible to the agent.
Wall, Peter Dh; Dickenson, Edward J; Robinson, David; Hughes, Ivor; Realpe, Alba; Hobson, Rachel; Griffin, Damian R; Foster, Nadine E
2016-10-01
Femoroacetabular impingement (FAI) syndrome is increasingly recognised as a cause of hip pain. As part of the design of a randomised controlled trial (RCT) of arthroscopic surgery for FAI syndrome, we developed a protocol for non-operative care and evaluated its feasibility. In phase one, we developed a protocol for non-operative care for FAI in the UK National Health Service (NHS), through a process of systematic review and consensus gathering. In phase two, the protocol was tested in an internal pilot RCT for protocol adherence and adverse events. The final protocol, called Personalised Hip Therapy (PHT), consists of four core components led by physiotherapists: detailed patient assessment, education and advice, help with pain relief and an exercise-based programme that is individualised, supervised and progressed over time. PHT is delivered over 12-26 weeks in 6-10 physiotherapist-patient contacts, supplemented by a home exercise programme. In the pilot RCT, 42 patients were recruited and 21 randomised to PHT. Review of treatment case report forms, completed by physiotherapists, showed that 13 patients (62%) received treatment that had closely followed the PHT protocol. 13 patients reported some muscle soreness at 6 weeks, but there were no serious adverse events. PHT provides a structure for the non-operative care of FAI and offers guidance to clinicians and researchers in an evolving area with limited evidence. PHT was deliverable within the National Health Service, is safe, and now forms the comparator to arthroscopic surgery in the UK FASHIoN trial (ISRCTN64081839). ISRCTN 09754699. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Wall, Peter DH; Dickenson, Edward J; Robinson, David; Hughes, Ivor; Realpe, Alba; Hobson, Rachel; Griffin, Damian R; Foster, Nadine E
2016-01-01
Introduction Femoroacetabular impingement (FAI) syndrome is increasingly recognised as a cause of hip pain. As part of the design of a randomised controlled trial (RCT) of arthroscopic surgery for FAI syndrome, we developed a protocol for non-operative care and evaluated its feasibility. Methods In phase one, we developed a protocol for non-operative care for FAI in the UK National Health Service (NHS), through a process of systematic review and consensus gathering. In phase two, the protocol was tested in an internal pilot RCT for protocol adherence and adverse events. Results The final protocol, called Personalised Hip Therapy (PHT), consists of four core components led by physiotherapists: detailed patient assessment, education and advice, help with pain relief and an exercise-based programme that is individualised, supervised and progressed over time. PHT is delivered over 12–26 weeks in 6–10 physiotherapist-patient contacts, supplemented by a home exercise programme. In the pilot RCT, 42 patients were recruited and 21 randomised to PHT. Review of treatment case report forms, completed by physiotherapists, showed that 13 patients (62%) received treatment that had closely followed the PHT protocol. 13 patients reported some muscle soreness at 6 weeks, but there were no serious adverse events. Conclusion PHT provides a structure for the non-operative care of FAI and offers guidance to clinicians and researchers in an evolving area with limited evidence. PHT was deliverable within the National Health Service, is safe, and now forms the comparator to arthroscopic surgery in the UK FASHIoN trial (ISRCTN64081839). Trial registration number ISRCTN 09754699. PMID:27629405
Revisiting Robustness and Evolvability: Evolution in Weighted Genotype Spaces
Partha, Raghavendran; Raman, Karthik
2014-01-01
Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these properties determines how biological systems are able to withstand mutations and show variation in response to them. Computational studies have explored the relationship between these two properties using neutral networks of RNA sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations, and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network), underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80% or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations evolving on neutral networks of phenotypes, can access less phenotypic variation compared to normal populations evolving on neutral networks. PMID:25390641
Henry, Laurence; Craig, Adrian J. F. K.; Lemasson, Alban; Hausberger, Martine
2015-01-01
Turn-taking in conversation appears to be a common feature in various human cultures and this universality raises questions about its biological basis and evolutionary trajectory. Functional convergence is a widespread phenomenon in evolution, revealing sometimes striking functional similarities between very distant species even though the mechanisms involved may be different. Studies on mammals (including non-human primates) and bird species with different levels of social coordination reveal that temporal and structural regularities in vocal interactions may depend on the species' social structure. Here we test the hypothesis that turn-taking and associated rules of conversations may be an adaptive response to the requirements of social life, by testing the applicability of turn-taking rules to an animal model, the European starling. Birdsong has for many decades been considered as one of the best models of human language and starling songs have been well described in terms of vocal production and perception. Starlings do have vocal interactions where alternating patterns predominate. Observational and experimental data on vocal interactions reveal that (1) there are indeed clear temporal and structural regularities, (2) the temporal and structural patterning is influenced by the immediate social context, the general social situation, the individual history, and the internal state of the emitter. Comparison of phylogenetically close species of Sturnids reveals that the alternating pattern of vocal interactions varies greatly according to the species' social structure, suggesting that interactional regularities may have evolved together with social systems. These findings lead to solid bases of discussion on the evolution of communication rules in relation to social evolution. They will be discussed also in terms of processes, at the light of recent neurobiological findings. PMID:26441787
Parnell, Andrew J; Bradford, James E; Curran, Emma V; Washington, Adam L; Adams, Gracie; Brien, Melanie N; Burg, Stephanie L; Morochz, Carlos; Fairclough, J Patrick A; Vukusic, Pete; Martin, Simon J; Doak, Scott; Nadeau, Nicola J
2018-04-01
Iridescence is an optical phenomenon whereby colour changes with the illumination and viewing angle. It can be produced by thin film interference or diffraction. Iridescent optical structures are fairly common in nature, but relatively little is known about their production or evolution. Here we describe the structures responsible for producing blue-green iridescent colour in Heliconius butterflies. Overall the wing scale structures of iridescent and non-iridescent Heliconius species are very similar, both having longitudinal ridges joined by cross-ribs. However, iridescent scales have ridges composed of layered lamellae, which act as multilayer reflectors. Differences in brightness between species can be explained by the extent of overlap of the lamellae and their curvature as well as the density of ridges on the scale. Heliconius are well known for their Müllerian mimicry. We find that iridescent structural colour is not closely matched between co-mimetic species. Differences appear less pronounced in models of Heliconius vision than models of avian vision, suggesting that they are not driven by selection to avoid heterospecific courtship by co-mimics. Ridge profiles appear to evolve relatively slowly, being similar between closely related taxa, while ridge density evolves faster and is similar between distantly related co-mimics. © 2018 The Authors.
Bradford, James E.; Curran, Emma V.; Washington, Adam L.; Adams, Gracie; Brien, Melanie N.; Burg, Stephanie L.; Morochz, Carlos; Fairclough, J. Patrick A.; Vukusic, Pete; Martin, Simon J.; Doak, Scott
2018-01-01
Iridescence is an optical phenomenon whereby colour changes with the illumination and viewing angle. It can be produced by thin film interference or diffraction. Iridescent optical structures are fairly common in nature, but relatively little is known about their production or evolution. Here we describe the structures responsible for producing blue-green iridescent colour in Heliconius butterflies. Overall the wing scale structures of iridescent and non-iridescent Heliconius species are very similar, both having longitudinal ridges joined by cross-ribs. However, iridescent scales have ridges composed of layered lamellae, which act as multilayer reflectors. Differences in brightness between species can be explained by the extent of overlap of the lamellae and their curvature as well as the density of ridges on the scale. Heliconius are well known for their Müllerian mimicry. We find that iridescent structural colour is not closely matched between co-mimetic species. Differences appear less pronounced in models of Heliconius vision than models of avian vision, suggesting that they are not driven by selection to avoid heterospecific courtship by co-mimics. Ridge profiles appear to evolve relatively slowly, being similar between closely related taxa, while ridge density evolves faster and is similar between distantly related co-mimics. PMID:29669892
Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1
Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J. Preben; Andreasen, Peter A.; Jensen, Jan K.
2016-01-01
Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). PMID:27189939
Adaptive control of dynamical synchronization on evolving networks with noise disturbances
NASA Astrophysics Data System (ADS)
Yuan, Wu-Jie; Zhou, Jian-Fang; Sendiña-Nadal, Irene; Boccaletti, Stefano; Wang, Zhen
2018-02-01
In real-world networked systems, the underlying structure is often affected by external and internal unforeseen factors, making its evolution typically inaccessible. An adaptive strategy was introduced for maintaining synchronization on unpredictably evolving networks [Sorrentino and Ott, Phys. Rev. Lett. 100, 114101 (2008), 10.1103/PhysRevLett.100.114101], which yet does not consider the noise disturbances widely existing in networks' environments. We provide here strategies to control dynamical synchronization on slowly and unpredictably evolving networks subjected to noise disturbances which are observed at the node and at the communication channel level. With our strategy, the nodes' coupling strength is adaptively adjusted with the aim of controlling synchronization, and according only to their received signal and noise disturbances. We first provide a theoretical analysis of the control scheme by introducing an error potential function to seek for the minimization of the synchronization error. Then, we show numerical experiments which verify our theoretical results. In particular, it is found that our adaptive strategy is effective even for the case in which the dynamics of the uncontrolled network would be explosive (i.e., the states of all the nodes would diverge to infinity).
NASA Technical Reports Server (NTRS)
Uchida, Hiroyuki; Tsunemi, Hiroshi; Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya
2012-01-01
We report an X-ray study of the evolved Galactic supernova remnant (SNR) G1S6.2+S.7 based on six pointing observations with Suzaku. The remnant's large extent (100' in diameter) allows us to investigate its radial structure in the northwestern and eastern directions from the apparent center. The X-ray spectra. were well fit with a two-component non-equilibrium ionization model representing the swept-up interstellar medium (ISM) and the metal-rich ejecta. We found prominent central concentrations of Si, S and Fe from the ejecta component; the lighter elements of O, Ne and Mg were distributed more uniformly. The temperature of the ISM component suggests a slow shock (610-960 km/s), hence the remnant's age is estimated to be 7,000-15,000 yr, assuming its distance to be approx. 1.1 kpc. G1S6.2+5.7 has also been thought to emit hard, non-thermal X-rays, despite being considerably older than any other such remnant. In response to a recent discovery of a background cluster of galaxies (2XMM J045637.2+522411), we carefully excluded its contribution, and reexamined the origin of the hard X-ray emission. We found that the residual hard X-ray emission is consistent with the expected level of the cosmic X-ray background. Thus, no robust evidence for the non-thermal emission was obtained from G156.2+5.7. These results are consistent with the picture of an evolved SNR.
Moshopoulou, E G; Ibberson, R M; Sarrao, J L; Thompson, J D; Fisk, Z
2006-04-01
The room-temperature crystal structure of the heavy fermion antiferromagnet Ce2RhIn8, dicerium rhodium octaindide, has been studied by a combination of high-resolution synchrotron X-ray reciprocal-space mapping of single crystals and high-resolution time-of-flight neutron powder diffraction. The structure is disordered, exhibiting a complex interplay of non-periodic, partially correlated planar defects, coexistence and segregation of polytypic phases (induced by periodic planar ;defects'), mosaicity (i.e. domain misalignment) and non-uniform strain. These effects evolve as a function of temperature in a complicated way, but they remain down to low temperatures. The room-temperature diffraction data are best represented by a complex mixture of two polytypic phases, which are affected by non-periodic, partially correlated planar defects, differ slightly in their tetragonal structures, and exhibit different mosaicities and strain values. Therefore, Ce2RhIn8 approaches the paracrystalline state, rather than the classic crystalline state and thus several of the concepts of conventional single-crystal crystallography are inapplicable. The structural results are discussed in the context of the role of disorder in the heavy-fermion state and in the interplay between superconductivity and magnetism.
Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow
NASA Astrophysics Data System (ADS)
Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao
2018-05-01
An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.
Numerical Analysis of Flow Evolution in a Helium Jet Injected into Ambient Air
NASA Technical Reports Server (NTRS)
Satti, Rajani P.; Agrawal, Ajay K.
2005-01-01
A computational model to study the stability characteristics of an evolving buoyant helium gas jet in ambient air environment is presented. Numerical formulation incorporates a segregated approach to solve for the transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum using a staggered grid method. The operating parameters correspond to the Reynolds number varying from 30 to 300 to demarcate the flow dynamics in oscillating and non-oscillating regimes. Computed velocity and concentration fields were used to analyze the flow structure in the evolving jet. For Re=300 case, results showed that an instability mode that sets in during the evolution process in Earth gravity is absent in zero gravity, signifying the importance of buoyancy. Though buoyancy initiates the instability, below a certain jet exit velocity, diffusion dominates the entrainment process to make the jet non-oscillatory as observed for the Re=30 case. Initiation of the instability was found to be dependent on the interaction of buoyancy and momentum forces along the jet shear layer.
Viscoplasticity: A thermodynamic formulation
NASA Technical Reports Server (NTRS)
Freed, A. D.; Chaboche, J. L.
1989-01-01
A thermodynamic foundation using the concept of internal state variables is given for a general theory of viscoplasticity, as it applies to initially isotropic materials. Three fundamental internal state variables are admitted. They are: a tensor valued back stress for kinematic effects, and the scalar valued drag and yield strengths for isotropic effects. All three are considered to phenomenologically evolve according to competitive processes between strain hardening, strain induced dynamic recovery, and time induced static recovery. Within this phenomenological framework, a thermodynamically admissible set of evolution equations is put forth. This theory allows each of the three fundamental internal variables to be composed as a sum of independently evolving constituents.
Assessing the Institution of the Nuclear Nonproliferation Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toomey, Christopher
2010-05-14
The nuclear nonproliferation regime is facing a crisis of effectiveness. During the Cold War, the regime was relatively effective in stemming the proliferation of nuclear weapons and building an institutional structure that could, under certain conditions, ensure continued success. However, in the evolving global context, the traditional approaches are becoming less appropriate. Globalization has introduced new sets of stresses on the nonproliferation regime, such as the rise of non-state actors, broadening extensity and intensity of supply chains, and the multipolarization of power. This evolving global context demands an analytical and political flexibility in order to meet future threats. Current institutionalmore » capabilities established during the Cold War are now insufficient to meet the nonproliferation regime’s current and future needs. The research was based on information gathered through interviews and reviews of the relevant literature, and two dominant themes emerged. First, that human security should be integrated into the regime to account for the rise of non-state actors and networked violence. Second, confidence in the regime’s overall effectiveness has eroded at a time where verification-based confidence is becoming more essential. The research postulates that a critical analysis of the regime that fully utilizes institutional theory, with its focus on rules, normative structures, and procedures will be essential to adapting the regime to the current global context, building mechanisms for generating trust, creating better enforcement, and providing flexibility for the future.« less
2013-06-14
ever-evolving contemporary nature of external and internal threats to the safety and security of the American homeland, it becomes increasingly...Major Justin P. Hurt, 146 pages. With the ever-evolving contemporary nature of external and internal threats to the safety and security of the American...HAZMAT Hazardous Materials HRF Homeland Response Force HSPD Homeland Security Presidential Directive JFHQ Joint Force
Bonacim, Carlos Alberto Grespam; Salgado, André Luís; Girioli, Lumila Souza; de Araujo, Adriana Maria Procópio
2011-05-01
This work focuses on a discussion about the extent to which the level of organizational structure interferes in the internal control practices of non-governmental organizations (NGOs), especially those related to health. The objective of this work was to observe the efficiency of the internal control tests applied within the organizational structure of the Foundation for Cancer Research, Prevention and Care, checking the reliability of the accounting records and operational controls. A case study in a third sector health organization was the chosen methodology. The case study involved company interviews and the analysis of confidential reports. After an evaluation of the organizational structure (of the relations between officials and volunteers) and the application of evaluation proceedings on the quality of the internal controls, the extent to which the organizational structure interferes with the internal control practices of the hospital was assessed. It was revealed that there are structured mechanisms of control in the institution, however the implementation of these controls is inadequately performed. It was further detected that the level of the organizational structure does indeed interfere in internal control practices at the entity.
Adaptive Communication: Languages with More Non-Native Speakers Tend to Have Fewer Word Forms
Bentz, Christian; Verkerk, Annemarie; Kiela, Douwe; Hill, Felix; Buttery, Paula
2015-01-01
Explaining the diversity of languages across the world is one of the central aims of typological, historical, and evolutionary linguistics. We consider the effect of language contact-the number of non-native speakers a language has-on the way languages change and evolve. By analysing hundreds of languages within and across language families, regions, and text types, we show that languages with greater levels of contact typically employ fewer word forms to encode the same information content (a property we refer to as lexical diversity). Based on three types of statistical analyses, we demonstrate that this variance can in part be explained by the impact of non-native speakers on information encoding strategies. Finally, we argue that languages are information encoding systems shaped by the varying needs of their speakers. Language evolution and change should be modeled as the co-evolution of multiple intertwined adaptive systems: On one hand, the structure of human societies and human learning capabilities, and on the other, the structure of language. PMID:26083380
NASA Astrophysics Data System (ADS)
Charles, Nicolas; Choulet, Flavien; Sizaret, Stanislas; Chen, Yan; Barbanson, Luc; Ennaciri, Aomar; Badra, Lakhlifi; Branquet, Yannick
2016-01-01
The renewal of interest in Zn-Pb non-sulphide ores has been induced by mineral processing improvement and leads to new exploration and mining projects in the world. Although the mineralogy is often precisely known, and despite several studies linking ore deposition to regional tectonics, absolute dating of non-sulphide stages is rare and structure of ore bodies was largely disregarded. Geochronological data from non-sulphide ores are essential to timely constrain alteration episodes and to insert supergene ore genesis in the climate and tectonic evolution of the metallogenic province. The access to internal organization of ore could reveal post-mineralization episodes related to supergene evolution. Thus, a rock magnetism study combining anisotropy of magnetic susceptibility (AMS) and palaeomagnetism was performed on four non-sulphide deposits from the Moroccan High Atlas. AMS generally shows similar horizontal magnetic fabrics for ores and the clayey and carbonaceous internal sediments filling karstic cavities. The palaeomagnetic directions of ores and internal sediments are compatible, and the calculated poles are consistent with the last 30 Ma of the Africa apparent polar wander path, with an upper age at 0.78 Ma. The proposed three-step scenario is placed within the evolution of the Moroccan High Atlas belt. Deposition of primary sulphides is contemporaneous with opening of the Tethyan and Atlantic oceans. During the Tertiary, intracontinental deformation gave rise to the High Atlas fold-and-thrust belt and to regional uplift. Finally, Zn-Pb sulphides hosted in carbonates experienced oxidation under an arid climate to form karst-related Zn-Pb non-sulphide ores. These promising results pave the way for an efficient method to constrain the internal fabrics and age of Zn supergene deposits.
INTERNAL LIMITING MEMBRANE PEELING IN MACULAR HOLE SURGERY; WHY, WHEN, AND HOW?
Chatziralli, Irini P; Theodossiadis, Panagiotis G; Steel, David H W
2018-05-01
To review the current rationale for internal limiting membrane (ILM) peeling in macular hole (MH) surgery and to discuss the evidence base behind why, when, and how surgeons peel the ILM. Review of the current literature. Pars plana vitrectomy is an effective treatment for idiopathic MH, and peeling of the ILM has been shown to improve closure rates and to prevent postoperative reopening. However, some authors argue against ILM peeling because it results in a number of changes in retinal structure and function and may not be necessary in all cases. Furthermore, the extent of ILM peeling optimally performed and the most favorable techniques to remove the ILM are uncertain. Several technique variations including ILM flaps, ILM scraping, and foveal sparing ILM peeling have been described as alternatives to conventional peeling in specific clinical scenarios. Internal limiting membrane peeling improves MH closure rates but can have several consequences on retinal structure and function. Adjuvants to aid peeling, instrumentation, technique, and experience may all alter the outcome. Hole size and other variables are important in assessing the requirement for peeling and potentially its extent. A variety of evolving alternatives to conventional peeling may improve outcomes and need further study.
Practice of clinical forensic medicine in Sri Lanka: does it need a new era?
Kodikara, Sarathchandra
2012-07-01
Clinical forensic medicine is a sub-specialty of forensic medicine and is intimately associated with the justice system of a country. Practice of clinical forensic medicine is evolving, but deviates from one jurisdiction to another. Most English-speaking countries practice clinical forensic medicine and forensic pathology separately while most non-English-speaking countries practice forensic medicine which includes clinical forensic medicine and forensic pathology. Unlike the practice of forensic pathology, several countries have informal arrangements to deal with forensic patients and there are no international standards of practice or training in this discipline. Besides, this is rarely a topic of discussion. In the adversarial justice system in Sri Lanka, the designated Government Medical Officers practice both clinical forensic medicine and forensic pathology. Practice of clinical forensic medicine, and its teaching and training in Sri Lanka depicts unique features. However, this system has not undergone a significant revision for many decades. In this communication, the existing legal framework, current procedure of practice, examination for drunkenness, investigations, structure of referrals, reports, subsequent legal procedures, undergraduate, in-service, and postgraduate training are discussed with suggestions for reforms. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Cerebral Perfusion Enhancing Interventions: A New Strategy for the Prevention of Alzheimer Dementia.
de la Torre, Jack C
2016-09-01
Cardiovascular and cerebrovascular diseases are major risk factors in the development of cognitive impairment and Alzheimer's disease (AD). These cardio-cerebral disorders promote a variety of vascular risk factors which in the presence of advancing age are prone to markedly reduce cerebral perfusion and create a neuronal energy crisis. Long-term hypoperfusion of the brain evolves mainly from cardiac structural pathology and brain vascular insufficiency. Brain hypoperfusion in the elderly is strongly associated with the development of mild cognitive impairment (MCI) and both conditions are presumed to be precursors of Alzheimer dementia. A therapeutic target to prevent or treat MCI and consequently reduce the incidence of AD aims to elevate cerebral perfusion using novel pharmacological agents. As reviewed here, the experimental pharmaca include the use of Rho kinase inhibitors, neurometabolic energy boosters, sirtuins and vascular growth factors. In addition, a compelling new technique in laser medicine called photobiomodulation is reviewed. Photobiomodulation is based on the use of low level laser therapy to stimulate mitochondrial energy production non-invasively in nerve cells. The use of novel pharmaca and photobiomodulation may become important tools in the treatment or prevention of cognitive decline that can lead to dementia. © 2016 International Society of Neuropathology.
Daston, George; Knight, Derek J; Schwarz, Michael; Gocht, Tilman; Thomas, Russell S; Mahony, Catherine; Whelan, Maurice
2015-01-01
The development of non-animal methodology to evaluate the potential for a chemical to cause systemic toxicity is one of the grand challenges of modern science. The European research programme SEURAT is active in this field and will conclude its first phase, SEURAT-1, in December 2015. Drawing on the experience gained in SEURAT-1 and appreciating international advancement in both basic and regulatory science, we reflect here on how SEURAT should evolve and propose that further research and development should be directed along two complementary and interconnecting work streams. The first work stream would focus on developing new 'paradigm' approaches for regulatory science. The goal here is the identification of 'critical biological targets' relevant for toxicity and to test their suitability to be used as anchors for predicting toxicity. The second work stream would focus on integration and application of new approach methods for hazard (and risk) assessment within the current regulatory 'paradigm', aiming for acceptance of animal-free testing strategies by regulatory authorities (i.e. translating scientific achievements into regulation). Components for both work streams are discussed and may provide a structure for a future research programme in the field of predictive toxicology.
Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment
NASA Astrophysics Data System (ADS)
Schaffner, D. A.
2015-12-01
The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.
NASA Astrophysics Data System (ADS)
Beardsell, Guillaume; Dufresne, Louis; Dumas, Guy
2016-09-01
This paper aims to shed further light on the viscous reconnection phenomenon. To this end, we propose a robust and efficient method in order to quantify the degree of reconnection of two vortex tubes. This method is used to compare the evolutions of two simple initial vortex configurations: orthogonal and antiparallel. For the antiparallel configuration, the proposed method is compared with alternative estimators and it is found to improve accuracy since it can account properly for the formation of looping structures inside the domain. This observation being new, the physical mechanism for the formation of those looping structures is discussed. For the orthogonal configuration, we report results from simulations that were performed at a much higher vortex Reynolds number (ReΓ ≡ circulation/viscosity = 104) and finer resolution (N3 = 10243) than previously presented in the literature. The incompressible Navier-stokes equations are solved directly (Direct Numerical Simulation or DNS) using a Fourier pseudospectral algorithm with triply periodic boundary conditions. The associated zero-circulation constraint is circumvented by solving the governing equations in a proper rotating frame of reference. Using ideas similar to those behind our method to compute the degree of reconnection, we split the vorticity field into its reconnected and non-reconnected parts, which allows to create insightful visualizations of the evolving vortex topology. It also allows to detect regions in the vorticity field that are neither reconnected nor non-reconnected and thus must be associated to internal looping structures. Finally, the Reynolds number dependence of the reconnection time scale Trec is investigated in the range 500 ≤ ReΓ ≤ 10 000. For both initial configurations, the scaling is generally found to vary continuously as ReΓ is increased from T rec ˜ R eΓ - 1 to T rec ˜ R eΓ - 1 / 2 , thus providing quantitative support for previous claims that the reconnection physics of two vortices should be similar regardless of their spatial arrangement.
Gopinathan, Unni; Watts, Nick; Lefebvre, Alexandre; Cheung, Arthur; Hoffman, Steven J; Røttingen, John-Arne
2018-05-31
This comparative case study investigated how two intergovernmental organisations without formal health mandates - the United Nations Development Programme (UNDP) and the World Trade Organization (WTO) - have engaged with global health issues. Triangulating insights from key institutional documents, ten semi-structured interviews with senior officials, and scholarly books tracing the history of both organisations, the study identified an evolving and broadened engagement with global health issues in UNDP and WTO. Within WTO, the dominant view was that enhancing international trade is instrumental to improving global health, although the need to resolve tensions between public health objectives and WTO agreements was recognised. For UNDP, interviewees reported that the agency gained prominence in global health for its response to HIV/AIDS in the 1990s and early 2000s. Learning from that experience, the agency has evolved and expanded its role in two respects: it has increasingly facilitated processes to provide global normative direction for global health issues such as HIV/AIDS and access to medicines, and it has expanded its focus beyond HIV/AIDS. Overall, the study findings suggest the need for seeking greater integration among international institutions, closing key global institutional gaps, and establishing a shared global institutional space for promoting action on the broader determinants of health.
Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars.
Bedding, Timothy R; Mosser, Benoit; Huber, Daniel; Montalbán, Josefina; Beck, Paul; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne P; García, Rafael A; Miglio, Andrea; Stello, Dennis; White, Timothy R; De Ridder, Joris; Hekker, Saskia; Aerts, Conny; Barban, Caroline; Belkacem, Kevin; Broomhall, Anne-Marie; Brown, Timothy M; Buzasi, Derek L; Carrier, Fabien; Chaplin, William J; Di Mauro, Maria Pia; Dupret, Marc-Antoine; Frandsen, Søren; Gilliland, Ronald L; Goupil, Marie-Jo; Jenkins, Jon M; Kallinger, Thomas; Kawaler, Steven; Kjeldsen, Hans; Mathur, Savita; Noels, Arlette; Aguirre, Victor Silva; Ventura, Paolo
2011-03-31
Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained by the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly ∼ 50 seconds) and those that are also burning helium (period spacing ∼ 100 to 300 seconds).
Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control.
Ciofolo, Cybèle; Barillot, Christian
2009-06-01
We propose a novel approach for the simultaneous segmentation of multiple structures with competitive level sets driven by fuzzy control. To this end, several contours evolve simultaneously toward previously defined anatomical targets. A fuzzy decision system combines the a priori knowledge provided by an anatomical atlas with the intensity distribution of the image and the relative position of the contours. This combination automatically determines the directional term of the evolution equation of each level set. This leads to a local expansion or contraction of the contours, in order to match the boundaries of their respective targets. Two applications are presented: the segmentation of the brain hemispheres and the cerebellum, and the segmentation of deep internal structures. Experimental results on real magnetic resonance (MR) images are presented, quantitatively assessed and discussed.
Mechanical Characterization of Partially Crystallized Sphere Packings
NASA Astrophysics Data System (ADS)
Hanifpour, M.; Francois, N.; Vaez Allaei, S. M.; Senden, T.; Saadatfar, M.
2014-10-01
We study grain-scale mechanical and geometrical features of partially crystallized packings of frictional spheres, produced experimentally by a vibrational protocol. By combining x-ray computed tomography, 3D image analysis, and discrete element method simulations, we have access to the 3D structure of internal forces. We investigate how the network of mechanical contacts and intergranular forces change when the packing structure evolves from amorphous to near perfect crystalline arrangements. We compare the behavior of the geometrical neighbors (quasicontracts) of a grain to the evolution of the mechanical contacts. The mechanical coordination number Zm is a key parameter characterizing the crystallization onset. The high fluctuation level of Zm and of the force distribution in highly crystallized packings reveals that a geometrically ordered structure still possesses a highly random mechanical backbone similar to that of amorphous packings.
Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method
Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying
2016-01-01
Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members. PMID:28773347
Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method.
Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying
2016-03-23
Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members.
Structural Concepts Study of Non-circular Fuselage Configurations
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivel
1996-01-01
A preliminary study of structural concepts for noncircular fuselage configurations is presented. For an unconventional flying-wing type aircraft, in which the fuselage is inside the wing, multiple fuselage bays with non-circular sections need to be considered. In a conventional circular fuselage section, internal pressure is carried efficiently by a thin skin via hoop tension. If the section is non-circular, internal pressure loads also induce large bending stresses. The structure must also withstand additional bending and compression loads from aerodynamic and gravitational forces. Flat and vaulted shell structural configurations for such an unconventional, non-circular pressurized fuselage of a large flying-wing were studied. A deep honeycomb sandwich-shell and a ribbed double-wall shell construction were considered. Combinations of these structural concepts were analyzed using both analytical and simple finite element models of isolated sections for a comparative conceptual study. Weight, stress, and deflection results were compared to identify a suitable configuration for detailed analyses. The flat sandwich-shell concept was found preferable to the vaulted shell concept due to its superior buckling stiffness. Vaulted double-skin ribbed shell configurations were found to be superior due to their weight savings, load diffusion, and fail-safe features. The vaulted double-skin ribbed shell structure concept was also analyzed for an integrated wing-fuselage finite element model. Additional problem areas such as wing-fuselage junction and pressure-bearing spar were identified.
Instability of meridional axial system in f( R) gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Yousaf, Z.
2015-05-01
We analyze the dynamical instability of a non-static reflection axial stellar structure by taking into account the generalized Euler equation in metric f( R) gravity. Such an equation is obtained by contracting the Bianchi identities of the usual anisotropic and effective stress-energy tensors, which after using a radial perturbation technique gives a modified collapse equation. In the realm of the gravity model, we investigate instability constraints at Newtonian and post-Newtonian approximations. We find that the instability of a meridional axial self-gravitating system depends upon the static profile of the structure coefficients, while f( R) extra curvature terms induce the stability of the evolving celestial body.
Transient ensemble dynamics in time-independent galactic potentials
NASA Astrophysics Data System (ADS)
Mahon, M. Elaine; Abernathy, Robert A.; Bradley, Brendan O.; Kandrup, Henry E.
1995-07-01
This paper summarizes a numerical investigation of the short-time, possibly transient, behaviour of ensembles of stochastic orbits evolving in fixed non-integrable potentials, with the aim of deriving insights into the structure and evolution of galaxies. The simulations involved three different two-dimensional potentials, quite different in appearance. However, despite these differences, ensembles in all three potentials exhibit similar behaviour. This suggests that the conclusions inferred from the simulations are robust, relying only on basic topological properties, e.g., the existence of KAM tori and cantori. Generic ensembles of initial conditions, corresponding to stochastic orbits, exhibit a rapid coarse-grained approach towards a near-invariant distribution on a time-scale <
NASA Technical Reports Server (NTRS)
1998-01-01
As summarized in this pamphlet, some of the far-reaching underlying issues to be addressed include: What is the origin of the universe and its destiny; Why is the universe lumpy; How did the known structures of the universe evolve; How do galaxies evolve; How do massive black holes grow; How did the elemental composition of the universe evolve; What is the structure and behavior of matter in the extreme; and Is Einstein's general relativity theory right.
Evolution of damage during deformation in porous granular materials (Louis Néel Medal Lecture)
NASA Astrophysics Data System (ADS)
Main, Ian
2014-05-01
'Crackling noise' occurs in a wide variety of systems that respond to external forcing in an intermittent way, leading to sudden bursts of energy release similar to those heard when crunching up a piece of paper or listening to a fire. In mineral magnetism ('Barkhausen') crackling noise occurs due to sudden changes in the size and orientation of microscopic ferromagnetic domains when the external magnetic field is changed. In rock physics sudden changes in internal stress associated with microscopically brittle failure events lead to acoustic emissions that can be recorded on the sample boundary, and used to infer the state of internal damage. Crackling noise is inherently stochastic, but the population of events often exhibits remarkably robust scaling properties, in terms of the source area, duration, energy, and in the waiting time between events. Here I describe how these scaling properties emerge and evolve spontaneously in a fully-dynamic discrete element model of sedimentary rocks subject to uniaxial compression at a constant strain rate. The discrete elements have structural disorder similar to that of a real rock, and this is the only source of heterogeneity. Despite the stationary loading and the lack of any time-dependent weakening processes, the results are all characterized by emergent power law distributions over a broad range of scales, in agreement with experimental observation. As deformation evolves, the scaling exponents change systematically in a way that is similar to the evolution of damage in experiments on real sedimentary rocks. The potential for real-time failure forecasting is examined by using synthetic and real data from laboratory tests and prior to volcanic eruptions. The combination of non-linearity and an irreducible stochastic component leads to significant variations in the precision and accuracy of the forecast failure time, leading to a significant proportion of 'false alarms' (forecast too early) and 'missed events' (forecast too late), as well as an over-optimistic assessments of forecasting power and quality when the failure time is known (the 'benefit of hindsight'). The evolution becomes progressively more complex, and the forecasting power diminishes, in going from ideal synthetics to controlled laboratory tests to open natural systems at larger scales in space and time.
Genomic insights into the evolution and ecology of botulinum neurotoxins.
Mansfield, Michael J; Doxey, Andrew C
2018-06-01
Clostridial neurotoxins, which include botulinum neurotoxins (BoNTs) and tetanus neurotoxins, have evolved a remarkably sophisticated structure and molecular mechanism fine-tuned for the targeting and cleavage of vertebrate neuron substrates leading to muscular paralysis. How and why did this toxin evolve? From which ancestral proteins are BoNTs derived? And what is, or was, the primary ecological role of BoNTs in the environment? In this article, we examine these questions in light of recent studies identifying homologs of BoNTs in the genomes of non-clostridial bacteria, including Weissella, Enterococcus and Chryseobacterium. Genomic and phylogenetic analysis of these more distantly related toxins suggests that they are derived from ancient toxin lineages that predate the evolution of BoNTs and are not limited to the Clostridium genus. We propose that BoNTs have therefore evolved from a precursor family of BoNT-like toxins, and ultimately from non-neurospecific toxins that cleaved different substrates (possibly non-neuronal SNAREs). Comparison of BoNTs with these related toxins reveals several unique molecular features that underlie the evolution of BoNT's unique function, including functional shifts involving all four domains, and gain of the BoNT gene cluster associated proteins. BoNTs then diversified to produce the existing serotypes, including TeNT, and underwent repeated substrate shifts from ancestral VAMP2 specificity to SNAP25 specificity at least three times in their history. Finally, similar to previous proposals, we suggest that one ecological role of BoNTs could be to create a paralytic phase in vertebrate decomposition, which provides a competitive advantage for necrophagous scavengers that in turn facilitate the spread of Clostridium botulinum and its toxin.
Reinhardt, Jan D; von Groote, Per M; DeLisa, Joel A; Melvin, John L; Bickenbach, Jerome E; Li, Leonard S W; Stucki, Gerold
2009-09-01
Using the International Society of Physical and Rehabilitation Medicine (ISPRM) as a case in point, the paper describes the complex world societal situation within which non-governmental organizations that address health issues have to operate.This paper describes the complex world societal situation within which non-governmental organizations (NGOs), that are addressing health issues have to operate. In particular, as an international organization in official relation with the World Health Organization (WHO), ISPRM is confronted with a variety of responsibilities and a true world health political mandate. The accompanying rights need to be played out in relation to its own internal member organization and external allies. The theory of the world society and the current situation are briefly reviewed. The role of international NGOs within the world health polity, rehabilitation and Physical and Rehabilitation Medicine (PRM) is highlighted, whilst special emphasis is placed on NGOs in official relation with WHO. Functions, dysfunctions and challenges of international NGOs operating in the health sector are discussed. Against this background, key approaches to enhance ISPRM's political role are analysed. These include transparent and accountable development of the organization, the differentiation between internal and external policy relations, the harmonization of organizational structures and procedures, the consequential use of political structures available to influence WHO's agenda, and the identification of other policy players of major relevance to PRM in order to build strategic alliances with external partners and to enhance ISPRM's membership base.
Constructal Law of Vascular Trees for Facilitation of Flow
Razavi, Mohammad S.; Shirani, Ebrahim; Salimpour, Mohammad Reza; Kassab, Ghassan S.
2014-01-01
Diverse tree structures such as blood vessels, branches of a tree and river basins exist in nature. The constructal law states that the evolution of flow structures in nature has a tendency to facilitate flow. This study suggests a theoretical basis for evaluation of flow facilitation within vascular structure from the perspective of evolution. A novel evolution parameter (Ev) is proposed to quantify the flow capacity of vascular structures. Ev is defined as the ratio of the flow conductance of an evolving structure (configuration with imperfection) to the flow conductance of structure with least imperfection. Attaining higher Ev enables the structure to expedite flow circulation with less energy dissipation. For both Newtonian and non-Newtonian fluids, the evolution parameter was developed as a function of geometrical shape factors in laminar and turbulent fully developed flows. It was found that the non-Newtonian or Newtonian behavior of fluid as well as flow behavior such as laminar or turbulent behavior affects the evolution parameter. Using measured vascular morphometric data of various organs and species, the evolution parameter was calculated. The evolution parameter of the tree structures in biological systems was found to be in the range of 0.95 to 1. The conclusion is that various organs in various species have high capacity to facilitate flow within their respective vascular structures. PMID:25551617
Sensing Structures Inspired by Blind Cave Fish
NASA Astrophysics Data System (ADS)
McConney, Michael E.; Chen, Nannan; Lu, David; Anderson, Kyle D.; Hu, Huan; Liu, Chang; Tsukruk, Vladimir V.
2009-03-01
Blind cave fish, with degenerated non-functioning eyes, have evolved to ``see'' their hydrodynamic environment by using the flow receptors of the lateral line system. The hair-cell receptors are encapsulated in a hydrogel-like material, called a cupula, which increases the sensitivity of the hair-cell receptors by coupling their motion to the surrounding flowing media. We characterized the viscoelastic properties and of blind cave fish cupulae by using colloidal-probe spectroscopy in fluid. A photo-patternable hydrogel with similar properties was developed to mimic the fish receptor coupling structure. Flow-based measurements indicated that the hydrogels enhance drag through increased surface area, but also inherent material properties. These bio-inspired structures endowed micro-fabricated flow sensors with sensitivities rivaling that of fish.
Evolving polycentric governance of the Great Barrier Reef
Morrison, Tiffany H.
2017-01-01
A growing field of sustainability science examines how environments are transformed through polycentric governance. However, many studies are only snapshot analyses of the initial design or the emergent structure of polycentric regimes. There is less systematic analysis of the longitudinal robustness of polycentric regimes. The problem of robustness is approached by focusing not only on the structure of a regime but also on its context and effectiveness. These dimensions are examined through a longitudinal analysis of the Great Barrier Reef (GBR) governance regime, drawing on in-depth interviews and demographic, economic, and employment data, as well as organizational records and participant observation. Between 1975 and 2011, the GBR regime evolved into a robust polycentric structure as evident in an established set of multiactor, multilevel arrangements addressing marine, terrestrial, and global threats. However, from 2005 onward, multiscale drivers precipitated at least 10 types of regime change, ranging from contextual change that encouraged regime drift to deliberate changes that threatened regime conversion. More recently, regime realignment also has occurred in response to steering by international organizations and shocks such as the 2016 mass coral-bleaching event. The results show that structural density and stability in a governance regime can coexist with major changes in that regime’s context and effectiveness. Clear analysis of the vulnerability of polycentric governance to both diminishing effectiveness and the masking effects of increasing complexity provides sustainability science and governance actors with a stronger basis to understand and respond to regime change. PMID:28348238
Evolving polycentric governance of the Great Barrier Reef.
Morrison, Tiffany H
2017-04-11
A growing field of sustainability science examines how environments are transformed through polycentric governance. However, many studies are only snapshot analyses of the initial design or the emergent structure of polycentric regimes. There is less systematic analysis of the longitudinal robustness of polycentric regimes. The problem of robustness is approached by focusing not only on the structure of a regime but also on its context and effectiveness. These dimensions are examined through a longitudinal analysis of the Great Barrier Reef (GBR) governance regime, drawing on in-depth interviews and demographic, economic, and employment data, as well as organizational records and participant observation. Between 1975 and 2011, the GBR regime evolved into a robust polycentric structure as evident in an established set of multiactor, multilevel arrangements addressing marine, terrestrial, and global threats. However, from 2005 onward, multiscale drivers precipitated at least 10 types of regime change, ranging from contextual change that encouraged regime drift to deliberate changes that threatened regime conversion. More recently, regime realignment also has occurred in response to steering by international organizations and shocks such as the 2016 mass coral-bleaching event. The results show that structural density and stability in a governance regime can coexist with major changes in that regime's context and effectiveness. Clear analysis of the vulnerability of polycentric governance to both diminishing effectiveness and the masking effects of increasing complexity provides sustainability science and governance actors with a stronger basis to understand and respond to regime change.
Proposed Doctrine Based Structure of the Armored Reconnaissance Squadron
2017-06-09
adversarial, non -state non -adversarial and International Organizations (IO). Non -state adversarial are groups that oppose the interest and priorities of...Canada and its partners; these groups include violent extremist organizations and criminal organizations. Non - state non -adversarial are groups that... Grouping can be executed to facilitate control , communications, function or output of a collection. Recall, that for the purpose of this analysis
Help Planned for Developing Countries
ERIC Educational Resources Information Center
Heindl, L. A.
1974-01-01
Describes the objectives of the Association of Geoscientists for International Development, some of which are: to evolve guidelines for training earth science personnel for developing countries, to develop criteria for selecting personnel for international service and to encourage communication between agencies interested in international aid in…
Cavalier-Smith, Thomas
2017-01-01
Evolving multicellularity is easy, especially in phototrophs and osmotrophs whose multicells feed like unicells. Evolving animals was much harder and unique; probably only one pathway via benthic ‘zoophytes’ with pelagic ciliated larvae allowed trophic continuity from phagocytic protozoa to gut-endowed animals. Choanoflagellate protozoa produced sponges. Converting sponge flask cells mediating larval settling to synaptically controlled nematocysts arguably made Cnidaria. I replace Haeckel's gastraea theory by a sponge/coelenterate/bilaterian pathway: Placozoa, hydrozoan diploblasty and ctenophores were secondary; stem anthozoan developmental mutations arguably independently generated coelomate bilateria and ctenophores. I emphasize animal origin's conceptual aspects (selective, developmental) related to feeding modes, cell structure, phylogeny of related protozoa, sequence evidence, ecology and palaeontology. Epithelia and connective tissue could evolve only by compensating for dramatically lower feeding efficiency that differentiation into non-choanocytes entails. Consequentially, larger bodies enabled filtering more water for bacterial food and harbouring photosynthetic bacteria, together adding more food than cell differentiation sacrificed. A hypothetical presponge of sessile triploblastic sheets (connective tissue sandwiched between two choanocyte epithelia) evolved oogamy through selection for larger dispersive ciliated larvae to accelerate benthic trophic competence and overgrowing protozoan competitors. Extinct Vendozoa might be elaborations of this organismal grade with choanocyte-bearing epithelia, before poriferan water channels and cnidarian gut/nematocysts/synapses evolved. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994119
Knibbe, Carole; Schneider, Dominique; Beslon, Guillaume
2017-01-01
Metabolic cross-feeding interactions between microbial strains are common in nature, and emerge during evolution experiments in the laboratory, even in homogeneous environments providing a single carbon source. In sympatry, when the environment is well-mixed, the reasons why emerging cross-feeding interactions may sometimes become stable and lead to monophyletic genotypic clusters occupying specific niches, named ecotypes, remain unclear. As an alternative to evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale model of in silico experimental evolution, equipped with the whole tool case of experimental setups, competition assays, phylogenetic analysis, and, most importantly, allowing for evolvable ecological interactions. Digital organisms with an evolvable genome structure encoding an evolvable metabolic network evolved for tens of thousands of generations in environments mimicking the dynamics of real controlled environments, including chemostat or batch culture providing a single limiting resource. We show here that the evolution of stable cross-feeding interactions requires seasonal batch conditions. In this case, adaptive diversification events result in two stably co-existing ecotypes, with one feeding on the primary resource and the other on by-products. We show that the regularity of serial transfers is essential for the maintenance of the polymorphism, as it allows for at least two stable seasons and thus two temporal niches. A first season is externally generated by the transfer into fresh medium, while a second one is internally generated by niche construction as the provided nutrient is replaced by secreted by-products derived from bacterial growth. In chemostat conditions, even if cross-feeding interactions emerge, they are not stable on the long-term because fitter mutants eventually invade the whole population. We also show that the long-term evolution of the two stable ecotypes leads to character displacement, at the level of the metabolic network but also of the genome structure. This difference of genome structure between both ecotypes impacts the stability of the cross-feeding interaction, when the population is propagated in chemostat conditions. This study shows the crucial role played by seasonality in temporal niche partitioning and in promoting cross-feeding subgroups into stable ecotypes, a premise to sympatric speciation. PMID:28358919
Evolving Organizational Structures in Special Education.
ERIC Educational Resources Information Center
McCarthy, Eileen F., Ed.; Sage, Daniel D., Ed.
The monograph addresses evolving organizational structures in special education from the perspectives of theory and practice. The initial paper, "Issues in Organizational Structure" (D. Sage), focuses on how the multiple units and operations of the special education system should be related and how the management authority and responsibility for…
Evolving Systems: Adaptive Key Component Control and Inheritance of Passivity and Dissipativity
NASA Technical Reports Server (NTRS)
Frost, S. A.; Balas, M. J.
2010-01-01
We propose a new framework called Evolving Systems to describe the self-assembly, or autonomous assembly, of actively controlled dynamical subsystems into an Evolved System with a higher purpose. Autonomous assembly of large, complex flexible structures in space is a target application for Evolving Systems. A critical requirement for autonomous assembling structures is that they remain stable during and after assembly. The fundamental topic of inheritance of stability, dissipativity, and passivity in Evolving Systems is the primary focus of this research. In this paper, we develop an adaptive key component controller to restore stability in Nonlinear Evolving Systems that would otherwise fail to inherit the stability traits of their components. We provide sufficient conditions for the use of this novel control method and demonstrate its use on an illustrative example.
Cold molecules: Progress in quantum engineering of chemistry and quantum matter
NASA Astrophysics Data System (ADS)
Bohn, John L.; Rey, Ana Maria; Ye, Jun
2017-09-01
Cooling atoms to ultralow temperatures has produced a wealth of opportunities in fundamental physics, precision metrology, and quantum science. The more recent application of sophisticated cooling techniques to molecules, which has been more challenging to implement owing to the complexity of molecular structures, has now opened the door to the longstanding goal of precisely controlling molecular internal and external degrees of freedom and the resulting interaction processes. This line of research can leverage fundamental insights into how molecules interact and evolve to enable the control of reaction chemistry and the design and realization of a range of advanced quantum materials.
Measurement of SIFT operating system overhead
NASA Technical Reports Server (NTRS)
Palumbo, D. L.; Butler, R. W.
1985-01-01
The overhead of the software implemented fault tolerance (SIFT) operating system was measured. Several versions of the operating system evolved. Each version represents different strategies employed to improve the measured performance. Three of these versions are analyzed. The internal data structures of the operating systems are discussed. The overhead of the SIFT operating system was found to be of two types: vote overhead and executive task overhead. Both types of overhead were found to be significant in all versions of the system. Improvements substantially reduced this overhead; even with these improvements, the operating system consumed well over 50% of the available processing time.
Reinforcements in avian wing bones: Experiments, analysis, and modeling.
Novitskaya, E; Ruestes, C J; Porter, M M; Lubarda, V A; Meyers, M A; McKittrick, J
2017-12-01
Almost all species of modern birds are capable of flight; the mechanical competency of their wings and the rigidity of their skeletal system evolved to enable this outstanding feat. One of the most interesting examples of structural adaptation in birds is the internal structure of their wing bones. In flying birds, bones need to be sufficiently strong and stiff to withstand forces during takeoff, flight, and landing, with a minimum of weight. The cross-sectional morphology and presence of reinforcing structures (struts and ridges) found within bird wing bones vary from species to species, depending on how the wings are utilized. It is shown that both morphology and internal features increases the resistance to flexure and torsion with a minimum weight penalty. Prototypes of reinforcing struts fabricated by 3D printing were tested in diametral compression and torsion to validate the concept. In compression, the ovalization decreased through the insertion of struts, while they had no effect on torsional resistance. An elastic model of a circular ring reinforced by horizontal and vertical struts is developed to explain the compressive stiffening response of the ring caused by differently oriented struts. Copyright © 2017 Elsevier Ltd. All rights reserved.
The evolution of continuous learning of the structure of the environment
Kolodny, Oren; Edelman, Shimon; Lotem, Arnon
2014-01-01
Continuous, ‘always on’, learning of structure from a stream of data is studied mainly in the fields of machine learning or language acquisition, but its evolutionary roots may go back to the first organisms that were internally motivated to learn and represent their environment. Here, we study under what conditions such continuous learning (CL) may be more adaptive than simple reinforcement learning and examine how it could have evolved from the same basic associative elements. We use agent-based computer simulations to compare three learning strategies: simple reinforcement learning; reinforcement learning with chaining (RL-chain) and CL that applies the same associative mechanisms used by the other strategies, but also seeks statistical regularities in the relations among all items in the environment, regardless of the initial association with food. We show that a sufficiently structured environment favours the evolution of both RL-chain and CL and that CL outperforms the other strategies when food is relatively rare and the time for learning is limited. This advantage of internally motivated CL stems from its ability to capture statistical patterns in the environment even before they are associated with food, at which point they immediately become useful for planning. PMID:24402920
NASA Astrophysics Data System (ADS)
d'Acremont, Elia; Leroy, Sylvie; Maia, Marcia; Patriat, Philippe; Beslier, Marie-Odile; Bellahsen, Nicolas; Fournier, Marc; Gente, Pascal
2006-06-01
Magnetic and gravity data gathered during the Encens-Sheba cruise (2000 June) in the eastern Gulf of Aden provide insights on the structural evolution of segmentation from rifted margins to incipient seafloor spreading. In this study, we document the conjugate margins asymmetry, confirm the location of the ocean-continent transition (OCT) previously proposed by seismic data, and describe its deep structure and segmentation. In the OCT, gravity models indicate highly thinned crust while magnetic data indicate presence of non-oceanic high-amplitude magnetic anomalies where syn-rift sediments are not observed. Thus, the OCT could be made of ultra-stretched continental crust intruded by magmatic bodies. However, locally in the north, the nature of the OCT could be either an area of ultra-slow spreading oceanic crust or exhumed serpentinized mantle. Between the Alula-Fartak and Socotra fracture zones, the non-volcanic margins and the OCT are segmented by two N027°E-trending transfer fault zones. These transfer zones define three N110°E-trending segments that evolve through time. The first evidence of oceanic spreading corresponds to the magnetic anomaly A5d and is thus dated back to 17.6 Ma at least. Reconstruction of the spreading process suggests a complex non-uniform opening by an arc-like initiation of seafloor spreading in the OCT. The early segmentation appears to be directly related to the continental margin segmentation. The spreading axis segmentation evolved from three segments (17.6 to 10.95 Ma) to two segments (10.95 Ma to present). At the onset of the spreading process, the western segment propagated eastwards, thus reducing the size of the central segment. The presence of a propagator could explain the observed spreading asymmetry with the northern flank of the Sheba ridge being wider than the southern one.
NASA Astrophysics Data System (ADS)
Castellanos, Milagros; Carrillo, Pablo J. P.; Mateu, Mauricio G.
2015-03-01
Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies.Viruses are increasingly being studied from the perspective of fundamental physics at the nanoscale as biologically evolved nanodevices with many technological applications. In viral particles of the minute virus of mice (MVM), folded segments of the single-stranded DNA genome are bound to the capsid inner wall and act as molecular buttresses that increase locally the mechanical stiffness of the particle. We have explored whether a quantitative linkage exists in MVM particles between their DNA-mediated stiffening and impairment of a heat-induced, virus-inactivating structural change. A series of structurally modified virus particles with disrupted capsid-DNA interactions and/or distorted capsid cavities close to the DNA-binding sites were engineered and characterized, both in classic kinetics assays and by single-molecule mechanical analysis using atomic force microscopy. The rate constant of the virus inactivation reaction was found to decrease exponentially with the increase in elastic constant (stiffness) of the regions closer to DNA-binding sites. The application of transition state theory suggests that the height of the free energy barrier of the virus-inactivating structural transition increases linearly with local mechanical stiffness. From a virological perspective, the results indicate that infectious MVM particles may have acquired the biological advantage of increased survival under thermal stress by evolving architectural elements that rigidify the particle and impair non-productive structural changes. From a nanotechnological perspective, this study provides proof of principle that determination of mechanical stiffness and its manipulation by protein engineering may be applied for quantitatively probing and tuning the conformational dynamics of virus-based and other protein-based nanoassemblies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07046a
NASA Astrophysics Data System (ADS)
Heili, Manon; Bielawski, Andrew; Kieffer, John
The cure kinetics of a DGEBA/DETA epoxy is investigated using concurrent Raman and Brillouin light scattering. Raman scattering allows us to monitor the in-situ reaction and quantitatively assess the degree of cure. Brillouin scattering yields the elastic properties of the system, providing a measure of network connectivity. We show that the adiabatic modulus evolves non-uniquely as a function of cure degree, depending on the cure temperature and the molar ratio of the epoxy. Two mechanisms contribute to the increase in the elastic modulus of the material during curing. First, there is the formation of covalent bonds in the network during the curing process. Second, following bond formation, the epoxy undergoes structural relaxation toward an optimally packed network configuration, enhancing non-bonded interactions. We investigate to what extent the non-bonded interaction contribution to structural rigidity in cross-linked polymers is reversible, and to what extent it corresponds to the difference between adiabatic and isothermal moduli obtained from static tensile, i.e. the so-called relaxational modulus. To this end, we simultaneously measure the adiabatic and isothermal elastic moduli as a function of applied strain and deformation rate.
Evolution of external genitalia: insights from reptilian development.
Gredler, Marissa L; Larkins, Christine E; Leal, Francisca; Lewis, A Kelsey; Herrera, Ana M; Perriton, Claire L; Sanger, Thomas J; Cohn, Martin J
2014-01-01
External genitalia are found in each of the major clades of amniotes. The phallus is an intromittent organ that functions to deliver sperm into the female reproductive tract for internal fertilization. The cellular and molecular genetic mechanisms of external genital development have begun to be elucidated from studies of the mouse genital tubercle, an embryonic appendage adjacent to the cloaca that is the precursor of the penis and clitoris. Progress in this area has improved our understanding of genitourinary malformations, which are among the most common birth defects in humans, and created new opportunities for comparative studies of other taxa. External genitalia evolve rapidly, which has led to a striking diversity of anatomical forms. Within the past year, studies of external genital development in non-mammalian amniotes, including birds, lizards, snakes, alligators, and turtles, have begun to shed light on the molecular and morphogenetic mechanisms underlying the diversification of phallus morphology. Here, we review recent progress in the comparative developmental biology of external genitalia and discuss the implications of this work for understanding external genital evolution. We address the question of the deep homology (shared common ancestry) of genital structures and of developmental mechanisms, and identify new areas of investigation that can be pursued by taking a comparative approach to studying development of the external genitalia. We propose an evolutionary interpretation of hypospadias, a congenital malformation of the urethra, and discuss how investigations of non-mammalian species can provide novel perspectives on human pathologies.
Education for International Competence in Pennsylvania.
ERIC Educational Resources Information Center
Dinniman, Andrew, Ed.; Holzner, Burkart, Ed.
This book discusses international education and the emergence of Pennsylvania's Partnership for International Competence (PPIC), a partnership that evolved to guarantee that Pennsylvania remains a major actor in the world economy. Individuals from the corporate, labor, educational, and government sectors contributed articles to the areas of…
Abraham, Rohit; Vyas, Dinesh; Narayan, Mayur; Vyas, Arpita
2016-01-01
Trauma-related injury in fast developing countries are linked to 90% of international mortality rates, which can be greatly reduced by improvements in often non-existent or non-centralized emergency medical systems (EMS)—particularly in the pre-hospital care phase. Traditional trauma training protocols—such as Advanced Trauma Life Support (ATLS), International Trauma Life Support (ITLS), and Basic Life Support (BLS)—have failed to produce an effective pre-hospital ground force of medical first responders. To overcome these barriers, we propose a new four-tiered set of trauma training protocols: Massive Open Online Course (MOOC) Trauma Training, Acute Trauma Training (ATT), Broad Trauma Training (BTT), and Cardiac and Trauma Training (CTT). These standards are specifically differentiated to accommodate the educational and socioeconomic diversity found in fast developing settings, where each free course is taught in native, lay language while ensuring the education standards are maintained by fully incorporating high-fidelity simulation, video-recorded debriefing, and retraining. The innovative pedagogy of this trauma education program utilizes MOOC for global scalability and a “train-the-trainer” approach for exponential growth—both components help fast developing countries reach a critical mass of first responders needed for the base of an evolving EMS. PMID:27419222
Abraham, Rohit; Vyas, Dinesh; Narayan, Mayur; Vyas, Arpita
2015-12-01
Trauma-related injury in fast developing countries are linked to 90% of international mortality rates, which can be greatly reduced by improvements in often non-existent or non-centralized emergency medical systems (EMS)-particularly in the pre-hospital care phase. Traditional trauma training protocols-such as Advanced Trauma Life Support (ATLS), International Trauma Life Support (ITLS), and Basic Life Support (BLS)-have failed to produce an effective pre-hospital ground force of medical first responders. To overcome these barriers, we propose a new four-tiered set of trauma training protocols: Massive Open Online Course (MOOC) Trauma Training, Acute Trauma Training (ATT), Broad Trauma Training (BTT), and Cardiac and Trauma Training (CTT). These standards are specifically differentiated to accommodate the educational and socioeconomic diversity found in fast developing settings, where each free course is taught in native, lay language while ensuring the education standards are maintained by fully incorporating high-fidelity simulation, video-recorded debriefing, and retraining. The innovative pedagogy of this trauma education program utilizes MOOC for global scalability and a "train-the-trainer" approach for exponential growth-both components help fast developing countries reach a critical mass of first responders needed for the base of an evolving EMS.
Forestier, Colleen; Cox, A T; Horne, S
2016-06-01
The Ebola virus disease (EVD) crisis in West Africa began in March 2014. At the beginning of the outbreak, no one could have predicted just how far-reaching its effects would be. The EVD epidemic proved to be a unique and unusual humanitarian and public health crisis. It caused worldwide fear that impeded the rapid response required to contain it early. The situation in Sierra Leone (SL) forced the formation of a unique series of civil-military interagency relationships to be formed in order to halt the epidemic. Civil-military cooperation in humanitarian situations is not unique to this crisis; however, the slow response, the unusual nature of the battle itself and the uncertainty of the framework required to fight this deadly virus created a situation that forced civilian and military organisations to form distinct, cooperative relationships. The unique nature of the Ebola virus necessitated a steering away from normal civil-military relationships and standard pillar responses. National and international non-governmental organisations (NGOs), Department for International Development (DFID) and the SL and UK militaries were required to disable this deadly virus (as of 7 November 2015, SL was declared EVD free). This paper draws on personal experiences and preliminary distillation of information gathered in formal interviews. It discusses some of the interesting features of the interagency relationships, particularly between the military, the UK's DFID, international organisations, NGOs and departments of the SL government. The focus is on how these relationships were key to achieving a coordinated solution to EVD in SL both on the ground and within the larger organisational structure. It also discusses how these relationships needed to rapidly evolve and change along with the epidemiological curve. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J Preben; Andreasen, Peter A; Jensen, Jan K
2016-07-01
Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Nabavi, Seyed Tohid; Alavi, Seyed Ahmad; Mohammadi, Soheil; Ghassemi, Mohammad Reza
2018-01-01
The mechanical evolution of transpression zones affected by fault interactions is investigated by a 3D elasto-plastic mechanical model solved with the finite-element method. Ductile transpression between non-rigid walls implies an upward and lateral extrusion. The model results demonstrate that a, transpression zone evolves in a 3D strain field along non-coaxial strain paths. Distributed plastic strain, slip transfer, and maximum plastic strain occur within the transpression zone. Outside the transpression zone, fault slip is reduced because deformation is accommodated by distributed plastic shear. With progressive deformation, the σ3 axis (the minimum compressive stress) rotates within the transpression zone to form an oblique angle to the regional transport direction (∼9°-10°). The magnitude of displacement increases faster within the transpression zone than outside it. Rotation of the displacement vectors of oblique convergence with time suggests that transpression zone evolves toward an overall non-plane strain deformation. The slip decreases along fault segments and with increasing depth. This can be attributed to the accommodation of bulk shortening over adjacent fault segments. The model result shows an almost symmetrical domal uplift due to off-fault deformation, generating a doubly plunging fold and a 'positive flower' structure. Outside the overlap zone, expanding asymmetric basins subside to 'negative flower' structures on both sides of the transpression zone and are called 'transpressional basins'. Deflection at fault segments causes the fault dip fall to less than 90° (∼86-89°) near the surface (∼1.5 km). This results in a pure-shear-dominated, triclinic, and discontinuous heterogeneous flow of the transpression zone.
The Evolution of LINE-1 in Vertebrates
Sookdeo, Akash
2016-01-01
The abundance and diversity of the LINE-1 (L1) retrotransposon differ greatly among vertebrates. Mammalian genomes contain hundreds of thousands L1s that have accumulated since the origin of mammals. A single group of very similar elements is active at a time in mammals, thus a single lineage of active families has evolved in this group. In contrast, non-mammalian genomes (fish, amphibians, reptiles) harbor a large diversity of concurrently transposing families, which are all represented by very small number of recently inserted copies. Why the pattern of diversity and abundance of L1 is so different among vertebrates remains unknown. To address this issue, we performed a detailed analysis of the evolution of active L1 in 14 mammals and in 3 non-mammalian vertebrate model species. We examined the evolution of base composition and codon bias, the general structure, and the evolution of the different domains of L1 (5′UTR, ORF1, ORF2, 3′UTR). L1s differ substantially in length, base composition, and structure among vertebrates. The most variation is found in the 5′UTR, which is longer in amniotes, and in the ORF1, which tend to evolve faster in mammals. The highly divergent L1 families of lizard, frog, and fish share species-specific features suggesting that they are subjected to the same functional constraints imposed by their host. The relative conservation of the 5′UTR and ORF1 in non-mammalian vertebrates suggests that the repression of transposition by the host does not act in a sequence-specific manner and did not result in an arms race, as is observed in mammals. PMID:28175298
The Evolution of LINE-1 in Vertebrates.
Boissinot, Stéphane; Sookdeo, Akash
2016-12-01
The abundance and diversity of the LINE-1 (L1) retrotransposon differ greatly among vertebrates. Mammalian genomes contain hundreds of thousands L1s that have accumulated since the origin of mammals. A single group of very similar elements is active at a time in mammals, thus a single lineage of active families has evolved in this group. In contrast, non-mammalian genomes (fish, amphibians, reptiles) harbor a large diversity of concurrently transposing families, which are all represented by very small number of recently inserted copies. Why the pattern of diversity and abundance of L1 is so different among vertebrates remains unknown. To address this issue, we performed a detailed analysis of the evolution of active L1 in 14 mammals and in 3 non-mammalian vertebrate model species. We examined the evolution of base composition and codon bias, the general structure, and the evolution of the different domains of L1 (5′UTR, ORF1, ORF2, 3′UTR). L1s differ substantially in length, base composition, and structure among vertebrates. The most variation is found in the 5′UTR, which is longer in amniotes, and in the ORF1, which tend to evolve faster in mammals. The highly divergent L1 families of lizard, frog, and fish share species-specific features suggesting that they are subjected to the same functional constraints imposed by their host. The relative conservation of the 5′UTR and ORF1 in non-mammalian vertebrates suggests that the repression of transposition by the host does not act in a sequence-specific manner and did not result in an arms race, as is observed in mammals.
Naville, Magali; Gautheret, Daniel
2010-01-01
Bacterial transcription attenuation occurs through a variety of cis-regulatory elements that control gene expression in response to a wide range of signals. The signal-sensing structures in attenuators are so diverse and rapidly evolving that only a small fraction have been properly annotated and characterized to date. Here we apply a broad-spectrum detection tool in order to achieve a more complete view of the transcriptional attenuation complement of key bacterial species. Our protocol seeks gene families with an unusual frequency of 5' terminators found across multiple species. Many of the detected attenuators are part of annotated elements, such as riboswitches or T-boxes, which often operate through transcriptional attenuation. However, a significant fraction of candidates were not previously characterized in spite of their unmistakable footprint. We further characterized some of these new elements using sequence and secondary structure analysis. We also present elements that may control the expression of several non-homologous genes, suggesting co-transcription and response to common signals. An important class of such elements, which we called mobile attenuators, is provided by 3' terminators of insertion sequences or prophages that may be exapted as 5' regulators when inserted directly upstream of a cellular gene. We show here that attenuators involve a complex landscape of signal-detection structures spanning the entire bacterial domain. We discuss possible scenarios through which these diverse 5' regulatory structures may arise or evolve.
Najafpour, Mohammad Mahdi
2011-01-01
The oxygen evolving complex in photosystem II which induces the oxidation of water to dioxygen in plants, algae and certain bacteria contains a cluster of one calcium and four manganese ions. It serves as a model to split water by sunlight. Reports on the mechanism and structure of photosystem II provide a more detailed architecture of the oxygen evolving complex and the surrounding amino acids. One challenge in this field is the development of artificial model compounds to study oxygen evolution reaction outside the complicated environment of the enzyme. Calcium-manganese oxides as structural and functional models for the active site of photosystem II are explained and reviewed in this paper. Because of related structures of these calcium-manganese oxides and the catalytic centers of active site of the oxygen evolving complex of photosystem II, the study may help to understand more about mechanism of oxygen evolution by the oxygen evolving complex of photosystem II. Copyright © 2010 Elsevier B.V. All rights reserved.
Affective responses in tamarins elicited by species-specific music
Snowdon, Charles T.; Teie, David
2010-01-01
Theories of music evolution agree that human music has an affective influence on listeners. Tests of non-humans provided little evidence of preferences for human music. However, prosodic features of speech (‘motherese’) influence affective behaviour of non-verbal infants as well as domestic animals, suggesting that features of music can influence the behaviour of non-human species. We incorporated acoustical characteristics of tamarin affiliation vocalizations and tamarin threat vocalizations into corresponding pieces of music. We compared music composed for tamarins with that composed for humans. Tamarins were generally indifferent to playbacks of human music, but responded with increased arousal to tamarin threat vocalization based music, and with decreased activity and increased calm behaviour to tamarin affective vocalization based music. Affective components in human music may have evolutionary origins in the structure of calls of non-human animals. In addition, animal signals may have evolved to manage the behaviour of listeners by influencing their affective state. PMID:19726444
A Cretaceous eutriconodont and integument evolution in early mammals.
Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D
2015-10-15
The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.
The Origins of Transmembrane Ion Channels
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.
2012-01-01
Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.
Current Treatment Algorithms for Patients with Metastatic Non-Small Cell, Non-Squamous Lung Cancer
Melosky, Barbara
2017-01-01
The treatment paradigm for metastatic non-small cell, non-squamous lung cancer is continuously evolving due to new treatment options and our increasing knowledge of molecular signal pathways. As a result of treatments becoming more efficacious and more personalized, survival for selected groups of non-small cell lung cancer (NSCLC) patients is increasing. In this paper, three algorithms will be presented for treating patients with metastatic non-squamous, NSCLC. These include treatment algorithms for NSCLC patients whose tumors have EGFR mutations, ALK rearrangements, or wild-type/wild-type tumors. As the world of immunotherapy continues to evolve quickly, a future algorithm will also be presented. PMID:28373963
Visualization of evolving laser-generated structures by frequency domain tomography
NASA Astrophysics Data System (ADS)
Chang, Yenyu; Li, Zhengyan; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael
2011-10-01
We introduce frequency domain tomography (FDT) for single-shot visualization of time-evolving refractive index structures (e.g. laser wakefields, nonlinear index structures) moving at light-speed. Previous researchers demonstrated single-shot frequency domain holography (FDH), in which a probe-reference pulse pair co- propagates with the laser-generated structure, to obtain snapshot-like images. However, in FDH, information about the structure's evolution is averaged. To visualize an evolving structure, we use several frequency domain streak cameras (FDSCs), in each of which a probe-reference pulse pair propagates at an angle to the propagation direction of the laser-generated structure. The combination of several FDSCs constitutes the FDT system. We will present experimental results for a 4-probe FDT system that has imaged the whole-beam self-focusing of a pump pulse propagating through glass in a single laser shot. Combining temporal and angle multiplexing methods, we successfully processed data from four probe pulses in one spectrometer in a single-shot. The output of data processing is a multi-frame movie of the self- focusing pulse. Our results promise the possibility of visualizing evolving laser wakefield structures that underlie laser-plasma accelerators used for multi-GeV electron acceleration.
Martinez-Mier, Esperanza A; Soto-Rojas, Armando E; Stelzner, Sarah M; Lorant, Diane E; Riner, Mary E; Yoder, Karen M
2011-04-01
Many health professions students who treat Spanish-speaking patients in the United States have little concept of their culture and health related traditions. The lack of understanding of these concepts may constitute major barriers to healthcare for these patients. International service-learning experiences allow students to work directly in communities from which patients immigrate and, as a result, students gain a better understanding of these barriers. This article describes the implementation of an international, multidisciplinary, service-learning program in a dental school in the United States. The Indiana University International Service-Learning program in Hidalgo, Mexico began in 1999 as an alternative spring break travel and clinical experience for medical students, focusing on the treatment of acute health problems. Travel-related preparatory sessions were offered, and no learning or service objectives had been developed. The program has evolved to include a multidisciplinary team of dental, medical, nursing, public health and social work students and faculty. The experience is now integrated into a curriculum based on the service-learning model that allows students to use their clinical skills in real-life situations and provides structured time for reflection. The program aims to enhance teaching and foster civic responsibility in explicit partnership with the community. Preparatory sessions have evolved into a multidisciplinary graduate level course with defined learning and service objectives. PROGRAM EVALUATION METHODS: In order to assess the program's operation as perceived by students and faculty and to evaluate student's perceptions of learning outcomes, evaluation tools were developed. These tools included student and faculty evaluation questionnaires, experiential learning journals, and a strengths, weaknesses, opportunities and threats analysis. Evaluation data show that after program participation, students perceived an increase in their cultural awareness, cross-cultural communication skills and understanding of barriers and disparities faced by Latinos in the United States. Faculty evaluations offer insights into the lessons learned through the implementation process. The development of a service-learning based curriculum has posed challenges but has enriched international service experiences.
Vocabulary, Grammar, Sex, and Aging.
Moscoso Del Prado Martín, Fermín
2017-05-01
Understanding the changes in our language abilities along the lifespan is a crucial step for understanding the aging process both in normal and in abnormal circumstances. Besides controlled experimental tasks, it is equally crucial to investigate language in unconstrained conversation. I present an information-theoretical analysis of a corpus of dyadic conversations investigating how the richness of the vocabulary, the word-internal structure (inflectional morphology), and the syntax of the utterances evolves as a function of the speaker's age and sex. Although vocabulary diversity increases throughout the lifetime, grammatical diversities follow a different pattern, which also differs between women and men. Women use increasingly diverse syntactic structures at least up to their late fifties, and they do not deteriorate in terms of fluency through their lifespan. However, from age 45 onward, men exhibit a decrease in the diversity of the syntactic structures they use, coupled with an increased number of speech disfluencies. Copyright © 2016 Cognitive Science Society, Inc.
Pre-eruptive Magnetic Reconnection within a Multi-flux-rope System in the Solar Corona
NASA Astrophysics Data System (ADS)
Awasthi, Arun Kumar; Liu, Rui; Wang, Haimin; Wang, Yuming; Shen, Chenglong
2018-04-01
The solar corona is frequently disrupted by coronal mass ejections (CMEs), whose core structure is believed to be a flux rope made of helical magnetic field. This has become a “standard” picture; though, it remains elusive how the flux rope forms and evolves toward eruption. While one-third of the ejecta passing through spacecraft demonstrate a flux-rope structure, the rest have complex magnetic fields. Are they originating from a coherent flux rope, too? Here we investigate the source region of a complex ejecta, focusing on a flare precursor with definitive signatures of magnetic reconnection, i.e., nonthermal electrons, flaring plasma, and bidirectional outflowing blobs. Aided by nonlinear force-free field modeling, we conclude that the reconnection occurs within a system of multiple braided flux ropes with different degrees of coherency. The observation signifies the importance of internal structure and dynamics in understanding CMEs and in predicting their impacts on Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clough, Katy; Figueras, Pau; Finkel, Hal
In this work, we introduce GRChombo: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial 'many-boxes-in-many-boxes' mesh hierarchies and massive parallelism through the message passing interface. GRChombo evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3 + 1 setting, while also significantly simplifying the process of setting up the mesh for these problems. Wemore » show that GRChombo can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique.« less
Using Generative Representations to Evolve Robots. Chapter 1
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2004-01-01
Recent research has demonstrated the ability of evolutionary algorithms to automatically design both the physical structure and software controller of real physical robots. One of the challenges for these automated design systems is to improve their ability to scale to the high complexities found in real-world problems. Here we claim that for automated design systems to scale in complexity they must use a representation which allows for the hierarchical creation and reuse of modules, which we call a generative representation. Not only is the ability to reuse modules necessary for functional scalability, but it is also valuable for improving efficiency in testing and construction. We then describe an evolutionary design system with a generative representation capable of hierarchical modularity and demonstrate it for the design of locomoting robots in simulation. Finally, results from our experiments show that evolution with our generative representation produces better robots than those evolved with a non-generative representation.
Longo, F; Finotti, L; Bellini, L; Zavan, B; Busetto, R; Isola, M
2016-05-01
A 15-year-old female huacaya alpaca (Vicugna pacos) was referred because of a non-weight-bearing lameness (4/4) in the left pelvic limb caused by a grade three open metatarsal fracture. The referring veterinarian treated the fracture with conservative management using bandages, but it progressively evolved to a non-union. Clinical examination revealed external wounds on the medial and lateral surfaces of the metatarsus. Radiographs confirmed an open, nonarticular, displaced, diaphyseal fracture of the left metatarsus. Cancellous bone was sourced from bovine proximal and distal femur epiphyses, followed by a thermal shock procedure to achieve decellularisation, to produce a xenograft. Open reduction and internal fixation of the fracture using locking plates was performed. Alignment of the fracture fragments was corrected and the xenograft was placed at the debrided fracture site to stimulate and harness osteogenesis in situ. Clinical and radiographic follow-up was performed up to 40 weeks postoperatively. Clinical evaluations revealed that the alpaca gradually increased weight bearing following bandage removal 10 days after surgery. Serial radiographs showed correct alignment of the left metatarsus, progressive bone modelling and, complete bone union at 12 weeks. Ten months postoperatively the alpaca showed no signs of lameness and resumed normal activity. For management of a metatarsal non-union, a combination of bovine xenograft application and angular stable internal fixation progressed toward an excellent long-term recovery.
Coevolution between Male and Female Genitalia in the Drosophila melanogaster Species Subgroup
Yassin, Amir; Orgogozo, Virginie
2013-01-01
In contrast to male genitalia that typically exhibit patterns of rapid and divergent evolution among internally fertilizing animals, female genitalia have been less well studied and are generally thought to evolve slowly among closely-related species. As a result, few cases of male-female genital coevolution have been documented. In Drosophila, female copulatory structures have been claimed to be mostly invariant compared to male structures. Here, we re-examined male and female genitalia in the nine species of the D. melanogaster subgroup. We describe several new species-specific female genital structures that appear to coevolve with male genital structures, and provide evidence that the coevolving structures contact each other during copulation. Several female structures might be defensive shields against apparently harmful male structures, such as cercal teeth, phallic hooks and spines. Evidence for male-female morphological coevolution in Drosophila has previously been shown at the post-copulatory level (e.g., sperm length and sperm storage organ size), and our results provide support for male-female coevolution at the copulatory level. PMID:23451172
Evolving BioAssay Ontology (BAO): modularization, integration and applications
2014-01-01
The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and datasets. PMID:25093074
Evolving BioAssay Ontology (BAO): modularization, integration and applications.
Abeyruwan, Saminda; Vempati, Uma D; Küçük-McGinty, Hande; Visser, Ubbo; Koleti, Amar; Mir, Ahsan; Sakurai, Kunie; Chung, Caty; Bittker, Joshua A; Clemons, Paul A; Brudz, Steve; Siripala, Anosha; Morales, Arturo J; Romacker, Martin; Twomey, David; Bureeva, Svetlana; Lemmon, Vance; Schürer, Stephan C
2014-01-01
The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and datasets.
Foundations of the International System of Units (SI).
ERIC Educational Resources Information Center
Nelson, Robert A.
1981-01-01
Traces the events leading to the creation of the International Bureau of Weights and Measures (BIPM). Discusses how the units have been represented by their standards, and investigates how the original metric system evolved into the International System of Units (SI), focusing on the meter, second, kilogram, and electrical units. (SK)
NASA Astrophysics Data System (ADS)
Zhang, Keke; Kong, D.; Schubert, G.; Anderson, J.
2012-10-01
An accurate calculation of the rotationally distorted shape and internal structure of Jupiter is required to understand the high-precision gravitational field that will be measured by the Juno spacecraft now on its way to Jupiter. We present a three-dimensional non-spherical numerical calculation of the shape and internal structure of a model of Jupiter with a polytropic index of unity. The calculation is based on a finite element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar (1933) that is valid only for a slowly rotating gaseous planet, we apply it to a model of Jupiter whose rapid rotation causes a significant departure from spherical geometry. The two-dimensional distribution of the density and the pressure within Jupiter is then determined via a hybrid inverse approach by matching the a priori unknown coefficient in the equation of state to the observed shape of Jupiter. After obtaining the two-dimensional distribution of Jupiter's density, we then compute the zonal gravity coefficients and the total mass from the non-spherical Jupiter model that takes full account of rotation-induced shape changes. Our non-spherical model with a polytrope of unit index is able to produce the known mass and zonal gravitational coefficients of Jupiter. Chandrasekhar, S. 1933, The equilibrium of distorted polytropes, MNRAS 93, 390
Urology Group Compensation and Ancillary Service Models in an Era of Value-based Care.
Shore, Neal D; Jacoby, Dana
2016-01-01
Changes involving the health care economic landscape have affected physicians' workflow, productivity, compensation structures, and culture. Ongoing Federal legislation regarding regulatory documentation and imminent payment-changing methodologies have encouraged physician consolidation into larger practices, creating affiliations with hospitals, multidisciplinary medical specialties, and integrated delivery networks. As subspecialization and evolution of care models have accelerated, independent medical groups have broadened ancillary service lines by investing in enterprises that compete with hospital-based (academic and nonacademic) entities, as well as non-physician- owned multispecialty enterprises, for both outpatient and inpatient services. The looming and dramatic shift from volume- to value-based health care compensation will assuredly affect urology group compensation arrangements and productivity formulae. For groups that can implement change rapidly, efficiently, and harmoniously, there will be opportunities to achieve the Triple Aim goals of the Patient Protection and Affordable Care Act, while maintaining a successful medical-financial practice. In summary, implementing new payment algorithms alongside comprehensive care coordination will assist urology groups in addressing the health economic cost and quality challenges that have been historically encountered with fee-for-service systems. Urology group leadership and stakeholders will need to adjust internal processes, methods of care coordination, cultural dependency, and organizational structures in order to create better systems of care and management. In response, ancillary services and patient throughput will need to evolve in order to adequately align quality measurement and reporting systems across provider footprints and patient populations.
Turcotte, Martin M; Reznick, David N; Hare, J Daniel
2011-11-01
Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.
Mapping the knowledge utilization field in nursing from 1945 to 2004: a bibliometric analysis.
Scott, Shannon D; Profetto-McGrath, Joanne; Estabrooks, Carole A; Winther, Connie; Wallin, Lars; Lavis, John N
2010-12-01
The field of knowledge utilization has been hampered by several issues including: the synonymous use of multiple terms with little attempt at definition precision; an overexamination of knowledge utilization as product, rather than a process; and a lack of progress to cross disciplinary boundaries to advance knowledge development. In order to address the challenges and current knowledge gaps in the knowledge utilization field in nursing, a comprehensive picture of the current state of the field is required. Bibliometric analyses were used to map knowledge utilization literature in nursing as an international field of study, and to identify the structure of its scientific community. Analyses of bibliographic data for 433 articles from the period 1945-2004 demonstrated three trends: (1) there has been significant recent growth and interest in this field, (2) the structure of the scientific knowledge utilization community is evolving, and (3) the Web of Science does not index the majority of journals where this literature is published. In order to enhance the accessibility and profile of this literature, and nursing's scientific literature at large, we encourage the International Academy of Nursing Editors to work collaboratively to increase the number of journals indexed in the Web of Science. ©2010 Sigma Theta Tau International.
Glider Observations of Internal Tide Packets on the Australian Northwest Shelf
NASA Astrophysics Data System (ADS)
Book, J. W.; Steinberg, C. R.; Brinkman, R. M.; Jones, N. L.; Lowe, R.; Ivey, G. N.; Pattiaratchi, C. B.; Rice, A. E.
2016-02-01
The rapid profiling capabilities (less than 10 minutes per profile in 100 m of water excluding surfacing times) of autonomous gliders were utilized to study the structure of non-linear internal tide packets on the Australian Northwest Shelf. A total of five gliders were deployed on the shelf from 11 February - 21 April 2012 with more than 2900 glider CTD profiles collected during the final three weeks of this time period when the internal tide activity was intense. In general the internal tide packets showed high degrees of non-linearity, for example in one case a glider observed a 62 m rise of the 28° isotherm over 2.25 hours in a shelf location of 90 meters water depth. In addition to the glider measurements, moored strings of CTD sensors were used to measure the internal tide packets at fixed positions and the results show that the wave packets vary significantly with respect to their structure and arrival times from one tidal period to the next. This fact complicates interpretation of the glider data as wave packet spatial evolution is non-stationary and cannot be simply recovered from repeat glider visits to the same location. Furthermore, the packets were found to move at speeds near or greater (e.g., 0.55 m/s) than the speed that the gliders were moving. Despite these challenges, the gliders offer the only resource that can measure the spatial structure of the wave packets beyond the scope of our limited mooring positions. Therefore, we have implemented methods such as time-augmented empirical orthogonal functions to combine these glider measurements with the fixed mooring measurements in order to better understand the spatial and temporal patterns of the wave packet evolution over the slope and shelf of this region.
Aging processes in disordered materials: High-Tc superconductors and ferromagnets
NASA Astrophysics Data System (ADS)
Pleimling, Michel
2013-03-01
Physical aging is generically encountered in systems far from equilibrium that evolve with slow dynamics. Well known examples can be found in structural glasses, spin glasses, magnetic systems, and colloids. Recent years have seen major breakthroughs in our understanding of aging processes in non-disordered systems. Progress in understanding aging in disordered systems has been much slower though. In this talk I discuss non-equilibrium relaxation in two different types of disordered systems: coarsening ferromagnets with disorder, characterized by a crossover from an initial power-law like growth of domains to a slower logarithmic growth regime, and interacting vortex lines in disordered type-II superconductors, where the interplay of vortex-vortex interaction and pinning results in a very rich non-equilibrium behavior. This work is supported by the US Department of Energy through grant DE-FG02-09ER46613.
Contributions to Active Buffeting Alleviation Programs by the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Moses, Robert W.
1999-01-01
Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. By means of wind-tunnel and flight tests, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can be increased by structural enhancements to the airframe. In more recent years, buffeting alleviation through active control of smart materials has been highly researched in wind-tunnel proof-of-concept demonstrations and full-scale ground tests using the F/A-18 as a test bed. Because the F/A-18 resides in fleets outside as well as inside the United States, these tests have evolved into international collaborative research activities with Australia and Canada, coordinated by the Air Force Research Laboratory (AFRL) and conducted under the auspices of The Technical Cooperation Program (TTCP). With the recent successes and advances in smart materials, the main focus of these buffeting alleviation tests has also evolved to a new level: utilize the F/A-18 as a prototype to mature smart materials for suppressing vibrations of aerospace structures. The role of the NASA Langley Research Center (LaRC) in these programs is presented.
Role of organic matter on aggregate stability and related mechanisms through organic amendments
NASA Astrophysics Data System (ADS)
Zaher, Hafida
2010-05-01
To date, only a few studies have tried to simultaneously compare the role of neutral and uronic sugars and lipids on soil structural stability. Moreover, evidence for the mechanisms involved has often been established following wetting of moist aggregates after various pre-treatments thus altering aggregate structure and resulting in manipulations on altered aggregates on which the rapid wetting process may not be involved anymore. To the best of our knowledge, the objective of this work was to study the role of neutral and uronic sugars and lipids in affecting key mechanisms (swelling rate, pressure evolution) involved in the stabilization of soil structure. A long-term incubation study (48-wk) was performed on a clay loam and a silty-clay loam amended with de-inking-secondary sludge mix at three rates (8, 16 and 24 Mg dry matter ha-1), primary-secondary sludge mix at one rate (18 Mg oven-dry ha-1) and composted de-inking sludge at one rate (24 Mg ha-1). Different structural stability indices (stability of moist and dry aggregates, the amount of dispersible clay and loss of soil material following sudden wetting) were measured on a regular basis during the incubation, along with CO2 evolved, neutral and uronic sugar, and lipid contents. During the course of the incubations, significant increases in all stability indices were measured for both soil types. In general, the improvements in stability were proportional to the amount of C added as organic amendments. These improvements were linked to a very intense phase of C mineralization and associated with increases in neutral and uronic sugars as well as lipid contents. The statistical relationships found between the different carbonaceous fractions and stability indices were all highly significant and indicated no clear superiority of one fraction over another. Paper sludge amendments also resulted in significant decreases in maximum internal pressure of aggregate and aggregate swelling following immersion in water, two mechanisms affecting structural stability. Overall, the results suggest that reduction in maximum internal pressure induced by organic amendments most likely resulted from increases in pore surface roughness and pore occlusion rather than by increase in surface wetting angles. This study also supports the view of a non specific action of the lipids, neutral and uronic sugars on aggregate stability to rapid wetting. Key words: soil aggregate stability, polysaccharides, lipids, mechanisms, organic matter
Looking into the evolution of granular asteroids in the Solar System
NASA Astrophysics Data System (ADS)
Sánchez, Paul; Scheeres, Daniel; Hirabayashi, Masatoshi; Tardivel, Simon
2017-06-01
By now it has been accepted that most of the small asteroids in the Solar System are granular aggregates kept together by gravitational and possibly, cohesive forces. These aggregates can form, deform and disrupt over millennia subjected to different internal and external factors that would ultimately determine how they evolve over time. Parameters such as porosity, cohesive and tensile strength, angles of friction, particle size distributions, stress states, heterogeneity and yield criteria among others, determine how these granular systems will react when subjected to different, changing, external factors. These external factors include solar photon momentum, gravitational tides, micro- and macro-impacts and are believed to have produced and shaped the current asteroid population. In our research we use a combination of Soil Mechanics theory, Soft-Sphere Discrete Element Method (SSDEM) Simulations and Orbital Mechanics in order to understand how simulated, homogeneous and heterogeneous, ellipsoidal and spherical gravitational aggregates, a crude but useful representation of an asteroid, evolve when rotated to the point of disruption. Then, we compare our results to the shapes of observed asteroids as well as to the disruption patterns of a few active asteroids. Our results lead us to believe that the different shapes of observed asteroids as well as their unique disruption patterns could give us clues about their internal structure, strength and geophysical properties in general.
Valsangkar, Sameer; Bodhare, Trupti N; Pande, Shripad B; Bele, Samir D; Rao, B Sitarama
2011-01-01
Background: The evolving nature of palliative care and its renewed role in people living with HIV/AIDS (PLWHA) in the post-HAART (highly active anti-retroviral therapy) era warrants an evaluation of the present curriculum in medical under graduates. Objectives: The objectives are(1) to measure the existing knowledge regarding palliative care and its application to PLWHA among medical interns and (2) to measure the impact of a structured intervention on knowledge dimensions. Design and Setting: Interventional repeated measures study. Materials and Methods: A convenience sample of 106 interns in the medical college completed a pre-test assessment and a post-test assessment following a structured intervention for evaluation and comparison of knowledge over three dimensions which were (1) knowledge of palliative care and its application in PLWHA, (2) medical symptoms in PLWHA requiring palliative care and (3) psychosocial needs in PLWHA requiring palliative care. Results: The mean scores on knowledge showed a consistent increase after the structured intervention and Student’s t-test was significant across three dimensions of knowledge of palliative care and its application (t=9.12, P value <0.001), medical symptoms in PLWHA requiring palliative care (t=12.72, P value <0.001) and psychosocial needs in PLWHA (t=11.14, P value <0.001). Conclusion: In spite of the unique challenges presented by the varying course of illness in PLWHA and the variety of needs on the medical, psychosocial and family dimensions, a structured approach and an integrated course curriculum involving principles of both primary and palliative care principles will improve the efficiency of the undergraduate medical education program and enable delivery of effective palliative care interventions and improve quality of life in PLWHA. PMID:21633615
Valsangkar, Sameer; Bodhare, Trupti N; Pande, Shripad B; Bele, Samir D; Rao, B Sitarama
2011-01-01
The evolving nature of palliative care and its renewed role in people living with HIV/AIDS (PLWHA) in the post-HAART (highly active anti-retroviral therapy) era warrants an evaluation of the present curriculum in medical under graduates. The objectives are(1) to measure the existing knowledge regarding palliative care and its application to PLWHA among medical interns and (2) to measure the impact of a structured intervention on knowledge dimensions. Interventional repeated measures study. A convenience sample of 106 interns in the medical college completed a pre-test assessment and a post-test assessment following a structured intervention for evaluation and comparison of knowledge over three dimensions which were (1) knowledge of palliative care and its application in PLWHA, (2) medical symptoms in PLWHA requiring palliative care and (3) psychosocial needs in PLWHA requiring palliative care. The mean scores on knowledge showed a consistent increase after the structured intervention and Student's t-test was significant across three dimensions of knowledge of palliative care and its application (t=9.12, P value <0.001), medical symptoms in PLWHA requiring palliative care (t=12.72, P value <0.001) and psychosocial needs in PLWHA (t=11.14, P value <0.001). In spite of the unique challenges presented by the varying course of illness in PLWHA and the variety of needs on the medical, psychosocial and family dimensions, a structured approach and an integrated course curriculum involving principles of both primary and palliative care principles will improve the efficiency of the undergraduate medical education program and enable delivery of effective palliative care interventions and improve quality of life in PLWHA.
Polar bears, antibiotics, and the evolving ribosome (Nobel Lecture).
Yonath, Ada
2010-06-14
High-resolution structures of ribosomes, the cellular machines that translate the genetic code into proteins, revealed the decoding mechanism, detected the mRNA path, identified the sites of the tRNA molecules in the ribosome, elucidated the position and the nature of the nascent proteins exit tunnel, illuminated the interactions of the ribosome with non-ribosomal factors, such as the initiation, release and recycling factors, and provided valuable information on ribosomal antibiotics, their binding sites, modes of action, principles of selectivity and the mechanisms leading to their resistance. Notably, these structures proved that the ribosome is a ribozyme whose active site, namely where the peptide bonds are being formed, is situated within a universal symmetrical region that is embedded in the otherwise asymmetric ribosome structure. As this symmetrical region is highly conserved and provides the machinery required for peptide bond formation and for ribosome polymerase activity, it may be the remnant of the proto-ribosome, a dimeric prebiotic machine that formed peptide bonds and non-coded polypeptide chains. Structures of complexes of ribosomes with antibiotics targeting them revealed the principles allowing for their clinical use, identified resistance mechanisms and showed the structural bases for discriminating pathogenic bacteria from hosts, hence providing valuable structural information for antibiotics improvement and for the design of novel compounds that can serve as antibiotics.
Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique
2016-08-01
Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Vitório, Paulo Cezar; Leonel, Edson Denner
2017-12-01
The structural design must ensure suitable working conditions by attending for safe and economic criteria. However, the optimal solution is not easily available, because these conditions depend on the bodies' dimensions, materials strength and structural system configuration. In this regard, topology optimization aims for achieving the optimal structural geometry, i.e. the shape that leads to the minimum requirement of material, respecting constraints related to the stress state at each material point. The present study applies an evolutionary approach for determining the optimal geometry of 2D structures using the coupling of the boundary element method (BEM) and the level set method (LSM). The proposed algorithm consists of mechanical modelling, topology optimization approach and structural reconstruction. The mechanical model is composed of singular and hyper-singular BEM algebraic equations. The topology optimization is performed through the LSM. Internal and external geometries are evolved by the LS function evaluated at its zero level. The reconstruction process concerns the remeshing. Because the structural boundary moves at each iteration, the body's geometry change and, consequently, a new mesh has to be defined. The proposed algorithm, which is based on the direct coupling of such approaches, introduces internal cavities automatically during the optimization process, according to the intensity of Von Mises stress. The developed optimization model was applied in two benchmarks available in the literature. Good agreement was observed among the results, which demonstrates its efficiency and accuracy.
2013-01-01
Background Elucidating the native structure of a protein molecule from its sequence of amino acids, a problem known as de novo structure prediction, is a long standing challenge in computational structural biology. Difficulties in silico arise due to the high dimensionality of the protein conformational space and the ruggedness of the associated energy surface. The issue of multiple minima is a particularly troublesome hallmark of energy surfaces probed with current energy functions. In contrast to the true energy surface, these surfaces are weakly-funneled and rich in comparably deep minima populated by non-native structures. For this reason, many algorithms seek to be inclusive and obtain a broad view of the low-energy regions through an ensemble of low-energy (decoy) conformations. Conformational diversity in this ensemble is key to increasing the likelihood that the native structure has been captured. Methods We propose an evolutionary search approach to address the multiple-minima problem in decoy sampling for de novo structure prediction. Two population-based evolutionary search algorithms are presented that follow the basic approach of treating conformations as individuals in an evolving population. Coarse graining and molecular fragment replacement are used to efficiently obtain protein-like child conformations from parents. Potential energy is used both to bias parent selection and determine which subset of parents and children will be retained in the evolving population. The effect on the decoy ensemble of sampling minima directly is measured by additionally mapping a conformation to its nearest local minimum before considering it for retainment. The resulting memetic algorithm thus evolves not just a population of conformations but a population of local minima. Results and conclusions Results show that both algorithms are effective in terms of sampling conformations in proximity of the known native structure. The additional minimization is shown to be key to enhancing sampling capability and obtaining a diverse ensemble of decoy conformations, circumventing premature convergence to sub-optimal regions in the conformational space, and approaching the native structure with proximity that is comparable to state-of-the-art decoy sampling methods. The results are shown to be robust and valid when using two representative state-of-the-art coarse-grained energy functions. PMID:24565020
2015-06-01
adequate documentation to substantiate transactions , and effective internal controls surrounding business processes along with the verification that...organization, such as its personnel, processes, and objectives. The internal auditing profession brings a composite of in-depth knowledge and best business ...with internal auditors. Organizations should keep internal auditors abreast of changes in expectations as the business evolves. Doing so helps
Computational structural mechanics methods research using an evolving framework
NASA Technical Reports Server (NTRS)
Knight, N. F., Jr.; Lotts, C. G.; Gillian, R. E.
1990-01-01
Advanced structural analysis and computational methods that exploit high-performance computers are being developed in a computational structural mechanics research activity sponsored by the NASA Langley Research Center. These new methods are developed in an evolving framework and applied to representative complex structural analysis problems from the aerospace industry. An overview of the methods development environment is presented, and methods research areas are described. Selected application studies are also summarized.
G-structures and domain walls in heterotic theories
NASA Astrophysics Data System (ADS)
Lukas, Andre; Matti, Cyril
2011-01-01
We consider heterotic string solutions based on a warped product of a four-dimensional domain wall and a six-dimensional internal manifold, preserving two supercharges. The constraints on the internal manifolds with SU(3) structure are derived. They are found to be generalized half-flat manifolds with a particular pattern of torsion classes and they include half-flat manifolds and Strominger's complex non-Kahler manifolds as special cases. We also verify that previous heterotic compactifications on half-flat mirror manifolds are based on this class of solutions.
Power and Relation in the World Polity: The INGO Network Country Score, 1978-1998
ERIC Educational Resources Information Center
Hughes, Melanie M.; Peterson, Lindsey; Harrison, Jill Ann; Paxton, Pamela
2009-01-01
World polity theory is explicitly relational, implying a global network structure that exists outside of the nation-state. And world polity theory increasingly acknowledges power--that some states and regions are dominant in the international field. But current world polity measures of international non-governmental organizations do not…
ERIC Educational Resources Information Center
Lin, Shu-Yuan; Scherz, Susan Day
2014-01-01
Non-Native English Speaking (NNES) international students attending colleges and universities in the United States often encounter difficulties in adjusting to their new cultural environment. In addition, they often struggle with academic language while learning the content and conceptual structures of various graduate level disciplines. This…
[Around biological evolution. Reflections of a physicist].
Sanchez-Palencia, Evariste
2016-01-01
This text is the written version of a talk at the Société de Biologie on February 17, 2016. It contains reflections of a non-biologist scientist on general problems of biological evolution, including the kind of causality involved, the ideas emerging from it, in particular the constructive and structuring character of phenomena such as predation, the role of stability and attractors. This leads to a larger reflection on dialectics, the general framework of evolving processes, which overpasses formal logic and instantaneousness. © Société de Biologie, 2016.
Current approach in the diagnosis and management of posterior uveitis
Sudharshan, S; Ganesh, Sudha K; Biswas, Jyotrimay
2010-01-01
Posterior uveitic entities are varied entities that are infective or non-infective in etiology. They can affect the adjacent structures such as the retina, vitreous, optic nerve head and retinal blood vessels. Thorough clinical evaluation gives a clue to the diagnosis while ancillary investigations and laboratory tests assist in confirming the diagnosis. Newer evolving techniques in the investigations and management have increased the diagnostic yield. In case of diagnostic dilemma, intraocular fluid evaluation for polymerase chain testing for the genome and antibody testing against the causative agent provide greater diagnostic ability. PMID:20029144
Adaptive neural network/expert system that learns fault diagnosis for different structures
NASA Astrophysics Data System (ADS)
Simon, Solomon H.
1992-08-01
Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.
A non-classical phase diagram for virus-bacterial co-evolution mediated by CRISPR
NASA Astrophysics Data System (ADS)
Han, Pu; Deem, Michael
CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. Due to the cost of CRISPR, bacteria can lose the acquired immunity. We will show an intriguing phase diagram of the virus extinction probability, which when the rate of losing the acquired immunity is small, is more complex than that of the classic predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape the recognition by CRISPR, and this co-evolution leads to a non-trivial phase structure that cannot be explained by the classical predator-prey model.
Improving Search Properties in Genetic Programming
NASA Technical Reports Server (NTRS)
Janikow, Cezary Z.; DeWeese, Scott
1997-01-01
With the advancing computer processing capabilities, practical computer applications are mostly limited by the amount of human programming required to accomplish a specific task. This necessary human participation creates many problems, such as dramatically increased cost. To alleviate the problem, computers must become more autonomous. In other words, computers must be capable to program/reprogram themselves to adapt to changing environments/tasks/demands/domains. Evolutionary computation offers potential means, but it must be advanced beyond its current practical limitations. Evolutionary algorithms model nature. They maintain a population of structures representing potential solutions to the problem at hand. These structures undergo a simulated evolution by means of mutation, crossover, and a Darwinian selective pressure. Genetic programming (GP) is the most promising example of an evolutionary algorithm. In GP, the structures that evolve are trees, which is a dramatic departure from previously used representations such as strings in genetic algorithms. The space of potential trees is defined by means of their elements: functions, which label internal nodes, and terminals, which label leaves. By attaching semantic interpretation to those elements, trees can be interpreted as computer programs (given an interpreter), evolved architectures, etc. JSC has begun exploring GP as a potential tool for its long-term project on evolving dextrous robotic capabilities. Last year we identified representation redundancies as the primary source of inefficiency in GP. Subsequently, we proposed a method to use problem constraints to reduce those redundancies, effectively reducing GP complexity. This method was implemented afterwards at the University of Missouri. This summer, we have evaluated the payoff from using problem constraints to reduce search complexity on two classes of problems: learning boolean functions and solving the forward kinematics problem. We have also developed and implemented methods to use additional problem heuristics to fine-tune the searchable space, and to use typing information to further reduce the search space. Additional improvements have been proposed, but they are yet to be explored and implemented.
Facts or friction: the evolving role of science in phytosanitary issues
Eric Allen
2008-01-01
With the expansion of global trade, problems with invasive alien pests have also grown. In order to reduce the international movement of plant pests and protect valuable plant resources, national plant protection regulations and international standards continue to be developed. Science is critical to the development of effective national and international plant...
Multipoint entanglement in disordered systems
NASA Astrophysics Data System (ADS)
Magán, Javier M.; Paganelli, Simone; Oganesyan, Vadim
2017-02-01
We develop an approach to characterize excited states of disordered many-body systems using spatially resolved structures of entanglement. We show that the behavior of the mutual information (MI) between two parties of a many-body system can signal a qualitative difference between thermal and localized phases - MI is finite in insulators while it approaches zero in the thermodynamic limit in the ergodic phase. Related quantities, such as the recently introduced Codification Volume (CV), are shown to be suitable to quantify the correlation length of the system. These ideas are illustrated using prototypical non-interacting wavefunctions of localized and extended particles and then applied to characterize states of strongly excited interacting spin chains. We especially focus on evolution of spatial structure of quantum information between high temperature diffusive and many-body localized (MBL) phases believed to exist in these models. We study MI as a function of disorder strength both averaged over the eigenstates and in time-evolved product states drawn from continuously deformed family of initial states realizable experimentally. As expected, spectral and time-evolved averages coincide inside the ergodic phase and differ significantly outside. We also highlight dispersion among the initial states within the localized phase - some of these show considerable generation and delocalization of quantum information.
PSINET: Assisting HIV Prevention Amongst Homeless Youth by Planning Ahead
Yadav, A.; Marcolino, L. S.; Rice, E.; Petering, R.; Winetrobe, H.; Rhoades, H.; Tambe, M.; Carmichael, H.
2015-01-01
Homeless youth are prone to Human Immunodeficiency Virus (HIV) due to their engagement in high risk behavior such as unprotected sex, sex under influence of drugs, etc. Many non-profit agencies conduct interventions to educate and train a select group of homeless youth about HIV prevention and treatment practices and rely on word-of-mouth spread of information through their social network. Previous work in strategic selection of intervention participants does not handle uncertainties in the social network’s structure and evolving network state, potentially causing significant shortcomings in spread of information. Thus, we developed PSINET, a decision support system to aid the agencies in this task. PSINET includes the following key novelties: (i) it handles uncertainties in network structure and evolving network state; (ii) it addresses these uncertainties by using POMDPs in influence maximization; and (iii) it provides algorithmic advances to allow high quality approximate solutions for such POMDPs. Simulations show that PSINET achieves ~60% more information spread over the current state-of-the-art. PSINET was developed in collaboration with My Friend’s Place (a drop-in agency serving homeless youth in Los Angeles) and is currently being reviewed by their officials. PMID:27642227
The molecular refractive function of lens γ-crystallins
Zhao, Huaying; Brown, Patrick H.; Magone, M. Teresa; Schuck, Peter
2011-01-01
γ-crystallins constitute the major protein component in the nucleus of the vertebrate eye lens. Present at very high concentrations, they exhibit extreme solubility and thermodynamic stability to prevent scattering of light and the formation of cataracts. However, functions beyond this structural role have remained mostly unclear. Here, we calculate molecular refractive index increments of crystallins. We show that all lens γ-crystallins have evolved a significantly elevated molecular refractive index increment, which is far above those of most proteins, including non-lens members of the βγ-crystallin family from different species. The same trait has evolved in parallel in crystallins of different phyla, including in the S-crystallins of cephalopods. A high refractive index increment can lower the crystallin concentration required to achieve a suitable refractive power of the lens, and thereby reduce their propensity to aggregate and form cataract. To produce a significant increase of the refractive index increment, a substantial global shift in the amino acid composition is required, which can naturally explain the highly unusual amino acid composition of γ-crystallins and their functional homologues. This function provides a new perspective for interpreting their molecular structure. PMID:21684289
The NASA hypersonic research engine program
NASA Technical Reports Server (NTRS)
Rubert, Kennedy F.; Lopez, Henry J.
1992-01-01
An overview is provided of the NASA Hypersonic Research Engine Program. The engine concept is described which was evolved, and the accomplishments of the program are summarized. The program was undertaken as an in-depth program of hypersonic airbreathing propulsion research to provide essential inputs to future prototype engine development and decision making. An airbreathing liquid hydrogen fueled research oriented scramjet was to be developed to certain performance goals. The work was many faceted, required aerodynamic design evaluation, structures development, and development of flight systems such as the fuel and control system, but the main objective was the study of the internal aerothermodynamics of the propulsion system.
Toward a transnational history of the social sciences.
Heilbron, Johan; Guilhot, Nicolas; Jeanpierre, Laurent
2008-01-01
Historical accounts of the social sciences have too often accepted local or national institutions as a self-evident framework of analysis, instead of considering them as being embedded in transnational relations of various kinds. Evolving patterns of transnational mobility and exchange cut through the neat distinction between the local, the national, and the inter-national, and thus represent an essential component in the dynamics of the social sciences, as well as a fruitful perspective for rethinking their historical development. In this programmatic outline, it is argued that a transnational history of the social sciences may be fruitfully understood on the basis of three general mechanisms, which have structured the transnational flows of people and ideas in decisive ways: (a) the functioning of international scholarly institutions, (b) the transnational mobility of scholars, and (c) the politics of trans-national exchange of nonacademic institutions. The article subsequently examines and illustrates each of these mechanisms.
Network evolution model for supply chain with manufactures as the core.
Fang, Haiyang; Jiang, Dali; Yang, Tinghong; Fang, Ling; Yang, Jian; Li, Wu; Zhao, Jing
2018-01-01
Building evolution model of supply chain networks could be helpful to understand its development law. However, specific characteristics and attributes of real supply chains are often neglected in existing evolution models. This work proposes a new evolution model of supply chain with manufactures as the core, based on external market demand and internal competition-cooperation. The evolution model assumes the external market environment is relatively stable, considers several factors, including specific topology of supply chain, external market demand, ecological growth and flow conservation. The simulation results suggest that the networks evolved by our model have similar structures as real supply chains. Meanwhile, the influences of external market demand and internal competition-cooperation to network evolution are analyzed. Additionally, 38 benchmark data sets are applied to validate the rationality of our evolution model, in which, nine manufacturing supply chains match the features of the networks constructed by our model.
Network evolution model for supply chain with manufactures as the core
Jiang, Dali; Fang, Ling; Yang, Jian; Li, Wu; Zhao, Jing
2018-01-01
Building evolution model of supply chain networks could be helpful to understand its development law. However, specific characteristics and attributes of real supply chains are often neglected in existing evolution models. This work proposes a new evolution model of supply chain with manufactures as the core, based on external market demand and internal competition-cooperation. The evolution model assumes the external market environment is relatively stable, considers several factors, including specific topology of supply chain, external market demand, ecological growth and flow conservation. The simulation results suggest that the networks evolved by our model have similar structures as real supply chains. Meanwhile, the influences of external market demand and internal competition-cooperation to network evolution are analyzed. Additionally, 38 benchmark data sets are applied to validate the rationality of our evolution model, in which, nine manufacturing supply chains match the features of the networks constructed by our model. PMID:29370201
San, Phyo Phyo; Ling, Sai Ho; Nuryani; Nguyen, Hung
2014-08-01
This paper focuses on the hybridization technology using rough sets concepts and neural computing for decision and classification purposes. Based on the rough set properties, the lower region and boundary region are defined to partition the input signal to a consistent (predictable) part and an inconsistent (random) part. In this way, the neural network is designed to deal only with the boundary region, which mainly consists of an inconsistent part of applied input signal causing inaccurate modeling of the data set. Owing to different characteristics of neural network (NN) applications, the same structure of conventional NN might not give the optimal solution. Based on the knowledge of application in this paper, a block-based neural network (BBNN) is selected as a suitable classifier due to its ability to evolve internal structures and adaptability in dynamic environments. This architecture will systematically incorporate the characteristics of application to the structure of hybrid rough-block-based neural network (R-BBNN). A global training algorithm, hybrid particle swarm optimization with wavelet mutation is introduced for parameter optimization of proposed R-BBNN. The performance of the proposed R-BBNN algorithm was evaluated by an application to the field of medical diagnosis using real hypoglycemia episodes in patients with Type 1 diabetes mellitus. The performance of the proposed hybrid system has been compared with some of the existing neural networks. The comparison results indicated that the proposed method has improved classification performance and results in early convergence of the network.
Pasquevich, María Yanina; Dreon, Marcos Sebastián; Qiu, Jian-Wen; Mu, Huawei; Heras, Horacio
2017-11-20
Plants have evolved sophisticated embryo defences by kinetically-stable non-digestible storage proteins that lower the nutritional value of seeds, a strategy that have not been reported in animals. To further understand antinutritive defences in animals, we analysed PmPV1, massively accumulated in the eggs of the gastropod Pomacea maculata, focusing on how its structure and structural stability features affected its capacity to withstand passage through predator guts. The native protein withstands >50 min boiling and resists the denaturing detergent sodium dodecyl sulphate (SDS), indicating an unusually high structural stability (i.e., kinetic stability). PmPV1 is highly resistant to in vitro proteinase digestion and displays structural stability between pH 2.0-12.0 and 25-85 °C. Furthermore, PmPV1 withstands in vitro and mice digestion and is recovered unchanged in faeces, supporting an antinutritive defensive function. Subunit sequence similarities suggest a common origin and tolerance to mutations. This is the first known animal genus that, like plant seeds, lowers the nutritional value of eggs by kinetically-stable non-digestible storage proteins that survive the gut of predators unaffected. The selective pressure of the harsh gastrointestinal environment would have favoured their appearance, extending by convergent evolution the presence of plant-like hyperstable antinutritive proteins to unattended reproductive stages in animals.
González-Lizárraga, Florencia; Socías, Sergio B.; Ávila, César L.; Torres-Bugeau, Clarisa M.; Barbosa, Leandro R. S.; Binolfi, Andres; Sepúlveda-Díaz, Julia E.; Del-Bel, Elaine; Fernandez, Claudio O.; Papy-Garcia, Dulce; Itri, Rosangela; Raisman-Vozari, Rita; Chehín, Rosana N.
2017-01-01
Synucleinophaties are progressive neurodegenerative disorders with no cure to date. An attractive strategy to tackle this problem is repurposing already tested safe drugs against novel targets. In this way, doxycycline prevents neurodegeneration in Parkinson models by modulating neuroinflammation. However, anti-inflammatory therapy per se is insufficient to account for neuroprotection. Herein we characterise novel targets of doxycycline describing the structural background supporting its effectiveness as a neuroprotector at subantibiotic doses. Our results show that doxycycline reshapes α-synuclein oligomers into off-pathway, high-molecular-weight species that do not evolve into fibrils. Off-pathway species present less hydrophobic surface than on-pathway oligomers and display different β-sheet structural arrangement. These structural changes affect the α-synuclein ability to destabilize biological membranes, cell viability, and formation of additional toxic species. Altogether, these mechanisms could act synergically giving novel targets for repurposing this drug. PMID:28155912
Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr
During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less
Highlighting cancer cells with macromolecular probes
NASA Astrophysics Data System (ADS)
Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Brown, Adrienne S.; Wilson, James N.; Raymo, Françisco M.
2017-02-01
Conventional fluorophore-ligand constructs for the detection of cancer cells generally produce relatively weak signals with modest contrast. The inherently low brightness accessible per biding event with the pairing of a single organic fluorophore to a single ligand as well as the contribution of unbound probes to background fluorescence are mainly responsible for these limitations. Our laboratories identified a viable structural design to improve both brightness and contrast. It is based on the integration of activatable fluorophores and targeting ligands within the same macromolecular construct. The chromophoric components are engineered to emit bright fluorescence exclusively in acidic environments. The targeting agents are designed to bind complementary receptors overexpressed on the surface of cancer cells and allow internalization of the macromolecules into acidic organelles. As a result of these properties, our macromolecular probes switch their intense emission on exclusively in the intracellular space of target cells with minimal background fluorescence from the extracellular matrix. In fact, these operating principles translate into a 170-fold enhancement in brightness, relative to equivalent but isolated chromophoric components, and a 3-fold increase in contrast, relative to model but non-activatable fluorophores. Thus, our macromolecular probes might ultimately evolve into valuable analytical tools to highlight cancer cells with optimal signal-to-noise ratios in a diversity of biomedical applications.
MacDoctor: The Macintosh diagnoser
NASA Technical Reports Server (NTRS)
Lavery, David B.; Brooks, William D.
1990-01-01
When the Macintosh computer was first released, the primary user was a computer hobbyist who typically had a significant technical background and was highly motivated to understand the internal structure and operational intricacies of the computer. In recent years the Macintosh computer has become a widely-accepted general purpose computer which is being used by an ever-increasing non-technical audience. This has lead to a large base of users which has neither the interest nor the background to understand what is happening 'behind the scenes' when the Macintosh is put to use - or what should be happening when something goes wrong. Additionally, the Macintosh itself has evolved from a simple closed design to a complete family of processor platforms and peripherals with a tremendous number of possible configurations. With the increasing popularity of the Macintosh series, software and hardware developers are producing a product for every user's need. As the complexity of configuration possibilities grows, the need for experienced or even expert knowledge is required to diagnose problems. This presents a problem to uneducated or casual users. This problem indicates a new Macintosh consumer need; that is, a diagnostic tool able to determine the problem for the user. As the volume of Macintosh products has increased, this need has also increased.
NASA Astrophysics Data System (ADS)
Mao, Xiaochen; McKinnon, William B.
2018-01-01
We show that Ceres' measured degree-2 zonal gravity, J2, is smaller by about 10% than that derived assuming Ceres' rotational flattening, as measured by Dawn, is hydrostatic. Irrespective of Ceres' radial density variation, as long as its internal structure is hydrostatic the J2 predicted from the shape model is consistently larger than measured. As an explanation, we suggest that Ceres' current shape may be a fossil remnant of faster rotation in the geologic past. We propose that up to ∼7% of Ceres' previous spin angular momentum has been removed by dynamic perturbations such as a random walk due to impacts or a loss of satellite that slowed Ceres spin as it tidally evolved outward. As an alternative, we also consider a formal degree-2 admittance solution, from which we infer a range of possible non-hydrostatic contributions to J2 from uncompensated, deep-seated density anomalies. We show that such density anomalies could be due to low order convection or upwelling. The normalized moments-of-inertia derived for the two explanations - faster paleospin and deep-seated density anomalies - range between 0.353 ± 0.009 and 0.375 ± 0.001 for a spherically equivalent Ceres, which can be used as constraints on more complex Ceres interior models.
Quantitative genetic insights into the coevolutionary dynamics of male and female genitalia
Evans, Jonathan P.; van Lieshout, Emile; Gasparini, Clelia
2013-01-01
The spectacular variability that typically characterizes male genital traits has largely been attributed to the role of sexual selection. Among the evolutionary mechanisms proposed to account for this diversity, two processes in particular have generated considerable interest. On the one hand, females may exploit postcopulatory mechanisms of selection to favour males with preferred genital traits (cryptic female choice; CFC), while on the other hand females may evolve structures or behaviours that mitigate the direct costs imposed by male genitalia (sexual conflict; SC). A critical but rarely explored assumption underlying both processes is that male and female reproductive traits coevolve, either via the classic Fisherian model of preference-trait coevolution (CFC) or through sexually antagonistic selection (SC). Here, we provide evidence for this prediction in the guppy (Poecilia reticulata), a polyandrous livebearing fish in which males transfer sperm internally to females via consensual and forced matings. Our results from a paternal half-sibling breeding design reveal substantial levels of additive genetic variation underlying male genital size and morphology—two traits known to predict mating success during non-consensual matings. Our subsequent finding that physically interacting female genital traits exhibit corresponding levels of genetic (co)variation reveals the potential intersexual coevolutionary dynamics of male and female genitalia, thereby fulfilling a fundamental assumption underlying CFC and SC theory. PMID:23720546
Thermal properties of graphene under tensile stress
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.; Ramírez, Rafael
2018-05-01
Thermal properties of graphene display peculiar characteristics associated to the two-dimensional nature of this crystalline membrane. These properties can be changed and tuned in the presence of applied stresses, both tensile and compressive. Here, we study graphene monolayers under tensile stress by using path-integral molecular dynamics (PIMD) simulations, which allows one to take into account quantization of vibrational modes and analyze the effect of anharmonicity on physical observables. The influence of the elastic energy due to strain in the crystalline membrane is studied for increasing tensile stress and for rising temperature (thermal expansion). We analyze the internal energy, enthalpy, and specific heat of graphene, and compare the results obtained from PIMD simulations with those given by a harmonic approximation for the vibrational modes. This approximation turns out to be precise at low temperatures, and deteriorates as temperature and pressure are increased. At low temperature, the specific heat changes as cp˜T for stress-free graphene, and evolves to a dependence cp˜T2 as the tensile stress is increased. Structural and thermodynamic properties display non-negligible quantum effects, even at temperatures higher than 300 K. Moreover, differences in the behavior of the in-plane and real areas of graphene are discussed, along with their associated properties. These differences show up clearly in the corresponding compressibility and thermal expansion coefficient.
2011-01-01
Background The second Internal Transcriber Spacer (ITS2) is a fast evolving part of the nuclear-encoded rRNA operon located between the 5.8S and 28S rRNA genes. Based on crossing experiments it has been proposed that even a single Compensatory Base Change (CBC) in helices 2 and 3 of the ITS2 indicates sexual incompatibility and thus separates biological species. Taxa without any CBC in these ITS2 regions were designated as a 'CBC clade'. However, in depth comparative analyses of ITS2 secondary structures, ITS2 phylogeny, the origin of CBCs, and their relationship to biological species have rarely been performed. To gain 'close-up' insights into ITS2 evolution, (1) 86 sequences of ITS2 including secondary structures have been investigated in the green algal order Ulvales (Chlorophyta, Viridiplantae), (2) after recording all existing substitutions, CBCs and hemi-CBCs (hCBCs) were mapped upon the ITS2 phylogeny, rather than merely comparing ITS2 characters among pairs of taxa, and (3) the relation between CBCs, hCBCs, CBC clades, and the taxonomic level of organisms was investigated in detail. Results High sequence and length conservation allowed the generation of an ITS2 consensus secondary structure, and introduction of a novel numbering system of ITS2 nucleotides and base pairs. Alignments and analyses were based on this structural information, leading to the following results: (1) in the Ulvales, the presence of a CBC is not linked to any particular taxonomic level, (2) most CBC 'clades' sensu Coleman are paraphyletic, and should rather be termed CBC grades. (3) the phenetic approach of pairwise comparison of sequences can be misleading, and thus, CBCs/hCBCs must be investigated in their evolutionary context, including homoplasy events (4) CBCs and hCBCs in ITS2 helices evolved independently, and we found no evidence for a CBC that originated via a two-fold hCBC substitution. Conclusions Our case study revealed several discrepancies between ITS2 evolution in the Ulvales and generally accepted assumptions underlying ITS2 evolution as e.g. the CBC clade concept. Therefore, we developed a suite of methods providing a critical 'close-up' view into ITS2 evolution by directly tracing the evolutionary history of individual positions, and we caution against a non-critical use of the ITS2 CBC clade concept for species delimitation. PMID:21933414
Generalised Sandpile Dynamics on Artificial and Real-World Directed Networks
Zachariou, Nicky; Expert, Paul; Takayasu, Misako; Christensen, Kim
2015-01-01
The main finding of this paper is a novel avalanche-size exponent τ ≈ 1.87 when the generalised sandpile dynamics evolves on the real-world Japanese inter-firm network. The topology of this network is non-layered and directed, displaying the typical bow tie structure found in real-world directed networks, with cycles and triangles. We show that one can move from a strictly layered regular lattice to a more fluid structure of the inter-firm network in a few simple steps. Relaxing the regular lattice structure by introducing an interlayer distribution for the interactions, forces the scaling exponent of the avalanche-size probability density function τ out of the two-dimensional directed sandpile universality class τ = 4/3, into the mean field universality class τ = 3/2. Numerical investigation shows that these two classes are the only that exist on the directed sandpile, regardless of the underlying topology, as long as it is strictly layered. Randomly adding a small proportion of links connecting non adjacent layers in an otherwise layered network takes the system out of the mean field regime to produce non-trivial avalanche-size probability density function. Although these do not display proper scaling, they closely reproduce the behaviour observed on the Japanese inter-firm network. PMID:26606143
Generalised Sandpile Dynamics on Artificial and Real-World Directed Networks.
Zachariou, Nicky; Expert, Paul; Takayasu, Misako; Christensen, Kim
2015-01-01
The main finding of this paper is a novel avalanche-size exponent τ ≈ 1.87 when the generalised sandpile dynamics evolves on the real-world Japanese inter-firm network. The topology of this network is non-layered and directed, displaying the typical bow tie structure found in real-world directed networks, with cycles and triangles. We show that one can move from a strictly layered regular lattice to a more fluid structure of the inter-firm network in a few simple steps. Relaxing the regular lattice structure by introducing an interlayer distribution for the interactions, forces the scaling exponent of the avalanche-size probability density function τ out of the two-dimensional directed sandpile universality class τ = 4/3, into the mean field universality class τ = 3/2. Numerical investigation shows that these two classes are the only that exist on the directed sandpile, regardless of the underlying topology, as long as it is strictly layered. Randomly adding a small proportion of links connecting non adjacent layers in an otherwise layered network takes the system out of the mean field regime to produce non-trivial avalanche-size probability density function. Although these do not display proper scaling, they closely reproduce the behaviour observed on the Japanese inter-firm network.
Sustaining an International Partnership: An Evolving Collaboration
ERIC Educational Resources Information Center
Pierson, Melinda R.; Myck-Wayne, Janice; Stang, Kristin K.; Basinska, Anna
2015-01-01
Universities across the United States have an increasing interest in international education. Increasing global awareness through educational collaborations will promote greater cross-cultural understanding and build effective relationships with diverse communities. This paper documents one university's effort to build an effective international…
Artificial selection for structural color on butterfly wings and comparison with natural evolution
Wasik, Bethany R.; Liew, Seng Fatt; Lilien, David A.; Dinwiddie, April J.; Noh, Heeso; Cao, Hui; Monteiro, Antónia
2014-01-01
Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color. We used artificial selection on a laboratory model butterfly, B. anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection. The UV reflectance peak of B. anynana brown scales shifted to violet over six generations of artificial selection (i.e., in less than 1 y) as the result of an increase in the thickness of the lower lamina in ground scales. Similar scale structures and the same mechanism for producing violet/blue structural colors were found in the other Bicyclus species. This work shows that populations harbor large amounts of standing genetic variation that can lead to rapid evolution of scales’ structural color via slight modifications to the scales’ physical dimensions. PMID:25092295
Artificial selection for structural color on butterfly wings and comparison with natural evolution.
Wasik, Bethany R; Liew, Seng Fatt; Lilien, David A; Dinwiddie, April J; Noh, Heeso; Cao, Hui; Monteiro, Antónia
2014-08-19
Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color. We used artificial selection on a laboratory model butterfly, B. anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection. The UV reflectance peak of B. anynana brown scales shifted to violet over six generations of artificial selection (i.e., in less than 1 y) as the result of an increase in the thickness of the lower lamina in ground scales. Similar scale structures and the same mechanism for producing violet/blue structural colors were found in the other Bicyclus species. This work shows that populations harbor large amounts of standing genetic variation that can lead to rapid evolution of scales' structural color via slight modifications to the scales' physical dimensions.
NASA Astrophysics Data System (ADS)
Goetz, S. J.; Dubayah, R.
2016-12-01
Research on characterization of canopy structure with remote sensing has exploded as airborne data sets have become more widely available to the biodiversity science and habitat management communities. While these advances are important in the context of increasing pressure on both habitat and wildlife, airborne data acquisitions are necessarily limited in geographic scope and thus in their general applicability to biome-scale biodiversity research initiatives, including international programs striving to implement the United Nations Convention on Biological Diversity (CBD) and the associated Aichi Biodiversity Targets. The lack of systematic metrics of canopy structure across large geographic domains also makes it difficult to implement the CBD Strategic Plan systematically across nations, as outlined in National Biodiversity Strategies and Action Plans. The Group on Earth Observations, Biodiversity Observation Network (GEO BON) has proposed a set of Essential Biodiversity Variables (EBVs) that could be used as a global-scale basis for biodiversity monitoring, but several of those EBVs are still limited by the availability of data on habitat 3D structure. Those limitations will be overcome in the near future with a suite of satellite missions that will provide an unprecedented level of active remote sensing measurements useful for deriving structure information, including Tandem-X, ICESat-2, BIOMASS and the Global Ecosystem Dynamics Investigation (GEDI). We will provide a brief overview of the rapid advance of measurements of canopy structure and the applications that have evolved in recent years in terms of 3D habitat characterization, species-specific habitat utilization, and the potential of these new space-based measurements. In this talk we will focus primarily on GEDI, a lidar mission to be installed on the International Space Station that is optimized for retrieving 3D canopy structure. GEDI and the other new missions will provide long-desired consistent and systematic information on EBVs from space, and thereby facilitate the implementation of international biodiversity policy objectives.
Determinants of environmental audit frequency: the role of firm organizational structure.
Earnhart, Dietrich; Leonard, J Mark
2013-10-15
This study empirically examines the extent of environmental management practiced by US chemical manufacturing facilities, as reflected in the number of environmental internal audits conducted annually. As its focus, this study analyzes the effects of firm-level organizational structure on facility-level environmental management practices. For this empirical analysis, the study exploits unique data from a survey distributed to all U.S. chemical manufacturing permitted to discharge wastewater in 2001; the data reflect internal audits conducted during the years 1999-2001. Empirical results reveal differences in auditing behavior based on whether facilities are owned by publicly held or non-publicly held firms, owned by U.S.-based or non-U.S.-based firms, and owned by larger or smaller firms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Repeatability and implementation of a forest vegetation indicator.
Andrew N. Gray; David L. Azuma
2005-01-01
The composition, diversity, and structure of vascular plants are important indicators of forest health. Changes in species diversity, structural diversity, and the abundance of non-native species are common national concerns, and are part of the international criteria for assessing sustainability of forestry practices. The vegetation indicator for the national Forest...
Non-Invasive Visualization and Quantitation of Cardiovascular Structure and Function.
ERIC Educational Resources Information Center
Ritman, E. L.; And Others
1979-01-01
Described is a new approach to investigative physiology based on computerized transaxial tomography, in which visualization and measurement of the internal structure of the cardiopulmonary system is possible without postmortem, biopsy, or vivisection procedures. Examples are given for application of the Dynamic Spatial Reconstructor (DSR). (CS)
Interactions of Twisted Ω-loops in a Model Solar Convection Zone
NASA Astrophysics Data System (ADS)
Jouve, L.; Brun, A. S.; Aulanier, G.
2018-04-01
This study aims at investigating the ability of strong interactions between magnetic field concentrations during their rise through the convection zone to produce complex active regions at the solar surface. To do so, we perform numerical simulations of buoyant magnetic structures evolving and interacting in a model solar convection zone. We first produce a 3D model of rotating convection and then introduce idealized magnetic structures close to the bottom of the computational domain. These structures possess a certain degree of field line twist and they are made buoyant on a particular extension in longitude. The resulting twisted Ω-loops will thus evolve inside a spherical convective shell possessing large-scale mean flows. We present results on the interaction between two such loops with various initial parameters (mainly buoyancy and twist) and on the complexity of the emerging magnetic field. In agreement with analytical predictions, we find that if the loops are introduced with opposite handedness and same axial field direction or the same handedness but opposite axial field, they bounce against each other. The emerging region is then constituted of two separated bipolar structures. On the contrary, if the loops are introduced with the same direction of axial and peripheral magnetic fields and are sufficiently close, they merge while rising. This more interesting case produces complex magnetic structures with a high degree of non-neutralized currents, especially when the convective motions act significantly on the magnetic field. This indicates that those interactions could be good candidates to produce eruptive events like flares or CMEs.
Structural basis of IFNα receptor recognition by TYK2
Wallweber, Heidi J.A.; Tam, Christine; Franke, Yvonne; Starovasnik, Melissa A.; Lupardus, Patrick J.
2014-01-01
Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family of non-receptor tyrosine kinases, which are essential for proper signaling in immune responses and development. Here we present a 2.0 angstrom resolution crystal structure of a receptor-binding fragment of human TYK2 encompassing the FERM and SH2 domains in complex with a so-called “box2” containing intracellular peptide motif from the IFNα receptor (IFNAR1). The TYK2–IFNAR1 interface reveals an unexpected receptor-binding mode that mimics a SH2 domain–phosphopeptide interaction, with a glutamate replacing the canonical phosphotyrosine residue. This structure provides the first view to our knowledge of a JAK in complex with its cognate receptor and defines the molecular logic through which JAKs evolved to interact with divergent receptor sequences. PMID:24704786
Advanced image based methods for structural integrity monitoring: Review and prospects
NASA Astrophysics Data System (ADS)
Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.
2018-02-01
There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.
Serrano-Serrano, Martha L; Hernández-Torres, Jorge; Castillo-Villamizar, Genis; Debouck, Daniel G; Sánchez, María I Chacón
2010-01-01
The aims of this research were to assess the genetic structure of wild Phaseolus lunatus L. in the Americas and the hypothesis of a relatively recent Andean origin of the species. For this purpose, nuclear and non-coding chloroplast DNA markers were analyzed in a collection of 59 wild Lima bean accessions and six allied species. Twenty-three chloroplast and 28 nuclear DNA haplotypes were identified and shown to be geographically structured. Three highly divergent wild Lima bean gene pools, AI, MI, and MII, with mostly non-overlapping geographic ranges, are proposed. The results support an Andean origin of wild Lima beans during Pleistocene times and an early divergence of the three gene pools at an age that is posterior to completion of the Isthmus of Panama and major Andean orogeny. Gene pools would have evolved and reached their current geographic distribution mainly in isolation and therefore are of high priority for conservation and breeding programs.
One-step femtosecond laser welding and internal machining of three glass substrates
NASA Astrophysics Data System (ADS)
Tan, Hua; Duan, Ji'an
2017-05-01
In this paper, it demonstrated one-step femtosecond laser welding and internal machining of three fused silica substrates in the optical- and non-optical-contact regimes by focusing 1030-nm laser pulses at the middle of the second substrate. Focusing laser pulses within the second glass in optical-contact and non-optical-contact samples induces permanent internal structural modification, leading to the three glass substrates bonding together simultaneously. The bonding mechanism is based on the internal modification of glass, and this mechanism is different from that of ordinary glass welding at the interface. Welding-spot size is affected by not only the gap distance (ablation effect) and heat transmission, but also by gravity through examining the sizes of the welding spots on the four contact welding surfaces. The maximum bonding strength of the lower interface (56.2 MPa) in the optical-contact regime is more than double that (27.6 MPa) in the non-optical-contact regime.
ERIC Educational Resources Information Center
Williamson, Nicholas C.
2001-01-01
Describes Export Odyssey (EO), a structured, Internet-intensive, team-based undergraduate student project in international marketing. Presents an analytical review of articles in the literature that relate to three key teaching-learning dimensions of student projects (experiential versus non-experiential active learning, team-based versus…
Selfish cells in altruistic cell society - a theoretical oncology.
Chigira, M
1993-09-01
In multicellular organisms, internal evolution of individual cells is strictly forbidden and 'evolutional' DNA replication should be performed only by the sexual reproduction system. Wholistic negative control system called 'homeostasis' serves all service to germ line cells. All somatic cells are altruistic to the germ line cells. However, in malignant tumors, it seems that individual cells replicate and behave 'selfishly' and evolve against the internal microenvironment. Tumor cells only express the occult selfishness which is programmed in normal cells a priori. This phenomenon is based on the failure of identical DNA replication, and results in 'autonomy' and 'anomie' of cellular society as shown in tumor cells. Genetic programs of normal cells connote this cellular autonomy and anomie introduced by the deletion of regulators on structure genes. It is rather paradoxical that the somatic cells get their freedom from wholistic negative regulation programmed internally. However, this is not a true paradox, since multicellular organisms have clearly been evolved from 'monads' in which cells proliferate without wholistic regulation. Somatic cells revolt against germ cell DNA, called 'selfish replicator' by Dawkins. It is an inevitable destiny that the 'selfishness' coded in genome should be revenged by itself. Selfish replicator in germ cell line should be revolted by its selfishness in the expansion of somatic cells, since they have an orthogenesis to get more selfishness in order to increase their genome. Tumor heterogeneity and progression can be fully explained by this self-contradictory process which produces heterogeneous gene copies different from the original clone in the tumor, although 'selfish' gene replication is the final target of being. Furthermore, we have to discard the concept of clonality of tumor cells since genetic instability is a fundamental feature of tumors. Finally, tumor cells and proto-oncogenes can be considered as the ultimate parasite to germ line cells.
Neuroendocrine control of the onset of puberty.
Plant, Tony M
2015-07-01
This chapter is based on the Geoffrey Harris Memorial Lecture presented at the 8th International Congress of Neuroendocrinology, which was held in Sydney, August 2014. It provides the development of our understanding of the neuroendocrine control of puberty since Harris proposed in his 1955 monograph (Harris, 1955) that "a major factor responsible for puberty is an increased rate of release of pituitary gonadotrophin" and posited "that a neural (hypothalamic) stimulus, via the hypophysial portal vessels, may be involved." Emphasis is placed on the neurobiological mechanisms governing puberty in highly evolved primates, although an attempt is made to reverse translate a model for the timing of puberty in man and monkey to non-primate species. Copyright © 2015 Elsevier Inc. All rights reserved.
Challenges for deep space communications in the 1990s
NASA Technical Reports Server (NTRS)
Dumas, Larry N.; Hornstein, Robert M.
1991-01-01
The discussion of NASA's Deep Space Network (DSN) examines the evolving character of aerospace missions and the corresponding changes in the DSN architecture. Deep space missions are reviewed, and it is noted that the two 34-m and the 70-m antenna subnets of the DSN are heavily loaded and more use is expected. High operational workload and the challenge of network cross-support are the design drivers for a flexible DSN architecture configuration. Incorporated in the design are antenna arraying for aperture augmentation, beam-waveguide antennas for frequency agility, and connectivity with non-DSN sites for cross-support. Compatibility between spacecraft and ground-facility designs is important for establishing common international standards of communication and data-system specification.
NASA Astrophysics Data System (ADS)
Poch, O.; Pommerol, A.; Jost, B.; Yoldi, Z.; Carrasco, N.; Szopa, C.; Thomas, N.
2015-12-01
The surfaces of many objects in the Solar System comprise substantial quantities of water ice either in pure form or mixed with minerals and/or organic molecules. Sublimation is a process responsible for shaping and changing the reflectance properties of these objects. We present laboratory data on the evolution of the structure and the visible and near-infrared spectral reflectance of icy surfaces made of mixtures of water ice and non-volatile components (complex organic matter and silicates), as they undergo sublimation of the water ice under low temperature and pressure conditions (Poch et al., under review). We prepared icy surfaces which are potential analogues of ices found on comets, icy satellites or trans-neptunian objects (TNOs). The experiments were carried out in the SCITEAS simulation setup recently built as part of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern (Pommerol et al., 2015a). As the water ice sublimated, we observed in situ the formation of a sublimation lag deposit, or sublimation mantle, made of the non-volatiles at the top of the samples. The texture (porosity, internal cohesiveness etc.), the activity (outbursts and ejection of mantle fragments) and the spectro-photometric properties of this mantle are found to differ strongly depending on the chemical nature of the non-volatiles, the size of their particles, the way they are mixed with the volatile component and the dust/ice mass ratio. The results also indicate how the band depths of the sub-surface water ice evolve during the build-up of the sublimation mantle. These data provide useful references for interpreting remote-sensing observations of Rosetta (see Pommerol et al., 2015b), and also New Horizons. Poch, O., et al., under review in IcarusPommerol, A., et al., 2015a, Planet. Space Sci. 109-110, 106-122. http://dx.doi.org/10.1016/j.pss.2015.02.004Pommerol, A., et al., 2015b, Astronomy and Astrophysics, in press. http://dx.doi.org/10.1051/0004-6361/201525977
Identifying Priorities for International Arctic Research and Policy
NASA Astrophysics Data System (ADS)
Rachold, V.; Hik, D.; Barr, S.
2015-12-01
The International Arctic Science Committee (IASC) is a non-governmental, international scientific organization, founded in 1990 by representatives of national scientific organizations of the eight Arctic countries - Canada, Denmark, Finland, Iceland, Norway, Russia (at that time Union of Soviet Socialist Republics), Sweden and the United States of America. Over the past 25 years, IASC has evolved into the leading international science organization of the North and its membership today includes 23 countries involved in all aspects of Arctic research, including 15 non-Arctic countries (Austria, China, the Czech Republic, France, Germany, India, Italy, Japan, the Netherlands, Poland, Portugal, South Korea, Spain, Switzerland and the UK). The Founding Articles committed IASC to pursue a mission of encouraging and facilitating cooperation in all aspects of Arctic research, in all countries engaged in Arctic research and in all areas of the Arctic region. IASC promotes and supports leading-edge multi-disciplinary research in order to foster a greater scientific understanding of the Arctic region and its role in the Earth system. IASC has organized three forward-looking conferences focused on international and interdisciplinary perspectives for advancing Arctic research cooperation and applications of Arctic knowledge. Indeed, the IASC Founding Articles call for IASC to host these conferences periodically in order to "review the status of Arctic science, provide scientific and technical advice, and promote cooperation and links with other national and international organizations." Through its members, including national science organizations and funding agencies from all countries engaged in Arctic research, IASC is uniquely placed to undertake this task. As an accredited observer on the Arctic Council, IASC is also in the position to introduce the outcome of its science planning efforts into the Arctićs main political body and to liaise with the Arctic Council Permanent Participants. This paper presents an overview of IASC´s efforts and achievements in terms of identifying Arctic research priorities and providing scientific expertise to policy makers and people who live in or near the Arctic.
Flow field topology of transient mixing driven by buoyancy
NASA Technical Reports Server (NTRS)
Duval, Walter M B.
2004-01-01
Transient mixing driven by buoyancy occurs through the birth of a symmetric Rayleigh-Taylor morphology (RTM) structure for large length scales. Beyond its critical bifurcation the RTM structure exhibits self-similarity and occurs on smaller and smaller length scales. The dynamics of the RTM structure, its nonlinear growth and internal collision, show that its genesis occurs from an explosive bifurcation which leads to the overlap of resonance regions in phase space. This event shows the coexistence of regular and chaotic regions in phase space which is corroborated with the existence of horseshoe maps. A measure of local chaos given by the topological entropy indicates that as the system evolves there is growth of uncertainty. Breakdown of the dissipative RTM structure occurs during the transition from explosive to catastrophic bifurcation; this event gives rise to annihilation of the separatrices which drives overlap of resonance regions. The global bifurcation of explosive and catastrophic events in phase space for the large length scale of the RTM structure serves as a template for which mixing occurs on smaller and smaller length scales. Copyright 2004 American Institute of Physics.
Databases, Repositories, and Other Data Resources in Structural Biology.
Zheng, Heping; Porebski, Przemyslaw J; Grabowski, Marek; Cooper, David R; Minor, Wladek
2017-01-01
Structural biology, like many other areas of modern science, produces an enormous amount of primary, derived, and "meta" data with a high demand on data storage and manipulations. Primary data come from various steps of sample preparation, diffraction experiments, and functional studies. These data are not only used to obtain tangible results, like macromolecular structural models, but also to enrich and guide our analysis and interpretation of various biomedical problems. Herein we define several categories of data resources, (a) Archives, (b) Repositories, (c) Databases, and (d) Advanced Information Systems, that can accommodate primary, derived, or reference data. Data resources may be used either as web portals or internally by structural biology software. To be useful, each resource must be maintained, curated, as well as integrated with other resources. Ideally, the system of interconnected resources should evolve toward comprehensive "hubs", or Advanced Information Systems. Such systems, encompassing the PDB and UniProt, are indispensable not only for structural biology, but for many related fields of science. The categories of data resources described herein are applicable well beyond our usual scientific endeavors.
Databases, Repositories and Other Data Resources in Structural Biology
Zheng, Heping; Porebski, Przemyslaw J.; Grabowski, Marek; Cooper, David R.; Minor, Wladek
2017-01-01
Structural biology, like many other areas of modern science, produces an enormous amount of primary, derived, and “meta” data with a high demand on data storage and manipulations. Primary data comes from various steps of sample preparation, diffraction experiments, and functional studies. These data are not only used to obtain tangible results, like macromolecular structural models, but also to enrich and guide our analysis and interpretation of existing biomedical studies. Herein we define several categories of data resources, (a) Archives, (b) Repositories, (c) “Databases” and (d) Advanced Information Systems, that can accommodate primary, derived, or reference data. Data resources may be used either as web portals or internally by structural biology software. To be useful, each resource must be maintained, curated, and be integrated with other resources. Ideally, the system of interconnected resources should evolve toward comprehensive “hubs” or Advanced Information Systems. Such systems, encompassing the PDB and UniProt, are indispensable not only for structural biology, but for many related fields of science. The categories of data resources described herein are applicable well beyond our usual scientific endeavors. PMID:28573593
Internal shifting impairments in response to emotional information in dysphoric adolescents.
Wante, Laura; Mueller, Sven C; Demeyer, Ineke; Naets, Tiffany; Braet, Caroline
2017-12-01
Previous studies have suggested that internal cognitive control impairments may play an important role in the development of depression. Despite a growing body of research in adults, the ability to shift internal attention between mental representations in working memory has received little attention in younger populations. This study investigated internal shifting capacity between emotional and non-emotional information in dysphoric and non-dysphoric adolescents. Twenty dysphoric and 34 non-dysphoric adolescents (10-17 years) completed an Internal Shifting Task, with pictures of angry and neutral faces, to measure the ability to shift attention between information held in working memory. Dysphoric adolescents showed specific shifting impairments when processing emotional material relative to non-dysphoric adolescents. Valence-specific analyses revealed that shifting was particularly impaired when shifting from negative to neutral information. By comparison, relative to non-dysphoric adolescents, dysphoric adolescents did not show shifting impairments when non-emotional features of the pictures had to be processed. The study is limited by the absence of a structured clinical interview as dysphoria was determined dimensionally. Furthermore, a comparison of the effects of different negative stimuli on shifting could not be made since sad stimuli were not included in the stimulus set. The results confirm the link between depressive symptoms and emotion-specific shifting impairments in adolescents and indicate that targeting shifting ability in response to emotional stimuli may be a promising avenue for prevention programs. Longitudinal research is needed to replicate results and to explore the role of internal shifting impairments in the etiology and maintenance of depression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ferede, Tekle; Nchindila, B M
2017-09-01
This study investigated the EFL reading goals of Grade 11 students across public and non-public schools in the Ethiopian capital, Addis Ababa. To this end, quantitative data were collected from 556 (375 public and 181 non-public) students via pre-tested structured questionnaire and analyzed into means, medians, standard deviations, ranges and Mann-Whitney U test scores. The results show that non-public school students were found better than public school students in possessing components of both extrinsic and intrinsic goals for reading. The notable exception in this regard is that public school students had higher social motivation for reading than their non-public school counterparts. Based on this finding, it has been concluded that non-public school students have a better chance of evolving as persistent self-initiated EFL readers since they have various goals which urge them to engage in reading a range of texts. It is thus recommended that English language teachers in public schools should constantly take actions to enable their students to develop appropriate EFL reading goals.
The role of the non-collagenous matrix in tendon function.
Thorpe, Chavaunne T; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C
2013-08-01
Tendon consists of highly ordered type I collagen molecules that are grouped together to form subunits of increasing diameter. At each hierarchical level, the type I collagen is interspersed with a predominantly non-collagenous matrix (NCM) (Connect. Tissue Res., 6, 1978, 11). Whilst many studies have investigated the structure, organization and function of the collagenous matrix within tendon, relatively few have studied the non-collagenous components. However, there is a growing body of research suggesting the NCM plays an important role within tendon; adaptations to this matrix may confer the specific properties required by tendons with different functions. Furthermore, age-related alterations to non-collagenous proteins have been identified, which may affect tendon resistance to injury. This review focuses on the NCM within the tensional region of developing and mature tendon, discussing the current knowledge and identifying areas that require further study to fully understand structure-function relationships within tendon. This information will aid in the development of appropriate techniques for tendon injury prevention and treatment. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.
Neuhaus, Klaus; Landstorfer, Richard; Fellner, Lea; Simon, Svenja; Schafferhans, Andrea; Goldberg, Tatyana; Marx, Harald; Ozoline, Olga N; Rost, Burkhard; Kuster, Bernhard; Keim, Daniel A; Scherer, Siegfried
2016-02-24
Genomes of E. coli, including that of the human pathogen Escherichia coli O157:H7 (EHEC) EDL933, still harbor undetected protein-coding genes which, apparently, have escaped annotation due to their small size and non-essential function. To find such genes, global gene expression of EHEC EDL933 was examined, using strand-specific RNAseq (transcriptome), ribosomal footprinting (translatome) and mass spectrometry (proteome). Using the above methods, 72 short, non-annotated protein-coding genes were detected. All of these showed signals in the ribosomal footprinting assay indicating mRNA translation. Seven were verified by mass spectrometry. Fifty-seven genes are annotated in other enterobacteriaceae, mainly as hypothetical genes; the remaining 15 genes constitute novel discoveries. In addition, protein structure and function were predicted computationally and compared between EHEC-encoded proteins and 100-times randomly shuffled proteins. Based on this comparison, 61 of the 72 novel proteins exhibit predicted structural and functional features similar to those of annotated proteins. Many of the novel genes show differential transcription when grown under eleven diverse growth conditions suggesting environmental regulation. Three genes were found to confer a phenotype in previous studies, e.g., decreased cattle colonization. These findings demonstrate that ribosomal footprinting can be used to detect novel protein coding genes, contributing to the growing body of evidence that hypothetical genes are not annotation artifacts and opening an additional way to study their functionality. All 72 genes are taxonomically restricted and, therefore, appear to have evolved relatively recently de novo.
An assessment of catalytic residue 3D ensembles for the prediction of enzyme function.
Žváček, Clemens; Friedrichs, Gerald; Heizinger, Leonhard; Merkl, Rainer
2015-11-04
The central element of each enzyme is the catalytic site, which commonly catalyzes a single biochemical reaction with high specificity. It was unclear to us how often sites that catalyze the same or highly similar reactions evolved on different, i. e. non-homologous protein folds and how similar their 3D poses are. Both similarities are key criteria for assessing the usability of pose comparison for function prediction. We have analyzed the SCOP database on the superfamily level in order to estimate the number of non-homologous enzymes possessing the same function according to their EC number. 89% of the 873 substrate-specific functions (four digit EC number) assigned to mono-functional, single-domain enzymes were only found in one superfamily. For a reaction-specific grouping (three digit EC number), this value dropped to 35%, indicating that in approximately 65% of all enzymes the same function evolved in two or more non-homologous proteins. For these isofunctional enzymes, structural similarity of the catalytic sites may help to predict function, because neither high sequence similarity nor identical folds are required for a comparison. To assess the specificity of catalytic 3D poses, we compiled the redundancy-free set ENZ_SITES, which comprises 695 sites, whose composition and function are well-defined. We compared their poses with the help of the program Superpose3D and determined classification performance. If the sites were from different superfamilies, the number of true and false positive predictions was similarly high, both for a coarse and a detailed grouping of enzyme function. Moreover, classification performance did not improve drastically, if we additionally used homologous sites to predict function. For a large number of enzymatic functions, dissimilar sites evolved that catalyze the same reaction and it is the individual substrate that determines the arrangement of the catalytic site and its local environment. These substrate-specific requirements turn the comparison of catalytic residues into a weak classifier for the prediction of enzyme function.
Socioscape: Real-Time Analysis of Dynamic Heterogeneous Networks In Complex Socio-Cultural Systems
2015-10-22
Cluster Mixed-Membership Blockmodel for Time-Evolving Networks, Proceedings of the 14th International Conference on Artifical Intelligence and...Learning With Simultaneous Orthogonal Matching Pursuit, Proceedings of the 13th International Conference on Artifical Intelligence and Statistics
NASA Technical Reports Server (NTRS)
Grover, Maninder S.; Schwartzentruber, Thomas E.; Jaffe, Richard L.
2017-01-01
In this work we present a molecular level study of N2+N collisions, focusing on excitation of internal energy modes and non-equilibrium dissociation. The computation technique used here is the direct molecular simulation (DMS) method and the molecular interactions have been modeled using an ab-initio potential energy surface (PES) developed at NASA's Ames Research Center. We carried out vibrational excitation calculations between 5000K and 30000K and found that the characteristic vibrational excitation time for the N + N2 process was an order of magnitude lower than that predicted by the Millikan and White correlation. It is observed that during vibrational excitation the high energy tail of the vibrational energy distribution gets over populated first and the lower energy levels get populated as the system evolves. It is found that the non-equilibrium dissociation rate coefficients for the N + N2 process are larger than those for the N2 + N2 process. This is attributed to the non-equilibrium vibrational energy distributions for the N + N2 process being less depleted than that for the N2 +N2 process. For an isothermal simulation we find that the probability of dissociation goes as 1/T(sub tr) for molecules with internal energy (epsilon(sub int)) less than approximately 9.9eV, while for molecules with epsilon (sub int) greater than 9.9eV the dissociation probability was weakly dependent on translational temperature of the system. We compared non-equilibrium dissociation rate coefficients and characteristic vibrational excitation times obtained by using the ab-initio PES developed at NASA's Ames Research Center to those obtained by using an ab-initio PES developed at the University of Minnesota. Good agreement was found between the macroscopic properties and molecular level description of the system obtained by using the two PESs.
Sexual selection targets cetacean pelvic bones
Dines, J. P.; Otárola-Castillo, E.; Ralph, P.; Alas, J.; Daley, T.; Smith, A. D.; Dean, M. D.
2014-01-01
Male genitalia evolve rapidly, probably as a result of sexual selection. Whether this pattern extends to the internal infrastructure that influences genital movements remains unknown. Cetaceans (whales and dolphins) offer a unique opportunity to test this hypothesis: since evolving from land-dwelling ancestors, they lost external hind limbs and evolved a highly reduced pelvis which seems to serve no other function except to anchor muscles that maneuver the penis. Here we create a novel morphometric pipeline to analyze the size and shape evolution of pelvic bones from 130 individuals (29 species) in the context of inferred mating system. We present two main findings: 1) males from species with relatively intense sexual selection (inferred by relative testes size) have evolved relatively large penises and pelvic bones compared to their body size, and 2) pelvic bone shape diverges more quickly in species pairs that have diverged in inferred mating system. Neither pattern was observed in the anterior-most pair of vertebral ribs, which served as a negative control. This study provides evidence that sexual selection can affect internal anatomy that controls male genitalia. These important functions may explain why cetacean pelvic bones have not been lost through evolutionary time. PMID:25186496
Rani, Manju; Nusrat, Sharmin; Hawken, Laura H
2012-10-16
Segmented service delivery with consequent inefficiencies in health systems was one of the main concerns raised during scaling up of disease-specific programs in the last two decades. The organized response to NCD is in infancy in most LMICs with little evidence on how the response is evolving in terms of institutional arrangements and policy development processes. Drawing on qualitative review of policy and program documents from five LMICs and data from global key-informant surveys conducted in 2004 and 2010, we examine current status of governance of response to NCDs at national level along three dimensions- institutional arrangements for stewardship and program management and implementation; policies/plans; and multisectoral coordination and partnerships. Several positive trends were noted in the organization and governance of response to NCDs: shift from specific NCD-based programs to integrated NCD programs, increasing inclusion of NCDs in sector-wide health plans, and establishment of high-level multisectoral coordination mechanisms.Several areas of concern were identified. The evolving NCD-specific institutional structures are being treated as 'program management and implementation' entities rather than as lead 'technical advisory' bodies, with unclear division of roles and responsibilities between NCD-specific and sector-wide structures. NCD-specific and sector-wide plans are poorly aligned and lack prioritization, costing, and appropriate targets. Finally, the effectiveness of existing multisectoral coordination mechanisms remains questionable. The 'technical functions' and 'implementation and management functions' should be clearly separated between NCD-specific units and sector-wide institutional structures to avoid duplicative segmented service delivery systems. Institutional capacity building efforts for NCDs should target both NCD-specific units (for building technical and analytical capacity) and sector-wide organizational units (for building program management and implementation capacity) in MOH.The sector-wide health plans should reflect NCDs in proportion to their public health importance. NCD specific plans should be developed in close consultation with sector-wide health- and non-health stakeholders. These plans should expand on the directions provided by sector-wide health plans specifying strategically prioritized, fully costed activities, and realistic quantifiable targets for NCD control linked with sector-wide expenditure framework. Multisectoral coordination mechanisms need to be strengthened with optimal decision-making powers and resource commitment and monitoring of their outputs.
2012-01-01
Background Segmented service delivery with consequent inefficiencies in health systems was one of the main concerns raised during scaling up of disease-specific programs in the last two decades. The organized response to NCD is in infancy in most LMICs with little evidence on how the response is evolving in terms of institutional arrangements and policy development processes. Methods Drawing on qualitative review of policy and program documents from five LMICs and data from global key-informant surveys conducted in 2004 and 2010, we examine current status of governance of response to NCDs at national level along three dimensions— institutional arrangements for stewardship and program management and implementation; policies/plans; and multisectoral coordination and partnerships. Results Several positive trends were noted in the organization and governance of response to NCDs: shift from specific NCD-based programs to integrated NCD programs, increasing inclusion of NCDs in sector-wide health plans, and establishment of high-level multisectoral coordination mechanisms. Several areas of concern were identified. The evolving NCD-specific institutional structures are being treated as ‘program management and implementation’ entities rather than as lead ‘technical advisory’ bodies, with unclear division of roles and responsibilities between NCD-specific and sector-wide structures. NCD-specific and sector-wide plans are poorly aligned and lack prioritization, costing, and appropriate targets. Finally, the effectiveness of existing multisectoral coordination mechanisms remains questionable. Conclusions The ‘technical functions’ and ‘implementation and management functions’ should be clearly separated between NCD-specific units and sector-wide institutional structures to avoid duplicative segmented service delivery systems. Institutional capacity building efforts for NCDs should target both NCD-specific units (for building technical and analytical capacity) and sector-wide organizational units (for building program management and implementation capacity) in MOH. The sector-wide health plans should reflect NCDs in proportion to their public health importance. NCD specific plans should be developed in close consultation with sector-wide health- and non-health stakeholders. These plans should expand on the directions provided by sector-wide health plans specifying strategically prioritized, fully costed activities, and realistic quantifiable targets for NCD control linked with sector-wide expenditure framework. Multisectoral coordination mechanisms need to be strengthened with optimal decision-making powers and resource commitment and monitoring of their outputs. PMID:23067232
Dodd, Warren; Humphries, Sally; Patel, Kirit; Majowicz, Shannon; Little, Matthew; Dewey, Cate
2017-09-12
Internal labour migration is an important and necessary livelihood strategy for millions of individuals and households in India. However, the precarious position of migrant workers within Indian society may have consequences for the health of these individuals. Previous research on the connections between health and labour mobility within India have primarily focused on the negative health outcomes associated with this practice. Thus, there is a need to better identify the determinants of internal migrant health and how these determinants shape migrant health outcomes. An exploratory mixed methods study was conducted in 26 villages in the Krishnagiri district of Tamil Nadu. Sixty-six semi-structured interviews were completed using snowball sampling, followed by 300 household surveys using multi-stage random sampling. For qualitative data, an analysis of themes and content was completed. For quantitative data, information on current participation in internal labour migration, in addition to self-reported morbidity and determinants of internal migrant health, was collected. Morbidity categories were compared between migrant and non-migrant adults (age 14-65 years) using a Fisher's exact test. Of the 300 households surveyed, 137 households (45.7%) had at least one current migrant member, with 205 migrant and 1012 non-migrant adults (age 14-65 years) included in this study. The health profile of migrant and non-migrants was similar in this setting, with 53 migrants (25.9%) currently suffering from a health problem compared to 273 non-migrants (27.0%). Migrant households identified both occupational and livelihood factors that contributed to changes in the health of their migrant members. These determinants of internal migrant health were corroborated and further expanded on through the semi-structured interviews. Internal labour migration in and of itself is not a determinant of health, as participation in labour mobility can contribute to an improvement in health, a decline in health, or no change in health among migrant workers. Targeted public health interventions should focus on addressing the determinants of internal migrant health to enhance the contributions these individuals can make to their households and villages of origin.
Yoshida, Karen K; Parnes, Penny; Brooks, Dina; Cameron, Deb
2009-01-01
The purpose of this article is to describe the changing nature, process and structure of an international non-governmental organisation (NGO) in response to internal and external factors. This article is based on the interview data collected for the study which focussed on the experiences and perception of key informants on trends related to official development assistance, local governments' perspective of the NGO as a development partner and the NGO's perception of corporate and foundation support. Qualitative descriptive data analysis was used. Three main themes were developed with the interview data. Our analysis indicated shifts in the: (1) vision/nature (single to cross disability focus), (2) structure (building internal and external relationships) and (3) process (from ad hoc to systemic evaluations). These broader issues of vision, structure (relationships) and evaluation within and outside of the organisation, needs to be addressed to provide a foundation upon which funding initiatives can be developed. A closer relationship between funders and projects/programmes would do much to enhance the partnership and would ensure that the projects are able to measure and report results in a manner that is conducive to increasing support.
NASA Technical Reports Server (NTRS)
Marshburn, Thomas; Whitmore, Mihriban; Ortiz, Rosie; Segal, Michele; Smart, Kieran; Hughes, Catherine
2003-01-01
Emergency medical capabilities aboard the ISS include a Crew Medical Officer (CMO) (not necessarily a physician), and back-up, resuscitation equipment, and a medical checklist. It is essential that CMOs have reliable, usable and informative medical protocols that can be carried out independently in flight. The study evaluates the existing ISS Medical Checklist layout against a checklist updated to reflect a human factors approach to structure and organization. Method: The ISS Medical checklist was divided into non-emergency and emergency sections, and re-organized based on alphabetical and a body systems approach. A desk-top evaluation examined the ability of subjects to navigate to specific medical problems identified as representative of likely non-emergency events. A second evaluation aims to focus on the emergency section of the Medical Checklist, based on the preliminary findings of the first. The final evaluation will use Astronaut CMOs as subjects comparing the original checklist against the updated layout in the task of caring for a "downed crewmember" using a Human Patient Simulator [Medical Education Technologies, Inc.]. Results: Initial results have demonstrated a clear improvement of the re-organized sections to determine the solution to the medical problems. There was no distinct advantage for either alternative, although subjects stated having a preference for the body systems approach. In the second evaluation, subjects will be asked to identify emergency medical conditions, with measures including correct diagnosis, time to completion and solution strategy. The third evaluation will compare the original and fully updated checklists in clinical situations. Conclusions: Initial findings indicate that the ISS Medical Checklist will benefit from a reorganization. The present structure of the checklist has evolved over recent years without systematic testing of crewmember ability to diagnose medical problems. The improvements are expected to enable ISS Crewmembers to more speedily and accurately respond to medical situations on the ISS.
NASA Astrophysics Data System (ADS)
Sugata, Keiichi; Osanai, Osamu; Kawada, Hiromitsu
2012-02-01
One of the major roles of the skin microcirculation is to supply oxygen and nutrition to the surrounding tissue. Regardless of the close relationship between the microcirculation and the surrounding tissue, there are few non-invasive methods that can evaluate both the microcirculation and its surrounding tissue at the same site. We visualized microcapillary plexus structures in human skin using in vivo reflectance confocal-laser-scanning microscopy (CLSM), Vivascope 3000® (Lucid Inc., USA) and Image J software (National Institutes of Health, USA) for video image processing. CLSM is a non-invasive technique that can visualize the internal structure of the skin at the cellular level. In addition to internal morphological information such as the extracellular matrix, our method reveals capillary structures up to the depth of the subpapillary plexus at the same site without the need for additional optical systems. Video images at specific depths of the inner forearm skin were recorded. By creating frame-to-frame difference images from the video images using off-line video image processing, we obtained images that emphasize the brightness depending on changes of intensity coming from the movement of blood cells. Merging images from different depths of the skin elucidates the 3-dimensional fine line-structure of the microcirculation. Overall our results show the feasibility of a non-invasive, high-resolution imaging technique to characterize the skin microcirculation and the surrounding tissue.
Structural qualia: a solution to the hard problem of consciousness.
Loorits, Kristjan
2014-01-01
The hard problem of consciousness has been often claimed to be unsolvable by the methods of traditional empirical sciences. It has been argued that all the objects of empirical sciences can be fully analyzed in structural terms but that consciousness is (or has) something over and above its structure. However, modern neuroscience has introduced a theoretical framework in which also the apparently non-structural aspects of consciousness, namely the so called qualia or qualitative properties, can be analyzed in structural terms. That framework allows us to see qualia as something compositional with internal structures that fully determine their qualitative nature. Moreover, those internal structures can be identified which certain neural patterns. Thus consciousness as a whole can be seen as a complex neural pattern that misperceives some of its own highly complex structural properties as monadic and qualitative. Such neural pattern is analyzable in fully structural terms and thereby the hard problem is solved.
Structural qualia: a solution to the hard problem of consciousness
Loorits, Kristjan
2014-01-01
The hard problem of consciousness has been often claimed to be unsolvable by the methods of traditional empirical sciences. It has been argued that all the objects of empirical sciences can be fully analyzed in structural terms but that consciousness is (or has) something over and above its structure. However, modern neuroscience has introduced a theoretical framework in which also the apparently non-structural aspects of consciousness, namely the so called qualia or qualitative properties, can be analyzed in structural terms. That framework allows us to see qualia as something compositional with internal structures that fully determine their qualitative nature. Moreover, those internal structures can be identified which certain neural patterns. Thus consciousness as a whole can be seen as a complex neural pattern that misperceives some of its own highly complex structural properties as monadic and qualitative. Such neural pattern is analyzable in fully structural terms and thereby the hard problem is solved. PMID:24672510
Managing large online classes across multiple locations.
Egea, Kathy; Zelmer, A C Lynn
2004-01-01
We now have many different ways of delivering educational offerings, hopefully tailored to the educational environments and student characteristics. Programs vary based on country of origin and delivery location, organisational structures, development and delivery technologies, and the business arrangements made between providers and agents/students. At Central Queensland University (CQU) we deliver the same courses domestically and internationally, often with more than 1000 students per offering, several times per year across 14 campuses located thousands of kilometers apart using face-to-face and/or virtual mode. The students are a mix of Australian distance and on campus plus international on campus. This chapter builds on the CQU experience managing these large classes, particularly within the Faculty of Informatics and Communication, using an evolving mix of technologies. The economic realities of tertiary education require providers to focus on servicing international markets, including an emphasis on student preferences for language of instruction, preferred location (campus or distance delivery) and mode of instruction. Educational delivery requires development and delivery teamwork, maintenance of consistency (quality) in terms of offerings and assessment, appropriate use of technology and cultural awareness.
Testing the magnetar scenario for superluminous supernovae with circular polarimetry
NASA Astrophysics Data System (ADS)
Cikota, Aleksandar; Leloudas, Giorgos; Bulla, Mattia; Inserra, Cosimo; Chen, Ting-Wan; Spyromilio, Jason; Patat, Ferdinando; Cano, Zach; Cikota, Stefan; Coughlin, Michael W.; Kankare, Erkki; Lowe, Thomas B.; Maund, Justyn R.; Rest, Armin; Smartt, Stephen J.; Smith, Ken W.; Wainscoat, Richard J.; Young, David R.
2018-05-01
Superluminous supernovae (SLSNe) are at least ˜5 times more luminous than common supernovae (SNe). Especially hydrogen-poor SLSN-I are difficult to explain with conventional powering mechanisms. One possible scenario that might explain such luminosities is that SLSNe-I are powered by an internal engine, such as a magnetar or an accreting black hole. Strong magnetic fields or collimated jets can circularly polarize light. In this work, we measured circular polarization of two SLSNe-I with the FOcal Reducer and low dispersion Spectrograph (FORS2) mounted at the ESO's Very Large Telescope (VLT). PS17bek, a fast evolving SLSN-I, was observed around peak, while OGLE16dmu, a slowly evolving SLSN-I, was observed 100 days after maximum. Neither SLSN shows evidence of circularly polarized light, however, these non-detections do not rule out the magnetar scenario as the powering engine for SLSNe-I. We calculate the strength of the magnetic field and the expected circular polarization as a function of distance from the magnetar, which decreases very fast. Additionally, we observed no significant linear polarization for PS17bek at four epochs, suggesting that the photosphere near peak is close to spherical symmetry.
Orbital Decay in Binaries with Evolved Stars
NASA Astrophysics Data System (ADS)
Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.
2018-01-01
Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.
NASA Astrophysics Data System (ADS)
Bailey, Brent Andrew
Structural designs by humans and nature are wholly distinct in their approaches. Engineers model components to verify that all mechanical requirements are satisfied before assembling a product. Nature, on the other hand; creates holistically: each part evolves in conjunction with the others. The present work is a synthesis of these two design approaches; namely, spatial models that evolve. Topology optimization determines the amount and distribution of material within a model; which corresponds to the optimal connectedness and shape of a structure. Smooth designs are obtained by using higher-order B-splines in the definition of the material distribution. Higher-fidelity is achieved using adaptive meshing techniques at the interface between solid and void. Nature is an exemplary basis for mass minimization, as processing material requires both resources and energy. Topological optimization techniques were originally formulated as the maximization of the structural stiffness subject to a volume constraint. This research inverts the optimization problem: the mass is minimized subject to deflection constraints. Active materials allow a structure to interact with its environment in a manner similar to muscles and sensory organs in animals. By specifying the material properties and design requirements, adaptive structures with integrated sensors and actuators can evolve.
Evolving minimum standards in responsible international sperm donor offspring quota.
Janssens, Pim M W; Thorn, Petra; Castilla, Jose A; Frith, Lucy; Crawshaw, Marilyn; Mochtar, Monique; Bjorndahl, Lars; Kvist, Ulrik; Kirkman-Brown, Jackson C
2015-06-01
An international working group was established with the aim of making recommendations on the number of offspring for a sperm donor that should be allowable in cases of international use of his sperm. Considerations from genetic, psychosocial, operational and ethical points of view were debated. For these considerations, it was assumed that current developments in genetic testing and Internet possibilities mean that, now, all donors are potentially identifiable by their offspring, so no distinction was made between anonymous and non-anonymous donation. Genetic considerations did not lead to restrictive limits (indicating that up to 200 offspring or more per donor may be acceptable except in isolated social-minority situations). Psychosocial considerations on the other hand led to proposals of rather restrictive limits (10 families per donor or less). Operational and ethical considerations did not lead to more or less concrete limits per donor, but seemed to lie in-between those resulting from the aforementioned ways of viewing the issue. In the end, no unifying agreed figure could be reached; however the consensus was that the number should never exceed 100 families. The conclusions of the group are summarized in three recommendations. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Systematic detection of internal symmetry in proteins using CE-Symm.
Myers-Turnbull, Douglas; Bliven, Spencer E; Rose, Peter W; Aziz, Zaid K; Youkharibache, Philippe; Bourne, Philip E; Prlić, Andreas
2014-05-29
Symmetry is an important feature of protein tertiary and quaternary structures that has been associated with protein folding, function, evolution, and stability. Its emergence and ensuing prevalence has been attributed to gene duplications, fusion events, and subsequent evolutionary drift in sequence. This process maintains structural similarity and is further supported by this study. To further investigate the question of how internal symmetry evolved, how symmetry and function are related, and the overall frequency of internal symmetry, we developed an algorithm, CE-Symm, to detect pseudo-symmetry within the tertiary structure of protein chains. Using a large manually curated benchmark of 1007 protein domains, we show that CE-Symm performs significantly better than previous approaches. We use CE-Symm to build a census of symmetry among domain superfamilies in SCOP and note that 18% of all superfamilies are pseudo-symmetric. Our results indicate that more domains are pseudo-symmetric than previously estimated. We establish a number of recurring types of symmetry-function relationships and describe several characteristic cases in detail. With the use of the Enzyme Commission classification, symmetry was found to be enriched in some enzyme classes but depleted in others. CE-Symm thus provides a methodology for a more complete and detailed study of the role of symmetry in tertiary protein structure [availability: CE-Symm can be run from the Web at http://source.rcsb.org/jfatcatserver/symmetry.jsp. Source code and software binaries are also available under the GNU Lesser General Public License (version 2.1) at https://github.com/rcsb/symmetry. An interactive census of domains identified as symmetric by CE-Symm is available from http://source.rcsb.org/jfatcatserver/scopResults.jsp]. Copyright © 2014. Published by Elsevier Ltd.
Insert Tidal Here: Finding Stability of Galilean Satellite Interiors
NASA Astrophysics Data System (ADS)
Walker, M.; Bills, B. G.; Mitchell, J.; Rhoden, A.
2017-12-01
The tidal environment is often hypothesized as a cause of surface expression in the satellites of the outer solar system. In two notable cases, Io's volcanism is thought to be driven by tidal heating of its mantle while the shattered surface of Europa's ice shell is said to be generated by tidal stresses in that ice. Being adjacent moons of Jupiter, these satellites give us a unique opportunity to apply a single set of general coupled models at each body to predict how one model can predict the heat generation and flow, strain and stress states, and structural parameters for each body. We include the effects of interior evolution into the tidal environment in addition to an evolving orbit. We find that the interiors of Io and Europa will evolve, as a consequence of the heat transfer from interior to surface, and stable structural and heat flow conditions are found. Then as their orbits evolve, perturbed by the mutual interactions of the Laplace mean motion resonance, those conditions of structural and heat stability also change. In particular, we find that at current orbital conditions there is sufficient heat to completely melt Io models for which a convecting interior is capped by a conducting lid. This argues for the presence of a non dissipating (or barely dissipating) core below the mantle, which future Io structure models should include. For the Europa model at current orbit, we use a silicate interior under an ocean capped by a two layer ice; convecting below with a conducting surface. We find stability in heat and structure occurs when the lower ice melts and recedes until the shell is roughly 50km thick. We present a variety of plausible structures for these bodies, and track how the stability of those structures trend as the orbit (in particular the orbital eccentricity, mean motion, and obliquity) change. We show how the Love numbers, layer thicknesses, surface heat flow, and orbital parameters are all linked. For Europa, upcoming measurements from Clipper should provide the necessary constraints to tune our model for the present day. This will also allow us to use today's initial conditions so that we can predict the history of the Galilean satellite's evolution as well as the changes we expect for their future.
Active printed materials for complex self-evolving deformations.
Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar
2014-12-18
We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus.
Active Printed Materials for Complex Self-Evolving Deformations
Raviv, Dan; Zhao, Wei; McKnelly, Carrie; Papadopoulou, Athina; Kadambi, Achuta; Shi, Boxin; Hirsch, Shai; Dikovsky, Daniel; Zyracki, Michael; Olguin, Carlos; Raskar, Ramesh; Tibbits, Skylar
2014-01-01
We propose a new design of complex self-evolving structures that vary over time due to environmental interaction. In conventional 3D printing systems, materials are meant to be stable rather than active and fabricated models are designed and printed as static objects. Here, we introduce a novel approach for simulating and fabricating self-evolving structures that transform into a predetermined shape, changing property and function after fabrication. The new locally coordinated bending primitives combine into a single system, allowing for a global deformation which can stretch, fold and bend given environmental stimulus. PMID:25522053
Hanghøj, Kristian Ebbesen; Andersen, Kaj Scherz; Boomsma, Jacobus J.
2016-01-01
How differentiation between cell types evolved is a fundamental question in biology, but few studies have explored single-gene phenotypes that mediate first steps towards division of labour with selective advantage for groups of cells. Here, we show that differential expression of the FLO11 gene produces stable fractions of Flo11+ and Flo11− cells in clonal Saccharomyces cerevisiae biofilm colonies on medium with intermediate viscosity. Differentiated Flo11+/− colonies, consisting of adhesive and non-adhesive cells, obtain a fourfold growth advantage over undifferentiated colonies by overgrowing glucose resources before depleting them, rather than depleting them while they grow as undifferentiated Flo11− colonies do. Flo11+/− colonies maintain their structure and differentiated state by switching non-adhesive cells to adhesive cells with predictable probability. Mixtures of Flo11+ and Flo11− cells from mutant strains that are unable to use this epigenetic switch mechanism produced neither integrated colonies nor growth advantages, so the condition-dependent selective advantages of differentiated FLO11 expression can only be reaped by clone-mate cells. Our results show that selection for cell differentiation in clonal eukaryotes can evolve before the establishment of obligate undifferentiated multicellularity, and without necessarily leading to more advanced organizational complexity. PMID:27807261
Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks
NASA Astrophysics Data System (ADS)
Zhu, Shijia; Wang, Yadong
2015-12-01
Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.
Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities
NASA Astrophysics Data System (ADS)
Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred
2012-07-01
The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in the frame of an ESA TRP study [1]. A bread-board including typical non-linearities has been designed, manufactured and tested through a typical spacecraft dynamic test campaign. The study has demonstrate the capabilities to perform non-linear dynamic test predictions on a flight representative spacecraft, the good correlation of test results with respect to Finite Elements Model (FEM) prediction and the possibility to identify modal behaviour and to characterize non-linearities characteristics from test results. As a synthesis for this study, overall guidelines have been derived on the mechanical verification process to improve level of expertise on tests involving spacecraft including non-linearity.
Maziarz, Richard T; Arthurs, Jane; Horwitz, Edwin
2011-03-01
The International Society for Cellular Therapy is a global association driving the translation of scientific research to deliver innovative cellular therapies to patients. Established in 1992, its membership and leadership comprises world-class scientists, clinicians, technologists, biotech/pharma and regulatory professionals from 40 countries focused on preclinical and translational aspects of developing cell therapy products. The International Society for Cellular Therapy has evolved in alignment with the maturation of the field of cell therapy and regenerative medicine to create forums for discussion of shared concerns for commercialization of cell therapies and of development of consensus standards, recognizing that true commercialization depends upon the translational scientific community, the regional regulatory and policy institutions, and the technology support and capital investment from industry. It exists to facilitate the international work of many, to spawn new initiatives, and to synergize with other stakeholders to create the best outcome for the many patients across the world depending on the answers and improved health that cellular therapeutics will provide them.
Evolution of ribozymes in the presence of a mineral surface
Stephenson, James D.; Popović, Milena; Bristow, Thomas F.
2016-01-01
Mineral surfaces are often proposed as the sites of critical processes in the emergence of life. Clay minerals in particular are thought to play significant roles in the origin of life including polymerizing, concentrating, organizing, and protecting biopolymers. In these scenarios, the impact of minerals on biopolymer folding is expected to influence evolutionary processes. These processes include both the initial emergence of functional structures in the presence of the mineral and the subsequent transition away from the mineral-associated niche. The initial evolution of function depends upon the number and distribution of sequences capable of functioning in the presence of the mineral, and the transition to new environments depends upon the overlap between sequences that evolve on the mineral surface and sequences that can perform the same functions in the mineral's absence. To examine these processes, we evolved self-cleaving ribozymes in vitro in the presence or absence of Na-saturated montmorillonite clay mineral particles. Starting from a shared population of random sequences, RNA populations were evolved in parallel, along separate evolutionary trajectories. Comparative sequence analysis and activity assays show that the impact of this clay mineral on functional structure selection was minimal; it neither prevented common structures from emerging, nor did it promote the emergence of new structures. This suggests that montmorillonite does not improve RNA's ability to evolve functional structures; however, it also suggests that RNAs that do evolve in contact with montmorillonite retain the same structures in mineral-free environments, potentially facilitating an evolutionary transition away from a mineral-associated niche. PMID:27793980
The detection of the imprint of filaments on cosmic microwave background lensing
NASA Astrophysics Data System (ADS)
He, Siyu; Alam, Shadab; Ferraro, Simone; Chen, Yen-Chi; Ho, Shirley
2018-05-01
Galaxy redshift surveys, such as the 2-Degree-Field Survey (2dF)1, Sloan Digital Sky Survey (SDSS)2, 6-Degree-Field Survey (6dF)3, Galaxy And Mass Assembly survey (GAMA)4 and VIMOS Public Extragalactic Redshift Survey (VIPERS)5, have shown that the spatial distribution of matter forms a rich web, known as the cosmic web6. Most galaxy survey analyses measure the amplitude of galaxy clustering as a function of scale, ignoring information beyond a small number of summary statistics. Because the matter density field becomes highly non-Gaussian as structure evolves under gravity, we expect other statistical descriptions of the field to provide us with additional information. One way to study the non-Gaussianity is to study filaments, which evolve non-linearly from the initial density fluctuations produced in the primordial Universe. In our study, we report the detection of lensing of the cosmic microwave background (CMB) by filaments, and we apply a null test to confirm our detection. Furthermore, we propose a phenomenological model to interpret the detected signal, and we measure how filaments trace the matter distribution on large scales through filament bias, which we measure to be around 1.5. Our study provides new scope to understand the environmental dependence of galaxy formation. In the future, the joint analysis of lensing and Sunyaev-Zel'dovich observations might reveal the properties of `missing baryons', the vast majority of the gas that resides in the intergalactic medium, which has so far evaded most observations.
Disgust: Evolved Function and Structure
ERIC Educational Resources Information Center
Tybur, Joshua M.; Lieberman, Debra; Kurzban, Robert; DeScioli, Peter
2013-01-01
Interest in and research on disgust has surged over the past few decades. The field, however, still lacks a coherent theoretical framework for understanding the evolved function or functions of disgust. Here we present such a framework, emphasizing 2 levels of analysis: that of evolved function and that of information processing. Although there is…
Web-based international studies in limited populations of pediatric leukemia.
Valsecchi, Maria Grazia; Silvestri, Daniela; Covezzoli, Anna; De Lorenzo, Paola
2008-02-01
Recent progress in cancer research leads to the characterization of small subgroups of patients by genetic/biological features. Clinical studies in this setting are frequently promoted by international networks of independent researchers and are limited by practical and methodological constraints, not least the regulations recently issued by national and international institutions (EU Directive 2001/20/EC). We reviewed various methods in the design of international multicenter studies, with focus on randomized clinical trials. This paper reports our experience in planning and conducting international studies in childhood leukemia. We applied a decentralized study conduct based on a two-level structure, comprising a national and an international coordinating level. For the more recent trials this structure was implemented as a web-based system. This approach accommodates major legal requirements (e.g., safety reporting) and ensures Good Clinical Practice principles by implementing risk-oriented monitoring procedures. Setting up international non-commercial trials is increasingly complicated. Still, they are strongly needed for answering relevant questions in limited populations. (c) 2007 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Pompea, Stephen M.; Isbell, Douglas
2009-01-01
The International Year of Astronomy 2009 (IYA2009) was conceived to honor the 400th anniversary of the first use of an astronomical telescope by Galileo Galilei in 1609, and has evolved into an engaging series of worldwide programs. IYA2009 is sponsored by the International Astronomical Union (IAU) and endorsed by the U.S. House of…
Brückner, G K
2011-04-01
The roles of the international standard-setting bodies that are mandated to facilitate safe trade, such as the World Organisation for Animal Health (OIE), the Codex Alimentarius Commission, the International Plant Protection Convention and the World Trade Organization, are well documented, as are the roles of the international organisations responsible for global health issues: the OIE, the World Health Organization and the Food and Agriculture Organization of the United Nations. However, developments in international trade, such as accelerating globalisation and the frequent emergence and re-emergence of diseases affecting both humans and animals, have brought new challenges and the need to reconsider the future roles of such organisations. New participants and new demands have also emerged to challenge these mandates, leading to potential areas of conflict. The need for countries to establish themselves as new trade partners, or to strengthen their positions while still maintaining safe trade, poses a challenge to standard-setting organisations, which must meet these demands while still remaining sensitive to the needs of developing countries. In this paper, the author describes and discusses some of these challenges and suggests how international organisations could evolve to confront such issues.
Numerical investigations of internal stresses on carbon steel based on ultrasonic LCR waves
NASA Astrophysics Data System (ADS)
Ramasamy, R.; Ibrahim, Z.; Chai, H. K.
2017-10-01
Internal stresses or residual stresses in the structural elements are very crucial in carrying out in-service evaluations and fitness-for-purpose assessments. The generation of these internal stresses can occur as result of the fabrication of the steel members, installation sequence or other ad-hoc events such as accidents or impact. The accurate prediction of the internal stresses will contribute towards estimating the integrity state of the structural elements, with respect to their material allowable stresses. This paper investigates the explicit FE based numerical modelling of the ultrasonic based non-destructive technique, utilising the measurable longitudinal critical refracted wave (LCR) and relating these to the internal stresses within the structural elements by the evaluation of the material dependent acoustoelastic factors. The subsurface travel path of the LCR wave inside the structural elements makes it a sub-surface stress measurement technique and the linearised relationship with corresponding internal stresses can be systematically applied repeatedly. The numerical results are compared against laboratory tests data to correlate the findings and to establish modelling feasibility for future proof-of-concepts. It can be concluded from this numerical investigation, that the subsurface ultrasonic LCR wave has great potential to be implemented for in-situ structural residual stress measurements, as compared to other available surface measurements such as strain gauges or x-ray diffraction.
ERIC Educational Resources Information Center
Burin, Debora I.; Barreyro, Juan P.; Saux, Gastón; Irrazábal, Natalia C.
2015-01-01
Introduction: In contemporary information societies, reading digital text has become pervasive. One of the most distinctive features of digital texts is their internal connections via hyperlinks, resulting in non-linear hypertexts. Hypertext structure and previous knowledge affect navigation and comprehension of digital expository texts. From the…
Younus, Mohammad; Hawley, Adrian; Boyd, Ben J; Rizwan, Shakila B
2018-05-07
Tween 80 has been reported to provide a means of targeting drug nanocarriers to the blood- brain barrier. This study investigated the influence of addition of Tween 80 on the formation of different bulk and dispersed lyotropic liquid crystalline phases in selachyl alcohol-based systems. The effect of increasing concentrations of Tween 80 and Pluronic F127 (as a control) (0-25% w/w relative to SA) on the bulk phase behaviour and dispersions of selachyl alcohol (SA) were investigated using small angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy. The addition of Tween 80 to SA bulk phase samples triggered concentration-dependent phase changes with the structure sequentially evolving from a reverse hexagonal phase (H 2 ) to a mixed H 2 and inverse bicontinuous cubic (V 2 ) then a V 2 phase alone. In contrast, the addition of Pluronic F127 resulted in a phase change from H 2 phase to a mixed lamellar and H 2 phase system. The mean particle size of internally structured particles was 125-190 nm with low polydispersity indices (0.1-0.2). Nanoparticles retained the bulk phase internal structure in the presence of Tween 80, whereas in the presence of Pluronic F127, the additional lamellar phase that formed in bulk phase systems was not observed. Cryo-TEM revealed the formation of cubosomes and hexosomes by SA in excess water in the presence of Tween 80 and Pluronic F127 respectively. In summary, it was shown that stabilisation of SA dispersions using Tween 80 resulted in a decrease in negative curvature leading to a change in internal structure from H 2 to V 2 phase. The studies provide the core understanding of particle structure to progress these structured lipid nanocarriers into delivery studies with Tween 80 as a mechanism to target the blood-brain barrier. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Kaneko, Makoto; Ohta, Ryuichi; Nago, Naoki; Fukushi, Motoharu; Matsushima, Masato
2017-09-13
The Japanese health care system has yet to establish structured training for primary care physicians; therefore, physicians who received an internal medicine based training program continue to play a principal role in the primary care setting. To promote the development of a more efficient primary health care system, the assessment of its current status in regard to the spectrum of patients' reasons for encounters (RFEs) and health problems is an important step. Recognizing the proportions of patients' RFEs and health problems, which are not generally covered by an internist, can provide valuable information to promote the development of a primary care physician-centered system. We conducted a systematic review in which we searched six databases (PubMed, the Cochrane Library, Google Scholar, Ichushi-Web, JDreamIII and CiNii) for observational studies in Japan coded by International Classification of Health Problems in Primary Care (ICHPPC) and International Classification of Primary Care (ICPC) up to March 2015. We employed population density as index of accessibility. We calculated Spearman's rank correlation coefficient to examine the correlation between the proportion of "non-internal medicine-related" RFEs and health problems in each study area in consideration of the population density. We found 17 studies with diverse designs and settings. Among these studies, "non-internal medicine-related" RFEs, which was not thought to be covered by internists, ranged from about 4% to 40%. In addition, "non-internal medicine-related" health problems ranged from about 10% to 40%. However, no significant correlation was found between population density and the proportion of "non-internal medicine-related" RFEs and health problems. This is the first systematic review on RFEs and health problems coded by ICHPPC and ICPC undertaken to reveal the diversity of health problems in Japanese primary care. These results suggest that primary care physicians in some rural areas of Japan need to be able to deal with "non-internal-medicine-related" RFEs and health problems, and that curriculum including practical non-internal medicine-related training is likely to be important.
Roberts, R Michael; Green, Jonathan A; Schulz, Laura C
2016-01-01
The still apt definition of a placenta is that coined by Mossman, namely apposition or fusion of the fetal membranes to the uterine mucosa for physiological exchange. As such it is a specialized organ whose purpose is to provide continuing support to the developing young. By this definition, placentas have evolved within every vertebrate class other than birds. They have evolved on multiple occasions, often within quite narrow taxonomic groups. As the placenta and the maternal system associate more intimately, such that the conceptus relies extensively on maternal support, the relationship leads to increased conflict that drives adaptive changes on both sides. The story of vertebrate placentation, therefore, is one of convergent evolution at both the macro- and molecular levels. In this short review, we first describe the emergence of placental-like structures in non-mammalian vertebrates and then transition to mammals themselves. We close the review by discussing mechanisms that might have favored diversity and hence evolution of the morphology and physiology of the placentas of eutherian mammals. PMID:27486265
L-tyrosine and L-DOPA as hormone-like regulators of melanocytes functions
Slominski, Andrzej; Zmijewski, Michal; Pawelek, John
2011-01-01
Summary Evidence reveals that L-tyrosine and L-DOPA, besides serving as substrates and intermediates of melanogenesis, are also bioregulatory agents acting not only as inducers and positive regulators of melanogenesis but also as regulators of other cellular functions. These can be mediated through action on specific receptors or through non-receptor mediated mechanisms. The substrate induced (L-tyrosine and/or L-DOPA) melanogenic pathway would autoregulate itself as well as it would regulate the melanocyte functions through activity of its structural or regulatory proteins and through intermediates of melanogenesis and melanin itself. Dissection of regulatory and autoregulatory elements of this process may elucidate how substrate induced autoregulatory pathways have evolved from prokaryotic or simple eukaryotic organisms to complex systems in vertebrates. This could substantiate older theory proposing that receptors for amino-acid derived hormones arose from the receptors for those amino acids, and that nuclear receptors evolved from primitive intracellular receptors binding nutritional factors or metabolic intermediates. PMID:21834848
The Role of Distant Mutations and Allosteric Regulation on LovD Active Site Dynamics
Jiménez-Osés, Gonzalo; Osuna, Sílvia; Gao, Xue; Sawaya, Michael R.; Gilson, Lynne; Collier, Steven J.; Huisman, Gjalt W.; Yeates, Todd O.; Tang, Yi; Houk, K. N.
2014-01-01
Natural enzymes have evolved to perform their cellular functions under complex selective pressures, which often require their catalytic activities to be regulated by other proteins. We contrasted a natural enzyme, LovD, which acts on a protein-bound (LovF) acyl substrate, with a laboratory-generated variant that was transformed by directed evolution to accept instead a small free acyl thioester, and no longer requires the acyl carrier protein. The resulting 29-mutant variant is 1000-fold more efficient in the synthesis of the drug simvastatin than the wild-type LovD. This is the first non-patent report of the enzyme currently used for the manufacture of simvastatin, as well as the intermediate evolved variants. Crystal structures and microsecond molecular dynamics simulations revealed the mechanism by which the laboratory-generated mutations free LovD from dependence on protein-protein interactions. Mutations dramatically altered conformational dynamics of the catalytic residues, obviating the need for allosteric modulation by the acyl carrier LovF. PMID:24727900
Energy efficient engine shroudless, hollow fan blade technology report
NASA Technical Reports Server (NTRS)
Michael, C. J.
1981-01-01
The Shroudless, Hollow Fan Blade Technology program was structured to support the design, fabrication, and subsequent evaluation of advanced hollow and shroudless blades for the Energy Efficient Engine fan component. Rockwell International was initially selected to produce hollow airfoil specimens employing the superplastic forming/diffusion bonding (SPF/DB) fabrication technique. Rockwell demonstrated that a titanium hollow structure could be fabricated utilizing SPF/DB manufacturing methods. However, some problems such as sharp internal cavity radii and unsatisfactory secondary bonding of the edge and root details prevented production of the required quantity of fatigue test specimens. Subsequently, TRW was selected to (1) produce hollow airfoil test specimens utilizing a laminate-core/hot isostatic press/diffusion bond approach, and (2) manufacture full-size hollow prototype fan blades utilizing the technology that evolved from the specimen fabrication effort. TRW established elements of blade design and defined laminate-core/hot isostatic press/diffusion bonding fabrication techniques to produce test specimens. This fabrication technology was utilized to produce full size hollow fan blades in which the HIP'ed parts were cambered/twisted/isothermally forged, finish machined, and delivered to Pratt & Whitney Aircraft and NASA for further evaluation.
Langevin Dynamics Simulations of Genome Packing in Bacteriophage
Forrey, Christopher; Muthukumar, M.
2006-01-01
We use Langevin dynamics simulations to study the process by which a coarse-grained DNA chain is packaged within an icosahedral container. We focus our inquiry on three areas of interest in viral packing: the evolving structure of the packaged DNA condensate; the packing velocity; and the internal buildup of energy and resultant forces. Each of these areas has been studied experimentally, and we find that we can qualitatively reproduce experimental results. However, our findings also suggest that the phage genome packing process is fundamentally different than that suggested by the inverse spool model. We suggest that packing in general does not proceed in the deterministic fashion of the inverse-spool model, but rather is stochastic in character. As the chain configuration becomes compressed within the capsid, the structure, energy, and packing velocity all become dependent upon polymer dynamics. That many observed features of the packing process are rooted in condensed-phase polymer dynamics suggests that statistical mechanics, rather than mechanics, should serve as the proper theoretical basis for genome packing. Finally we suggest that, as a result of an internal protein unique to bacteriophage T7, the T7 genome may be significantly more ordered than is true for bacteriophage in general. PMID:16617089
Langevin dynamics simulations of genome packing in bacteriophage.
Forrey, Christopher; Muthukumar, M
2006-07-01
We use Langevin dynamics simulations to study the process by which a coarse-grained DNA chain is packaged within an icosahedral container. We focus our inquiry on three areas of interest in viral packing: the evolving structure of the packaged DNA condensate; the packing velocity; and the internal buildup of energy and resultant forces. Each of these areas has been studied experimentally, and we find that we can qualitatively reproduce experimental results. However, our findings also suggest that the phage genome packing process is fundamentally different than that suggested by the inverse spool model. We suggest that packing in general does not proceed in the deterministic fashion of the inverse-spool model, but rather is stochastic in character. As the chain configuration becomes compressed within the capsid, the structure, energy, and packing velocity all become dependent upon polymer dynamics. That many observed features of the packing process are rooted in condensed-phase polymer dynamics suggests that statistical mechanics, rather than mechanics, should serve as the proper theoretical basis for genome packing. Finally we suggest that, as a result of an internal protein unique to bacteriophage T7, the T7 genome may be significantly more ordered than is true for bacteriophage in general.
A comprehensive photometric study of dynamically evolved small van den Bergh-Hagen open clusters
NASA Astrophysics Data System (ADS)
Piatti, Andrés E.
2016-12-01
We present results from Johnson UBV, Kron-Cousins RI and Washington CT1T2 photometries for seven van den Bergh-Hagen (vdBH) open clusters, namely, vdBH 1, 10, 31, 72, 87, 92, and 118. The high-quality, multiband photometric data sets were used to trace the cluster stellar density radial profiles and to build colour-magnitude diagrams and colour-colour diagrams from which we estimated their structural parameters and fundamental astrophysical properties. The clusters in our sample cover a wide age range, from ˜60 Myr up to 2.8 Gyr, are of relatively small size (˜1-6 pc) and are placed at distances from the Sun which vary between 1.8 and 6.3 kpc, respectively. We also estimated lower limits for the cluster present-day masses as well as half-mass relaxation times (tr). The resulting values in combination with the structural parameter values suggest that the studied clusters are in advanced stages of their internal dynamical evolution (age/tr ˜ 20-320), possibly in the typical phase of those tidally filled with mass segregation in their core regions. Compared to open clusters in the solar neighbourhood, the seven vdBH clusters are within more massive (˜80-380 M⊙), with higher concentration parameter values (c ˜ 0.75-1.15) and dynamically evolved ones.
Monitoring of changes in cluster structures in water under AC magnetic field
NASA Astrophysics Data System (ADS)
Usanov, A. D.; Ulyanov, S. S.; Ilyukhina, N. S.; Usanov, D. A.
2016-01-01
A fundamental possibility of visualizing cluster structures formed in distilled water by an optical method based on the analysis of dynamic speckle structures is demonstrated. It is shown for the first time that, in contrast to the existing concepts, water clusters can be rather large (up to 200 -m in size), and their lifetime is several tens of seconds. These clusters are found to have an internal spatially inhomogeneous structure, constantly changing in time. The properties of magnetized and non-magnetized water are found to differ significantly. In particular, the number of clusters formed in magnetized water is several times larger than that formed in the same volume of non-magnetized water.
Encouraging Reactivity to Create Robust Machines
2013-07-01
Performance Evaluation and Benchmarking of Intelligent Systems, 113 137. Baldwin, J. (1896). A new factor in evolution. The American Naturalist, 30(355...Once more unto the breach: Co evolving a robot and its simulator. In Proceed ings of the international conference on artifical life (alife9) (pp.57...Pfeifer, R. (2003). Evolving complete agents using artificial ontogeny. In (pp. 237 258). Springer Verlag. Brooks, R. (1994). Artifical life and
Non-Dissipative Structural Evolutions in Granular Materials
NASA Astrophysics Data System (ADS)
Pouragha, Mehdi; Wan, Richard
2017-06-01
The structure of the contact network in granular assemblies can evolve due to either dissipative mechanisms such as sliding at contact points, or non-dissipative mechanisms through the phenomenon of contact gain and loss. Being associated with negligible deformations, non-dissipative mechanisms is actually active even in the small strain range of 10-3, especially in the case of densely packed assemblies. Hence, from a constitutive modelling point of view, it is crucial to be able to estimate such non-dissipative evolutions since both elastic and plastic properties of granular assemblies highly depend on contact network characteristics. The current study proposes an analytical scheme that allows us to estimate the non-dissipative contact gain/loss regime in terms of directional changes in the average contact force. The probability distribution of contact forces is used to compute the number of lost contact for each direction. Similarly, the number of newly formed contacts is estimated by considering the probability distribution of the gap between neighbouring particles. Based on the directional contact gain/loss computed, the changes in coordination number and fabric anisotropy can be found which, together with statistical treatments of Love-Weber stress expression, form a complete system of equations describing the evolution of other controlling microvariables. Finally, the results of the calculations have been compared with DEM simulations which verify the accuracy of the proposed scheme.
Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu
2018-01-01
To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human–robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human–robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility. PMID:29562684
Cellular packing, mechanical stress and the evolution of multicellularity
NASA Astrophysics Data System (ADS)
Jacobeen, Shane; Pentz, Jennifer T.; Graba, Elyes C.; Brandys, Colin G.; Ratcliff, William C.; Yunker, Peter J.
2018-03-01
The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks ( 291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size—a fundamental step in the evolution of multicellularity.
Wang, Likun; Du, Zhijiang; Dong, Wei; Shen, Yi; Zhao, Guangyu
2018-03-19
To achieve strength augmentation, endurance enhancement, and human assistance in a functional autonomous exoskeleton, control precision, back drivability, low output impedance, and mechanical compactness are desired. In our previous work, two elastic modules were designed for human-robot interaction sensing and compliant control, respectively. According to the intrinsic sensing properties of the elastic module, in this paper, only one compact elastic module is applied to realize both purposes. Thus, the corresponding control strategy is required and evolving internal model control is proposed to address this issue. Moreover, the input signal to the controller is derived from the deflection of the compact elastic module. The human-robot interaction is considered as the disturbance which is approximated by the output error between the exoskeleton control plant and evolving forward learning model. Finally, to verify our proposed control scheme, several experiments are conducted with our robotic exoskeleton system. The experiment shows a satisfying result and promising application feasibility.
Evolution of the social network of scientific collaborations
NASA Astrophysics Data System (ADS)
Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.
2002-08-01
The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.
ERIC Educational Resources Information Center
Bals, Margrethe; Turi, Anne Lene; Vitterso, Joar; Skre, Ingunn; Kvernmo, Siv
2011-01-01
Through differences in family socialization between indigenous and non-indigenous youth, there may be cultural differences in the impact of family factors on mental health outcome. Using structural equation modelling, this population-based study explored the relationship between symptoms of anxiety and depression and family factors in indigenous…
ERIC Educational Resources Information Center
Pugh, Debra; Hamstra, Stanley J.; Wood, Timothy J.; Humphrey-Murto, Susan; Touchie, Claire; Yudkowsky, Rachel; Bordage, Georges
2015-01-01
Internists are required to perform a number of procedures that require mastery of technical and non-technical skills, however, formal assessment of these skills is often lacking. The purpose of this study was to develop, implement, and gather validity evidence for a procedural skills objective structured clinical examination (PS-OSCE) for internal…
The Evolution and Functional Impact of Human Deletion Variants Shared with Archaic Hominin Genomes
Lin, Yen-Lung; Pavlidis, Pavlos; Karakoc, Emre; Ajay, Jerry; Gokcumen, Omer
2015-01-01
Allele sharing between modern and archaic hominin genomes has been variously interpreted to have originated from ancestral genetic structure or through non-African introgression from archaic hominins. However, evolution of polymorphic human deletions that are shared with archaic hominin genomes has yet to be studied. We identified 427 polymorphic human deletions that are shared with archaic hominin genomes, approximately 87% of which originated before the Human–Neandertal divergence (ancient) and only approximately 9% of which have been introgressed from Neandertals (introgressed). Recurrence, incomplete lineage sorting between human and chimp lineages, and hominid-specific insertions constitute the remaining approximately 4% of allele sharing between humans and archaic hominins. We observed that ancient deletions correspond to more than 13% of all common (>5% allele frequency) deletion variation among modern humans. Our analyses indicate that the genomic landscapes of both ancient and introgressed deletion variants were primarily shaped by purifying selection, eliminating large and exonic variants. We found 17 exonic deletions that are shared with archaic hominin genomes, including those leading to three fusion transcripts. The affected genes are involved in metabolism of external and internal compounds, growth and sperm formation, as well as susceptibility to psoriasis and Crohn’s disease. Our analyses suggest that these “exonic” deletion variants have evolved through different adaptive forces, including balancing and population-specific positive selection. Our findings reveal that genomic structural variants that are shared between humans and archaic hominin genomes are common among modern humans and can influence biomedically and evolutionarily important phenotypes. PMID:25556237
The Emergence of Physiology and Form: Natural Selection Revisited
Torday, John S.
2016-01-01
Natural Selection describes how species have evolved differentially, but it is descriptive, non-mechanistic. What mechanisms does Nature use to accomplish this feat? One known way in which ancient natural forces affect development, phylogeny and physiology is through gravitational effects that have evolved as mechanotransduction, seen in the lung, kidney and bone, linking as molecular homologies to skin and brain. Tracing the ontogenetic and phylogenetic changes that have facilitated mechanotransduction identifies specific homologous cell-types and functional molecular markers for lung homeostasis that reveal how and why complex physiologic traits have evolved from the unicellular to the multicellular state. Such data are reinforced by their reverse-evolutionary patterns in chronic degenerative diseases. The physiologic responses of model organisms like Dictyostelium and yeast to gravity provide deep comparative molecular phenotypic homologies, revealing mammalian Target of Rapamycin (mTOR) as the final common pathway for vertical integration of vertebrate physiologic evolution; mTOR integrates calcium/lipid epistatic balance as both the proximate and ultimate positive selection pressure for vertebrate physiologic evolution. The commonality of all vertebrate structure-function relationships can be reduced to calcium/lipid homeostatic regulation as the fractal unit of vertebrate physiology, demonstrating the primacy of the unicellular state as the fundament of physiologic evolution. PMID:27534726
Examining Classroom Negotiation Strategies of International Teaching Assistants
ERIC Educational Resources Information Center
Williams, Gwendolyn M.
2011-01-01
From a constructivist point of view teacher identity evolves as the teacher interacts and negotiates with others. However, before negotiation can occur, instructors must establish their own teacher identity as a starting position. This narrative study analyzes how international teaching assistants negotiated with their American undergraduate…
The International Big History Association
ERIC Educational Resources Information Center
Duffy, Michael; Duffy, D'Neil
2013-01-01
IBHA, the International Big History Association, was organized in 2010 and "promotes the unified, interdisciplinary study and teaching of history of the Cosmos, Earth, Life, and Humanity." This is the vision that Montessori embraced long before the discoveries of modern science fleshed out the story of the evolving universe. "Big…
Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations
Porto, Markus; Bastolla, Ugo
2010-01-01
Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction. PMID:20463869
NASA Astrophysics Data System (ADS)
Mottershead, John E.
2015-05-01
MSSP is our journal. It developed out of the research community and in that sense is owned by us, its readers and authors. It was started by a small group, all international leaders in System Identification, Measurement and Signal Processing, Modal Analysis, Machine and Structural Diagnostics etc., several of whom still provide invaluable advice and guidance through their work on the Editorial Board. Most importantly, Simon's leadership for almost three decades has been inspirational, dedicated and energetic. So, it is a great honour for me to have been invited to assume the editorial leadership of MSSP and continue the work of serving a new generation of researchers in the broad and evolving field of Mechanical Systems and Signal Processing.
Japanese experience of evolving nurses' roles in changing social contexts.
Kanbara, S; Yamamoto, Y; Sugishita, T; Nakasa, T; Moriguchi, I
2017-06-01
To discuss the evolving roles of Japanese nurses in meeting the goals and concerns of ongoing global sustainable development. Japanese nurses' roles have evolved as the needs of the country and the communities they served, changed over time. The comprehensive public healthcare services in Japan were provided by the cooperation of hospitals and public health nurses. The nursing profession is exploring ways to identify and systemize nursing skills and competencies that address global health initiatives for sustainable development goals. This paper is based on the summary of a symposium, (part of the 2015 annual meeting of the Japan Association for International Health) with panel members including experts from Japan's Official Development Assistance. The evolving role of nurses in response to national and international needs is illustrated by nursing practices from Japan. Japanese public health nurses have also assisted overseas healthcare plans. In recent catastrophes, Japanese nurses assumed the roles of community health coordinators for restoration and maintenance of public health. The Japanese experience shows that nursing professionals are best placed to work with community health issues, high-risk situations and vulnerable communities. Their cooperation can address current social needs and help global communities to transform our world. Nurses have tremendous potential to make transformative changes in health and bring about the necessary paradigm shift. They must be involved in global sustainable development goals, health policies and disaster risk management. A mutual understanding of global citizen and nurses will help to renew and strengthen their capacities. Nursing professionals can contribute effectively to achieve national and global health goals and make transformative changes. © 2017 International Council of Nurses.
Cunningham, Susan J; Corfield, Jeremy R; Iwaniuk, Andrew N; Castro, Isabel; Alley, Maurice R; Birkhead, Tim R; Parsons, Stuart
2013-01-01
Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These 'bill-tip organs' allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation.
Higher Flux from the Young Sun as an Explanation for Warm Temperatures for Early Earth and Mars
NASA Technical Reports Server (NTRS)
Sackmann, I.-Juliana
2001-01-01
Observations indicate that the Earth was at least warm enough for liquid water to exist as far back as 4 Gyr ago, namely, as early as half a billion years after the formation of the Earth; in fact, there is evidence suggesting that Earth may have been even warmer then than it is now. These relatively warm temperatures required on early Earth are in apparent contradiction to the dimness of the early Sun predicted by the standard solar models. This problem has generally been explained by assuming that Earth's early atmosphere contained huge amounts of carbon dioxide (CO2), resulting in a large enough greenhouse effect to counteract the effect of a dimmer Sun. However, recent work places an upper limit of 0.04 bar on the partial pressure of CO2 in the period from 2.75 to 2.2 Gyr ago, based on the absence of siderite in paleosols; this casts doubt on the viability of a strong CO2 greenhouse effect on early Earth. The existence of liquid water on early Mars has been even more of a puzzle; even the maximum possible CO2 greenhouse effect cannot yield warm enough Martian surface temperatures. These problems can be resolved simultaneously for both Earth and Mars, if the early Sun was brighter than predicted by the standard solar models. This could be accomplished if the early Sun was slightly more massive than it is now, i.e., if the solar wind was considerably stronger in the past than at present. A slightly more massive young Sun would have left fingerprints on the internal structure of the present Sun. Today, helioseismic observations exist that can measure the internal structure of the Sun with very high precision. The task undertaken here was to compute solar models with the highest precision possible at this time, starting with slightly greater initial masses. These were evolved to the present solar age, where comparisons with the helioseismic observations could be made. Our computations also yielded the time evolution of the solar flux at the planets - a key input to the climates of early Earth and Mars. Early solar mass loss is not the only influence that can alter the internal structure of the present Sun. There are minor uncertainties in the physics of the solar models and in the key observed solar parameters that also affect the present Sun's internal structure. It was therefore imperative to obtain an understanding of the effects of these other uncertainties, in order to disentangle them from the fingerprints that might be left by early solar mass loss. From these considerations, our work was divided into two parts: (1) We first computed the evolution of standard solar models with input parameters varied within their uncertainties, to determine their effect on the observable helioseismic quantities; (2) We then computed non-standard solar models with higher initial masses to test against the helioseismological observations.
The Evolution of 3D Microimaging Techniques in Geosciences
NASA Astrophysics Data System (ADS)
Sahagian, D.; Proussevitch, A.
2009-05-01
In the analysis of geomaterials, it is essential to be able to analyze internal structures on a quantitative basis. Techniques have evolved from rough qualitative methods to highly accurate quantitative methods coupled with 3-D numerical analysis. The earliest primitive method for "seeing'" what was inside a rock was multiple sectioning to produce a series of image slices. This technique typically completely destroyed the sample being analyzed. Another destructive method was developed to give more detailed quantitative information by forming plastic casts of internal voids in sedimentary and volcanic rocks. For this, void were filled with plastic and the rock dissolved away with HF to reveal plastic casts of internal vesicles. Later, new approaches to stereology were developed to extract 3D information from 2D cross-sectional images. This has long been possible for spheres because the probability distribution for cutting a sphere along any small circle is known analytically (greatest probability is near the equator). However, large numbers of objects are required for statistical validity, and geomaterials are seldom spherical, so crystals, vesicles, and other inclusions would need a more sophisticated approach. Consequently, probability distributions were developed using numerical techniques for rectangular solids and various ellipsoids so that stereological techniques could be applied to these. The "holy grail" has always been to obtain 3D quantitative images non-destructively. A key method is Computed X-ray Tomography (CXT), in which attenuation of X-rays is recorded as a function of angular position in a cylindrical sample, providing a 2D "slice" of the interior. When a series of these "slices" is stacked (in increments equivalent with the resolution of the X-ray to make cubic voxels), a 3D image results with quantitative information regarding internal structure, particle/void volumes, nearest neighbors, coordination numbers, preferred orientations, etc. CXT can be done at three basic levels of resolution, with "normal" x-rays providing tens of microns resolution, synchrotron sources providing single to few microns, and emerging XuM techniques providing a practical 300 nm and theoretical 60 nm. The main challenges in CXT imaging have been in segmentation, which delineates material boundaries, and object recognition (registration), in which the individual objects within a material are identified. The former is critical in quantifying object volume, while the latter is essential for preventing the false appearance of individual objects as a continuous structure. Additional, new techniques are now being developed to enhance resolution and provide more detailed analysis without the complex infrastructure needed for CXT. One such method is Laser Scanning Confocal Microscopy, in which a laser is reflected from individual interior surfaces of a fluorescing material, providing a series of sharp images of internal slices with quantitative information available, just as in x-ray tomography, after "z-stacking" of planes of pixels. Another novel approach is the use of Stereo Scanning Electron Microscopy to create digital elevation models of 3D surficial features such as partial bubble margins on the surfaces of fine volcanic ash particles. As other novel techniques emerge, new opportunities will be presented to the geological research community to obtain ever more detailed and accurate information regarding the interior structure of geomaterials.
HOT Faults", Fault Organization, and the Occurrence of the Largest Earthquakes
NASA Astrophysics Data System (ADS)
Carlson, J. M.; Hillers, G.; Archuleta, R. J.
2006-12-01
We apply the concept of "Highly Optimized Tolerance" (HOT) for the investigation of spatio-temporal seismicity evolution, in particular mechanisms associated with largest earthquakes. HOT provides a framework for investigating both qualitative and quantitative features of complex feedback systems that are far from equilibrium and punctuated by rare, catastrophic events. In HOT, robustness trade-offs lead to complexity and power laws in systems that are coupled to evolving environments. HOT was originally inspired by biology and engineering, where systems are internally very highly structured, through biological evolution or deliberate design, and perform in an optimum manner despite fluctuations in their surroundings. Though faults and fault systems are not designed in ways comparable to biological and engineered structures, feedback processes are responsible in a conceptually comparable way for the development, evolution and maintenance of younger fault structures and primary slip surfaces of mature faults, respectively. Hence, in geophysical applications the "optimization" approach is perhaps more aptly replaced by "organization", reflecting the distinction between HOT and random, disorganized configurations, and highlighting the importance of structured interdependencies that evolve via feedback among and between different spatial and temporal scales. Expressed in the terminology of the HOT concept, mature faults represent a configuration optimally organized for the release of strain energy; whereas immature, more heterogeneous fault networks represent intermittent, suboptimal systems that are regularized towards structural simplicity and the ability to generate large earthquakes more easily. We discuss fault structure and associated seismic response pattern within the HOT concept, and outline fundamental differences between this novel interpretation to more orthodox viewpoints like the criticality concept. The discussion is flanked by numerical simulations of a 2D fault model, where we investigate different feedback mechanisms and their effect on seismicity evolution. We introduce an approach to estimate the state of a fault and thus its capability of generating a large (system-wide) event assuming likely heterogeneous distributions of hypocenters and stresses, respectively.
Casey, M
1996-08-15
Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.
Evolving pharmacology of orphan GPCRs: IUPHAR Commentary.
Davenport, Anthony P; Harmar, Anthony J
2013-10-01
The award of the 2012 Nobel Prize in Chemistry to Robert Lefkowitz and Brian Kobilka for their work on the structure and function of GPCRs, spanning a period of more than 20 years from the cloning of the human β2 -adrenoceptor to determining the crystal structure of the same protein, has earned both researchers a much deserved place in the pantheon of major scientific discoveries. GPCRs comprise one of the largest families of proteins, controlling many major physiological processes and have been a major focus of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) since its inception in 1987. We report here recent efforts by the British Pharmacological Society and NC-IUPHAR to define the endogenous ligands of 'orphan' GPCRs and to place authoritative and accessible information about these crucial therapeutic targets online. © 2013 The British Pharmacological Society.
Evolution of a designed retro-aldolase leads to complete active site remodeling
Giger, Lars; Caner, Sami; Obexer, Richard; Kast, Peter; Baker, David; Ban, Nenad; Hilvert, Donald
2013-01-01
Evolutionary advances are often fueled by unanticipated innovation. Directed evolution of a computationally designed enzyme suggests that dramatic molecular changes can also drive the optimization of primitive protein active sites. The specific activity of an artificial retro-aldolase was boosted >4,400 fold by random mutagenesis and screening, affording catalytic efficiencies approaching those of natural enzymes. However, structural and mechanistic studies reveal that the engineered catalytic apparatus, consisting of a reactive lysine and an ordered water molecule, was unexpectedly abandoned in favor of a new lysine residue in a substrate binding pocket created during the optimization process. Structures of the initial in silico design, a mechanistically promiscuous intermediate, and one of the most evolved variants highlight the importance of loop mobility and supporting functional groups in the emergence of the new catalytic center. Such internal competition between alternative reactive sites may have characterized the early evolution of many natural enzymes. PMID:23748672
miniSEED: The Backbone Data Format for Seismological Time Series
NASA Astrophysics Data System (ADS)
Ahern, T. K.; Benson, R. B.; Trabant, C. M.
2017-12-01
In 1987, the International Federation of Digital Seismograph Networks (FDSN), adopted the Standard for the Exchange of Earthquake Data (SEED) format to be used for data archiving and exchange of seismological time series data. Since that time, the format has evolved to accommodate new capabilities and features. For example, a notable change in 1992 allowed the format, which includes both the comprehensive metadata and the time series samples, to be used in two additional forms: a container for metadata only called "dataless SEED", and 2) a stand-alone structure for time series called "miniSEED". While specifically designed for seismological data and related metadata, this format has proven to be a useful format for a wide variety of geophysical time series data. Many FDSN data centers now store temperature, pressure, infrasound, tilt and other time series measurements in this internationally used format. Since April 2016, members of the FDSN have been in discussions to design a next generation miniSEED format to accommodate current and future needs, to further generalize the format, and to address a number of historical problems or limitations. We believe the correct approach is to simplify the header, allow for arbitrary header additions, expand the current identifiers, and allow for anticipated future identifiers which are currently unknown. We also believe the primary goal of the format is for efficient archiving, selection and exchange of time series data. By focusing on these goals we avoid trying to generalize the format too broadly into specialized areas such as efficient, low-latency delivery, or including unbounded non-time series data. Our presentation will provide an overview of this format and highlight its most valuable characteristics for time series data from any geophysical domain or beyond.
Atlani-Duault, Laëtitia; Dozon, Jean-Pierre; Wilson, Andrew; Delfraissy, Jean-François; Moatti, Jean-Paul
2016-05-28
The French contribution to global public health over the past two centuries has been marked by a fundamental tension between two approaches: State-provided universal free health care and what we propose to call State humanitarian verticalism. Both approaches have historical roots in French colonialism and have led to successes and failures that continue until the present day. In this paper, the second in The Lancet's Series on France, we look at how this tension has evolved. During the French colonial period (1890s to 1950s), the Indigenous Medical Assistance structure was supposed to bring metropolitan France's model of universal and free public health care to the colonies, and French State imperial humanitarianism crystallised in vertical programmes inspired by Louis Pasteur, while vying with early private humanitarian activism in health represented by Albert Schweitzer. From decolonisation to the end of the Cold War (1960-99), French assistance to newly independent states was affected by sans frontièrisme, Health for All, and the AIDS pandemic. Since 2000, France has had an active role in development of global health initiatives and favoured multilateral action for health assistance. Today, with adoption of the 2030 Sustainable Development Goals and the challenges of non-communicable diseases, economic inequality, and climate change, French international health assistance needs new direction. In the context of current debate over global health as a universal goal, understanding and acknowledging France's history could help strengthen advocacy in favour of universal health coverage and contribute to advancing global equity through income redistribution, from healthy populations to people who are sick and from wealthy individuals to those who are poor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wipfli, Heather; Zacharias, Kristin Dessie; Nivvy Hundal, Nuvjote; Shigematsu, Luz Myriam Reynales; Bahl, Deepika; Arora, Monika; Bassi, Shalini; Kumar, Shubha
2018-05-09
A qualitative study of key informant semi-structured interviews were conducted between March and July 2016 in Mexico and India to achieve the following aims: to explore corporations' and stakeholders' views, attitudes and expectations in relation to health, wellness and cancer prevention in two middle-income countries, and to determine options for health professions to advance their approach to workplace wellness programming globally, including identifying return-on-investment incentives for corporations to implement wellness programming. There is an unmet demand for workplace wellness resources that can be used by corporations in an international context. Corporations in India and Mexico are already implementing a range of health-related wellness programs, most often focused on disease prevention and management. A number of companies indicated interest is collecting return on investment data but lacked the knowledge and tools to carry out return-on-investment analyses. There was widespread interest in partnership with international non-governmental organizations (public health organizations) and a strong desire for follow-up among corporations interviewed, particularly in Mexico. As low-and middle-income countries continue to undergo economic transitions, the workforce and disease burden continue to evolve as well. Evidence suggests a there is a growing need for workplace wellness initiatives in low-and middle-income countries. Results from this study suggest that while corporations in India and Mexico are implementing wellness programming in some capacity, there are three areas where corporations could greatly benefit from assistance in improving wellness programming in the workplace: 1) innovative toolkits for workplace wellness initiatives and technical support for adaptation, 2) assistance with building partnerships to help implement wellness initiatives and build capacity, and 3) tools and training to collect data for surveillance as well as monitoring and evaluation of wellness programs.
Functional role of oligomerization for bacterial and plant SWEET sugar transporter family.
Xuan, Yuan Hu; Hu, Yi Bing; Chen, Li-Qing; Sosso, Davide; Ducat, Daniel C; Hou, Bi-Huei; Frommer, Wolf B
2013-09-24
Eukaryotic sugar transporters of the MFS and SWEET superfamilies consist of 12 and 7 α-helical transmembrane domains (TMs), respectively. Structural analyses indicate that MFS transporters evolved from a series of tandem duplications of an ancestral 3-TM unit. SWEETs are heptahelical proteins carrying a tandem repeat of 3-TM separated by a single TM. Here, we show that prokaryotes have ancestral SWEET homologs with only 3-TM and that the Bradyrhizobium japonicum SemiSWEET1, like Arabidopsis SWEET11, mediates sucrose transport. Eukaryotic SWEETs most likely evolved by internal duplication of the 3-TM, suggesting that SemiSWEETs form oligomers to create a functional pore. However, it remains elusive whether the 7-TM SWEETs are the functional unit or require oligomerization to form a pore sufficiently large to allow for sucrose passage. Split ubiquitin yeast two-hybrid and split GFP assays indicate that Arabidopsis SWEETs homo- and heterooligomerize. We examined mutant SWEET variants for negative dominance to test if oligomerization is necessary for function. Mutation of the conserved Y57 or G58 in SWEET1 led to loss of activity. Coexpression of the defective mutants with functional A. thaliana SWEET1 inhibited glucose transport, indicating that homooligomerization is necessary for function. Collectively, these data imply that the basic unit of SWEETs, similar to MFS sugar transporters, is a 3-TM unit and that a functional transporter contains at least four such domains. We hypothesize that the functional unit of the SWEET family of transporters possesses a structure resembling the 12-TM MFS structure, however, with a parallel orientation of the 3-TM unit.
Functional role of oligomerization for bacterial and plant SWEET sugar transporter family
Xuan, Yuan Hu; Hu, Yi Bing; Chen, Li-Qing; Sosso, Davide; Ducat, Daniel C.; Hou, Bi-Huei; Frommer, Wolf B.
2013-01-01
Eukaryotic sugar transporters of the MFS and SWEET superfamilies consist of 12 and 7 α-helical transmembrane domains (TMs), respectively. Structural analyses indicate that MFS transporters evolved from a series of tandem duplications of an ancestral 3-TM unit. SWEETs are heptahelical proteins carrying a tandem repeat of 3-TM separated by a single TM. Here, we show that prokaryotes have ancestral SWEET homologs with only 3-TM and that the Bradyrhizobium japonicum SemiSWEET1, like Arabidopsis SWEET11, mediates sucrose transport. Eukaryotic SWEETs most likely evolved by internal duplication of the 3-TM, suggesting that SemiSWEETs form oligomers to create a functional pore. However, it remains elusive whether the 7-TM SWEETs are the functional unit or require oligomerization to form a pore sufficiently large to allow for sucrose passage. Split ubiquitin yeast two-hybrid and split GFP assays indicate that Arabidopsis SWEETs homo- and heterooligomerize. We examined mutant SWEET variants for negative dominance to test if oligomerization is necessary for function. Mutation of the conserved Y57 or G58 in SWEET1 led to loss of activity. Coexpression of the defective mutants with functional A. thaliana SWEET1 inhibited glucose transport, indicating that homooligomerization is necessary for function. Collectively, these data imply that the basic unit of SWEETs, similar to MFS sugar transporters, is a 3-TM unit and that a functional transporter contains at least four such domains. We hypothesize that the functional unit of the SWEET family of transporters possesses a structure resembling the 12-TM MFS structure, however, with a parallel orientation of the 3-TM unit. PMID:24027245
Independent Evolution of Six Families of Halogenating Enzymes.
Xu, Gangming; Wang, Bin-Gui
2016-01-01
Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity.
The evolving Planck mass in classically scale-invariant theories
NASA Astrophysics Data System (ADS)
Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.
2017-04-01
We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.
Adding a Second Ku-Band Antenna to the International Space Station
NASA Technical Reports Server (NTRS)
DuSold, Chuck; Thacker, Corey; Kwatra, Sundeep
2011-01-01
The International Space Station, as originally developed, used the Ku-Band Tracking and Data Relay Satellite System communications link to transmit non-critical data to the ground. Since becoming operational, the use for the link evolved to include additional services that, although also not critical, were deemed to be necessary for the crew. The external Ku-Band Antennas were designed for transport to the ISS in the shuttle cargo bay and thus are not suitable for manifesting on any current cargo vehicle. The original intent was to stow two spare antennas on orbit in a protective container until such time as they were needed to replace a failing unit which is a long and complicated process due to the complexity of the removal and replacement procedure. The Boeing Company proposed manifesting one of those spare antennas in an operable configuration eliminating the need for an Extravehicular Activity (EVA) to correct the first failure and as such minimizing the time to hours rather than weeks required to restore the Ku-Band communications link after failures. After the first failure, an EVA would be scheduled to replace the failed antenna with the stowed spare antenna. Because the hot spare is activated internal to the ISS, the replacement of the failed unit can be done when convenient rather than in haste. This paper describes the methodology used to locate a suitable site to add a new antenna mast to the ISS as well the process followed to fabricate, deliver and install the new interface hardware. Because this was not planned when the ISS was originally designed, structural, power, data and Intermediate Frequency signal connections had to be found for use. With the movement of the P6 solar array element from the initial location in the center zenith location of the ISS to the end of the port side of the truss and concurrent relocation of one string of S-Band communications assets, there were candidate power, data and structural connections available on the Z1 Truss. The engineering team evaluated these residual interfaces for use and designed cabling and structural elements for the candidate interfaces. The antenna was recently installed on ULF-4 and has completed a preliminary checkout. Included in this check out were evaluation of the power level received from the TDRS and evaluation of the gimbal position feedback for consideration in the static bias pointing matrix. This process demonstrates the ability to modify and upgrade manned space vehicles as either need or technology requires.
Einert, T R; Sing, C E; Alexander-Katz, A; Netz, R R
2011-12-01
We study the conformational dynamics within homopolymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength ε and the globule size N (G) is observed. We find two distinct dynamical regimes: a liquid-like regime (for ε < ε(s) with fast internal dynamics and a solid-like regime (for ε > ε(s) with slow internal dynamics. The cohesion strength ε(s) of this freezing transition depends on N (G) . Equilibrium simulations, where we investigate the diffusional chain dynamics within the globule, are compared with non-equilibrium simulations, where we unfold the globule by pulling the chain ends with prescribed velocity (encompassing low enough velocities so that the linear-response, viscous regime is reached). From both simulation protocols we derive the internal viscosity within the globule. In the liquid-like regime the internal friction increases continuously with ε and scales extensive in N (G) . This suggests an internal friction scenario where the entire chain (or an extensive fraction thereof) takes part in conformational reorganization of the globular structure.
Papenfuss, Anthony T; Feng, Zhi-Ping; Krasnec, Katina; Deakin, Janine E; Baker, Michelle L; Miller, Robert D
2015-07-22
Major histocompatibility complex (MHC) class I genes are found in the genomes of all jawed vertebrates. The evolution of this gene family is closely tied to the evolution of the vertebrate genome. Family members are frequently found in four paralogous regions, which were formed in two rounds of genome duplication in the early vertebrates, but in some species class Is have been subject to additional duplication or translocation, creating additional clusters. The gene family is traditionally grouped into two subtypes: classical MHC class I genes that are usually MHC-linked, highly polymorphic, expressed in a broad range of tissues and present endogenously-derived peptides to cytotoxic T-cells; and non-classical MHC class I genes generally have lower polymorphism, may have tissue-specific expression and have evolved to perform immune-related or non-immune functions. As immune genes can evolve rapidly and are subject to different selection pressure, we hypothesised that there may be divergent, as yet unannotated or uncharacterised class I genes. Application of a novel method of sensitive genome searching of available vertebrate genome sequences revealed a new, extensive sub-family of divergent MHC class I genes, denoted as UT, which has not previously been characterized. These class I genes are found in both American and Australian marsupials, and in monotremes, at an evolutionary chromosomal breakpoint, but are not present in non-mammalian genomes and have been lost from the eutherian lineage. We show that UT family members are expressed in the thymus of the gray short-tailed opossum and in other immune tissues of several Australian marsupials. Structural homology modelling shows that the proteins encoded by this family are predicted to have an open, though short, antigen-binding groove. We have identified a novel sub-family of putatively non-classical MHC class I genes that are specific to marsupials and monotremes. This family was present in the ancestral mammal and is found in extant marsupials and monotremes, but has been lost from the eutherian lineage. The function of this family is as yet unknown, however, their predicted structure may be consistent with presentation of antigens to T-cells.
A VHDL Core for Intrinsic Evolution of Discrete Time Filters with Signal Feedback
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Dutton, Kenneth
2005-01-01
The design of an Evolvable Machine VHDL Core is presented, representing a discrete-time processing structure capable of supporting control system applications. This VHDL Core is implemented in an FPGA and is interfaced with an evolutionary algorithm implemented in firmware on a Digital Signal Processor (DSP) to create an evolvable system platform. The salient features of this architecture are presented. The capability to implement IIR filter structures is presented along with the results of the intrinsic evolution of a filter. The robustness of the evolved filter design is tested and its unique characteristics are described.
Kubo, Yumi; Sterling, Lulu Ren; Parfrey, Patrick S; Gill, Karminder; Mahaffey, Kenneth W; Gioni, Ioanna; Trotman, Marie-Louise; Dehmel, Bastian; Chertow, Glenn M
2015-01-01
Intention-to-treat (ITT) analysis is widely used to establish efficacy in randomized clinical trials. However, in a long-term outcomes study where non-adherence to study drug is substantial, the on-treatment effect of the study drug may be underestimated using the ITT analysis. The analyses presented herein are from the EVOLVE trial, a double-blind, placebo-controlled, event-driven cardiovascular outcomes study conducted to assess whether a treatment regimen including cinacalcet compared with placebo in addition to other conventional therapies reduces the risk of mortality and major cardiovascular events in patients receiving hemodialysis with secondary hyperparathyroidism. Pre-specified sensitivity analyses were performed to assess the impact of non-adherence on the estimated effect of cinacalcet. These analyses included lag-censoring, inverse probability of censoring weights (IPCW), rank preserving structural failure time model (RPSFTM) and iterative parameter estimation (IPE). The relative hazard (cinacalcet versus placebo) of mortality and major cardiovascular events was 0.93 (95% confidence interval 0.85, 1.02) using the ITT analysis; 0.85 (0.76, 0.95) using lag-censoring analysis; 0.81 (0.70, 0.92) using IPCW; 0.85 (0.66, 1.04) using RPSFTM and 0.85 (0.75, 0.96) using IPE. These analyses, while not providing definitive evidence, suggest that the intervention may have an effect while subjects are receiving treatment. The ITT method remains the established method to evaluate efficacy of a new treatment; however, additional analyses should be considered to assess the on-treatment effect when substantial non-adherence to study drug is expected or observed. Copyright © 2015 John Wiley & Sons, Ltd.
The mammalian Cretaceous cochlear revolution.
Manley, Geoffrey A
2017-09-01
The hearing organs of amniote vertebrates show large differences in their size and structure between the species' groups. In spite of this, their performance in terms of hearing sensitivity and the frequency selectivity of auditory-nerve units shows unexpectedly small differences. The only substantial difference is that therian, defined as live-bearing, mammalian groups are able to hear ultrasonic frequencies (above 15-20 kHz), whereas in contrast monotreme (egg laying) mammals and all non-mammalian amniotes cannot. This review compares the structure and physiology of the cochleae of the main groups and asks the question as to why the many structural differences seen in therian mammals arose, yet did not result in greater differences in physiology. The likely answers to this question are found in the history of the mammals during the Cretaceous period that ended 65 million years ago. During that period, the therian cochlea lost its lagenar macula, leading to a fall in endolymph calcium levels. This likely resulted in a small revolution and an auditory crisis that was compensated for by a subsequent series of structural and physiological adaptations. The end result was a system of equivalent performance to that independently evolved in other amniotes but with the additional - and of course "unforeseen" - advantage that ultrasonic-frequency responses became an available option. That option was not always availed of, but in most groups of therian mammals it did evolve and is used for communication and orientation based on improved sound localization, with micro-bats and toothed whales relying on it for prey capture. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Khan, Ahmed
2010-01-01
The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX
Analysis of Structural Features Contributing to Weak Affinities of Ubiquitin/Protein Interactions.
Cohen, Ariel; Rosenthal, Eran; Shifman, Julia M
2017-11-10
Ubiquitin is a small protein that enables one of the most common post-translational modifications, where the whole ubiquitin molecule is attached to various target proteins, forming mono- or polyubiquitin conjugations. As a prototypical multispecific protein, ubiquitin interacts non-covalently with a variety of proteins in the cell, including ubiquitin-modifying enzymes and ubiquitin receptors that recognize signals from ubiquitin-conjugated substrates. To enable recognition of multiple targets and to support fast dissociation from the ubiquitin modifying enzymes, ubiquitin/protein interactions are characterized with low affinities, frequently in the higher μM and lower mM range. To determine how structure encodes low binding affinity of ubiquitin/protein complexes, we analyzed structures of more than a hundred such complexes compiled in the Ubiquitin Structural Relational Database. We calculated various structure-based features of ubiquitin/protein binding interfaces and compared them to the same features of general protein-protein interactions (PPIs) with various functions and generally higher affinities. Our analysis shows that ubiquitin/protein binding interfaces on average do not differ in size and shape complementarity from interfaces of higher-affinity PPIs. However, they contain fewer favorable hydrogen bonds and more unfavorable hydrophobic/charge interactions. We further analyzed how binding interfaces change upon affinity maturation of ubiquitin toward its target proteins. We demonstrate that while different features are improved in different experiments, the majority of the evolved complexes exhibit better shape complementarity and hydrogen bond pattern compared to wild-type complexes. Our analysis helps to understand how low-affinity PPIs have evolved and how they could be converted into high-affinity PPIs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ostrovsky, Andrew N; Dick, Matthew H; Mawatari, Shunsuke F
2007-12-01
We studied by SEM the external morphology of the ooecium in eight bryozoans of the genus Cauloramphus (Cheilostomata, Calloporidae): C. spinifer, C. variegatus, C. magnus, C. multiavicularia, C. tortilis, C. cryptoarmatus, C. niger, and C. multispinosus, and by sectioning and light microscopy the anatomy of the brooding apparatus of C. spinifer, C. cryptoarmatus, and C. niger. These species all have a brood sac, formed by invagination of the non-calcified distal body wall of the maternal zooid, located in the distal half of the maternal (egg-producing) autozooid, and a vestigial, maternally budded kenozooidal ooecium. The brood sac comprises a main chamber and a long passage (neck) opening externally independently of the introvert. The non-calcified portion of the maternal distal wall between the neck and tip of the zooidal operculum is involved in closing and opening the brood sac, and contains both musculature and a reduced sclerite that suggest homology with the ooecial vesicle of a hyperstomial ovicell. We interpret the brooding apparatus in Cauloramphus as a highly modified form of cheilostome hyperstomial ovicell, as both types share 1) a brood chamber bounded by 2) the ooecium and 3) a component of the distal wall of the maternal zooid. We discuss Cauloramphus as a hypothetical penultimate stage in ovicell reduction in calloporid bryozoans. We suggest that the internal-brooding genus Gontarella, of uncertain taxonomic affinities, is actually a calloporid and represents the ultimate stage in which no trace of the ooecium remains. Internal brooding apparently evolved several times independently within the Calloporidae.
Centini, Marco; D'Aguanno, Giuseppe; Sciscione, Letizia; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael; Bloemer, Mark J
2004-08-15
Traditional notions of second-harmonic generation rely on phase matching or quasi phase matching to achieve good conversion efficiencies. We present an entirely new concept for efficient second-harmonic generation that is based on the interference of counterpropagating waves in multilayer structures. Conversion efficiencies are an order of magnitude larger than with phase-matched second-harmonic generation in similar multilayer structures.
Principles of time evolution in classical physics
NASA Astrophysics Data System (ADS)
Güémez, J.; Fiolhais, M.
2018-07-01
We address principles of time evolution in classical mechanical/thermodynamical systems in translational and rotational motion, in three cases: when there is conservation of mechanical energy, when there is energy dissipation and when there is mechanical energy production. In the first case, the time derivative of the Hamiltonian vanishes. In the second one, when dissipative forces are present, the time evolution is governed by the minimum potential energy principle, or, equivalently, maximum increase of the entropy of the universe. Finally, in the third situation, when internal sources of work are available to the system, it evolves in time according to the principle of minimum Gibbs function. We apply the Lagrangian formulation to the systems, dealing with the non-conservative forces using restriction functions such as the Rayleigh dissipative function.
NASA Astrophysics Data System (ADS)
Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang
2016-03-01
The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.
De novo identification of highly diverged protein repeats by probabilistic consistency.
Biegert, A; Söding, J
2008-03-15
An estimated 25% of all eukaryotic proteins contain repeats, which underlines the importance of duplication for evolving new protein functions. Internal repeats often correspond to structural or functional units in proteins. Methods capable of identifying diverged repeated segments or domains at the sequence level can therefore assist in predicting domain structures, inferring hypotheses about function and mechanism, and investigating the evolution of proteins from smaller fragments. We present HHrepID, a method for the de novo identification of repeats in protein sequences. It is able to detect the sequence signature of structural repeats in many proteins that have not yet been known to possess internal sequence symmetry, such as outer membrane beta-barrels. HHrepID uses HMM-HMM comparison to exploit evolutionary information in the form of multiple sequence alignments of homologs. In contrast to a previous method, the new method (1) generates a multiple alignment of repeats; (2) utilizes the transitive nature of homology through a novel merging procedure with fully probabilistic treatment of alignments; (3) improves alignment quality through an algorithm that maximizes the expected accuracy; (4) is able to identify different kinds of repeats within complex architectures by a probabilistic domain boundary detection method and (5) improves sensitivity through a new approach to assess statistical significance. Server: http://toolkit.tuebingen.mpg.de/hhrepid; Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID
Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei
2015-01-01
The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co2+ solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co2+ reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the “structural influence” crucial for the full and dynamical understanding of nZVI reactions. PMID:26355955
Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei
2015-09-10
The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co(2+) solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co(2+) reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the "structural influence" crucial for the full and dynamical understanding of nZVI reactions.
NASA Astrophysics Data System (ADS)
Zhang, Yalei; Chen, Wen; Dai, Chaomeng; Zhou, Chuanlong; Zhou, Xuefei
2015-09-01
The structures of nanoscale zero-valent iron (nZVI) particles evolving during reactions, and the reactions are influenced by the evolved structures. To understand the removal process in detail, it is important to investigate the relationships between the reactions and structural evolution. Using high resolution-transmission electron microscopy (HR-TEM), typical evolved structures (sheet coprecipitation and cavity corrosion) of nZVI in anoxic Co2+ solutions were revealed. The system pH (pH measured in mixture), which controls the stability of coprecipitation and the nZVI corrosion rate, were found to be the determining factors of structural evolutions. X-ray photoelectron spectroscopy (XPS) results indicated that the formation and dissolution of sheet structure impacts on the ratio of Fe(0) on the nZVI surface and the surface Co2+ reduction. The cavity structure provides the possibility of Co migration from the surface to the bulk of nZVI, leading to continuous removal. Subacidity conditions could accelerate the evolution and improve the removal; the results of structurally controlled reactions further indicated that the removal was suspended by the sheet structure and enhanced by cavity structure. The results and discussion in this paper revealed the “structural influence” crucial for the full and dynamical understanding of nZVI reactions.
Rings in Evolved Stars: Fingerprints of Their Mass-Loss History
NASA Astrophysics Data System (ADS)
Ramos-Larios, Gerardo; Santamaria, Edgar; Sabin, Laurence; Guerrero, Martin; Marquez-Lugo, Alejandro
2015-08-01
The majority of intermediate mass evolved stars i.e. asymptotic giant branch (AGB) stars, post-AGB and pre-planetary nebulae (PPN) are well known for been characterized by external structures such as knots, arcs, ansae, jets, haloes, shells and even annular enhancements in intensity -features which are commonly referred to as rings. These are well described either as spherical bubbles of periodic isotropic nuclear mass pulsations (Balick, Wilson & Hajian 2001) or projections of spherical shells onto the plane of the sky by Kwok (2001).These interesting structures are part of the AGB wind, suggesting that this wind comes in a series of semi periodic lapses, indicating that the outflow has quasi-periodic oscillations.After an extensive analysis in the Hubble Space Telescope (HST) archives we found new ring-like structures in several evolved stars. Following the image analysis procedure described by Corradi et al. (2004), and using unsharp masking techniques it was possible to enhance the ring structures, and to obtain an effective removal of the underlying halo emission.Our new findings will help first to constrain the physical processes responsible for the rings creation and then to better understand the mass loss activity in these evolved stars.
Do Infants Possess an Evolved Spider-Detection Mechanism?
ERIC Educational Resources Information Center
Rakison, David H.; Derringer, Jaime
2008-01-01
Previous studies with various non-human animals have revealed that they possess an evolved predator recognition mechanism that specifies the appearance of recurring threats. We used the preferential looking and habituation paradigms in three experiments to investigate whether 5-month-old human infants have a perceptual template for spiders that…
Marsella, Luca; Sirocco, Francesco; Trovato, Antonio; Seno, Flavio; Tosatto, Silvio C.E.
2009-01-01
Motivation: Proteins with solenoid repeats evolve more quickly than non-repetitive ones and their periodicity may be rapidly hidden at sequence level, while still evident in structure. In order to identify these repeats, we propose here a novel method based on a metric characterizing amino-acid properties (polarity, secondary structure, molecular volume, codon diversity, electric charge) using five previously derived numerical functions. Results: The five spectra of the candidate sequences coding for structural repeats, obtained by Discrete Fourier Transform (DFT), show common features allowing determination of repeat periodicity with excellent results. Moreover it is possible to introduce a phase space parameterized by two quantities related to the Fourier spectra which allow for a clear distinction between a non-homologous set of globular proteins and proteins with solenoid repeats. The DFT method is shown to be competitive with other state of the art methods in the detection of solenoid structures, while improving its performance especially in the identification of periodicities, since it is able to recognize the actual repeat length in most cases. Moreover it highlights the relevance of local structural propensities in determining solenoid repeats. Availability: A web tool implementing the algorithm presented in the article (REPETITA) is available with additional details on the data sets at the URL: http://protein.bio.unipd.it/repetita/. Contact: silvio.tosatto@unipd.it PMID:19478001
FunTree: advances in a resource for exploring and contextualising protein function evolution.
Sillitoe, Ian; Furnham, Nicholas
2016-01-04
FunTree is a resource that brings together protein sequence, structure and functional information, including overall chemical reaction and mechanistic data, for structurally defined domain superfamilies. Developed in tandem with the CATH database, the original FunTree contained just 276 superfamilies focused on enzymes. Here, we present an update of FunTree that has expanded to include 2340 superfamilies including both enzymes and proteins with non-enzymatic functions annotated by Gene Ontology (GO) terms. This allows the investigation of how novel functions have evolved within a structurally defined superfamily and provides a means to analyse trends across many superfamilies. This is done not only within the context of a protein's sequence and structure but also the relationships of their functions. New measures of functional similarity have been integrated, including for enzymes comparisons of overall reactions based on overall bond changes, reaction centres (the local environment atoms involved in the reaction) and the sub-structure similarities of the metabolites involved in the reaction and for non-enzymes semantic similarities based on the GO. To identify and highlight changes in function through evolution, ancestral character estimations are made and presented. All this is accessible through a new re-designed web interface that can be found at http://www.funtree.info. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Spiral Structure Dynamics in Pure Stellar Disk Models
NASA Astrophysics Data System (ADS)
Valencia-Enríquez, D.; Puerari, I.
2014-03-01
In order to understand the physical mechanism underlying non-steady stellar spiral arms in disk galaxies we performed a series of N-body simulations with 1.2 and 8 million particles. The initial conditions were chosen to follow Kuijken-Dubinski models. In this work we present the results of a sub-sample of our simulations in which we experiment with different disk central radial velocity dispersion (σR,0) and the disk scale height (zd). We analyzed the growth of spiral structures using 1D and 2D Fourier Transform (FT1D and FT2D respectively). The FT1D was used to obtain the angular velocities of non-axisymmetric structures which grow in the stellar disks. In all of our simulations the measured angular velocity of spiral patterns are well confined by the resonances given by the curves Ω±κ/m. The FT2D gives the amplitude of a particular spiral structure represented by two Fourier frequencies: m, number of arms; and p, related to the pitch angle as atan(-m/p). We present, for the first time, plots of the Fourier amplitude |A(p,m)| as a function of time which clearly demonstrates the swing amplification mechanism in the simulated stellar disks. In our simulations, the spiral waves appear as leading spiral structures evolving towards open trailing patterns and fade out as tightly wound spirals.
Tomography reconstruction methods for damage diagnosis of wood structure in construction field
NASA Astrophysics Data System (ADS)
Qiu, Qiwen; Lau, Denvid
2018-03-01
The structural integrity of wood building element plays a critical role in the public safety, which requires effective methods for diagnosis of internal damage inside the wood body. Conventionally, the non-destructive testing (NDT) methods such as X-ray computed tomography, thermography, radar imaging reconstruction method, ultrasonic tomography, nuclear magnetic imaging techniques, and sonic tomography have been used to obtain the information about the internal structure of wood. In this paper, the applications, advantages and disadvantages of these traditional tomography methods are reviewed. Additionally, the present article gives an overview of recently developed tomography approach that relies on the use of mechanical and electromagnetic waves for assessing the structural integrity of wood buildings. This developed tomography reconstruction method is believed to provide a more accurate, reliable, and comprehensive assessment of wood structural integrity
Evolving Human Rights and the Science of Antiretroviral Medicine.
Kavanagh, Matthew; Cohn, Jennifer; Mabote, Lynette; Meier, Benjamin Mason; Williams, Brian; Russell, Asia; Sikwese, Kenly; Baker, Brook
2015-06-11
Recent years have seen significant advances in the science of using antiretroviral medicines (ARVs) to fight HIV. Where not long ago ARVs were used late in disease to prevent sick people from dying, today people living with HIV can use ARVs to achieve viral suppression early in the course of disease. This article reviews the mounting new scientific evidence of major clinical and prevention ARV benefits. This has changed the logic of the AIDS response, eliminating competition between "treatment" and "prevention" and encouraging early initiation of treatment for individual and public health benefit. These breakthroughs have implications for the health-related human rights duties of States. With medical advance, the "highest attainable standard" of health has taken a leap, and with it the rights obligations of States. We argue that access to early treatment for all is now a core State obligation and restricting access to, or failing to provide accurate information about, it violates both individual and collective rights. In a context of real political and technical challenges, however, in this article we review the policy implications of evolving human rights obligations given the new science. National and international legal standards require action on budget, health and intellectual property policy, which we outline. Copyright 2015 Kavanagh et al. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Social learning of vocal structure in a nonhuman primate?
2011-01-01
Background Non-human primate communication is thought to be fundamentally different from human speech, mainly due to vast differences in vocal control. The lack of these abilities in non-human primates is especially striking if compared to some marine mammals and bird species, which has generated somewhat of an evolutionary conundrum. What are the biological roots and underlying evolutionary pressures of the human ability to voluntarily control sound production and learn the vocal utterances of others? One hypothesis is that this capacity has evolved gradually in humans from an ancestral stage that resembled the vocal behavior of modern primates. Support for this has come from studies that have documented limited vocal flexibility and convergence in different primate species, typically in calls used during social interactions. The mechanisms underlying these patterns, however, are currently unknown. Specifically, it has been difficult to rule out explanations based on genetic relatedness, suggesting that such vocal flexibility may not be the result of social learning. Results To address this point, we compared the degree of acoustic similarity of contact calls in free-ranging Campbell's monkeys as a function of their social bonds and genetic relatedness. We calculated three different indices to compare the similarities between the calls' frequency contours, the duration of grooming interactions and the microsatellite-based genetic relatedness between partners. We found a significantly positive relation between bond strength and acoustic similarity that was independent of genetic relatedness. Conclusion Genetic factors determine the general species-specific call repertoire of a primate species, while social factors can influence the fine structure of some the call types. The finding is in line with the more general hypothesis that human speech has evolved gradually from earlier primate-like vocal communication. PMID:22177339
Keiler, Jonas; Richter, Stefan; Wirkner, Christian S
2015-01-01
Porcelain crabs (Porcellanidae) are one of three taxa within anomuran crustaceans (Anomala) which possess a crab-like body form. Curiously, these three lineages evolved this shape independently from true crabs (Brachyura) in the course of the evolutionary process termed carcinization. The entire pleon in porcelain crabs is flexed under the cephalothorax and the carapace is approximately as broad as long. Despite their crab-like habitus, porcelain crabs are phylogenetically nested within squat lobsters (Munidopsidae, Munididae, Galatheidae). With a pleon which is only partly flexed under the cephalothorax and a cephalothorax which is longer than it is broad, squat lobsters represent morphologically intermediate forms between lobster-like and crab-like body shapes. Carcinization has so far mostly been studied with respect to outer morphology; however, it is evident that internal anatomical features are influenced through this change of body shape too. In this paper, the situation in Galatheoidea is elucidated by adding more taxa to existing descriptions of the hemolymph vascular systems and associated structures and organs. Micro-computer tomography and 3D reconstruction provide new insights. Autapomorphic states of various internal anatomical characters are present in nearly all the studied species, also reflecting some degree of anatomical disparity found within Galatheoidea. The ventral vessel system of porcelain crabs differs distinctly from that of squat lobsters. The differences in question are coherent (i.e. structural dependent) with morphological transformations in the integument, such as the shortening of the sternal plastron, which evolved in the course of carcinization. Shifts in the gonads and the pleonal neuromeres are coherent with the loss of the caridoid escape reaction, which in turn is a consequence of carcinization. The arterial transformations, however, are minor compared to other instances of carcinization in anomuran crustaceans since the last common ancestor of squat lobsters and porcelain crabs was already "half carcinized". © 2014 Wiley Periodicals, Inc.
A curved RNA helix incorporating an internal loop with G·A and A·A non-Watson–Crick base pairing
Baeyens, Katrien J.; De Bondt, Hendrik L.; Pardi, Arthur; Holbrook, Stephen R.
1996-01-01
The crystal structure of the RNA dodecamer 5′-GGCC(GAAA)GGCC-3′ has been determined from x-ray diffraction data to 2.3-Å resolution. In the crystal, these oligomers form double helices around twofold symmetry axes. Four consecutive non-Watson–Crick base pairs make up an internal loop in the middle of the duplex, including sheared G·A pairs and novel asymmetric A·A pairs. This internal loop sequence produces a significant curvature and narrowing of the double helix. The helix is curved by 34° from end to end and the diameter is narrowed by 24% in the internal loop. A Mn2+ ion is bound directly to the N7 of the first guanine in the Watson–Crick region following the internal loop and the phosphate of the preceding residue. This Mn2+ location corresponds to a metal binding site observed in the hammerhead catalytic RNA. PMID:8917508
Hiding the weakness: structural robustness using origami design
NASA Astrophysics Data System (ADS)
Liu, Bin; Santangelo, Christian; Cohen, Itai
2015-03-01
A non-deformable structure is typically associated with infinitely stiff materials that resist distortion. In this work, we designed a structure with a region that will not deform even though it is made of arbitrarily compliant materials. More specifically, we show that a foldable sheet with a circular hole in the middle can be deformed externally with the internal geometry of the hole unaffected. Instead of strengthening the local stiffness, we fine tune the crease patterns so that all the soft modes that can potentially deform the internal geometry are not accessible through strain on the external boundary. The inner structure is thus protected by the topological mechanics, based on the detailed geometry of how the vertices in the foldable sheet are connected. In this way, we isolate the structural robustness from the mechanical properties of the materials, which introduces an extra degree of freedom for structural design.
An Analysis and Classification of Dying AGB Stars Transitioning to Pre-Planetary Nebulae
NASA Technical Reports Server (NTRS)
Blake, Adam C.
2011-01-01
The principal objective of the project is to understand part of the life and death process of a star. During the end of a star's life, it expels its mass at a very rapid rate. We want to understand how these Asymptotic Giant Branch (AGB) stars begin forming asymmetric structures as they start evolving towards the planetary nebula phase and why planetary nebulae show a very large variety of non-round geometrical shapes. To do this, we analyzed images of just-forming pre-planetary nebula from Hubble surveys. These images were run through various image correction processes like saturation correction and cosmic ray removal using in-house software to bring out the circumstellar structure. We classified the visible structure based on qualitative data such as lobe, waist, halo, and other structures. Radial and azimuthal intensity cuts were extracted from the images to quantitatively examine the circumstellar structure and measure departures from the smooth spherical outflow expected during most of the AGB mass-loss phase. By understanding the asymmetrical structure, we hope to understand the mechanisms that drive this stellar evolution.
Seismicity in a model governed by competing frictional weakening and healing mechanisms
NASA Astrophysics Data System (ADS)
Hillers, G.; Carlson, J. M.; Archuleta, R. J.
2009-09-01
Observations from laboratory, field and numerical work spanning a wide range of space and time scales suggest a strain dependent progressive evolution of material properties that control the stability of earthquake faults. The associated weakening mechanisms are counterbalanced by a variety of restrengthening mechanisms. The efficiency of the healing processes depends on local material properties and on rheologic, temperature, and hydraulic conditions. We investigate the relative effects of these competing non-linear feedbacks on seismogenesis in the context of evolving frictional properties, using a mechanical earthquake model that is governed by slip weakening friction. Weakening and strengthening mechanisms are parametrized by the evolution of the frictional control variable-the slip weakening rate R-using empirical relationships obtained from laboratory experiments. In our model, weakening depends on the slip of an earthquake and tends to increase R, following the behaviour of real and simulated frictional interfaces. Healing causes R to decrease and depends on the time passed since the last slip. Results from models with these competing feedbacks are compared with simulations using non-evolving friction. Compared to fixed R conditions, evolving properties result in a significantly increased variability in the system dynamics. We find that for a given set of weakening parameters the resulting seismicity patterns are sensitive to details of the restrengthening process, such as the healing rate b and a lower cutoff time, tc, up to which no significant change in the friction parameter is observed. For relatively large and small cutoff times, the statistics are typical of fixed large and small R values, respectively. However, a wide range of intermediate values leads to significant fluctuations in the internal energy levels. The frequency-size statistics of earthquake occurrence show corresponding non-stationary characteristics on time scales over which negligible fluctuations are observed in the fixed-R case. The progressive evolution implies that-except for extreme weakening and healing rates-faults and fault networks possibly are not well characterized by steady states on typical catalogue time scales, thus highlighting the essential role of memory and history dependence in seismogenesis. The results suggest that an extrapolation to future seismicity occurrence based on temporally limited data may be misleading due to variability in seismicity patterns associated with competing mechanisms that affect fault stability.
Plant photonics: application of optical coherence tomography to monitor defects and rots in onion
NASA Astrophysics Data System (ADS)
Meglinski, I. V.; Buranachai, C.; Terry, L. A.
2010-04-01
The incidence of physiological and/or pathological defects in many fresh produce types is still unacceptably high and accounts for a large proportion of waste. With increasing interest in food security their remains strong demand in developing reliable and cost effective technologies for non-destructive screening of internal defects and rots, these being deemed unacceptable by consumers. It is well recognized that the internal defects and structure of turbid scattering media can be effectively visualized by using optical coherence tomography (OCT). In the present study, the high spatial resolution and advantages of OCT have been demonstrated for imaging the skins and outer laminae (concentric tissue layers) of intact whole onion bulbs with a view to non-invasively visualizing potential incidence/severity of internal defects.
Cooperative behavior and phase transitions in co-evolving stag hunt game
NASA Astrophysics Data System (ADS)
Zhang, W.; Li, Y. S.; Xu, C.; Hui, P. M.
2016-02-01
Cooperative behavior and different phases in a co-evolving network dynamics based on the stag hunt game is studied. The dynamical processes are parameterized by a payoff r that tends to promote non-cooperative behavior and a probability q for a rewiring attempt that could isolate the non-cooperators. The interplay between the parameters leads to different phases. Detailed simulations and a mean field theory are employed to reveal the properties of different phases. For small r, the cooperators are the majority and form a connected cluster while the non-cooperators increase with q but remain isolated over the whole range of q, and it is a static phase. For sufficiently large r, cooperators disappear in an intermediate range qL ≤ q ≤qU and a dynamical all-non-cooperators phase results. For q >qU, a static phase results again. A mean field theory based on how the link densities change in time by the co-evolving dynamics is constructed. The theory gives a phase diagram in the q- r parameter space that is qualitatively in agreement with simulation results. The sources of discrepancies between theory and simulations are discussed.
Analysis, Design and Optimization of Non-Cylindrical Fuselage for Blended-Wing-Body (BWB) Vehicle
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.; Sobieszczanski-Sobieski, J.; Kosaka, I.; Quinn, G.; Charpentier, C.
2002-01-01
Initial results of an investigation towards finding an efficient non-cylindrical fuselage configuration for a conceptual blended-wing-body flight vehicle were presented. A simplified 2-D beam column analysis and optimization was performed first. Then a set of detailed finite element models of deep sandwich panel and ribbed shell construction concepts were analyzed and optimized. Generally these concepts with flat surfaces were found to be structurally inefficient to withstand internal pressure and resultant compressive loads simultaneously. Alternatively, a set of multi-bubble fuselage configuration concepts were developed for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls. An outer-ribbed shell was designed to prevent buckling due to external resultant compressive loads. Initial results from finite element analysis appear to be promising. These concepts should be developed further to exploit their inherent structurally efficiency.
Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2.
De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna
2016-02-01
Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible α-chains and one of eight possible β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with the AP2 C-μ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions.
International organizations to enable world-wide mobile satellite services
NASA Technical Reports Server (NTRS)
Anglin, Richard L., Jr.
1993-01-01
Numbers of systems exist or have been proposed to provide world-wide mobile satellite services (MSS). Developers of these systems have formulated institutional structures they consider most appropriate for profitable delivery of these services. MSS systems provide niche services and complement traditional telecommunications networks; they are not integrated into world-wide networks. To be successful, MSS system operators must be able to provide an integrated suite of services to support the increasing globalization, interconnectivity, and mobility of business. The critical issue to enabling 'universal roaming' is securing authority to provide MSS in all of the nations of the world. Such authority must be secured in the context of evolving trends in international telecommunications, and must specifically address issues of standardization, regulation and organization. Today, only one existing organization has such world-wide authority. The question is how proponents of new MSS systems and services can gain similar authority. Securing the appropriate authorizations requires that these new organizations reflect the objectives of the nations in which services are to be delivered.
The microviridae: Diversity, assembly, and experimental evolution.
Doore, Sarah M; Fane, Bentley A
2016-04-01
The Microviridae, comprised of ssDNA, icosahedral bacteriophages, are a model system for studying morphogenesis and the evolution of assembly. Historically limited to the φX174-like viruses, recent results demonstrate that this richly diverse family is broadly divided into two groups. The defining feature appears to be whether one or two scaffolding proteins are required for assembly. The single-scaffolding systems contain an internal scaffolding protein, similar to many dsDNA viruses, and have a more complex coat protein fold. The two-scaffolding protein systems (φX174-like) encode an internal and external species, as well as an additional structural protein: a spike on the icosahedral vertices. Here, we discuss recent in silico and in vivo evolutionary analyses conducted with chimeric viruses and/or chimeric proteins. The results suggest 1) how double scaffolding systems can evolve into single and triple scaffolding systems; and 2) how assembly is the critical factor governing adaptation and the maintenance of species boundaries. Copyright © 2016 Elsevier Inc. All rights reserved.
Healthy family functioning: a cross-cultural appraisal*
David, Henry P.
1978-01-01
It is increasingly recognized that rapid cultural, social, economic, and technological changes are imposing increasing stress on family structures, traditional values, and the ability to adapt to new environments in different societies. For the purposes of this paper, ”healthy family functioning” is defined in terms of a family unit (however it is conceived in any given culture) effectively coping with cultural, environmental, psychosocial, and socioeconomic stresses throughout the family life cycle. While a review of international literature in the behavioural and biomedical sciences yields little data on comparative studies, there is growing awareness of the need for cooperative international research on family coping mechanisms and determinants of self-reliant communal coping behaviour, as well as more efficient utilization of already available knowledge. After consideration of methodological pitfalls of assessment procedures, there is a presentation of an evolving theory of healthy family functioning with the suggestion that studies of young married couples constitute a particularly promising vehicle for developing needed cooperative cross-cultural research. PMID:308401
Ostrovsky, Andrew N; Grischenko, Andrei V; Taylor, Paul D; Bock, Phil; Mawatari, Shunsuke F
2006-06-01
The anatomical structure of internal sacs for embryonic incubation was studied using SEM and light microscopy in three cheilostome bryozoans-Nematoflustra flagellata (Waters,1904), Gontarella sp., and Biflustra perfragilis MacGillivray, 1881. In all these species the brood sac is located in the distal half of the maternal (egg-producing) autozooid, being a conspicuous invagination of the body wall. It consists of the main chamber and a passage (neck) to the outside that opens independently of the introvert. There are several groups of muscles attached to the thin walls of the brood sac and possibly expanding it during oviposition and larval release. Polypide recycling begins after oviposition in Gontarella sp., and the new polypide bud is formed by the beginning of incubation. Similarly, polypides in brooding zooids degenerate in N. flagellata and, sometimes, in B. perfragilis. In the evolution of brood chambers in the Cheilostomata, such internal sacs for embryonic incubation are considered a final step, being the result of immersion of the brooding cavity into the maternal zooid and reduction of the protecting fold (ooecium). Possible reasons for this transformation are discussed, and the hypothesis of Santagata and Banta (Santagata and Banta1996) that internal brooding evolved prior to incubation in ovicells is rejected. J. Morphol. (c) 2006 Wiley-Liss, Inc.
NASA's Advanced Exploration Systems Mars Transit Habitat Refinement Point of Departure Design
NASA Technical Reports Server (NTRS)
Simon, Matthew; Latorella, Kara; Martin, John; Cerro, Jeff; Lepsch, Roger; Jefferies, Sharon; Goodliff, Kandyce; McCleskey, Carey; Smitherman, David; Stromgren, Chel
2017-01-01
This paper describes the recently developed point of departure design for a long duration, reusable Mars Transit Habitat, which was established during a 2016 NASA habitat design refinement activity supporting the definition of NASA's Evolvable Mars Campaign. As part of its development of sustainable human Mars mission concepts achievable in the 2030s, the Evolvable Mars Campaign has identified desired durations and mass/dimensional limits for long duration Mars habitat designs to enable the currently assumed solar electric and chemical transportation architectures. The Advanced Exploration Systems Mars Transit Habitat Refinement Activity brought together habitat subsystem design expertise from across NASA to develop an increased fidelity, consensus design for a transit habitat within these constraints. The resulting design and data (including a mass equipment list) contained in this paper are intended to help teams across the agency and potential commercial, academic, or international partners understand: 1) the current architecture/habitat guidelines and assumptions, 2) performance targets of such a habitat (particularly in mass, volume, and power), 3) the driving technology/capability developments and architectural solutions which are necessary for achieving these targets, and 4) mass reduction opportunities and research/design needs to inform the development of future research and proposals. Data presented includes: an overview of the habitat refinement activity including motivation and process when informative; full documentation of the baseline design guidelines and assumptions; detailed mass and volume breakdowns; a moderately detailed concept of operations; a preliminary interior layout design with rationale; a list of the required capabilities necessary to enable the desired mass; and identification of any worthwhile trades/analyses which could inform future habitat design efforts. As a whole, the data in the paper show that a transit habitat meeting the 43 metric tons launch mass/trans-Mars injection burn limits specified by the Evolvable Mars Campaign is achievable near the desired timeframe with moderate strategic investments including maintainable life support systems, repurposable structures and packaging, and lightweight exercise modalities. It also identifies operational and technological options to reduce this mass to less than 41 metric tons including staging of launch structure/packaging and alternate structural materials.
ERIC Educational Resources Information Center
Guo, Shesen; Zhang, Ganzhou; Guo, Yufei
2016-01-01
The definition of the field of educational technology has evolved over 50 years. New inventions and economic globalization increasingly facilitate people's communication for exchange of ideas and collaboration. This work attempts to describe international research collaboration in educational technology for the past 50 years. This article intends…
ERIC Educational Resources Information Center
Holodynski, Manfred
2013-01-01
Starting with an overview of theoretical approaches to emotion from an activity-oriented stance, this article applies Vygotsky's three general principles of development, sign mediation, and internalization to the development of emotional expressions as a culturally evolved sign system. The possible twofold function of expression signs as a means…
ERIC Educational Resources Information Center
Hajiyev, Emin
2017-01-01
The international student recruitment and overall cross-border education have constantly been evolving. In the past two decades, higher education institutions were developing and implementing their plan of campus internationalization. Various universities and colleges have different approaches to the internationalization. However, through the…
Evolution of Internal Quality Assurance at One University--A Case Study
ERIC Educational Resources Information Center
O'Sullivan, David
2017-01-01
Purpose: Quality assurance (QA) at one University has evolved over the past 15 years through emerging National and European standards, various leadership initiatives and through the engagement of key stakeholders in co-designing and implementing internal QA processes. In 2000, the QA process was focussed mainly on quality review (QR) that involved…
ERIC Educational Resources Information Center
Lane, Jason E.; Kinser, Kevin
2011-01-01
International branch campuses (IBCs) operate in national and international policy environments that are still rapidly evolving. While IBCs have been operating for several decades, most of that time they have operated below the domestic regulatory radar of either the exporting (home) or importing (host) governments. As the number of such…
An Interview with the 1985 USA Team to the International Mathematical Olympiad.
ERIC Educational Resources Information Center
Page, Warren
1985-01-01
This interview with the six members of the 1985 American team to the International Mathematical Olympiad (IMO) focuses on such areas as their evolving mathematical knowledge, mathematical pursuits, accomplishments, and interests. Also included are biographical sketches of the team members and the 1985 IMO problems (with solutions). (JN)
ERIC Educational Resources Information Center
Hart, Stuart N.
2007-01-01
School psychology, the professional application of psychology to education environments and programs, has evolved during the last hundred years to become a critically valuable source of support for the learning and development of children and youth throughout the world. This review of "The Handbook of International School Psychology"…
A Survey of Compact Star Clusters in the South-West Field of the M 31 Disk
NASA Astrophysics Data System (ADS)
Kodaira, Keiichi; Vansevičius, Vladas; Bridzius, Audrius; Komiyama, Yutaka; Miyazaki, Satoshi; Stonkute, Rima; Šablevičiutė, Ieva; Narbutis, Donatas
2004-12-01
A survey for compact clusters with a dimension of 10pc order was conducted in an area of about 500 square arc-minutes of the south-west part of the M31 disk, making use of the high-resolution capability of Suprime-Cam. Photometry in the B, V, and R broad-bands, and in the R* medium-band centered around Hα with varying apertures was carried out for about 1200 targets, which are related to about 300 compact objects detected in the survey. The results for 101 prominent compact objects are presented as photometric catalogues and morphological atlases, separately for samples with and without strong Hα emission. Many of the compact objects, which were previously suspected to be globular cluster candidates, are judged to be open clusters based upon their internal structures of sub-arc-second order. The majority of the 49 listed compact non-emission objects, which are restricted to be brighter than MV ˜ -5, have colors of 0 < B - V < 1.0, indicating their nature of massive evolved clusters. In contrast, only about 10% of the 52 listed compact emission objects are brighter than MiV ˜ -5, probably reflecting the short period of the emission phase and the substantial effects of the circum-stellar extinction. The detection of a few candidates of background galaxies is also reported.
Maturation and sexual ontogeny in the spangled emperor Lethrinus nebulosus.
Marriott, R J; Jarvis, N D C; Adams, D J; Gallash, A E; Norriss, J; Newman, S J
2010-04-01
The reproductive development and sexual ontogeny of spangled emperor Lethrinus nebulosus populations in the Ningaloo Marine Park (NMP) were investigated to obtain an improved understanding of its evolved reproductive strategy and data for fisheries management. Evidence derived from (1) analyses of histological data and sampled sex ratios with size and age, (2) the identification of residual previtellogenic oocytes in immature and mature testes sampled during the spawning season and (3) observed changes in testis internal structure with increasing fish size and age, demonstrated a non-functional protogynous hermaphroditic strategy (or functional gonochorism). All the smallest and youngest fish sampled were female until they either changed sex to male at a mean 277.5 mm total length (L(T)) and 2.3 years old or remained female and matured at a larger mean L(T) (392.1 mm) and older age (3.5 years). Gonad masses were similar for males and females over the size range sampled and throughout long reproductive lives (up to a maximum estimated age of c. 31 years), which was another correlate of functional gonochorism. That the mean L(T) at sex change and female maturity were below the current minimum legal size (MLS) limit (410 mm) demonstrated that the current MLS limit is effective for preventing recreational fishers in the NMP retaining at least half of the juvenile males and females in their landed catches.
Turning limited experimental information into 3D models of RNA.
Flores, Samuel Coulbourn; Altman, Russ B
2010-09-01
Our understanding of RNA functions in the cell is evolving rapidly. As for proteins, the detailed three-dimensional (3D) structure of RNA is often key to understanding its function. Although crystallography and nuclear magnetic resonance (NMR) can determine the atomic coordinates of some RNA structures, many 3D structures present technical challenges that make these methods difficult to apply. The great flexibility of RNA, its charged backbone, dearth of specific surface features, and propensity for kinetic traps all conspire with its long folding time, to challenge in silico methods for physics-based folding. On the other hand, base-pairing interactions (either in runs to form helices or isolated tertiary contacts) and motifs are often available from relatively low-cost experiments or informatics analyses. We present RNABuilder, a novel code that uses internal coordinate mechanics to satisfy user-specified base pairing and steric forces under chemical constraints. The code recapitulates the topology and characteristic L-shape of tRNA and obtains an accurate noncrystallographic structure of the Tetrahymena ribozyme P4/P6 domain. The algorithm scales nearly linearly with molecule size, opening the door to the modeling of significantly larger structures.
Inagaki, Tristen K; Irwin, Michael R; Moieni, Mona; Jevtic, Ivana; Eisenberger, Naomi I
2016-01-01
An emerging literature suggests that experiences of physical warmth contribute to social warmth-the experience of feeling connected to others. Thus, thermoregulatory systems, which help maintain our relatively warm internal body temperatures, may also support feelings of social connection. However, the association between internal body temperature and feelings of connection has not been examined. Furthermore, the origins of the link between physical and social warmth, via learning during early experiences with a caregiver or via innate, co-evolved mechanisms, remain unclear. The current study examined the relationship between oral temperature and feelings of social connection as well as whether early caregiver experiences moderated this relationship. Extending the existing literature, higher oral temperature readings were associated with greater feelings of social connection. Moreover, early caregiver experiences did not moderate this association, suggesting that the physical-social warmth overlap may not be altered by early social experience. Results provide additional support for the link between experiences of physical warmth and social warmth and add to existing theories that highlight social connection as a basic need on its own.
Inagaki, Tristen K.; Irwin, Michael R.; Moieni, Mona; Jevtic, Ivana; Eisenberger, Naomi I.
2016-01-01
An emerging literature suggests that experiences of physical warmth contribute to social warmth—the experience of feeling connected to others. Thus, thermoregulatory systems, which help maintain our relatively warm internal body temperatures, may also support feelings of social connection. However, the association between internal body temperature and feelings of connection has not been examined. Furthermore, the origins of the link between physical and social warmth, via learning during early experiences with a caregiver or via innate, co-evolved mechanisms, remain unclear. The current study examined the relationship between oral temperature and feelings of social connection as well as whether early caregiver experiences moderated this relationship. Extending the existing literature, higher oral temperature readings were associated with greater feelings of social connection. Moreover, early caregiver experiences did not moderate this association, suggesting that the physical-social warmth overlap may not be altered by early social experience. Results provide additional support for the link between experiences of physical warmth and social warmth and add to existing theories that highlight social connection as a basic need on its own. PMID:27257914
Percy, Andrew J; Yang, Juncong; Hardie, Darryl B; Chambers, Andrew G; Tamura-Wells, Jessica; Borchers, Christoph H
2015-06-15
Spurred on by the growing demand for panels of validated disease biomarkers, increasing efforts have focused on advancing qualitative and quantitative tools for more highly multiplexed and sensitive analyses of a multitude of analytes in various human biofluids. In quantitative proteomics, evolving strategies involve the use of the targeted multiple reaction monitoring (MRM) mode of mass spectrometry (MS) with stable isotope-labeled standards (SIS) used for internal normalization. Using that preferred approach with non-invasive urine samples, we have systematically advanced and rigorously assessed the methodology toward the precise quantitation of the largest, multiplexed panel of candidate protein biomarkers in human urine to date. The concentrations of the 136 proteins span >5 orders of magnitude (from 8.6 μg/mL to 25 pg/mL), with average CVs of 8.6% over process triplicate. Detailed here is our quantitative method, the analysis strategy, a feasibility application to prostate cancer samples, and a discussion of the utility of this method in translational studies. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Jackson, C. E., Jr.
1976-01-01
The NTA Level 15.5.2/3, was used to provide non-linear steady-state (NLSS) and non-linear transient (NLTR) thermal predictions for the International Ultraviolet Explorer (IUE) Scientific Instrument (SI). NASTRAN structural models were used as the basis for the thermal models, which were produced by a straight forward conversion procedure. The accuracy of this technique was sub-sequently demonstrated by a comparison of NTA predicts with the results of a thermal vacuum test of the IUE Engineering Test Unit (ETU). Completion of these tasks was aided by the use of NTA subroutines.
Animal signals and emotion in music: coordinating affect across groups
Bryant, Gregory A.
2013-01-01
Researchers studying the emotional impact of music have not traditionally been concerned with the principled relationship between form and function in evolved animal signals. The acoustic structure of musical forms is related in important ways to emotion perception, and thus research on non-human animal vocalizations is relevant for understanding emotion in music. Musical behavior occurs in cultural contexts that include many other coordinated activities which mark group identity, and can allow people to communicate within and between social alliances. The emotional impact of music might be best understood as a proximate mechanism serving an ultimately social function. Recent work reveals intimate connections between properties of certain animal signals and evocative aspects of human music, including (1) examinations of the role of nonlinearities (e.g., broadband noise) in non-human animal vocalizations, and the analogous production and perception of these features in human music, and (2) an analysis of group musical performances and possible relationships to non-human animal chorusing and emotional contagion effects. Communicative features in music are likely due primarily to evolutionary by-products of phylogenetically older, but still intact communication systems. But in some cases, such as the coordinated rhythmic sounds produced by groups of musicians, our appreciation and emotional engagement might be driven by an adaptive social signaling system. Future empirical work should examine human musical behavior through the comparative lens of behavioral ecology and an adaptationist cognitive science. By this view, particular coordinated sound combinations generated by musicians exploit evolved perceptual response biases – many shared across species – and proliferate through cultural evolutionary processes. PMID:24427146
Non-linear tearing of 3D null point current sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyper, P. F., E-mail: peterw@maths.dundee.ac.uk; Pontin, D. I., E-mail: dpontin@maths.dundee.ac.uk
2014-08-15
The manner in which the rate of magnetic reconnection scales with the Lundquist number in realistic three-dimensional (3D) geometries is still an unsolved problem. It has been demonstrated that in 2D rapid non-linear tearing allows the reconnection rate to become almost independent of the Lundquist number (the “plasmoid instability”). Here, we present the first study of an analogous instability in a fully 3D geometry, defined by a magnetic null point. The 3D null current layer is found to be susceptible to an analogous instability but is marginally more stable than an equivalent 2D Sweet-Parker-like layer. Tearing of the sheet createsmore » a thin boundary layer around the separatrix surface, contained within a flux envelope with a hyperbolic structure that mimics a spine-fan topology. Efficient mixing of flux between the two topological domains occurs as the flux rope structures created during the tearing process evolve within this envelope. This leads to a substantial increase in the rate of reconnection between the two domains.« less
ERIC Educational Resources Information Center
Floryan, Mark
2013-01-01
This dissertation presents a novel effort to develop ITS technologies that adapt by observing student behavior. In particular, we define an evolving expert knowledge base (EEKB) that structures a domain's information as a set of nodes and the relationships that exist between those nodes. The structure of this model is not the particularly novel…
Lightweight, Thermally Insulating Structural Panels
NASA Technical Reports Server (NTRS)
Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.
1996-01-01
Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.
Evolutionary snowdrift game incorporating costly punishment in structured populations
NASA Astrophysics Data System (ADS)
Chan, Nat W. H.; Xu, C.; Tey, Siew Kian; Yap, Yee Jiun; Hui, P. M.
2013-01-01
The role of punishment and the effects of a structured population in promoting cooperation are important issues. Within a recent model of snowdrift game (SG) incorporating a costly punishing strategy (P), we study the effects of a population connected through a square lattice. The punishers, who carry basically a cooperative (C) character, are willing to pay a cost α so as to punish a non-cooperative (D) opponent by β. Depending on α, β, the cost-to-benefit ratio r in SG, and the initial conditions, the system evolves into different phases that could be homogeneous or inhomogeneous. The spatial structure imposes geometrical constraint on how one agent is affected by neighboring agents. Results of extensive numerical simulations, both for the steady state and the dynamics, are presented. Possible phases are identified and discussed, and isolated phases in the r-β space are identified as special local structures of strategies that are stable due to the lattice structure. In contrast to a well-mixed population where punishers are suppressed due to the cost of punishment, the altruistic punishing strategy can flourish and prevail for appropriate values of the parameters, implying an enhancement in cooperation by imposing punishments in a structured population. The system could evolve to a phase corresponding to the coexistence of C, D, and P strategies at some particular payoff parameters, and such a phase is absent in a well-mixed population. The pair approximation, a commonly used analytic approach, is extended from a two-strategy system to a three-strategy system. We show that the pair approximation can, at best, capture the numerical results only qualitatively. Due to the improper way of including spatial correlation imposed by the lattice structure, the approximation does not give the frequencies of C, D, and P accurately and fails to give the homogeneous AllD and AllP phases.
Jenkins, Tania M
2018-06-01
The United States relies on international and osteopathic medical graduates ("non-USMDs") to fill one third of residency positions because of a shortage of American MD graduates ("USMDs"). Non-USMDs are often informally excluded from top residency positions, while USMDs tend to fill the most prestigious residencies. Little is known, however, about whether the training in these different settings is comparable or how it impacts patients. Drawing on 23 months of ethnographic fieldwork and 123 interviews, I compare training at two internal medicine programs: a community hospital staffing 90% non-USMDs and a university hospital staffing 99% USMDs. The community program's structure lent itself to a hands-off approach resulting in "inconsistent autonomy." In contrast, the university hospital supervised its residents much more regularly, resulting in "supported autonomy." I conclude that medicine may be stratified in unexpected ways between USMDs and non-USMDs and that stratification may matter for patients.
Kotakis, Christos
2015-01-01
Ars longa, vita brevis -Hippocrates Chloroplasts and mitochondria are genetically semi-autonomous organelles inside the plant cell. These constructions formed after endosymbiosis and keep evolving throughout the history of life. Experimental evidence is provided for active non-coding RNAs (ncRNAs) in these prokaryote-like structures, and a possible functional imprinting on cellular electrophysiology by those RNA entities is described. Furthermore, updated knowledge on RNA metabolism of organellar genomes uncovers novel inter-communication bridges with the nucleus. This class of RNA molecules is considered as a unique ontogeny which transforms their biological role as a genetic rheostat into a synchronous biochemical one that can affect the energetic charge and redox homeostasis inside cells. A hypothesis is proposed where such modulation by non-coding RNAs is integrated with genetic signals regulating gene transfer. The implications of this working hypothesis are discussed, with particular reference to ncRNAs involvement in the organellar and nuclear genomes evolution since their integrity is functionally coupled with redox signals in photosynthetic organisms.
USDA-ARS?s Scientific Manuscript database
The evolution of glyphosate resistance in weedy species places an environmentally benign herbicide in peril. The first report of a dicot plant with evolved glyphosate resistance was horseweed, which occurred in 2001. Since then, several species have evolved glyphosate resistance and genomic informat...
Technology Against Terrorism: Structuring Security
1992-01-01
outbreak of non is global in scope and, unfortunately, continues hostilities in January 1991, the number of interna- to demand attention and protective...against non -combatants, ranging from attacks on clinics by foes of abortion to mass murder by sophisticated international terrorist groups (e.g., attacks...findings were reached The fourth chapter discusses strategies for design - that involved first, the overall Federal funding of ing integrated systems
Near-surface energy transfers from internal tide beams to smaller vertical scale motions
NASA Astrophysics Data System (ADS)
Chou, S.; Staquet, C.; Carter, G. S.; Luther, D. S.
2016-02-01
Mechanical energy capable of causing diapycnal mixing in the ocean is transferred to the internal wave field when barotropic tides pass over underwater topography and generate internal tides. The resulting internal tide energy is confined in vertically limited structures, or beams. As internal tide beams (ITBs) propagate through regions of non-uniform stratification in the upper ocean, wave energy can be scattered through multiple reflections and refractions, be vertically trapped, or transferred to non-tidal frequencies through different nonlinear processes. Various observations have shown that ITBs are no longer detectable in horizontal kinetic energy beyond the first surface reflection. Importantly, this implies that some of the internal tide energy no longer propagates in to the abyssal ocean and consequently will not be available to maintain the density stratification. Using the NHM, a nonlinear and nonhydrostatic model based on the MITgcm, simulations of an ITB propagating up to the sea surface are examined in order to quantify the transformation of ITB energy to other motions. We compare and contrast the transformations enabled by idealized, smoothly-varying stratification with transformations enabled by realistic stratification containing a broad-band vertical wavenumber spectrum of variations. Preliminary two-dimensional results show that scattering due to small-scale structure in realistic stratification profiles from Hawaii can lead to energy being vertically trapped near the surface. Idealized simulations of "locally" generated internal solitary waves are analyzed in terms of energy flux transfers from the ITB to solitary waves, higher harmonics, and mean flow. The amount of internal tide energy which propagates back down after near-surface reflection of the ITB in different environments is quantified.
NASA Astrophysics Data System (ADS)
Lian, Junhe; Shen, Fuhui; Liu, Wenqi; Münstermann, Sebastian
2018-05-01
The constitutive model development has been driven to a very accurate and fine-resolution description of the material behaviour responding to various environmental variable changes. The evolving features of the anisotropic behaviour during deformation, therefore, has drawn particular attention due to its possible impacts on the sheet metal forming industry. An evolving non-associated Hill48 (enHill48) model was recently proposed and applied to the forming limit prediction by coupling with the modified maximum force criterion. On the one hand, the study showed the significance to include the anisotropic evolution for accurate forming limit prediction. On the other hand, it also illustrated that the enHill48 model introduced an instability region that suddenly decreases the formability. Therefore, in this study, an alternative model that is based on the associated flow rule and provides similar anisotropic predictive capability is extended to chapter the evolving effects and further applied to the forming limit prediction. The final results are compared with experimental data as well as the results by enHill48 model.
Irreconcilable difference between quantum walks and adiabatic quantum computing
NASA Astrophysics Data System (ADS)
Wong, Thomas G.; Meyer, David A.
2016-06-01
Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.
Klemenc-Ketis, Zalika; Svab, Igor; Petek-Ster, Marija; Bulc, Mateja; Buchanan, Josephine; Finnegan, Henry; Correia de Sousa, Jaime; Yaphe, John
2016-12-01
The international Bled course for teacher training has played a central role in faculty development in family medicine for the past 25 years. The course was originally designed to promote faculty development for family medicine teachers in the new academic discipline of family medicine in Slovenia in 1990 and to introduce new topics into the family medicine curriculum. In this background paper, we perform a SCOT analysis (strengths, challenges, opportunities, and threats) of the current course, evaluating participant feedback and reviewing past topics and their impact on local and international teaching programmes. We also review the place of the course in the context of other teacher-training programmes in family medicine in Europe. We found that the structure and learning aims of the Bled course have remained stable over 25 years. It provides a safe, well-structured learning environment for the participants even though the course topic is different every year. The course has had a significant impact on curriculum development and teacher training in Slovenia as well as in many other countries in Europe and beyond. Because of the positive impact of the course and the high degree of satisfaction of the participants and course directors, it seems worthwhile to continue this endeavour. New directions for the course will depend on the learning needs of the participants and the evolving medical curricula in the countries they represent.
Integrative Mental Health (IMH): paradigm, research, and clinical practice.
Lake, James; Helgason, Chanel; Sarris, Jerome
2012-01-01
This paper provides an overview of the rapidly evolving paradigm of "Integrative Mental Health (IMH)." The paradigm of contemporary biomedical psychiatry and its contrast to non-allopathic systems of medicine is initially reviewed, followed by an exploration of the emerging paradigm of IMH, which aims to reconcile the bio-psycho-socio-spiritual model with evidence-based methods from traditional healing practices. IMH is rapidly transforming conventional understandings of mental illness and has significant positive implications for the day-to-day practice of mental health care. IMH incorporates mainstream interventions such as pharmacologic treatments, psychotherapy, and psychosocial interventions, as well as alternative therapies such as acupuncture, herbal and nutritional medicine, dietary modification, meditation, etc. Two recent international conferences in Europe and the United States show that interest in integrative mental health care is growing rapidly. In response, the International Network of Integrative Mental Health (INIMH: www.INIMH.org) was established in 2010 with the objective of creating an international network of clinicians, researchers, and public health advocates to advance a global agenda for research, education, and clinical practice of evidence-based integrative mental health care. The paper concludes with a discussion of emerging opportunities for research in IMH, and an exploration of potential clinical applications of integrative mental health care. Copyright © 2012 Elsevier Inc. All rights reserved.
The eyes have it: A Problem-Based Learning Exercise in Molecular Evolution.
White, Harold B
2007-05-01
Molecular evolution provides an interesting context in which to use problem-based learning because it integrates a variety of topics in biology, biochemistry, and molecular biology. This three-stage problem for advanced students deals with the structure, multiple functions, and properties of lactate dehydrogenase isozymes, and the related evolutionary trade offs of gene sharing versus gene duplication among their corresponding genes. It has directive elements that require students to find and read classic articles, review thermodynamic principles, and apply their understanding to a mythical world wherein dinosaurs continued to evolve. The science fiction writing assignment that brings closure to the problem transformed the problem with respect to student interest and engagement. Copyright © 2007 International Union of Biochemistry and Molecular Biology, Inc.
Continuous wave superconducting radio frequency electron linac for nuclear physics research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reece, Charles E.
CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from itsmore » early beginnings to the commissioning of the 12 GeV era.« less
Unsolved problems. [the physics of B stars
NASA Technical Reports Server (NTRS)
1982-01-01
The level of understanding of the physics of single, isolated B stars is assessed and unresolved problems are defined. The significant observational results concerning the effective temperatures, radii, masses and mantles are summarized. The results of the theory of the evolution of massive stars are confronted with the observed luminosities and effective temperatures of B stars. In addition the implications of stellar spectra theory are compared with observed spectra and a heuristic model for a mantle is developed. The chief unresolved problems for B stars concern developing detailed models for (1) the internal structure of massive stars which are beginning to evolve rapidly as they complete burning hydrogen in their cores; (2) mantles; and (3) the transfer of radiation in high temperature inhomogeneous moving bodies of gas.
High-resolution EPMA X-ray images of mother liquid inclusions in a Pd2Ga single crystal
NASA Astrophysics Data System (ADS)
Müller, D.; Schwerin, J.; Gille, P.; Fehr, K. T.
2014-03-01
During crystal growth from solution inclusions of different compositions were trapped at the rim of a Pd2Ga single crystal. Their fine-grained (< 5 μm) internal structure demands special requirements for electron microprobe analysis, realized by low-voltage (5 keV) element mapping applying a step size of 0.138 μm for each pixel. It can be shown, that these inclusions represent an isolated chemical system, and that crystallisation upon cooling follows the expected thermodynamic phase relations. Thus the final composition in the centre of the inclusion consists of a small-scale mixture of PdGa and Pd5Ga3 evolved out of a solid-solid decomposition of Pd5Ga4.
Implications of Medical Tourism.
Cesario, Sandra K
2018-06-01
Medical tourism is an emerging industry that facilitates travel to another country for people who seek medical, surgical, or dental care that is unavailable or more affordable than in their home countries. Rapid advances in electronic communication and the ease of international travel have fueled the growth of this industry. More than half of medical travelers are women, especially for services related to cosmetic or reproductive conditions. Medical tourism creates both opportunities and challenges for nurses and other health care providers. Consumers' increased access to the global health care market necessitates the development of a structure that shapes the medical tourism industry and addresses evolving ethical, political, and human rights concerns related to this industry. Copyright © 2018 AWHONN. Published by Elsevier Inc. All rights reserved.
Continuous wave superconducting radio frequency electron linac for nuclear physics research
Reece, Charles E.
2016-12-28
CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from itsmore » early beginnings to the commissioning of the 12 GeV era.« less
Evolutionary optimization of material properties of a tropical seed
Lucas, Peter W.; Gaskins, John T.; Lowrey, Timothy K.; Harrison, Mark E.; Morrogh-Bernard, Helen C.; Cheyne, Susan M.; Begley, Matthew R.
2012-01-01
Here, we show how the mechanical properties of a thick-shelled tropical seed are adapted to permit them to germinate while preventing their predation. The seed has evolved a complex heterogeneous microstructure resulting in hardness, stiffness and fracture toughness values that place the structure at the intersection of these competing selective constraints. Analyses of different damage mechanisms inflicted by beetles, squirrels and orangutans illustrate that cellular shapes and orientations ensure damage resistance to predation forces imposed across a broad range of length scales. This resistance is shown to be around the upper limit that allows cracking the shell via internal turgor pressure (i.e. germination). Thus, the seed appears to strike an exquisitely delicate adaptive balance between multiple selection pressures. PMID:21613287
Detection of internal cracks in rubber composite structures using an impact acoustic modality
NASA Astrophysics Data System (ADS)
Shen, Q.; Kurfess, T. R.; Omar, M.; Gramling, F.
2014-01-01
The objective of this study is to investigate the use of impact acoustic signals to non-intrusively inspect rubber composite structures for the presence of internal cracks, such as those found in an automobile tyre. Theoretical contact dynamic models for both integral and defective rubber structures are developed based on Hertz's impact model, further modified for rubber composite materials. The model generates the prediction of major impact dynamic quantities, namely the maximum impact force, impact duration and contact deformation; such parameters are also theoretically proven to be correlated with the presence of internal cracks. The tyre structures are simplified into cubic rubber blocks, to mitigate complexity for analytical modelling. Both impact force and impact sound signals are measured experimentally, and extraction of useful features from both signals for defect identification is achieved. The impact force produces two direct measurements of theoretical impact dynamic quantities. A good correlation between these experimental discriminators and the theoretical dynamic quantities provide validation for the contact dynamics models. Defect discriminators extracted from the impact sound are dependent on both time- and frequency-domain analyses. All the discriminators are closely connected with the theoretical dynamic quantities and experimentally verified as good indicators of internal cracks in rubber composite structures.
Chance vs. necessity in living systems: a false antinomy.
Buiatti, Marcello; Buiatti, Marco
2008-01-01
The concepts of order and randomness are crucial to understand 'living systems' structural and dynamical rules. In the history of biology, they lay behind the everlasting debate on the relative roles of chance and determinism in evolution. Jacques Monod [1970] built a theory where chance (randomness) and determinism (order) were considered as two complementary aspects of life. In the present paper, we will give an up to date version of the problem going beyond the dichotomy between chance and determinism. To this end, we will first see how the view on living systems has evolved from the mechanistic one of the 19th century to the one stemming from the most recent literature, where they emerge as complex systems continuously evolving through multiple interactions among their components and with the surrounding environment. We will then report on the ever increasing evidence of "friendly" co-existence in living beings between a number of "variability generators", fixed by evolution, and the "spontaneous order" derived from interactions between components. We will propose that the "disorder" generated is "benevolent" because it allows living systems to rapidly adapt to changes in the environment by continuously changing, while keeping their internal harmony.
Turner, Bethany L; Thompson, Amanda L
2013-08-01
Evolutionary paradigms of human health and nutrition center on the evolutionary discordance or "mismatch" model in which human bodies, reflecting adaptations established in the Paleolithic era, are ill-suited to modern industrialized diets, resulting in rapidly increasing rates of chronic metabolic disease. Though this model remains useful, its utility in explaining the evolution of human dietary tendencies is limited. The assumption that human diets are mismatched to the evolved biology of humans implies that the human diet is instinctual or genetically determined and rooted in the Paleolithic era. This review looks at current research indicating that human eating habits are learned primarily through behavioral, social, and physiological mechanisms that start in utero and extend throughout the life course. Adaptations that appear to be strongly genetic likely reflect Neolithic, rather than Paleolithic, adaptations and are significantly influenced by human niche-constructing behavior. Several examples are used to conclude that incorporating a broader understanding of both the evolved mechanisms by which humans learn and imprint eating habits and the reciprocal effects of those habits on physiology would provide useful tools for structuring more lasting nutrition interventions. © 2013 International Life Sciences Institute.
Mylne, Joshua S.; Chan, Lai Yue; Chanson, Aurelie H.; Daly, Norelle L.; Schaefer, Hanno; Bailey, Timothy L.; Nguyencong, Philip; Cascales, Laura; Craik, David J.
2012-01-01
The cyclic miniprotein Momordica cochinchinensis Trypsin Inhibitor II (MCoTI-II) (34 amino acids) is a potent trypsin inhibitor (TI) and a favored scaffold for drug design. We have cloned the corresponding genes and determined that each precursor protein contains a tandem series of cyclic TIs terminating with the more commonly known, and potentially ancestral, acyclic TI. Expression of the precursor protein in Arabidopsis thaliana showed that production of the cyclic TIs, but not the terminal acyclic TI, depends on asparaginyl endopeptidase (AEP) for maturation. The nature of their repetitive sequences and the almost identical structures of emerging TIs suggest these cyclic peptides evolved by internal gene amplification associated with recruitment of AEP for processing between domain repeats. This is the third example of similar AEP-mediated processing of a class of cyclic peptides from unrelated precursor proteins in phylogenetically distant plant families. This suggests that production of cyclic peptides in angiosperms has evolved in parallel using AEP as a constraining evolutionary channel. We believe this is evolutionary evidence that, in addition to its known roles in proteolysis, AEP is especially suited to performing protein cyclization. PMID:22822203
Lassak, Kerstin; Ghosh, Abhrajyoti; Albers, Sonja-Verena
2012-01-01
Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures. Copyright © 2012. Published by Elsevier Masson SAS.
Ueki, Takeshi; Yoshida, Ryo
2014-06-14
Herein, we summarise the recent developments in self-oscillating polymeric materials based on the concepts of supramolecular chemistry, where aggregates of molecular building blocks with non-covalent bonds evolve the temporal or spatiotemporal structure. By utilising the rhythmic oscillation of the association/dissociation of molecular aggregates coupled with the redox oscillation by the BZ reaction, novel soft materials that express similar functions as those of living matter will be achieved. Further, from the viewpoint of materials science, our recent approach to prepare self-oscillating materials that operate long-term under mild conditions will be introduced.
Acoustic Emission Beamforming for Detection and Localization of Damage
NASA Astrophysics Data System (ADS)
Rivey, Joshua Callen
The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over the conventional wave propagation tracking technique based on laser doppler vibrometry that requires synchronization of data acquired from numerous excitations and measurements. The proposed technique can be used to characterize and localize damage by detecting the scattering, attenuation, and reflections of stress waves resulting from damage and defects. These studies lend credence to the potential development of new SHM/NDE techniques based on acoustic emission beamforming for characterizing a wide spectrum of damage modes in next-generation materials and structures without the need for mounted contact sensors.
A Historical Review of Gender-Affirming Medicine: Focus on Genital Reconstruction Surgery.
Frey, Jordan D; Poudrier, Grace; Thomson, Jennifer E; Hazen, Alexes
2017-08-01
Gender dysphoria (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition) is characterized by a marked discrepancy between one's birth-assigned sex and one's gender identity and is sometimes addressed by gender-affirming surgery. As public visibility and institutional support for the transgender and gender non-conforming population continue to increase, the demand for competent multidisciplinary teams of medical professionals equipped to care for this population is expected to rise-including plastic surgeons, urologists, gynecologists, endocrinologists, and breast surgeons, among others. Genital reconstruction procedures for the male-to-female and female-to-male transgender patient present unique surgical challenges that continue to evolve from their respective origins in the 19th and 20th centuries. A historical review of surgical techniques and standards of care attendant to gender-affirming medicine is presented, with foremost emphasis placed on how techniques for genital reconstruction in particular continue to evolve and advance. In addition, the current status of transition-related health care in the United States, including research gaps and contemporary clinical challenges, is reviewed. Frey JD, Poudrier G, Thomson JE, Hazen A. A Historical Review of Gender-Affirming Medicine: Focus on Genital Reconstruction Surgery. J Sex Med 2017;14:991-1002. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Wen; Tang, Ming
2017-04-01
The abnormal temperature rise is the precursor of the defective composite insulator in power transmission line. However no consolidated techniques or methodologies can on line monitor its internal temperature now. Thus a new method using embedding fiber Bragg grating (FBG) in fiber reinforced polymer (FRP) rod is adopted to monitor its internal temperature. To correctly demodulate the internal temperature of FRP rod from the Bragg wavelength shift of FBG, the conversion coefficient between them is deduced theoretically based on comprehensive investigation on the thermal stresses of the metal-composite joint, as well as its material and structural properties. Theoretical model shows that the conversion coefficients of FBG embedded in different positions will be different because of non-uniform thermal stress distribution, which is verified by an experiment. This work lays the theoretical foundation of monitoring the internal temperature of composite insulator with embedding FBG, which is of great importance to its health structural monitoring, especially early diagnosis.
Chronic Care Management evolves towards Integrated Care in Counties Manukau, New Zealand.
Rea, Harry; Kenealy, Tim; Wellingham, John; Moffitt, Allan; Sinclair, Gary; McAuley, Sue; Goodman, Meg; Arcus, Kim
2007-04-13
Despite anecdotes of many chronic care management and integrated care projects around New Zealand, there is no formal process to collect and share relevant learning within (but especially between) District Health Boards (DHBs). We wish to share our experiences and hope to stimulate a productive exchange of ongoing learning. We define chronic care management and integrated care, then summarise current theory and evidence. We describe national policy development (relevant to integrated care, since 2000) including the New Zealand Health Strategy, the NZ Primary Care Strategy, the development of Primary Health Organisations (PHOs), capitation payments, Care Plus, and Services to Improve Access funding. We then describe chronic care management in Counties Manukau, which evolved both prior to and during the international refinement of theory and evidence and the national policy development and implementation. We reflect on local progress to date and opportunities for (and barriers to) future improvements, aided by comparative reflections on the United Kingdom (UK). Our most important messages are addressed as follows: To policymakers and funders--a fragile culture change towards teamwork in the health system is taking place in New Zealand; this change needs to be specifically and actively supported. To PHOs--general practices need help to align their internal (within-practice) financial signals with the new world of capitation and integrated care. To primary and secondary care doctors, nurses, and other carers - systematic chronic care management and integrated care can improve patient quality of life; and if healthcare structures and systems are properly managed to support integration, then healthcare provider professional and personal satisfaction will improve.
Liquid interfacial water and brines in the upper surface of Mars
NASA Astrophysics Data System (ADS)
Moehlmann, Diedrich
2013-04-01
Liquid interfacial water and brines in the upper surface of Mars Diedrich T.F. Möhlmann DLR Institut für Planetenforschung, Rutherfordstr. 2, D - 12489 Berlin, Germany dirk.moehlmann@dlr.de Interfacial water films and numerous brines are known to remain liquid at temperatures far below 0° C. The physical processes behind are described in some detail. Deliquescence, i.e. the liquefaction of hygroscopic salts at the threshold of a specific "Deliquescence Relative Humidity", is shown to be that process, which on present Mars supports the formation of stable interfacial water and bulk liquids in form of temporary brines on and in a salty upper surface of present Mars in a diurnally temporary and repetitive process. Temperature and relative humidity are the governing conditions for deliquescence (and the counterpart "efflorescence") to evolve. The current thermo-dynamical conditions on Mars support these processes to evolve on present Mars. The deliquescence-driven presence of liquid brines in the soil of the upper surface of Mars can expected to be followed by physical and chemical processes like "surface cementation", down-slope flows, and physical and chemical weathering processes. A remarkable and possibly also biologically relevant evolution towards internally interfacial water bearing structures of dendritic capillaries is related to their freezing - thawing driven formation. The internal walls of these network-pores or -tubes can be covered by films of interfacial water, providing that way possibly habitable crack-systems in soil and rock. These evolutionary processes of networks, driven by their tip-growth, can expected to be ongoing also at present.
NASA Astrophysics Data System (ADS)
Shen, Fuhui; Lian, Junhe; Münstermann, Sebastian
2018-05-01
Experimental and numerical investigations on the forming limit diagram (FLD) of a ferritic stainless steel were performed in this study. The FLD of this material was obtained by Nakajima tests. Both the Marciniak-Kuczynski (MK) model and the modified maximum force criterion (MMFC) were used for the theoretical prediction of the FLD. From the results of uniaxial tensile tests along different loading directions with respect to the rolling direction, strong anisotropic plastic behaviour was observed in the investigated steel. A recently proposed anisotropic evolving non-associated Hill48 (enHill48) plasticity model, which was developed from the conventional Hill48 model based on the non-associated flow rule with evolving anisotropic parameters, was adopted to describe the anisotropic hardening behaviour of the investigated material. In the previous study, the model was coupled with the MMFC for FLD prediction. In the current study, the enHill48 was further coupled with the MK model. By comparing the predicted forming limit curves with the experimental results, the influences of anisotropy in terms of flow rule and evolving features on the forming limit prediction were revealed and analysed. In addition, the forming limit predictive performances of the MK and the MMFC models in conjunction with the enHill48 plasticity model were compared and evaluated.
Wong, Lydia Chwang Yuh; Chiu, Wing Kong; Russ, Matthias; Liew, Susan
2012-03-01
Sacral fractures from high-impact trauma often cause instability in the pelvic ring structure. Treatment is by internal fixation which clamps the fractured edges together to promote healing. Healing could take up to 12 weeks whereby patients are bedridden to avoid hindrances to the fracture from movement or weight bearing activities. Immobility can lead to muscle degradation and longer periods of rehabilitation. The ability to determine the time at which the fracture is stable enough to allow partial weight-bearing is important to reduce hospitalisation time. This review looks into different techniques used for monitoring the fracture healing of bones which could lead to possible methods for in situ and non-invasive assessment of healing fracture in a fixated pelvis. Traditional techniques being used include radiology and CT scans but were found to be unreliable at times and very subjective in addition to being non in situ. Strain gauges have proven to be very effective for accurate assessment of fracture healing as well as stability for long bones with external fixators but may not be suitable for an internally fixated pelvis. Ultrasound provides in situ monitoring of stiffness recovery but only assesses local fracture sites close to the skin surface and has only been tested on long bones. Vibration analysis can detect non-uniform healing due to its assessment of the overall structure but may suffer from low signal-to-noise ratio due to damping. Impedance techniques have been used to assess properties of non-long bones but recent studies have only been conducted on non-biological materials and more research needs to be done before it can be applicable for monitoring healing in the fixated pelvis. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Perera, M. Tharanga D.
Microstructure is key to understanding rheological behaviors of flowing particulate suspensions. During the past decade, Stokesian Dynamics simulations have been the dominant method of determining suspension microstructure. Structure results obtained numerically reveal that an anisotropic structure is formed under high Peclet (Pe) number conditions. Researchers have used various experimental techniques such as small angle neutron scattering (SANS) and light scattering methods to validate microstructure. This work outlines an experimental technique based on confocal microscopy to study microstructure of a colloidal suspension in an index-matched fluid flowing in a microchannel. High resolution scans determining individual particle locations in suspensions 30-50 vol % yield quantitative results of the local microstructure in the form of the pair distribution function, g(r). From these experimentally determined g(r), the effect of shear rate, quantified by the Peclet number as a ratio of shear and Brownian stress, on the suspension viscosity and normal stress follow that seen in macroscopic rheological measurements and simulations. It is generally believed that shear thickening behavior of colloidal suspensions is driven by the formation of hydroclusters. From measurements of particle locations, hydroclusters are identified. The number of hydroclusters grows exponentially with increasing Pe, and the onset of shear thickening is driven by the increase in formation of clusters having 5-8 particles. At higher Pe, we notice the emergence of 12 or more particle clusters. The internal structure of these hydroclusters has been investigated, and there is some evidence that particles internal to hydroclusters preferentially align along the 45° and 135° axis. Beyond observations of bulk suspension behavior, the influence of boundaries on suspension microstructure is also investigated. Experiments were performed for suspensions flowing over smooth walls, made of glass coverslips, and over rough walls having a high density coating of particles. These results show that there is more order in structure near smooth boundaries while near rough boundaries the structure is similar to that found in the bulk. The relative viscosity and normal stress differences also indicate that boundaries have an effect up as far as 6 particle diameters away from the boundary. Finally, we investigate the microstructure evolvement in a model porous medium and notice that such boundary effects come into play in such real process flows. The confocal microscopy technique also provides us with the advantage of measuring structure in real process flows. We have investigated how the microstructure evolves upstream and downstream in a porous medium. We notice more structure in a high volume fraction suspension and notice anisotropic behavior at regions where shear from the wall of the posts dominate. In other cases, a mixed flow behavior is observed due to collisions between pore surfaces and other particles resulting in a deviation from flow streamlines.
Kuhn, A; Bauman, D; Darras, H; Aron, S
2017-10-01
Reproduction and dispersal are key aspects of species life history that influence spatial genetic structure in populations. Several ant species in the genus Cataglyphis have evolved a unique breeding system in which new reproductives (that is, queens and males) are produced asexually by parthenogenesis; in contrast, non-reproductives (that is, workers) are produced via sexual reproduction by mates from distinct genetic lineages. We investigated how these two coexisting reproductive methods affect population-level spatial genetic structure using the ant Cataglyphis mauritanica as a model. We obtained genotypes for queens and their male mates from 338 colonies, and we found that the two lineages present in the study population occurred with equal frequency. Furthermore, analysis of spatial genetic structure revealed strong sex-biased dispersal. Because queens were produced by parthenogenesis and because they dispersed over short distances, there was an extreme level of spatial structuring: a mosaic of patches composed of clonal queens was formed. Males, on the other hand, dispersed over several hundred metres and, thus, across patches, ensuring successful interlineage mating.
Coalition Factor in the Evolution of Non-Kin Altruism
NASA Astrophysics Data System (ADS)
Dessalles, Jean-Louis
Animal behavior is often altruistic. In the frame of the theory of natural selection, altruism can only exist under specific conditions like kin selection or reciprocal cooperation. We show that reciprocal cooperation, which is generally invoked to explain non-kin altruism, requires very restrictive conditions to be stable. Some of these conditions are not met in many cases of altruism observed in nature. In search of another explanation of non-kin altruism, we consider Zahavis's theory of prestige. We extend it to propose a "political" model of altruism. We give evidence showing that non-kin altruism can evolve in the context of inter-subgroup competition. Under such circumstances, altruistic behavior can be used by individuals to advertise their quality as efficient coalition members. In this model, only abilities which positively correlate with the subgroup success can evolve into altruistic behaviors.
Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma
Ozawa, Tatsuya; Riester, Markus; Cheng, Yu-Kang; Huse, Jason T; Squatrito, Massimo; Helmy, Karim; Charles, Nikki; Michor, Franziska; Holland, Eric C.
2014-01-01
SUMMARY To understand the relationships between the non-GCIMP glioblastoma (GBM) subgroups, we performed mathematical modeling to predict the temporal sequence of driver events during tumorigenesis. The most common order of evolutionary events is 1) chromosome (chr) 7 gain and chr10 loss, followed by 2) CDKN2A loss and/or TP53 mutation, and 3) alterations canonical for specific subtypes. We then developed a computational methodology to identify drivers of broad copy number changes, identifying PDGFA (chr7) and PTEN (chr10) as driving initial non-disjunction events. These predictions were validated using mouse modeling, showing that PDGFA is sufficient to induce proneural-like gliomas, and additional NF1 loss converts proneural to the mesenchymal subtype. Our findings suggest most non-GCIMP-mesenchymal GBMs arise as, and evolve from, a proneural-like precursor. PMID:25117714
Ninety Years of International Cooperation in Geophysics
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Beer, T.
2009-05-01
Because applicable physical, chemical, and mathematical studies of the Earth system must be both interdisciplinary and international, the International Union of Geodesy and Geophysics (IUGG) was formed in 1919 as an non-governmental, non-profit organization dedicated to advancing, promoting, and communicating knowledge of the Earth system, its space environment, and the dynamical processes causing change. The Union brings together eight International Associations that address different disciplines of Earth sciences. Through these Associations, IUGG promotes and enables studies in the geosciences by providing a framework for collaborative research and information exchange, by organizing international scientific assemblies worldwide, and via research publications. Resolutions passed by assemblies of IUGG and its International Associations set geophysical standards and promote issues of science policy on which national members agree. IUGG has initiated and/or vigorously supported collaborative international efforts that have led to highly productive worldwide interdisciplinary research programs, such as the International Geophysical Year and subsequent International Years (IPY, IYPE, eGY, and IHY), International Lithosphere Programme, World Climate Research Programme, Geosphere-Biosphere Programme, and Integrated Research on Risk Disaster. IUGG is inherently involved in the projects and programs related to climate change, global warming, and related environmental impacts. One major contribution has been the creation, through the International Council for Science (ICSU), of the World Data Centers and the Federation of Astronomical and Geophysical Data Analysis Services. These are being transformed to the ICSU World Data System, from which the data gathered during the major programs and data products will be available to researchers everywhere. IUGG cooperates with UNESCO, WMO, and some other U.N. and non-governmental organizations in the study of natural catastrophes, climate dynamics, and in geodetic, hydrological, meteorological, oceanographic, seismological, and volcanological research. IUGG also places particular emphasis on the scientific problems of economically less-developed countries by sponsoring activities relevant to their scientific needs (e.g. Geosciences in Africa, Water Resources, Health and Well-Being etc.) The American Geophysical Union was established as the U.S. National Committee for IUGG in 1919 and today has become a distinguished union of individual geoscientists around the world. Several regional geoscience societies also evolved during the last several decades, most prominent being the European Geosciences Union and the Asia Oceania Geosciences Society. These, and some other national and regional geophysical societies, together with IUGG play a strong part in the international cooperation and promotion of geophysical sciences. At the same time the "geosciences" space is getting crowded, and there is a lot of overlap. International linkages between IUGG, AGU, EGU and other geophysical societies as well as their linkage with International Scientific Unions, that comprise the GeoUnions, are going to become more and more important. Working together is going to be more fruitful than territorial disputes. But what mechanisms can be used to encourage relationships between the international, national and regional geophysical and geoscientific bodies? We will discuss some possibilities on how to come together, to develop and to implement joint programs, research meeting, open forums, and policy statements.
NASA Astrophysics Data System (ADS)
Tsukernik, M.; McCaffrey, M. S.
2006-12-01
As the International Polar Year 2007-2008 (IPY) is fast approaching, it is important to look back and learn from the previous experience. Over 125 years ago, when an Austrian explorer and naval officer Lt. Karl Weyprecht called for an international yearlong intensive effort to study the Polar Regions, he probably never imagined that his model for international collaboration would become so widely popular. Frustrated by the lack of coordinated, international collaboration in research activities, Weyprecht proposed an intensive burst of research activity over the course of at least a year. The first IPY began in 1882 with 12 nations establishing 13 stations in the Arctic and 2 in the Southern Hemisphere. The initial yearlong plan did not go beyond data collection. However, the idea lived in the minds of scientists worldwide and the second IPY followed the first one 50 years later. By 1932, technology evolved significantly, and on top of ground-based meteorological and geophysical measurements, data collection also included radiosonde and acoustic atmospheric measurements. Occurring during a global economic depression, and between world wars, the second IPY faced many challenges. However, 40 permanent stations were established, some of which are still active. Scientific exploration also reached remote frontiers from Antarctica to the Earth's ionosphere. Less than a decade after the WWII, the idea of the next IPY started to circulate in scientific circles. The world was focused on space exploration and the word "polar" seemed too narrow for the gigantic projects planned for the 1957. That is why the initial idea of the third IPY evolved into the International Geophysical Year (IGY), although polar regions were still a major focus. The success of the IGY is almost overwhelming the first Earth orbiting satellites, a traverse of Antarctica, a discovery of the Radiation Belt, a series of science education films about IGY activities and research themes are just a few examples. In addition to the scientific breakthroughs, the IGY was an extremely successful political event. In the middle of the Cold War, scientists from competing countries had a unique chance to meet and share their research ideas. This peaceful collaboration resulted in 1961 signing of the Antarctic Treaty, protecting the sixth continent for scientific, non-military research. Many AGU scientists indicate that the IGY educational programs, along with the rapid development of science and technology following the IGY inspired their career choice.
NASA Astrophysics Data System (ADS)
Meghoufel, F. Z.; Bentata, S.; Terkhi, S.; Bendahma, F.; Cherid, S.
2013-05-01
We study the effect of the nonlinearity on electrons transmission properties in a double barriers structure GaAs/AlxGa1-xAs superlattices. The nonlinearity is introduced as an effective potential in the Schrödinger equation and translates the electronic Colombian repulsion. We have used the transfer matrix formalism and the plane wave functions approximation to solve numerically the equation and calculate the electronic transmission coefficient. We have shown the occurrence of two allowed states within the same well instead of a single, translating the presence of two resonant states at two different energies. The first allowed state intensity strongly decreases with increasing the nonlinear parameter, whereas the second one called the degeneracy state increases. Both the two states evolve towards higher resonances energies.
Polarity-driven oxygen vacancy formation in ultrathin LaNiO 3 films on SrTiO 3
Tung, I-Cheng; Luo, Guangfu; Lee, June Hyuk; ...
2017-10-18
Oxide heterostructures offer a pathway to control emergent phases in complex oxides, but their creation often leads to boundaries that have a polar discontinuity. In order to fabricate atomic-scale arrangements of dissimilar materials, we need a clear understanding of the pathways by which materials resolve polarity issues. By examining the real-time lattice structure in-situ during growth for the case of polar LaNiO 3 synthesized on non-polar SrTiO 3 (001), we demonstrate how films in ultra-thin limit form as LaNiO 2.5 and then evolve into LaNiO 3 as the thickness increases. Theory explains how the polar energetics drives the formation ofmore » oxygen vacancies and the stability of these phases with thickness and structure.« less
The Evolving Market Structure of the U.S. Residential Solar PV Installation
Solar PV Installation Industry, 2000-2016 The Evolving Market Structure of the U.S. Residential Solar PV residential solar photovoltaic (PV) system and that the residential PV installation industry has become more concentrated over time. From 2000 to 2016, the U.S. residential solar photovoltaic (PV) installation industry
Rudall, Paula J.; Bateman, Richard M.
2010-01-01
Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean ‘flower’ are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression. PMID:20047867
Rudall, Paula J; Bateman, Richard M
2010-02-12
Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean 'flower' are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression.
ERIC Educational Resources Information Center
Morrison, Allan R.
2018-01-01
In today's competitive and rapidly evolving educational environment, the ability to implement appropriate and effective change is of critical importance to an international school's ongoing success. This study examines leadership characteristics and styles that support the development and forward momentum of a change agenda within the context of…
The XIIIth International Physiological Congress in Boston in 1929: American Physiology Comes of Age
ERIC Educational Resources Information Center
Rall, Jack A.
2016-01-01
In the 19th century, the concept of experimental physiology originated in France with Claude Bernard, evolved in Germany stimulated by the teaching of Carl Ludwig, and later spread to Britain and then to the United States. The goal was to develop a physicochemical understanding of physiological phenomena. The first International Physiological…
ERIC Educational Resources Information Center
Cangelosi, Angelo
2007-01-01
In this paper we present the "grounded adaptive agent" computational framework for studying the emergence of communication and language. This modeling framework is based on simulations of population of cognitive agents that evolve linguistic capabilities by interacting with their social and physical environment (internal and external symbol…
Joint Task Force -Guantanamo Bay, Cuba: Open or Close?
2013-03-01
Obama signed that executive order directing the closure of detention operations at Guantanamo Bay. Subsequently, despite domestically political and...domestically political and international scrutiny, detention operations at Guantanamo Bay, Cuba have evolved into the premier detention facility in the...operations at Guantanamo Bay. Subsequently, despite domestically political and international scrutiny, detention operations at Guantanamo Bay, Cuba
ERIC Educational Resources Information Center
Guruz, Kemal
2011-01-01
Students and scholars leaving their homes in search of education and knowledge is not a new phenomenon. An indispensable resource for understanding the international mobility of students, this book reveals how the global mobility of such students, scholars, programs, and institutions of higher education have evolved over time. Kemal Guruz explores…
The Evolution of International Business Textbooks
ERIC Educational Resources Information Center
Sagafi-nejad, Tagi; Limaye, Aditya
2014-01-01
As a field of study, international business (IB) has evolved with accelerated tempo in the last four decades. The subject has brought with it an increasing plethora of textbooks. We analyze the contents of major textbooks, both classic and new, to find the extent to which these textbooks cover the various components of the common body of knowledge…
ERIC Educational Resources Information Center
Braunstein-Minkove, Jessica R.; DeLuca, Jaime R.
2015-01-01
Academic programs must constantly evolve in order to ensure that students are best prepared for success in internships and subsequent post-collegiate endeavors within the dynamic, rapidly changing sport industry. Based upon qualitative research, this work assesses and recommends areas of development in sport management curricula using internal and…
ERIC Educational Resources Information Center
Nichols, Linda M.
2018-01-01
This study evolved from a previous study that examined the perceptions of the importance of specific traits to success in the accounting profession by both accounting professionals in the United States and internationally. That study found that the international subjects valued some soft skills, such as creativity, as being more important to…
Van Uffelen, Lora J; Worcester, Peter F; Dzieciuch, Matthew A; Rudnick, Daniel L; Colosi, John A
2010-04-01
Deep acoustic shadow-zone arrivals observed in the late 1990s in the North Pacific Ocean reveal significant acoustic energy penetrating the geometric shadow. Comparisons of acoustic data obtained from vertical line arrays deployed in conjunction with 250-Hz acoustic sources at ranges of 500 and 1000 km from June to November 2004 in the North Pacific, with simulations incorporating scattering consistent with the Garrett-Munk internal-wave spectrum, are able to describe both the energy contained in and vertical extent of deep shadow-zone arrivals. Incoherent monthly averages of acoustic timefronts indicate that lower cusps associated with acoustic rays with shallow upper turning points (UTPs), where sound-speed structure is most variable and seasonally dependent, deepen from June to October as the summer thermocline develops. Surface-reflected rays, or those with near-surface UTPs, exhibit less scattering due to internal waves than in later months when the UTP deepens. Data collected in November exhibit dramatically more vertical extension than previous months. The depth to which timefronts extend is a complex combination of deterministic changes in the depths of the lower cusps as the range-average profiles evolve with seasonal change and of the amount of scattering, which depends on the mean vertical gradients at the depths of the UTPs.
NASA Astrophysics Data System (ADS)
Ruhl, C. J.; Abercrombie, R. E.; Smith, K. D.; Zaliapin, I.
2016-11-01
After approximately 2 months of swarm-like earthquakes in the Mogul neighborhood of west Reno, NV, seismicity rates and event magnitudes increased over several days culminating in an Mw 4.9 dextral strike-slip earthquake on 26 April 2008. Although very shallow, the Mw 4.9 main shock had a different sense of slip than locally mapped dip-slip surface faults. We relocate 7549 earthquakes, calculate 1082 focal mechanisms, and statistically cluster the relocated earthquake catalog to understand the character and interaction of active structures throughout the Mogul, NV earthquake sequence. Rapid temporary instrument deployment provides high-resolution coverage of microseismicity, enabling a detailed analysis of swarm behavior and faulting geometry. Relocations reveal an internally clustered sequence in which foreshocks evolved on multiple structures surrounding the eventual main shock rupture. The relocated seismicity defines a fault-fracture mesh and detailed fault structure from approximately 2-6 km depth on the previously unknown Mogul fault that may be an evolving incipient strike-slip fault zone. The seismicity volume expands before the main shock, consistent with pore pressure diffusion, and the aftershock volume is much larger than is typical for an Mw 4.9 earthquake. We group events into clusters using space-time-magnitude nearest-neighbor distances between events and develop a cluster criterion through randomization of the relocated catalog. Identified clusters are largely main shock-aftershock sequences, without evidence for migration, occurring within the diffuse background seismicity. The migration rate of the largest foreshock cluster and simultaneous background events is consistent with it having triggered, or having been triggered by, an aseismic slip event.
NASA Astrophysics Data System (ADS)
Gregory, L. C.; Walters, R. J.; Wedmore, L. N. J.; Craig, T. J.; McCaffrey, K. J. W.; Wilkinson, M. W.; Livio, F.; Michetti, A.; Goodall, H.; Li, Z.; Chen, J.; De Martini, P. M.
2017-12-01
In 2016 the Central Italian Apennines was struck by a sequence of normal faulting earthquakes that ruptured in three separate events on the 24th August (Mw 6.2), the 26th Oct (Mw 6.1), and the 30th Oct (Mw 6.6). We reveal the complex nature of the individual events and the time-evolution of the sequence using multiple datasets. We will present an overview of the results from field geology, satellite geodesy, GNSS (including low-cost short baseline installations), and terrestrial laser scanning (TLS). Sequences of earthquakes of mid to high magnitude 6 are common in historical and seismological records in Italy and other similar tectonic settings globally. Multi-fault rupture during these sequences can occur in seconds, as in the M 6.9 1980 Irpinia earthquake, or can span days, months, or years (e.g. the 1703 Norcia-L'Aquila sequence). It is critical to determine why the causative faults in the 2016 sequence did not rupture simultaneously, and how this relates to fault segmentation and structural barriers. This is the first sequence of this kind to be observed using modern geodetic techniques, and only with all of the datasets combined can we begin to understand how and why the sequence evolved in time and space. We show that earthquake rupture both broke through structural barriers that were thought to exist, but was also inhibited by a previously unknown structure. We will also discuss the logistical challenges in generating datasets on the time-evolving sequence, and show how rapid response and international collaboration within the Open EMERGEO Working Group was critical for gaining a complete picture of the ongoing activity.
Evolution of the Radiological Protection System and its Implementation.
Lazo, Edward
2016-02-01
The International System of Radiological Protection, developed, maintained, and elaborated by the International Commission on Radiological Protection (ICRP) has, for the past 50 y, provided a robust framework for developing radiological protection policy, regulation, and application. It has, however, been evolving as a result of experience with its implementation, modernization of social awareness of a shrinking world where the Internet links everyone instantly, and increasing public interest in safety-related decisions. These currents have gently pushed the ICRP in recent years to focus more sharply on particular aspects of its system: optimization, prevailing circumstances, the use of effective dose and aspects of an individual's risk, and consideration of the independent implementation of the international system's elements. This paper will present these issues and their relevance to the ICRP system of protection and its evolution. The broader framework of radiological protection (e.g., science, philosophy, policy, regulation, implementation), of which the ICRP is an important element, will provide a global, equally evolving context for this characterization of the changing ICRP system of radiological protection.
Automatic non-proliferative diabetic retinopathy screening system based on color fundus image.
Xiao, Zhitao; Zhang, Xinpeng; Geng, Lei; Zhang, Fang; Wu, Jun; Tong, Jun; Ogunbona, Philip O; Shan, Chunyan
2017-10-26
Non-proliferative diabetic retinopathy is the early stage of diabetic retinopathy. Automatic detection of non-proliferative diabetic retinopathy is significant for clinical diagnosis, early screening and course progression of patients. This paper introduces the design and implementation of an automatic system for screening non-proliferative diabetic retinopathy based on color fundus images. Firstly, the fundus structures, including blood vessels, optic disc and macula, are extracted and located, respectively. In particular, a new optic disc localization method using parabolic fitting is proposed based on the physiological structure characteristics of optic disc and blood vessels. Then, early lesions, such as microaneurysms, hemorrhages and hard exudates, are detected based on their respective characteristics. An equivalent optical model simulating human eyes is designed based on the anatomical structure of retina. Main structures and early lesions are reconstructed in the 3D space for better visualization. Finally, the severity of each image is evaluated based on the international criteria of diabetic retinopathy. The system has been tested on public databases and images from hospitals. Experimental results demonstrate that the proposed system achieves high accuracy for main structures and early lesions detection. The results of severity classification for non-proliferative diabetic retinopathy are also accurate and suitable. Our system can assist ophthalmologists for clinical diagnosis, automatic screening and course progression of patients.
Quantifying the non-Gaussianity in the EoR 21-cm signal through bispectrum
NASA Astrophysics Data System (ADS)
Majumdar, Suman; Pritchard, Jonathan R.; Mondal, Rajesh; Watkinson, Catherine A.; Bharadwaj, Somnath; Mellema, Garrelt
2018-05-01
The epoch of reionization (EoR) 21-cm signal is expected to be highly non-Gaussian in nature and this non-Gaussianity is also expected to evolve with the progressing state of reionization. Therefore the signal will be correlated between different Fourier modes (k). The power spectrum will not be able capture this correlation in the signal. We use a higher order estimator - the bispectrum - to quantify this evolving non-Gaussianity. We study the bispectrum using an ensemble of simulated 21-cm signal and with a large variety of k triangles. We observe two competing sources driving the non-Gaussianity in the signal: fluctuations in the neutral fraction (x_{H I}) field and fluctuations in the matter density field. We find that the non-Gaussian contribution from these two sources varies, depending on the stage of reionization and on which k modes are being studied. We show that the sign of the bispectrum works as a unique marker to identify which among these two components is driving the non-Gaussianity. We propose that the sign change in the bispectrum, when plotted as a function of triangle configuration cos θ and at a certain stage of the EoR can be used as a confirmative test for the detection of the 21-cm signal. We also propose a new consolidated way to visualize the signal evolution (with evolving \\bar{x}_{H I} or redshift), through the trajectories of the signal in a power spectrum and equilateral bispectrum i.e. P(k) - B(k, k, k) space.
Stability and the Evolvability of Function in a Model Protein
Bloom, Jesse D.; Wilke, Claus O.; Arnold, Frances H.; Adami, Christoph
2004-01-01
Functional proteins must fold with some minimal stability to a structure that can perform a biochemical task. Here we use a simple model to investigate the relationship between the stability requirement and the capacity of a protein to evolve the function of binding to a ligand. Although our model contains no built-in tradeoff between stability and function, proteins evolved function more efficiently when the stability requirement was relaxed. Proteins with both high stability and high function evolved more efficiently when the stability requirement was gradually increased than when there was constant selection for high stability. These results show that in our model, the evolution of function is enhanced by allowing proteins to explore sequences corresponding to marginally stable structures, and that it is easier to improve stability while maintaining high function than to improve function while maintaining high stability. Our model also demonstrates that even in the absence of a fundamental biophysical tradeoff between stability and function, the speed with which function can evolve is limited by the stability requirement imposed on the protein. PMID:15111394
Prime Contract Awards Over $25,000 by Major System, Contractor and State, FY83.
1983-01-01
SERVICES 3,074 VO R513 STUDIES/FEASIBILITY - NON- CONSTRUCTION 125 VO T013 TECHNICAL WRITING 1,347 VO 1560 AIRFRAME STRUCTURAL COMPONENTS 6,825 VO 1620...INC NCAR 1670 PARACHUTES RECOVERY SYS AND TIE DOWN EQ 49 ROCKWELL INTERNATIONAL CORP CALIF Y19 CONSTR: CONSTRUCTION /OTHER AIRFIELD STRUCTURES 28,480...INC NEW Y 1560 AIRFRAME STRUCTURAL COMPONENTS 36 GANAR INDUSTRIES I NC CALIF 1680 MISCL AIRCRAFT ACCESSORIES COMPONENTS 180 GARRETT CONSTRUCTION CO
NASA Astrophysics Data System (ADS)
Yokoyama, Takaaki
Temporal evolution of a current sheet with initial perturbations is studied by using the threedimensional resistive magnetohydrodynamic (MHD) simulations. The magnetic reconnection is considered to be the main engine of the energy rele ase in solar flares. The structure of the diffusion region is, however, not stil l understood under the circumstances with enormously large magnetic Reynolds num ber as the solar corona. In particular, the relationship between the flare's macroscopic physics and the microscopic ones are unclear. It is generally believed that the MHD turbulence s hould play a role in the intermediate scale. The initial current sheet is in an approximately hydromagnetic equilibrium with anti-parallel magnetic field in the y-direction. We imposed a finite-amplitude perturbations (=50ee what happens. Special attention is paid upon the evolution of a three-dimens ional structure in the direction along the initial electric current (z-direction ). Our preliminary results are as follows: (1) In the early phase of the evolut ion, high wavenumber modes in the z-direction are excited and grow. (2) Many "X "-type neutral points (lines) are generated along the magnetic neutral line (pla ne) in the current sheet. When they evolve into the non-linear phase, three-dime nsional structures in the z-direction also evolve. The spatial scale in the z-di rection seems to be almost comparable with that in the xy-plane. (3) The energy release rate is reduced in case of 3D simulations compared with 2D ones probably because of the reduction of the inflow cross sections by the formation of pattc hy structures in the current sheet.
A model for the emergence of cooperation, interdependence, and structure in evolving networks.
Jain, S; Krishna, S
2001-01-16
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.
A model for the emergence of cooperation, interdependence, and structure in evolving networks
NASA Astrophysics Data System (ADS)
Jain, Sanjay; Krishna, Sandeep
2001-01-01
Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.
NASA Astrophysics Data System (ADS)
Romanov, Volodymyr; Grubsky, Victor; Zahiri, Feraidoon
2017-02-01
We present a novel NDT/NDE tool for non-contact, single-sided 3D inspection of aerospace components, based on Compton Imaging Tomography (CIT) technique, which is applicable to large, non-uniform, and/or multilayer structures made of composites or lightweight metals. CIT is based on the registration of Compton-scattered X-rays, and permits the reconstruction of the full 3D (tomographic) image of the inspected objects. Unlike conventional computerized tomography (CT), CIT requires only single-sided access to objects, and therefore can be applied to large structures without their disassembly. The developed tool provides accurate detection, identification, and precise 3D localizations and measurements of any possible internal and surface defects (corrosions, cracks, voids, delaminations, porosity, and inclusions), and also disbonds, core and skin defects, and intrusion of foreign fluids (e.g., fresh and salt water, oil) inside of honeycomb sandwich structures. The NDE capabilities of the system were successfully demonstrated on various aerospace structure samples provided by several major aerospace companies. Such a CIT-based tool can detect and localize individual internal defects with dimensions about 1-2 mm3, and honeycomb disbond defects less than 6 mm by 6 mm area with the variations in the thickness of the adhesive by 100 m. Current maximum scanning speed of aircraft/spacecraft structures is about 5-8 min/ft2 (50-80 min/m2).
Mechanical Failure in Colloidal Gels
NASA Astrophysics Data System (ADS)
Kodger, Thomas Edward
When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form them.
NASA Astrophysics Data System (ADS)
Wang, Chunbai; Mitra, Ambar K.
2016-01-01
Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.
Non-normal perturbation growth in idealised island and headland wakes
NASA Astrophysics Data System (ADS)
Aiken, C. M.; Moore, A. M.; Middleton, J. H.
2003-12-01
Generalised linear stability theory is used to calculate the linear perturbations that furnish most rapid growth in energy in a model of a steady recirculating island wake. This optimal peturbation is found to be antisymmetric and to evolve into a von Kármán vortex street. Eigenanalysis of the linearised system reveals that the eigenmodes corresponding to vortex sheet formation are damped, so the growth of the perturbation is understood through the non-normality of the linearised system. Qualitatively similar perturbation growth is shown to occur in a non-linear model of stochastically-forced subcritical flow, resulting in transition to an unsteady wake. Free-stream variability with amplitude 8% of the mean inflow speed sustains vortex street structures in the non-linear model with perturbation velocities the order of the inflow speed, suggesting that environmental stochastic forcing may similarly be capable of exciting growing disturbances in real island wakes. To support this, qualitatively similar perturbation growth is demonstrated in the straining wake of a realistic island obstacle. It is shown that for the case of an idealised headland, where the vortex street eigenmodes are lacking, vortex sheets are produced through a similar non-normal process.
Bright-field electron tomography of individual inorganic fullerene-like structures
NASA Astrophysics Data System (ADS)
Bar Sadan, Maya; Wolf, Sharon G.; Houben, Lothar
2010-03-01
Nanotubes and fullerene-like nanoparticles of various inorganic layered compounds have been studied extensively in recent years. Their characterisation on the atomic scale has proven essential for progress in synthesis as well as for the theoretical modelling of their physical properties. We show that with electron tomography it is possible to achieve a reliable reconstruction of the 3D structure of nested WS2 or MoS2 fullerene-like and nanotube structures with sub-nanometre resolution using electron microscopes that are not aberration-corrected. Model-based simulations were used to identify imaging parameters, under which structural features such as the shell structure can be retained in the tomogram reconstructed from bright-field micrographs. The isolation of a particle out of an agglomerate for the analysis of a single structure and its interconnection with other particles is facilitated through the tomograms. The internal structure of the layers within the particle alongside the shape and content of its internal void are reconstructed. The tomographic reconstruction yields insights regarding the growth process as well as structural defects, such as non-continuous layers, which relate to the lubrication properties.Nanotubes and fullerene-like nanoparticles of various inorganic layered compounds have been studied extensively in recent years. Their characterisation on the atomic scale has proven essential for progress in synthesis as well as for the theoretical modelling of their physical properties. We show that with electron tomography it is possible to achieve a reliable reconstruction of the 3D structure of nested WS2 or MoS2 fullerene-like and nanotube structures with sub-nanometre resolution using electron microscopes that are not aberration-corrected. Model-based simulations were used to identify imaging parameters, under which structural features such as the shell structure can be retained in the tomogram reconstructed from bright-field micrographs. The isolation of a particle out of an agglomerate for the analysis of a single structure and its interconnection with other particles is facilitated through the tomograms. The internal structure of the layers within the particle alongside the shape and content of its internal void are reconstructed. The tomographic reconstruction yields insights regarding the growth process as well as structural defects, such as non-continuous layers, which relate to the lubrication properties. Electronic supplementary information (ESI) available: Figs. S1 and S2 and movies S1-S6. See DOI: 10.1039/b9nr00251k
A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.
2006-01-01
The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.
The policies of organ transplantation in Europe: issues and problems.
Defever, M
1990-11-01
Transplantation has evolved from an experiment to a routinely performed procedure for a widening range of organs. Transplantation in Europe is dominated by the scarcity of organs from deceased donors leading to problems of selection criteria for recipients, of legal protection for donors and of the empowerment of agencies for allocative decisions. Although public involvement is very emotional, there has been a benign neglect in several European countries by policy makers, accepting implicitly organ transplantation leading to a variety of programs for diffusion, organization, and financing of transplantation. Non-transplanting hospitals play a key role in organ procurement and transplant centers are increasingly subject to quality assessment, whereby the issue of the relation between improved outcome at higher volumes comes to the forefront. International cooperation is critical for the development of effective transplant programs in Europe.
Lucena-Santos, Paola; Trindade, Inês A; Oliveira, Margareth; Pinto-Gouveia, José
2017-05-19
Given the clinical usefulness of the CFQ-BI (Cognitive Fusion Questionnaire-Body Image; the only existing measure to assess the body-image-related cognitive fusion), the present study aimed to confirm its one-factor structure, to verify its measurement invariance between clinical and non-clinical samples, to analyze its internal consistency and sensitivity to detect differences between samples, as well as to explore the incremental and convergent validities of the CFQ-BI scores in Brazilian samples. This was a cross-sectional study, which was conducted in clinical (women with overweight or obesity in treatment for weight loss) and non-clinical samples (women from the general population). The one-factor structure was confirmed showing factorial measurement invariance across clinical and non-clinical samples. The CFQ-BI scores presented an excellent internal consistency, were able to discriminate clinical and non-clinical samples, and were positively associated with binge eating severity, general cognitive fusion, and psychological inflexibility. Furthermore, body-image-related cognitive fusion scores (CFQ-BI) presented incremental validity over a general measure of cognitive fusion in the prediction of binge eating symptoms. This study demonstrated that CFQ-BI is a short scale with reliable and robust scores in Brazilian samples, presenting incremental and convergent validities, measurement invariance, and sensitivity to detect differences between clinical and non-clinical groups of women, enabling comparative studies between them.
Micro-Scale Mechanical Testing of Non-Woven Carbon Nanotube Sheets and Yarns
NASA Technical Reports Server (NTRS)
Magargee, J.; Morestin, F.; Cao, J.; Jones, J. S.
2013-01-01
Non-woven carbon nanotube (CNT) sheets and yarns were tested using a novel micro-scale mechanical testing system. CNT sheets were observed to delaminate during uniaxial testing using an adbesive gripping method, resulting from a higher proportion of load bearing in the outer sheets versus internal sheets and an apparently low interlaminar shear strength. In response to this, a new spool-grip method was used to alleviate non-uniform through-thickness stresses, circumvent premature delamination, and allow the sheet material to sustain a 72% increase in measured tensile strength. Furthermore, tension tests of CNT yarns showed that the yarn-structure was approximaiely 7 times stronger than the sheet structure, owing to a higher degree of CNT alignment in the test direction.
Natural selection promotes antigenic evolvability.
Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin
2013-01-01
The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.
Natural Selection Promotes Antigenic Evolvability
Graves, Christopher J.; Ros, Vera I. D.; Stevenson, Brian; Sniegowski, Paul D.; Brisson, Dustin
2013-01-01
The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed ‘cassettes’ that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections. PMID:24244173
A small-scale turbulence model
NASA Technical Reports Server (NTRS)
Lundgren, T. S.
1993-01-01
A previously derived analytical model for the small-scale structure of turbulence is reformulated in such a way that the energy spectrum may be computed. The model is an ensemble of two-dimensional (2D) vortices with internal spiral structure, each stretched by an axially symmetric strain flow. Stretching and differential rotation produce an energy cascade to smaller scales in which the stretching represents the effect of instabilities and the spiral structure is the source of dissipation at the end of the cascade. The energy spectrum of the resulting flow may be expressed as a time integration involving only the enstrophy spectrum of the time evolving 2D cross section flow, which may be obtained numerically. Examples are given in which a k exp -5/3 spectrum is obtained by this method. The k exp -5/3 inertial range spectrum is shown to be related to the existence of a self-similar enstrophy preserving range in the 2D enstrophy spectrum. The results are found to be insensitive to time dependence of the strain rate, including even intermittent on-or-off strains.