Non-linear dynamic analysis of geared systems, part 2
NASA Technical Reports Server (NTRS)
Singh, Rajendra; Houser, Donald R.; Kahraman, Ahmet
1990-01-01
A good understanding of the steady state dynamic behavior of a geared system is required in order to design reliable and quiet transmissions. This study focuses on a system containing a spur gear pair with backlash and periodically time-varying mesh stiffness, and rolling element bearings with clearance type non-linearities. A dynamic finite element model of the linear time-invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and force vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solution with the finite element model results. Several key system parameters such as mean load and damping ratio are identified and their effects on the non-linear frequency response are evaluated quantitatively. Other fundamental issues such as the dynamic coupling between non-linear modes, dynamic interactions between component non-linearities and time-varying mesh stiffness, and the existence of subharmonic and chaotic solutions including routes to chaos have also been examined in depth.
Arithmetic coding as a non-linear dynamical system
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin; Vaidya, Prabhakar G.; Bhat, Kishor G.
2009-04-01
In order to perform source coding (data compression), we treat messages emitted by independent and identically distributed sources as imprecise measurements (symbolic sequence) of a chaotic, ergodic, Lebesgue measure preserving, non-linear dynamical system known as Generalized Luröth Series (GLS). GLS achieves Shannon's entropy bound and turns out to be a generalization of arithmetic coding, a popular source coding algorithm, used in international compression standards such as JPEG2000 and H.264. We further generalize GLS to piecewise non-linear maps (Skewed-nGLS). We motivate the use of Skewed-nGLS as a framework for joint source coding and encryption.
Passive dynamic controllers for non-linear mechanical systems
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Wu, Shih-Chin; Phan, Minh; Longman, Richard W.
1992-01-01
The objective is to develop active model-independent controllers for slewing and vibration control of nonlinear multibody flexible systems, including flexible robots. The topics are presented in viewgraph form and include: passive stabilization; work-energy rate principle; Liapunov theory; displacement feedback; dynamic controller; displacement and acceleration feedback; velocity feedback; displacement feedback; physical interaction; a 6-DOF robot; and simulation results.
Non-linear dynamics of the complement system activation.
Korotaevskiy, Andrey A; Hanin, Leonid G; Khanin, Mikhail A
2009-12-01
The complement system (CS) plays a prominent role in the immune defense. The goal of this work is to study the dynamics of activation of the classic and alternative CS pathways based on the method of mathematical modeling. The principal difficulty that hinders modeling effort is the absence of the measured values of kinetic constants of many biochemical reactions forming the CS. To surmount this difficulty, an optimization procedure consisting of constrained minimization of the total protein consumption by the CS was designed. The constraints made use of published data on the in vitro kinetics of elimination of the Borrelia burgdorferi bacteria by the CS. Special features of the problem at hand called for a significant modification of the general constrained optimization procedure to include a mathematical model of the bactericidal effect of the CS in the iterative setting. Determination of the unknown kinetic constants of biochemical reactions forming the CS led to a fully specified mathematical model of the dynamics of cell killing induced by the CS. On the basis of the model, effects of the initial concentrations of complements and their inhibitors on the bactericidal action of the CS were studied. Proteins playing a critical role in the regulation of the bactericidal action of the CS were identified. Results obtained in this work serve as an important stepping stone for the study of functioning of the CS as a whole as well as for developing methods for control of pathogenic processes. PMID:19854207
Non-linear dynamics of a one-way clutch in belt-pulley systems
NASA Astrophysics Data System (ADS)
Zhu, Farong; Parker, R. G.
2005-01-01
One-way clutches are frequently used in the serpentine belt accessory drives of automobiles and heavy vehicles. The clutch plays a role similar to a vibration absorber in order to reduce belt/pulley vibration and noise and increase belt life. This paper analyzes a two-pulley system where the driven pulley has a one-way clutch between the pulley and accessory shaft that engages only for positive relative displacement between these components. The belt is modelled with linear springs that transmit torque from the driving pulley to the accessory pulley. The one-way clutch is modelled as a piecewise linear spring with discontinuous stiffness that separates the driven pulley into two degrees of freedom. The harmonic balance method combined with arclength continuation is employed to illustrate the non-linear dynamic behavior of the one-way clutch and determine the stable and unstable periodic solutions for given parameters. The results are confirmed by numerical integration and the bifurcation software AUTO. At the first primary resonance, most of the responses are aperiodic, including quasiperiodic and chaotic solutions. At the second primary resonance, the peak bends to the left with classical softening non-linearity because clutch disengagement decouples the pulley and the accessory over portions of the response period. The dependence on clutch stiffness, excitation amplitude, and inertia ratio between the pulley and accessory is studied to characterize the non-linear dynamics across a range of conditions.
a Frequency Domain Based NUMERIC-ANALYTICAL Method for Non-Linear Dynamical Systems
NASA Astrophysics Data System (ADS)
Narayanan, S.; Sekar, P.
1998-04-01
In this paper a multiharmonic balancing technique is used to develop certain algorithms to determine periodic orbits of non-liner dynamical systems with external, parametric and self excitations. Essentially, in this method the non-linear differential equations are transformed into a set of non-linear algebraic equations in terms of the Fourier coefficients of the periodic solutions which are solved by using the Newton-Raphson technique. The method is developed such that both fast Fourier transform and discrete Fourier transform algorithms can be used. It is capable of treating all types of non-linearities and higher dimensional systems. The stability of periodic orbits is investigated by obtaining the monodromy matrix. A path following algorithm based on the predictor-corrector method is also presented to enable the bifurcation analysis. The prediction is done with a cubic extrapolation technique with an arc length incrementation while the correction is done with the use of the least square minimisation technique. The under determined system of equations is solved by singular value decomposition. The suitability of the method is demonstrated by obtaining the bifurcational behaviour of rolling contact vibrations modelled by Hertz contact law.
Intelligent control of non-linear dynamical system based on the adaptive neurocontroller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Kobezhicov, V.
2015-10-01
This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.
The amazing evolutionary dynamics of non-linear optical systems with feedback
NASA Astrophysics Data System (ADS)
Yaroslavsky, Leonid
2013-09-01
Optical systems with feedback are, generally, non-linear dynamic systems. As such, they exhibit evolutionary behavior. In the paper we present results of experimental investigation of evolutionary dynamics of several models of such systems. The models are modifications of the famous mathematical "Game of Life". The modifications are two-fold: "Game of Life" rules are made stochastic and mutual influence of cells is made spatially non-uniform. A number of new phenomena in the evolutionary dynamics of the models are revealed: - "Ordering of chaos". Formation, from seed patterns, of stable maze-like patterns with chaotic "dislocations" that resemble natural patterns, such as skin patterns of some animals and fishes, see shell, fingerprints, magnetic domain patterns and alike, which one can frequently find in the nature. These patterns and their fragments exhibit a remarkable capability of unlimited growth. - "Self-controlled growth" of chaotic "live" formations into "communities" bounded, depending on the model, by a square, hexagon or octagon, until they reach a certain critical size, after which the growth stops. - "Eternal life in a bounded space" of "communities" after reaching a certain size and shape. - "Coherent shrinkage" of "mature", after reaching a certain size, "communities" into one of stable or oscillating patterns preserving in this process isomorphism of their bounding shapes until the very end.
Wavelet shrinkage of a noisy dynamical system with non-linear noise impact
NASA Astrophysics Data System (ADS)
Garcin, Matthieu; Guégan, Dominique
2016-06-01
By filtering wavelet coefficients, it is possible to construct a good estimate of a pure signal from noisy data. Especially, for a simple linear noise influence, Donoho and Johnstone (1994) have already defined an optimal filter design in the sense of a minimization of the error made when estimating the pure signal. We set here a different framework where the influence of the noise is non-linear. In particular, we propose a method to filter the wavelet coefficients of a discrete dynamical system disrupted by a weak noise, in order to construct good estimates of the pure signal, including Bayes' estimate, minimax estimate, oracular estimate or thresholding estimate. We present the example of a logistic and a Lorenz chaotic dynamical system as well as an adaptation of our technique in order to show empirically the robustness of the thresholding method in presence of leptokurtic noise. Moreover, we test both the hard and the soft thresholding and also another kind of smoother thresholding which seems to have almost the same reconstruction power as the hard thresholding. Finally, besides the tests on an estimated dataset, the method is tested on financial data: oil prices and NOK/USD exchange rate.
Non-Linear Dynamics of Saturn's Rings
NASA Astrophysics Data System (ADS)
Esposito, L. W.
2015-10-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Results of driven N-body systems by Stuart Robbins: Even unforced rings show large variations; Forcing triggers aggregation; Some limit cycles and phase lags seen, but not always as predicted by predator-prey model. Summary of Halo Results: A predatorprey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw'. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon
Non-Linear Dynamics of Saturn's Rings
NASA Astrophysics Data System (ADS)
Esposito, Larry W.
2015-04-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible Results of driven N-body systems by Stuart Robbins: Even unforced rings show large variations; Forcing triggers aggregation; Some limit cycles and phase lags seen, but not always as predicted by predator-prey model. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw'. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon
Dynamics of atom-field probability amplitudes in a coupled cavity system with Kerr non-linearity
Priyesh, K. V.; Thayyullathil, Ramesh Babu
2014-01-28
We have investigated the dynamics of two cavities coupled together via photon hopping, filled with Kerr non-linear medium and each containing a two level atom in it. The evolution of various atom (field) state probabilities of the coupled cavity system in two excitation sub space are obtained numerically. Detailed analysis has been done by taking different initial conditions of the system, with various coupling strengths and by varying the susceptibility of the medium. The role of susceptibility factor, on the dynamics atom field probability has been examined. In a coupled cavity system with strong photon hopping it is found that the susceptibility factor modifies the behaviour of probability amplitudes.
Non-Linear Dynamics of Saturn's Rings
NASA Astrophysics Data System (ADS)
Esposito, L. W.
2015-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from
Non-linear dynamic analysis of geared systems. Final Report Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Singh, Rajendra; Houser, Donald R.; Kahraman, Ahmet
1990-01-01
Under driving conditions, a typical geared system may be subjected to large dynamic loads. Also, the vibration level of the geared system is directly related to the noise radiated from the gear box. The steady state dynamic behavior of the system is examined in order to design reliable and quiet transmissions. The scope is limited to a system containing a spur gear pair with backlash and periodically time varying mesh stiffness, and rolling element bearings with clearance type nonlinearities. The internal static transmission error at the gear mesh, which is of importance from high frequency noise and vibration control view point, is considered in the formulation in sinusoidal or periodic form. A dynamic finite element model of the linear time invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and forced vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solutions with the finite element model results. Using the reduced order formulations, a three degree of freedom dynamic model is developed which includes nonlinearities associated with radical clearances in the radial rolling element bearings, backlash between a spur gear pair and periodically varying gear mesh stiffness. As a limiting case, a single degree of freedom model of the spur gear pair with backlash is considered and mathematical conditions for tooth separation and back collision are defined. Both digital simulation technique and analytical models such as method of harmonic balance and the method of multiple scales were used to develop the steady state frequency response characteristics for various nonlinear and/or time varying cases.
The behaviour of PM10 and ozone in Malaysia through non-linear dynamical systems
Sapini, Muhamad Luqman; Rahim, Nurul Zahirah binti Abd; Noorani, Mohd Salmi Md.
2015-10-22
Prediction of ozone (O3) and PM10 is very important as both these air pollutants affect human health, human activities and more. Short-term forecasting of air quality is needed as preventive measures and effective action can be taken. Therefore, if it is detected that the ozone data is of a chaotic dynamical systems, a model using the nonlinear dynamic from chaos theory data can be made and thus forecasts for the short term would be more accurate. This study uses two methods, namely the 0-1 Test and Lyapunov Exponent. In addition, the effect of noise reduction on the analysis of time series data will be seen by using two smoothing methods: Rectangular methods and Triangle methods. At the end of the study, recommendations were made to get better results in the future.
The behaviour of PM10 and ozone in Malaysia through non-linear dynamical systems
NASA Astrophysics Data System (ADS)
Sapini, Muhamad Luqman; Rahim, Nurul Zahirah binti Abd; Noorani, Mohd Salmi Md.
2015-10-01
Prediction of ozone (O3) and PM10 is very important as both these air pollutants affect human health, human activities and more. Short-term forecasting of air quality is needed as preventive measures and effective action can be taken. Therefore, if it is detected that the ozone data is of a chaotic dynamical systems, a model using the nonlinear dynamic from chaos theory data can be made and thus forecasts for the short term would be more accurate. This study uses two methods, namely the 0-1 Test and Lyapunov Exponent. In addition, the effect of noise reduction on the analysis of time series data will be seen by using two smoothing methods: Rectangular methods and Triangle methods. At the end of the study, recommendations were made to get better results in the future.
Real-time Detection of Precursors to Epileptic Seizures: Non-Linear Analysis of System Dynamics
Nesaei, Sahar; Sharafat, Ahmad R.
2014-01-01
We propose a novel approach for detecting precursors to epileptic seizures in intracranial electroencephalograms (iEEG), which is based on the analysis of system dynamics. In the proposed scheme, the largest Lyapunov exponent of the discrete wavelet packet transform (DWPT) of the segmented EEG signals is considered as the discriminating features. Such features are processed by a support vector machine (SVM) classifier to identify whether the corresponding segment of the EEG signal contains a precursor to an epileptic seizure. When consecutive EEG segments contain such precursors, a decision is made that a precursor is in fact detected. The proposed scheme is applied to the Freiburg dataset, and the results show that seizure precursors are detected in a time frame that unlike other existing schemes is very much convenient to patients, with sensitivity of 100% and negligible false positive detection rates. PMID:24761374
NASA Astrophysics Data System (ADS)
Pei, J.-S.; Smyth, A. W.; Kosmatopoulos, E. B.
2004-08-01
This study attempts to demystify a powerful neural network approach for modelling non-linear hysteretic systems and in turn to streamline its architecture to achieve better computational efficiency. The recently developed neural network modelling approach, the Volterra/Wiener neural network (VWNN), demonstrated its usefulness in identifying the restoring forces for hysteretic systems in an off-line or even in an adaptive (on-line) mode, however, the mechanism of how and why it works has not been thoroughly explored especially in terms of a physical interpretation. Artificial neural network are often treated as "black box" modelling tools, in contrast, here the authors carry out a detailed analysis in terms of problem formulation and network architecture to explore the inner workings of this neural network. Based on the understanding of the dynamics of hysteretic systems, some simplifications and modifications are made to the original VWNN in predicting accelerations of hysteretic systems under arbitrary force excitations. Through further examination of the algorithm related to the VWNN applications, the efficiency of the previously published approach is improved by reducing the number of the hidden nodes without affecting the modelling accuracy of the network. One training example is presented to illustrate the application of the VWNN; and another is provided to demonstrate that the VWNN is able to yield a unique set of weights when the values of the controlling design parameters are fixed. The practical issue of how to choose the values of these important parameters is discussed to aid engineering applications.
Asymptotic Stability of Interconnected Passive Non-Linear Systems
NASA Technical Reports Server (NTRS)
Isidori, A.; Joshi, S. M.; Kelkar, A. G.
1999-01-01
This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.
Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas
Hnat, B.
2011-09-22
Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.
Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas
NASA Astrophysics Data System (ADS)
Hnat, B.
2011-09-01
Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.
Employment of CB models for non-linear dynamic analysis
NASA Technical Reports Server (NTRS)
Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.
1990-01-01
The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.
Tunc Aldemir; Don W. Miller; Brian k. Hajek; Peng Wang
2002-04-01
The DSD (Dynamic System Doctor) is a system-independent, interactive software under development for on-line state/parameter estimation in dynamic systems (1), partially supported through a Nuclear Engineering Education (NEER) grant during 1998-2001. This paper summarizes the recent accomplishments in improving the user-friendliness and computational capability of DSD
Non-Linear Dynamics of Saturn’s Rings
NASA Astrophysics Data System (ADS)
Esposito, Larry W.
2015-11-01
Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects
Non-linear dynamics in photochemistry
NASA Astrophysics Data System (ADS)
Pimienta, V.; Lévy, G.; Lavabre, D.; Laplante, J. P.; Micheau, J. C.
1992-09-01
The rate law of an elementary photochemical reaction: A → B ( hv), contains 4 independent factors: the quantum yield, the photon flux, the concentration of the photosensitive substrate and the photokinetic factor. This type of reaction will always slow down. However, by increasing one of these 4 factors artificially, the reaction can be made to speed up. Using kinetic models comprising one or more photochemical reactions, we show that appropriate coupling between two or more elementary processes gives rise to a cooperative effect. This effect increases one or more of these 4 factors, and makes the coupled photochemical model bistable in a CSTR. The values of the parameters for which one observes bistability are experimentally realistic. One of these models provides a simplified simulation of the stages underlying the bistable photochemical behavior of the TPID/CHCl 3, system.
NASA Astrophysics Data System (ADS)
Pant, H. K.
2007-12-01
Depending on resilience, threshold and lag times, hydro-climatic changes can cause nonlinear and/or irreversible changes in phosphorus (P) dynamic, and instigate P enrichment in aquatic/semi-aquatic systems. Thus, studying direct/indirect effects of expected global climate change on bioavailability of organic P in aquatic systems are in critical need, to help manage or increase the resilience of the ecosystem. The central hypothesis of this study is that P dynamic in aquatic, especially freshwater, ecosystem is likely to behave nonlinearly due to expected changes in sediment and water acidity, redox status, etc., because of potential hydro-climatic changes in the decades to come, thus, could face irreversible adverse changes. Devising possible biological and chemical treatments for the removal of P from eutrophic lakes, estuaries, etc, as well as helping in predicting the movement and fate of P under changing hydro-climatic conditions would be crucial to manage aquatic ecosystem in the near future. The critical question is not how much P is stored in any given aquatic/semi-aquatic system, but how the resilience and nonlinearity relate to the stability of stored P are affected due to the levels of environmental stressors, which are expected to fluctuate due to global change in the decades to come. Studies related to 31P Nuclear Magnetic Resonance Spectroscopy analysis, and multiple hydraulic retention cycles showed that, in general, frequent drying and reflooding of a semi-aquatic system such as wetland could significantly increase the bioavailability of P due to degradation of relatively less stable organic P, e.g., glycerophosphate and nucleoside monophosphate. Moreover, nutrients flux from sediments to the water column depended on the concentration gradients of the sediment-water interface and redox status. Shift in equilibrium P concentration of the water column as the water level rises, may cause release of adsorbed P from the sediments. Restoration of a
Wang, C.Y.
1985-01-01
A three-dimensional computer program for linear/non-linear, static/dynamic analyses of reactor-piping systems under various accident loads is described. In the analysis, the hydrodynamic calculation can be performed in the implicit or semi-implicit manner. The structure response can be calculated using either a purely explicit or implicit time-integration scheme. Coupling between the fluid and structure is achieved by utilizing either the implicit-explicit or implicit-implicit link. Thus, a wide range of piping safety problems can be analyzed by the suitable choice of options available in the hydrodynamics and structural analysis. In this paper, several salient features are presented. Sample problems illustrating the versatility of the program are given. The results are discussed in detail.
Memristive non-linear system and hidden attractor
NASA Astrophysics Data System (ADS)
Saha, P.; Saha, D. C.; Ray, A.; Chowdhury, A. R.
2015-07-01
Effects of memristor on non-linear dynamical systems exhibiting chaos are analysed both form the view point of theory and experiment. It is observed that the memristive system has always fewer number of fixed points than the original one. Sometimes there is no fixed point in the memristive system. But its chaotic properties are retained. As such we have a situation known as hidden attractor because if it is a stable fixed point then the attractor does not evolve from its basin of attraction(obtained from its stable fixed point) or if there is no fixed point, the question of basin of attraction from fixed point does not arise at all [1, 2]. Our analysis gives a detailed accounts of properties related to its chaotic behavior. Important observations are also obtained with the help of electronic circuits to support the numerical simulations.
Predictability of extremes in non-linear hierarchically organized systems
NASA Astrophysics Data System (ADS)
Kossobokov, V. G.; Soloviev, A.
2011-12-01
Understanding the complexity of non-linear dynamics of hierarchically organized systems progresses to new approaches in assessing hazard and risk of the extreme catastrophic events. In particular, a series of interrelated step-by-step studies of seismic process along with its non-stationary though self-organized behaviors, has led already to reproducible intermediate-term middle-range earthquake forecast/prediction technique that has passed control in forward real-time applications during the last two decades. The observed seismic dynamics prior to and after many mega, great, major, and strong earthquakes demonstrate common features of predictability and diverse behavior in course durable phase transitions in complex hierarchical non-linear system of blocks-and-faults of the Earth lithosphere. The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable analytical models, which leads to widespread practice of their deceptive application. The consequences of underestimation of seismic hazard propagate non-linearly into inflicted underestimation of risk and, eventually, into unexpected societal losses due to earthquakes and associated phenomena (i.e., collapse of buildings, landslides, tsunamis, liquefaction, etc.). The studies aimed at forecast/prediction of extreme events (interpreted as critical transitions) in geophysical and socio-economical systems include: (i) large earthquakes in geophysical systems of the lithosphere blocks-and-faults, (ii) starts and ends of economic recessions, (iii) episodes of a sharp increase in the unemployment rate, (iv) surge of the homicides in socio-economic systems. These studies are based on a heuristic search of phenomena preceding critical transitions and application of methodologies of pattern recognition of infrequent events. Any study of rare
Non-linear system identification in flow-induced vibration
Spanos, P.D.; Zeldin, B.A.; Lu, R.
1996-12-31
The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.
DYNAMIC NON LINEAR IMPACT ANALYSIS OF FUEL CASK CONTAINMENT VESSELS
Leduc, D
2008-06-10
Large fuel casks present challenges when evaluating their performance in the accident sequence specified in 10CFR 71. Testing is often limited because of cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing using simplified analytical methods. This paper details the use of dynamic non-linear analysis of large fuel casks using advanced computational techniques. Results from the dynamic analysis of two casks, the T-3 Spent Fuel Cask and the Hanford Un-irradiated Fuel Package are examined in detail. These analyses are used to fully evaluate containment vessel stresses and strains resulting from complex loads experienced by cask components during impacts. Importantly, these advanced analytical analyses are capable of examining stresses in key regions of the cask including the cask closure. This paper compares these advanced analytical results with the results of simplified cask analyses like those detailed in NUREG 3966.
Real-Time Monitoring of Non-linear Suicidal Dynamics: Methodology and a Demonstrative Case Report
Fartacek, Clemens; Schiepek, Günter; Kunrath, Sabine; Fartacek, Reinhold; Plöderl, Martin
2016-01-01
In recent years, a number of different authors have stressed the usefulness of non-linear dynamic systems approach in suicide research and suicide prevention. This approach applies specific methods of time series analysis and, consequently, it requires a continuous and fine-meshed assessment of the processes under consideration. The technical means for this kind of process assessment and process analysis are now available. This paper outlines how suicidal dynamics can be monitored in high-risk patients by an Internet-based application for continuous self-assessment with integrated tools of non-linear time series analysis: the Synergetic Navigation System. This procedure is illustrated by data from a patient who attempted suicide at the end of a 90-day monitoring period. Additionally, future research topics and clinical applications of a non-linear dynamic systems approach in suicidology are discussed. PMID:26913016
Optimal feedback control of strongly non-linear systems excited by bounded noise
NASA Astrophysics Data System (ADS)
Zhu, W. Q.; Huang, Z. L.; Ko, J. M.; Ni, Y. Q.
2004-07-01
A strategy for non-linear stochastic optimal control of strongly non-linear systems subject to external and/or parametric excitations of bounded noise is proposed. A stochastic averaging procedure for strongly non-linear systems under external and/or parametric excitations of bounded noise is first developed. Then, the dynamical programming equation for non-linear stochastic optimal control of the system is derived from the averaged Itô equations by using the stochastic dynamical programming principle and solved to yield the optimal control law. The Fokker-Planck-Kolmogorov equation associated with the fully completed averaged Itô equations is solved to give the response of optimally controlled system. The application and effectiveness of the proposed control strategy are illustrated with the control of cable vibration in cable-stayed bridges and the feedback stabilization of the cable under parametric excitation of bounded noise.
Finite-time H∞ filtering for non-linear stochastic systems
NASA Astrophysics Data System (ADS)
Hou, Mingzhe; Deng, Zongquan; Duan, Guangren
2016-09-01
This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
1999-08-01
The study presented is an investigation of the non-linear dynamics and stability of simply supported, circular cylindrical shells containing inviscid incompressible fluid flow. Non-linearities due to large-amplitude shell motion are considered by using the non-linear Donnell's shallow shell theory, with account taken of the effect of viscous structural damping. Linear potential flow theory is applied to describe the fluid-structure interaction. The system is discretiszd by Galerkin's method, and is investigated by using a model involving seven degrees of freedom, allowing for travelling wave response of the shell and shell axisymmetric contraction. Two different boundary conditions are applied to the fluid flow beyond the shell, corresponding to: (i) infinite baffles (rigid extensions of the shell), and (ii) connection with a flexible wall of infinite extent in the longitudinal direction, permitting solution by separation of variables; they give two different kinds of dynamical behaviour of the system, as a consequence of the fact that axisymmetric contraction, responsible for the softening non-linear dynamical behaviour of shells, is not allowed if the fluid flow beyond the shell is constrained by rigid baffles. Results show that the system loses stability by divergence.
Non-linear dynamic analysis of anisotropic cylindrical shells
Lakis, A.A.; Selmane, A.; Toledano, A.
1996-12-01
A theory to predict the influence of geometric non-linearities on the natural frequencies of an empty anisotropic cylindrical shell is presented in this paper. It is a hybrid of finite element and classical thin shell theories. Sanders-Koiter non-linear and strain-displacement relations are used. Displacement functions are evaluated using linearized equations of motion. Modal coefficients are then obtained for these displacement functions. Expressions for the mass, linear and non-linear stiffness matrices are derived through the finite element method. The uncoupled equations are solved with the help of elliptic functions. The period and frequency variations are first determined as a function of shell amplitudes and then compared with the results in the literature.
Rigatos, Gerasimos G
2016-06-01
It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered. PMID:27187988
On the Slow Transition across Instabilities in Non-Linear Dissipative Systems
NASA Astrophysics Data System (ADS)
Raman, A.; Bajaj, A. K.; Davies, P.
1996-05-01
Non-linear vibratory systems are often characterized by external or excitation parameters which vary with time (i.e., are "non-stationary"). A general methodology is presented to predict analytically the response of some weakly non-linear dissipative systems as an excitation parameter varies slowly across points of instability corresponding to co-dimensional-1 bifurcations. It is shown that the motion near the bifurcation/critical point can be approximated by motion along a center manifold, and can be represented by a 1-dimensional dynamical system with a slowly varying parameter. Techniques expounded by Haberman [1] for analyzing such 1-dimensional equations using matched asymptotic expansions and non-linear boundary layers are summarized. The results are then used to obtain responses of some classical non-linear vibratory systems in the presence of non-stationary excitation. The problem of transition across saddle-node bifurcations or jumps during passage through primary resonance in the forced Duffing's oscillator is studied. Then, the transition across the points of dynamic instability (pitchfork bifurcations) in the parametrically excited non-linear Mathieu equation is analyzed. Lastly, the transition across a Hopf bifurcation in the Parkinson-Smith model for galloping of bluff bodies is discussed. The methodology described here is found to be effective in approximating the behavior of the systems in the vicinity of bifurcation points. The solutions and their qualitative features predicted by the analysis are in good agreement with those obtained from direct numerical integration of the equations.
Non-linear controls influence functions in an aircraft dynamics simulator
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.
2006-01-01
In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft s control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland s continuing study of active wing load control.
Non-linear dynamic analysis of a flexible rotor supported on porous oil journal bearings
NASA Astrophysics Data System (ADS)
Laha, S. K.; Kakoty, S. K.
2011-03-01
In the present paper, the non-linear dynamic analysis of a flexible rotor with a rigid disk under unbalance excitation mounted on porous oil journal bearings at the two ends is carried out. The system equation of motion is obtained by finite element formulation of Timoshenko beam and the disk. The non-linear oil-film forces are calculated from the solution of the modified Reynolds equation simultaneously with Darcy's equation. The system equation of motion is then solved by the Wilson- θ method. Bifurcation diagrams, Poincaré maps, time response, journal trajectories, FFT-spectrum, etc. are obtained to study the non-linear dynamics of the rotor-bearing system. The effect of various non-dimensional rotor-bearing parameters on the bifurcation characteristics of the system is studied. It is shown that the system undergoes Hopf bifurcation as the speed increases. Further, slenderness ratio, material properties of the rotor, ratio of disk mass to shaft mass and permeability of the porous bush are shown to have profound effect on the bifurcation characteristics of the rotor-bearing system.
Attractor reconstruction for non-linear systems: a methodological note
Nichols, J.M.; Nichols, J.D.
2001-01-01
Attractor reconstruction is an important step in the process of making predictions for non-linear time-series and in the computation of certain invariant quantities used to characterize the dynamics of such series. The utility of computed predictions and invariant quantities is dependent on the accuracy of attractor reconstruction, which in turn is determined by the methods used in the reconstruction process. This paper suggests methods by which the delay and embedding dimension may be selected for a typical delay coordinate reconstruction. A comparison is drawn between the use of the autocorrelation function and mutual information in quantifying the delay. In addition, a false nearest neighbor (FNN) approach is used in minimizing the number of delay vectors needed. Results highlight the need for an accurate reconstruction in the computation of the Lyapunov spectrum and in prediction algorithms.
Non-linear dynamics of compound sawteeth in tokamaks
NASA Astrophysics Data System (ADS)
Ahn, J.-H.; Garbet, X.; Lütjens, H.; Marx, A.; Nicolas, T.; Sabot, R.; Luciani, J.-F.; Guirlet, R.; Février, O.; Maget, P.
2016-05-01
Compound sawteeth is studied with the XTOR-2F code. Non-linear full 3D magnetohydrodynamic simulations show that the plasma hot core is radially displaced and rotates during the partial crash, but is not fully expelled out of the q = 1 surface. Partial crashes occur when the radius of the q = 1 surface exceeds a critical value, at fixed poloidal beta. This critical value depends on the plasma elongation. The partial crash time is larger than the collapse time of an ordinary sawtooth, likely due to a weaker diamagnetic stabilization. This suggests that partial crashes result from a competition between destabilizing effects such as the q = 1 radius and diamagnetic stabilization.
Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2008-01-01
Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.
Method and system for non-linear motion estimation
NASA Technical Reports Server (NTRS)
Lu, Ligang (Inventor)
2011-01-01
A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.
Application of non-linear dynamics to the characterization of cardiac electrical instability
NASA Technical Reports Server (NTRS)
Kaplan, D. T.; Cohen, R. J.
1987-01-01
Beat-to-beat alternation in the morphology of the ECG has been previously observed in hearts susceptible to fibrillation. In addition, fibrillation has been characterized by some as a chaotic state. Period doubling phenomena, such as alternation, and the onset of chaos have been connected by non-linear dynamical systems theory. In this paper, we describe the use of a technique from nonlinear dynamics theory, the construction of a first return nap, to assess the susceptibility to fibrillation threshhold in canine experiments.
Optimum Damping in a Non-Linear Base Isolation System
NASA Astrophysics Data System (ADS)
Jangid, R. S.
1996-02-01
Optimum isolation damping for minimum acceleration of a base-isolated structure subjected to earthquake ground excitation is investigated. The stochastic model of the El-Centro1940 earthquake, which preserves the non-stationary evolution of amplitude and frequency content of ground motion, is used as an earthquake excitation. The base isolated structure consists of a linear flexible shear type multi-storey building supported on a base isolation system. The resilient-friction base isolator (R-FBI) is considered as an isolation system. The non-stationary stochastic response of the system is obtained by the time dependent equivalent linearization technique as the force-deformation of the R-FBI system is non-linear. The optimum damping of the R-FBI system is obtained under important parametric variations; i.e., the coefficient of friction of the R-FBI system, the period and damping of the superstructure; the effective period of base isolation. The criterion selected for optimality is the minimization of the top floor root mean square (r.m.s.) acceleration. It is shown that the above parameters have significant effects on optimum isolation damping.
Non-linear Dynamics in ETG Mode Saturation and Beam-Plasma Instabilities
NASA Astrophysics Data System (ADS)
Tokluoglu, Erinc K.
Non-linear mechanisms arise frequently in plasmas and beam-plasma systems resulting in dynamics not predicted by linear theory. The non-linear mechanisms can influence the time evolution of plasma instabilities and can be used to describe their saturation. Furthermore time and space averaged non-linear fields generated by instabilities can lead to collisionless transport and plasma heating. In the case of beam-plasma systems counter-intuitive beam defocusing and scaling behavior which are interesting areas of study for both Low-Temperature and High Energy Density physics. The non-linear mode interactions in form of phase coupling can describe energy transfer to other modes and can be used to describe the saturation of plasma instabilities. In the first part of this thesis, a theoretical model was formulated to explain the saturation mechanism of Slab Electron Temperature Gradient (ETG) mode observed in the Columbia Linear Machine (CLM), based on experimental time-series data collected through probe diagnostics [1]. ETG modes are considered to be a major player in the unexplained high levels of electron transport observed in tokamak fusion experiments and the saturation mechanism of these modes is still an active area of investigation. The data in the frequency space indicated phase coupling between 3 modes, through a higher order spectral correlation coefficient known as bicoherence. The resulting model is similar to [2], which was a treatment for ITG modes observed in the CLM and correctly predicts the observed saturation level of the ETG turbulence. The scenario is further supported by the fact that the observed mode frequencies are in close alignment with those predicted theoretical dispersion relations. Non-linear effects arise frequently in beam-plasma systems and can be important for both low temperature plasma devices commonly used for material processing as well as High Energy Density applications relevant to inertial fusion. The non-linear time averaged
Terrier, Philippe; Dériaz, Olivier
2013-01-01
It has been observed that times series of gait parameters [stride length (SL), stride time (ST), and stride speed (SS)], exhibit long-term persistence and fractal-like properties. Synchronizing steps with rhythmic auditory stimuli modifies the persistent fluctuation pattern to anti-persistence. Another non-linear method estimates the degree of resilience of gait control to small perturbations, i.e., the local dynamic stability (LDS). The method makes use of the maximal Lyapunov exponent, which estimates how fast a non-linear system embedded in a reconstructed state space (attractor) diverges after an infinitesimal perturbation. We propose to use an instrumented treadmill to simultaneously measure basic gait parameters (time series of SL, ST, and SS from which the statistical persistence among consecutive strides can be assessed), and the trajectory of the center of pressure (from which the LDS can be estimated). In 20 healthy participants, the response to rhythmic auditory cueing (RAC) of LDS and of statistical persistence [assessed with detrended fluctuation analysis (DFA)] was compared. By analyzing the divergence curves, we observed that long-term LDS (computed as the reverse of the average logarithmic rate of divergence between the 4th and the 10th strides downstream from nearest neighbors in the reconstructed attractor) was strongly enhanced (relative change +73%). That is likely the indication of a more dampened dynamics. The change in short-term LDS (divergence over one step) was smaller (+3%). DFA results (scaling exponents) confirmed an anti-persistent pattern in ST, SL, and SS. Long-term LDS (but not short-term LDS) and scaling exponents exhibited a significant correlation between them (r = 0.7). Both phenomena probably result from the more conscious/voluntary gait control that is required by RAC. We suggest that LDS and statistical persistence should be used to evaluate the efficiency of cueing therapy in patients with neurological gait disorders. PMID
Model Order and Identifiability of Non-Linear Biological Systems in Stable Oscillation.
Wigren, Torbjörn
2015-01-01
The paper presents a theoretical result that clarifies when it is at all possible to determine the nonlinear dynamic equations of a biological system in stable oscillation, from measured data. As it turns out the minimal order needed for this is dependent on the minimal dimension in which the stable orbit of the system does not intersect itself. This is illustrated with a simulated fourth order Hodgkin-Huxley spiking neuron model, which is identified using a non-linear second order differential equation model. The simulated result illustrates that the underlying higher order model of the spiking neuron cannot be uniquely determined given only the periodic measured data. The result of the paper is of general validity when the dynamics of biological systems in stable oscillation is identified, and illustrates the need to carefully address non-linear identifiability aspects when validating models based on periodic data. PMID:26671817
Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique
Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan
2009-01-01
The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region. PMID:22303133
Non-linear optical studies of adsorbates: Spectroscopy and dynamics
Zhu, Xiangdong.
1989-08-01
In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.
Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities
NASA Astrophysics Data System (ADS)
Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred
2012-07-01
The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in
Use of non-linear EEG analysis to study abnormal brain dynamics in deaf human subjects.
Micheloyannis, S; Stam, C J; Fountoulakis, E; Bourkas, M; Arvanitis, S; Papanikolaou, E
1998-06-19
We compared the cortical dynamics of deaf subjects to those of control subjects at rest with eyes closed and during reading with the help of a non-linear prediction statistic. This method is suitable for short-term noisy time series such as electroencephalographic signals. Furthermore, we used surrogate data to test for non-linear dynamics underlying the electroencephalographic time series recorded. Our results indicate that significant non-linearity accompanies cortical activation during reading. This is more diffuse in deaf subjects and could be due to the widespread reorganization of their cerebral cortex. Predictability was lower in deaf subjects at rest, which indicates their increased 'readiness' in the resting condition. Finally, our results indicate that normal and deaf subjects differ significantly in terms of cortical dynamics. PMID:9682843
Visual Detection Under Uncertainty Operates Via an Early Static, Not Late Dynamic, Non-Linearity
Neri, Peter
2010-01-01
Signals in the environment are rarely specified exactly: our visual system may know what to look for (e.g., a specific face), but not its exact configuration (e.g., where in the room, or in what orientation). Uncertainty, and the ability to deal with it, is a fundamental aspect of visual processing. The MAX model is the current gold standard for describing how human vision handles uncertainty: of all possible configurations for the signal, the observer chooses the one corresponding to the template associated with the largest response. We propose an alternative model in which the MAX operation, which is a dynamic non-linearity (depends on multiple inputs from several stimulus locations) and happens after the input stimulus has been matched to the possible templates, is replaced by an early static non-linearity (depends only on one input corresponding to one stimulus location) which is applied before template matching. By exploiting an integrated set of analytical and experimental tools, we show that this model is able to account for a number of empirical observations otherwise unaccounted for by the MAX model, and is more robust with respect to the realistic limitations imposed by the available neural hardware. We then discuss how these results, currently restricted to a simple visual detection task, may extend to a wider range of problems in sensory processing. PMID:21212835
The non-linear analysis of multi-support rotor-bearing systems
Kicinski, J.; Drozdowski, R.
1995-12-31
This paper contains selected parts of the simulation research of large rotor machines (200 MW power turbine-sets). These investigations were based on a non-linear theoretical model and the NLDW computer program, and were carried out in the Institute of Fluid-Flow Machinery of PAS. A trial has been performed of the optimization of system-dynamic properties, through the suitable selection of thermally deformed bearing-bush centers line -- the so called ``hot`` line -- (due to a rotor`s geodesic line), as well as the selection of the external fixing stiffness of bearing supports. Examples are also included of the orbits of selected system nodes for two differently powered turbine-sets. On this basis, an analysis of the stability of those turbines was achieved. A significant objective of this paper is also to point out some possibilities of applying the simulation research, based on a non-linear description of the system, to the diagnostics of rotor-machinery. Non-linear analysis facilitates the possibility of easily generating vibration spectra, as well as creating simulation waterfall graphs. These properties of nonlinear analysis create convenient conditions for gaining specific diagnostic information.
Non-linear quantum critical dynamics and fluctuation-dissipation ratios far from equilibrium
NASA Astrophysics Data System (ADS)
Zamani, Farzaneh; Ribeiro, Pedro; Kirchner, Stefan
2016-02-01
Non-thermal correlations of strongly correlated electron systems and the far-from-equilibrium properties of phases of condensed matter have become a topical research area. Here, an overview of the non-linear dynamics found near continuous zero-temperature phase transitions within the context of effective temperatures is presented. In particular, we focus on models of critical Kondo destruction. Such a quantum critical state, where Kondo screening is destroyed in a critical fashion, is realized in a number of rare earth intermetallics. This raises the possibility of experimentally testing for the existence of fluctuation-dissipation relations far from equilibrium in terms of effective temperatures. Finally, we present an analysis of a non-interacting, critical reference system, the pseudogap resonant level model, in terms of effective temperatures and contrast these results with those obtained near interacting quantum critical points.
Non-linear dynamic interactions of a Jeffcott rotor with preloaded snubber ring
NASA Astrophysics Data System (ADS)
Pavlovskaia, E. E.; Karpenko, E. V.; Wiercigroch, M.
2004-09-01
A two-degrees-of-freedom model of a Jeffcott rotor with a preloaded snubber ring subjected to out-of-balance excitation has been developed. The purely impact interactions have been investigated. The rotor makes intermittent contacts with the preloaded snubber ring and as a consequence it can be in one of five different contact regimes, which boundaries have been found analytically. The current location of the snubber ring has been determined using the principle of the minimum elastic energy in the snubber ring. Consequently a non-linear piecewise smooth dynamical system has been obtained and studied numerically. The results in form of bifurcation diagrams, phase portraits and Poincaré maps show significant differences for the cases with and without preloading.
Channel Capacity of Non-Linear Transmission Systems
NASA Astrophysics Data System (ADS)
Ellis, Andrew D.; Zhao, Jian
Since their introduction in the late 1970s, the capacity of optical communication links has grown exponentially, fuelled by a series of key innovations including movement between the three telecommunication windows of 850 nm, 1,310 nm and 1,550 nm, distributed feedback laser, erbium-doped fibre amplifiers (EDFAs), dispersion-shifted and dispersion-managed fibre links, external modulation, wavelength division multiplexing, optical switching, forward error correction (FEC), Raman amplification, and most recently, coherent detection, electronic signal processing and optical orthogonal frequency division multiplexing (OFDM). Throughout this evolution, one constant factor has been the use of single-mode optical fibre, whose fundamental principles dated back to the 1800s, when Irish scientist, John Tyndall demonstrated in a lecture to the Royal Society in London that light could be guided through a curved stream of water [1]. Following many developments, including the proposal for waveguides by J.J. Thompson [2], the presentation of detailed calculations for dielectric waveguides by Snitzer [3], the proposal [4] and fabrication [5] of ultra low loss fibres, single-mode fibres were first adopted for non-experimental use in Dorset, UK in 1975, and are still in use today, despite the evolving designs to control chromatic dispersion and non-linearity.
Dynamic analysis of space-related linear and non-linear structures
Bosela, P.A.; Shaker, F.J.; Fertis, D.G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
NASA Astrophysics Data System (ADS)
Tzou, H. S.
1990-12-01
Studies on joint dominated flexible space structures have attracted much interest recently due to the rapid developments in large deployable space systems. This paper describes a study of the non-linear structural dynamics of jointed flexible structures with initial joint clearance and subjected to external excitations. Methods of using viscoelastic and active vibration control technologies, joint actuators, to reduce dynamic contact force and to stabilize the systems are proposed and evaluated. System dynamic equations of a discretized multi-degrees-of-freedom flexible system with initial joint clearances and joint actuators (active and viscoelastic passive) are derived. Dynamic contacts in an elastic joint are simulated by a non-linear joint model comprised of a non-linear spring and damper. A pseudo-force approximation method is used in numerical time-domain integration. Dynamic responses of a jointed flexible structure with and without viscoelastic and active joint actuators are presented and compared. Effectiveness of active/passive joint actuators is demonstrated.
Dynamic Analysis of Flexible Slider-Crank Mechanisms with Non-Linear Finite Element Method
NASA Astrophysics Data System (ADS)
CHEN, J.-S.; HUANG, C.-L.
2001-09-01
Previous research in finite element formulation of flexible mechanisms usually neglected high order terms in the strain-energy function. In particular, the quartic term of the displacement gradient is always neglected due to the common belief that it is not important in the dynamic analysis. In this paper, we show that this physical intuition is not always valid. By retaining all the high order terms in the strain-energy function the equations of motion naturally become non-linear, which can then be solved by the Newmark method. In the low-speed range it is found that the dynamic responses predicted by non-linear and linear approaches indeed make no significant difference. However, when the rotation speed increases up to about one-fifth of the fundamental bending natural frequency of the connecting rod, simplified approaches begin to incur noticeable error. Specifically, for a connecting rod with a slenderness ratio of 0·01 the conventional simplified approaches overestimate the vibration amplitude almost 10-fold when the rotation speed is comparable to the fundamental natural frequency of the connecting rod. Therefore, non-linear finite element formulation taking into account the complete non-linear strain is needed in analyzing high-speed flexible mechnisms with slender links.
Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer
NASA Technical Reports Server (NTRS)
Pai, P. F.; Lee, S.-Y.
2003-01-01
This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.
Non-Linear Dynamics and Chaos Control of a Physical Pendulum with Vibrating and Rotating Support
NASA Astrophysics Data System (ADS)
GE, Z.-M.; YANG, C.-H.; CHEN, H.-H.; LEE, S.-C.
2001-04-01
The dynamic behavior of a physical pendulum system of which the support is subjected to both rotation and vertical vibration are studied in this paper. Both analytical and computational results are employed to obtain the characteristics of the system. By using Lyapunov's direct method the conditions of stability of the relative equilibrium position can be determined. Melnikov's method is applied to identify the existence of chaotic motion. The incremental harmonic balance method is used to find the stable and unstable periodic solutions for the strong non-linear system. By applying various numerical results such as phase portrait, Pioncaré map, time history and power spectrum analysis, a variety of the periodic solutions and the phenomena of the chaotic motion can be presented. The effects of the changes of parameters in the system could be found in the bifurcation and parametric diagrams. Further, chaotic motion can be verified by using Lyapunov exponent and Lyapunov dimension. The global analysis of basin boundary and fractal structure are observed by the modified interpolated cell mapping method. Besides, non-feedback control, delayed feedback control, adaptive control, and variable structure control are used to control the chaos effectively.
Non-linear dynamic analysis of ancient masonry structures by 3D rigid block models
NASA Astrophysics Data System (ADS)
Orduña, Agustin; Ayala, A. Gustavo
2015-12-01
This work presents a formulation for non-linear dynamic analysis of unreinforced masonry structures using rigid block models. This procedure is akin to the distinct element family of methods, nevertheless, we assume that small displacements occur and, therefore, the formulation does not involve the search for new contacts between blocks. This proposal is also related to the rigid element method, although, in this case we use full three-dimensional models and a more robust interface formulation.
Non-linear longitudinal compression effect on dynamics of the transcription bubble in DNA.
Shikhovtseva, E S; Nazarov, V N
2016-01-01
The dependence of the dynamics of transcription bubble on the parameters of non-linear longitudinal compression is presented on the base of simple model of soliton-like conformational switchings in two-component bistable polymer molecules with energetically non-equivalent stable states. It has been shown that under certain conditions the longitudinal compression may be a trap for a conformational switching. PMID:27232455
Zhu, Z. W.; Zhang, W. D. Xu, J.
2014-03-15
The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.
Ma, Rongfei
2015-01-01
In this paper, ammonia quantitative analysis based on miniaturized Al ionization gas sensor and non-linear bistable dynamic model was proposed. Al plate anodic gas-ionization sensor was used to obtain the current-voltage (I-V) data. Measurement data was processed by non-linear bistable dynamics model. Results showed that the proposed method quantitatively determined ammonia concentrations. PMID:25975362
Heart rate variability and non-linear dynamics in risk stratification.
Perkiömäki, Juha S
2011-01-01
The time-domain measures and power-spectral analysis of heart rate variability (HRV) are classic conventional methods to assess the complex regulatory system between autonomic nervous system and heart rate and are most widely used. There are abundant scientific data about the prognostic significance of the conventional measurements of HRV in patients with various conditions, particularly with myocardial infarction. Some studies have suggested that some newer measures describing non-linear dynamics of heart rate, such as fractal measures, may reveal prognostic information beyond that obtained by the conventional measures of HRV. An ideal risk indicator could specifically predict sudden arrhythmic death as the implantable cardioverter-defibrillator (ICD) therapy can prevent such events. There are numerically more sudden deaths among post-infarction patients with better preserved left ventricular function than in those with severe left ventricular dysfunction. Recent data support the concept that HRV measurements, when analyzed several weeks after acute myocardial infarction, predict life-threatening ventricular tachyarrhythmias in patients with moderately depressed left ventricular function. However, well-designed prospective randomized studies are needed to evaluate whether the ICD therapy based on the assessment of HRV alone or with other risk indicators improves the patients' prognosis. Several issues, such as the optimal target population, optimal timing of HRV measurements, optimal methods of HRV analysis, and optimal cutpoints for different HRV parameters, need clarification before the HRV analysis can be a widespread clinical tool in risk stratification. PMID:22084633
Seismic evaluation of a large nuclear pump bearing using non-linear dynamic analysis
Huber, K.A.; Hugins, M.S.
1983-01-01
Hydrostatic bearings of a large vertical pump using sodium as the lubricant were critically examined to determine their ability to withstand seismic loads. Initial linear dynamics analyses predicted journal displacements to exceed bearing clearance by a ratio of 3:1. Equivalent time-history excitations were then developed from the response spectra to determine the number, magnitude, and duration of the bearing impact loads. Predicted loads were further reduced by 50% by modeling non-linear bearing characteristics normally present but not generally included in conventional linear analyses. Results are presented of the comprehensive design evaluation performed, based on these non-linear predictions, that assess stress, wear, and fatigue to demonstrate hydrostatic bearing integrity.
The Dynamic Stability and Non-Linear Resonance of a Flexible Connecting Rod: Single-Mode Model
NASA Astrophysics Data System (ADS)
Hsieh, S.-R.; Shaw, S. W.
1994-02-01
An analytical and computer simulation investigation of the dynamic behavior associated with the flexible connecting rod of an otherwise rigid, in-line, planar slider-crank mechanism is presented. The main goal of this work is to determine the manner in which this response depends on the system parameters, with a particular emphasis on non-linear analyses of the dynamic response near resonance conditions. A single-mode model is distilled from the governing partial equations and is used to describe the transverse deflection of the connecting rod. It is found that the slider mass is the primary source of the non-linearity, and that the connecting rod behaves as a system with a softening type of non-linearity, which is subjected to both external and parametric excitations. The effects of selected non-dimensional system parameters, such as the length ratio, damping ratios, frequency ratios and inertia ratios, are investigated in detail. A systematic numerical study is also carried out and compared with the analytical results.
Non-linear stochastic optimal control of acceleration parametrically excited systems
NASA Astrophysics Data System (ADS)
Wang, Yong; Jin, Xiaoling; Huang, Zhilong
2016-02-01
Acceleration parametrical excitations have not been taken into account due to the lack of physical significance in macroscopic structures. The explosive development of microtechnology and nanotechnology, however, motivates the investigation of the acceleration parametrically excited systems. The adsorption and desorption effects dramatically change the mass of nano-sized structures, which significantly reduces the precision of nanoscale sensors or can be reasonably utilised to detect molecular mass. This manuscript proposes a non-linear stochastic optimal control strategy for stochastic systems with acceleration parametric excitation based on stochastic averaging of energy envelope and stochastic dynamic programming principle. System acceleration is approximately expressed as a function of system displacement in a short time range under the conditions of light damping and weak excitations, and the acceleration parametrically excited system is shown to be equivalent to a constructed system with an additional displacement parametric excitation term. Then, the controlled system is converted into a partially averaged Itô equation with respect to the total system energy through stochastic averaging of energy envelope, and the optimal control strategy for the averaged system is derived from solving the associated dynamic programming equation. Numerical results for a controlled Duffing oscillator indicate the efficacy of the proposed control strategy.
Bystritsky, A; Nierenberg, A A; Feusner, J D; Rabinovich, M
2012-04-01
The goal of this article is to highlight the significant potential benefits of applying computational mathematical models to the field of psychiatry, specifically in relation to diagnostic conceptualization. The purpose of these models is to augment the current diagnostic categories that utilize a "snapshot" approach to describing mental states. We hope to convey to researchers and clinicians that non-linear dynamics can provide an additional useful longitudinal framework to understand mental illness. Psychiatric phenomena are complex processes that evolve in time, similar to many other processes in nature that have been successfully described and understood within deterministic chaos and non-linear dynamic computational models. Dynamical models describe mental processes and phenomena that change over time, more like a movie than a photograph, with multiple variables interacting over time. The use of these models may help us understand why and how current diagnostic categories are insufficient. They may also provide a new, more descriptive and ultimately more predictive approach leading to better understanding of the interrelationship between psychological, neurobiological, and genetic underpinnings of mental illness. PMID:22261550
A Signal Transmission Technique for Stability Analysis of Multivariable Non-Linear Control Systems
NASA Technical Reports Server (NTRS)
Jackson, Mark; Zimpfer, Doug; Adams, Neil; Lindsey, K. L. (Technical Monitor)
2000-01-01
Among the difficulties associated with multivariable, non-linear control systems is the problem of assessing closed-loop stability. Of particular interest is the class of non-linear systems controlled with on/off actuators, such as spacecraft thrusters or electrical relays. With such systems, standard describing function techniques are typically too conservative, and time-domain simulation analysis is prohibitively extensive, This paper presents an open-loop analysis technique for this class of non-linear systems. The technique is centered around an innovative use of multivariable signal transmission theory to quantify the plant response to worst case control commands. The technique has been applied to assess stability of thruster controlled flexible space structures. Examples are provided for Space Shuttle attitude control with attached flexible payloads.
A non-linear dynamical approach to belief revision in cognitive behavioral therapy
Kronemyer, David; Bystritsky, Alexander
2014-01-01
Belief revision is the key change mechanism underlying the psychological intervention known as cognitive behavioral therapy (CBT). It both motivates and reinforces new behavior. In this review we analyze and apply a novel approach to this process based on AGM theory of belief revision, named after its proponents, Carlos Alchourrón, Peter Gärdenfors and David Makinson. AGM is a set-theoretical model. We reconceptualize it as describing a non-linear, dynamical system that occurs within a semantic space, which can be represented as a phase plane comprising all of the brain's attentional, cognitive, affective and physiological resources. Triggering events, such as anxiety-producing or depressing situations in the real world, or their imaginal equivalents, mobilize these assets so they converge on an equilibrium point. A preference function then evaluates and integrates evidentiary data associated with individual beliefs, selecting some of them and comprising them into a belief set, which is a metastable state. Belief sets evolve in time from one metastable state to another. In the phase space, this evolution creates a heteroclinic channel. AGM regulates this process and characterizes the outcome at each equilibrium point. Its objective is to define the necessary and sufficient conditions for belief revision by simultaneously minimizing the set of new beliefs that have to be adopted, and the set of old beliefs that have to be discarded or reformulated. Using AGM, belief revision can be modeled using three (and only three) fundamental syntactical operations performed on belief sets, which are expansion; revision; and contraction. Expansion is like adding a new belief without changing any old ones. Revision is like adding a new belief and changing old, inconsistent ones. Contraction is like changing an old belief without adding any new ones. We provide operationalized examples of this process in action. PMID:24860491
NASA Astrophysics Data System (ADS)
Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus
2014-12-01
An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.
Non-Linear Dynamics Approach to Assessing Woody-Encroachment in Grasslands
NASA Astrophysics Data System (ADS)
Brunsell, N. A.; Nippert, J. B.; Van Vleck, E.
2015-12-01
Woody species are encroaching on grasslands globally. Here, we investigate the spatial and temporal dynamics of this encroachment in relation to climate and fire regimes in the central U.S. A low-dimensional model is used to assess stability of species composition. Sixe years of eddy covariance data at a paired grassland and woody encroachment site at the Konza Prairie LTER site are used to verify carbon and water dynamics. Historical aerial photography and remote sensing data are used to quantify the spatial diffusion of woody tree fraction into grasslands. Non-linear dynamics approaches are used to quantify the stability of vegetation and the presence of tipping points in relation to woody fraction, fire frequency and precipitation and temperature variability. Understanding the roles of multiple confounding forcing factors operating at disparate timescales is essential for predicting future woody encroachment and the water and climate implications of land cover transitions.
Exciton dynamics and non-linearities in two-dimensional hybrid organic perovskites
NASA Astrophysics Data System (ADS)
Abdel-Baki, K.; Boitier, F.; Diab, H.; Lanty, G.; Jemli, K.; Lédée, F.; Garrot, D.; Deleporte, E.; Lauret, J. S.
2016-02-01
Due to their high potentiality for photovoltaic applications or coherent light sources, a renewed interest in hybrid organic perovskites has emerged for few years. When they are arranged in two dimensions, these materials can be considered as hybrid quantum wells. One consequence of the unique structure of 2D hybrid organic perovskites is a huge exciton binding energy that can be tailored through chemical engineering. We present experimental investigations of the exciton non-linearities by means of femtosecond pump-probe spectroscopy. The exciton dynamics is fitted with a bi-exponential decay with a free exciton life-time of ˜100 ps. Moreover, an ultrafast intraband relaxation (<150 fs) is also reported. Finally, the transient modification of the excitonic line is analyzed through the moment analysis and described in terms of reduction of the oscillator strength and linewidth broadening. We show that excitonic non-linearities in 2D hybrid organic perovskites share some behaviours of inorganic semiconductors despite their high exciton binding energy.
Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system.
Mrugalski, Marcin; Luzar, Marcel; Pazera, Marcin; Witczak, Marcin; Aubrun, Christophe
2016-03-01
The paper is devoted to the problem of the robust actuator fault diagnosis of the dynamic non-linear systems. In the proposed method, it is assumed that the diagnosed system can be modelled by the recurrent neural network, which can be transformed into the linear parameter varying form. Such a system description allows developing the designing scheme of the robust unknown input observer within H∞ framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error, while guaranteeing the convergence of the observer. The application of the robust unknown input observer enables actuator fault estimation, which allows applying the developed approach to the fault tolerant control tasks. PMID:26838675
Reprint of : Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator
NASA Astrophysics Data System (ADS)
Labadze, G.; Dukalski, M.; Blanter, Ya. M.
2016-08-01
We investigate the behaviour of two non-linearly coupled flexural modes of a doubly clamped suspended beam (nanomechanical resonator). One of the modes is externally driven. We demonstrate that classically, the behavior of the non-driven mode is reminiscent of that of a parametrically driven linear oscillator: it exhibits a threshold behavior, with the amplitude of this mode below the threshold being exactly zero. Quantum-mechanically, we were able to access the dynamics of this mode below the classical parametric threshold. We show that whereas the mean displacement of this mode is still zero, the mean squared displacement is finite and at the threshold corresponds to the occupation number of 1/2. This finite displacement of the non-driven mode can serve as an experimentally verifiable quantum signature of quantum motion.
Podesta, M; Crocker, N A; Fredrickson, E D; Gorelenkov, N N; Heidbrink, W W; Kubota, S; LeBlanc, B P
2011-04-26
The National Spherical Torus Experiment (NSTX, [M. Ono et al., Nucl. Fusion 40, 557 (2000)]) routinely operates with neutral beam injection as the primary system for heating and current drive. The resulting fast ion population is super-Alfv enic, with velocities 1 < vfast=vAlfven < 5. This provides a strong drive for toroidicity-induced Alfv en eigenmodes (TAEs). As the discharge evolves, the fast ion population builds up and TAEs exhibit increasing bursts in amplitude and down-chirps in frequency, which eventually lead to a so-called TAE avalanche. Avalanches cause large (≤ 30%) fast ion losses over ~ 1 ms, as inferred from the neutron rate. The increased fast ion losses correlate with a stronger activity in the TAE band. In addition, it is shown that a n = 1 mode with frequency well below the TAE gap appears in the Fourier spectrum of magnetic fluctuations as a result of non-linear mode coupling between TAEs during avalanche events. The non-linear coupling between modes, which leads to enhanced fast ion transport during avalanches, is investigated.
Sensitivity of the non-linear dynamics of lysozyme “Liesegang rings” to small asymmetries
NASA Astrophysics Data System (ADS)
Lappa, M.; Castagnolo, D.; Carotenuto, L.
2002-11-01
This paper deals with the analysis of the sensitivity of the non-linear dynamics of the crystallization process of lysozyme and related “Liesegang rings” phenomena to small asymmetries that may characterize the geometry and/or the boundary conditions of the system under investigation. Mathematical models and appropriate numerical methods are introduced to handle the complex phenomena related to protein nucleation and further precipitation (or resolution) according to the concentration distribution. The configuration under investigation consists of a protein chamber and a salt chamber separated by an “interface”. The interface is strictly related to the presence of agarose gel in the protein chamber. Different models of the interface are considered. For the first group of simulations the deformation of the interface due to surface tension effects is neglected. For the second group of simulations this deformation is taken into account. The distribution of salt at the initial time is supposed to follow the shape of the gel meniscus whose interface cannot be horizontal due to surface tension effects. The shape is modeled using a sin function in order to have a minimum protruding in the protein chamber at the mean point along the horizontal length of the chamber. For the last group of numerical computations the gel meniscus is supposed to be not symmetrical with respect to this point in order to simulate small experimental imperfections. The numerical simulations show that neglecting the interface deformation leads to 1D results. The phenomenon is characterized by a certain degree of periodicity in time and along the vertical dimension (Liesegang patterns). The bands of Liesegang patterns are not spatially uniform. New solid particles are created on the lower boundary of depleted bands if the local concentration of salt reaches a value to let the local protein concentration overcome the “supersaturation limit”. The numerical simulations show that the space
NASA Astrophysics Data System (ADS)
Norman, M. R.
2013-12-01
Differential Transforms (DTs), a core component of so-called "automatic" or "algorithmic" differentiation, offer significant flexibility and efficiency to any numerical method. The i-th and j-th DT, U(i,j), of a function, u(x,y), is simply U(i,j)=1/(i!j!)*∂(i+j)u/∂xi∂yj. Being a term in the Taylor series of u(x,y) makes the reverse transform trivial. This relation also computes initial DTs from known spatial derivatives. What is novel about DTs is how they simplify a complex PDE system, transforming most arithmetic, trigonometric, and other operators into simple recurrence relations in derivative space. This allows one to simply and quickly compute analytical derivatives of highly complex and non-linear functions. Consider a pseudo-conservation law system, u(x)t+f(u,x)x=s(u,x), for instance. The fluxes and source terms could be (and often are) highly complex, non-linear functions of the state vector and independent variables. Regardless of the spatial discretization (variational / finite-element, weak / finite-volume, or strong / finite-difference), one nearly always must resort to tensored quadrature to evaluate face fluxes and body source terms, and this treatment is expensive. However, if one uses DTs to analytically compute spatial derivatives of the flux and source terms, given spatial derivatives of u, then the fluxes and source terms are directly expanded as polynomials, allowing for significantly cheaper, quadrature-free integration, sampling, and differentiation with a single dot product. Besides being simpler, this also allows flexibility for Galerkin methods in particular to analytically and cheaply compute body integrals, which are often approximated inexactly with quadrature. Computing Nth-order DTs in D dimensions is of O(D2*N) complexity, and whether for transport or non-linear compressible Euler equations, they are cheaper to compute and integrate analytically than quadrature. Further, because time-dependent PDE systems relate spatial
Spontaneous Fluctuations and Non-linear Ignitions: Two Dynamic Faces of Cortical Recurrent Loops.
Moutard, Clément; Dehaene, Stanislas; Malach, Rafael
2015-10-01
Recent human neurophysiological recordings have uncovered two fundamental modes of cerebral cortex activity with distinct dynamics: an active mode characterized by a rapid and sustained activity ("ignition") and a spontaneous (resting-state) mode, manifesting ultra-slow fluctuations of low amplitude. We propose that both dynamics reflect two faces of the same recurrent loop mechanism: an integration device that accumulates ongoing stochastic activity and, either spontaneously or in a task-driven manner, crosses a dynamic threshold and ignites, leading to content-specific awareness. The hypothesis can explain a rich set of behavioral and neuronal phenomena, such as perceptual threshold, the high non-linearity of visual responses, the subliminal nature of spontaneous activity fluctuations, and the slow activity buildup anticipating spontaneous behavior (e.g., readiness potential). Further elaborations of this unified scheme, such as a cascade of integrators with different ignition thresholds or multi-stable states, can account for additional complexities in the repertoire of human cortical dynamics. PMID:26447581
Model predictive control of non-linear systems over networks with data quantization and packet loss.
Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping
2015-11-01
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. PMID:26341070
NASA Astrophysics Data System (ADS)
Nuij, P. W. J. M.; Bosgra, O. H.; Steinbuch, M.
2006-11-01
For high-precision motion systems, modelling and control design specifically oriented at friction effects is instrumental. The sinusoidal input describing function theory represents an approximative mathematical framework for analysing non-linear system behaviour. This theory, however, limits the description of the non-linear system behaviour to a quasi-linear amplitude-dependent relation between sinusoidal excitation and sinusoidal response. In this paper, an extension to higher-order describing functions is realised by introducing the concept of the harmonics generator. The resulting higher-order sinusoidal input describing functions (HOSIDFs) relate the magnitude and phase of the higher harmonics of the periodic response of the system to the magnitude and phase of a sinusoidal excitation. Based on this extension two techniques to measure HOSIDFs are presented. The first technique is FFT based. The second technique is based on IQ (in-phase/quadrature-phase) demodulation. In a simulation, the measurement techniques have been tested by comparing the simulation results to analytically derived results from a known (backlash) non-linearity. In a subsequent practical case study both techniques are used to measure the changes in dynamic behaviour as a function of drive level due to friction in an electric motor. Both methods prove successful for measuring HOSIDFs.
Power quality improvement for distribution systems under non-linear conditions
NASA Astrophysics Data System (ADS)
El-Sadaany, Ehab Fahmy
The proliferation of non-linear and electronically switched devices has increased the presence of nonsinusoidal currents and voltages in electrical distribution systems. The analysis of harmonics on the distribution systems has been described as being essential to understanding the nature of harmonic performance. One of the basic reasons for conducting a harmonic study is to analyze the effectiveness of proposed remedies to any existing harmonic problem. The analysis and design of any mitigation equipment requires precise calculation of both voltage and current waveforms. Moreover, the parameters that affect the harmonic performance have to be accurately identified and examined. This thesis offers a new time-domain based approach for the determination of both voltage and current waveforms in non-linear distribution systems taking into account the interaction between both voltage and current harmonics (attenuation effect). In addition, the parameters that control the generation and propagation of harmonics into the distribution systems have been identified and investigated. A simple but efficient time-domain based technique has been developed and employed in order to estimate the combined non-linear load susceptance at different harmonic frequencies based on the previously calculated voltage and current waveforms and with the attenuation phenomenon considered. A novel design and implementation of reactance one-port compensators has been applied to reduce both voltage and current harmonic distortion levels in non-linear distribution systems. This application represents a significant contribution to distribution systems analysis as it successfully limits the system distortion. The performance of the proposed compensator is assessed by both simulation and experimental testing.
Non-linear dynamics of operant behavior: a new approach via the extended return map.
Li, Jay-Shake; Huston, Joseph P
2002-01-01
Previous efforts to apply non-linear dynamic tools to the analysis of operant behavior revealed some promise for this kind of approach, but also some doubts, since the complexity of animal behavior seemed to be beyond the analyzing ability of the available tools. We here outline a series of studies based on a novel approach. We modified the so-called 'return map' and developed a new method, the 'extended return map' (ERM) to extract information from the highly irregular time series data, the inter-response time (IRT) generated by Skinner-box experiments. We applied the ERM to operant lever pressing data from rats using the four fundamental reinforcement schedules: fixed interval (FI), fixed ratio (FR), variable interval (VI) and variable ratio (VR). Our results revealed interesting patterns in all experiment groups. In particular, the FI and VI groups exhibited well-organized clusters of data points. We calculated the fractal dimension out of these patterns and compared experimental data with surrogate data sets, that were generated by randomly shuffling the sequential order of original IRTs. This comparison supported the finding that patterns in ERM reflect the dynamics of the operant behaviors under study. We then built two models to simulate the functional mechanisms of the FI schedule. Both models can produce similar distributions of IRTs and the stereotypical 'scalloped' curve characteristic of FI responding. However, they differ in one important feature in their formulation: while one model uses a continuous function to describe the probability of occurrence of an operant behavior, the other one employs an abrupt switch of behavioral state. Comparison of ERMs showed that only the latter was able to produce patterns similar to the experimental results, indicative of the operation of an abrupt switch from one behavioral state to another over the course of the inter-reinforcement period. This example demonstrated the ERM to be a useful tool for the analysis of
NASA Astrophysics Data System (ADS)
Hussien, Mahmoud N.; Tobita, Tetsuo; Iai, Susumu
The non-linear response of coupled soil-pile-structure systems to seismic loading is parametrically studied in the frequency domain using two-dimensional (2D) finite elements (FE). The soil-pile interaction in three dimensions (3D) is idealized in the 2D type using soil-pile interaction springs with non-linear hysteretic load displacement relationships. The system under investigation comprises of a single degree of freedom structure supported by an end-bearing single pile founded in a homogenous sand layer over rigid rock. Comparisons with established results from the literature suggest that the adopted FE model reasonably captures the essential features of the seismic response of the coupled soil-pile-structure system. Numerical results demonstrate the strong influence on the effective natural period of the foundation properties. The effect of non-linear soil behavior and soil profile as well as the frequency content of excitation on both kinematic and inertial interactions is illustrated. The relative contributions of kinematic and inertial interaction to the development of dynamic pile bending are clarified.
Non-linear analysis and calculation of the performance of a shelving protection system by FEM
NASA Astrophysics Data System (ADS)
García Nieto, P. J.; del Coz Díaz, J. J.; Vilán Vilán, J. A.; Suárez Sierra, J. L.
2012-12-01
The aim of this paper consists on the study, analysis and calculation of the efficiency of a shelving protection system by means of the finite element method (FEM). These shelving protection systems are intended to prevent the eventual damage due to the impacts of transport elements in motion, such as: forklifts, dumpers, hand pallet trucks, and so on. The impact loads may threaten the structural integrity of the shelving system. The present structural problem is highly non-linear, due to the simultaneous presence of the following nonlinearities: material non-linearity (plasticity in this case), geometrical non-linearity (large displacements) and contact-type boundary conditions (between the rigid body and the protection system). A total of forty eight different FEM models are built varying the thickness of the steel plate (4, 5 and 6 mm), the impact height (0.1, 0.2, 0.3 and 0.4 meters) and the impact direction (head-on collision and side impact). Once the models are solved, the stress distribution, the overall displacements and the absorbed impact energy were calculated. In order to determine the best shelving protection's candidate, some constraints must be taken into account: the maximum allowable stress (235 MPa), the maximum displacement (0.05 m) and the absorbed impact energy (400 J according to the European Standard Rule PREN-15512). Finally, the most important results are shown and conclusions of this study are exposed.
Extraction and restoration of hippocampal spatial memories with non-linear dynamical modeling
Song, Dong; Harway, Madhuri; Marmarelis, Vasilis Z.; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.
2014-01-01
To build a cognitive prosthesis that can replace the memory function of the hippocampus, it is essential to model the input-output function of the damaged hippocampal region, so the prosthetic device can stimulate the downstream hippocampal region, e.g., CA1, with the output signal, e.g., CA1 spike trains, predicted from the ongoing input signal, e.g., CA3 spike trains, and the identified input-output function, e.g., CA3-CA1 model. In order for the downstream region to form appropriate long-term memories based on the restored output signal, furthermore, the output signal should contain sufficient information about the memories that the animal has formed. In this study, we verify this premise by applying regression and classification modelings of the spatio-temporal patterns of spike trains to the hippocampal CA3 and CA1 data recorded from rats performing a memory-dependent delayed non-match-to-sample (DNMS) task. The regression model is essentially the multiple-input, multiple-output (MIMO) non-linear dynamical model of spike train transformation. It predicts the output spike trains based on the input spike trains and thus restores the output signal. In addition, the classification model interprets the signal by relating the spatio-temporal patterns to the memory events. We have found that: (1) both hippocampal CA3 and CA1 spike trains contain sufficient information for predicting the locations of the sample responses (i.e., left and right memories) during the DNMS task; and more importantly (2) the CA1 spike trains predicted from the CA3 spike trains by the MIMO model also are sufficient for predicting the locations on a single-trial basis. These results show quantitatively that, with a moderate number of unitary recordings from the hippocampus, the MIMO non-linear dynamical model is able to extract and restore spatial memory information for the formation of long-term memories and thus can serve as the computational basis of the hippocampal memory prosthesis. PMID
Observing (non)linear lattice dynamics in graphite by ultrafast Kikuchi diffraction
Liang, Wenxi; Vanacore, Giovanni M.; Zewail, Ahmed H.
2014-01-01
In materials, the nature of the strain–stress relationship, which is fundamental to their properties, is determined by both the linear and nonlinear elastic responses. Whereas the linear response can be measured by various techniques, the nonlinear behavior is nontrivial to probe and to reveal its nature. Here, we report the methodology of time-resolved Kikuchi diffraction for mapping the (non)linear elastic response of nanoscale graphite following an ultrafast, impulsive strain excitation. It is found that the longitudinal wave propagating along the c-axis exhibits echoes with a frequency of 9.1 GHz, which indicates the reflections of strain between the two surfaces of the material with a speed of ∼4 km/s. Because Kikuchi diffraction enables the probing of strain in the transverse direction, we also observed a higher-frequency mode at 75.5 GHz, which has a relatively long lifetime, on the order of milliseconds. The fluence dependence and the polarization properties of this nonlinear mode are entirely different from those of the linear, longitudinal mode, and here we suggest a localized breather motion in the a-b plane as the origin of the nonlinear shear dynamics. The approach presented in this contribution has the potential for a wide range of applications because most crystalline materials exhibit Kikuchi diffraction. PMID:24706785
How does non-linear dynamics affect the baryon acoustic oscillation?
Sugiyama, Naonori S.; Spergel, David N. E-mail: dns@astro.princeton.edu
2014-02-01
We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation of the high-k solutions in the standard perturbation theory. While the standard perturbation theory naturally satisfies the cancellation of the high-k solutions, some of the recently proposed improved perturbation theories do not guarantee the cancellation. We show that this cancellation clarifies the success of the standard perturbation theory at the 2-loop order in describing the amplitude of the non-linear power spectrum even at high-k regions. We propose an extension of the standard 2-loop level perturbation theory model of the non-linear power spectrum that more accurately models the non-linear evolution of the baryon acoustic oscillation than the standard perturbation theory. The model consists of simple and intuitive parts: the non-linear evolution of the smoothed power spectrum without the baryon acoustic oscillations and the non-linear evolution of the baryon acoustic oscillations due to the large-scale velocity of dark matter and due to the gravitational attraction between dark matter particles. Our extended model predicts the smoothing parameter of the baryon acoustic oscillation peak at z = 0.35 as ∼ 7.7Mpc/h and describes the small non-linear shift in the peak position due to the galaxy random motions.
NASA Astrophysics Data System (ADS)
Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun
2016-04-01
In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.
Fault detection in non-linear systems based on type-2 fuzzy logic
NASA Astrophysics Data System (ADS)
Safarinejadian, Behrooz; Ghane, Parisa; Monirvaghefi, Hossein
2015-02-01
This paper presents a new method for fault detection (FD) based on interval type-2 fuzzy sets. The main idea is based on a confident span using interval type-2 fuzzy systems. An estimate for upper and lower bounds of output has been taken using the designing of an optimal fuzzy system through clustering. Finally the method has been tested in two non-linear systems, a two-tank with a fluid flow and pH neutralisation process, and it is compared with a well-known method named ANFIS. Furthermore, the mathematical model and the results of simulations prove the effectiveness, usefulness and applications of our new method.
Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals
NASA Astrophysics Data System (ADS)
Banerjee, Archi; Sanyal, Shankha; Patranabis, Anirban; Banerjee, Kaushik; Guhathakurta, Tarit; Sengupta, Ranjan; Ghosh, Dipak; Ghose, Partha
2016-02-01
Music has been proven to be a valuable tool for the understanding of human cognition, human emotion, and their underlying brain mechanisms. The objective of this study is to analyze the effect of Hindustani music on brain activity during normal relaxing conditions using electroencephalography (EEG). Ten male healthy subjects without special musical education participated in the study. EEG signals were acquired at the frontal (F3/F4) lobes of the brain while listening to music at three experimental conditions (rest, with music and without music). Frequency analysis was done for the alpha, theta and gamma brain rhythms. The finding shows that arousal based activities were enhanced while listening to Hindustani music of contrasting emotions (romantic/sorrow) for all the subjects in case of alpha frequency bands while no significant changes were observed in gamma and theta frequency ranges. It has been observed that when the music stimulus is removed, arousal activities as evident from alpha brain rhythms remain for some time, showing residual arousal. This is analogous to the conventional 'Hysteresis' loop where the system retains some 'memory' of the former state. This is corroborated in the non linear analysis (Detrended Fluctuation Analysis) of the alpha rhythms as manifested in values of fractal dimension. After an input of music conveying contrast emotions, withdrawal of music shows more retention as evidenced by the values of fractal dimension.
Effect of geometric elastic non-linearities on the impact response of flexible multi-body systems
NASA Astrophysics Data System (ADS)
Bakr, E. M.; Shabana, A. A.
1987-02-01
The intermittent motion behavior of large scale geometrically non-linear flexible multi-body systems due to impact loading is investigated. Impacts and the associated impulsive forces are incorporated into the dynamic formulation by using a generalized momentum balance. The solution of the momentum equation provides the jump discontinuities in the system velocities and reaction forces. Flexible components in the system are discretized by using the finite element method. Because of the large rotations of the system components, a set of reference co-ordinates are employed to describe the motion of a selected body reference. The rigid body modes of the finite element shape functions are eliminated by using a set of reference conditions and accordingly a unique displacement field is defined. In order to account for the inertia and elastic non-linearities which are, respectively, the results of the large rotations and finite deformations, the system inertia and stiffness characteristics have to be iteratively updated. Two numerical examples of different nature are presented. The first example is a high speed slider crank mechanism with a flexible connecting rod. In the second example, however, the dynamic response of a flexible multi-body aircraft during the touch down impact is predicted.
Young-Gonzales, Amanda R; Samanta, Subarna; Richert, Ranko
2015-09-14
For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility. PMID:26374047
A review on prognostic techniques for non-stationary and non-linear rotating systems
NASA Astrophysics Data System (ADS)
Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph
2015-10-01
The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.
Detectability of deterministic non-linear processes in Earth rotation time-series-II. Dynamics
NASA Astrophysics Data System (ADS)
Frede, V.; Mazzega, P.
1999-05-01
We investigate the possibility of detecting non-linear low-dimensional deterministic processes in the time-series of the length of day (LOD) and polar motion components (PMX, PMY), filtered to keep the period range [ ~ 1 day-100 days]. After each time-series has been embedded in a pseudo-phase space with dimension D_E*=5 or 6 (see Frede & Mazzega 1999, hereafter referred to as Paper I) we extract the geometric and dynamical characteristics of the reconstructed orbit. Using a local false neighbours algorithm and an analysis of the data local covariance matrix eigenspectrum, we find a local dimension D_L=5 for the three EOP series. The principal Lyapunov exponents averaged over the ~ 27 years of observation (1970-1997) are positive. This result unambiguously indicates the chaotic nature of the Earth's rotational dynamical regime in this period range of fluctuations. As a consequence, some theoretical prediction horizons cannot be exceeded by any tentative forecast of the EOP evolution. Horizons of 11.3 days for LOD, 8.7 days for PMX and 8.1 days for PMY are found, beyond which prediction errors will be of the order of the s of the filtered EOP series, say 0.12 ms, 2.30 mas (milliarcsecond) and 1.57 mas respectively. From the Lyapunov spectra we estimate the Lyapunov dimension D_Lyap, which is an upper bound for the corresponding attractor dimension D_A. We find D_Lyap(LOD)=4.48, D_Lyap(PMX)=4.90 and D_Lyap(PMY)=4.97. These determinations are in broad agreement with those of the attractor dimensions obtained from correlation integrals, i.e. D_A(LOD)=4.5-5.5, D_A(PMX)=3.5-4.5, D_A(PMY)=4-5. We finally show that the Earth's rotational state experiences large changes in stability. Indeed, the local prediction horizons, as deduced from the local Lyapunov exponents, occasionally drop to about 3.3 days for LOD in the years 1982-1984, 2.6 days for PMX in 1972-1973 and 2.6 days for PMY in 1996-1997. Some of these momentary stability perturbations of the Earth's rotation are
External and parametric random excitation of non-linear offshore systems
Thampi, S.K.
1989-01-01
The development of accurate response prediction methods for nonlinear offshore structures is addressed in this study. The Markov approach is adopted for this purpose and the solution methods are illustrated through applications to deepwater offshore systems which include an oceanographic buoy, fixed jacked structures, marine riser systems and a guyed offshore platform. Gaussian and non-Gaussian response predictions for single and multiple degree of freedom systems are presented and discussed at length. The major difficulties associated with Markov methods in dealing with practical systems are the requirements of white noise excitation and the solution of the Fokker-Planck-Kolmogorov equation. These problems are addressed through the development of dimensionless shaping filters to produce realistic excitation and the use of moment equations to compute response statistics. The application of these techniques to non-linear systems requires additional closure approximations. The solutions are compared with those from linear spectral analysis, stochastic averaging and time domain simulations.
Cauchy problem for non-linear systems of equations in the critical case
NASA Astrophysics Data System (ADS)
Kaikina, E. I.; Naumkin, P. I.; Shishmarev, I. A.
2004-12-01
The large-time asymptotic behaviour is studied for a system of non-linear evolution dissipative equations \\displaystyle u_t+\\mathscr N(u,u)+\\mathscr Lu=0, \\qquad x\\in\\mathbb R^n, \\quad t>0, \\displaystyle u(0,x)=\\widetilde u(x), \\qquad x\\in\\mathbb R^n, where \\mathscr L is a linear pseudodifferential operator \\mathscr Lu=\\overline{\\mathscr F}_{\\xi\\to x}(L(\\xi)\\widehat u(\\xi)) and the non-linearity \\mathscr N is a quadratic pseudodifferential operator \\displaystyle \\mathscr N(u,u)=\\overline{\\mathscr F}_{\\xi\\to x}\\sum_{k,l=1}^m\\int_{\\mathbb R^n}A^{kl}(t,\\xi,y)\\widehat u_k(t,\\xi-y)\\widehat u_l(t,y)\\,dy,where \\widehat u\\equiv\\mathscr F_{x\\to\\xi}u is the Fourier transform. Under the assumptions that the initial data \\widetilde u\\in\\mathbf H^{\\beta,0}\\cap\\mathbf H^{0,\\beta}, \\beta>n/2 are sufficiently small, where \\displaystyle \\mathbf H^{n,m}=\\{\\phi\\in\\mathbf L^2:\\Vert\\langle x\\rangle^m\\lang......\\phi(x)\\Vert _{\\mathbf L^2}<\\infty\\}, \\qquad \\langle x\\rangle=\\sqrt{1+x^2}\\,,is a Sobolev weighted space, and that the total mass vector \\displaystyle M=\\int\\widetilde u(x)\\,dx\
A new adaptive multiple modelling approach for non-linear and non-stationary systems
NASA Astrophysics Data System (ADS)
Chen, Hao; Gong, Yu; Hong, Xia
2016-07-01
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.
Halo Reduction By Means of Non Linear Optical Elements in the NLC Final Focus System
Seryi, Andrei
2001-07-23
In the Beam Delivery Systems (BDS) for linear colliders that have been designed or built, collimators (or scrapers) are used to suppress backgrounds due to the beam halo. Off-energy and off-axis particles are stopped on the collimator jaws, physically limiting the acceptance of the system. This concept does not scale well to higher beam energy, higher intensity or lower emittance. The increased beam density requires longer and more demanding collimator regions. In contrast, this paper studies the possibility of inserting non-linear optical elements into the Final Focus in order to effectively increase the acceptance of the system. This technique could make the traditional collimation scheme obsolete so that only protection collimators would be needed.
Non-Linear Dynamics of AN ELASTO-PLASTIC Oscillator with Kinematic and Isotropic Hardening
NASA Astrophysics Data System (ADS)
Savi, M. A.; Pacheco, P. M. C. L.
1997-10-01
This contribution reports on a dynamic analysis of an elasto-plastic oscillator. Kinematic and isotropic hardening are considered. The equations of motion have five state variable associated with complementary conditions. System dynamics is treated by performing a split in phase space in two parts. This split is suggested by an analysis of the equations of motion near equilibrium points and permits conclusions about high dimensional dynamical system by analyzing subspaces with lower dimension. This physical consideration is in close agreement with the operator split technique used for the numerical solution. Some numerical results are shown for free and forced vibrations of the oscillator with kinematic, isotropic and kinematic/isotropic hardening.
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
2000-11-01
The response of a shell conveying fluid to harmonic excitation, in the spectral neighbourhood of one of the lowest natural frequencies, is investigated for different flow velocities. The theoretical model has already been presented in Part I of the present study. Non-linearities due to moderately large-amplitude shell motion are considered by using Donnell's non-linear shallow-shell theory. Linear potential flow theory is applied to describe the fluid-structure interaction by using the model proposed by Paı̈doussis and Denise. For different amplitudes and frequencies of the excitation and for different flow velocities, the following are investigated numerically: (1) periodic response of the system; (2) unsteady and stochastic motion; (3) loss of stability by jumps to bifurcated branches. The effect of the flow velocity on the non-linear periodic response of the system has also been investigated. Poincaré maps and bifurcation diagrams are used to study the unsteady and stochastic dynamics of the system. Amplitude modulated motions, multi-periodic solutions, chaotic responses, cascades of bifurcations as the route to chaos and the so-called “blue sky catastrophe” phenomenon have all been observed for different values of the system parameters; the latter two have been predicted here probably for the first time for the dynamics of circular cylindrical shells.
Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression
NASA Technical Reports Server (NTRS)
Laun, Matthew C. (Inventor)
2016-01-01
Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.
Kreula, J M; Clark, S R; Jaksch, D
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
Kreula, J. M.; Clark, S. R.; Jaksch, D.
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
Non-linear electroencephalogram dynamics in patients with spontaneous nocturnal migraine attacks.
Strenge, H; Fritzer, G; Göder, R; Niederberger, U; Gerber, W D; Aldenhoff, J
2001-08-24
The present study was conducted to examine non-linear electroencephalogram (EEG) measures during the development of a spontaneous migraine attack. We investigated the sleep EEG of five patients with migraine without aura in the pain-free interval and at the onset of a nocturnal attack. Sleep EEG recordings were analysed using the method of global dimensional complexity compared to conventional sleep scoring techniques. We found no divergence between classical sleep architecture and the estimated dimensional course nor any relevant short-term changes related to the onset of headache. There was, however, a loss of dimensional complexity in the first two non-rapid eye movement sleep states in the migraine night, with statistical significance during the second sleep cycle. For the first time, these results provide evidence of a global dimension decrease that is related to cortical network changes during a migraine attack. PMID:11502356
Hippotherapy acute impact on heart rate variability non-linear dynamics in neurological disorders.
Cabiddu, Ramona; Borghi-Silva, Audrey; Trimer, Renata; Trimer, Vitor; Ricci, Paula Angélica; Italiano Monteiro, Clara; Camargo Magalhães Maniglia, Marcela; Silva Pereira, Ana Maria; Rodrigues das Chagas, Gustavo; Carvalho, Eliane Maria
2016-05-15
Neurological disorders are associated with autonomic dysfunction. Hippotherapy (HT) is a therapy treatment strategy that utilizes a horse in an interdisciplinary approach for the physical and mental rehabilitation of people with physical, mental and/or psychological disabilities. However, no studies have been carried out which evaluated the effects of HT on the autonomic control in these patients. Therefore, the objective of the present study was to investigate the effects of a single HT session on cardiovascular autonomic control by time domain and non-linear analysis of heart rate variability (HRV). The HRV signal was recorded continuously in twelve children affected by neurological disorders during a HT session, consisting in a 10-minute sitting position rest (P1), a 15-minute preparatory phase sitting on the horse (P2), a 15-minute HT session (P3) and a final 10-minute sitting position recovery (P4). Time domain and non-linear HRV indices, including Sample Entropy (SampEn), Lempel-Ziv Complexity (LZC) and Detrended Fluctuation Analysis (DFA), were calculated for each treatment phase. We observed that SampEn increased during P3 (SampEn=0.56±0.10) with respect to P1 (SampEn=0.40±0.14, p<0.05), while DFA decreased during P3 (DFA=1.10±0.10) with respect to P1 (DFA=1.26±0.14, p<0.05). A significant SDRR increase (p<0.05) was observed during the recovery period P4 (SDRR=50±30ms) with respect to the HT session period P3 (SDRR=30±10ms). Our results suggest that HT might benefit children with disabilities attributable to neurological disorders by eliciting an acute autonomic response during the therapy and during the recovery period. PMID:26988283
Non-linear strain-displacement relations and flexible multibody dynamics
NASA Astrophysics Data System (ADS)
von Flotow, A. H.; Padilla, C. E.
The dynamics of chains of flexible bodies undergoing large rigid body motions and small elastic deflections is investigated, with emphasis on the role of nonlinear strain-displacement relations in the development of the motion equations for the deflections of these systems. Numerical results are presented for a two-link chain constrained to move in the plane and subject to hinge torques. Slew maneuver simulations have been performed for models with and without properly modeled kinetics of deformation.
Non-linearity dynamics in ecosystem response to climate change: Case studies and policy implications
Burkett, V.R.; Wilcox, D.A.; Stottlemyer, R.; Barrow, W.; Fagre, D.; Baron, J.; Nielsen, J.L.; Allen, C.D.; Peterson, D.L.; Ruggerone, G.; Doyle, T.
2005-01-01
Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate cna lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system response to climate change. Understanding and anticipating nonlinear dynamics are important aspects of adaptation planning since responses of biological resources to changes in the physical climate system are not necessarily proportional and sometimes, as in the case of complex ecological systems, inherently nonlinear.
NASA Astrophysics Data System (ADS)
Kim, Pyeongeun; Young-Gonzales, Amanda R.; Richert, Ranko
2016-08-01
We have re-measured the third harmonic non-linear dielectric response of supercooled glycerol using zero-bias sinusoidal electric fields, with the aim of comparing the resulting susceptibilities with a phenomenological model of non-linear dielectric responses. In the absence of known chemical effects in this liquid, the present model accounts for three sources of non-linear behavior: dielectric saturation, field induced entropy reduction, and energy absorption from the time dependent field. Using parameters obtained from static high field results, the present model reproduces the characteristic features observed in the third harmonic susceptibility spectra: a low frequency plateau originating from dielectric saturation and a peak positioned below the loss peak frequency whose amplitude increases with decreasing temperature. Semi-quantitative agreement is achieved between experiment and the present model, which does not involve spatial scales or dynamical correlations explicitly. By calculating the three contributions separately, the model reveals that the entropy effect is the main source of the "hump" feature of this third harmonic response.
Non-linear dynamics of inlet film thickness during unsteady rolling process
NASA Astrophysics Data System (ADS)
Fu, Kuo; Zang, Yong; Gao, Zhiying; Qin, Qin; Wu, Diping
2016-05-01
The inlet film thickness directly affects film and stress distribution of rolling interfaces. Unsteady factors, such as unsteady back tension, may disturb the inlet film thickness. However, the current models of unsteady inlet film thickness lack unsteady disturbance factors and do not take surface topography into consideration. In this paper, based on the hydrodynamic analysis of inlet zone an unsteady rolling film model which concerns the direction of surface topography is built up. Considering the small fluctuation of inlet angle, absolute reduction, reduction ratio, inlet strip thickness and roll radius as the input variables and the fluctuation of inlet film thickness as the output variable, the non-linear relationship between the input and output is discussed. The discussion results show that there is 180° phase difference between the inlet film thickness and the input variables, such as the fluctuant absolute reduction, the fluctuant reduction ratio and non-uniform inlet strip thickness, but there is no phase difference between unsteady roll radius and the output. The inlet angle, the steady roll radius and the direction of surface topography have significant influence on the fluctuant amplitude of unsteady inlet film thickness. This study proposes an analysis method for unsteady inlet film thickness which takes surface topography and new disturbance factors into consideration.
Lainscsek, Claudia; Hernandez, Manuel E.; Weyhenmeyer, Jonathan; Sejnowski, Terrence J.; Poizner, Howard
2013-01-01
The pathophysiology of Parkinson’s disease (PD) is known to involve altered patterns of neuronal firing and synchronization in cortical-basal ganglia circuits. One window into the nature of the aberrant temporal dynamics in the cerebral cortex of PD patients can come from analysis of the patients electroencephalography (EEG). Rather than using spectral-based methods, we used data models based on delay differential equations (DDE) as non-linear time-domain classification tools to analyze EEG recordings from PD patients on and off dopaminergic therapy and healthy individuals. Two sets of 50 1-s segments of 64-channel EEG activity were recorded from nine PD patients on and off medication and nine age-matched controls. The 64 EEG channels were grouped into 10 clusters covering frontal, central, parietal, and occipital brain regions for analysis. DDE models were fitted to individual trials, and model coefficients and error were used as features for classification. The best models were selected using repeated random sub-sampling validation and classification performance was measured using the area under the ROC curve A′. In a companion paper, we show that DDEs can uncover hidden dynamical structure from short segments of simulated time series of known dynamical systems in high noise regimes. Using the same method for finding the best models, we found here that even short segments of EEG data in PD patients and controls contained dynamical structure, and moreover, that PD patients exhibited a greater dynamic range than controls. DDE model output on the means from one set of 50 trials provided nearly complete separation of PD patients off medication from controls: across brain regions, the area under the receiver-operating characteristic curves, A′, varied from 0.95 to 1.0. For distinguishing PD patients on vs. off medication, classification performance A′ ranged from 0.86 to 1.0 across brain regions. Moreover, the generalizability of the model to the second set of
Schultze, J.; Hemez, F.
2000-11-01
This research presents a new method to improve analytical model fidelity for non-linear systems. The approach investigates several mechanisms to assist the analyst in updating an analytical model based on experimental data and statistical analysis of parameter effects. The first is a new approach at data reduction called feature extraction. This is an expansion of the classic update metrics to include specific phenomena or character of the response that is critical to model application. This is an extension of the familiar linear updating paradigm of utilizing the eigen-parameters or FRF's to include such devices as peak acceleration, time of arrival or standard deviation of model error. The next expansion of the updating process is the inclusion of statistical based parameter analysis to quantify the effects of uncertain or significant effect parameters in the construction of a meta-model. This provides indicators of the statistical variation associated with parameters as well as confidence intervals on the coefficients of the resulting meta-model. Also included in this method is the investigation of linear parameter effect screening using a partial factorial variable array for simulation. This is intended to aid the analyst in eliminating from the investigation the parameters that do not have a significant variation effect on the feature metric. Finally an investigation of the model to replicate the measured response variation is examined.
NASA Astrophysics Data System (ADS)
Sota, Shigetoshi; Tohyama, Takami; Brazovskii, Serguei
2012-02-01
The optical response of organic compounds has been attracting much attention. The one of the reasons is the huge non-linear and ultrafast optical response [K. Yamamoto et. al., J. Phys. Soc. Jpn. 77, 074709(2008)]. In order to investigate such optical properties, we carry out dynamical DMRG calculations to obtain optical responses in the 1/4-filled one-dimensional Hubbard model including the nearest neighbor Coulomb interaction and the alternating electron hopping. The charge gap [S. Nishimoto, M. Takahashi, and Y. Ohta, J. Phys. Soc. Jpn. 69, 1594(2000)] and the bound state [H. Benthien and E. Jeckelmann, Eur. Phys. J. B 44, 287(2005)] in this model have been discussed based on DMRG calculations. In the present study, we introduce an alternating on-site potential giving the polarization in the system into the dimerized Hubbard model, which breaks the reflection symmetry of the system. In this talk, we discuss the obtained linear and the 2nd order non-linear optical susceptibility in order to make a prediction for non-linear optical experiments in the future.
Non-Linear Dynamics and Control of Chaos for a Tachometer
NASA Astrophysics Data System (ADS)
GE, Z.-M.; SHIUE, J.-S.
2002-06-01
The dynamic behaviors of a rotational tachometer with vibrating support are studied in the paper. Both analytical and computational results are used to obtain the characteristics of the system. The Lyapunov direct method is applied to obtain the conditions of stability of the equilibrium position of the system. The center manifold theorem determines the conditions of stability for the system in a critical case. By applying various numerical analyses such as phase plane, Poincaré map and power spectrum analysis, a variety of periodic solutions and phenomena of the chaotic motion are observed. The effects of the changes of parameters in the system can be found in the bifurcation diagrams and parametric diagrams. By using Lyapunov exponents and Lyapunov dimensions, the periodic and chaotic behaviors are verified. Finally, various methods, such as the addition of a constant torque, the addition of a periodic torque, delayed feedback control, adaptive control, Bang-Bang control, optimal control and the addition of a periodic impulse are used to control chaos effectively.
Non-Linear Characterisation of Cerebral Pressure-Flow Dynamics in Humans
Saleem, Saqib; Teal, Paul D.; Kleijn, W. Bastiaan; O’Donnell, Terrence; Witter, Trevor; Tzeng, Yu-Chieh
2015-01-01
Cerebral metabolism is critically dependent on the regulation of cerebral blood flow (CBF), so it would be expected that vascular mechanisms that play a critical role in CBF regulation would be tightly conserved across individuals. However, the relationships between blood pressure (BP) and cerebral blood velocity fluctuations exhibit inter-individual variations consistent with heterogeneity in the integrity of CBF regulating systems. Here we sought to determine the nature and consistency of dynamic cerebral autoregulation (dCA) during the application of oscillatory lower body negative pressure (OLBNP). In 18 volunteers we recorded BP and middle cerebral artery blood flow velocity (MCAv) and examined the relationships between BP and MCAv fluctuations during 0.03, 0.05 and 0.07Hz OLBNP. dCA was characterised using project pursuit regression (PPR) and locally weighted scatterplot smoother (LOWESS) plots. Additionally, we proposed a piecewise regression method to statistically determine the presence of a dCA curve, which was defined as the presence of a restricted autoregulatory plateau shouldered by pressure-passive regions. Results show that LOWESS has similar explanatory power to that of PPR. However, we observed heterogeneous patterns of dynamic BP-MCAv relations with few individuals demonstrating clear evidence of a dCA central plateau. Thus, although BP explains a significant proportion of variance, dCA does not manifest as any single characteristic BP-MCAv function. PMID:26421429
NASA Astrophysics Data System (ADS)
Klarenberg, G.
2015-12-01
Infrastructure projects such as road paving have proven to bring a variety of (mainly) socio-economic advantages to countries and populations. However, many studies have also highlighted the negative socio-economic and biophysical effects that these developments have at local, regional and even larger scales. The "MAP" area (Madre de Dios in Peru, Acre in Brazil, and Pando in Bolivia) is a biodiversity hotspot in the southwestern Amazon where sections of South America's Inter-Oceanic Highway were paved between 2006 and 2010. We are interested in vegetation dynamics in the area since it plays an important role in ecosystem functions and ecosystem services in socio-ecological systems: it provides information on productivity and structure of the forest. In preparation of more complex and mechanistic simulation of vegetation, non-linear time series analysis and Dynamic Factor Analysis (DFA) was conducted on Enhanced Vegetation Index (EVI) time series - which is a remote sensing product and provides information on vegetation dynamics as it detects chlorophyll (productivity) and structural change. Time series of 30 years for EVI2 (from MODIS and AVHRR) were obtained for 100 communities in the area. Through specific time series cluster analysis of the vegetation data, communities were clustered to facilitate data analysis and pattern recognition. The clustering is spatially consistent, and appears to be driven by median road paving progress - which is different for each cluster. Non-linear time series analysis (multivariate singular spectrum analysis, MSSA) separates common signals (or low-dimensional attractors) across clusters. Despite the presence of this deterministic structure though, time series behavior is mostly stochastic. Granger causality analysis between EVI2 and possible response variables indicates which variables (and with what lags) are to be included in DFA, resulting in unique Dynamic Factor Models for each cluster.
Archambeau, C.B.
1994-01-01
A fractured solid under stress loading (or unloading) can be viewed as behaving macroscopically as a medium with internal, hidden, degrees of freedom, wherein changes in fracture geometry (i.e. opening, closing and extension) and flow of fluid and gas within fractures will produce major changes in stresses and strains within the solid. Likewise, the flow process within fractures will be strongly coupled to deformation within the solid through boundary conditions on the fracture surfaces. The effects in the solid can, in part, be phenomenologically represented as inelastic or plastic processes in the macroscopic view. However, there are clearly phenomena associated with fracture growth and open fracture fluid flows that produce effects that can not be described using ordinary inelastic phenomenology. This is evident from the fact that a variety of energy release phenomena can occur, including seismic emissions of previously stored strain energy due to fracture growth, release of disolved gas from fluids in the fractures resulting in enhanced buoyancy and subsequent energetic flows of gas and fluids through the fracture system which can produce raid extension of old fractures and the creation of new ones. Additionally, the flows will be modulated by the opening and closing of fractures due to deformation in the solid, so that the flow process is strongly coupled to dynamical processes in the surrounding solid matrix, some of which are induced by the flow itself.
NASA Astrophysics Data System (ADS)
Soulsby, C.; Birkel, C.; Geris, J.; Tetzlaff, D.
2015-12-01
We assess the influence of storage dynamics and non-linearities in hydrological connectivity on runoff generation and stream water ages, using a long-term record of daily isotopes in precipitation and stream flow. These were used to test a parsimonious tracer-aided runoff model for a Scottish catchment. The model tracks tracers and the ages of water fluxes through and between conceptual stores representing steeper hillslopes, dynamically saturated riparian peatlands and deeper groundwater (i.e. the main landscape units involved in runoff generation). Storage is largest in groundwater and on the steep hillslopes, though most dynamic mixing occurs in smaller stores in the riparian peat. The model also couples the ecohydrological effects of different vegetation communities in contrasting landscape units, by estimating evaporation, resulting moisture deficits and the ages of evaporated waters, which also affect the generation and age of runoff. Both stream flow and isotope variations are well-captured by the model, and the simulated storage and tracer dynamics in the main landscape units are consistent with independent measurements. The model predicts the mean age of runoff as ~1.8 years. On a daily basis, this varies from ~1 month in storm events, when younger waters draining the riparian peatland dominate, to around 4 years in dry periods, when groundwater sustains flow. Hydrological connectivity between the units varies non-linearly with storage which depends upon antecedent conditions and event characteristics. This, in turn, determines the spatial distribution of flow paths and the integration of their contrasting non-stationary ages. Improving the representation of storage dynamics and quantifying the ages of water fluxes in such models gives a more complete conceptualisation of the importance of the soil water fluxes in critical zone processes and a framework for tracking diffuse pollutants in water quality assessment.
Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut
2015-06-14
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.
Minati, Ludovico E-mail: ludovico.minati@unitn.it
2015-03-15
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.
NASA Astrophysics Data System (ADS)
Bagarello, F.; Haven, E.
2016-02-01
We discuss a non linear extension of a model of alliances in politics, recently proposed by one of us. The model is constructed in terms of operators, describing the interest of three parties to form, or not, some political alliance with the other parties. The time evolution of what we call the decision functions is deduced by introducing a suitable Hamiltonian, which describes the main effects of the interactions of the parties amongst themselves and with their environments, which are generated by their electors and by people who still have no clear idea for which party to vote (or even if to vote). The Hamiltonian contains some non-linear effects, which takes into account the role of a party in the decision process of the other two parties. Moreover, we show how the same Hamiltonian can also be used to construct a formal structure which can describe the dynamics of buying and selling financial assets (without however implying a specific price setting mechanism).
Fully non-linear cosmological perturbations of multicomponent fluid and field systems
NASA Astrophysics Data System (ADS)
Hwang, Jai-chan; Noh, Hyerim; Park, Chan-Gyung
2016-09-01
We present fully non-linear and exact cosmological perturbation equations in the presence of multiple components of fluids and minimally coupled scalar fields. We ignore the tensor-type perturbation. The equations are presented without taking the temporal gauge condition in the Friedmann background with general curvature and the cosmological constant. We include the anisotropic stress. Even in the absence of anisotropic stress of individual component, the multiple component nature introduces the anisotropic stress in the collective fluid quantities. We prove the Newtonian limit of multiple fluids in the zero-shear gauge and the uniform-expansion gauge conditions, present the Newtonian hydrodynamic equations in the presence of general relativistic pressure in the zero-shear gauge, and present the fully non-linear equations and the third-order perturbation equations of the non-relativistic pressure fluids in the CDM-comoving gauge.
Helical waves and non-linear dynamics of fluid/structure interactions in a tube row
Moon, F.C.; Thothadri, M.
1997-12-31
The goal of this study has been to investigate low-dimensional models for fluid-structure dynamics of flow across a row of cylindrical tubes. Four principle results of this experimental-theoretical study are discussed. (i) Experimental evidence has shown that the dynamic instability of the tube row is a subcritical Hopf bifurcation. (ii) The critical flow velocity decreases as the number of flexible cylinders increases. (iii) The linear model exhibits coupled helical wave solutions in the tube dynamics. (iv) A nonlinear model of the tube motions shows a complex subcritical Hopf bifurcation with a secondary bifurcation to a torus or quasi-periodic oscillation. In this analysis the tools of center manifolds, normal forms and numerical simulation are used.
Model-size reduction for the non-linear dynamic analysis of quasi-symmetric structures
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
A numerical technique is developed to reduce the size of models describing the nonlinear dynamic response of quasi-symmetric structures (i.e., structures with unsymmetric geometry). The response vectors of the structure are approximated by a linear combination of the symmetric and antisymmetric vectors at each time step. The mathematical formulation and numerical implementation of the method are described in detail, and results for a shallow laminated anisotropic panel of quadrilateral planform are presented in graphs and normalized contour plots.
Non-linear dynamics of viscous bilayers subjected to an electric field: 3D phase field simulations
NASA Astrophysics Data System (ADS)
Dritselis, Christos; Karapetsas, George; Bontozoglou, Vasilis
2014-11-01
The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a bilayer of immiscible liquids. We consider the case of two viscous films which is separated from the top electrode by air. We assume that the liquids are perfect dielectrics and consider the case of both flat and patterned electrodes. We develop a computational model using the diffuse interface method and carry out 3D numerical simulations fully accounting for the flow and electric field in all phases. We perform a parametric study and investigate the influence of the electric properties of fluids, applied voltage and various geometrical characteristics of the mask. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.
Chandra, S.; Grimm, R.A.; Katz, R.; Thomas, J.D.
1996-06-01
The aim of this study was to better understand and characterize left atrial appendage flow in atrial fibrillation. Atrial fibrillation and flutter are the most common cardiac arrhythmias affecting 15% of the older population. The pulsed Doppler velocity profile data was recorded from the left atrial appendage of patients using transesophageal echocardiography. The data was analyzed using Fourier analysis and nonlinear dynamical tools. Fourier analysis showed that appendage mechanical frequency ({ital f{sub f}}) for patients in sinus rhythm was always lower (around1 Hz) than that in atrial fibrillation (5-8 Hz). Among patients with atrial fibrillation spectral power below {ital f{sub f}} was significantly different suggesting variability within this group of patients. Results that suggested the presence of nonlinear dynamics were: a) the existence of two arbitrary peak frequencies {ital f{sub 1}, f{sub 2}}, and other peak frequencies as linear combinations thereof ({ital mf{sub 1}{+-}nf{sub 2}}), and b) the similarity between the spectrum of patient data and that obtained using the Lorenz equation. Nonlinear analysis tools, including Phase plots and differential radial plots, were also generated from the velocity data using a delay of 10. In the phase plots, some patients displayed a torus-like structure, while others had a more random-like pattern. In the differential radial plots, the first set of patients (with torus-like phase plots) showed fewer values crossing an arbitrary threshold of 10 than did the second set (8 vs. 27 in one typical example). The outcome of cardioversion was different for these two set of patients. Fourier analysis helped to: differentiate between sinus rhythm and atrial fibrillation, understand the characteristics of the wide range of atrial fibrillation patients, and provide hints that atrial fibrillation could be a nonlinear process. Nonlinear dynamical tools helped to further characterize and sub-classify atrial fibrillation.
NASA Astrophysics Data System (ADS)
Chôné, L.; Beyer, P.; Sarazin, Y.; Fuhr, G.; Bourdelle, C.; Benkadda, S.
2015-07-01
L-H transition features are reproduced using three-dimensional first-principles plasma edge turbulence simulations. A transport barrier is observed to form spontaneously above a threshold of the input power. The physical mechanism relies on the coupling between the equilibrium pressure gradient and the poloidal flow, through both the radial force balance and the neoclassical friction. Accounting for the actual radial profile and time evolution of the latter is key to the barrier formation. It is found that neoclassical friction acts as an energy source for the flow, which largely overcomes the sink due to the turbulent Reynolds stress during the whole barrier lifetime. Importantly, experimentally reported dynamical features are recovered during the formation and lifetime of the barrier. This includes dithering of the radial electric field, which is reminiscent of experimentally observed limit-cycle oscillations and quasi-periodic relaxation oscillations showing similarities with type-III ELMs. These rich dynamics emerge from interplay between turbulence, turbulence-driven flows and the equilibrium flow governed by force balance.
Filtering of non-linear instabilities. [from finite difference solution of fluid dynamics equations
NASA Technical Reports Server (NTRS)
Khosla, P. K.; Rubin, S. G.
1979-01-01
For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown here that these problems can in fact be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate 'filtering' can reduce the intensity of these oscillations and in some cases possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and non-conservation differencing. The entire spectrum of filtered equations retains a three-point character as well as second-order spatial accuracy. Burgers equation has been considered as a model. Several filters are examined in detail, and smooth solutions have been obtained for extremely large cell Reynolds numbers.
Self-organisation and non-linear dynamics in driven magnetohydrodynamic turbulent flows
NASA Astrophysics Data System (ADS)
Dallas, V.; Alexakis, A.
2015-04-01
Magnetohydrodynamic (MHD) turbulent flows driven by random, large-scale, mechanical and electromagnetic external forces of zero helicities are investigated by means of direct numerical simulations. It is shown that despite the absence of helicities in the forcing, the system is attracted to helical states of large scale condensates that exhibit laminar behaviour despite the large value of the Reynolds numbers examined. We demonstrate that the correlation time of the external forces controls the time spent on these states, i.e., for short correlation times, the system remains in the turbulent state while as the correlation time is increased, the system spends more and more time in the helical states. As a result, time averaged statistics are significantly affected by the time spent on these states. These results have important implications for MHD and turbulence theory and they provide insight into various physical phenomena where condensates transpire.
NASA Astrophysics Data System (ADS)
Ticchi, Alessandro; Faisal, Aldo A.; Brain; Behaviour Lab Team
2015-03-01
Experimental evidence at the behavioural-level shows that the brains are able to make Bayes-optimal inference and decisions (Kording and Wolpert 2004, Nature; Ernst and Banks, 2002, Nature), yet at the circuit level little is known about how neural circuits may implement Bayesian learning and inference (but see (Ma et al. 2006, Nat Neurosci)). Molecular sources of noise are clearly established to be powerful enough to pose limits to neural function and structure in the brain (Faisal et al. 2008, Nat Rev Neurosci; Faisal et al. 2005, Curr Biol). We propose a spking neuron model where we exploit molecular noise as a useful resource to implement close-to-optimal inference by sampling. Specifically, we derive a synaptic plasticity rule which, coupled with integrate-and-fire neural dynamics and recurrent inhibitory connections, enables a neural population to learn the statistical properties of the received sensory input (prior). Moreover, the proposed model allows to combine prior knowledge with additional sources of information (likelihood) from another neural population, and to implement in spiking neurons a Markov Chain Monte Carlo algorithm which generates samples from the inferred posterior distribution.
Complexity of visual stimuli and non-linear EEG dynamics in humans.
Müller, Viktor; Lutzenberger, Werner; Preissl, Hubert; Pulvermüller, Friedemann; Birbaumer, Niels
2003-03-01
The effects of stimulus complexity on the nonlinear electrical brain (EEG) dynamics were investigated in a sample of 24 healthy volunteers. Stimuli used were either a single mechanical low-friction pendulum with a periodic movement (temporal frequency about 1 Hz) or a double-pendulum with a chaotic movement, which were observed for 2-3 min in each case. The prediction that a more complex visual stimulus (double-pendulum) increases the dimensional complexity of brain activity as compared to a simple visual stimulus (single-pendulum), was confirmed by determination of pointwise correlation dimension. Further, there was a significant decrease of alpha power in the double-pendulum compared to a single-pendulum condition. Moreover, a correlation analysis showed a positive correlation between EEG complexity and beta power over the whole cortex in the single- and, above all, in the double-pendulum condition, and also a positive correlation between dimensional complexity and alpha power in the double-pendulum condition only, particularly in the brain regions responsible for the 'bottom-up' sustained attention processes. PMID:12589895
Stability of non-linear integrable accelerator
Batalov, I.; Valishev, A.; /Fermilab
2011-09-01
The stability of non-linear Integrable Optics Test Accelerator (IOTA) model developed in [1] was tested. The area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether a dynamic aperture limitation present in the system. The system was also tested with sextupoles included in the machine for chromaticity compensation. A method of evaluation of the beam size in the linear part of the accelerator was proposed.
NASA Astrophysics Data System (ADS)
Dey, Prasenjit
understanding the basic unexplored science as well as creating technological developments. The dephasing dynamics in semiconductors typically occur in the picosecond to femtosecond timescale, thus the use of ultrafast laser spectroscopy is a potential route to probe such excitonic responses. The focus of this dissertation is two-fold: firstly, to develop the necessary instrumentation to accurately probe the aforementioned parameters and secondly, to explore the quantum dynamics and the underlying many-body interactions in different layered semiconducting materials. A custom-built multidimensional optical non-linear spectrometer was developed in order to perform two-dimensional spectroscopic (2DFT) measurements. The advantages of this technique are multifaceted compared to regular one-dimensional and non-linear incoherent techniques. 2DFT technique is based on an enhanced version of Four wave mixing experiments. This powerful tool is capable of identifying the resonant coupling, probing the coherent pathways, unambiguously extracting the homogeneous linewidth in the presence of inhomogeneity and decomposing a complex spectra into real and imaginary parts. It is not possible to uncover such crucial features by employing one dimensional non-linear technique. Monolayers as well as bulk TMDs and group III-VI bulk layered materials are explored in this dissertation. The exciton quantum dynamics is explored with three pulse four-wave mixing whereas the phase sensitive measurements are obtained by employing two-dimensional Fourier transform spectroscopy. Temperature and excitation density dependent 2DFT experiments unfold the information associated with the many-body interactions in the layered semiconducting samples.
NASA Astrophysics Data System (ADS)
Potirakis, Stelios M.; Contoyiannis, Yiannis; Melis, Nikolaos S.; Kopanas, John; Antonopoulos, George; Balasis, Georgios; Kontoes, Charalampos; Nomicos, Constantinos; Eftaxias, Konstantinos
2016-08-01
The preparation process of two recent earthquakes (EQs) that occurred in Cephalonia (Kefalonia), Greece, ((38.22° N, 20.53° E), 26 January 2014, Mw = 6.0, depth ˜ 20 km) and ((38.25° N, 20.39° E), 3 February 2014, Mw = 5.9, depth ˜ 10 km), respectively, is studied in terms of the critical dynamics revealed in observables of the involved non-linear processes. Specifically, we show, by means of the method of critical fluctuations (MCF), that signatures of critical, as well as tricritical, dynamics were embedded in the fracture-induced electromagnetic emissions (EMEs) recorded by two stations in locations near the epicentres of these two EQs. It is worth noting that both the MHz EMEs recorded by the telemetric stations on the island of Cephalonia and the neighbouring island of Zante (Zakynthos) reached a simultaneously critical condition a few days before the occurrence of each earthquake. The critical characteristics embedded in the EME signals were further verified using the natural time (NT) method. Moreover, we show, in terms of the NT method, that the foreshock seismic activity also presented critical characteristics before each event. Importantly, the revealed critical process seems to be focused on the area corresponding to the western Cephalonia zone, following the seismotectonic and hazard zoning of the Ionian Islands area near Cephalonia.
Beccara, Silvio a; Rivalta, Ivan; Cerullo, Giulio
2014-01-01
The ability of non-linear electronic spectroscopy to track folding/unfolding processes of proteins in solution by monitoring aromatic interactions is investigated by first-principle simulations of two-dimensional (2D) electronic spectra of a model peptide. A dominant reaction pathway approach is employed to determine the unfolding pathway of a tetrapeptide, connecting the initial folded configuration with stacked aromatic side chains and the final unfolded state with distant non-interacting aromatic residues. π-stacking and excitonic coupling effects are included via ab-initio simulations based on multiconfigurational methods within a hybrid QM/MM scheme. We show that linear absorption spectroscopy in the ultraviolet (UV) is unable to resolve the unstacking dynamics characterized by the three-step process: T-shaped→twisted offset stacking→unstacking. Conversely, pump-probe spectroscopy can be used to resolve aromatic interactions by probing in the visible (Vis) the excited state absorptions (ESA) that involve charge transfer (CT) states. 2DUV spectroscopy offers the highest sensitivity to the unfolding process, providing the disentanglement of ESA signals belonging to different aromatic chromophores and high correlation between the conformational dynamics and the quartic splitting. PMID:25145908
Sensitivity of proxies on non-linear interactions in the climate system
NASA Astrophysics Data System (ADS)
Schultz, Johannes A.; Beck, Christoph; Menz, Gunter; Neuwirth, Burkhard; Ohlwein, Christian; Philipp, Andreas
2015-12-01
Recent climate change is affecting the earth system to an unprecedented extent and intensity and has the potential to cause severe ecological and socioeconomic consequences. To understand natural and anthropogenic induced processes, feedbacks, trends, and dynamics in the climate system, it is also essential to consider longer timescales. In this context, annually resolved tree-ring data are often used to reconstruct past temperature or precipitation variability as well as atmospheric or oceanic indices such as the North Atlantic Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO). The aim of this study is to assess weather-type sensitivity across the Northern Atlantic region based on two tree-ring width networks. Our results indicate that nonstationarities in superordinate space and time scales of the climate system (here synoptic- to global scale, NAO, AMO) can affect the climate sensitivity of tree-rings in subordinate levels of the system (here meso- to synoptic scale, weather-types). This scale bias effect has the capability to impact even large multiproxy networks and the ability of these networks to provide information about past climate conditions. To avoid scale biases in climate reconstructions, interdependencies between the different scales in the climate system must be considered, especially internal ocean/atmosphere dynamics.
Sensitivity of proxies on non-linear interactions in the climate system.
Schultz, Johannes A; Beck, Christoph; Menz, Gunter; Neuwirth, Burkhard; Ohlwein, Christian; Philipp, Andreas
2015-01-01
Recent climate change is affecting the earth system to an unprecedented extent and intensity and has the potential to cause severe ecological and socioeconomic consequences. To understand natural and anthropogenic induced processes, feedbacks, trends, and dynamics in the climate system, it is also essential to consider longer timescales. In this context, annually resolved tree-ring data are often used to reconstruct past temperature or precipitation variability as well as atmospheric or oceanic indices such as the North Atlantic Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO). The aim of this study is to assess weather-type sensitivity across the Northern Atlantic region based on two tree-ring width networks. Our results indicate that nonstationarities in superordinate space and time scales of the climate system (here synoptic- to global scale, NAO, AMO) can affect the climate sensitivity of tree-rings in subordinate levels of the system (here meso- to synoptic scale, weather-types). This scale bias effect has the capability to impact even large multiproxy networks and the ability of these networks to provide information about past climate conditions. To avoid scale biases in climate reconstructions, interdependencies between the different scales in the climate system must be considered, especially internal ocean/atmosphere dynamics. PMID:26686001
Sensitivity of proxies on non-linear interactions in the climate system
Schultz, Johannes A.; Beck, Christoph; Menz, Gunter; Neuwirth, Burkhard; Ohlwein, Christian; Philipp, Andreas
2015-01-01
Recent climate change is affecting the earth system to an unprecedented extent and intensity and has the potential to cause severe ecological and socioeconomic consequences. To understand natural and anthropogenic induced processes, feedbacks, trends, and dynamics in the climate system, it is also essential to consider longer timescales. In this context, annually resolved tree-ring data are often used to reconstruct past temperature or precipitation variability as well as atmospheric or oceanic indices such as the North Atlantic Oscillation (NAO) or the Atlantic Multidecadal Oscillation (AMO). The aim of this study is to assess weather-type sensitivity across the Northern Atlantic region based on two tree-ring width networks. Our results indicate that nonstationarities in superordinate space and time scales of the climate system (here synoptic- to global scale, NAO, AMO) can affect the climate sensitivity of tree-rings in subordinate levels of the system (here meso- to synoptic scale, weather-types). This scale bias effect has the capability to impact even large multiproxy networks and the ability of these networks to provide information about past climate conditions. To avoid scale biases in climate reconstructions, interdependencies between the different scales in the climate system must be considered, especially internal ocean/atmosphere dynamics. PMID:26686001
ERIC Educational Resources Information Center
Komorek, Michael; Duit, Reinders
2004-01-01
The educational potential of non-linear systems is given surprisingly little attention in science education research--at least in research that links content matter and educational issues. The project on educational reconstruction of non-linear systems at the IPN has investigated the educational significance of threferring phenomena and the…
System and Method for Determining Gas Optical Density Changes in a Non-Linear Measurement Regime
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor); Rana, Mauro (Inventor)
2007-01-01
Each of two sensors, positioned to simultaneously detect electromagnetic radiation absorption along a path, is calibrated to define a unique response curve associated therewith that relates a change in voltage output for each sensor to a change in optical density. A ratio-of-responses curve is defined by a ratio of the response curve associated with the first sensor to the response curve associated with the second sensor. A ratio of sensor output changes is generated using outputs from the sensors. An operating point on the ratio-of-responses curve is established using the ratio of sensor output changes. The established operating point is indicative of an optical density. When the operating point is in the non-linear response region of at least one of the sensors, the operating point and optical density corresponding thereto can be used to establish an actual response of at least one of the sensors whereby the actual sensor output can be used in determining changes in the optical density.
NASA Astrophysics Data System (ADS)
Zander, C.; Plastino, A. R.; Díaz-Alonso, J.
2015-11-01
We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ =| ψ | 2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.
NASA Technical Reports Server (NTRS)
Kulkarni, Makarand; Noor, Ahmed K.
1995-01-01
A computational procedure is presented for evaluating the sensitivity coefficients of the viscoplastic response of structures subjected to dynamic loading. A state of plane stress is assumed to exist in the structure, a velocity strain-Cauchy stress formulation is used, and the geometric non-linearities arising from large strains are incorporated. The Jaumann rate is used as a frame indifferent stress rate. The material model is chosen to be isothermal viscoplasticity, and an associated flow rule is used with a von Mises effective stress. The equations of motion emanating from a finite element semi-discretization are integrated using an explicit central difference scheme with an implicit stress update. The sensitivity coefficients are evaluated using a direct differentiation approach. Since the domain of integration is the current configuration, the sensitivity coefficients of the spatial derivatives of the shape functions must be included. Numerical results are presented for a thin plate with a central cutout subjected to an in-plane compressive loading. The sensitivity coefficients are generated by evaluating the derivatives of the response quantities with respect to Young's modulus, and two of the material parameters characterizing the viscoplastic response. Time histories of the response and sensitivity coefficients, and spatial distributions at selected times are presented.
NASA Astrophysics Data System (ADS)
Mokhtarian, N.; Hodtani, G. A.
2015-12-01
Analog implementations of decoders have been widely studied by considering circuit complexity, as well as power and speed, and their integration with other analog blocks is an extension of analog decoding research. In the front-end blocks of orthogonal frequency-division multiplexing (OFDM) systems, combination of an analog fast Fourier transform (FFT) with an analog decoder is suitable. In this article, the implementation of a 16-symbol FFT processor based on analog complementary metal-oxide-semiconductor current mirrors within circuit and system levels is presented, and the FFT is implemented using a butterfly diagram, where each node is implemented using analog circuits. Implementation details include consideration of effects of transistor mismatch and inherent noises and effects of circuit non-linearity in OFDM system performance. It is shown that not only can transistor inherent noises be measured but also transistor mismatch can be applied as an input-referred noise source that can be used in system- and circuit-level studies. Simulations of a radix-2, 16-symbol FFT show that proposed circuits consume very low power, and impacts of noise, mismatch and non-linearity for each node of this processor are very small.
NASA Astrophysics Data System (ADS)
Foley, J. A.
2011-12-01
Although they have been building for decades, changes in the environment are not always smooth and gradual. In fact, the most important changes - such as those to our ecosystems and natural resources - are often sudden and large. Recent research suggests that instead of following a predictable linear path along existing trends, environmental systems often exhibit highly non-linear behavior, including very abrupt shifts in condition. In fact, the complex, non-linear workings of the planet's biological, physical and human systems can give rise to sudden, often catastrophic, environmental disasters. Recent scientific advances have shown can exhibit "tipping points" or "regime shifts". Examples of regime shifts range from lake eutrophication, desertification, and forest die-back, across many regions of the world. But do such regime shifts exist at the global scale? A recent synthesis of global environmental research (published by Rockstrom et al., in Nature, 2010) suggested that there may be "Planetary Boundaries", beyond which the global environment would enter conditions not seen in the Holocene era. In this presentation, I will review case studies of environmental regime shifts at regional scales, and show how they may or may not operate at global scales. Managing such complex systems, across regional and global scales, will be a fundamental challenge as humanity charts attempts to chart a more sustainability path.
Ying, Xiaoguo; Liu, Wei; Hui, Guohua
2015-01-01
In this paper, litchi freshness rapid non-destructive evaluating method using electronic nose (e-nose) and non-linear stochastic resonance (SR) was proposed. EN responses to litchi samples were continuously detected for 6 d Principal component analysis (PCA) and non-linear stochastic resonance (SR) methods were utilized to analyze EN detection data. PCA method could not totally discriminate litchi samples, while SR signal-to-noise ratio (SNR) eigen spectrum successfully discriminated all litchi samples. Litchi freshness predictive model developed using SNR eigen values shows high predictive accuracy with regression coefficients R2 = 0 .99396. PMID:25920547
Implicit time-integration method for simultaneous solution of a coupled non-linear system
NASA Astrophysics Data System (ADS)
Watson, Justin Kyle
Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems
NASA Technical Reports Server (NTRS)
Krishnan, K. R.; Horowitz, I. M.
1973-01-01
The problem considered is the design of a feedback system containing a linear, time invariant, minimum phase plant, whose parameters are known only within given bounds, such that the time response of the system remains within specified limits. A quasi-optimal design, for given design constraints, is one which minimizes the effect of white sensor noise on the input to the plant. An investigation was conducted on the use of the non linear device known as the Clegg integrator in the design of such a system. The describing function of the Clegg integrator has the same magnitude characteristic, apart from a scale factor, as the linear integrator, but has 52 deg less phase-lag, at all frequencies, than the linear integrator; thus, when used in a feedback system, it provides a larger stability margin than the linear integrator. This property allows the nonlinear feedback system to be designed so that the sensor noise is attenuated more than in the linear design.
NASA Technical Reports Server (NTRS)
Ozguven, H. Nevzat
1991-01-01
A six-degree-of-freedom nonlinear semi-definite model with time varying mesh stiffness has been developed for the dynamic analysis of spur gears. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover, and bearings. As the shaft and bearing dynamics have also been considered in the model, the effect of lateral-torsional vibration coupling on the dynamics of gears can be studied. In the nonlinear model developed several factors such as time varying mesh stiffness and damping, separation of teeth, backlash, single- and double-sided impacts, various gear errors and profile modifications have been considered. The dynamic response to internal excitation has been calculated by using the 'static transmission error method' developed. The software prepared (DYTEM) employs the digital simulation technique for the solution, and is capable of calculating dynamic tooth and mesh forces, dynamic factors for pinion and gear, dynamic transmission error, dynamic bearing forces and torsions of shafts. Numerical examples are given in order to demonstrate the effect of shaft and bearing dynamics on gear dynamics.
Stability of dithered non-linear systems with backlash or hysteresis
NASA Technical Reports Server (NTRS)
Desoer, C. A.; Shahruz, S. M.
1986-01-01
A study is conducted of the effect of dither on the nonlinear element of a single-input single-outout feedback system. Nonlinearities are considered with memory (backlash, hysteresis), in the feedforward loop; a dither of a given amplitude is injected at the input of the nonlinearity. The nonlinearity is followed by a linear element with low-pass characteristic. The stability of the dithered system and an approximate equivalent system (in which the nonlinearity is a smooth function) are compared. Conditions on the input and on the dither frequency are obtained so that the approximate-system stability guarantees that of the given hysteretic system.
NASA Astrophysics Data System (ADS)
Isah, Abdulnasir; Chang, Phang
2016-06-01
In this article we propose the wavelet operational method based on shifted Legendre polynomial to obtain the numerical solutions of non-linear systems of fractional order differential equations (NSFDEs). The operational matrix of fractional derivative derived through wavelet-polynomial transformation are used together with the collocation method to turn the NSFDEs to a system of non-linear algebraic equations. Illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques.
Future non-linear stability for solutions of the Einstein-Vlasov system of Bianchi types II and VI0
NASA Astrophysics Data System (ADS)
Nungesser, Ernesto
2012-10-01
In a recent paper [E. Nungesser, "Future non-linear stability for reflection symmetric solutions of the Einstein-Vlasov system of Bianchi types II and VI0," Annales Henri Poincare (2012), 10.1007/s00023-012-0201-0], we have treated the future nonlinear stability for reflection symmetric solutions of the Einstein-Vlasov system of Bianchi types II and VI0. We have been able now to remove the reflection symmetry assumption, thus treating the non-diagonal case. Apart from the increasing complexity, the methods have been essentially the same as in the diagonal case, showing that they are thus quite powerful. Here, the challenge was to put the equations in a form that permits the use of the previous results. We are able to conclude that after a possible basis change, the future of the non-diagonal spacetimes in consideration is asymptotically diagonal.
Non-linear shipboard shock analysis of the Tomahawk missile shock isolation system
NASA Technical Reports Server (NTRS)
Leifer, Joel; Gross, Michael
1987-01-01
The identification, quantification, computer modeling and verification of the Tomahawk nonlinear liquid spring shock isolation system in a surface ship Vertical Launch System (VLS) are discussed. The isolation system hardware and mode of operation is detailed in an effort to understand the nonlinearities. These nonlinearities are then quantified and modeled using the MSC/NASTRAN finite element code. The model was verified using experimental data from the Navel Ordnance Systems Center MIL-S-901 medium weight shock tests of August 1986. The model was then used to predict the Tomahawk response to the CG-53 USS Mobile Bay shock trials of May-June 1987. Results indicate that the model is an accurate mathematical representation of the physical system either functioning as designed or in an impaired condition due to spring failure.
Ackermann, Mark R.; Diels, Jean-Claude M.
2007-06-26
An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.
A Standard Analytical Quasi Non Linear Module For Hydrologic and Water Resources Systems Simulation
NASA Astrophysics Data System (ADS)
Ostrowski, M.; Mehler, R.; Lohr, H.; Lempert, M.
Hydrologic and water resources systems simulation involves an inhomogeneous set of different types of empirical and less (conceptual) or more physically defined dif- ferential equations. In hydrology these equations have been traditionally defined in a way to provide computationally efficient analytical solutions as well as practically applicable models, which are strongly simplified versions of complex reality. This simplifications have often led to the assumption of linear first order differential equa- tions such as the linear reservoir theory or derivatives thereof. It is evident that new approaches are necessary to close the gap between these simplifying assumptions and more realistic of nonlinear differential equations using the increased computer power. Over a period of several years the authors have developed a generic module for the computationally efficient simulation of nonlinear hydrologic/water resources systems. The module is based on the piecewise linearised nonlinear inhomogeneous differential equation of multiple input/output storage modules. Starting from soil moisture simu- lation the approach has been extendedand applied to other processes such as reservoir systems simulations as well as urban drainage systems analysis. The module has been implemented as a standard module into several practically applied complex simulation packages such as Reservoirs System Operation, GIS-based Catchment Modelling and Urban Pollution Load Modelling The scope of the presentation is to - describe the theoretical and practical background of the simulation module - the range of applicability - give validated examples of application
Stabilization and robustness of non-linear unity-feedback system - Factorization approach
NASA Technical Reports Server (NTRS)
Desoer, C. A.; Kabuli, M. G.
1988-01-01
The paper is a self-contained discussion of a right factorization approach in the stability analysis of the nonlinear continuous-time or discrete-time, time-invariant or time-varying, well-posed unity-feedback system S1(P, C). It is shown that a well-posed stable feedback system S1(P, C) implies that P and C have right factorizations. In the case where C is stable, P has a normalized right-coprime factorization. The factorization approach is used in stabilization and simultaneous stabilization results.
Non-linear stability around the triangular libration points. [in earth-moon system
NASA Technical Reports Server (NTRS)
Mckenzie, R.; Szebehely, V.
1981-01-01
The configuration space around the triangular libration points in the Earth-Moon system is partitioned according to the stability of the motion. The regions around L4 and L5 are established where particles placed with zero initial velocity will librate. The complexity of the partitioning is revealed.
Indirect techniques for adaptive input-output linearization of non-linear systems
NASA Technical Reports Server (NTRS)
Teel, Andrew; Kadiyala, Raja; Kokotovic, Peter; Sastry, Shankar
1991-01-01
A technique of indirect adaptive control based on certainty equivalence for input output linearization of nonlinear systems is proven convergent. It does not suffer from the overparameterization drawbacks of the direct adaptive control techniques on the same plant. This paper also contains a semiindirect adaptive controller which has several attractive features of both the direct and indirect schemes.
CartaBlanca-rapid prototyping development environment for non-linear systems on unstructured grids.
VanderHeyden, W. B.; Livescu, D.; Padial-Collins, N. T.
2002-01-01
This talk describes a component-based nonlinear physical system simulation prototyping package written entirely in Java using objectoriented design, The package provides scientists and engineers a 'developer-friendly' software environment for large-scale computational algorithm and physical model development, on the Jacobian-Free Newton-Krylov solution method surrounding a finite-volume treatment of conservation equations. This enables a clean component-like implementation. We first provide motivation for the development of the software and then discuss software structure. Discussion .includes a description of the use of Java's built-in thread facility that enables parallel, shared-memory computations on a wide variety of unstructured grids with triangular, quadrilateral, tetrahedral and hexahedral elements. We also discuss the use of Java's inheritance mechanism in the construction of a hierarchy of physics systems objects and linear and nonlinear solver objects that simplify development and foster software re-use. Following this, we show results from example calculations and then discuss plans including the extension of the software to distributed memory computer systems.
NASA Technical Reports Server (NTRS)
Sidar, M.
1976-01-01
The problem of identifying constant and variable parameters in multi-input, multi-output, linear and nonlinear systems is considered, using the maximum likelihood approach. An iterative algorithm, leading to recursive identification and tracking of the unknown parameters and the noise covariance matrix, is developed. Agile tracking and accurate and unbiased identified parameters are obtained. Necessary conditions for a globally asymptotically stable identification process are provided; the conditions proved to be useful and efficient. Among different cases studied, the stability derivatives of an aircraft were identified and some of the results are shown as examples.
NASA Astrophysics Data System (ADS)
Zhang, Yao-Ming; Gu, Yan; Chen, Jeng-Tzong
2011-05-01
For a long time, most of the current numerical methods, including the finite element method, have not been efficient to analyze stress fields of very thin structures, such as the problems of thin coatings and their interfacial/internal mechanics. In this paper, the boundary element method for 2-D elastostatic problems is studied for the analysis of multi-coating systems. The nearly singular integrals, which is the primary obstacle associated with the BEM formulations, are dealt with efficiently by using a semi-analytical algorithm. The proposed semi-analytical integral formulas, compared with current analytical methods in the BEM literature, are suitable for high-order geometry elements when nearly singular integrals need to be calculated. Owing to the employment of the curved surface elements, only a small number of elements need to be divided along the boundary, and high accuracy can be achieved without increasing more computational efforts. For the test problems studied, very promising results are obtained when the thickness of coated layers is in the orders of 10-6-10-9, which is sufficient for modeling most coated systems in the micro- or nano-scales.
The solution of non-linear hyperbolic equation systems by the finite element method
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.; Zienkiewicz, O. C.
1984-01-01
A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.
NASA Astrophysics Data System (ADS)
Milani, Gabriele; Valente, Marco
2015-12-01
This study presents some FE results regarding the behavior under horizontal loads of eight existing masonry towers located in the North-East of Italy. The towers, albeit unique for geometric and architectural features, show some affinities which justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., all features which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. On the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analysed under seismic loads acting along geometric axes of the plan section, both under non-linear static (pushover) and non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Pushover analyses are performed with both G1 and G2 horizontal loads distribution, according to Italian code requirements, along X+/- and Y+/- directions. Non-linear dynamic analyses are performed along both X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some few results are presented in this paper. It is found that the results obtained with pushover analyses reasonably well fit expensive non-linear dynamic simulations, with a slightly less conservative trend.
Milani, Gabriele E-mail: gabriele.milani@polimi.it; Valente, Marco
2015-12-31
This study presents some FE results regarding the behavior under horizontal loads of eight existing masonry towers located in the North-East of Italy. The towers, albeit unique for geometric and architectural features, show some affinities which justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., all features which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. On the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analysed under seismic loads acting along geometric axes of the plan section, both under non-linear static (pushover) and non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Pushover analyses are performed with both G1 and G2 horizontal loads distribution, according to Italian code requirements, along X+/− and Y+/− directions. Non-linear dynamic analyses are performed along both X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some few results are presented in this paper. It is found that the results obtained with pushover analyses reasonably well fit expensive non-linear dynamic simulations, with a slightly less conservative trend.
NASA Technical Reports Server (NTRS)
Bhattacharjee, A.; Hasegawa, A.
1990-01-01
The Final Technical Report on linear and non-linear studies of Alfven waves in space is presented. Areas of research included relaxation of magnetotail plasmas with field-aligned currents; the equilibrium dayside magnetosphere; macroscale particle simulation of kinetic Alfven wave physics; ballooning stability of plasmas with sheared equilibrium flows; theory of the drift-mirror instability; collisionless tearing instability in magnetotail plasmas; and nonadiabatic behavior of the magnetic moment of a charged particle in a dipole magnetic field and the development of stochastic webs.
NASA Astrophysics Data System (ADS)
Kozelov, B. V.; Golovchanskaya, I. V.; Mingalev, O. V.
2011-08-01
We investigate time evolution of scaling index αA that characterizes auroral luminosity fluctuations at the beginning of substorm expansion. With the use of UVI images from the Polar satellite, it is shown that αA typically varies from values less than unity to ~1.5, increasing with breakup progress. Similar scaling features were previously reported for fluctuations at smaller scales from all-sky TV observations. If this signature is interpreted in terms of non-linear interactions between scales, it means that the power of small-scale fluctuations is transferred with time to larger scales, a kind of the inverse cascade. Scaling behavior in the aurora during substorm activity is compared with that in the field-aligned currents simulated numerically in the model of non-linear interactions of Alfvénic coherent structures, according to the Chang et al. (2004) scenario. This scenario also suggests an inverse cascade, manifesting in clustering of small-scale field-aligned current filaments of the same polarity and formation of "coarse-grained" structures of field-aligned currents.
Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.
Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H
2015-02-23
The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other. PMID:25836428
Crewther, David P; Crewther, Sheila G
2010-01-01
Physiological studies of color processing have typically measured responses to spatially varying chromatic stimuli such as gratings, while psychophysical studies of color include color naming, color and light, as well as spatial and temporal chromatic sensitivities. This raises the question of whether we have one or several cortical color processing systems. Here we show from non-linear analysis of human visual evoked potentials (VEP) the presence of distinct and independent temporal signatures for form and surface color processing. Surface color stimuli produced most power in the second order Wiener kernel, indicative of a slowly recovering neural system, while chromatic form stimulation produced most power in the first order kernel (showing rapid recovery). We find end-spectral saturation-dependent signals, easily separable from achromatic signals for surface color stimuli. However physiological responses to form color stimuli, though varying somewhat with saturation, showed similar waveform components. Lastly, the spectral dependence of surface and form color VEP was different, with the surface color responses almost vanishing with yellow-grey isoluminant stimulation whereas the form color VEP shows robust recordable signals across all hues. Thus, surface and form colored stimuli engage different neural systems within cortex, pointing to the need to establish their relative contributions under the diverse chromatic stimulus conditions used in the literature. PMID:21187960
NASA Astrophysics Data System (ADS)
Morasse, Bertrand; Chatigny, Stéphane; Gagnon, Éric; de Sandro, Jean-Philippe; Desrosiers, Cynthia
2009-02-01
Pulseshaping is important in high energy pulsed fiber MOPA system to mitigate non-linear effects and optimize the processing of different materials. However, pulseshaping is greatly limited by the spectral features of the semiconductor seed source commonly used as the master oscillator. Through the appropriate design of an external fiber Bragg grating (FBG) and adequate current modulation, the spectrum of the fiber-coupled seed laser was broadened to suppress stimulated Brillouin scattering occurring in the amplifier chain and the central emission wavelength and bandwidth were controlled. Pulseshaping is also quickly limited by the saturation energy and doping level of standard aluminosilicate ytterbium doped fibers used in the power amplifier even with large core diameter. Co-doping the fiber with phosphorus greatly increases the saturation energy of the system, which gives smoother pulseshape and significantly lower stimulated Raman scattering (SRS). It is shown that going from 1060 nm to longer emission wavelength at 1090 nm with this fiber increases further the pulseshaping capabilities and reduces SRS. The phosphorus codoping also allows higher ytterbium doping level without photo-degradation, which decreases nonlinear effects generation during the amplification while giving more flexible pump wavelength choice and efficiency.
NASA Astrophysics Data System (ADS)
Song, Ningfang; Luo, Xinkai; Li, Huipeng; Li, Jiao
2015-10-01
The non-linearity of the phase shifting mechanism in white light interferometry system can seriously affect the measuring accuracy of the system. In this paper, the correcting method is to combine the displacement feedback control technology with the fuzzy PID control technology. Displacement feedback control mechanism and fuzzy PID controller are designed and then try to figure it out through Matlab simulation and experiment.. The result shows that combining the displacement feedback control technology with the fuzzy PID control technology can fulfill decent overall non-linear correction in the white light interferometry measuring system. Meanwhile, the accuracy of the correction is high and the non-linearity drop from 2% to 0.1%.
NASA Astrophysics Data System (ADS)
Lucio Rapoport, Diego
2013-04-01
We present a unified principle for science that surmounts dualism, in terms of torsion fields and the non-orientable surfaces, notably the Klein Bottle and its logic, the Möbius strip and the projective plane. We apply it to the complex numbers and cosmology, to non-linear systems integrating the issue of hyperbolic divergences with the change of orientability, to the biomechanics of vision and the mammal heart, to the morphogenesis of crustal shapes on Earth in connection to the wavefronts of gravitation, elasticity and electromagnetism, to pattern recognition of artificial images and visual recognition, to neurology and the topographic maps of the sensorium, to perception, in particular of music. We develop it in terms of the fundamental 2:1 resonance inherent to the Möbius strip and the Klein Bottle, the minimal surfaces representation of the wavefronts, and the non-dual Klein Bottle logic inherent to pattern recognition, to the harmonic functions and vector fields that lay at the basis of geophysics and physics at large. We discuss the relation between the topographic maps of the sensorium, and the issue of turning inside-out of the visual world as a general principle for cognition, topological chemistry, cell biology and biological morphogenesis in particular in embryology
NASA Astrophysics Data System (ADS)
Saltogianni, Vasso; Stiros, Stathis
2012-11-01
The adjustment of systems of highly non-linear, redundant equations, deriving from observations of certain geophysical processes and geodetic data cannot be based on conventional least-squares techniques, and is based on various numerical inversion techniques. Still these techniques lead to solutions trapped in local minima, to correlated estimates and to solution with poor error control. To overcome these problems, we propose an alternative numerical-topological approach inspired by lighthouse beacon navigation, usually used in 2-D, low-accuracy applications. In our approach, an m-dimensional grid G of points around the real solution (an m-dimensional vector) is at first specified. Then, for each equation an uncertainty is assigned to the corresponding measurement, and the sets of the grid points which satisfy the condition are detected. This process is repeated for all equations, and the common section A of the sets of grid points is defined. From this set of grid points, which define a space including the real solution, we compute its center of weight, which corresponds to an estimate of the solution, and its variance-covariance matrix. An optimal solution can be obtained through optimization of the uncertainty in each observation. The efficiency of the overall process was assessed in comparison with conventional least squares adjustment.
Linear center-of-mass dynamics emerge from non-linear leg-spring properties in human hopping.
Riese, Sebastian; Seyfarth, Andre; Grimmer, Sten
2013-09-01
Given the almost linear relationship between ground-reaction force and leg length, bouncy gaits are commonly described using spring-mass models with constant leg-spring parameters. In biological systems, however, spring-like properties of limbs may change over time. Therefore, it was investigated how much variation of leg-spring parameters is present during vertical human hopping. In order to do so, rest-length and stiffness profiles were estimated from ground-reaction forces and center-of-mass dynamics measured in human hopping. Trials included five hopping frequencies ranging from 1.2 to 3.6 Hz. Results show that, even though stiffness and rest length vary during stance, for most frequencies the center-of-mass dynamics still resemble those of a linear spring-mass hopper. Rest-length and stiffness profiles differ for slow and fast hopping. Furthermore, at 1.2 Hz two distinct control schemes were observed. PMID:23880438
Mauguiere, Frederic; Farantos, Stavros C; Suarez, Jaime; Schinke, Reinhard
2011-06-28
The diffuse vibrational bands, observed in the ultraviolet photodissociation spectrum of nitrous oxide by exciting the molecule in the first (1)A' state, have recently been attributed to resonances localized mainly in the NN stretch and bend degrees of freedom. To further investigate the origin of this localization, fundamental families of periodic orbits emanating from several stationary points of the (1)A' potential energy surface and bifurcations of them are computed. We demonstrate that center-saddle bifurcations of periodic orbits are the main mechanism for creating stable regions in phase space that can support the partial trapping of the wave packet, and thus they explain the observed spectra. A non-linear mechanical methodology, which involves the calculation of equilibria, periodic orbits, and transition states in normal form coordinates, is applied for an in detail exploration of phase space. The fingerprints of the phase space structures in the quantum world are identified by solving the time dependent Schrödinger equation and calculating autocorrelation functions. This demonstrates that different reaction channels could be controlled if exact knowledge of the phase space structure is available to guide the initial excitation of the molecule. PMID:21721625
How to include the nonlinear Cox-Voinov law into sloshing dynamics? A weakly non linear approach
NASA Astrophysics Data System (ADS)
Viola, Francesco; Brun, Pierre-Thomas; Gallaire, Francois
2015-11-01
Fluid sloshing in a glass is a common example of damped oscillator, with the frequency derived in the potential flow limit. The damping rate is then evaluated considering the viscous dissipation at the wall, in the bulk and at the free surface, respectively. This classical theoretical result however differs from what is often seen in the laboratory when the attenuation of gravity waves happens in a small basin. In particular, the damping rate is found to increase as the sloshing amplitude decreases. Here we show that this enhanced damping is due to capillary forces at the contact line between the liquid and the container. The angle θd made by the liquid interface with the container walls (contact angle) is modeled as a non-linear function of the interface speed U, (Cox-Voinov law θd3 α U). We propose a multiple scale expansion scheme to consistently derive an amplitude equation using the Cox-Voinov law as boundary condition at the moving interface. The zero order problem reduces to the classical static meniscus problem, while the first order problem yields an eigenvalue problem defining the viscous sloshing modes. At an higher order, a compatibility condition has to be enforced, yielding an amplitude equation. Solving the later, we recover the expected increase of the damping rate as the sloshing amplitude decreases, an effect thus attributed to capillary effects.
Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.; Guyer, Robert A.; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.
2016-06-07
A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acoustic waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.
NASA Astrophysics Data System (ADS)
Soman, M.; Stefanov, K.; Weatherill, D.; Holland, A.; Gow, J.; Leese, M.
2015-02-01
The Jovian system is the subject of study for the Jupiter Icy Moon Explorer (JUICE), an ESA mission which is planned to launch in 2022. The scientific payload is designed for both characterisation of the magnetosphere and radiation environment local to the spacecraft, as well as remote characterisation of Jupiter and its satellites. A key instrument on JUICE is the high resolution and wide angle camera, JANUS, whose main science goals include detailed characterisation and study phases of three of the Galilean satellites, Ganymede, Callisto and Europa, as well as studies of other moons, the ring system, and irregular satellites. The CIS115 is a CMOS Active Pixel Sensor from e2v technologies selected for the JANUS camera. It is fabricated using 0.18 μ m CMOS imaging sensor process, with an imaging area of 2000 × 1504 pixels, each 7 μ m square. A 4T pixel architecture allows for efficient correlated double sampling, improving the readout noise to better than 8 electrons rms, whilst the sensor is operated in a rolling shutter mode, sampling at up to 10 Mpixel/s at each of the four parallel outputs.A primary parameter to characterise for an imaging device is the relationship that converts the sensor's voltage output back to the corresponding number of electrons that were detected in a pixel, known as the Charge to Voltage Factor (CVF). In modern CMOS sensors with small feature sizes, the CVF is known to be non-linear with signal level, therefore a signal-dependent measurement of the CIS115's CVF has been undertaken and is presented here. The CVF is well modelled as a quadratic function leading to a measurement of the maximum charge handling capacity of the CIS115 to be 3.4 × 104 electrons. If the CIS115's response is assumed linear, its CVF is 21.1 electrons per mV (1/47.5 μ V per electron).
NASA Astrophysics Data System (ADS)
Forzoni, Andrea; Storms, J. E. A.; Reimann, Tony; Moreau, Julien; Jouet, Gwenael
2015-08-01
Disentangling the impact of climatic and sea level variations on fluvio-deltaic stratigraphy is still an outstanding question in sedimentary geology and geomorphology. We used the Golo River system, Corsica, France, as a natural laboratory to investigate the impact of Late Quaternary climate and sea level oscillations on sediment flux from a catchment and on fluvio-deltaic stratigraphy. We applied a numerical model, PaCMod, which calculates catchment sediment production and transport and compared modeling output to the sedimentary record of the Golo alluvial-coastal plain, whose chronology was reinterpreted using new optical stimulated luminescence (OSL) ages on feldspars. Our modeling, OSL ages, and geomorphological results indicate that the two main phases of braidplain development in the Golo alluvial-coastal plain occurred during the cold-dry phases of MIS5 and during the late MIS4-early MIS3, as a consequence of high catchment erosion rates and low water discharge. Incision and sediment reworking occurred during sea level low stand periods (MIS4 and late MIS3-MIS2). High sediment flux pulses from the catchment outlet were generated during the Lateglacial and early Holocene, as a result of the release of sediments previously stored within the catchment and enhanced snowmelt. Our results suggest a non-linear response of the Golo River system to climatic and eustatic changes, caused by sediment storage within the catchment and geomorphological thresholds. This indicates that a direct comparison between palaeo-climate and stratigraphy is not possible without considering catchment sediment storage and sediment transport delays out of the catchment.
Bhattacharjee, Saurav Das, Nilakshi
2015-10-15
A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping of DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Saurav; Das, Nilakshi
2015-10-01
A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping of DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.
NASA Astrophysics Data System (ADS)
Sanchez-Vila, X.; Rubol, S.; Fernandez-Garcia, D.
2011-12-01
Despite the fact that the prognoses on the availability of resources related to different climate scenarios have been already formulated, the complex hydrological and biogeochemical reactions taking place in different compartments in natural environmental media are poorly understood, especially regarding the interactions between water bodies, and the reactions taking place at soil-water interfaces. Amongst them, the inter-relationship between hydrology, chemistry and biology has important implications in natural (rivers, lakes) and man-made water facilities (lagoons, artificial recharge pounds, reservoirs, slow infiltration systems, etc). The consequences involve environment, economic, social and health-risk aspects. At the current stage, only limited explanations are available to understand the implications of these relationships on ecosystem services, water quality and water quantity. Therefore, there is an urgent need to seek a full understanding of these physical-biogeochemical processes in water-bodies, sediments and biota and its implications in ecological and health risk. We present a soil column experiment and a mathematical model which aim to study the mutual interplay between water and bacteria activity in porous media, the corresponding dynamics and the feedback on nutrient cycling by using a multidisciplinary approach.
Palevicius, Paulius; Ragulskis, Minvydas; Palevicius, Arvydas; Ostasevicius, Vytautas
2014-01-01
Optical investigation of movable microsystem components using time-averaged holography is investigated in this paper. It is shown that even a harmonic excitation of a non-linear microsystem may result in an unpredictable chaotic motion. Analytical results between parameters of the chaotic oscillations and the formation of time-averaged fringes provide a deeper insight into computational and experimental interpretation of time-averaged MEMS holograms. PMID:24451467
NASA Astrophysics Data System (ADS)
Geiges, A.; Nowak, W.; Rubin, Y.
2013-12-01
Stochastic models of sub-surface systems generally suffer from parametric and conceptual uncertainty. To reduce the model uncertainty, model parameters are calibrated using additional collected data. These data often come from costly data acquisition campaigns that need to be optimized to collect the data with the highest data utility (DU) or value of information. In model-based approaches, the DU is evaluated based on the uncertain model itself and is therefore uncertain as well. Additionally, for non-linear models, data utility depends on the yet unobserved measurement values and can only be estimated as an expected value over an assumed distribution of possible measurement values. Both factors introduce uncertainty into the optimization of field campaigns. We propose and investigate a sequential interaction scheme between campaign optimization, data collection and model calibration. The field campaign is split in individual segments. Each segment consists of optimization, segment-wise data collection, and successive model calibration or data assimilation. By doing so, (1) the expected data utility for the newly collected data is replaced by their actual one, (2) the calibration restricts both conceptual and parametric model uncertainty, and thus (3) the distribution of possible future data values for the subsequent campaign segments also changes. Hence, the model to describe the real system improves successively with each collected data segment, and so does the estimate of the yet remaining data requirements to achieve the overall investigation goals. We will show that using the sequentially improved model for the optimal design (OD) of the remaining field campaign leads to superior and more targeted designs.However, this traditional sequential OD optimizes small data segments one-by-one. In such a strategy, possible mutual dependencies with the possible data values and the optimization of data values collection in later segments are neglected. This allows a
2006-11-17
Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less
NASA Technical Reports Server (NTRS)
Namburu, Raju R.; Tamma, Kumar K.
1991-01-01
The thermally-induced strucural dynamic response of flexural configurations influenced by linear/nonlinear thermal effects is presented in conjunction with 'unified' transient approaches for effectively tackling this class of interdisciplinary problems. For illustrative purposes, the flexural structural models are assumed to be of the Euler-Bernoulli type. The purpose of the present paper is to not only provide an understanding of the influence of general linear/nonlinear thermal effects on flexural configurations, but also to provide to the analyst effective computational tools which help preserve a unified technology for the interdisciplinary areas encompassing structural mechanics/dynamics and thermal sciences. Several numerical test models illustrate the representative thermally-induced structural dynamic response of flexural configurations subjected to general linear/nonlinear temperature effects.
Non-linearity in clinical practice.
Petros, Peter
2003-05-01
The whole spectrum of medicine consists of complex non-linear systems that are balanced and interact with each other. How non-linearity confers stability on a system and explains variation and uncertainty in clinical medicine is discussed. A major theme is that a small alteration in initial conditions may have a major effect on the end result. In the context of non-linearity, it is argued that 'evidence-based medicine' (EBM) as it exists today can only ever be relevant to a small fraction of the domain of medicine, that the 'art of medicine' consists of an intuitive 'tuning in' to these complex systems and as such is not so much an art as an expression of non-linear science. The main cause of iatrogenic disease is interpreted as a failure to understand the complexity of the systems being treated. Case study examples are given and analysed in non-linear terms. It is concluded that good medicine concerns individualized treatment of an individual patient whose body functions are governed by non-linear processes. EBM as it exists today paints with a broad and limited brush, but it does promise a fresh new direction. In this context, we need to expand the spectrum of scientific medicine to include non-linearity, and to look upon the 'art of medicine' as a historical (but unstated) legacy in this domain. PMID:12787180
Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten
2016-06-01
The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental
NASA Astrophysics Data System (ADS)
Nanda, Trushnamayee; Sahoo, Bhabagrahi; Beria, Harsh; Chatterjee, Chandranath
2016-08-01
Although flood forecasting and warning system is a very important non-structural measure in flood-prone river basins, poor raingauge network as well as unavailability of rainfall data in real-time could hinder its accuracy at different lead times. Conversely, since the real-time satellite-based rainfall products are now becoming available for the data-scarce regions, their integration with the data-driven models could be effectively used for real-time flood forecasting. To address these issues in operational streamflow forecasting, a new data-driven model, namely, the wavelet-based non-linear autoregressive with exogenous inputs (WNARX) is proposed and evaluated in comparison with four other data-driven models, viz., the linear autoregressive moving average with exogenous inputs (ARMAX), static artificial neural network (ANN), wavelet-based ANN (WANN), and dynamic nonlinear autoregressive with exogenous inputs (NARX) models. First, the quality of input rainfall products of Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA), viz., TRMM and TRMM-real-time (RT) rainfall products is assessed through statistical evaluation. The results reveal that the satellite rainfall products moderately correlate with the observed rainfall, with the gauge-adjusted TRMM product outperforming the real-time TRMM-RT product. The TRMM rainfall product better captures the ground observations up to 95 percentile range (30.11 mm/day), although the hit rate decreases for high rainfall intensity. The effect of antecedent rainfall (AR) and climate forecast system reanalysis (CFSR) temperature product on the catchment response is tested in all the developed models. The results reveal that, during real-time flow simulation, the satellite-based rainfall products generally perform worse than the gauge-based rainfall. Moreover, as compared to the existing models, the flow forecasting by the WNARX model is way better than the other four models studied herein with the
NASA Astrophysics Data System (ADS)
Sharma, S.; Narayan, A.
2001-06-01
The non-linear oscillation of inter-connected satellites system about its equilibrium position in the neighabourhood of main resonance ??=3D 1, under the combined effects of the solar radiation pressure and the dissipative forces of general nature has been discussed. It is found that the oscillation of the system gets disturbed when the frequency of the natural oscillation approaches the resonance frequency.
Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets
Wyper, P. F. Pontin, D. I.
2014-10-15
In this work, the dynamic magnetic field within a tearing-unstable three-dimensional current sheet about a magnetic null point is described in detail. We focus on the evolution of the magnetic null points and flux ropes that are formed during the tearing process. Generally, we find that both magnetic structures are created prolifically within the layer and are non-trivially related. We examine how nulls are created and annihilated during bifurcation processes, and describe how they evolve within the current layer. The type of null bifurcation first observed is associated with the formation of pairs of flux ropes within the current layer. We also find that new nulls form within these flux ropes, both following internal reconnection and as adjacent flux ropes interact. The flux ropes exhibit a complex evolution, driven by a combination of ideal kinking and their interaction with the outflow jets from the main layer. The finite size of the unstable layer also allows us to consider the wider effects of flux rope generation. We find that the unstable current layer acts as a source of torsional magnetohydrodynamic waves and dynamic braiding of magnetic fields. The implications of these results to several areas of heliophysics are discussed.
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
2000-11-01
The response of simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of one of the lowest natural frequencies is investigated by using improved mode expansions with respect to those assumed in Parts I and II of the present study. Two cases are studied: (1) shells in vacuo; and (2) shells filled with stagnant water. The improved expansions allow checking the accuracy of the solutions previously obtained and giving definitive results within the limits of Donnell's non-linear shallow-shell theory. The improved mode expansions include: (1) harmonics of the circumferential mode number n under consideration, and (2) only the principal n, but with harmonics of the longitudinal mode included. The effect of additional longitudinal modes is absolutely insignificant in both the driven and companion mode responses. The effect of modes with 2 n circumferential waves is very limited on the trend of non-linearity, but is significant in the response with companion mode participation in the case of lightly damped shells (empty shells). In particular, the travelling wave response appears for much lower vibration amplitudes and presents a frequency range without stable responses, corresponding to a beating phenomenon. A liquid (water) contained in the shell generates a much stronger softening behaviour of the system. Experiments with a water-filled circular cylindrical shell made of steel are in very good agreement with the present theory.
NASA Astrophysics Data System (ADS)
Olmsted, Peter
2004-03-01
"Shear banding", i.e. flow-induced macroscopic "phase coexistence" or apparent "phase transitions", has been observed in many complex fluids, including wormlike micelles, lamellar systems, associating polymers, and liquid crystals. In this talk I will review this behavior, and discuss a general phenomenology for understanding shear banding and flow-induced phase separation in complex fluids, at a "thermodynamic" level (as opposed to a "statistical mechanics" level). An accurate theory must include the relevant microstructural order parameters, and construct the fully coupled spatially-dependent hydrodynamic equations of motion. Although this has been successfully done for very few model fluids, we can nonetheless obtain general rules for the "phase behavior". Perhaps surprisingly, the interface between coexisting phases plays a crucial role in determining the steady state behavior, and is much more important than its equilibrium counterpart. I will discuss recent work addressed at the kinetics and morphology of wormlike micellar solutions, and touch on models for more complex oscillatory and possibly chaotic systems.
NASA Astrophysics Data System (ADS)
Goulon, J.; Brouder, Ch.; Rogalev, A.; Goujon, G.; Wilhelm, F.
2014-10-01
We discuss how X-ray magnetic circular dichroism (XMCD) and X-ray magnetic linear dichroism (XMLD) may complement each other to probe the nonlinear nature of the resonant precession of either spin or orbital magnetization components in aligned ferro-, ferri- or even antiferro-magnets. The Landau-Lifshitz-Gilbert (LLG) equation is solved in a rotating frame locked to the microwave pump field, while treating as time-dependent perturbations the terms which, in the formulation of the free energy density, break down the cylindrical symmetry of precession. Concretely, we analyze the time-oscillating deviations of the magnetization from the steady-state solutions of the LLG equation hereafter called SS-modes. At any perturbation order, one may derive magnetic dipole components which oscillate at harmonic frequencies of the pump frequency and could be probed with XMCD. Under bichromatic pumping, frequency mixing arises from a time-dependent Zeeman coupling between two rotating frames locked to each individual pump field. Similarly, we expect magnetic quadrupole components to oscillate at the same frequencies. For consistency, their derivation requires a perturbation calculation up to second order. The latter time-reversal even, rank-2 magnetic tensor components can be probed only with XMLD. Beyond the (reciprocal) linear dichroism classically measured in ferri- or antiferromagnetic samples, a non-reciprocal XMLD signal is to be expected when space parity is lost. Nonlinear effects strongly depend upon the relative orientations of the external bias field and of the pump field with respect to the symmetry axes of the magnetic system. This holds true for the foldover lineshape distortions, harmonic generation, frequency mixing or multiquanta excitations.
NASA Astrophysics Data System (ADS)
Hagedorn, P.
The mathematical pendulum is used to provide a survey of free and forced oscillations in damped and undamped systems. This simple model is employed to present illustrations for and comparisons between the various approximation schemes. A summary of the Liapunov stability theory is provided. The first and the second method of Liapunov are explained for autonomous as well as for nonautonomous systems. Here, a basic familiarity with the theory of linear oscillations is assumed. La Salle's theorem about the stability of invariant domains is explained in terms of illustrative examples. Self-excited oscillations are examined, taking into account such oscillations in mechanical and electrical systems, analytical approximation methods for the computation of self-excited oscillations, analytical criteria for the existence of limit cycles, forced oscillations in self-excited systems, and self-excited oscillations in systems with several degrees of freedom. Attention is given to Hamiltonian systems and an introduction to the theory of optimal control is provided.
NASA Astrophysics Data System (ADS)
Morecroft, John
System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.
NASA Astrophysics Data System (ADS)
Zhou, J. X.; Zhang, L.
2005-01-01
Incremental harmonic balance (IHB) formulations are derived for general multiple degrees of freedom (d.o.f.) non-linear autonomous systems. These formulations are developed for a concerned four-d.o.f. aircraft wheel shimmy system with combined Coulomb and velocity-squared damping. A multi-harmonic analysis is performed and amplitudes of limit cycles are predicted. Within a large range of parametric variations with respect to aircraft taxi velocity, the IHB method can, at a much cheaper cost, give results with high accuracy as compared with numerical results given by a parametric continuation method. In particular, the IHB method avoids the stiff problems emanating from numerical treatment of aircraft wheel shimmy system equations. The development is applicable to other vibration control systems that include commonly used dry friction devices or velocity-squared hydraulic dampers.
NASA Astrophysics Data System (ADS)
Wei, Guoliang; Liu, Shuai; Wang, Licheng; Wang, Yongxiong
2016-07-01
In this paper, based on the event-triggered mechanism, the problem of distributed set-membership filtering is concerned for a class of time-varying non-linear systems over sensor networks subject to saturation effects. Different from the traditional periodic sample-data approach, the filter is updated only when the predefined event is satisfied, which the event is defined according to the measurement output. For each node, the proposed novel event-triggered mechanism can reduce the unnecessary information transmission between sensors and filters. The purpose of the addressed problem is to design a series of distributed set-membership filters, for all the admissible unknown but bounded noises, non-linearities and sensor saturation, such that the set of all possible states can be determined. The desired filter parameters are obtained by solving a recursive linear matrix inequality that can be computed recursively using the available MATLAB toolbox. Finally, a simulation example is exploited to show the effectiveness of the proposed design approach in this paper.
NASA Technical Reports Server (NTRS)
Chung, W. W.; Mcneill, W. E.; Stortz, M. W.
1993-01-01
The nonlinear inverse transformation flight control system design method is applied to the Lockheed Ft. Worth Company's E-7D short takeoff and vertical land (STOVL) supersonic fighter/attack aircraft design with a modified General Electric F110 engine which has augmented propulsive lift capability. The system is fully augmented to provide flight path control and velocity control, and rate command attitude hold for angular axes during the transition and hover operations. In cruise mode, the flight control system is configured to provide direct thrust command, rate command attitude hold for pitch and roll axes, and sideslip command with turn coordination. A control selector based on the nonlinear inverse transformation method is designed specifically to be compatible with the propulsion system's physical configuration which has a two dimensional convergent-divergent aft nozzle, a vectorable ventral nozzle, and a thrust augmented ejector. The nonlinear inverse transformation is used to determine the propulsive forces and nozzle deflections, which in combination with the aerodynamic forces and moments (including propulsive induced contributions), and gravitational force, are required to achieve the longitudinal and vertical acceleration commands. The longitudinal control axes are fully decoupled within the propulsion system's performance envelope. A piloted motion-base flight simulation was conducted on the Vertical Motion Simulator (VMS) at NASA Ames Research Center to examine the handling qualities of this design. Based on results of the simulation, refinements to the control system have been made and will also be covered in the report.
ERIC Educational Resources Information Center
Strobel, Johannes; Jonassen, David H.; Ionas, Ioan Gelu
2008-01-01
Learning in complex and ill-structured knowledge domains requires accommodation of multiple perspectives embedded in authentic activities and the reconciliation of those perspectives with personal beliefs resulting in conceptual change. Cognitive flexibility hypertext systems support that process by enabling learners to explore authentic cases…
Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.
2015-12-29
A method and system includes generating a first coded acoustic signal including pulses each having a modulated signal at a central frequency; and a second coded acoustic signal each pulse of which includes a modulated signal a central frequency of which is a fraction d of the central frequency of the modulated signal for the corresponding pulse in the first plurality of pulses. A receiver detects a third signal generated by a non-linear mixing process in the mixing zone and the signal is processed to extract the third signal to obtain an emulated micro-seismic event signal occurring at the mixing zone; and to characterize properties of the medium or creating a 3D image of the properties of the medium, or both, based on the emulated micro-seismic event signal.
NASA Astrophysics Data System (ADS)
Langenbruch, C.
2015-12-01
In August 2014 segmented lateral dyke growth has been observed in a rifting event at Bardarbunga volcanic system, Iceland. The temporal evolution of the magma source and the physical nature of magma flow process during dyke propagation and arrest are unclear. The epidemic-type aftershock sequence model has been used to detect fluid signals in seismicity data. We use the earthquake catalog recorded during the rifting event to reconstruct the magma flow signal at the feeding source of the dyke. We find that the segmentation of dyke growth is caused by a pulsating nature of the magma flow source. We identify two main magma flow pulses, which initiate and propagate the two main segments of the dyke. During phases of dyke arrest magma flow pulses are low and cannot further propagate the dyke. We use the reconstructed magma flow signal to set up a numerical model of non-linear magma pressure diffusion. By using the magma pressure changes resulting from magma flow, we simulate the earthquake catalog caused by the reduction of the effective principal stress. We observe an excellent agreement between the spatio-temporal characteristics of the simulated earthquake catalog and recorded seismicity. Our results suggest that the process of magma pressure relaxation can be described as a non-linear diffusion process. Because the opening of the dyke creates significant new fracture volume, the permeability of the rock is strongly increasing and the diffusion process becomes highly non-linear. Our analysis is based on lessons learned from analysis of seismicity observed during hydraulic fracturing of hydrocarbon reservoirs. Despite large differences in scale, the underlying physical processes are comparable. Finally, we analyze the decay of seismic activity after start of the effusive fissure eruption near the end of the dyke. The magma flow strongly decreases and seismic activity decays according to Omori's law, which describes the decay of aftershock activity after tectonic
Detecting non-linearities in neuro-electrical signals: A study of synchronous local field potentials
NASA Astrophysics Data System (ADS)
Müller-Gerking, Johannes; Martinerie, Jacques; Neuenschwander, Sergio; Pezard, Laurent; Renault, Bernard; Varela, Francisco J.
The question of the presence and detection of non-linear dynamics and possibly low-dimensional chaos in the brain is still an open question, with recent results indicating that initial claims for low dimensionality were faulted by incomplete statistical testing. To make some progress on this question, our approach was to use stringent data analysis of precisely controlled and behaviorally significant neuroelectric data. There are strong indications that functional brain activity is correlated with synchronous local field potentials. We examine here such synchronous episodes in data recorded from the visual system of behaving cats and pigeons. Our purpose was to examine under these ideal conditions whether the time series showed any evidence of non-linearity concommitantly with the arising of synchrony. To test for non-linearity we have used surrogate sets for non-linear forecasting, the false nearest strands method, and an examination of deterministic vs stochastic modeling. Our results indicate that the time series under examination do show evidence for traces of non-linear dynamics but weakly, since they are not robust under changes of parameters. We conclude that low-dimensional chaos is unlikely to be found in the brain, and that a robust detection and characterization of higher-dimensional non-linear dynamics is beyond the reach of current analytical tools.
Nam, Myeong-Ryong; Hashimoto, Tatsuaki; Ninomiya, Keiken
1994-12-31
Attitude control system for a satellite using a magnetic bearing momentum wheel (MBMW) with gimballing capability involves double control loops: the inner loop to control the wheel`s gimballing to be stable while it is exchanging the angular momentum with the spacecraft main body, and the outer loop for controlling satellite`s attitude. To cope with the magnetic bearing`s nonlinearity in the inner control loop, a sliding-mode controller is proposed. which is usually known to have simple control structure as well as anti-disturbance robustness. In this case, moreover, the sliding mode controller particularly provides the merit to feedback the wheel`s rotational velocity automatically into the gim-balling control. The designed controller`s performance is validated by numerical simulation. Additionally, a simple analytical form of the closed servo loop transfer function of the inner loop, which is necessary for the outer loop design, is proposed based upon numerical simulations on the system response.
Corradini, Maria G; Peleg, Micha
2006-01-01
Isothermal acrylamide formation in foods and asparagine-glucose model systems has ubiquitous features. On a time scale of about 60 min, at temperatures in the approximate range of 120-160 degrees C, the acrylamide concentration-time curve has a characteristic sigmoid shape whose asymptotic level and steepness increases with temperature while the time that corresponds to the inflection point decreases. In the approximate range of 160-200 degrees C, the curve has a clear peak, whose onset, height, width and degree of asymmetry depend on the system's composition and temperature. The synthesis-degradation of acrylamide in model systems has been recently described by traditional kinetic models. They account for the intermediate stages of the process and the fate of reactants involved at different levels of scrutiny. The resulting models have 2-6 rate constants, accounting for both the generation and elimination of the acrylamide. Their temperature dependence has been assumed to obey the Arrhenius equation, i.e., each step in the reaction was considered as having a fixed energy of activation. A proposed alternative is constructing the concentration curve by superimposing a Fermian decay term on a logistic growth function. The resulting model, which is not unique, has five parameters: a hypothetical uninterrupted generation-level, two steepness parameters; of the concentration climbs and fall and two time characteristics; of the acrylamide synthesis and elimination. According to this model, peak concentration is observed only when the two time constants are comparable. The peak's shape and height are determined by the gap between the two time constants and the relative magnitudes of the two "rate" parameters. The concept can be extended to create models of non-isothermal acrylamide formation. The basic assumption, which is yet to be verified experimentally, is that the momentary rate of the acrylamide synthesis or degradation is the isothermal rate at the momentary
NASA Astrophysics Data System (ADS)
AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.
1999-12-01
The non-linear response of empty and fluid-filled circular cylindrical shells to harmonic excitations is investigated. Both modal and point excitations have been considered. The model is suitable to study simply supported shells with and without axial constraints. Donnell's non-linear shallow-shell theory is used. The boundary conditions on radial displacement and the continuity of circumferential displacement are exactly satisfied. The radial deflection of the shell is expanded by using a basis of seven linear modes. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The equations of motion, obtained in Part I of this study, are studied by using a code based on the collocation method. The validation of the present model is obtained by comparison with other authoritative results. The effect of the number of axisymmetric modes used in the expansion on the response of the shell is investigated, clarifying questions open for a long time. The results show the occurrence of travelling wave response in the proximity of the resonance frequency, the fundamental role of the first and third axisymmetric modes in the expansion of the radial deflection with one longitudinal half-wave, and limit cycle responses. Modes with two longitudinal half-waves are also investigated.
Abusam, A; Keesman, K J; van Straten, G; Spanjers, H; Meinema, K
2001-01-01
When applied to large simulation models, the process of parameter estimation is also called calibration. Calibration of complex non-linear systems, such as activated sludge plants, is often not an easy task. On the one hand, manual calibration of such complex systems is usually time-consuming, and its results are often not reproducible. On the other hand, conventional automatic calibration methods are not always straightforward and often hampered by local minima problems. In this paper a new straightforward and automatic procedure, which is based on the response surface method (RSM) for selecting the best identifiable parameters, is proposed. In RSM, the process response (output) is related to the levels of the input variables in terms of a first- or second-order regression model. Usually, RSM is used to relate measured process output quantities to process conditions. However, in this paper RSM is used for selecting the dominant parameters, by evaluating parameters sensitivity in a predefined region. Good results obtained in calibration of ASM No. 1 for N-removal in a full-scale oxidation ditch proved that the proposed procedure is successful and reliable. PMID:11385868
NASA Astrophysics Data System (ADS)
Manciu, Felicia S.; Manciu, Marian; Sen, Surajit
2000-10-01
We consider a model dilute ferrofluid that is subjected to a strong, homogeneous magnetic field directed perpendicular to the surface of the ferrofluid, such that there is a chain formation in the direction perpendicular to the surface of the liquid. We study the propagation of impulses generated at high-frequency across finite times through the ferrofluid chains. Our numerical analysis shows that a very high-frequency sequence of non-linear acoustic pulses of appropriate magnitudes, initiated at the base of the container, can lead to the ejection of desired number of ferrofluid grains through the liquid-air interface. The proposed mechanism, if successfully realized in the laboratory, could help design a nozzle-free, ultrafast, ink-jet printer of unparalleled resolution.
Spin waves cause non-linear friction
NASA Astrophysics Data System (ADS)
Magiera, M. P.; Brendel, L.; Wolf, D. E.; Nowak, U.
2011-07-01
Energy dissipation is studied for a hard magnetic tip that scans a soft magnetic substrate. The dynamics of the atomic moments are simulated by solving the Landau-Lifshitz-Gilbert (LLG) equation numerically. The local energy currents are analysed for the case of a Heisenberg spin chain taken as substrate. This leads to an explanation for the velocity dependence of the friction force: The non-linear contribution for high velocities can be attributed to a spin wave front pushed by the tip along the substrate.
Non-linear dark energy clustering
Anselmi, Stefano; Ballesteros, Guillermo; Pietroni, Massimo E-mail: ballesteros@pd.infn.it
2011-11-01
We consider a dark energy fluid with arbitrary sound speed and equation of state and discuss the effect of its clustering on the cold dark matter distribution at the non-linear level. We write the continuity, Euler and Poisson equations for the system in the Newtonian approximation. Then, using the time renormalization group method to resum perturbative corrections at all orders, we compute the total clustering power spectrum and matter power spectrum. At the linear level, a sound speed of dark energy different from that of light modifies the power spectrum on observationally interesting scales, such as those relevant for baryonic acoustic oscillations. We show that the effect of varying the sound speed of dark energy on the non-linear corrections to the matter power spectrum is below the per cent level, and therefore these corrections can be well modelled by their counterpart in cosmological scenarios with smooth dark energy. We also show that the non-linear effects on the matter growth index can be as large as 10–15 per cent for small scales.
NASA Astrophysics Data System (ADS)
Kim, Young Woo; Matsuzaki, Sinya; Narikiyo, Tatsuo
In this paper, we propose a non-analytical but effective self-organizing modeling method, where system dynamics of interest are constructed in a polynomial affine formation with high granularity. The conventional data mining technique has the assessment scheme for representativeness of the developed model. However, if the model is applied to extract the desired values without considering the structural peculiarities such as input pattern used for constructing the dynamics, hardware specification used for data acquisition, and so on, it possibly shows substantial margin of modeling error. In order to correspond this type of control paradigm, we define the permissible set of state and input variables in order to characterize the data used for developing the model. The developed model is then applied to the programming based optimal control scheme where the optimal inputs are selected among the permissible set of the input variable, considering all the limitations specified by linear inequalities.
NASA Astrophysics Data System (ADS)
Velarde, M. G.; Ebeling, W.; Chetverikov, A. P.
2013-01-01
We study the thermal excitation of intrinsic localized modes in the form of solitons in 1d and 2d anharmonic lattices at moderately high temperatures. Such finite-amplitude fluctuations form long-living dynamical structures with life-time in the pico-second range thus surviving a relatively long time in comparison to other thermal fluctuations. Further we discuss the influence of such long-living fluctuations on the dynamics of added excess free electrons. The atomic lattice units are treated as quasi-classical objects interacting by Morse forces and stochastically moving according to Langevin equations. In 2d the atoms are initially organized in a triangular lattice. The electron distributions are in a first estimate represented by equilibrium adiabatic distributions in the actual polarization fields. Computer simulations show that in 2d systems such excitations are moving with supersonic velocities along lattice rows oriented with the cristallographic axes. By following the electron distributions we have also been able to study the excitations of solectron type (electron-soliton dynamic bound states) and estimate their life times.
NASA Astrophysics Data System (ADS)
Hachay, O. A.; Khachay, O. Y.; Klimko, V. K.; Shipeev, O. V.
2012-04-01
Geological medium is an open dynamical system, which is influenced on different scales by natural and man-made impacts, which change the medium state and lead as a result to a complicated many ranked hierarchic evolution. That is the subject of geo synergetics. Paradigm of physical mesomechanics, which was advanced by academician Panin V.E. and his scientific school, which includes the synergetic approach is a constructive method for research and changing the state of heterogenic materials [1]. That result had been obtained on specimens of different materials. In our results of research of no stationary geological medium in a frame of natural experiments in real rock massifs, which are under high man-made influence it was shown, that the state dynamics can be revealed with use synergetics in hierarchic medium. Active and passive geophysical monitoring plays a very important role for research of the state of dynamical geological systems. It can be achieved by use electromagnetic and seismic fields. Our experience of that research showed the changing of the system state reveals on the space scales and times in the parameters, which are linked with the peculiarities of the medium of the second or higher ranks [2-5]. Results of seismological and electromagnetic information showed the mutual additional information on different space-time levels of rock massive state, which are energetic influenced by explosions, used in mining technology. It is revealed a change of nonlinearity degree in time of the massive state by active influence on it. The description of massive movement in a frame of linear dynamical system does not satisfy the practical situation. The received results are of great significance because for the first time we could find the coincidences with the mathematical theory of open systems and experimental natural results with very complicated structure. On that base we developed a new processing method for the seismological information which can be used in
Aissaoui, Rachid; Ganea, Raluca; Aminian, Kamiar
2011-04-01
The purpose of this study was the development of a non-linear double inverted constrained pendulum model for the analysis of the movement of sit-to-stand (STS) transition. Ten able-bodied subjects perform five trials in their natural speed. Kinematics, kinetics as well as body worn accelerometer data were collected during the STS task using optoelectronic motion capture, force plate and inertial measurement unit, respectively. The conjugate momentum for the whole body which includes linear and angular motion correlates well with the accelerometric surface spanned by the accelerometer data. The partitioning of the conjugate momentum indicates a clear coordination between upper and lower limb after seat-off period. Moreover, the normalization procedure indicates a clear minimal and somehow invariant threshold value of the conjugate momentum to approximately 0.3 (body mass×body length) to perform the sit-to-stand for able-bodied subject. This threshold correlates well with the data obtained from accelerometeric index. The proposed accelerometric index is relevant to assess STS performance and to detect failed STS in clinics and outside a laboratory for patients with reduced mobility. PMID:21377682
Sustainability science: accounting for nonlinear dynamics in policy and social-ecological systems
Resilience is an emergent property of complex systems. Understanding resilience is critical for sustainability science, as linked social-ecological systems and the policy process that governs them are characterized by non-linear dynamics. Non-linear dynamics in these systems mean...
Potluri, Chandrasekhar; Anugolu, Madhavi; Schoen, Marco P; Subbaram Naidu, D; Urfer, Alex; Chiu, Steve
2013-11-01
Estimating skeletal muscle (finger) forces using surface Electromyography (sEMG) signals poses many challenges. In general, the sEMG measurements are based on single sensor data. In this paper, two novel hybrid fusion techniques for estimating the skeletal muscle force from the sEMG array sensors are proposed. The sEMG signals are pre-processed using five different filters: Butterworth, Chebychev Type II, Exponential, Half-Gaussian and Wavelet transforms. Dynamic models are extracted from the acquired data using Nonlinear Wiener Hammerstein (NLWH) models and Spectral Analysis Frequency Dependent Resolution (SPAFDR) models based system identification techniques. A detailed comparison is provided for the proposed filters and models using 18 healthy subjects. Wavelet transforms give higher mean correlation of 72.6 ± 1.7 (mean ± SD) and 70.4 ± 1.5 (mean ± SD) for NLWH and SPAFDR models, respectively, when compared to the other filters used in this work. Experimental verification of the fusion based hybrid models with wavelet transform shows a 96% mean correlation and 3.9% mean relative error with a standard deviation of ± 1.3 and ± 0.9 respectively between the overall hybrid fusion algorithm estimated and the actual force for 18 test subjects' k-fold cross validation data. PMID:24209927
NASA Astrophysics Data System (ADS)
Sethi, Rajandrea
2011-03-01
SummaryIn this study a method based on dual-well step drawdown test (i.e. a combination of an aquifer and a well performance test) for the determination of hydrodynamic parameters (namely storage coefficient and hydraulic conductivity), mechanical wellbore finite thickness skin factor, non-linear wellbore and non-linear aquifer parameters in an homogeneous confined aquifer is presented in order to put together aquifer and well tests. The interpretation procedure is based on the application of superposition principle to a large time logarithmic approximation of the solution. The advantages of this method, that can be considered an extension of Jacob step-test (1947) and Cooper-Jacob approximation (1946), are that: (I) it is possible to determine simultaneously aquifer and well properties in a single test; (II) the method is based on a large time approximation and it is therefore independent from wellbore storage; (III) if the well skin is absent, the aquifer parameters (storage coefficient and hydraulic conductivity) can be derived just from a single-well test; (IV) the interpretation procedure is easy to apply and robust and does not require any specific numeric code or software. The same procedure can be easily adapted to gas well testing. It is also shown that, even in the presence of linear and non-linear flow, skin effect and wellbore storage, the hydraulic conductivity (and not the storage coefficient) of the aquifer can be correctly estimated by the Cooper and Jacob (1946) method applied to a single-rate pumping test, using exclusively the large time drawdown data measured at the pumping well.
NASA Astrophysics Data System (ADS)
Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra
2016-03-01
A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.
Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves
2013-01-01
In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.
Holden, J E
2013-01-01
We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines 4-dimensional Gaussian filtering with EM deconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established 3 and 4-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications. PMID:23370699
NASA Astrophysics Data System (ADS)
Ahlkrona, Josefin; Lötstedt, Per; Kirchner, Nina; Zwinger, Thomas
2016-03-01
We propose and implement a new method, called the Ice Sheet Coupled Approximation Levels (ISCAL) method, for simulation of ice sheet flow in large domains during long time-intervals. The method couples the full Stokes (FS) equations with the Shallow Ice Approximation (SIA). The part of the domain where SIA is applied is determined automatically and dynamically based on estimates of the modeling error. For a three dimensional model problem, ISCAL computes the solution substantially faster with a low reduction in accuracy compared to a monolithic FS. Furthermore, ISCAL is shown to be able to detect rapid dynamic changes in the flow. Three different error estimations are applied and compared. Finally, ISCAL is applied to the Greenland Ice Sheet on a quasi-uniform grid, proving ISCAL to be a potential valuable tool for the ice sheet modeling community.
Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.
2015-06-02
A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resulting from linear interaction and the three dimensional image of is generated.
Non-linear Flood Risk Assessment
NASA Astrophysics Data System (ADS)
Mazzarella, A.
The genesis of floodings is very complex depending on hydrologic, meteorological and evapo-transpirative factors that are linked among themselves in a non linear way with numerous feedback processes. The Cantor dust and the rank-ordering statistics supply a proper framework for identifying a kind of a non linear order in the time succession of the floodings and so provide a basis for their prediction. When a catalogue is analysed, it is necessary to test its completeness with respect to the size of the recorded events and results obtained from analysis of catalogues that do not take into account such a test are suspect and possibly wrong, or, at least, unreliable. Floodings have no instrumentally determined magnitude scale, like that conventionally used for earthquakes, and this is why they are generally described in qualitative terms. For this reason, a semi-quantitative index, called ASI (Alluvial Strength Index) has been here developed that combines attributes of alluvial triggering mechanisms and effects on the territorial and hydraulic system.The historical succession of alluvial events occurred at high valley of Po river (Northern Italy), mean valley of Calore river (Southern Italy) and at Sarno, near Naples, have been accurately reconstructed on the basis of old documents and classified according to their ASI. The catalogues have been verified to be complete only for events classified at least as moderate and this probably because many of the lowest energetic events, especially in the past, escaped the detection. The identification of scale-invariances in the time clustering of alluvial events, both on short and long time scales, even if indicative of the complexity of their genesis, might be very helpful for the assessment and reduction of the hazard of future disasters. For example, on the basis of the results of the rank-ordering statistics, the most probable occurrence of an alluvial event at Sarno, classified at least as strong, is predicted to occur
Razzak, Md Abdur; Alam, Md Shamsul
2016-01-01
Based on a new trial function, an analytical coupled technique (a combination of homotopy perturbation method and variational method) is presented to obtain the approximate frequencies and the corresponding periodic solutions of the free vibration of a conservative oscillator having inertia and static non-linearities. In some of the previous articles, the first and second-order approximations have been determined by the same method of such nonlinear oscillator, but the trial functions have not been satisfied the initial conditions. It seemed to be a big shortcoming of those articles. The new trial function of this paper overcomes aforementioned limitation. The first-order approximation is mainly considered in this paper. The main advantage of this present paper is, the first-order approximation gives better result than other existing second-order harmonic balance methods. The present method is valid for large amplitudes of oscillation. The absolute relative error measures (first-order approximate frequency) in this paper is 0.00 % for large amplitude A = 1000, while the relative error gives two different second-order harmonic balance methods: 10.33 and 3.72 %. Thus the present method is suitable for solving the above-mentioned nonlinear oscillator. PMID:27119060
Non-linear optics of ultrastrongly coupled cavity polaritons
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Liu, Bin; McMaster, Michael; Singer, Kenneth
2016-05-01
Experiments at CWRU have developed organic cavity polaritons that display world-record vacuum Rabi splittings of more than an eV. This ultrastrongly coupled polaritonic matter is a new regime for exploring non-linear optical effects. We apply quantum optics theory to quantitatively determine various non-linear optical effects including types of low harmonic generation (SHG and THG) in single and double cavity polariton systems. Ultrastrongly coupled photon-matter systems such as these may be the foundation for technologies including low-power optical switching and computing.
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
NASA Astrophysics Data System (ADS)
Mao, Yanbing; Zhang, Hongbin
2014-05-01
This paper deals with stability and robust H∞ control of discrete-time switched non-linear systems with time-varying delays. The T-S fuzzy models are utilised to represent each sub-non-linear system. Thus, with two level functions, namely, crisp switching functions and local fuzzy weighting functions, we introduce a discrete-time switched fuzzy systems, which inherently contain the features of the switched hybrid systems and T-S fuzzy systems. Piecewise fuzzy weighting-dependent Lyapunov-Krasovskii functionals (PFLKFs) and average dwell-time approach are utilised in this paper for the exponentially stability analysis and controller design, and with free fuzzy weighting matrix scheme, switching control laws are obtained such that H∞ performance is satisfied. The conditions of stability and the control laws are given in the form of linear matrix inequalities (LMIs) that are numerically feasible. The state decay estimate is explicitly given. A numerical example and the control of delayed single link robot arm with uncertain part are given to demonstrate the efficiency of the proposed method.
Non-linear behaviour of charge-pump phase-locked loops
NASA Astrophysics Data System (ADS)
Wiegand, C.; Hedayat, C.; Hilleringmann, U.
2010-10-01
The analysis of the mixed analogue and digital structure of charge-pump phase-locked loops (CP-PLL) is a challenge in modelling and simulation. In most cases the system is designed and characterized using its continuous linear model or its discrete linear model neglecting its non-linear switching behaviour. I.e., the time-varying model is approximated by a time-invariant representation using its average dynamics. Depending on what kind of phase detector is used, the scopes of validity of these approximations are different. Here, a preeminent characterization and simulation technique based on the systems event-driven feature is presented, merging the logical and analogue inherent characteristics of the system. In particular, the high-grade non-linear locking process and the dead-zone are analyzed.
Non-linear electrohydrodynamics in microfluidic devices.
Zeng, Jun
2011-01-01
Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS) fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications. PMID:21673912
Non-Linear Electrohydrodynamics in Microfluidic Devices
Zeng, Jun
2011-01-01
Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS) fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications. PMID:21673912
Iterated non-linear model predictive control based on tubes and contractive constraints.
Murillo, M; Sánchez, G; Giovanini, L
2016-05-01
This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle. PMID:26850752
Rare earth ion doped non linear laser crystals
NASA Astrophysics Data System (ADS)
Jaque, D.; Romero, J. J.; Ramirez, M. O.; Garcia, J. A. S.; de Las Heras, C.; Bausa, L. E.; Sole, J. G.
2003-01-01
We show how non linear crystals activated with Yb3+ or Nd3+ ions can be used to develop diode pumped solid state lasers emitting in the visible region of the electromagnetic spectrum. For this purpose we have selected relevant examples of systems investigated in our laboratory.
Non-linear Post Processing Image Enhancement
NASA Technical Reports Server (NTRS)
Hunt, Shawn; Lopez, Alex; Torres, Angel
1997-01-01
A non-linear filter for image post processing based on the feedforward Neural Network topology is presented. This study was undertaken to investigate the usefulness of "smart" filters in image post processing. The filter has shown to be useful in recovering high frequencies, such as those lost during the JPEG compression-decompression process. The filtered images have a higher signal to noise ratio, and a higher perceived image quality. Simulation studies comparing the proposed filter with the optimum mean square non-linear filter, showing examples of the high frequency recovery, and the statistical properties of the filter are given,
A non-linear model of economic production processes
NASA Astrophysics Data System (ADS)
Ponzi, A.; Yasutomi, A.; Kaneko, K.
2003-06-01
We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.
A single-degree-of-freedom model for non-linear soil amplification
Erdik, Mustafa Ozder
1979-01-01
For proper understanding of soil behavior during earthquakes and assessment of a realistic surface motion, studies of the large-strain dynamic response of non-linear hysteretic soil systems are indispensable. Most of the presently available studies are based on the assumption that the response of a soil deposit is mainly due to the upward propagation of horizontally polarized shear waves from the underlying bedrock. Equivalent-linear procedures, currently in common use in non-linear soil response analysis, provide a simple approach and have been favorably compared with the actual recorded motions in some particular cases. Strain compatibility in these equivalent-linear approaches is maintained by selecting values of shear moduli and damping ratios in accordance with the average soil strains, in an iterative manner. Truly non-linear constitutive models with complete strain compatibility have also been employed. The equivalent-linear approaches often raise some doubt as to the reliability of their results concerning the system response in high frequency regions. In these frequency regions the equivalent-linear methods may underestimate the surface motion by as much as a factor of two or more. Although studies are complete in their methods of analysis, they inevitably provide applications pertaining only to a few specific soil systems, and do not lead to general conclusions about soil behavior. This report attempts to provide a general picture of the soil response through the use of a single-degree-of-freedom non-linear-hysteretic model. Although the investigation is based on a specific type of nonlinearity and a set of dynamic soil properties, the method described does not limit itself to these assumptions and is equally applicable to other types of nonlinearity and soil parameters.
Linear Algebraic Method for Non-Linear Map Analysis
Yu,L.; Nash, B.
2009-05-04
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
Non-linear cord-rubber composites
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.
1989-01-01
A method is presented for calculating the stress-strain relations in a multi-layer composite made up of materials whose individual stress-strain characteristics are non-linear and possibly different. The method is applied to the case of asymmetric tubes in tension, and comparisons with experimentally measured data are given.
NASA Astrophysics Data System (ADS)
Thomson, Mark J.; McKellar, Bruce H. J.
1991-04-01
A simple, non-linear generalization of the MSW equation is presented and its analytic solution is outlined. The orbits of the polarization vector are shown to be periodic, and to lie on a sphere. Their non-trivial flow patterns fall into two topological categories, the more complex of which can become chaotic if perturbed.
A Stochastic Cellular Automaton Model of Non-linear Diffusion and Diffusion with Reaction
NASA Astrophysics Data System (ADS)
Brieger, Leesa M.; Bonomi, Ernesto
1991-06-01
This article presents a stochastic cellular automaton model of diffusion and diffusion with reaction. The master equations for the model are examined, and we assess the difference between the implementation in which a single particle at a time moves (asynchronous dynamics) and one implementation in which all particles move simultaneously (synchronous dynamics). Biasing locally each particle's random walk, we alter the diffusion coefficients of the system. By appropriately choosing the biasing function, we can impose a desired non-linear diffusive behaviour in the model. We present an application of this model, adapted to include two diffusing species, two static species, and a chemical reaction in a prototypical simulation of carbonation in concrete.
NASA Technical Reports Server (NTRS)
Wisdom, Jack
2002-01-01
In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.
NASA Astrophysics Data System (ADS)
Saljoghei, Arsalan; Browning, Colm; Smyth, Frank; Barry, Liam P.
2015-03-01
In this paper the transmission of OFDM based wired/wireless services for hybrid PONs using direct laser modulation is studied. To overcome the limitations imposed by direct modulation of cost effective low bandwidth laser transmitters, we make use of novel monolithically integrated Discrete Mode lasers and optical injection. The system includes a wired OFDM signal, operating at 12.5 Gb/s and three wireless signals delivering Long Term Evolution (LTE) services encoded with 16 QAM. The system's performance is evaluated for various relative power ratios of the wired/wireless signals. Additionally, the impact of Relative Intensity Noise (RIN) on such a hybrid system is studied through computer simulations.
Hively, Lee M.
2011-07-12
The invention relates to a method and apparatus for simultaneously processing different sources of test data into informational data and then processing different categories of informational data into knowledge-based data. The knowledge-based data can then be communicated between nodes in a system of multiple computers according to rules for a type of complex, hierarchical computer system modeled on a human brain.
Organic non-linear optics and opto-electronics
NASA Astrophysics Data System (ADS)
Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.
2010-12-01
π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.
Phototube non-linearity correction technique
NASA Astrophysics Data System (ADS)
Riboldi, S.; Blasi, N.; Brambilla, S.; Camera, F.; Giaz, A.; Million, B.
2015-06-01
Scintillation light is often detected by photo-multiplier tube (PMT) technology. PMTs are however intrinsically non linear devices, especially when operated with high light yield scintillators and high input photon flux. Many physical effects (e.g. inter-dynode field variation, photocathode resistivity, etc.) can spoil the ideal PMT behavior in terms of gain, ending up in what are addressed as the under-linearity and over-linearity effects. Established techniques implemented in the PMT base (e.g. increasing bleeding current, active voltage divider, etc.) can mitigate these effects, but given the unavoidable spread in manufacturing and materials, it turns out that, with respect to linearity at the percent level, every PMT sample is a story of its own. The residual non linearity is usually accounted for with polynomial correction of the spectrum energy scale, starting from the position of a few known energy peaks of calibration sources, but uncertainly remains in between of calibration peaks. We propose to retrieve the calibration information from the entire energy spectrum and not only the position of full energy peaks (FEP), by means of an automatic procedure that also takes into account the quality (signal/noise ratio) of the information about the non-linearity extracted from the various regions of the spectrum.
NASA Astrophysics Data System (ADS)
Song, Yanqi; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli
2011-01-01
In 0.1 mol L -1 (pH 1.0) HCl medium, 12-tungstophosphoric acid (TP) reacted with malachite green (MG) to form an ion-association complex. As a result, the new spectra of RRS, SOS and FDS appeared and their intensities were enhanced greatly. The maximum wavelengths of RRS, SOS and FDS were located at 334 nm, 586 nm and 330 nm, and the scattering intensities were proportional to the concentration of MG. Based on it a new method for the determination of MG has been established. The detection limits (3 σ) of these methods were in the range of 3.7-27 ng mL -1. The RRS, SOS, and FDS characteristics, absorption spectrum characteristics and optimum reaction conditions of the system were discussed. Effects of coexistent substances were tested, and the results demonstrated that this method had good selectivity. It has been applied to the determination of malachite green residues in fish flesh with satisfactory results. The reaction mechanism and reasons of RRS enhancement are discussed.
NASA Astrophysics Data System (ADS)
Yokoyama, Kazuto; Takahashi, Masaki
2015-02-01
A dynamics-based non-linear controller with energy shaping to accelerate a pendulum-type mobility is proposed. The concept of this study is to control translational acceleration of the vehicle in a dynamically reasonable manner. The body angle is controlled to maintain a reference state where the vehicle is statically unstable but dynamically stable, which leads to a constant translational acceleration due to instability of the system. The accelerating motion is like a sprinter moving from crouch start and it fully exploits dynamics of the vehicle. To achieve it, the total energy of the system is shaped to have the minimum at a given reference state and the system is controlled to converge to it. The controller can achieve various properties through the energy shaping procedure. Especially, an energy function that will lead to safe operation of the vehicle is proposed. The effectiveness of the controller is verified in simulations and experiments.
Localization of Non-Linearly Modeled Autonomous Mobile Robots Using Out-of-Sequence Measurements
Besada-Portas, Eva; Lopez-Orozco, Jose A.; Lanillos, Pablo; de la Cruz, Jesus M.
2012-01-01
This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost. PMID:22736962
Localization of non-linearly modeled autonomous mobile robots using out-of-sequence measurements.
Besada-Portas, Eva; Lopez-Orozco, Jose A; Lanillos, Pablo; de la Cruz, Jesus M
2012-01-01
This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost. PMID:22736962
Non-linear aeroelastic prediction for aircraft applications
NASA Astrophysics Data System (ADS)
de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.
2007-05-01
in this domain. This is set within the context of a generic industrial process and the requirements of UK and US aeroelastic qualification. A range of test cases, from simple small DOF cases to full aircraft, have been used to evaluate and validate the non-linear methods developed and to make comparison with the linear methods in everyday use. These have focused mainly on aerodynamic non-linearity, although some results for structural non-linearity are also presented. The challenges associated with time domain (coupled computational fluid dynamics-computational structural model (CFD-CSM)) methods have been addressed through the development of grid movement, fluid-structure coupling, and control surface movement technologies. Conclusions regarding the accuracy and computational cost of these are presented. The computational cost of time-domain methods, despite substantial improvements in efficiency, remains high. However, significant advances have been made in reduced order methods, that allow non-linear behaviour to be modelled, but at a cost comparable with that of the regular linear methods. Of particular note is a method based on Hopf bifurcation that has reached an appropriate maturity for deployment on real aircraft configurations, though only limited results are presented herein. Results are also presented for dynamically linearised CFD approaches that hold out the possibility of non-linear results at a fraction of the cost of time coupled CFD-CSM methods. Local linearisation approaches (higher order harmonic balance and continuation method) are also presented; these have the advantage that no prior assumption of the nature of the aeroelastic instability is required, but currently these methods are limited to low DOF problems and it is thought that these will not reach a level of maturity appropriate to real aircraft problems for some years to come. Nevertheless, guidance on the most likely approaches has been derived and this forms the basis for ongoing
Non-linear microscopy and spectroscopy of skin tissues
NASA Astrophysics Data System (ADS)
Palero, Jonathan A.; Latouche, Gwendal; de Bruijn, Henri"tte S.; Gerritsen, Hans C.; Sterenborg, Henricus J. C. M.
2005-11-01
We combined a non-linear microscope with a sensitive prism-based spectrograph and employed it for the imaging of the auto fluorescence of skin tissues. The system has a sub-micron spatial resolution and a spectral resolution of better than 5 nm. The spectral images contain signals arising from two-photon excited fluorescence (TPEF) of endogenous fluorophores in the skin and from second harmonic generation (SHG) produced by the collagen fibers, which have non-centrosymmetric structure. Non-linear microscopy has the potential to image deep into optically thick specimens because it uses near-infrared (NIR) laser excitation. In addition, the phototoxicity of the technique is comparatively low. Here, the technique is used for the spectral imaging of unstained skin tissue sections. We were able to image weak cellular autofluorescence as well as strong collagen SHG. The images were analyzed by spectral unmixing and the results exhibit a clear spectral signature for the different skin layers.
Non-linear Models for Longitudinal Data
Serroyen, Jan; Molenberghs, Geert; Verbeke, Geert; Davidian, Marie
2009-01-01
While marginal models, random-effects models, and conditional models are routinely considered to be the three main modeling families for continuous and discrete repeated measures with linear and generalized linear mean structures, respectively, it is less common to consider non-linear models, let alone frame them within the above taxonomy. In the latter situation, indeed, when considered at all, the focus is often exclusively on random-effects models. In this paper, we consider all three families, exemplify their great flexibility and relative ease of use, and apply them to a simple but illustrative set of data on tree circumference growth of orange trees. PMID:20160890
Numerical Dimension-Reduction Methods for Non-Linear Shell Vibrations
NASA Astrophysics Data System (ADS)
Foale, S.; Thompson, J. M. T.; McRobie, F. A.
1998-08-01
A number of methods are investigated for obtaining a low-dimensional dynamical system from a set of partial differential equations describing the non-linear vibrations of a shallow cylindrical panel under periodic axial forcing. In these approaches an initial (high-dimensional) spatial discretization of a (possibly irregular) domain is performed and a subsequent procedure is used to further reduce the resulting set of ordinary differential equations. In particular the results suggest that a numerical method based upon inertial manifold approximation is possible, but for the specific case studied, no advantage could be discerned over more direct dimension-reduction techniques.
Can the Non-linear Ballooning Model describe ELMs?
NASA Astrophysics Data System (ADS)
Henneberg, S. A.; Cowley, S. C.; Wilson, H. R.
2015-11-01
The explosive, filamentary plasma eruptions described by the non-linear ideal MHD ballooning model is tested quantitatively against experimental observations of ELMs in MAST. The equations describing this model were derived by Wilson and Cowley for tokamak-like geometry which includes two differential equations: the linear ballooning equation which describes the spatial distribution along the field lines and the non-linear ballooning mode envelope equation, which is a two-dimensional, non-linear differential equation which can involve fractional temporal-derivatives, but is often second-order in time and space. To employ the second differential equation for a specific geometry one has to evaluate the coefficients of the equation which is non-trivial as it involves field line averaging of slowly converging functions. We have solved this system for MAST, superimposing the solutions of both differential equations and mapping them onto a MAST plasma. Comparisons with the evolution of ELM filaments in MAST will be reported in order to test the model. The support of the EPSRC for the FCDT (Grant EP/K504178/1), of Euratom research and training programme 2014-2018 (No 633053) and of the RCUK Energy Programme [grant number EP/I501045] is gratefully acknowledged.
Non-linearities in Holocene floodplain sediment storage
NASA Astrophysics Data System (ADS)
Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten
2013-04-01
Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows
NASA Astrophysics Data System (ADS)
Chowdhury, A.; Yeo, I.; Tsvirkun, V.; Raineri, F.; Beaudoin, G.; Sagnes, I.; Raj, R.; Robert-Philip, I.; Braive, R.
2016-04-01
We investigate the non-linear mechanical dynamics of a nano-optomechanical mirror formed by a suspended membrane pierced by a photonic crystal. By applying to the mirror a periodic electrostatic force induced by interdigitated electrodes integrated below the membrane, we evidence superharmonic resonances of our nano-electro-mechanical system; the constant phase shift of the oscillator across the resonance tongues is observed on the onset of principal harmonic and subharmonic excitation regimes.
NASA Astrophysics Data System (ADS)
Richert, Ranko
2016-03-01
A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a "hump," i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, Ncorr, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.
Response of a rotorcraft model with damping non-linearities
NASA Astrophysics Data System (ADS)
Tongue, B. H.
1985-11-01
The linearized equations of motion of a helicopter in contact with the ground have solutions which can be linearly stable or unstable, depending on the system parameters. The present study includes physical non-linearities in the helicopter model. This allows one to determine if a steady-state response exists and, if so, what the frequency and amplitude of the oscillations will be. In this way, one can determine how serious the linearly unstable operating regime is and whether destructive oscillations are possible when the system is in the linearly stable regime. The present analysis applies to helicopters having fully articulated rotors.
A non-linear UAV altitude PSO-PD control
NASA Astrophysics Data System (ADS)
Orlando, Calogero
2015-12-01
In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.
Overview of the GRC Stirling Convertor System Dynamic Model
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Regan, Timothy F.
2004-01-01
A Stirling Convertor System Dynamic Model has been developed at the Glenn Research Center for controls, dynamics, and systems development of free-piston convertor power systems. It models the Stirling cycle thermodynamics, heat flow, gas, mechanical, and mounting dynamics, the linear alternator, and the controller. The model's scope extends from the thermal energy input to thermal, mechanical dynamics, and electrical energy out, allowing one to study complex system interactions among subsystems. The model is a non-linear time-domain model containing sub-cycle dynamics, allowing it to simulate transient and dynamic phenomena that other models cannot. The model details and capability are discussed.
Neural potentials and micro-signals of non-linear deep and shallow conical shells
NASA Astrophysics Data System (ADS)
Chai, W. K.; Smithmaitrie, P.; Tzou, H. S.
2004-07-01
Conventional sensors, such as proximeters and accelerometers, are add-on devices usually adding additional weights to structures and machines. Health monitoring of flexible structures by electroactive smart materials has been investigated over the years. Thin-film piezoelectric material, e.g. polyvinylidene fluoride (PVDF) polymeric material, is a lightweight and dynamic sensitive material appearing to be a perfect candidate in monitoring structure's dynamic state and health status of flexible shell structures with complex geometries. The complexity of shell structures has thwarted the progress in studying the distributed sensing of shell structures. Linear distributed sensing of various structures have been studied, e.g. beams, plates, cylindrical shells, conical shells, spherical shells, paraboloidal shells and toroidal shells. However, distributed microscopic neural signals of non-linear shell structures has not been carried out rigorously. This study is to evaluate microscopic signals, modal voltages and distributed micro-neural signal components of truncated non-linear conical shells laminated with distributed infinitesimal piezoelectric neurons. Signal generation of distributed neuron sensors laminated on conical shells is defined first. The dynamic neural signal of truncated non-linear conical shells consists of microscopic linear and non-linear membrane components and linear bending component based on the von Karman geometric non-linearity. Micro-signals, modal voltages and distributed neural signal components of two different truncated non-linear conical shells are investigated and their sensitivities discussed.
Non-linear modelling and optimal control of a hydraulically actuated seismic isolator test rig
NASA Astrophysics Data System (ADS)
Pagano, Stefano; Russo, Riccardo; Strano, Salvatore; Terzo, Mario
2013-02-01
This paper investigates the modelling, parameter identification and control of an unidirectional hydraulically actuated seismic isolator test rig. The plant is characterized by non-linearities such as the valve dead zone and frictions. A non-linear model is derived and then employed for parameter identification. The results concerning the model validation are illustrated and they fully confirm the effectiveness of the proposed model. The testing procedure of the isolation systems is based on the definition of a target displacement time history of the sliding table and, consequently, the precision of the table positioning is of primary importance. In order to minimize the test rig tracking error, a suitable control system has to be adopted. The system non-linearities highly limit the performances of the classical linear control and a non-linear one is therefore adopted. The test rig mathematical model is employed for a non-linear control design that minimizes the error between the target table position and the current one. The controller synthesis is made by taking no specimen into account. The proposed approach consists of a non-linear optimal control based on the state-dependent Riccati equation (SDRE). Numerical simulations have been performed in order to evaluate the soundness of the designed control with and without the specimen under test. The results confirm that the performances of the proposed non-linear controller are not invalidated because of the presence of the specimen.
Non-linear Paradigm for Drift Wave - Zonal Flow interplay: coherence, chaos and turbulence
NASA Astrophysics Data System (ADS)
Zonca, Fulvio
2003-10-01
Non-linear equations for the slow space-time evolution of the radial drift wave (DW) envelope and zonal flow (ZF) amplitude have been self-consistently derived for a model nonuniform tokamak equilibrium within the coherent 4-wave drift wave-zonal flow modulation interaction model of Chen, Lin and White(chen00). For the sake of simplicity, in this work we assume electrostatic fluctuations; but our formalism is readily extended to electromagnetic fluctuations(chen01). In the local limit, i.e. neglecting equilibrium profile variations, the coherent 4-wave DW-ZF modulation interaction model has successfully demonstrated spontaneous generation of ZFs and non-linear DW/ITG-ZF dynamics in toroidal plasmas(chen00). The present work is an extension of previous analyses to allow both (slow) temporal and spatial variations of the DW/ITG radial envelope; thus, it naturally incorporates the effects of equilibrium variations; i.e., turbulence spreading and size-dependence of the saturated wave intensities and transport coefficients(lin99). This approach makes it possible to treat equilibrium profile variations and non-linear interactions on the same footing, assuming that coupling among different DWs on the shortest non-linear time scale is mediated by ZF only. At this level, the competition between linear drive/damping, DW spreading due to finite linear (and nonlinear) group velocity(lin02,chen02,kim02) and non-linear energy transfer between DWs and ZF, determines the saturation levels of the fluctuating fields. Despite the coherence of the underlying non-linear dynamics at this level, this system exhibits both chaotic behavior and intermittency, depending on system size and proximity to marginal stability(chen02). The present model can be further extended to include longer time-scale physics such as 3-wave interactions and collisionless damping of zonal flows. 9 chen00 Liu Chen, Zhihong Lin and Roscoe White, Phys. Plasmas 7, 3129, (2000). chen01 L. Chen, Z. Lin, R.B. White and
Global non-linear effect of temperature on economic production
NASA Astrophysics Data System (ADS)
Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward
2015-11-01
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Global non-linear effect of temperature on economic production.
Burke, Marshall; Hsiang, Solomon M; Miguel, Edward
2015-11-12
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate. PMID:26503051
Sammer, G
1998-05-01
In the investigation of heart rate and heart rate variability, the discrimination between mental workload, physical activity and respiration is known to be methodologically difficult. At most, heart rate variability measures are more likely to be coarse-grained measures with variability confounded by heart rate. Moreover, the spectral analysis of heart rate variability shows broad-band frequency characteristics, pointing towards non-stationarity or non-linearity. From this it is suggested to focus on non-linear dynamic analyses that are variance-insensitive. The experimental section of the paper focuses on the estimation of two non-linear measures for both heartbeat dynamics and respiration, the correlation dimension indicating complexity and the Lyapunov exponents indicating predictability. The results indicate that the complexity of heart dynamics is related to the type of task and that the predictability of heart dynamics is related to the amount of load. PMID:9613233
Information Processing Capacity of Dynamical Systems
Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge
2012-01-01
Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038
Shandilya, Sharad; Kurz, Michael C.; Ward, Kevin R.; Najarian, Kayvan
2016-01-01
Objective The timing of defibrillation is mostly at arbitrary intervals during cardio-pulmonary resuscitation (CPR), rather than during intervals when the out-of-hospital cardiac arrest (OOH-CA) patient is physiologically primed for successful countershock. Interruptions to CPR may negatively impact defibrillation success. Multiple defibrillations can be associated with decreased post-resuscitation myocardial function. We hypothesize that a more complete picture of the cardiovascular system can be gained through non-linear dynamics and integration of multiple physiologic measures from biomedical signals. Materials and Methods Retrospective analysis of 153 anonymized OOH-CA patients who received at least one defibrillation for ventricular fibrillation (VF) was undertaken. A machine learning model, termed Multiple Domain Integrative (MDI) model, was developed to predict defibrillation success. We explore the rationale for non-linear dynamics and statistically validate heuristics involved in feature extraction for model development. Performance of MDI is then compared to the amplitude spectrum area (AMSA) technique. Results 358 defibrillations were evaluated (218 unsuccessful and 140 successful). Non-linear properties (Lyapunov exponent > 0) of the ECG signals indicate a chaotic nature and validate the use of novel non-linear dynamic methods for feature extraction. Classification using MDI yielded ROC-AUC of 83.2% and accuracy of 78.8%, for the model built with ECG data only. Utilizing 10-fold cross-validation, at 80% specificity level, MDI (74% sensitivity) outperformed AMSA (53.6% sensitivity). At 90% specificity level, MDI had 68.4% sensitivity while AMSA had 43.3% sensitivity. Integrating available end-tidal carbon dioxide features into MDI, for the available 48 defibrillations, boosted ROC-AUC to 93.8% and accuracy to 83.3% at 80% sensitivity. Conclusion At clinically relevant sensitivity thresholds, the MDI provides improved performance as compared to AMSA
Towards a non-linear theory for fluid pressure and osmosis in shales
NASA Astrophysics Data System (ADS)
Droghei, Riccardo; Salusti, Ettore
2015-04-01
In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.
Polycarbonate-Based Blends for Optical Non-linear Applications
NASA Astrophysics Data System (ADS)
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised. PMID:26873262
Detector noise statistics in the non-linear regime
NASA Technical Reports Server (NTRS)
Shopbell, P. L.; Bland-Hawthorn, J.
1992-01-01
The statistical behavior of an idealized linear detector in the presence of threshold and saturation levels is examined. It is assumed that the noise is governed by the statistical fluctuations in the number of photons emitted by the source during an exposure. Since physical detectors cannot have infinite dynamic range, our model illustrates that all devices have non-linear regimes, particularly at high count rates. The primary effect is a decrease in the statistical variance about the mean signal due to a portion of the expected noise distribution being removed via clipping. Higher order statistical moments are also examined, in particular, skewness and kurtosis. In principle, the expected distortion in the detector noise characteristics can be calibrated using flatfield observations with count rates matched to the observations. For this purpose, some basic statistical methods that utilize Fourier analysis techniques are described.
Transformation matrices between non-linear and linear differential equations
NASA Technical Reports Server (NTRS)
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
Effects on non-linearities on aircraft poststall motion
Rohacs, J.; Thomasson, P.; Mosehilde, E.
1994-12-31
The poststall maneuverability controlled by thrust vectoring has become one of the important aspects of new fighter development projects. In simplified case, the motion of aircraft can be described by 6DOF nonlinear system. The lecture deals with the longitudinal motion of poststall maneuverable aircraft. The investigation made about the effects of non-linearities in aerodynamic coefficients having considerable non-linearities and hysteresisis an the poststall motions. There were used some different models of aerodynamic coefficients. The results of investigation have shown that the poststall domain of vectored aircraft can be divided into five different pHs in field of thrust - pitch vector angle, and the chaotic motions of aircraft can be found at the different frequencies of thrust deflection. There were defined an unstable right domain with an unstable oscillation and a field of overpulling at poststall motion. The certain frequency chaotic attractors were got at frequencies of Oxitation between the 0.15 and 0.65 rad/sec. The pitching moment derivatives had the big influence on the chaotic motions, while the lift coefficient derivatives bad the reasonable effects, only.
NASA Astrophysics Data System (ADS)
Deglint, Jason; Kazemzadeh, Farnoud; Wong, Alexander; Clausi, David A.
2015-09-01
One method to acquire multispectral images is to sequentially capture a series of images where each image contains information from a different bandwidth of light. Another method is to use a series of beamsplitters and dichroic filters to guide different bandwidths of light onto different cameras. However, these methods are very time consuming and expensive and perform poorly in dynamic scenes or when observing transient phenomena. An alternative strategy to capturing multispectral data is to infer this data using sparse spectral reflectance measurements captured using an imaging device with overlapping bandpass filters, such as a consumer digital camera using a Bayer filter pattern. Currently the only method of inferring dense reflectance spectra is the Wiener adaptive filter, which makes Gaussian assumptions about the data. However, these assumptions may not always hold true for all data. We propose a new technique to infer dense reflectance spectra from sparse spectral measurements through the use of a non-linear regression model. The non-linear regression model used in this technique is the random forest model, which is an ensemble of decision trees and trained via the spectral characterization of the optical imaging system and spectral data pair generation. This model is then evaluated by spectrally characterizing different patches on the Macbeth color chart, as well as by reconstructing inferred multispectral images. Results show that the proposed technique can produce inferred dense reflectance spectra that correlate well with the true dense reflectance spectra, which illustrates the merits of the technique.
Fitness Effects of Network Non-Linearity Induced by Gene Expression Noise
NASA Astrophysics Data System (ADS)
Ray, Christian; Cooper, Tim; Balazsi, Gabor
2012-02-01
In the non-equilibrium dynamics of growing microbial cells, metabolic enzymes can create non-linearities in metabolite concentration because of non-linear degradation (utilization): an enzyme can saturate in the process of metabolite utilization. Increasing metabolite production past the saturation point then results in an ultrasensitive metabolite response. If the production rate of a metabolite depends on a second enzyme or other protein-mediated process, uncorrelated gene expression noise can thus cause transient metabolite concentration bursts. Such bursts are physiologically unnecessary and may represent a source of selection against the ultrasensitive switch, especially if the fluctuating metabolic intermediate is toxic. Selection may therefore favor correlated gene expression fluctuations for enzymes in the same pathway, such as by same-operon membership in bacteria. Using a modified experimental lac operon system, we are undertaking a combined theoretical-experimental approach to demonstrate that (i) the lac operon has an implicit ultrasensitive switch that we predict is avoided by gene expression correlations induced by same-operon membership; (ii) bacterial growth rates are sensitive to crossing the ultrasensitive threshold. Our results suggest that correlations in intrinsic gene expression noise are exploited by evolution to ameliorate the detrimental effects of nonlinearities in metabolite concentrations.
Anderson Localization, Non-linearity and Stable Genetic Diversity
NASA Astrophysics Data System (ADS)
Epstein, Charles L.
2006-07-01
In many models of genotypic evolution, the vector of genotype populations satisfies a system of linear ordinary differential equations. This system of equations models a competition between differential replication rates (fitness) and mutation. Mutation operates as a generalized diffusion process on genotype space. In the large time asymptotics, the replication term tends to produce a single dominant quasi-species, unless the mutation rate is too high, in which case the asymptotic population becomes de-localized. We introduce a more macroscopic picture of genotypic evolution wherein a random fitness term in the linear model produces features analogous to Anderson localization. When coupled with density dependent non-linearities, which limit the population of any given genotype, we obtain a model whose large time asymptotics display stable genotypic diversity.
Testing procedures for non-stationarity and non-linearity in physiological signals.
Popivanov, D; Mineva, A
1999-03-15
Most of the physiological signals (EEG, ECG, blood flow, human gait, etc.) characterize by complex dynamics including both non-stationarities and non-linearities. These time series resemble red noise with long-range correlation and 1/(f beta) power spectrum. A question arises as to how to distinguish the characteristics of the process underlying the signal dynamics from the properties of the observed time series. The classical methods to determine possible non-linear (chaotic) dynamics (e.g. correlation dimension) often fail in such signals because of relatively short data records containing stochastic components and non-stationarities. We report an application of several approaches, aimed at (1) determining of the non-stationarities in the signals and (2) testing whether non-linear dynamics exists. Assessment of the intrinsic correlation properties of the dynamic process and distinguishing the same from external trends was performed using singular spectra and detrended fluctuation analysis. The existence of non-linear dynamics was tested by correlation dimension (modified algorithm of re-embedding) and by correlation integrals of real and surrogate data. The correlation integrals of real signal and surrogate data sets were statistically compared using Kolmogorov-Smirnov (K-S) test. The procedures were tested on EEG and laser-Doppler (LD) blood flow. Our suggestion is that no one approach taken alone is the best for our aims. Instead, a battery of methods should be used. PMID:10194935
Construction of the wave operator for non-linear dispersive equations
NASA Astrophysics Data System (ADS)
Tsuruta, Kai Erik
In this thesis, we will study non-linear dispersive equations. The primary focus will be on the construction of the positive-time wave operator for such equations. The positive-time wave operator problem arises in the study of the asymptotics of a partial differential equation. It is a map from a space of initial data X into itself, and is loosely defined as follows: Suppose that for a solution ψlin to the dispersive equation with no non-linearity and initial data ψ +, there exists a unique solution ψ to the non-linear equation with initial data ψ0 such that ψ behaves as ψ lin as t → infinity. Then the wave operator is the map W+ that takes ψ + to ψ0. By its definition, W+ is injective. An important additional question is whether or not the map is also surjective. If so, then every non-linear solution emanating from X behaves, in some sense, linearly as it evolves (this is known as asymptotic completeness). Thus, there is some justification for treating these solutions as their much simpler linear counterparts. The main results presented in this thesis revolve around the construction of the wave operator(s) at critical non-linearities. We will study the "semi-relativistic" Schrodinger equation as well as the Klein-Gordon-Schrodinger system on R2 . In both cases, we will impose fairly general quadratic non-linearities for which conservation laws cannot be relied upon. These non-linearities fall below the scaling required to employ such tools as the Strichartz estimates. We instead adapt the "first iteration method" of Jang, Li, and Zhang to our setting which depends crucially on the critical decay of the non-linear interaction of the linear evolution. To see the critical decay in our problem, careful analysis is needed to treat the regime where one has spatial and/or time resonance.
Non-linear interaction of elastic waves in rocks
NASA Astrophysics Data System (ADS)
Kuvshinov, B. N.; Smit, T. J. H.; Campman, X. H.
2013-09-01
We study theoretically the interaction of elastic waves caused by non-linearities of rock elastic moduli, and assess the possibility to use this phenomenon in hydrocarbon exploration and in the analysis of rock samples. In our calculations we use the five-constant model by Gol'dberg. It is shown that the interaction of plane waves in isotropic solids is completely described by five coupling coefficients, which have the same order of magnitude. By considering scattering of compressional waves generated by controlled sources at the Earth surface from a non-linear layer at the subsurface, we conclude that non-linear signals from deep formations are unlikely to be measured with the current level of technology. Our analysis of field tests where non-linear signals were measured, suggests that these signals are generated either in the shallow subsurface or in the vicinity of sources. Non-linear wave interaction might be observable in lab tests with focused ultrasonic beams. In this case, the non-linear response is generated in the secondary parametric array formed by linear beams scattered from inclusions. Although the strength of this response is controlled by non-linearity of the surrounding medium rather than by non-linearity of inclusions, its measurement can help to obtain better images of rock samples.
Using directed information for influence discovery in interconnected dynamical systems
NASA Astrophysics Data System (ADS)
Rao, Arvind; Hero, Alfred O.; States, David J.; Engel, James Douglas
2008-08-01
Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in various applications such as computational neuroscience, econometrics, and biological network discovery. Each of these systems have multiple interacting variables and the key problem is the inference of the underlying structure of the systems (which variables are connected to which others) based on the output observations (such as multiple time trajectories of the variables). Since such applications demand the inference of directed relationships among variables in these non-linear systems, current methods that have a linear assumption on structure or yield undirected variable dependencies are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.
Engineering Non-Classical Light with Non-Linear Microwaveguides
NASA Astrophysics Data System (ADS)
Grimsmo, Arne; Clerk, Aashish; Blais, Alexandre
The quest for ever increasing fidelity and scalability in measurement of superconducting qubits to be used for fault-tolerant quantum computing has recently led to the development of near quantum-limited broadband phase preserving amplifiers in the microwave regime. These devices are, however, more than just amplifiers: They are sources of high-quality, broadband two-mode squeezed light. We show how bottom-up engineering of Josephson junction embedded waveguides can be used to design novel squeezing spectra. Furthermore, the entanglement in the two-mode squeezed output field can be imprinted onto quantum systems coupled to the device's output. These broadband microwave amplifiers constitute a realization of non-linear waveguide QED, a very interesting playground for non-equilibrium many-body physics.
Ferrite core non-linearity in coils for magnetic neurostimulation
Lazzi, Gianluca
2014-01-01
The need to correctly predict the voltage across terminals of mm-sized coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system is the motivation for this work. In such applications, which rely on a capacitive discharge on the coil to realise a transient voltage curve of duration and strength suitable for neural stimulation, the correct modelling of the non-linearity of the ferrite core is critical. A demonstration of how a finite-difference model of the considered coils, which include a model of the current-controlled inductance in the coil, can be used to correctly predict the time-domain voltage waveforms across the terminals of a test coil is presented. Five coils of different dimensions, loaded with ferrite cores, have been fabricated and tested: the measured magnitude and width of the induced pulse are within 10% of simulated values. PMID:26609390
NASA Astrophysics Data System (ADS)
Geris, Josie; Tetzlaff, Doerthe; McDonnell, Jeffrey; Soulsby, Chris
2014-05-01
Water partitioning between transpiration, evaporation and runoff is controlled by climatic and water storage characteristics; yet our current knowledge of varying dominant retention and partitioning mechanisms remains limited. For some forested catchments with clear seasonal distinctions, recent work has revealed the existence of partitioned ecohydrological systems where plant - and stream-water are sourced from different subsurface water stores. It is still unclear what the roles of non-linearities are in different water-energy regimes and how soil and vegetation properties might influence such partitioning of water stores. This study aims to better understand the spatio-temporal controls on water residence times and hydrological responses at the catchment scale in a northern headwater catchment in Scotland. Here, the climate is usually consistently wet with low evapotranspiration rates. Within this context however, the study period involved an exceptionally dry summer. We explored non-linearities and thresholds in catchment input-output relationships and investigated the role of soil-water-vegetation interactions on water partitioning, storage, and release along different hillslopes during contrasting hydro-climatic conditions. Different ecohydrological units included poorly draining soils in riparian zones and freely draining soils on hillslopes, and both forested and non-forested sites were considered. Soil moisture dynamics and stable water isotope signatures of different waters (precipitation, stream-, soil -, and plant xylem-water) were examined throughout the year (winter and during the growing season that included the relatively dry summer) to identify plant water use, assess water movement, and explore vegetation-water linkages. The results indicate that threshold behaviour in runoff responses at the catchment scale can be linked to apparent differences between soil water dynamics and residence times of different hydropedological units. Linear input
Filtering of non-linear instabilities
NASA Technical Reports Server (NTRS)
Khosla, P. K.; Rubin, S. G.
1978-01-01
For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown that these problems can be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate filtering can reduce the intensity of these oscillations and possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and nonconservation differencing. The entire spectrum of filtered equations retains a three point character as well as second order spatial accuracy. Burgers equation was considered as a model.
Computer modeling of batteries from non-linear circuit elements
NASA Technical Reports Server (NTRS)
Waaben, S.; Federico, J.; Moskowitz, I.
1983-01-01
A simple non-linear circuit model for battery behavior is given. It is based on time-dependent features of the well-known PIN change storage diode, whose behavior is described by equations similar to those associated with electrochemical cells. The circuit simulation computer program ADVICE was used to predict non-linear response from a topological description of the battery analog built from advice components. By a reasonable choice of one set of parameters, the circuit accurately simulates a wide spectrum of measured non-linear battery responses to within a few millivolts.
Analysis of non-linearity in differential wavefront sensing technique.
Duan, Hui-Zong; Liang, Yu-Rong; Yeh, Hsien-Chi
2016-03-01
An analytical model of a differential wavefront sensing (DWS) technique based on Gaussian Beam propagation has been derived. Compared with the result of the interference signals detected by quadrant photodiode, which is calculated by using the numerical method, the analytical model has been verified. Both the analytical model and numerical simulation show milli-radians level non-linearity effect of DWS detection. In addition, the beam clipping has strong influence on the non-linearity of DWS. The larger the beam clipping is, the smaller the non-linearity is. However, the beam walking effect hardly has influence on DWS. Thus, it can be ignored in laser interferometer. PMID:26974079
Symplectic ray-tracing: a new approach for nonlinear ray tracings by Hamiltonian dynamics
NASA Astrophysics Data System (ADS)
Satoh, Tetsu R.
2003-05-01
This paper describes a method of symplectic ray tracing for calculating the flows of non-linear dynamical systems. Symplectic ray tracing method traces the path of photons moving along the orbit calculated by using Hamilton's canonical equation. Using this method, we can simulate non-linear dynamical systems with various dimensions, accurate calculation, and quick implementation of scientif visualization system. This paper also demonstrates some visualization results of non-linear dynamical systems computed by using symplectic ray tracing method.
Characteristic-based non-linear simulation of large-scale standing-wave thermoacoustic engine.
Abd El-Rahman, Ahmed I; Abdel-Rahman, Ehab
2014-08-01
A few linear theories [Swift, J. Acoust. Soc. Am. 84(4), 1145-1180 (1988); Swift, J. Acoust. Soc. Am. 92(3), 1551-1563 (1992); Olson and Swift, J. Acoust. Soc. Am. 95(3), 1405-1412 (1994)] and numerical models, based on low-Mach number analysis [Worlikar and Knio, J. Comput. Phys. 127(2), 424-451 (1996); Worlikar et al., J. Comput. Phys. 144(2), 199-324 (1996); Hireche et al., Canadian Acoust. 36(3), 164-165 (2008)], describe the flow dynamics of standing-wave thermoacoustic engines, but almost no simulation results are available that enable the prediction of the behavior of practical engines experiencing significant temperature gradient between the stack ends and thus producing large-amplitude oscillations. Here, a one-dimensional non-linear numerical simulation based on the method of characteristics to solve the unsteady compressible Euler equations is reported. Formulation of the governing equations, implementation of the numerical method, and application of the appropriate boundary conditions are presented. The calculation uses explicit time integration along with deduced relationships, expressing the friction coefficient and the Stanton number for oscillating flow inside circular ducts. Helium, a mixture of Helium and Argon, and Neon are used for system operation at mean pressures of 13.8, 9.9, and 7.0 bars, respectively. The self-induced pressure oscillations are accurately captured in the time domain, and then transferred into the frequency domain, distinguishing the pressure signals into fundamental and harmonic responses. The results obtained are compared with reported experimental works [Swift, J. Acoust. Soc. Am. 92(3), 1551-1563 (1992); Olson and Swift, J. Acoust. Soc. Am. 95(3), 1405-1412 (1994)] and the linear theory, showing better agreement with the measured values, particularly in the non-linear regime of the dynamic pressure response. PMID:25096100
NASA Astrophysics Data System (ADS)
Crucifix, Michel; Wilkinson, Richard; Carson, Jake; Preston, Simon; Alemeida, Carlos; Rougier, Jonathan
2013-04-01
The existence of an action of astronomical forcing on the Pleistocene climate is almost undisputed. However, quantifying this action is not straightforward. In particular, the phenomenon of deglaciation is generally interpreted as a manifestation of instability, which is typical of non-linear systems. As a consequence, explaining the Pleistocene climate record as the addition of an astronomical contribution and noise-as often done using harmonic analysis tools-is potentially deceptive. Rather, we advocate a methodology in which non-linear stochastic dynamical systems are calibrated on the Pleistocene climate record. The exercise, though, requires careful statistical reasoning and state-of-the-art techniques. In fact, the problem has been judged to be mathematically 'intractable and unsolved' and some pragmatism is justified. In order to illustrate the methodology we consider one dynamical system that potentially captures four dynamical features of the Pleistocene climate : the existence of a saddle-node bifurcation in at least one of its slow components, a time-scale separation between a slow and a fast component, the action of astronomical forcing, and the existence a stochastic contribution to the system dynamics. This model is obviously not the only possible representation of Pleistocene dynamics, but it encapsulates well enough both our theoretical and empirical knowledge into a very simple form to constitute a valid starting point. The purpose of this poster is to outline the practical challenges in calibrating such a model on paleoclimate observations. Just as in time series analysis, there is no one single and universal test or criteria that would demonstrate the validity of an approach. Several methods exist to calibrate the model and judgement develops by the confrontation of the results of the different methods. In particular, we consider here the Kalman filter variants, the Particle Monte-Carlo Markov Chain, and two other variants of Sequential Monte
Experimental study of non-linear effects in a typical shear lap joint configuration
NASA Astrophysics Data System (ADS)
Hartwigsen, C. J.; Song, Y.; McFarland, D. M.; Bergman, L. A.; Vakakis, A. F.
2004-10-01
Although mechanical joints are integral parts of most practical structures, their modelling and their effects on structural dynamics are not yet fully understood. This represents a serious impediment to accurate modelling of the dynamics and to the development of reduced-order, finite element models capable of describing the effects of mechanical joints on the dynamics. In this work we provide an experimental study to quantify the non-linear effects of a typical shear lap joint on the dynamics of two structures: a beam with a bolted joint in its center; and a frame with a bolted joint in one of its members. Both structures are subjected to a variety of dynamical tests to determine the non-linear effects of the joints. The tests reveal several important influences on the effective stiffness and damping of the lap joints. The possibility of using Iwan models to represent the experimentally observed joint effects is discussed.
Dilatonic non-linear sigma models and Ricci flow extensions
NASA Astrophysics Data System (ADS)
Carfora, M.; Marzuoli, A.
2016-09-01
We review our recent work describing, in terms of the Wasserstein geometry over the space of probability measures, the embedding of the Ricci flow in the renormalization group flow for dilatonic non-linear sigma models.
Non-linear evolution of the cosmic neutrino background
Villaescusa-Navarro, Francisco; Viel, Matteo; Peña-Garay, Carlos E-mail: spb@ias.edu E-mail: viel@oats.inaf.it
2013-03-01
We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with
Stochastic differential equations for non-linear hydrodynamics
NASA Astrophysics Data System (ADS)
Español, Pep
1998-02-01
We formulate the stochastic differential equations for non-linear hydrodynamic fluctuations. The equations incorporate the random forces through a random stres tensor and random heat flux as in the Landau and Lifshitz theory. However, the equations are non-linear and the random forces are non-Gaussian. We provide explicit expressions for these random quantities in terms of the well-defined increments of the Wienner process.
Neurosurgery simulation using non-linear finite element modeling and haptic interaction
NASA Astrophysics Data System (ADS)
Lee, Huai-Ping; Audette, Michel; Joldes, Grand R.; Enquobahrie, Andinet
2012-02-01
Real-time surgical simulation is becoming an important component of surgical training. To meet the realtime requirement, however, the accuracy of the biomechancial modeling of soft tissue is often compromised due to computing resource constraints. Furthermore, haptic integration presents an additional challenge with its requirement for a high update rate. As a result, most real-time surgical simulation systems employ a linear elasticity model, simplified numerical methods such as the boundary element method or spring-particle systems, and coarse volumetric meshes. However, these systems are not clinically realistic. We present here an ongoing work aimed at developing an efficient and physically realistic neurosurgery simulator using a non-linear finite element method (FEM) with haptic interaction. Real-time finite element analysis is achieved by utilizing the total Lagrangian explicit dynamic (TLED) formulation and GPU acceleration of per-node and per-element operations. We employ a virtual coupling method for separating deformable body simulation and collision detection from haptic rendering, which needs to be updated at a much higher rate than the visual simulation. The system provides accurate biomechancial modeling of soft tissue while retaining a real-time performance with haptic interaction. However, our experiments showed that the stability of the simulator depends heavily on the material property of the tissue and the speed of colliding objects. Hence, additional efforts including dynamic relaxation are required to improve the stability of the system.
NASA Astrophysics Data System (ADS)
Ruth, D. C. S.; Costa Rodriguez, F.
2015-12-01
The most active volcanoes on earth erupt in a yearly to decadal time scales, typically erupt mafic magmas and are open-vent systems with prominent degassing plumes (e.g. Mayon, Arenal, Llaima, Etna). Here we investigate the plumbing systems, dynamics, and processes that drive eruptions at these systems. These are key questions for improving hazard evaluation, and better understanding the unrest associated with these types of volcanoes. The petrology and geochemistry from six historical eruptions (1947-2006) of Mayon volcano (Philippines) shows that all lavas are basaltic andesite with phenocrysts of plagioclase + orthopyroxene (Opx) + clinopyroxene. Opx crystals show a variety of compositions and zoning patterns (reverse, normal or complex) with Mg# (= 100 *Mg/[Mg+Fe]) varying from 67 to 81. The simplest interpretation is that the low Mg# parts of the crystals resided on an upper crustal and crystal rich reservoir that was intruded by more primitive magmas from which the high Mg# parts of the crystals grew. Modelling Mg-Fe diffusion in Opx shows that times since magma injection and eruption range from a few days up to 3.5 years in all of the investigated eruptions. The longest diffusion times are shorter than the repose times between the eruptions, which implies that crystal recycling between eruptive events is negligible. This is a surprising result that shows that for each eruption a different part of the evolved crystal-rich plumbing system is activated. This can be due to random intrusion location or an irreversibility of the plumbing system that prevents multiple eruptions from the same crystal-rich part. Moreover, we find that the number of intrusions markedly increases before each eruption in a non-linear manner. Such an increased rate of intrusions with time might reflect non-linear rheological properties of the crystal-rich system, of the enclosing rocks, or the non-linear evolution of crystal-melt reaction-dissolution fronts during magma intrusions.
Non-Linear Fuzzy Logic Control for Forced Large Motions of Spinning Shafts
NASA Astrophysics Data System (ADS)
LEI, SHULIANG; PALAZZOLO, ALAN; NA, UHNJOO; KASCAK, ALBERT
2000-08-01
A unique control approach is developed for prescribed large motion control using magnetic bearings in a proposed active stall control test rig. A finite element based, flexible shaft is modeled in a closed loop system with PD controllers that generate the control signals to support and to shake the rotor shaft. A linearized force model of the stall rig with 16 magnetic poles (4 opposing C-cores) yields stability and frequency responses. The non-linear model retains the non-linearities in Ampere's law, Faraday's law and the Maxwell stress tensor. A fuzzy logic control system is then designed to show the advantages over the conventional controllers with the fully non-linear model.
Rapid Non-Linear Uncertainty Propagation via Analytical Techniques
NASA Astrophysics Data System (ADS)
Fujimoto, K.; Scheeres, D. J.
2012-09-01
Space situational awareness (SSA) is known to be a data starved problem compared to traditional estimation problems in that observation gaps per object may span over days if not weeks. Therefore, consistent characterization of the uncertainty associated with these objects including non-linear effects is crucial in maintaining an accurate catalog of objects in Earth orbit. Simultaneously, the motion of satellites in Earth orbit is well-modeled in that it is particularly amenable to having their solution and their uncertainty described through analytic or semi-analytic techniques. Even when stronger non-gravitational perturbations such as solar radiation pressure and atmospheric drag are encountered, these perturbations generally have deterministic components that are substantially larger than their time-varying stochastic components. Analytic techniques are powerful because time propagation is only a matter of changing the time parameter, allowing for rapid computational turnaround. These two ideas are combined in this paper: a method of analytically propagating non-linear orbit uncertainties is discussed. In particular, the uncertainty is expressed as an analytic probability density function (pdf) for all time. For a deterministic system model, such pdfs may be obtained if the initial pdf and the system states for all time are also given analytically. Even when closed-form solutions are not available, approximate solutions exist in the form of Edgeworth series for pdfs and Taylor series for the states. The coefficients of the latter expansion are referred to as state transition tensors (STTs), which are a generalization of state transition matrices to arbitrary order. Analytically expressed pdfs can be incorporated in many practical tasks in SSA. One can compute the mean and covariance of the uncertainty, for example, with the moments of the initial pdf as inputs. This process does not involve any sampling and its accuracy can be determined a priori. Analytical
NASA Astrophysics Data System (ADS)
Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.
2015-05-01
The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.
Non-linear methods in remotely sensed multispectral data classification
NASA Astrophysics Data System (ADS)
Nikolov, Hs; Petkov, Di; Jeliazkova, N.; Ruseva, S.; Boyanov, K.
The aim of this research is to examine existing geoinformation processing systems and to develop a new system, able to cope with the stochastic nature of remote sensing data. In order to achieve this objective, it is necessary to structure the methodological knowledge in the area of data mining and reveal the most suitable methods for the prediction and decision support based on large amounts of multispectral data. Non-linear methods are a vast and quickly advancing field of research, but in the case of geoinformatics they are far away from applications targeted to end-users. The idea is to establish a framework by decomposing the task into functionality objectives and to allow the end-user to experiment with a set of classification methods and select the best methods for specific applications. In this framework we consider Bayesian analysis tools, nonlinear regression models, neural networks, fuzzy reasoning systems, kernel methods, evolutionary programming, genetic algorithms and decision trees. In particular we compare our results from Bayesian classification based on estimated probability densities of the data to the results obtained from other classification methods. We demonstrate that the theoretically optimal Bayesian classification also provides optimal classification in practice.
Non-linear optical measurements using a scanned, Bessel beam
NASA Astrophysics Data System (ADS)
Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.
2015-03-01
Oftentimes cells are removed from the body for disease diagnosis or cellular research. This typically requires fluorescent labeling followed by sorting with a flow cytometer; however, possible disruption of cellular function or even cell death due to the presence of the label can occur. This may be acceptable for ex vivo applications, but as cells are more frequently moving from the lab to the body, label-free methods of cell sorting are needed to eliminate these issues. This is especially true of the growing field of stem cell research where specialized cells are needed for treatments. Because differentiation processes are not completely efficient, cells must be sorted to eliminate any unwanted cells (i.e. un-differentiated or differentiated into an unwanted cell type). In order to perform label-free measurements, non-linear optics (NLO) have been increasingly utilized for single cell analysis because of their ability to not disrupt cellular function. An optical system was developed for the measurement of NLO in a microfluidic channel similar to a flow cytometer. In order to improve the excitation efficiency of NLO, a scanned Bessel beam was utilized to create a light-sheet across the channel. The system was tested by monitoring twophoton fluorescence from polystyrene microbeads of different sizes. Fluorescence intensity obtained from light-sheet measurements were significantly greater than measurements made using a static Gaussian beam. In addition, the increase in intensity from larger sized beads was more evident for the light-sheet system.
Scott, M
2012-08-01
The time-covariance function captures the dynamics of biochemical fluctuations and contains important information about the underlying kinetic rate parameters. Intrinsic fluctuations in biochemical reaction networks are typically modelled using a master equation formalism. In general, the equation cannot be solved exactly and approximation methods are required. For small fluctuations close to equilibrium, a linearisation of the dynamics provides a very good description of the relaxation of the time-covariance function. As the number of molecules in the system decrease, deviations from the linear theory appear. Carrying out a systematic perturbation expansion of the master equation to capture these effects results in formidable algebra; however, symbolic mathematics packages considerably expedite the computation. The authors demonstrate that non-linear effects can reveal features of the underlying dynamics, such as reaction stoichiometry, not available in linearised theory. Furthermore, in models that exhibit noise-induced oscillations, non-linear corrections result in a shift in the base frequency along with the appearance of a secondary harmonic. PMID:23039692
Non linear processes modulated by low doses of radiation exposure
NASA Astrophysics Data System (ADS)
Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio
The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.
DSP-based Mitigation of RF Front-end Non-linearity in Cognitive Wideband Receivers
NASA Astrophysics Data System (ADS)
Grimm, Michael; Sharma, Rajesh K.; Hein, Matthias A.; Thomä, Reiner S.
2012-09-01
Software defined radios are increasingly used in modern communication systems, especially in cognitive radio. Since this technology has been commercially available, more and more practical deployments are emerging and its challenges and realistic limitations are being revealed. One of the main problems is the RF performance of the front-end over a wide bandwidth. This paper presents an analysis and mitigation of RF impairments in wideband front-ends for software defined radios, focussing on non-linear distortions in the receiver. We discuss the effects of non-linear distortions upon spectrum sensing in cognitive radio and analyse the performance of a typical wideband software-defined receiver. Digital signal processing techniques are used to alleviate non-linear distortions in the baseband signal. A feed-forward mitigation algorithm with an adaptive filter is implemented and applied to real measurement data. The results obtained show that distortions can be suppressed significantly and thus increasing the reliability of spectrum sensing.
Instantaneous stepped-frequency, non-linear radar part 2: experimental confirmation
NASA Astrophysics Data System (ADS)
Ranney, Kenneth; Mazzaro, Gregory; Gallagher, Kyle; Martone, Anthony; Sherbondy, Kelly; Narayanan, Ram
2016-05-01
Last year, we presented the theory behind "instantaneous stepped-frequency, non-linear radar". We demonstrated through simulation that certain devices (when interrogated by a multi-tone transmit signal) could be expected to produce a multi-tone output signal near harmonics of the transmitted tones. This hypothesized non-linear (multitone) response was then shown to be suitable for pulse compression via standard stepped-frequency processing techniques. At that time, however, we did not have measured data to support the theoretical and simulated results. We now present laboratory measurements confirming our initial hypotheses. We begin with a brief description of the experimental system, and then describe the data collection exercise. Finally, we present measured data demonstrating the accurate ranging of a non-linear target.
NASA Astrophysics Data System (ADS)
HARRAS, B.; BENAMAR, R.; WHITE, R. G.
2002-04-01
The geometrically non-linear free vibration of thin composite laminated plates is investigated by using a theoretical model based on Hamilton's principle and spectral analysis previously applied to obtain the non-linear mode shapes and resonance frequencies of thin straight structures, such as beams, plates and shells (Benamar et al. 1991Journal of Sound and Vibration149 , 179-195; 1993, 164, 295-316; 1990 Proceedings of the Fourth International Conference on Recent Advances in Structural Dynamics, Southampton; Moussaoui et al. 2000 Journal of Sound and Vibration232, 917-943 [1-4]). The von Kármán non-linear strain-displacement relationships have been employed. In the formulation, the transverse displacement W of the plate mid-plane has been taken into account and the in-plane displacements U and V have been neglected in the non-linear strain energy expressions. This assumption, quite often made in the literature has been adopted in reference [2] and (El Kadiri et al. 1999 Journal of Sound and Vibration228, 333-358 [5]), in the isotropic case and has been mentioned here because the results obtained have been found to be in very good agreement with those based on the hierarchical finite element method (HFEM). In a previous study, it was assumed, based on the analogy with the isotropic case, that the fundamental carbon fibre reinforced plastic (CFRP) plate non-linear mode shape could be well estimated, by using nine plate functions, obtained as products of clamped-clamped beam functions in the x and y directions, symmetric in both the length U001and width directions [3]. In the present work, a convergence study has been performed and has shown that, although such an assumption may yield a good estimate for the non-linear resonance frequency, 18 plate functions should be taken into account instead of nine in the first non-linear mode shape and associated bending stress patterns calculations. This allows the anisotropy induced by the fibre orientations to be taken
A non-linear mathematical model for the in vivo evaluation of the RES phagocytic function.
Bondareva, I B; Parfenov, A S
1995-01-01
A new non-linear mathematical model was constructed in order to perform in vivo quantification of the RES phagocytic function. This method is based on the same technical facilities as used for the routine liver-spleen scintigraphy with radiocolloids [1, 2]. But kinetic modeling of dynamic Tc-99m-sulfur colloid data produced estimations of the functional RE-parameters: the clearance rate of the colloidal particles, the rate of phagocytosis, and the RES functional volume, which can not be obtained by classical approaches. This non-linear model was designed on the basis of the principal characteristics of particulate material interaction with macrophages (attachment, phagocytosis, digestion) [3, 4, 5]. The theoretically examined behavior of this in vivo mathematical model corresponds with the experimental behavior of the RES. The mathematical expression of the dynamics is the system of non-linear differential equations with constant coefficients that have no analytical solution. Fitting of the normalized heart blood time-activity curve was obtained to identify the unknown model parameters via non-linear regression. For this purpose general interactive PASCAL procedure IDPAR for a PDP-11/34 computer was used (an IBM PC version is also available). Two to three iterations were needed to estimate the set of unknown parameters for any patient study (1-1.5 min). A very good fitting was obtained between experimental and model curves in every case of different pathologies (error of the approximation is about 2-3%). Studies were performed using an in vivo bolus injection of 3.6 mg/80 kg commercially available colloid KOREN labeled with 3m-Ci 99m-Tc (analog of TCK-1). Our method was used to determine the RES functional parameters for patient groups with different levels of the RES dysfunction. Obtained results illustrate the possibilities of our technique to quantitatively estimate not only great pathology (portal cirrhosis), but also small changes of the RE-function (case of
Airframe structural damage detection: a non-linear structural surface intensity based technique.
Semperlotti, Fabio; Conlon, Stephen C; Barnard, Andrew R
2011-04-01
The non-linear structural surface intensity (NSSI) based damage detection technique is extended to airframe applications. The selected test structure is an upper cabin airframe section from a UH-60 Blackhawk helicopter (Sikorsky Aircraft, Stratford, CT). Structural damage is simulated through an impact resonator device, designed to simulate the induced vibration effects typical of non-linear behaving damage. An experimental study is conducted to prove the applicability of NSSI on complex mechanical systems as well as to evaluate the minimum sensor and actuator requirements. The NSSI technique is shown to have high damage detection sensitivity, covering an extended substructure with a single sensing location. PMID:21476618
Non-linear performance of a three-bearing rotor incorporating a squeeze-film damper
NASA Technical Reports Server (NTRS)
Holmes, R.; Dede, M.
1987-01-01
This paper is concerned with the non-linear vibration performance of a rigid rotor supported on three bearings, one being surrounded by a squeeze-film damper. This damper relies on the pressure built up in the squeeze film to help counter-act external forces arising from unbalance and other effects. As a result a vibration orbit of a certain magnetude results. Such vibration orbits illustrate features found in other non-linear systems, in particular sub-harmonic resonances and jump phenomena. Comparisons between theoretical prediction and experimental observations of these phenomena are made.
Lawes, Timothy; López-Lozano, José-María; Nebot, César; Macartney, Gillian; Subbarao-Sharma, Rashmi; Dare, Ceri R J; Edwards, Giles F S; Gould, Ian M
2015-01-01
resistance phenotypes of clonal complexes. Conclusions Infection control measures and changes in population antibiotic use were important predictors of MRSA strain dynamics in our region. Strategies to control MRSA should consider thresholds for effects and strain-specific impacts. PMID:25814495
Correcting the NICMOS count-rate dependent non-linearity
NASA Astrophysics Data System (ADS)
de Jong, Roelof S.
2006-03-01
We describe a routine to correct NICMOS imaging data for the NICMOS count-rate dependent non-linearity recently discovered by Bohlin et al. (2005) and quantified by deJong et al. (2006) and Bohlin et al. (2006). The routine has been implemented in the python scripting language and is callable from the shell command line and from iraf. The routine corrects NICMOS count-rate images assuming the non-linearity follows a powerlaw behavior. The wavelength dependence of the non-linearity is interpolated between the measured points of de Jong et al. (2006) and Bohlin et al. (2006) if necessary. The count rates in the output images are modified and hence the standard NICMOS calibration zero-points are no longer valid. New calibration zero-points have been derived from standard star images corrected with the routine. The routine was tested on the lamp-on/off data used in de Jong et al. (2006) to measure the non-linearity effect. We apply the correction to the NGC1850 stellar cluster field and the Hubble Ultra Deep Field (HUDF) to show the magnitude offsets expected due to the non-linearity on objects with a range in luminosity and surface brightness.
Phenomenon of life: between equilibrium and non-linearity.
Galimov, E M
2004-12-01
A model of ordering applicable to biological evolution is presented. It is shown that a steady state (more precisely approaching to a steady state) system of irreversible processes, under conditions of disproportionation of entropy, produces a lower-entropy product, that is, ordering. The ordering is defined as restricting of degrees of freedom: freedom of motion, interactions etc. The model differs from previous ones in that it relates the ordering to processes running not far from equilibrium, described in the linear field of non-equilibrium thermodynamics. It is shown that a system, which includes adenosine triphosphate (ATP) to adenosine diphosphate (ADP) conversion meets the demands of the physical model: it provides energy maintaining steady state conditions, and hydrolysis of ATP proceeding with consumption of water can be tightly conjugated with the most important reactions of synthesis of organic polymers (peptides, nucleotide chains etc.), which proceed with release of water. For these and other reasons ATP seems to be a key molecule of prebiotic evolution. It is argued that the elementary chemical reaction proceeding under control of an enzyme is not necessarily far from equilibrium. The experimental evidence supporting this idea, is presented. It is based on isotope data. Carbon isotope distribution in biochemical systems reveals regularity, which is inherent to steady state systems of chemical reactions, proceeding not far from equilibrium. In living organisms this feature appears at the statistical level, as many completely irreversible and non-linear processes occur in organisms. However not-far-from-equilibrium reactions are inherent to biochemical systems as a matter of principle. They are reconcilable with biochemical behavior. Extant organisms are highly evolved entities which, however, show in their basis the same features, as the simplest chemical systems must have had been involved in the origin of life. Some consequences following from the
STATISTICAL BASED NON-LINEAR MODEL UPDATING USING FEATURE EXTRACTION
Schultz, J.F.; Hemez, F.M.
2000-10-01
This research presents a new method to improve analytical model fidelity for non-linear systems. The approach investigates several mechanisms to assist the analyst in updating an analytical model based on experimental data and statistical analysis of parameter effects. The first is a new approach at data reduction called feature extraction. This is an expansion of the update metrics to include specific phenomena or character of the response that is critical to model application. This is an extension of the classical linear updating paradigm of utilizing the eigen-parameters or FRFs to include such devices as peak acceleration, time of arrival or standard deviation of model error. The next expansion of the updating process is the inclusion of statistical based parameter analysis to quantify the effects of uncertain or significant effect parameters in the construction of a meta-model. This provides indicators of the statistical variation associated with parameters as well as confidence intervals on the coefficients of the resulting meta-model, Also included in this method is the investigation of linear parameter effect screening using a partial factorial variable array for simulation. This is intended to aid the analyst in eliminating from the investigation the parameters that do not have a significant variation effect on the feature metric, Finally an investigation of the model to replicate the measured response variation is examined.
Very large space structures: Non-linear control and robustness to structural uncertainties
NASA Astrophysics Data System (ADS)
Gasbarri, Paolo; Monti, Riccardo; Sabatini, Marco
2014-01-01
Very Large Space Structures (VLSS) are challenging systems to be controlled, due to their high flexibility. In particular, rapid attitude maneuvers can determine great oscillations on the flexible elements of a spacecraft (solar wings, antennas, booms). On account of this, in the last decades many researchers have developed different strategies to effectively damp the elastic vibrations by means of active vibration devices (such as piezo-electric patches) or by means of robust control algorithms. The approach suggested in this paper is different, since neither additional devices nor complex control laws are introduced. In fact, the complete model of the system (including rigid, elastic and orbital dynamics, coupled with control actions) is controlled by the non-linear attitude controller named state dependent Riccati equation, which will be based on a simplified version of the spacecraft model. The task to reduce the mutual interaction between rigid attitude and flexible dynamics is entirely transferred to a modification of the desired trajectory that must be tracked. This command shaping technique is based on the knowledge of the parameters (inertial and elastics) of the VLSS. Unfortunately these parameters are not always exactly known and, however, they may change over the time. On account of this a Monte Carlo analysis has been also performed, showing the robustness of the proposed control strategy to the structural uncertainties. The numerical simulations prove that this strategy, based on the joint application of two well-known yet simple techniques, produces accurate and robust results.
Ghost Dark Energy with Non-Linear Interaction Term
NASA Astrophysics Data System (ADS)
Ebrahimi, E.
2016-06-01
Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.
Theoretical studies for novel non-linear optical crystals
NASA Astrophysics Data System (ADS)
Wu, Kechen; Chen, Chuangtian
1996-09-01
To fulfil the "molecular engineering" of non-linear optical crystals, two theoretical models suitable respectively for the studies of the absorption edge and birefringence of a non-linear optical crystal have been set up. Molecular quantum chemical methods have been adopted in the systematic calculations of some typical crystals. DV-SCM-X α methods have been used to calculate the absorption edge on the UV side of BBO, LBO, KB5, KDP, Na 2SbF 5, Ba 2TiSi 2O 8, iodate and NaNO 2 crystals. Ab initio methods have been adopted to study the birefringence of NaNO 2, BBO, LiIO 3 and urea crystals. All the theoretical results agreed well with the experimental values. The relationship between structure and properties has been discussed. The results will be helpful to the search for novel non-linear optical crystals.
Non-Linear Vibration Characteristics of Clamped Laminated Shallow Shells
NASA Astrophysics Data System (ADS)
ABE, A.; KOBAYASHI, Y.; YAMADA, G.
2000-07-01
This paper examines non-linear free vibration characteristics of first and second vibration modes of laminated shallow shells with rigidly clamped edges. Non-linear equations of motion for the shells based on the first order shear deformation and classical shell theories are derived by means of Hamilton's principle. We apply Galerkin's procedure to the equations of motion in which eigenvectors for first and second modes of linear vibration obtained by the Ritz method are employed as trial functions. Then simultaneous non-linear ordinary differential equations are derived in terms of amplitudes of the first and second vibration modes. Backbone curves for the first and second vibration modes are solved numerically by the Gauss-Legendre integration method and the shooting method respectively. The effects of lamination sequences and transverse shear deformation on the behavior are discussed. It is also shown that the motion of the first vibration mode affects the response for the second vibration mode.
Neural network modelling of non-linear hydrological relationships
NASA Astrophysics Data System (ADS)
Abrahart, R. J.; See, L. M.
2007-09-01
Two recent studies have suggested that neural network modelling offers no worthwhile improvements in comparison to the application of weighted linear transfer functions for capturing the non-linear nature of hydrological relationships. The potential of an artificial neural network to perform simple non-linear hydrological transformations under controlled conditions is examined in this paper. Eight neural network models were developed: four full or partial emulations of a recognised non-linear hydrological rainfall-runoff model; four solutions developed on an identical set of inputs and a calculated runoff coefficient output. The use of different input combinations enabled the competencies of solutions developed on a reduced number of parameters to be assessed. The selected hydrological model had a limited number of inputs and contained no temporal component. The modelling process was based on a set of random inputs that had a uniform distribution and spanned a modest range of possibilities. The initial cloning operations permitted a direct comparison to be performed with the equation-based relationship. It also provided more general information about the power of a neural network to replicate mathematical equations and model modest non-linear relationships. The second group of experiments explored a different relationship that is of hydrological interest; the target surface contained a stronger set of non-linear properties and was more challenging. Linear modelling comparisons were performed against traditional least squares multiple linear regression solutions developed on identical datasets. The reported results demonstrate that neural networks are capable of modelling non-linear hydrological processes and are therefore appropriate tools for hydrological modelling.
Proceedings of the Non-Linear Aero Prediction Requirements Workshop
NASA Technical Reports Server (NTRS)
Logan, Michael J. (Editor)
1994-01-01
The purpose of the Non-Linear Aero Prediction Requirements Workshop, held at NASA Langley Research Center on 8-9 Dec. 1993, was to identify and articulate requirements for non-linear aero prediction capabilities during conceptual/preliminary design. The attendees included engineers from industry, government, and academia in a variety of aerospace disciplines, such as advanced design, aerodynamic performance analysis, aero methods development, flight controls, and experimental and theoretical aerodynamics. Presentations by industry and government organizations were followed by panel discussions. This report contains copies of the presentations and the results of the panel discussions.
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Photocrosslinkable copolymers for non-linear optical applications
Kawatsuki, N.; Pakbaz, K.; Schmidt, H.W.
1993-12-31
New photocrosslinkable copolymers have been synthesized and applied as non-linear optical materials. The copolymers are based on methyl methacrylate, a photo-excitable benzophenone monomer, a non-linear optical active 4`-[(2-hydroxyethyl)ethylamino]-4-nitro-azobenzene (disperse red 1) side chain monomer and a crosslinkable 2-butenyl monomer. These copolymers can be crosslinked by UV light at 366 nm in the poled state and show a stable alignment of NLO chromophore by monitoring the adsorption spectra. The crosslinked and poled film did not change its alignment after storing 4 weeks at room temperature.
Non-linear effects in bunch compressor of TARLA
NASA Astrophysics Data System (ADS)
Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin
2016-03-01
Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.
BEAM-BASED NON-LINEAR OPTICS CORRECTIONS IN COLLIDERS.
PILAT, R.; LUO, Y.; MALITSKY, N.; PTITSYN, V.
2005-05-16
A method has been developed to measure and correct operationally the non-linear effects of the final focusing magnets in colliders, that gives access to the effects of multi-pole errors by applying closed orbit bumps, and analyzing the resulting tune and orbit shifts. This technique has been tested and used during 4 years of RHIC (the Relativistic Heavy Ion Collider at BNL) operations. I will discuss here the theoretical basis of the method, the experimental set-up, the correction results, the present understanding of the machine model, the potential and limitations of the method itself as compared with other non-linear correction techniques.
Realization of non-linear coherent states by photonic lattices
Dehdashti, Shahram Li, Rujiang; Chen, Hongsheng; Liu, Jiarui Yu, Faxin
2015-06-15
In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.
Characteristic Dynamics of a Non-Linear Flux Rope
NASA Astrophysics Data System (ADS)
Dehaas, Timothy; Gekelman, Walter; van Compernolle, Bart
2015-11-01
A magnetic flux rope is a tube-like, current carrying plasma embedded in an external magnetic field. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and often recreated in laboratory environments. In a series of experiments, a single flux rope of varying cross-section and length was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, r = 30 cm, no = 1012 cm-3, Te = 4 eV, He). The flux rope was generated via a DC discharge between a cathode and anode with a fixed-free boundary condition. Upon the initiation of the kink instability (IKink > πr2Bzc/2L), the displacement of the flux rope saturates, commencing complex motion. The flux ropes exhibit two types of motion, common to all cases of varying Alfven speeds, injection currents, lengths, and cross-sections. The first motion is characterized by a circular path in the transverse plane, whose displacement depends on the input power and whose frequency varies with injection current. The second motion is characterized by random Lorentzian pulses in the magnetic signals. The polarity of these pulses align with the transverse magnetic field and manifest with greater frequency with increases in magnetic field and injection current. This work is supported by LANL-UC research grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.
Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J
1994-03-01
Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the
NASA Astrophysics Data System (ADS)
Łuczko, J.
2002-08-01
A geometrically non-linear model of the rotating shaft is introduced, which includes Kárman non-linearity, non-linear curvature effects, large displacements and rotations as well as gyroscopic effects. Through applying Timoshenko-type assumptions, the shear effects are also included in the model. Convenient matrix descriptions are used in order to facilitate the analysis based on Galerkin and continuation methods. The model is used to analyze the phenomenon of internal resonance. The influence of some of the system's parameters on the amplitude and frequency of self-excited vibration is investigated.
NASA Astrophysics Data System (ADS)
Kong, Yan; Quan, Wei; Wei, Qi; Qiu, Peng
2016-05-01
We theoretically design a device composed of four nanoslits to dynamically modulate the propagation direction of light beam by embedding non-linear material and air, respectively. Directions of radiation fields are determined by the phase difference of the surface waves at the exit interface and distance of each slit. Numerical simulations using finite element method verify that the unidirectional excitation and beam focusing can be achieved easily by changing the intensity of incident light.
Entropy, non-linearity and hierarchy in ecosystems
NASA Astrophysics Data System (ADS)
Addiscott, T.
2009-04-01
Soil-plant systems are open systems thermodynamically because they exchange both energy and matter with their surroundings. Thus they are properly described by the second and third of the three stages of thermodynamics defined by Prigogine and Stengers (1984). The second stage describes a system in which the flow is linearly related to the force. Such a system tends towards a steady state in which entropy production is minimized, but it depends on the capacity of the system for self-organization. In a third stage system, flow is non-linearly related to force, and the system can move far from equilibrium. This system maximizes entropy production but in so doing facilitates self-organization. The second stage system was suggested earlier to provide a useful analogue of the behaviour of natural and agricultural ecosystems subjected to perturbations, but it needs the capacity for self-organization. Considering an ecosystem as a hierarchy suggests this capacity is provided by the soil population, which releases from dead plant matter nutrients such as nitrate, phosphate and captions needed for growth of new plants and the renewal of the whole ecosystem. This release of small molecules from macromolecules increases entropy, and the soil population maximizes entropy production by releasing nutrients and carbon dioxide as vigorously as conditions allow. In so doing it behaves as a third stage thermodynamic system. Other authors (Schneider and Kay, 1994, 1995) consider that it is in the plants in an ecosystem that maximize entropy, mainly through transpiration, but studies on transpiration efficiency suggest that this is questionable. Prigogine, I. & Stengers, I. 1984. Order out of chaos. Bantam Books, Toronto. Schneider, E.D. & Kay, J.J. 1994. Life as a manifestation of the Second Law of Thermodynamics. Mathematical & Computer Modelling, 19, 25-48. Schneider, E.D. & Kay, J.J. 1995. Order from disorder: The Thermodynamics of Complexity in Biology. In: What is Life: the Next
Non-linear protocell models: synchronization and chaos
NASA Astrophysics Data System (ADS)
Filisetti, A.; Serra, R.; Carletti, T.; Villani, M.; Poli, I.
2010-09-01
We consider generic protocells models allowing linear and non-linear kinetics for the main involved chemical reactions. We are interested in understanding if and how the protocell division and the metabolism do synchronise to give rise to sustainable evolution of the protocell.
Is 3D true non linear traveltime tomography reasonable ?
NASA Astrophysics Data System (ADS)
Herrero, A.; Virieux, J.
2003-04-01
The data sets requiring 3D analysis tools in the context of seismic exploration (both onshore and offshore experiments) or natural seismicity (micro seismicity surveys or post event measurements) are more and more numerous. Classical linearized tomographies and also earthquake localisation codes need an accurate 3D background velocity model. However, if the medium is complex and a priori information not available, a 1D analysis is not able to provide an adequate background velocity image. Moreover, the design of the acquisition layouts is often intrinsically 3D and renders difficult even 2D approaches, especially in natural seismicity cases. Thus, the solution relies on the use of a 3D true non linear approach, which allows to explore the model space and to identify an optimal velocity image. The problem becomes then practical and its feasibility depends on the available computing resources (memory and time). In this presentation, we show that facing a 3D traveltime tomography problem with an extensive non-linear approach combining fast travel time estimators based on level set methods and optimisation techniques such as multiscale strategy is feasible. Moreover, because management of inhomogeneous inversion parameters is more friendly in a non linear approach, we describe how to perform a jointly non-linear inversion for the seismic velocities and the sources locations.
Non-linear Langmuir waves in a warm quantum plasma
Dubinov, Alexander E. Kitaev, Ilya N.
2014-10-15
A non-linear differential equation describing the Langmuir waves in a warm quantum electron-ion plasma has been derived. Its numerical solutions of the equation show that ordinary electronic oscillations, similar to the classical oscillations, occur along with small-scale quantum Langmuir oscillations induced by the Bohm quantum force.
Evolution equation for non-linear cosmological perturbations
Brustein, Ram; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch
2011-11-01
We present a novel approach, based entirely on the gravitational potential, for studying the evolution of non-linear cosmological matter perturbations. Starting from the perturbed Einstein equations, we integrate out the non-relativistic degrees of freedom of the cosmic fluid and obtain a single closed equation for the gravitational potential. We then verify the validity of the new equation by comparing its approximate solutions to known results in the theory of non-linear cosmological perturbations. First, we show explicitly that the perturbative solution of our equation matches the standard perturbative solutions. Next, using the mean field approximation to the equation, we show that its solution reproduces in a simple way the exponential suppression of the non-linear propagator on small scales due to the velocity dispersion. Our approach can therefore reproduce the main features of the renormalized perturbation theory and (time)-renormalization group approaches to the study of non-linear cosmological perturbations, with some possibly important differences. We conclude by a preliminary discussion of the nature of the full solutions of the equation and their significance.
Tunneling control using classical non-linear oscillator
Kar, Susmita; Bhattacharyya, S. P.
2014-04-24
A quantum particle is placed in symmetric double well potential which is coupled to a classical non-linear oscillator via a coupling function. With different spatial symmetry of the coupling and under various controlling fashions, the tunneling of the quantum particle can be enhanced or suppressed, or totally destroyed.
NASA Astrophysics Data System (ADS)
Reagor, Matthew; Pfaff, Wolfgang; Heeres, Reinier; Ofek, Nissim; Chou, Kevin; Blumoff, Jacob; Leghtas, Zaki; Touzard, Steven; Sliwa, Katrina; Holland, Eric; Albert, Victor V.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.
2015-03-01
Recent advances in circuit QED have shown great potential for using microwave resonators as quantum memories. In particular, it is possible to encode the state of a quantum bit in non-classical photonic states inside a high-Q linear resonator. An outstanding challenge is to perform controlled operations on such a photonic state. We demonstrate experimentally how a continuous drive on a transmon qubit coupled to a high-Q storage resonator can be used to induce non-linear dynamics of the resonator. Tailoring the drive properties allows us to cancel or enhance non-linearities in the system such that we can manipulate the state stored in the cavity. This approach can be used to either counteract undesirable evolution due to the bare Hamiltonian of the system or, ultimately, to perform logical operations on the state encoded in the cavity field. Our method provides a promising pathway towards performing universal control for quantum states stored in high-coherence resonators in the circuit QED platform.
NASA Astrophysics Data System (ADS)
Gómez-Ullate, D.; Lombardo, S.; Mañas, M.; Mazzocco, M.; Nijhoff, F.; Sommacal, M.
2009-11-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to integrability and nonlinear phenomena. The motivation behind this special issue is to summarize in a single comprehensive publication, the main aspects (past and present), latest developments, different viewpoints and the directions being followed in this multidisciplinary field. We hope that such a special issue could become a particularly valuable reference for the broad scientific community working in integrability and nonlinear phenomena. Editorial policy The Editorial Board has invited D Gómez-Ullate, S Lombardo, M Mañas, M Mazzocco, F Nijhoff and M Sommacal to serve as Guest Editors for the special issue. Their criteria for the acceptance of contributions are as follows. The subject of the paper should relate to the following list of subjects: Integrable systems (including quantum and discrete) and applications Dynamical systems: Hamiltonian systems and dynamics in the complex domain Nonlinear waves, soliton equations and applications Nonlinear ODEs including Painlevé equations and isomonodromic deformations Symmetries and perturbative methods in the classification of integrable PDEs Infinite dimensional Lie algebras and integrable systems Orthogonal Polynomials, Random Matrix Theory All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The DEADLINE for contributed papers will be 28 February 2010. This deadline will allow the special issue to appear in October 2010. There is a nominal page limit of 15 printed pages per contribution (invited review papers can be longer). For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on publishing your work in Journal of Physics A: Mathematical and Theoretical
NASA Astrophysics Data System (ADS)
Gómez-Ullate, D.; Lombardo, S.; Mañas, M.; Mazzocco, M.; Nijhoff, F.; Sommacal, M.
2009-12-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to integrability and nonlinear phenomena. The motivation behind this special issue is to summarize in a single comprehensive publication, the main aspects (past and present), latest developments, different viewpoints and the directions being followed in this multidisciplinary field. We hope that such a special issue could become a particularly valuable reference for the broad scientific community working in integrability and nonlinear phenomena. Editorial policy The Editorial Board has invited D Gómez-Ullate, S Lombardo, M Mañas, M Mazzocco, F Nijhoff and M Sommacal to serve as Guest Editors for the special issue. Their criteria for the acceptance of contributions are as follows. The subject of the paper should relate to the following list of subjects: Integrable systems (including quantum and discrete) and applications Dynamical systems: Hamiltonian systems and dynamics in the complex domain Nonlinear waves, soliton equations and applications Nonlinear ODEs including Painlevé equations and isomonodromic deformations Symmetries and perturbative methods in the classification of integrable PDEs Infinite dimensional Lie algebras and integrable systems Orthogonal Polynomials, Random Matrix Theory All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The DEADLINE for contributed papers will be 28 February 2010. This deadline will allow the special issue to appear in October 2010. There is a nominal page limit of 15 printed pages per contribution (invited review papers can be longer). For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on publishing your work in Journal of Physics A: Mathematical and Theoretical
Non-linearity in Bayesian 1-D magnetotelluric inversion
NASA Astrophysics Data System (ADS)
Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dettmer, Jan; Tong, Xiaozhong
2011-05-01
This paper applies a Bayesian approach to examine non-linearity for the 1-D magnetotelluric (MT) inverse problem. In a Bayesian formulation the posterior probability density (PPD), which combines data and prior information, is interpreted in terms of parameter estimates and uncertainties, which requires optimizing and integrating the PPD. Much work on 1-D MT inversion has been based on (approximate) linearized solutions, but more recently fully non-linear (numerical) approaches have been applied. This paper directly compares results of linearized and non-linear uncertainty estimation for 1-D MT inversion; to do so, advanced methods for both approaches are applied. In the non-linear formulation used here, numerical optimization is carried out using an adaptive-hybrid algorithm. Numerical integration applies Metropolis-Hastings sampling, rotated to a principal-component parameter space for efficient sampling of correlated parameters, and employing non-unity sampling temperatures to ensure global sampling. Since appropriate model parametrizations are generally not known a priori, both under- and overparametrized approaches are considered. For underparametrization, the Bayesian information criterion is applied to determine the number of layers consistent with the resolving power of the data. For overparametrization, prior information is included which favours simple structure in a manner similar to regularized inversion. The data variance and/or trade-off parameter regulating data and prior information are treated in several ways, including applying fixed optimal estimates (an empirical Bayesian approach) or including them as hyperparameters in the sampling (hierarchical Bayesian). The latter approach has the benefit of accounting for the uncertainty in the hyperparameters in estimating model parameter uncertainties. Non-linear and linearized inversion results are compared for synthetic test cases and for the measured COPROD1 MT data by considering marginal probability
Non-Linear Pattern Formation in Bone Growth and Architecture
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here – chaotic non-linear pattern formation (NPF) – which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of “group intelligence” exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called “particle swarm optimization” (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating “socially” in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or “feedback” between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the
Non-linear pattern formation in bone growth and architecture.
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent
Non-linear torsional vibration characteristics of an internal combustion engine crankshaft assembly
NASA Astrophysics Data System (ADS)
Huang, Ying; Yang, Shouping; Zhang, Fujun; Zhao, Changlu; Ling, Qiang; Wang, Haiyan
2012-07-01
Crankshaft assembly failure is one of the main factors that affects the reliability and service life of engines. The linear lumped mass method, which has been universally applied to the dynamic modeling of engine crankshaft assembly, reveals obvious simulation errors. The nonlinear dynamic characteristics of a crankshaft assembly are instructionally significant to the improvement of modeling correctness. In this paper, a general expression for the non-constant inertia of a crankshaft assembly is derived based on the instantaneous kinetic energy equivalence method. The nonlinear dynamic equations of a multi-cylinder crankshaft assembly are established using the Lagrange rule considering nonlinear factors such as the non-constant inertia of reciprocating components and the structural damping of shaft segments. The natural frequency and mode shapes of a crankshaft assembly are investigated employing the eigenvector method. The forced vibration response of a diesel engine crankshaft assembly taking into account the non-constant inertia is studied using the numerical integral method. The simulation results are compared with a lumped mass model and a detailed model using the system matrix method. Results of non-linear torsional vibration analysis indicate that the additional excitation torque created by non-constant inertia activates the 2nd order rolling vibration, and the additional damping torque resulting from the non-constant inertia is the main nonlinear factor. The increased torsional angular displacement evoked by the high order excitation torque relates to the non-constant inertia. This research project is aimed at improving nonlinear dynamics theory, and the confirmed nonlinear parameters can be used for the structure design of a crankshaft assembly.
Linear and non-linear wall friction of wet foams.
Le Merrer, Marie; Lespiat, Rémi; Höhler, Reinhard; Cohen-Addad, Sylvie
2015-01-14
We study the wall slip of aqueous foams with a high liquid content. We use a set-up where, driven by buoyancy, a foam creeps along an inclined smooth solid wall which is immersed in the foaming solution. This configuration allows the force driving the bubble motion and the bubble confinement in the vicinity of the wall to be tuned independently. First, we consider bubble monolayers with small Bond number Bo < 1 and measure the relation between the friction force F and the bubble velocity V. For bubbles which are so small that they are almost spherical, the friction law F ∝ V is Stokes-like. The analysis shows that the minimal thickness of the lubricating contact between the bubble and the wall is governed by DLVO long-range forces. Our results are the first evidence of this predicted linear friction regime for creeping bubbles. Due to buoyancy, large bubbles flatten against the wall. In this case, dissipation arises because of viscous flow in the dynamic meniscus between the contact film and the spherical part of the bubble. It leads to a non-linear Bretherton-like friction law F ∝ V(2/3), as expected for slipping bubbles with mobile liquid-gas interfaces. The Stokes-like friction dominates for capillary numbers Ca larger than the crossover value Ca* ∼ Bo(3/2). The overall friction force can be expressed as the sum of these two contributions. On this basis, we then study 3D foams close to the jamming transition with osmotic pressures Π small compared to the capillary pressure Pc. We measure the wall shear stress τ as a function of the capillary number, and we evidence two friction regimes that are consistent with those found for the monolayer. Similarly to this latter case, the total shear stress can be expressed as the sum of the Stokes-like friction term τ ∝ Ca and the Bretherton-like one τ ∝ Ca(2/3). However, for a 3D foam, the crossover at a capillary number Ca** between both regimes is governed by the ratio of the osmotic pressure to the
Optimal Vibration Estimation of a Non-Linear Flexible Beam Mounted on a Rotating Compliant Hub
NASA Astrophysics Data System (ADS)
El-Sinawi, A.; Hamdan, M. N.
2003-01-01
To eliminate the need for sensor placement on rotating flexible beams such as turbine blades, helicopter rotors and like applications, a new approach has been developed based on the linear quadratic estimator (LQE) technique for estimating the vibration of any point on the span of a rotating flexible beam mounted on a compliant hub ( plant) in the presence of process and measurements noise. A non-linear model of the plant is utilized in this study to mimic the actual plant behavior. The corresponding plant dynamics of the LQE are in the form of a reduced order linear model constructed from the eigenvalues and eigenfuctions of a finite element dynamic model of the plant formulated in the state space. A virtual hub deflection (that mimics the actual measurement of the vertical hub deflection needed by the estimation process) is generated by the non-linear model of the plant. The LQE reconstructs the states of the plant, including transverse deflection of the beam at any point, from the measurements of the vertical deflection of the hub, assuming that it is the most accessible state for measurement. Estimated beam tip deflection obtained by the proposed technique is then compared to the tip deflection generated by the non-linear model and the results show good agreement.
A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses
NASA Astrophysics Data System (ADS)
Hwang, Harold Y.; Fleischer, Sharly; Brandt, Nathaniel C.; Perkins, Bradford G., Jr.; Liu, Mengkun; Fan, Kebin; Sternbach, Aaron; Zhang, Xin; Averitt, Richard D.; Nelson, Keith A.
2015-10-01
Over the past decade, breakthroughs in the generation and control of ultrafast high-field terahertz (THz) radiation have led to new spectroscopic methodologies for the study of light-matter interactions in the strong-field limit. In this review, we will outline recent experimental demonstrations of non-linear THz material responses in materials ranging from molecular gases, to liquids, to varieties of solids - including semiconductors, nanocarbon, and correlated electron materials. New insights into how strong THz fields interact with matter will be discussed in which a THz field can act as either a non-resonant electric field or a broad bandwidth pulse driving specific resonances within it. As an emerging field, non-linear THz spectroscopy shows promise for elucidating dynamic problems associated with next generation electronics and optoelectronics, as well as for demonstrating control over collective material degrees of freedom.
Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.
2016-04-04
Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. The non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. Moreover, the finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computingmore » systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. As a result, the collision operator's good weak and strong scaling behavior are shown.« less
NASA Astrophysics Data System (ADS)
Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.
2016-06-01
Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. In this article, the non-linear single-species Fokker-Planck-Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. The finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker-Planck-Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computing systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. The collision operator's good weak and strong scaling behavior are shown.
NASA Technical Reports Server (NTRS)
Dustin, M. O.
1985-01-01
The development of the solar dynamic system is discussed. The benefits of the solar dynamic system over pv systems are enumerated. The history of the solar dynamic development is recounted. The purpose and approach of the advanced development are outlined. Critical concentrator technology and critical heat recover technology are examined.
A study of non-linearity in rainfall-runoff response using 120 UK catchments
NASA Astrophysics Data System (ADS)
Mathias, Simon A.; McIntyre, Neil; Oughton, Rachel H.
2016-09-01
This study presents a catchment characteristic sensitivity analysis concerning the non-linearity of rainfall-runoff response in 120 UK catchments. Two approaches were adopted. The first approach involved, for each catchment, regression of a power-law to flow rate gradient data for recession events only. This approach was referred to as the recession analysis (RA). The second approach involved calibrating a rainfall-runoff model to the full data set (both recession and non-recession events). The rainfall-runoff model was developed by combining a power-law streamflow routing function with a one parameter probability distributed model (PDM) for soil moisture accounting. This approach was referred to as the rainfall-runoff model (RM). Step-wise linear regression was used to derive regionalization equations for the three parameters. An advantage of the RM approach is that it utilizes much more of the observed data. Results from the RM approach suggest that catchments with high base-flow and low annual precipitation tend to exhibit greater non-linearity in rainfall-runoff response. In contrast, the results from the RA approach suggest that non-linearity is linked to low evaporative demand. The difference in results is attributed to the aggregation of storm-flow and base-flow into a single system giving rise to a seemingly more non-linear response when applying the RM approach to catchments that exhibit a strongly dual storm-flow base-flow response. The study also highlights the value and limitations in a regionlization context of aggregating storm-flow and base-flow pathways into a single non-linear routing function.
Non-linear behaviour of XTE J1550-564 during its 1998-1999 outburst, revealed by recurrence analysis
NASA Astrophysics Data System (ADS)
Suková, Petra; Janiuk, Agnieszka
2016-06-01
We study the X-ray emission of the microquasar XTE J1550-564 and analyze the properties of its light curves using the recurrence analysis method. The indicators for non-linear dynamics of the accretion flow are found in the very high state and soft state of this source. The significance of deterministic variability depends on the energy band. We discuss the non-linear dynamics of the accretion flow in the context of the disc-corona geometry and propagating oscillations in the accretion flow.
Non-linear Higgs portal to Dark Matter
NASA Astrophysics Data System (ADS)
Brivio, I.; Gavela, M. B.; Merlo, L.; Mimasu, K.; No, J. M.; del Rey, R.; Sanz, V.
2016-04-01
The Higgs portal to scalar Dark Matter is considered in the context of non-linearly realised electroweak symmetry breaking. We determine the dominant interactions of gauge bosons and the physical Higgs particle h to a scalar singlet Dark Matter candidate. Phenomenological consequences are also studied in detail, including the possibility of distinguishing this scenario from the standard Higgs portal in which the electroweak symmetry breaking is linearly realised. Two features of significant impact are: i) the connection between the electroweak scale v and the Higgs particle departs from the ( v + h) functional dependence, as the Higgs field is not necessarily an exact electroweak doublet; ii) the presence of specific couplings that arise at different order in the non-linear and in the linear expansions. These facts deeply affect the Dark Matter relic abundance, as well as the expected signals in direct and indirect searches and collider phenomenology, where Dark Matter production rates are enhanced with respect to the standard portal.
New non-linear photovoltaic effect in uniform bipolar semiconductor
Volovichev, I.
2014-11-21
A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.
On the non-linear scale of cosmological perturbation theory
Blas, Diego; Garny, Mathias; Konstandin, Thomas E-mail: mathias.garny@desy.de
2013-09-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections at any order in perturbation theory. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
Non-linear stochastic growth rates and redshift space distortions
NASA Astrophysics Data System (ADS)
Jennings, Elise; Jennings, David
2015-06-01
The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = nabla \\cdot v({x},t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ˜10 per cent at k < 0.2 h Mpc-1 to 25 per cent at k ˜ 0.45 h Mpc-1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 1012 M⊙ h-1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -fLTδ, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) for k < 0.1 h Mpc-1. The stochasticity in the θ-δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of fLT from two-point statistics in redshift space. Given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.
Approximate solutions for non-linear iterative fractional differential equations
NASA Astrophysics Data System (ADS)
Damag, Faten H.; Kiliçman, Adem; Ibrahim, Rabha W.
2016-06-01
This paper establishes approximate solution for non-linear iterative fractional differential equations: d/γv (s ) d sγ =ℵ (s ,v ,v (v )), where γ ∈ (0, 1], s ∈ I := [0, 1]. Our method is based on some convergence tools for analytic solution in a connected region. We show that the suggested solution is unique and convergent by some well known geometric functions.
Non-linear stochastic growth rates and redshift space distortions
Jennings, Elise; Jennings, David
2015-04-09
The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc^{-1} to 25 per cent at k ~ 0.45 h Mpc^{-1} at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 10^{12} M_{⊙} h^{-1}, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -f_{LT}δ, where f_{LT }is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc^{-1}. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of f_{LT} from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of f_{LT} extracted using models which assume a linear, deterministic expression.
Non linear identities between unitary minimal Virasoro characters
NASA Astrophysics Data System (ADS)
Taormina, Anne
Non linear identities between unitary minimal Virasoro characters at low levels (m = 3, 4, 5) are presented as well as a sketch of some proofs. The first identity gives the Ising model characters (m = 3) as bilinears in tricritical Ising model characters (m = 4), while the second one gives the tricritical Ising model characters as bilinears in the Ising model characters and the six combinations of m = 5 Virasoro characters which do not appear in the spectrum of the three state Potts model.
Non-linear stochastic growth rates and redshift space distortions
Jennings, Elise; Jennings, David
2015-04-09
The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc-1 to 25 per cent at kmore » ~ 0.45 h Mpc-1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 1012 M⊙ h-1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -fLTδ, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc-1. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of fLT from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.« less
Non-linear power spectra in the synchronous gauge
NASA Astrophysics Data System (ADS)
Hwang, Jai-chan; Noh, Hyerim; Jeong, Donghui; Gong, Jinn-Ouk; Biern, Sang Gyu
2015-05-01
We study the non-linear corrections to the matter and velocity power spectra in the synchronous gauge (SG). For the leading correction to the non-linear power spectra, we consider the perturbations up to third order in a zero-pressure fluid in a flat cosmological background. Although the equations in the SG happen to coincide with those in the comoving gauge (CG) to linear order, they differ from second order. In particular, the second order hydrodynamic equations in the SG are apparently in the Lagrangian form, whereas those in the CG are in the Eulerian form. The non-linear power spectra naively presented in the original SG show rather pathological behavior quite different from the result of the Newtonian theory even on sub-horizon scales. We show that the pathology in the nonlinear power spectra is due to the absence of the convective terms in, thus the Lagrangian nature of, the SG. We show that there are many different ways of introducing the corrective convective terms in the SG equations. However, the convective terms (Eulerian modification) can be introduced only through gauge transformations to other gauges which should be the same as the CG to the second order. In our previous works we have shown that the density and velocity perturbation equations in the CG exactly coincide with the Newtonian equations to the second order, and the pure general relativistic correction terms starting to appear from the third order are substantially suppressed compared with the relativistic/Newtonian terms in the power spectra. As a result, we conclude that the SG per se is an inappropriate coordinate choice in handling the non-linear matter and velocity power spectra of the large-scale structure where observations meet with theories.
Liapunov functions for non-linear difference equation stability analysis.
NASA Technical Reports Server (NTRS)
Park, K. E.; Kinnen, E.
1972-01-01
Liapunov functions to determine the stability of non-linear autonomous difference equations can be developed through the use of auxiliary exact difference equations. For this purpose definitions are introduced for the gradient of an implicit function of a discrete variable, a principal sum, a definite sum and an exact difference equation, and a theorem for exactness of a difference form is proved. Examples illustrate the procedure.
Non-linear Compton Scattering in Short Laser Pulses
NASA Astrophysics Data System (ADS)
Krajewska, Katarzyna; Kamiński, Jerzy
2012-06-01
The generation of short X-ray laser pulses attracts a great deal of attention. One of mechanisms to achieve this goal is the non-linear Compton scattering at very high laser powers. The majority of previous works on the non-linear Compton scattering have been devoted to the case when the incident laser field is treated as a monochromatic plane wave. There is, however, recent interest in analyzing the effect of a pulsed laser field on the non-linear Compton scattering [1-4]. We study the process for different durations of the incident laser pulse and compare it with the results for both a plane wave laser field and a laser pulse train. [4pt] [1] M. Boca and V. Florescu, Phys. Rev. A 80, 053403 (2009).[0pt] [2] M. Boca and V. Florescu, Eur. Phys. J. D 61, 446 (2011).[0pt] [3] D. Seipt and B. Kämpfer, Phys. Rev. A 83, 022101 (2011).[0pt] [4] F. Mackenroth and A. Di Piazza, Phys. Rev. A 83, 032106 (2011).
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005
Non-linear adaptive sliding mode switching control with average dwell-time
NASA Astrophysics Data System (ADS)
Yu, Lei; Zhang, Maoqing; Fei, Shumin
2013-03-01
In this article, an adaptive integral sliding mode control scheme is addressed for switched non-linear systems in the presence of model uncertainties and external disturbances. The control law includes two parts: a slide mode controller for the reduced model of the plant and a compensation controller to deal with the non-linear systems with parameter uncertainties. The adaptive updated laws have been derived from the switched multiple Lyapunov function method, also an admissible switching signal with average dwell-time technique is given. The simplicity of the proposed control scheme facilitates its implementation and the overall control scheme guarantees the global asymptotic stability in the Lyapunov sense such that the sliding surface of the control system is well reached. Simulation results are presented to demonstrate the effectiveness and the feasibility of the proposed approach.
A Technique for Determining Non-Linear Circuit Parameters from Ring Down Data
ROMERO, LOUIS; DICKEY, FRED M.; DISON, HOLLY
2003-01-01
We present a technique for determining non-linear resistances, capacitances, and inductances from ring down data in a non-linear RLC circuit. Although the governing differential equations are non-linear, we are able to solve this problem using linear least squares without doing any sort of non-linear iteration.
Relativistic weak lensing from a fully non-linear cosmological density field
NASA Astrophysics Data System (ADS)
Thomas, D. B.; Bruni, M.; Wands, D.
2015-09-01
In this paper we examine cosmological weak lensing on non-linear scales and show that there are Newtonian and relativistic contributions and that the latter can also be extracted from standard Newtonian simulations. We use the post-Friedmann formalism, a post-Newtonian type framework for cosmology, to derive the full weak-lensing deflection angle valid on non-linear scales for any metric theory of gravity. We show that the only contributing term that is quadratic in the first order deflection is the expected Born correction and lens-lens coupling term. We use this deflection angle to analyse the vector and tensor contributions to the E- and B- mode cosmic shear power spectra. In our approach, once the gravitational theory has been specified, the metric components are related to the matter content in a well-defined manner. Specifying General Relativity, we write down a complete set of equations for a GR+ΛCDM universe for computing all of the possible lensing terms from Newtonian N-body simulations. We illustrate this with the vector potential and show that, in a GR+ΛCDM universe, its contribution to the E-mode is negligible with respect to that of the conventional Newtonian scalar potential, even on non-linear scales. Thus, under the standard assumption that Newtonian N-body simulations give a good approximation of the matter dynamics, we show that the standard ray tracing approach gives a good description for a ΛCDM cosmology.
Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors
NASA Astrophysics Data System (ADS)
Kraczek, Brent; Kanp, Jaroslaw
Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.
NASA Technical Reports Server (NTRS)
Fleming, David P.; Poplawski, J. V.
2002-01-01
Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.
NASA Astrophysics Data System (ADS)
Kallush, Shimshon; Fleischer, Sharly; Ultrafast terahertz molecular dynamics Collaboration
2015-05-01
Quantum simulation of large open systems is a hard task that demands huge computation and memory costs. The rotational dynamics of non-linear molecules at high-temperature under external fields is such an example. At room temperature, the initial density matrix populates ~ 104 rotational states, and the whole coupled Hilbert space can reach ~ 106 states. Simulation by neither the direct density matrix nor the full basis set of populated wavefunctions is impossible. We employ the random phase wave function method to represent the initial state and compute several time dependent and independent observables such as the orientation and the alignment of the molecules. The error of the method was found to scale as N- 1 / 2, where N is the number of wave function realizations employed. Scaling vs. the temperature was computed for weak and strong fields. As expected, the convergence of the method increase rapidly with the temperature and the field intensity.
NASA Astrophysics Data System (ADS)
Besson, François; Ferraris, Guy; Guingand, Michèle; Vaujany, Jean-Pierre De
During the last decade, many new technical solutions dedicated to the comfort of automotive vehicle's drivers have raised, like Electrical Power Steering (EPS). To fulfill the more and more demanding requirements in terms of vibration and acoustics, the dynamic behavior of the whole steering is studied. The system is divided into dedicated finite elements (FE) describing the whole steering. The stress was first put on the gears models (worm gear and rack-and-pinion) and their anti-backlash systems as they have been identified as potential vibration sources. Mechanical non-linearities (clearances, non-linear stiffness) of the mechanical system are taken into account in these models. Then, this model allows simulating the transient response of the system to an input excitation. Each developed element is validated using a fitted experimental test bench. Then, the general model is correlated the same way. Hence models can be used to study the dynamic behavior of EPS systems or sub-systems.
Polynomial elimination theory and non-linear stability analysis for the Euler equations
NASA Technical Reports Server (NTRS)
Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.
1986-01-01
Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.
Towards time-dependent current-density-functional theory in the non-linear regime
Escartín, J. M.; Vincendon, M.; Dinh, P. M.; Suraud, E.; Romaniello, P.; Reinhard, P.-G.
2015-02-28
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.
Towards time-dependent current-density-functional theory in the non-linear regime
NASA Astrophysics Data System (ADS)
Escartín, J. M.; Vincendon, M.; Romaniello, P.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.
2015-02-01
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.
Towards time-dependent current-density-functional theory in the non-linear regime.
Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E
2015-02-28
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations. PMID:25725723
Support Vector Machines for Non-linear Geophysical Inversion
NASA Astrophysics Data System (ADS)
Kuzma, H. A.; Rector, J. W.
2004-12-01
Classical non-linear geophysical inversion can be simulated using computer learning via Support Vector Machines. Geophysical inverse problems are almost always ill-posed which means that many different models (i.e. descriptions of the earth) can be found to explain a given noisy or incomplete data set. Regularization and constraints encourage inversions to find physically realistic models. The set of preferred models needs to be defined a priori using as much geologic knowledge as is available. In inversion, it is assumed that data and a forward modeling process is known. The goal is to solve for a model. In the SVM paradigm, a series of models and associated data are known. The goal is to solve for a reverse modeling process. Starting with a series of initial models assembled using all available geologic information, synthetic data is created using the most realistic forward modeling program available. With the synthetic data as inputs and the known models as outputs, a Support Vector Machine is trained to approximate a local inverse to the forward modeling program. The advantages of this approach are that it is honest about the need to establish, a priori, the kinds of models that are reasonable in a particular field situation. There is no need to adjust the forward process to accommodate inversion, because SVMs can be easily modified to capture complicated, non-linear relationships. SVMs are transparent and require very little programming. If an SVM is trained using model/data pairs that are drawn from the same probability distribution that is implicit in the regularization of an inversion, then it will get very similar results to the inversion. Because SVMs can interpret as much data as desired so long as the conditions of an experiment do not change, they can be used to perform otherwise computationally expensive procedures. Support Vector Machines are trained to emulate non-linear seismic Amplitude Variation with Offset (AVO) inversions, gravity inversions
Non-linear wave interaction in a plasma column
NASA Technical Reports Server (NTRS)
Larsen, J.-M.; Crawford, F. W.
1979-01-01
Non-linear three-wave interaction is analysed for propagation along a cylindrical plasma column surrounded by an infinite dielectric, in the absence of a static magnetic field. An averaged-Lagrangian method is used, and the results are specialized to parametric interaction and mode conversion, assuming an undepleted pump wave. The theory for these two types of interactions is extended to include imperfect synchronism, and the effects of loss. Computations are presented indicating that parametric growth rates of the order of a fraction of a decibel per centimeter should be obtainable for plausible laboratory plasma column parameters.
Non-linear identification of a squeeze-film damper
NASA Technical Reports Server (NTRS)
Stanway, Roger; Mottershead, John; Firoozian, Riaz
1987-01-01
Described is an experimental study to identify the damping laws associated with a squeeze-film vibration damper. This is achieved by using a non-linear filtering algorithm to process displacement responses of the damper ring to synchronous excitation and thus to estimate the parameters in an nth-power velocity model. The experimental facility is described in detail and a representative selection of results is included. The identified models are validated through the prediction of damper-ring orbits and comparison with observed responses.
8-PSK Signaling over non-linear satellite channels
NASA Technical Reports Server (NTRS)
Horan, Sheila B.; Caballero, Ruben B. Eng.
1996-01-01
Space agencies are under pressure to utilize better bandwidth-efficient communication methods due to the actual allocated frequency bands becoming more congested. Also budget reductions is another problem that the space agencies must deal with. This budget constraint results in simpler spacecraft carrying less communication capabilities and also the reduction in staff to capture data in the earth stations. It is then imperative that the most bandwidth efficient communication methods be utilized. This thesis presents a study of 8-ary Phase Shift Keying (8PSK) modulation with respect to bandwidth, power efficiency, spurious emissions and interference susceptibility over a non-linear satellite channel.
Non-linear dielectric spectroscopy of microbiological suspensions
Treo, Ernesto F; Felice, Carmelo J
2009-01-01
Background Non-linear dielectric spectroscopy (NLDS) of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA) was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar measurements, but maximum were not
Non-linear isocurvature perturbations and non-Gaussianities
Langlois, David; Vernizzi, Filippo; Wands, David E-mail: filippo.vernizzi@cea.fr
2008-12-15
We study non-linear primordial adiabatic and isocurvature perturbations and their non-Gaussianity. After giving a general formulation in the context of an extended {delta}N formalism, we analyse in detail two illustrative examples. The first is a mixed curvaton-inflaton scenario in which fluctuations of both the inflaton and a curvaton (a light isocurvature field during inflation) contribute to the primordial density perturbation. The second example is that of double inflation involving two decoupled massive scalar fields during inflation. In the mixed curvaton-inflaton scenario we find that the bispectrum of primordial isocurvature perturbations may be large and comparable to the bispectrum of adiabatic curvature perturbations.
Design and implementation of non-linear image processing functions for CMOS image sensor
NASA Astrophysics Data System (ADS)
Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel
2012-11-01
Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.
NASA Technical Reports Server (NTRS)
Hein, C.; Meystel, A.
1994-01-01
There are many multi-stage optimization problems that are not easily solved through any known direct method when the stages are coupled. For instance, we have investigated the problem of planning a vehicle's control sequence to negotiate obstacles and reach a goal in minimum time. The vehicle has a known mass, and the controlling forces have finite limits. We have developed a technique that finds admissible control trajectories which tend to minimize the vehicle's transit time through the obstacle field. The immediate applications is that of a space robot which must rapidly traverse around 2-or-3 dimensional structures via application of a rotating thruster or non-rotating on-off for such vehicles is located at the Marshall Space Flight Center in Huntsville Alabama. However, it appears that the development method is applicable to a general set of optimization problems in which the cost function and the multi-dimensional multi-state system can be any nonlinear functions, which are continuous in the operating regions. Other applications included the planning of optimal navigation pathways through a transversability graph; the planning of control input for under-water maneuvering vehicles which have complex control state-space relationships; the planning of control sequences for milling and manufacturing robots; the planning of control and trajectories for automated delivery vehicles; and the optimization and athletic training in slalom sports.
Non-linear leak currents affect mammalian neuron physiology
Huang, Shiwei; Hong, Sungho; De Schutter, Erik
2015-01-01
In their seminal works on squid giant axons, Hodgkin, and Huxley approximated the membrane leak current as Ohmic, i.e., linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted) varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents) and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells. PMID:26594148
Non-linear plasma wake growth of electron holes
NASA Astrophysics Data System (ADS)
Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.
2015-03-01
An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.
Non-linear plasma wake growth of electron holes
Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.
2015-03-15
An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.
Modified non-linear Burgers' equations and cosmic ray shocks
NASA Technical Reports Server (NTRS)
Zank, G. P.; Webb, G. M.; Mckenzie, J. F.
1988-01-01
A reductive perturbation scheme is used to derive a generalized non-linear Burgers' equation, which includes the effects of dispersion, in the long wavelength regime for the two-fluid hydrodynamical model used to describe cosmic ray acceleration by the first-order Fermi process in astrophysical shocks. The generalized Burger's equation is derived for both relativistic and non-relativistic cosmic ray shocks, and describes the time evolution of weak shocks in the theory of diffusive shock acceleration. The inclusion of dispersive effects modifies the phase velocity of the shock obtained from the lower order non-linear Burger's equation through the introduction of higher order terms from the long wavelength dispersion equation. The travelling wave solution of the generalized Burgers' equation for a single shock shows that larger cosmic ray pressures result in broader shock transitions. The results for relativistic shocks show a steepening of the shock as the shock speed approaches the relativistic cosmic ray sound speed. The dependence of the shock speed on the cosmic ray pressure is also discussed.
Lawson, Daniel J; Holtrop, Grietje; Flint, Harry
2011-07-01
Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. PMID:21681780
Higgs physics beyond the SM: The non-linear EFT approach
NASA Astrophysics Data System (ADS)
Brivio, I.
2016-07-01
Depending on whether electroweak physics beyond the Standard Model is based on a linear or on a non-linear implementation of the electroweak symmetry breaking, a linear or a chiral Effective Lagrangian is more appropriate. In this talk, the main low-energy signals that allow to recognize whether the observed Higgs scalar is a dynamical (composite) particle or rather an elementary one are presented, in a model-independent way. The patterns of effective couplings produced upon the assumption of specific composite Higgs models are also discussed.=1
Non-linear vibrations of laminated cylindrical shallow shells under thermomechanical loading
NASA Astrophysics Data System (ADS)
Ribeiro, P.; Jansen, E.
2008-08-01
The geometrically non-linear vibrations of linear elastic composite laminated shallow shells under the simultaneous action of thermal fields and mechanical excitations are analysed. For this purpose, a model based on a very efficient p-version first-order shear deformation finite element, with hierarchical basis functions, is employed. The equations of motion are solved in the time domain by a Newmark implicit time integration method. The model and code developed are partially validated by comparison with published data. Parametric studies are carried out in order to study the influence of temperature change, initial curvature, panel thickness and fibre orientation on the shells' dynamics.
Derivation of a non-linear ABBM model for the calculation of Barkhausen effect
NASA Astrophysics Data System (ADS)
Lee, S. J.; Zhu, B.; Lo, C. C. H.; Clatterbuck, D. M.; Jiles, D. C.
2001-04-01
The Alessandro, Beatrice, Bertotti, and Montorsi (ABBM) model can describe the dynamics of domain wall motion in a ferromagnetic material which is subjected to a smoothly varying external magnetic field. The assumptions of this model limit its use to experiments where the differential permeability and time derivative of applied field are constant. In this paper, the non-linear permeability of the sample is incorporated into the ABBM model by extracting the differential permeability at different points on the B,H plane from the Jiles-Atherton (J-A) hysteresis model.
NASA Astrophysics Data System (ADS)
Kheloufi, N.; Kahlouche, S.; Lamara, R. Ait Ahmed
2009-04-01
The resolution of the MRE's (Multiple Regression Equations) is an important tool for fitting different geodetic network. Nevertheless, in different fields of engineering and earth science, certain cases need more accuracy; the ordinary least squares (linear least squares) prove to be limited. Thus, we have to use new numerical methods of resolution that can provide a great efficiency of polynomial modelisation. In geodesy the accuracy of coordinates determination and network adjustment is very important, that's why instead of being limited to the linear models, we have to apply the non linear least squares resolution for the transformation problem between geodetic systems. This need, appears especially in the case of Nord-Sahara datum (Algeria), on wich the linear models are not much appropriate, because of the lack of information about the geoid's undulation. In this paper, we have fixed as main aim, to carry out the importance of using non linear least squares to improve the quality of geodetic adjustment and coordinates transformation and even the extent of his use. The algorithms carried out concerned the application of two models: three dimensions (global transformation) and the two-dimension one (local transformation) over huge area (Algeria). We compute coordinates transformation parameters and their Rms by both of the ordinary least squares and new algorithms, then we perform a statistical analysis in order to compare on the one hand between the linear adjustment with its two variants (local and global) and the non linear one. In this context, a set of 16 benchmark, have been integrated to compute the transformation parameters (3D and 2D). Different non linear optimization algorithms (Newton algorithm, Steepest Descent, and Levenberg-Marquardt) have been implemented to solve transformation problem. Conclusions and recommendations are given with respect to the suitability, accuracy and efficiency of each method. Key words: MRE's, Nord Sahara, global
The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions
NASA Astrophysics Data System (ADS)
Linander, Hampus; Nilsson, Bengt E. W.
2016-07-01
In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using F = 0 to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 "translation", "Lorentz" and "dilatation") properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this non-linear spin 3 Cotton equation but its explicit form is only presented here, in an exact but not completely refined version, in appended files obtained by computer algebra methods. Both the frame field and metric formulations are provided.
Automated Design of Complex Dynamic Systems
Hermans, Michiel; Schrauwen, Benjamin; Bienstman, Peter; Dambre, Joni
2014-01-01
Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems. PMID:24497969
Non-linear density-dependent effects of an intertidal ecosystem engineer.
Harley, Christopher D G; O'Riley, Jaclyn L
2011-06-01
Ecosystem engineering is an important process in a variety of ecosystems. However, the relationship between engineer density and engineering impact remains poorly understood. We used experiments and a mathematical model to examine the role of engineer density in a rocky intertidal community in northern California. In this system, the whelk Nucella ostrina preys on barnacles (Balanus glandula and Chthamalus dalli), leaving empty barnacle tests as a resource (favorable microhabitat) for other species. Field experiments demonstrated that N. ostrina predation increased the availability of empty tests of both barnacle species, reduced the density of the competitively dominant B. glandula, and indirectly increased the density of the competitively inferior C. dalli. Empty barnacle tests altered microhabitat humidity, but not temperature, and presumably provided a refuge from wave action. The herbivorous snail Littorina plena was positively associated with empty test availability in both observational comparisons and experimental manipulations of empty test availability, and L. plena density was elevated in areas with foraging N. ostrina. To explore the effects of variation in N. ostrina predation, we constructed a demographic matrix model for barnacles in which we varied predation intensity. The model predicted that number of available empty tests increases with predation intensity to a point, but declines when predation pressure was strong enough to severely reduce adult barnacle densities. The modeled number of available empty tests therefore peaked at an intermediate level of N. ostrina predation. Non-linear relationships between engineer density and engineer impact may be a generally important attribute of systems in which engineers influence the population dynamics of the species that they manipulate. PMID:21170751
Damage, Weakening and Non-Linear Processes in a Pressurized Volcanic Edifice.
NASA Astrophysics Data System (ADS)
Carrier, A.; Peltier, A.; Jean Luc, G.; Ferrazzini, V.; Staudacher, T.; Kowalski, P.; Boissier, P.
2014-12-01
When an eruption occurs in a large basaltic volcano as Piton de la Fournaise volcano (La Reunion, France), accelerations of surface displacements and seismicity rate are recorded before magma reaches the surface, with a hour to week time scale. These eruptions are understood as ruptures of pressurized magma reservoirs. When elastic models are used to account for surface deformation, such accelerations are modelled by an accelerating increase of the reservoir pressure. It is reached for magma flow or pressure conditions at the base of the magma feeding system that may be not realistic at this time scale. An alternative solution to explain such accelerations is the weakening of the volcanic edifice under the effect of magma pressure in the reservoir. In this study we have modelled such a weakening by the progressive damage of an initially elastic edifice. We used an incremental damage model, with seismicity as a damage variable with daily increments. Elastic moduli decrease linearly for each damage increment. When this damage model is used in an initially elastic edifice with a simple constant pressure condition at the base of the system (which leads to an equilibrium in a purely elastic model), surface displacement accelerations are well reproduced when damage is sufficient. We link the damage parameter to the crack density and show that process dynamics is controlled by the ratio between the incremental rupture surface and the surface to be ruptured, this later being directly dependent on reservoir depth. In that case the edifice strength decreases relative to the elastic strength, and magma reservoir pressure decreases with elastic moduli. This later characteristics may eventually cause gaz exsolution, which may generate non-linear instabilities during the eruptive process.
[Dynamic Pulse Signal Processing and Analyzing in Mobile System].
Chou, Yongxin; Zhang, Aihua; Ou, Jiqing; Qi, Yusheng
2015-09-01
In order to derive dynamic pulse rate variability (DPRV) signal from dynamic pulse signal in real time, a method for extracting DPRV signal was proposed and a portable mobile monitoring system was designed. The system consists of a front end for collecting and wireless sending pulse signal and a mobile terminal. The proposed method is employed to extract DPRV from dynamic pulse signal in mobile terminal, and the DPRV signal is analyzed both in the time domain and the frequency domain and also with non-linear method in real time. The results show that the proposed method can accurately derive DPRV signal in real time, the system can be used for processing and analyzing DPRV signal in real time. PMID:26904868
Linear relationships in systems with non linear kinetics.
Fagiolino, P; Savio, E; Stareczek, S
1991-01-01
The elimination rate of drug from a capacity-limited one-compartment model can be expressed by equation (1): [formula: see text] Traditionally equation (1) was linearized according to equation (2): [formula: see text] Here, an alternative linear relationships between concentration and the area under the curve of C/(Km + c]) is proposed: [formula: see text] By iteration of Km into equation (3) until the statistic of analysis of variance for the regression is maximized, both Km and Vmax can be obtained. Several cases were considered: a) Intravenous bolus (single dose): Km (mg/L), Vmax (mg/L h), Vd (L) and V (mg/h) can be estimated. b) Extravascular administration (single dose): by the method of residuals it is possible to make additional estimations of FD/Vd (mg/L) and Ka (1/h). c) Bioequivalence studies: with parameters obtained at single dose, the simulated levels at steady-state are considered for the bioequivalence assessments. d) Km, Vmax estimation with two (C,t) points (single dose): double iteration (Km values and interpolated fictitious third points) are needed. e) Multiple dose: [formula: see text] If t2-t1 = T (interval of administration) it is possible to calculate operatives Km, Vmax, FD/Vd and to estimate Css (steady-state concentration). C1 and C2 correspond to different intervals. All the areas were calculated by the trapezoidal rule. PMID:1820928
Fuzzy neural order robust of the non-linear systems
Madour, F.; Benmahammed, K.
2008-06-12
This article introduces a controller at structure of a network multi-layer neurons specified by the fuzzy reasoning of Takagi-Sugeno (TS) order one, the weights of the network represent the standard deviations of the membership function. This controller is applied to the ordering of a reversed pendulum. Changes in the entries and the exit, as of the environment changes of operation are introduced in order to test the robustness of the designed controller.
Fuzzy neural order robust of the non-linear systems
NASA Astrophysics Data System (ADS)
Madour, F.; Benmahammed, K.
2008-06-01
This article introduces a controller at structure of a network multi-layer neurons specified by the fuzzy reasoning of Takagi-Sugeno (TS) order one [1], the weights of the network represent the standard deviations of the membership function. This controller is applied to the ordering of a reversed pendulum. Changes in the entries and the exit, as of the environment changes of operation are introduced in order to test the robustness of the designed controller.
NASA Astrophysics Data System (ADS)
Menezes, J. W. M.; Fraga, W. B.; Lima, F. T.; Guimarães, G. F.; Ferreira, A. C.; Lyra, M. L.; Sombra, A. S. B.
2011-06-01
Recently, much attention has been given to the influence of the relaxation process of the non-linear response, because the usual assumption of instantaneous non-linear response fails for ultra-short pulses, and additional contributions coming from non-linear dispersion and delayed non-linearity have to be taken into account. This article presents a numerical analysis of the symmetric planar and asymmetric planar three-core non-linear directional fiber couplers operating with a soliton pulse, where effects of both delayed and instantaneous non-linear Kerr responses are analyzed for implementation of an all-optical half-adder. To implement this all-optical half-adder, eight configurations were analyzed for the non-linear directional fiber coupler, with two symmetric and six asymmetric configurations. The half-adder is the key building block for many digital processing functions, such as shift register, binary counter, and serial parallel data converters. The optical coupler is an important component for applications in optical-fiber telecommunication systems and all integrated optical circuit because of its very high switching speeds. In this numerical simulation, the symmetric/asymmetric planar presents a structure with three cores in a parallel equidistant arrangement, three logical inputs, and two output energy. To prove the effectiveness of the theoretical model for generation of the all-optical half-adder, the best phase to be applied to the control pulse was sought, and a study was done of the extinction ratio level as a function of the Δ > parameter, the normalized time duration, and the Sum and Carry outputs of the (symmetric planar/asymmetric planar) non-linear directional fiber coupler. In this article, the interest is in transmission characteristics, extinction ratio level, normalized time duration, and pulse evolution along the non-linear directional fiber coupler. To compare the performance of the all-optical half-adders, the figure of merit of the
Non-linear optical crystal vibration sensing device
Kalibjian, R.
1994-08-09
A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.
Non-linear optical crystal vibration sensing device
Kalibjian, Ralph
1994-01-11
A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).
Non-linear radial spinwave modes in thin magnetic disks
Helsen, M. De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Weigand, M.
2015-01-19
We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point.
Non-linear dielectric response of ferrofluids under magnetic field
NASA Astrophysics Data System (ADS)
Licinio, Pedro; Teixeira, Alvaro V.; Figueiredo, José Marcos A.
2005-03-01
The dielectric response of a water-based magnetic fluid is investigated at room temperature and in the frequency range of 100-10 7 rad/s. The response is linear in the electric fields used. Upon application of a constant magnetic field of 40 mT, which is well below the sample saturation, the response becomes non-linear. Magnetic field effects are isolated by performing a differential analysis of the inverse dielectric permittivity with and without applied field in both perpendicular and parallel configurations. The imaginary part of the differential inverse permittivity displays two peaks. The low-frequency peak is seen to correspond to the orientation relaxation of aggregates also detected in SAXS, photon correlation and atomic force microscopy measurements. The high-frequency peak corresponds to single magnetic particle reorientation.
Image enhancement by non-linear extrapolation in frequency space
NASA Technical Reports Server (NTRS)
Anderson, Charles H. (Inventor); Greenspan, Hayit K. (Inventor)
1998-01-01
An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures.
Spontaneous Lorentz symmetry breaking in non-linear electrodynamics
Urrutia, Luis F.
2010-07-29
A recently proposed model of non-linear electrodynamics arising from a gauge invariant spontaneous Lorentz symmetry breaking is reviewed. The potential providing the symmetry breaking is argued to arise from the integration of gauge bosons and fermions in an underlying theory. The invariant subgroups remaining after the symmetry breaking are determined, as well as the dispersion relations and polarization modes of the propagating linear sector or the model. Strong bounds upon the predicted anisotropy of the speed of light are obtained by embedding the model in the electromagnetic sector of the Standard Model Extension and taking advantage of the restrictions in the parameters derived there. Finally, a reasonable estimation of the intergalactic magnetic field is obtained by assuming that the vacuum energy of the model is described by the standard cosmological constant.
Neural networks: What non-linearity to choose
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.; Quintana, Chris
1991-01-01
Neural networks are now one of the most successful learning formalisms. Neurons transform inputs (x(sub 1),...,x(sub n)) into an output f(w(sub 1)x(sub 1) + ... + w(sub n)x(sub n)), where f is a non-linear function and w, are adjustable weights. What f to choose? Usually the logistic function is chosen, but sometimes the use of different functions improves the practical efficiency of the network. The problem of choosing f as a mathematical optimization problem is formulated and solved under different optimality criteria. As a result, a list of functions f that are optimal under these criteria are determined. This list includes both the functions that were empirically proved to be the best for some problems, and some new functions that may be worth trying.
NASA Astrophysics Data System (ADS)
Malik, Aimun; Zhang, Zheming; Agarwal, Ramesh K.
2014-08-01
There is need for a battery model that can accurately describe the battery performance for an electrical system, such as the electric drive train of electric vehicles. In this paper, both linear and non-linear equivalent circuit models (ECM) are employed as a means of extracting the battery parameters that can be used to model the performance of a battery. The linear and non-linear equivalent circuit models differ in the numbers of capacitance and resistance; the non-linear model has an added circuit; however their numerical characteristics are equivalent. A multi-objective genetic algorithm is employed to accurately extract the values of the battery model parameters. The battery model parameters are obtained for several existing industrial batteries as well as for two recently proposed high performance batteries. Once the model parameters are optimally determined, the results demonstrate that both linear and non-linear equivalent circuit models can predict with acceptable accuracy the performance of various batteries of different sizes, characteristics, capacities, and materials. However, the comparisons of results with catalog and experimental data shows that the predictions of results using the non-linear equivalent circuit model are slightly better than those predicted by the linear model, calculating voltages that are closer to the manufacturers' values.
Reducing sample variance: halo biasing, non-linearity and stochasticity
NASA Astrophysics Data System (ADS)
Gil-Marín, Héctor; Wagner, Christian; Verde, Licia; Jimenez, Raul; Heavens, Alan F.
2010-09-01
Comparing clustering of differently biased tracers of the dark matter distribution offers the opportunity to reduce the sample or cosmic variance error in the measurement of certain cosmological parameters. We develop a formalism that includes bias non-linearities and stochasticity. Our formalism is general enough that it can be used to optimize survey design and tracers selection and optimally split (or combine) tracers to minimize the error on the cosmologically interesting quantities. Our approach generalizes the one presented by McDonald & Seljak of circumventing sample variance in the measurement of f ≡ d lnD/d lna. We analyse how the bias, the noise, the non-linearity and stochasticity affect the measurements of Df and explore in which signal-to-noise regime it is significantly advantageous to split a galaxy sample in two differently biased tracers. We use N-body simulations to find realistic values for the parameters describing the bias properties of dark matter haloes of different masses and their number density. We find that, even if dark matter haloes could be used as tracers and selected in an idealized way, for realistic haloes, the sample variance limit can be reduced only by up to a factor σ2tr/σ1tr ~= 0.6. This would still correspond to the gain from a three times larger survey volume if the two tracers were not to be split. Before any practical application one should bear in mind that these findings apply to dark matter haloes as tracers, while realistic surveys would select galaxies: the galaxy-host halo relation is likely to introduce extra stochasticity, which may reduce the gain further.
Limit cycle oscillation of missile control fin with structural non-linearity
NASA Astrophysics Data System (ADS)
Bae, J. S.; Lee, I.
2004-01-01
Non-linear aeroelastic characteristics of a deployable missile control fin with structural non-linearity are investigated. A deployable missile control fin is modelled as a two-dimensional typical section model. Doublet-point method is used for the calculation of supersonic unsteady aerodynamic forces, and aerodynamic forces are approximated by using the minimum-state approximation. For non-linear flutter analysis structural non-linearity is represented by an asymmetric bilinear spring and is linearized by using the describing function method. The linear and non-linear flutter analyses indicate that the flutter characteristics are significantly dependent on the frequency ratio. From the non-linear flutter analysis, various types of limit cycle oscillations are observed in a wide range of air speeds below or above the linear divergent flutter boundary. The non-linear flutter characteristics and the non-linear aeroelastic responses are investigated.
NASA Astrophysics Data System (ADS)
KIM, DONG-HYUN; LEE, IN
2000-07-01
A two-degree-of-freedom airfoil with a freeplay non-linearity in the pitch and plunge directions has been analyzed in the transonic and low-supersonic flow region, where aerodynamic non-linearities also exist. The primary purpose of this study is to show aeroelastic characteristics due to freeplay structural non-linearity in the transonic and low-supersonic regions. The unsteady aerodynamic forces on the airfoil were evaluated using two-dimensional unsteady Euler code, and the resulting aeroelastic equations are numerically integrated to obtain the aeroelastic time responses of the airfoil motions and to investigate the dynamic instability. The present model has been considered as a simple aeroelastic model, which is equivalent to the folding fin of an advanced generic missile. From the results of the present study, characteristics of important vibration responses and aeroelastic instabilities can be observed in the transonic and supersonic regions, especially considering the effect of structural non-linearity in the pitch and plunge directions. The regions of limit-cycle oscillation are shown at much lower velocities, especially in the supersonic flow region, than the divergent flutter velocities of the linear structure model. It is also shown that even small freeplay angles can lead to severe dynamic instabilities and dangerous fatigue conditions for the flight vehicle wings and control fins.
Discriminating Non-Linearity from Linearity: Its Cognitive Foundations in Five-Year-Olds
ERIC Educational Resources Information Center
Ebersbach, Mirjam; Van Dooren, Wim; Goudriaan, Margje N.; Verschaffel, Lieven
2010-01-01
People often have difficulties in understanding situations that involve non-linear processes. Also, the topic of non-linear functions is introduced relatively late in the curriculum. Previous research has nevertheless shown that already children aged 6 years and older are able to discriminate non-linear from linear processes. Within the present…
State-variable analysis of non-linear circuits with a desk computer
NASA Technical Reports Server (NTRS)
Cohen, E.
1981-01-01
State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.
NASA Astrophysics Data System (ADS)
Jain, Ruchika; Sinha, Deepa
2014-09-01
The non-linear stability of L 4 in the restricted three-body problem when both primaries are finite straight segments in the presence of third and fourth order resonances has been investigated. Markeev's theorem (Markeev in Libration Points in Celestial Mechanics and Astrodynamics, 1978) is used to examine the non-linear stability for the resonance cases 2:1 and 3:1. It is found that the non-linear stability of L 4 depends on the lengths of the segments in both resonance cases. It is also found that the range of stability increases when compared with the classical restricted problem. The results have been applied in the following asteroids systems: (i) 216 Kleopatra-951 Gaspara, (ii) 9 Metis-433 Eros, (iii) 22 Kalliope-243 Ida.
Storage enhanced non-linearities in a cold Rydberg ensemble
NASA Astrophysics Data System (ADS)
Distante, Emanuele; Padron-Brito, Auxiliadora; Cristiani, Matteo; Paredes-Barato, David; de Riedmatten, Hugues
2016-05-01
The possibility to control the interaction between photons provided by highly nonlinear media is a key ingredient to the goal of quantum information processing using photons and a unique tool to study the dynamics of the many-body correlated system. To mediate this interaction, one can exploit electromagnetically induced transparency (EIT) to map the state of the photons into atomic coherence in the form of Rydberg dark-state polaritons. The combination of EIT with the nonlinear interaction between Rydberg atoms provides and effective interaction between photons. By measuring the dynamics of stored Rydberg polaritons, we experimentally demonstrate that storing a probe pulse as Rydberg polaritons strongly enhances the Rydberg mediated interaction compared to the slow-propagation case. We show that the process is characterized by two time scales. We measure a strong enhancement of the interaction at short time scales. By measuring the time-dependent coherence of the stored polariton, we also show that the long time scale dynamics is dominated by Rydberg induced dephasing of the multiparticle components of the state. Our results have a direct consequence in Rydberg quantum optics and enable the test of new theories of strongly interacting Rydberg systems. This work has been funded by: ERC starting Grant QuLIMA, MINECO, Severo Ochoa Grant, AUGAUR and the Europea Union's Horizon 2020.
The non-linear redshift-space power spectrum: Omega from redshift surveys
NASA Astrophysics Data System (ADS)
Fisher, Karl B.; Nusser, Adi
1996-03-01
We examine the anisotropies in the power spectrum by the mapping of real space to redshift space. Using the Zel'dovich approximation, we obtain an analytic expression for the non-linear redshift-space power spectrum in the distant observer limit. For a given unbiased galaxy distribution in redshift space, the anisotropies in the power spectrum depend on the parameter f(Omega)~=Omega^0.6, where Omega is the density parameter. We quantify these anisotropies by the ratio, R, of the quadrupole and monopole angular moments of the power spectrum. In contrast to linear theory, the Zel'dovich approximation predicts a decline in R with decreasing scale. This departure from linear theory is due to non-linear dynamics and is not a result of incoherent random velocities. The rate of decline depends strongly on Omega and the initial power spectrum. However, we find a scaling relation between the quantity R/R_lin (where R_lin is the linear theory value of R) and the dimensionless variable k/k_nl, where k_nl is a wavenumber determined by the scale of non-linear structures. The scaling is weakly dependent on the initial power spectrum and is in good agreement with a large N-body simulation. This universal scaling relation greatly extends the scales over which redshift distortions can be used as a probe of Omega. The scaling relation is in agreement with the observed quadrupole-to-monopole ratio from the 1.2-Jy IRAS survey, with a best estimate of Omega^0.6/b_lin=0.6+/-0.2 where b_lin is the linear bias parameter.
Vulnerability of dynamic systems
NASA Technical Reports Server (NTRS)
Siljak, D. D.
1976-01-01
Directed graphs are associated with dynamic systems in order to determine in any given system if each state can be reached by at least one input (input reachability), or can each state reach at least one output (output reachability). Then, the structural perturbations of a dynamic system are identified as lines or points removals from the corresponding digraph, and a system is considered vulnerable at those lines or points of the digraph whose removal destroys its input or output reachability. A suitable framework is formulated for resolving the problems of reachability and vulnerability which applies to both linear and nonlinear systems alike.
NASA Astrophysics Data System (ADS)
Turnbull, Laura; Bracken, Louise; Wainwright, John
2014-05-01
A major challenge for geomorphologists is to scale up small-magnitude erosional processes to predict landscape form and landscape-scale sediment flux. Here, we present a sediment connectivity framework, showing the controls and dynamics of sediment transport which govern erosional processes across multiple scales. This framework is based on the concept that the interplay of structural components (morphology) and process components (flow of energy/transport vectors and materials) determines the long-term behaviour of the sediment flux, which is manifest as a change in landform. The sediment connectivity framework therefore incorporates all aspects of the geomorphic system that control sediment flux. Because of the link between process (flux) and form, sediment connectivity is a product of sediment entrainment and sediment-transport distance and the emergent characteristics of sediment deposition and sediment residence times. Therefore, depending on the dominant processes in operation and their spatial and temporal configuration, the scaling of erosion differs in form and extent. Sediment-transport distances are an integral component of this sediment connectivity framework, as they provide a means of addressing the non-linearity of erosional processes within spatially and temporally variable environments. We apply this sediment-connectivity framework to test how structural and process components of a system alter sediment flux. Specifically, we use a modelling-based approach to investigate how antecedent soil-moisture content and rainfall characteristics affect hydrological and sediment connectivity over a shrub-encroachment gradient in the southwest USA; a region that is undergoing rapid vegetation transitions. We carried out scenario-based runoff and erosion modelling using MAHLERAN to investigate the impact of changes in runoff and erosion to soil moisture and rainfall characteristics. Using outputs from these simulations, we quantify hydrological and sediment
NASA Technical Reports Server (NTRS)
Doolin, B. F.
1975-01-01
Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.
Curri, Vittorio; Carena, Andrea; Poggiolini, Pierluigi; Bosco, Gabriella; Forghieri, Fabrizio
2013-02-11
We show the extension of the Gaussian Noise model, which describes non-linear propagation in uncompensated links of multilevel modulation formats, to systems using Raman amplification. We successfully validate the analytical results by comparison with numerical simulations of Nyquist-WDM PM-16QAM channels transmission over multi-span uncompensated links made of a single fiber type and using hybrid EDFA/Raman amplification with counter-propagating pumps. We analyze two typical high- and low-dispersion fiber types. We show that Raman amplification always induces a limited non-linear interference enhancement compared to the dominant ASE noise reduction. PMID:23481790
Ganesan, S; Victoire, T Aruldoss Albert; Vijayalakshmy, G
2014-01-01
In this paper, the work is mainly concentrated on removing non-linear parameters to make the physiological signals more linear and reducing the complexity of the signals. This paper discusses three different types of techniques that can be successfully utilised to remove non-linear parameters in EEG and ECG. (i) Transformation technique using Discrete Walsh-Hadamard Transform (DWHT); (ii) application of fuzzy logic control and (iii) building the Adaptive Neuro-Fuzzy Inference System (ANFIS) model for fuzzy. This work has been inspired by the need to arrive at an efficient, simple, accurate and quicker method for analysis of bio-signal. PMID:24589837
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few
MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes
Plis, Sergey M.; Calhoun, Vince D.; Weisend, Michael P.; Eichele, Tom; Lane, Terran
2010-01-01
The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources. PMID:21120141
MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes.
Plis, Sergey M; Calhoun, Vince D; Weisend, Michael P; Eichele, Tom; Lane, Terran
2010-01-01
The combined analysis of magnetoencephalography (MEG)/electroencephalography and functional magnetic resonance imaging (fMRI) measurements can lead to improvement in the description of the dynamical and spatial properties of brain activity. In this paper we empirically demonstrate this improvement using simulated and recorded task related MEG and fMRI activity. Neural activity estimates were derived using a dynamic Bayesian network with continuous real valued parameters by means of a sequential Monte Carlo technique. In synthetic data, we show that MEG and fMRI fusion improves estimation of the indirectly observed neural activity and smooths tracking of the blood oxygenation level dependent (BOLD) response. In recordings of task related neural activity the combination of MEG and fMRI produces a result with greater signal-to-noise ratio, that confirms the expectation arising from the nature of the experiment. The highly non-linear model of the BOLD response poses a difficult inference problem for neural activity estimation; computational requirements are also high due to the time and space complexity. We show that joint analysis of the data improves the system's behavior by stabilizing the differential equations system and by requiring fewer computational resources. PMID:21120141
Approximate Analytical Solutions for Primary Chatter in the Non-Linear Metal Cutting Model
NASA Astrophysics Data System (ADS)
Warmiński, J.; Litak, G.; Cartmell, M. P.; Khanin, R.; Wiercigroch, M.
2003-01-01
This paper considers an accepted model of the metal cutting process dynamics in the context of an approximate analysis of the resulting non-linear differential equations of motion. The process model is based upon the established mechanics of orthogonal cutting and results in a pair of non-linear ordinary differential equations which are then restated in a form suitable for approximate analytical solution. The chosen solution technique is the perturbation method of multiple time scales and approximate closed-form solutions are generated for the most important non-resonant case. Numerical data are then substituted into the analytical solutions and key results are obtained and presented. Some comparisons between the exact numerical calculations for the forces involved and their reduced and simplified analytical counterparts are given. It is shown that there is almost no discernible difference between the two thus confirming the validity of the excitation functions adopted in the analysis for the data sets used, these being chosen to represent a real orthogonal cutting process. In an attempt to provide guidance for the selection of technological parameters for the avoidance of primary chatter, this paper determines for the first time the stability regions in terms of the depth of cut and the cutting speed co-ordinates.
NASA Astrophysics Data System (ADS)
Tetzlaff, D.; Soulsby, C.; Birkel, C.; Capell, R.; Speed, M.
2009-12-01
The non-linearities of catchment hydrological behaviour are strongly influenced by the connectivity of hillslopes and channel networks, particularly where overland flow is an important runoff mechanism. Such surface connectivity also controls the flux of microbiological pollutants (coliform bacteria) from areas of live stock grazing which can have serious health implications for potable water supplies. We report a nested catchment study where hydrological and tracer monitoring over a two year period has been coupled with regular sampling for faecal indicator organisms (FIOs). The study has been based in catchments with mixed landuse where FIOs are derived from livestock (sheep and cows) in agricultural land and wild animals (red deer) on moorlands. At all scales (3-1800km2), high levels of FIO were transient and episodic and strongly correlated with periods of high hydrological connectivity. We show how this non-linearity in connectivity can be captured within a dynamic hydrological model. The model was used, along with climate change predictions, to assess possible scenarios of change in connectivity and microbiological contamination in catchments with different land use.
Experimental study of a linear/non-linear flux rope
NASA Astrophysics Data System (ADS)
DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart
2015-08-01
Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, rplasma = 30 cm, no = 1012 cm-3, Te = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowing it to freely move about the anode. At large currents (I > πr2B0c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.
Amplitude relations in non-linear sigma model
NASA Astrophysics Data System (ADS)
Chen, Gang; Du, Yi-Jian
2014-01-01
In this paper, we investigate tree-level scattering amplitude relations in U( N) non-linear sigma model. We use Cayley parametrization. As was shown in the recent works [23,24], both on-shell amplitudes and off-shell currents with odd points have to vanish under Cayley parametrization. We prove the off-shell U(1) identity and fundamental BCJ relation for even-point currents. By taking the on-shell limits of the off-shell relations, we show that the color-ordered tree amplitudes with even points satisfy U(1)-decoupling identity and fundamental BCJ relation, which have the same formations within Yang-Mills theory. We further state that all the on-shell general KK, BCJ relations as well as the minimal-basis expansion are also satisfied by color-ordered tree amplitudes. As a consequence of the relations among color-ordered amplitudes, the total 2 m-point tree amplitudes satisfy DDM form of color decomposition as well as KLT relation.
Non-linear saturation mechanism of electron temperature gradient modes
Tokluoglu, E. K.; Sokolov, V.; Sen, A. K.
2012-10-15
The electron temperature gradient (ETG) mode is a very plausible candidate to explain the large electron particle transport and thermal conduction. Production and identification of slab ETG modes and measurement electron transport have been already reported [X. Wei, V. Sokolov, and A. K. Sen, Phys. Plasmas 17, 042108 (2010); V. Sokolov and A. K. Sen, Phys. Rev. Lett. (2011)]. Now, we develop a theoretical model of non-linear saturation mechanism of ETG mode based on the three wave coupling of an unstable high frequency ETG mode with a damped ETG radial harmonic and a damped ion acoustic (IA) mode. Bicoherence analysis of Columbia linear machine (CLM) data show coupling between ETG modes ({approx}2.4 MHz) and a low frequency mode ({approx}50 kHz). The large damping drive of the ETG radial harmonic accompanied by the smaller but finite damping of the IA mode presents an energy sink for the unstable ETG mode, thus causing saturation. This model predicts a saturation level of {approx}10% and agrees with the observed levels of ETG modes in the CLM.
Experimental study of a linear/non-linear flux rope
DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart
2015-08-15
Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, r{sub plasma} = 30 cm, n{sub o} = 10{sup 12 }cm{sup −3}, T{sub e} = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowing it to freely move about the anode. At large currents (I > πr{sup 2}B{sub 0}c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.
A Bohmian approach to the non-Markovian non-linear Schrödinger–Langevin equation
Vargas, Andrés F.; Morales-Durán, Nicolás; Bargueño, Pedro
2015-05-15
In this work, a non-Markovian non-linear Schrödinger–Langevin equation is derived from the system-plus-bath approach. After analyzing in detail previous Markovian cases, Bohmian mechanics is shown to be a powerful tool for obtaining the desired generalized equation.
Experimental characterization and modeling of non-linear coupling of the LHCD power on Tore Supra
Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.
2014-02-12
To achieve steady state operation on future tokamaks, in particular on ITER, the unique capability of a LHCD system to efficiently drive off-axis non-inductive current is needed. In this context, it is of prime importance to study and master the coupling of LH wave to the core plasma at high power density (tens of MW/m{sup 2}). In some specific conditions, deleterious effects on the LHCD coupling are sometimes observed on Tore Supra. At high power the waves may modify the edge parameters that change the wave coupling properties in a non-linear manner. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the Fully Active Multijunction (FAM) and the new Passive Active Multijunction (PAM) antennas. A nonlinear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient with the LHCD power, leading occasionally to trips in the output power, is not predicted by the standard linear theory of the LH wave coupling. Therefore, it is important to investigate and understand the possible origin of such non-linear effects in order to avoid their possible deleterious consequences. The PICCOLO-2D code, which self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density, is used to simulate Tore Supra discharges. The simulation reproduces very well the occurrence of a non-linear behavior in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive
Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2015-01-01
Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.
NASA Astrophysics Data System (ADS)
Pumpe, Daniel; Greiner, Maksim; Müller, Ewald; Enßlin, Torsten A.
2016-07-01
Stochastic differential equations describe well many physical, biological, and sociological systems, despite the simplification often made in their derivation. Here the usage of simple stochastic differential equations to characterize and classify complex dynamical systems is proposed within a Bayesian framework. To this end, we develop a dynamic system classifier (DSC). The DSC first abstracts training data of a system in terms of time-dependent coefficients of the descriptive stochastic differential equation. Thereby the DSC identifies unique correlation structures within the training data. For definiteness we restrict the presentation of the DSC to oscillation processes with a time-dependent frequency ω (t ) and damping factor γ (t ) . Although real systems might be more complex, this simple oscillator captures many characteristic features. The ω and γ time lines represent the abstract system characterization and permit the construction of efficient signal classifiers. Numerical experiments show that such classifiers perform well even in the low signal-to-noise regime.
NASA Astrophysics Data System (ADS)
Adcock, T. A. A.; Taylor, P. H.
2016-01-01
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.
Social Combustion Theory: Dynamics of Social System Deterioration
NASA Astrophysics Data System (ADS)
Niu, Wen-Yuan
Social Harmony Equation (SHE) leads the social system to the evolution direction of social by accumulation of “social combustion substances”, i.e., the accumulation of microcosmic entropy increase “basic particles” (individual) in social system from assimilated “basic social energy” to dissimilated one; meanwhile, the catalysis of “social combustion promoter” (social excitation energy) has enhanced the “social temperature” of disordering process of social system and completed the energy accumulation of social entropy increase that can generate the transition. Finally, ignited by the “social trigger threshold”, the social system has completed the abrupt change from orderliness to disorderliness. The continuous variation of the above-mentioned three basic non-linear processes has jointly composed the whole contents of social combustion theory. Under the restriction of such conditions of different time (t), different space (α) and different scale (β), it is finally explained as a comprehensive dynamics of social system deterioration.
Non-linear scission/recombination kinetics of living polymerization
NASA Astrophysics Data System (ADS)
Nyrkova, I. A.; Semenov, A. N.
2007-10-01
Living polymers are formed by reversible association of primary units (unimers). Generally the chain statistical weight involves a factor σ < 1 suppressing short chains in comparison with free unimers. Living polymerization is a sharp thermodynamic transition for σ ≪ 1 which is typically the case. We show that this sharpness has an important effect on the kinetics of living polymerization (one-dimensional association). The kinetic model involves i) the unimer activation step (a transition to an assembly-competent state); ii) the scission/recombination processes providing growth of polymer chains and relaxation of their length distribution. Analyzing the polymerization with no chains but unimers at t = 0 , with initial concentration of unimers M ≳ M* (M* is the critical polymerization concentration), we determine the time evolution of the chain length distribution and find that: 1) for M* ≪ M ≪ M*/σ the kinetics is characterized by 5 distinct time stages demarcated by 4 characteristic times t1, t2, t3 and t*; 2) there are transient regimes (t1 ≲ t ≲ t3) when the molecular-weight distribution is strongly non-exponential; 3) the chain scissions are negligible at times shorter than t2. The chain growth is auto-accelerated for t1 ≲ t ≲ t2 : the cut-off chain length (= polymerization degree
The non-linear initiation of diapirs and plume heads
NASA Astrophysics Data System (ADS)
Bercovici, David; Kelly, Amanda
1997-04-01
A simple theory is devised to describe the non-linear feedback mechanisms involved in the initial growth of a single diapir or plume head from a low viscosity channel overlain by a much more viscous layer. Such feedbacks arise primarily from the relation between the growth of a proto-diapir (i.e. an undulation on the upper boundary of the low viscosity channel) and the draining of the low viscosity channel. In the period of time between its initial exponential growth (characterized by linear stability analysis) and its separation from the low viscosity channel as a fully formed diapir, the proto-diapir can undergo a significant cessation in its development due to deflation of the low viscosity channel; i.e. the proto-diapir's growth can essentially stall for a long period of time before it separates and begins its ascent through the overlying medium. The theory is used to determine a criterion for separation of the diapir from the low viscosity channel that is in terms of the geometrical and mechanical properties of the channel, instead of the ad hoc volume flux widely used in many models of mantle plumes and plume heads (e.g. Whitehead and Luther, 1975; Richards et al., 1989; Olson, 1990; Sleep, 1990; Bercovici and Mahoney, 1994). From this separation criterion, self-consistent scaling laws can be formulated to relate the size of the fully developed diapir and its trailing conduit to the properties of the initial channel, instead of to the ad hoc volume flux. Basic laboratory experiments involving highly viscous fluids are presented and demonstrate that the so-called 'stalling' period between initial growth and separation does indeed occur. These results suggest that nascent mantle plume heads may stall for extended periods at the base of the mantle and thereby contribute to variations in thickness of the D″ layer.
Simulation of non-linear coregionalization models by FFTMA
NASA Astrophysics Data System (ADS)
Liang, Min; Marcotte, Denis; Shamsipour, Pejman
2016-04-01
A fast and efficient method to simulate multivariate fields with non-linear models of coregionalization (N-LMC) is described. The method generalizes FFTMA to the multivariate simulation of the N-LMC with symmetric cross-covariances, hence the name GFFTMA. It allows us for example to use an exponential model as the direct covariance for the main variable, a Cauchy model for the secondary variable and a K-Bessel model for the cross-covariance. Each covariance and cross-covariance are Fast Fourier Transformed (FFT) to get the discrete spectral densities. Then the spectral matrix is eigen-decomposed at each frequency separately to provide the square root matrix and to enforce positive-definiteness in cases where small negative eigenvalues are found. Finally the simulated spectrum is obtained as multiplication of the root matrix and the white noise coefficients. The method is particularly fast for covariances having derivatives at the origin and/or for covariances with long range. Hence, two-variables' 2D fields of 100 million pixels with all-Gaussian or all-cubic covariances and cross-covariance are both simulated in less than 200 s. The CPU-time increases only as N log(N) (N, the number of points to simulate). Additional realizations are obtained at a low marginal cost as the eigen-decomposition step needs to be done only once for the first realization. The main limitation of the approach is its rather stringent memory requirement. Synthetic examples illustrate the simulations of N-LMC with two and three variables for different combinations of the seven available models. It shows that the theoretical models are all well reproduced. An illustrative case-study on overburden thickness simulation is provided where the secondary information consists of a latent Gaussian variable identifying the geological domain.
Controllability of complex networks for sustainable system dynamics
Successful implementation of sustainability ideas in ecosystem management requires a basic understanding of the often non-linear and non-intuitive relationships among different dimensions of sustainability, particularly the system-wide implications of human actions. This basic un...
Sage, Cindy
2015-01-01
The 'informational content' of Earth's electromagnetic signaling is like a set of operating instructions for human life. These environmental cues are dynamic and involve exquisitely low inputs (intensities) of critical frequencies with which all life on Earth evolved. Circadian and other temporal biological rhythms depend on these fluctuating electromagnetic inputs to direct gene expression, cell communication and metabolism, neural development, brainwave activity, neural synchrony, a diversity of immune functions, sleep and wake cycles, behavior and cognition. Oscillation is also a universal phenomenon, and biological systems of the heart, brain and gut are dependent on the cooperative actions of cells that function according to principles of non-linear, coupled biological oscillations for their synchrony. They are dependent on exquisitely timed cues from the environment at vanishingly small levels. Altered 'informational content' of environmental cues can swamp natural electromagnetic cues and result in dysregulation of normal biological rhythms that direct growth, development, metabolism and repair mechanisms. Pulsed electromagnetic fields (PEMF) and radiofrequency radiation (RFR) can have the devastating biological effects of disrupting homeostasis and desynchronizing normal biological rhythms that maintain health. Non-linear, weak field biological oscillations govern body electrophysiology, organize cell and tissue functions and maintain organ systems. Artificial bioelectrical interference can give false information (disruptive signaling) sufficient to affect critical pacemaker cells (of the heart, gut and brain) and desynchronize functions of these important cells that orchestrate function and maintain health. Chronic physiological stress undermines homeostasis whether it is chemically induced or electromagnetically induced (or both exposures are simultaneous contributors). This can eventually break down adaptive biological responses critical to health
NASA Astrophysics Data System (ADS)
Popov, Pavel; Sideris, Athanasios; Sirignano, William
2014-11-01
We examine the non-linear dynamics of the transverse modes of combustion-driven acoustic instability in a liquid-propellant rocket engine. Triggering can occur, whereby small perturbations from mean conditions decay, while larger disturbances grow to a limit-cycle of amplitude that may compare to the mean pressure. For a deterministic perturbation, the system is also deterministic, computed by coupled finite-volume solvers at low computational cost for a single realization. The randomness of the triggering disturbance is captured by treating the injector flow rates, local pressure disturbances, and sudden acceleration of the entire combustion chamber as random variables. The combustor chamber with its many sub-fields resulting from many injector ports may be viewed as a multi-scale complex system wherein the developing acoustic oscillation is the emergent structure. Numerical simulation of the resulting stochastic PDE system is performed using the polynomial chaos expansion method. The overall probability of unstable growth is assessed in different regions of the parameter space. We address, in particular, the seven-injector, rectangular Purdue University experimental combustion chamber. In addition to the novel geometry, new features include disturbances caused by engine acceleration and unsteady thruster nozzle flow.
NASA Astrophysics Data System (ADS)
Birkel, C.; Paroli, R.; Spezia, L.; Tetzlaff, D.; Soulsby, C.
2012-12-01
In this paper we present a novel model framework using the class of Markov Switching Autoregressive Models (MSARMs) to examine catchments as complex stochastic systems that exhibit non-stationary, non-linear and non-Normal rainfall-runoff and solute dynamics. Hereby, MSARMs are pairs of stochastic processes, one observed and one unobserved, or hidden. We model the unobserved process as a finite state Markov chain and assume that the observed process, given the hidden Markov chain, is conditionally autoregressive, which means that the current observation depends on its recent past (system memory). The model is fully embedded in a Bayesian analysis based on Markov Chain Monte Carlo (MCMC) algorithms for model selection and uncertainty assessment. Hereby, the autoregressive order and the dimension of the hidden Markov chain state-space are essentially self-selected. The hidden states of the Markov chain represent unobserved levels of variability in the observed process that may result from complex interactions of hydroclimatic variability on the one hand and catchment characteristics affecting water and solute storage on the other. To deal with non-stationarity, additional meteorological and hydrological time series along with a periodic component can be included in the MSARMs as covariates. This extension allows identification of potential underlying drivers of temporal rainfall-runoff and solute dynamics. We applied the MSAR model framework to streamflow and conservative tracer (deuterium and oxygen-18) time series from an intensively monitored 2.3 km2 experimental catchment in eastern Scotland. Statistical time series analysis, in the form of MSARMs, suggested that the streamflow and isotope tracer time series are not controlled by simple linear rules. MSARMs showed that the dependence of current observations on past inputs observed by transport models often in form of the long-tailing of travel time and residence time distributions can be efficiently explained by
Analysis of structural seismic behaviour: from non stationary to non linear effects
NASA Astrophysics Data System (ADS)
Carlo Ponzo, Felice; Ditommaso, Rocco; Monaco, Lisa
2014-05-01
The change in fundamental frequency of a building is considered the simplest way to detect the onset of damage. Several authors in the past proposed that the difference in periods that can be observed among ambient noise, earthquake weak-motion measurements can be attributed to transient non-linearity due to reversible modification of the building characteristic (e.g. the degree of coupling between frame and infill in reinforced concrete buildings). The necessity of effective and efficient seismic protection of vast and aging structures and infrastructure has increased markedly the interest in the development of structural monitoring techniques. Damage to any structure alters its dynamic properties and for that dynamic monitoring techniques enable the identification of damage by comparing pre and post seismic excitation characteristic. The principle parameters usually monitored are: fundamental period, damping factors and modal shapes. Several damage identification and localization techniques are based on variations in these parameters (see, e.g Ponzo et al. 2010 and reference therein). Non Destructive Evaluation (NDE) methods can be rank on four different levels with the higher levels requiring increased quality and quantity of available information. The most common methods are therefore related to Level 1, due to their simplified and economic implementation. These methods are based mainly upon the variation of vibration frequencies and/or variations in Equivalent Viscous Damping associated with these vibration modes. It is important to underline however that although the presence of damage will lead to alterations in vibration modes the opposite does not necessarily hold true. Two types of frequency variation can be distinguished; long time period variations (due to variations in temperature, foundation soil moisture content etc.) and short period variations (for example due to a seismic event). For short period variations, changes in frequency can be attributed
Non-linear sigma model in 1 + 1 dimensions, supergravity and the spinning string
NASA Astrophysics Data System (ADS)
Abdalla, E.; Jasinschi, R. S.
1984-02-01
The non-linear σ supersymmetric model in 1 + 1 dimensions is coupled to supergravity. When we quantize the theory, the matter fields acquire mass dynamically, which leads to the breaking of the Weyl invariance. This fact implies that the two-point functions of the gravitino and the graviton, obtained from the effective action, become non-trivial. Particularly, the two-point function of the gravitino presents a pole in the infrared region. We conjecture that this pole is related to the confinement of all supersymmetric degrees of freedom of the theory. If we restrain the integration domain of x1 to a finite length L (breaking all invariances of the theory), there appears a mass term in the two-point function of the gravitino, which decreases exponentially with L. In this context we relate this model with that of the supersymmetric string and define a stability criterion for the latter.
Foam coarsening: von Neumann's law in three dimensions is non-linear
NASA Astrophysics Data System (ADS)
Hilgenfeldt, Sascha; Kraynik, Andrew M.; Koehler, Stephan A.; Stone, Howard A.
2001-11-01
Fifty years ago, John von Neumann proved that the coarsening rate of individual bubbles in a 2-D dry foam is a linear function of the number of edges of the polygonal bubble. By analogy, it has been conjectured that the average growth rates of 3-D polyhedral bubbles scale linearly with the number F of faces. Using a theorem by Minkowski, we derive a parameter-free analytical expression for the average growth rates and show that the 3-D von Neumann law is non-linear, asymptoting to a square-root power in F. Detailed simulations are in exceptionally good agreement with the analytical formula. This result is important for the understanding of the geometrical structure and aging dynamics of many random cellular materials beyond foams, such as metal grains, spin glasses, or living cells.
Relativistic cosmic ray spectra in the full non-linear theory of shock acceleration
NASA Technical Reports Server (NTRS)
Eichler, D.; Ellison, D. C.
1985-01-01
The non-linear theory of shock acceleration was generalized to include wave dynamics. In the limit of rapid wave damping, it is found that a finite ave velocity tempers the acceleration of high Mach number shocks and limits the maximum compression ratio even when energy loss is important. For a given spectrum, the efficiency of relativistic particle production is essentially independent of v sub Ph. For the three families shown, the percentage of kinetic energy flux going into relativistic particles is (1) 72%, 2) 44%, and (3) 26% (this includes the energy loss at the upper energy cuttoff). Even small v sub ph, typical of the HISM, produce quasi-universal spectra that depend only weakly on the acoustic Mach number. These spectra should be close enough to e(-2) to satisfy cosmic ray source requirements.
Zhang, Liang; Du, Chao; Du, Yun; Xu, Meng; Chen, Shijian; Liu, Hongbin
2015-06-01
Riparian wetlands provide critical functions for the improvement of surface water quality and storage of nutrients. Correspondingly, investigation of the adsorption characteristic and capacity of nutrients onto its sediments is benefit for utilizing and protecting the ecosystem services provided by riparian areas. The Langmuir and Freundlich isotherms and pseudo-second-order kinetic model were applied by using both linear least-squares and trial-and-error non-linear regression methods based on the batch experiments data. The results indicated that the transformations of non-linear isotherms to linear forms would affect the determination process significantly, but the non-linear regression method could prevent such errors. Non-linear Langmuir and Freundlich isotherms both fitted well with the phosphorus adsorption process (r (2) > 0.94). Moreover, the influences of temperature and ionic strength on the adsorption of phosphorus onto natural riparian wetland sediments were also studied. Higher temperatures were suitable for phosphorus uptake from aqueous solution using the present riparian wetland sediments. The adsorption capacity increased with the enhancement of ionic strength in agreement with the formation of inner-sphere complexes. The quick adsorption of phosphorus by the sediments mainly occurred within 10 min. The adsorption kinetic was well-fitted by pseudo-second-order kinetic model (r (2) > 0.99). The scanning electron microscopy (SEM) and Fourier transformation infrared (FT-IR) spectra analyses before and after phosphorus adsorption revealed the main adsorption mechanisms in the present system. PMID:26017810
Non-Linear Vibration and Thermal Buckling of AN Orthotropic Annular Plate with a Centric Rigid Mass
NASA Astrophysics Data System (ADS)
LI, S.-R.; ZHOU, Y.-H.; SONG, X.
2002-03-01
A computational analysis of the non-linear vibration and thermal post-buckling of a heated orthotropic annular plate with a central rigid mass is examined for the cases of immovably hinged as well as clamped constraint conditions of the outer edge. First, based on von Karman's plate theory and Hamilton's principles, the governing equations, in terms of the displacements of the middle plane, of the problem are derived. Then, upon assuming that harmonic responses of the system exist, the non-linear partial differential equations are converted into the corresponding non-linear ordinary differential equations through elimination of the time variable by using the Kantorovich time-averaging method. Finally, by applying a shooting method, the fundamental responses of the non-linear vibration and thermal post-buckling of the plate are numerically obtained. For some prescribed values of the parameters, such as the material rigidity ratio, temperature rise and so on, the curves of the fundamental frequency versus specified amplitude and the thermal post-buckled equilibrium paths of the plate are numerically presented.
NASA Astrophysics Data System (ADS)
Reid, M. A.
2015-12-01
Shallow lakes can undergo rapid changes in key biotic components. These phenomena, which include loss of submerged macrophytes, fish kills and algal blooms, can occur at sub-seasonal timescales and are often reported to be non-linear, threshold responses to a gradual intensification of an external driver and reflective of a change in state. Although such threshold responses are widely reported, a recent meta-analysis found that most such changes cannot be unequivocally confirmed as true threshold responses. This is because clear records of system stability in the face of a gradual increase in external driver intensity followed by rapid system change are lacking, as are records of post threshold stability in the new state following release of external driver pressure. That threshold responses were not confirmed often reflects insufficient time series of before or after data to establish driver variability and ecosystem stability. In this context, paleo studies provide a means to clearly identify non-linear, threshold responses in shallow lake ecosystems. The challenge of detecting evidence of non-linear responses in shallow lake ecosystems is often seen as a chronological one. Highly resolved and accurate sediment chronologies coupled with historical records of external driver intensity do provide a means to detect non-linear, threshold responses, but such chronologies are rare in shallow lakes. Fortunately, the 'tight chronology-historical record of external driver' approach is not the only, or even the most direct, way to detect non-linear ecosystem responses in paleo records. An alternative, more direct approach is ecosystem response and external driver intensity to be preserved in the same sedimentary record. Theoretically, it is arguable whether any chronological control is needed at all to determine if a non-linear response has occurred, for the key is not how quickly an ecosystem response may occur or if it is linear with respect to time, it is whether it is
On the formation of shocks of electromagnetic plane waves in non-linear crystals
NASA Astrophysics Data System (ADS)
Christodoulou, Demetrios; Perez, Daniel Raoul
2016-08-01
An influential result of F. John states that no genuinely non-linear strictly hyperbolic quasi-linear first order system of partial differential equations in two variables has a global C2-solution for small enough initial data. Inspired by recent work of D. Christodoulou, we revisit John's original proof and extract a more precise description of the behaviour of solutions at the time of shock. We show that John's singular first order quantity, when expressed in characteristic coordinates, remains bounded until the final time, which is then characterised by an inverse density of characteristics tending to zero in one point. Moreover, we study the derivatives of second order, showing again their boundedness when expressed in appropriate coordinates. We also recover John's upper bound for the time of shock formation and complement it with a lower bound. Finally, we apply these results to electromagnetic plane waves in a crystal with no magnetic properties and cubic electric non-linearity in the energy density, assuming no dispersion.
Extrinsic contribution and non-linear response in lead-free KNN-modified piezoceramics
NASA Astrophysics Data System (ADS)
Ochoa, D. A.; García, J. E.; Pérez, R.; Gomis, V.; Albareda, A.; Rubio-Marcos, F.; Fernández, J. F.
2009-01-01
Finding lead-free ceramics with good piezoelectric properties is nowadays one of the most important challenges in materials science. The (K, Na, Li)(Nb, Ta, Sb)O3 system is one of the most promising candidates as a lead-free ceramic for transducer applications and is currently the object of important research work. In this paper, (K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3 was prepared by a conventional ceramic processing route. For this composition, orthorhombic-to-tetragonal phase transition was observed at temperatures very close to room temperature. As a consequence, good room temperature electromechanical properties were observed, displaying good thermal stability. We show that the most important contribution to dielectric, piezoelectric and elastic response comes from extrinsic effects, as was observed in other perovskite based materials. Nonlinearities in electromechanical properties induced by high electric field or mechanical stress were studied. Non-linear dielectric response was found to be less important than for soft PZT ceramics and was analysed within the Rayleigh framework. The results reveal that the non-linear response at room temperature in this material is mainly due to the irreversible wall domain movement.
Non-linear Collective Oscillations of Electrons in a Diamagnetic Kepler Trap
NASA Astrophysics Data System (ADS)
Godino, Joseph; Kunhardt, Erich; Carr, Wayne
2001-10-01
The Diamagnetic Kepler Trap is a potential energy well that arises from a static Coulomb potential in a superimposed uniform magnetic field. In an experimental arrangement with this configuration, we generate a system of electrons and ions by ionization of the neutral background gas that has a typical density of 10^12 particles per cubic centimeter. The lifetime of the trapped electrons is sufficiently long that we can observe collective oscillations. Here, we examine these oscillations by coupling a probe to the plasma and measuring the induced current. We find that as we deepen the potential energy well these oscillations progress through a sequence of linear, non-linear and chaotic behavior. Using the photographs of the light emission from the excited neutrals, we observe that the non-linearity of the collective oscillations results from an increase in the trapped electron density that moves in a direction parallel to the magnetic field lines. From the FFT of the induced current, we find that the transition from linearity to chaos occurs through intermittent fluctuations in the measured signal that are manifest in the broadening of the spectrum. Since the applied sphere voltage never collapses, the electrons remain trapped in the potential energy well and we conclude that the chaos results from a breakdown of the collective behavior into that of many individual singly trapped electrons.
Info-gap robustness for the correlation of tests and simulations of a non-linear transient
NASA Astrophysics Data System (ADS)
Hemez, François M.; Ben-Haim, Yakov
2004-11-01
An alternative to the theory of probability is applied to the problem of assessing the robustness, to uncertainty in model parameters, of the correlation between measurements and computer simulations. The analysis is based on the theory of information-gap uncertainty, which models the clustering of uncertain events in families of nested sets instead of assuming a probability structure. The system investigated is the propagation of a transient impact through a layer of hyper-elastic material. The two sources of non-linearity are (1) the softening of the constitutive law representing the hyper-elastic material and (2) the contact dynamics at the interface between metallic and crushable materials. The robustness of the correlation between test and simulation, to sources of parameter variability, is first studied to identify the parameters of the model that significantly influence the agreement between measurements and predictions. Model updating under non-probabilistic uncertainty is then illustrated, based on two complementary immunity functions: the robustness to uncertainty and the opportunity from uncertainty. Finally an info-gap model is embedded within a probability density function to represent uncertainty in the knowledge of the model's parameters and their correlation structure. Although computationally expensive, it is demonstrated that info-gap reasoning can greatly enhance our understanding of a moderately complex system when the theory of probability cannot be applied due to insufficient information.
NASA Astrophysics Data System (ADS)
Chen, W. E. W.; Hepler, W. A.; Yuan, S. W. K.; Frederking, T. H. K.
1985-10-01
Advanced dynamic insulation systems were analyzed from a thermodynamic point of view. A particular performance measure is proposed in order to characterize various insulations in a unique manner. This measure is related to a base quantity, the refrigeration power ratio. The latter is the minimum refrigeration power, for a particular dynamic insulation limit, to the actual reliquefaction power associated with cryoliquid boiloff. This ratio serves as reference quantity which is approximately constant for a specific ductless insulation at a chosen normal boiling point. Each real container with support structure, vent tube, and other transverse components requires a larger refrigeration power. The ratio of the actual experimental power to the theoretical value of the support-less system is a suitable measure of the entire insulation performance as far as parasitic heat leakage is concerned. The present characterization is illustrated using simple thermodynamic system examples including experiments with liquid nitrogen. Numerical values are presented and a comparison with liquid helium is given.
Convergence behaviour and Control in Non-Linear Biological Networks
Karl, Stefan; Dandekar, Thomas
2015-01-01
Control of genetic regulatory networks is challenging to define and quantify. Previous control centrality metrics, which aim to capture the ability of individual nodes to control the system, have been found to suffer from plausibility and applicability problems. Here we present a new approach to control centrality based on network convergence behaviour, implemented as an extension of our genetic regulatory network simulation framework Jimena ( http://stefan-karl.de/jimena). We distinguish three types of network control, and show how these mathematical concepts correspond to experimentally verified node functions and signalling pathways in immunity and cell differentiation: Total control centrality quantifies the impact of node mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signalling cascades (e.g. src kinase or Jak/Stat pathways). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Surveying random scale-free networks and biological networks, we find that control of the network resides in few high degree driver nodes and networks can be controlled best if they are sparsely connected. PMID:26068060
NASA Astrophysics Data System (ADS)
Sri Lakshmi, S.; Tiwari, R. K.
2009-02-01
This study utilizes two non-linear approaches to characterize model behavior of earthquake dynamics in the crucial tectonic regions of Northeast India (NEI). In particular, we have applied a (i) non-linear forecasting technique to assess the dimensionality of the earthquake-generating mechanism using the monthly frequency earthquake time series (magnitude ⩾4) obtained from NOAA and USGS catalogues for the period 1960-2003 and (ii) artificial neural network (ANN) methods—based on the back-propagation algorithm (BPA) to construct the neural network model of the same data set for comparing the two. We have constructed a multilayered feed forward ANN model with an optimum input set configuration specially designed to take advantage of more completely on the intrinsic relationships among the input and retrieved variables and arrive at the feasible model for earthquake prediction. The comparative analyses show that the results obtained by the two methods are stable and in good agreement and signify that the optimal embedding dimension obtained from the non-linear forecasting analysis compares well with the optimal number of inputs used for the neural networks. The constructed model suggests that the earthquake dynamics in the NEI region can be characterized by a high-dimensional chaotic plane. Evidence of high-dimensional chaos appears to be associated with "stochastic seasonal" bias in these regions and would provide some useful constraints for testing the model and criteria to assess earthquake hazards on a more rigorous and quantitative basis.
Modeling and analysis of aircraft non-linear components for harmonics analysis
Karimi, K.J.; Voss, J.
1995-12-31
Modern commercial aircraft Electric Power Systems (EPS) include many nonlinear components which produce harmonics. The addition of all the current harmonics could result in a power system with unacceptable levels of voltage distortion. It is important to be able to predict the levels of voltage distortion at early program stages to correct any potential problems and avoid costly redesigns. In this paper the nature and sources of harmonic producing equipment are described. These sources of harmonics and their effect on aircraft power system operation are described. Models for various aircraft non-linear components are developed in this paper. These component models are used in a model of the Boeing 777 EPS which is used to calculate voltage harmonics for various airplane configurations and flight conditions. A description of this model and the models used for various components are given. Tests performed to validate these models are described. Comparison of experimental results with analytical model predictions are given.
NASA Astrophysics Data System (ADS)
Dimitriu, Petros P.
1990-10-01
Following acoustics and largely thanks to the pioneering work of a group of Soviet geophysicists, the study of non-linear elastic properties and their effects is becoming an active field of research in geophysics. The research so far has produced a substantial body of evidence indicating that earth materials, from soils to crystalline rocks, are much more non-linear than is commonly believed and certainly far more non-linear than the materials usually used and studied in acoustics. But although most of the evidence comes from vibrator-aided experiments, apparently best suited for investigating the non-linearity of the geophysical medium owing to the ability of modern vibrators to generate seismic signals of prescribed form, the absence of a standard experimental technique makes it difficult to estimate and compare the various results, particularly in view of the considerable non-linearity of the source (vibrator-ground system) itself. The aim of the present vibrator-aided experiments was to try to confirm certain results in non-linear seismology, particularly the effects of harmonic generation and non-linear interaction in vibrator-induced sinusoidal seismic waves, by using an experimental method designed to enable one to discriminate between source, near-field and far-field non-linear effects. In the experiments, two identical prospecting vibrators, installed on the ground surface some 16 m apart, were driven in the harmonic regime separately and simultaneously (tests on non-linear evolution and interaction), a wide range of excitation frequencies and amplitudes being covered, and the resulting ground-surface motion was picked up by an array consisting of 48 groups of 12 vertical geophones-velocimeters and recorded, in multiplex form, by a prospecting seismic station. Tests were made first for short and intermediate source-receiver distances (near field, distance range covered 0-200 m, 5-m spacing of geophone groups), then for large distances (far field, range 1
NASA Astrophysics Data System (ADS)
Rosin, M. S.; Schekochihin, A. A.; Rincon, F.; Cowley, S. C.
2011-05-01
Weakly collisional magnetized cosmic plasmas have a dynamical tendency to develop pressure anisotropies with respect to the local direction of the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius ρi and much below the mean free path λmfp. They have growth rates of a fraction of the ion cyclotron frequency, which is much faster than either the global dynamics or even local turbulence. Despite their microscopic nature, these instabilities dramatically modify the transport properties and, therefore, the macroscopic dynamics of the plasma. The non-linear evolution of these instabilities is expected to drive pressure anisotropies towards marginal stability values, controlled by the plasma beta βi. Here this non-linear evolution is worked out in an ab initio kinetic calculation for the simplest analytically tractable example - the parallel (k⊥= 0) firehose instability in a high-beta plasma. An asymptotic theory is constructed, based on a particular physical ordering and leading to a closed non-linear equation for the firehose turbulence. In the non-linear regime, both the analytical theory and the numerical solution predict secular (∝t) growth of magnetic fluctuations. The fluctuations develop a k-3∥ spectrum, extending from scales somewhat larger than ρi to the maximum scale that grows secularly with time (∝t1/2); the relative pressure anisotropy (p⊥-p∥)/p∥ tends to the marginal value -2/βi. The marginal state is achieved via changes in the magnetic field, not particle scattering. When a parallel ion heat flux is present, the parallel firehose mutates into the new gyrothermal instability (GTI), which continues to exist up to firehose-stable values of pressure anisotropy, which can be positive and are limited by the magnitude of the ion heat flux. The non-linear evolution of the GTI also features secular growth of magnetic fluctuations, but the fluctuation spectrum is eventually dominated by
Karimi, Samaneh; Abdulkhani, Ali; Tahir, Paridah Md; Dufresne, Alain
2016-10-01
Cellulosic nanofibers (NFs) from kenaf bast were used to reinforce glycerol plasticized thermoplastic starch (TPS) matrices with varying contents (0-10wt%). The composites were prepared by casting/evaporation method. Raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The aim of study was to investigate the effects of filler dimension and loading on linear and non-linear mechanical performance of fabricated materials. Obtained results clearly demonstrated that the NF-reinforced composites had significantly greater mechanical performance than the RF-reinforced counterparts. This was attributed to the high aspect ratio and nano dimension of the reinforcing agents, as well as their compatibility with the TPS matrix, resulting in strong fiber/matrix interaction. Tensile strength and Young's modulus increased by 313% and 343%, respectively, with increasing NF content from 0 to 10wt%. Dynamic mechanical analysis (DMA) revealed an elevational trend in the glass transition temperature of amylopectin-rich domains in composites. The most eminent record was +18.5°C shift in temperature position of the film reinforced with 8% NF. This finding implied efficient dispersion of nanofibers in the matrix and their ability to form a network and restrict mobility of the system. PMID:27339322
THE RESPONSE OF DRUG EXPENDITURE TO NON-LINEAR CONTRACT DESIGN: EVIDENCE FROM MEDICARE PART D*
Einav, Liran; Finkelstein, Amy; Schrimpf, Paul
2016-01-01
We study the demand response to non-linear price schedules using data on insurance contracts and prescription drug purchases in Medicare Part D. We exploit the kink in individuals’ budget set created by the famous “donut hole,” where insurance becomes discontinuously much less generous on the margin, to provide descriptive evidence of the drug purchase response to a price increase. We then specify and estimate a simple dynamic model of drug use that allows us to quantify the spending response along the entire non-linear budget set. We use the model for counterfactual analysis of the increase in spending from “filling” the donut hole, as will be required by 2020 under the Affordable Care Act. In our baseline model, which considers spending decisions within a single year, we estimate that “filling” the donut hole will increase annual drug spending by about $150, or about 8 percent. About one-quarter of this spending increase reflects “anticipatory” behavior, coming from beneficiaries whose spending prior to the policy change would leave them short of reaching the donut hole. We also present descriptive evidence of cross-year substitution of spending by individuals who reach the kink, which motivates a simple extension to our baseline model that allows – in a highly stylized way – for individuals to engage in such cross year substitution. Our estimates from this extension suggest that a large share of the $150 drug spending increase could be attributed to cross-year substitution, and the net increase could be as little as $45 per year. PMID:26769984
Non-linear relativistic contributions to the cosmological weak-lensing convergence
Andrianomena, Sambatra; Clarkson, Chris; Patel, Prina; Umeh, Obinna; Uzan, Jean-Philippe E-mail: chris.clarkson@gmail.com E-mail: umeobinna@gmail.com
2014-06-01
Relativistic contributions to the dynamics of structure formation come in a variety of forms, and can potentially give corrections to the standard picture on typical scales of 100 Mpc. These corrections cannot be obtained by Newtonian numerical simulations, so it is important to accurately estimate the magnitude of these relativistic effects. Density fluctuations couple to produce a background of gravitational waves, which is larger than any primordial background. A similar interaction produces a much larger spectrum of vector modes which represent the frame-dragging rotation of spacetime. These can change the metric at the percent level in the concordance model at scales below the equality scale. Vector modes modify the lensing of background galaxies by large-scale structure. This gives in principle the exciting possibility of measuring relativistic frame dragging effects on cosmological scales. The effects of the non-linear tensor and vector modes on the cosmic convergence are computed and compared to first-order lensing contributions from density fluctuations, Doppler lensing, and smaller Sachs-Wolfe effects. The lensing from gravitational waves is negligible so we concentrate on the vector modes. We show the relative importance of this for future surveys such as Euclid and SKA. We find that these non-linear effects only marginally affect the overall weak lensing signal so they can safely be neglected in most analyses, though are still much larger than the linear Sachs-Wolfe terms. The second-order vector contribution can dominate the first-order Doppler lensing term at moderate redshifts and are actually more important for survey geometries like the SKA.
Addressing the unemployment-mortality conundrum: non-linearity is the answer.
Bonamore, Giorgio; Carmignani, Fabrizio; Colombo, Emilio
2015-02-01
The effect of unemployment on mortality is the object of a lively literature. However, this literature is characterized by sharply conflicting results. We revisit this issue and suggest that the relationship might be non-linear. We use data for 265 territorial units (regions) within 23 European countries over the period 2000-2012 to estimate a multivariate regression of mortality. The estimating equation allows for a quadratic relationship between unemployment and mortality. We control for various other determinants of mortality at regional and national level and we include region-specific and time-specific fixed effects. The model is also extended to account for the dynamic adjustment of mortality and possible lagged effects of unemployment. We find that the relationship between mortality and unemployment is U shaped. In the benchmark regression, when the unemployment rate is low, at 3%, an increase by one percentage point decreases average mortality by 0.7%. As unemployment increases, the effect decays: when the unemployment rate is 8% (sample average) a further increase by one percentage point decreases average mortality by 0.4%. The effect changes sign, turning from negative to positive, when unemployment is around 17%. When the unemployment rate is 25%, a further increase by one percentage point raises average mortality by 0.4%. Results hold for different causes of death and across different specifications of the estimating equation. We argue that the non-linearity arises because the level of unemployment affects the psychological and behavioural response of individuals to worsening economic conditions. PMID:25528556
Salinas, Daniel; Baker, David P
2015-01-01
Objective Previous studies found that developed and developing countries present opposite education-overweight gradients but have not considered the dynamics at different levels of national development. A U-inverted curve is hypothesized to best describe the education-overweight association. It is also hypothesized that as the nutrition transition unfolds within nations the shape of education-overweight curve change. Design Multi-level logistic regression estimates the moderating effect of the nutrition transition at the population level on education-overweight gradient. At the individual level, a non-linear estimate of the education association assesses the optimal functional form of the association across the nutrition transition. Setting Twenty-two administrations of the Demographic and Health Survey, collected at different time points across the nutrition transition in nine Latin American/Caribbean countries. Subjects Mothers of reproductive age (15–49) in each administration (n 143,258). Results In the pooled sample, a non-linear education gradient on mothers‘ overweight is found; each additional year of schooling increases the probability of being overweight up to the end of primary schooling, after which each additional year of schooling decreases the probability of overweight. Also, as access to diets of high animal fats and sweeteners increases over time, the curve‘s critical point moves to lower education levels, the detrimental positive effect of education diminishes, and both occur as the overall risk of overweight increases with greater access to harmful diets. Conclusions Both hypotheses are supported. As the nutrition transition progresses, the education-overweight curve steadily shifts to a negative linear association with higher average risk of overweight; and education, at increasingly lower levels, acts as a “social vaccine” against increasing risk of overweight. These empirical patterns fit the general “population education
Surface and Atmospheric Parameter Retrieval From AVIRIS Data: The Importance of Non-Linear Effects
NASA Technical Reports Server (NTRS)
Green Robert O.; Moreno, Jose F.
1996-01-01
AVIRIS data represent a new and important approach for the retrieval of atmospheric and surface parameters from optical remote sensing data. Not only as a test for future space systems, but also as an operational airborne remote sensing system, the development of algorithms to retrieve information from AVIRIS data is an important step to these new approaches and capabilities. Many things have been learned since AVIRIS became operational, and the successive technical improvements in the hardware and the more sophisticated calibration techniques employed have increased the quality of the data to the point of almost meeting optimum user requirements. However, the potential capabilities of imaging spectrometry over the standard multispectral techniques have still not been fully demonstrated. Reasons for this are the technical difficulties in handling the data, the critical aspect of calibration for advanced retrieval methods, and the lack of proper models with which to invert the measured AVIRIS radiances in all the spectral channels. To achieve the potential of imaging spectrometry, these issues must be addressed. In this paper, an algorithm to retrieve information about both atmospheric and surface parameters from AVIRIS data, by using model inversion techniques, is described. Emphasis is put on the derivation of the model itself as well as proper inversion techniques, robust to noise in the data and an inadequate ability of the model to describe natural variability in the data. The problem of non-linear effects is addressed, as it has been demonstrated to be a major source of error in the numerical values retrieved by more simple, linear-based approaches. Non-linear effects are especially critical for the retrieval of surface parameters where both scattering and absorption effects are coupled, as well as in the cases of significant multiple-scattering contributions. However, sophisticated modeling approaches can handle such non-linear effects, which are especially
Single-photon non-linear optics with a quantum dot in a waveguide
Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.
2015-01-01
Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon–photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures. PMID:26492951
Single-photon non-linear optics with a quantum dot in a waveguide.
Javadi, A; Söllner, I; Arcari, M; Hansen, S Lindskov; Midolo, L; Mahmoodian, S; Kiršanskė, G; Pregnolato, T; Lee, E H; Song, J D; Stobbe, S; Lodahl, P
2015-01-01
Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures. PMID:26492951
Lewis, Jennifer
2012-10-15
This scientific meeting focused on the legacy of Cathleen S. Morawetz and the impact that her scientific work on transonic flow and the non-linear wave equation has had in recent progress on different aspects of analysis for non-linear wave, kinetic and quantum transport problems associated to mathematical physics. These are areas where the elements of continuum, statistical and stochastic mechanics, and their interplay, have counterparts in the theory of existence, uniqueness and stability of the associated systems of equations and geometric constraints. It was a central event for the applied and computational analysis community focusing on Partial Differential Equations. The goal of the proposal was to honor Cathleen Morawetz, a highly successful woman in mathematics, while encouraging beginning researchers. The conference was successful in show casing the work of successful women, enhancing the visibility of women in the profession and providing role models for those just beginning their careers. The two-day conference included seven 45-minute lectures and one day of six 45-minute lectures, and a poster session for junior participants. The conference program included 19 distinguished speakers, 10 poster presentations, about 70 junior and senior participants and, of course, the participation of Cathleen Synge Morawetz. The conference celebrated Morawetz's paramount contributions to the theory of non-linear equations in gas dynamics and their impact in the current trends of nonlinear phenomena in mathematical physics, but also served as an awareness session of current women's contribution to mathematics.
A Non-Linear Approach to Spacecraft Trajectory Control in the Vicinity of a Libration Point
NASA Technical Reports Server (NTRS)
Luquette, Richard J.; Sanner, Robert M.
2001-01-01
An expanding interest in mission design strategies that exploit libration point regions demands the continued development of enhanced, efficient, control algorithms for station-keeping and formation maintenance. This paper discusses the development of a non-linear, station-keeping, control algorithm for trajectories in the vicinity of a libration point. The control law guarantees exponential convergence, based on a Lyaponov analysis. Controller performance is evaluated using FreeFlyer(R) and MATLAB(R) for a spacecraft stationed near the L2 libration point in the Earth-Moon system, tracking a pre-defined reference trajectory. Evaluation metrics are fuel usage and tracking accuracy. Simulation results are compared with a linear-based controller for a spacecraft tracking the same reference trajectory. Although the analysis is framed in the context of station-keeping, the control algorithm is equally applicable to a formation flying problem with an appropriate definition of the reference trajectory.
Non Linear Analyses for the Evaluation of Seismic Behavior of Mixed R.C.-Masonry Structures
Liberatore, Laura; Tocci, Cesare; Masiani, Renato
2008-07-08
In this work the seismic behavior of masonry buildings with mixed structural system, consisting of perimeter masonry walls and internal r.c. frames, is studied by means of non linear static (pushover) analyses. Several aspects, like the distribution of seismic action between masonry and r.c. elements, the local and global behavior of the structure, the crisis of the connections and the attainment of the ultimate strength of the whole structure are examined. The influence of some parameters, such as the masonry compressive and tensile strength, on the structural behavior is investigated. The numerical analyses are also repeated on a building in which the r.c. internal frames are replaced with masonry walls.
Flow and heat transfer to modified second grade fluid over a non-linear stretching sheet
NASA Astrophysics Data System (ADS)
Khan, Masood; Rahman, Masood ur
2015-08-01
The objective of the present work is to analyze the two-dimensional boundary layer flow and heat transfer of a modified second grade fluid over a non-linear stretching sheet of constant surface temperature. The modelled momentum and energy equations are deduced to a system of ordinary differential equations by employing suitable transformations in boundary layer region and integrated numerically by fourth and fifth order Runge-Kutta Fehlberg method. Additionally, the analytic solutions of the governing problem are presented for some special cases. The secured results make it clear that the power-law index reduces both the momentum and thermal boundary layers. While the incremented values of the generalized second grade parameter leads to an increase in the momentum boundary layer and a decrease in the thermal boundary layer. To see the validity of the present results we have made a comparison with the previously published results as a special case with an outstanding compatibility.
Non-Linear Optical Flow Cytometry Using a Scanned, Bessel Beam Light-Sheet
Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.
2015-01-01
Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers. PMID:26021750
A New Class of Non-Linear, Finite-Volume Methods for Vlasov Simulation
Banks, J W; Hittinger, J A
2009-11-24
Methods for the numerical discretization of the Vlasov equation should efficiently use the phase space discretization and should introduce only enough numerical dissipation to promote stability and control oscillations. A new high-order, non-linear, finite-volume algorithm for the Vlasov equation that discretely conserves particle number and controls oscillations is presented. The method is fourth-order in space and time in well-resolved regions, but smoothly reduces to a third-order upwind scheme as features become poorly resolved. The new scheme is applied to several standard problems for the Vlasov-Poisson system, and the results are compared with those from other finite-volume approaches, including an artificial viscosity scheme and the Piecewise Parabolic Method. It is shown that the new scheme is able to control oscillations while preserving a higher degree of fidelity of the solution than the other approaches.
A finite element method for the statistics of non-linear random vibration
NASA Astrophysics Data System (ADS)
Langley, R. S.
1985-07-01
The transitional probability density function for the random response of a certain class of non-linear system satisfies the Fokker-Planck-Kolmogorov equation. This paper concerns the numerical solution of the stationary form of this equation, yielding the stationary probability density function of response. The weighted residual statement for the problem is integrated by parts to yield the weak form of the equations, which are then solved by the finite element method. The method is applied to a Duffing oscillator and good agreement is found with the exact result, and the method is compared favourably with a Galerkin solution method given by Bhandari and Sherrer [1]. Also, the method is applied to the ship rolling problem and good agreement is found with an approximate analytical result due to Roberts [2].
Squeezed Light in Laguerre-Gaussian Modes through Non-linear Medium
NASA Astrophysics Data System (ADS)
Xiao, Zhihao; Lanning, R. Nicholas; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy E.; Dowling, Jonathan P.
2016-05-01
We examine the propagation of squeezed light, in Laguerre-Gaussian spatial modes, through a non-linear medium such as Rb vapor. We examine the quantum states in varies spatial modes. We simulate the injection into a Rb vapor cell a linearly polarized laser beam to create squeezed vacuum state of light linearly polarized in the perpendicular direction. We fully quantize the optical field's propagation which is based on previous semi-classical calculation. The Rb atomic structure is simplified to a three-level system. We reveal the mechanism that how squeezed state of light is generated in this process and compare the theory with our experiment. Further, we simulate and compare the different squeezing that can be achieved due to the change of parameters or altering experimental setups, such as multiple passing of the beam through the Rb vapor cell.
Non-linear optical flow cytometry using a scanned, Bessel beam light-sheet.
Collier, Bradley B; Awasthi, Samir; Lieu, Deborah K; Chan, James W
2015-01-01
Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers. PMID:26021750
NASA Astrophysics Data System (ADS)
Nordtvedt, K.
2015-11-01
A local system of bodies in General Relativity whose exterior metric field asymptotically approaches the Minkowski metric effaces any effects of the matter distribution exterior to its Minkowski boundary condition. To enforce to all orders this property of gravity which appears to hold in nature, a method using linear algebraic scaling equations is developed which generates by an iterative process an N-body Lagrangian expansion for gravity's motion-independent potentials which fulfills exterior effacement along with needed metric potential expansions. Then additional properties of gravity - interior effacement and Lorentz time dilation and spatial contraction - produce additional iterative, linear algebraic equations for obtaining the full non-linear and motion-dependent N-body gravity Lagrangian potentials as well.
Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.
Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent
2015-11-01
Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions. PMID:26561090
Ice-Induced Non-Linear Vibration of AN Offshore Platform
NASA Astrophysics Data System (ADS)
Jin, D. P.; Hu, H. Y.
1998-07-01
The non-linear behavior of ice-induced vibration of an offshore platform with four legs is investigated in this paper. The equations of motion of the system are derived by using the Hamiltonian Principle. The force of moving ice based on the self-excitation and locking is used to model the phenomenon of contact between the ice and the platform. By using the approach of multiple scales, the primary resonance of the ice-induced vibration of the platform is analyzed. The numerical results show that there exist several kinds of combination resonances, including self-excited vibration and locking vibration. These results coincide with those observed from an offshore platform in the North China Sea, and hence enable one to gain insight into the ice-induced vibration of offshore platforms.
Mustafa, M; Mushtaq, A; Hayat, T; Alsaedi, A
2016-01-01
Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4-water ferrofluid is larger in comparison to the pure fluid even at low particle concentration. PMID:26894690
Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.
2016-01-01
Present study explores the MHD three-dimensional rotating flow and heat transfer of ferrofluid induced by a radiative surface. The base fluid is considered as water with magnetite-Fe3O4 nanoparticles. Novel concept of non-linear radiative heat flux is considered which produces a non-linear energy equation in temperature field. Conventional transformations are employed to obtain the self-similar form of the governing differential system. The arising system involves an interesting temperature ratio parameter which is an indicator of small/large temperature differences in the flow. Numerical simulations with high precision are determined by well-known shooting approach. Both uniform stretching and rotation have significant impact on the solutions. The variation in velocity components with the nanoparticle volume fraction is non-monotonic. Local Nusselt number in Fe3O4–water ferrofluid is larger in comparison to the pure fluid even at low particle concentration. PMID:26894690
Fast and Robust Newton strategies for non-linear geodynamics problems
NASA Astrophysics Data System (ADS)
Le Pourhiet, Laetitia; May, Dave
2014-05-01
Geodynamic problems are inherently non-linear, with sources of non-inearities arising from the (i) rheology, (ii) boundary conditions and (iii) the choice of time integration scheme. We have developed a robust non-linear scheme utilizing PETSc's non-linear solver framework; SNES. Through the SNES framework, we have access to a wide range of globalization techniques. In this work we extensively use line search implementation. We explored a wide range different strategies for solving a variety of non-linear problems specific to geodynamics. In this presentation, we report of the most robust line-searching techniques which we have found for the three classes of non-linearities previously identified. Among the class of rheological non-linearities, the shear banding instability using visco-plastic flow rules is the most difficult to solve. Distinctively from its sibling, the elasto-plastic rheology, the visco-plastic rheology causes instantaneous shear localisation. As a results, decreasing time-stepping is not a viable approach to better capture the initial phase of localisation. Furthermore, return map algorithms based on a consistent tangent cannot be used as the slope of the tangent is infinite. Obtaining a converged non-linear solution to this problem only relies on the robustness non-linear solver. After presenting a Newton methodology suitable for rheological non-linearities, we examine the performance of this formulation when frictional sliding boundary conditions are introduced. We assess the robustness of the non-linear solver when applied to critical taper type problems.
Comparison of Linear and Non-Linear Regression Models to Estimate Leaf Area Index of Dryland Shrubs.
NASA Astrophysics Data System (ADS)
Dashti, H.; Glenn, N. F.; Ilangakoon, N. T.; Mitchell, J.; Dhakal, S.; Spaete, L.
2015-12-01
Leaf area index (LAI) is a key parameter in global ecosystem studies. LAI is considered a forcing variable in land surface processing models since ecosystem dynamics are highly correlated to LAI. In response to environmental limitations, plants in semiarid ecosystems have smaller leaf area, making accurate estimation of LAI by remote sensing a challenging issue. Optical remote sensing (400-2500 nm) techniques to estimate LAI are based either on radiative transfer models (RTMs) or statistical approaches. Considering the complex radiation field of dry ecosystems, simple 1-D RTMs lead to poor results, and on the other hand, inversion of more complex 3-D RTMs is a demanding task which requires the specification of many variables. A good alternative to physical approaches is using methods based on statistics. Similar to many natural phenomena, there is a non-linear relationship between LAI and top of canopy electromagnetic waves reflected to optical sensors. Non-linear regression models can better capture this relationship. However, considering the problem of a few numbers of observations in comparison to the feature space (n
non-linear regression techniques were investigated to estimate LAI. Our study area is located in southwestern Idaho, Great Basin. Sagebrush (Artemisia tridentata spp) serves a critical role in maintaining the structure of this ecosystem. Using a leaf area meter (Accupar LP-80), LAI values were measured in the field. Linear Partial Least Square regression and non-linear, tree based Random Forest regression have been implemented to estimate the LAI of sagebrush from hyperspectral data (AVIRIS-ng) collected in late summer 2014. Cross validation of results indicate that PLS can provide comparable results to Random Forest.
NASA Astrophysics Data System (ADS)
Abuturab, Muhammad Rafiq
2015-11-01
A novel gyrator wavelet transform based non-linear multiple single channel information fusion and authentication is introduced. In this technique, each user channel is normalized, phase encoded, and modulated by random phase function, and then multiplexed into a single channel user ciphertext. Now, the secret channel of corresponding user is phase encoded, modulated by random phase function, and gyrator transformed, and then multiplexed into a single channel secret ciphertext. The user ciphertext and secret ciphertext are multiplied to get a single channel multiplex image and then inverse gyrator transformed. The resultant spectrum is phase- and amplitude-truncated to obtain the encrypted image and the asymmetric key, respectively. The encrypted image is a single-level 2-D discrete wavelet transformed. The information is decomposed into LL, HL, LH, and HH sub-bands. This process is repeated to obtain three sets of four sub-bands of three different images. Next, the individual sub-band of each encrypted image is fused to get four fused sub-bands. Finally, the four fused sub-bands are inverse single-level 2-D discrete wavelet transformed to obtain final encrypted image. This is the main advantage for the proposed system: using multiple individual decryption keys (authentication key, asymmetric key, secret keys, and sub-band keys) for each user not only expands the key spaces but also supplies non-linear keys to control the system security. Moreover, the orders of gyrator transform provide extra degrees of freedom. The theoretical analysis and numerical simulation results support the proposed method.
2013-01-01
Background Identifying the emotional state is helpful in applications involving patients with autism and other intellectual disabilities; computer-based training, human computer interaction etc. Electrocardiogram (ECG) signals, being an activity of the autonomous nervous system (ANS), reflect the underlying true emotional state of a person. However, the performance of various methods developed so far lacks accuracy, and more robust methods need to be developed to identify the emotional pattern associated with ECG signals. Methods Emotional ECG data was obtained from sixty participants by inducing the six basic emotional states (happiness, sadness, fear, disgust, surprise and neutral) using audio-visual stimuli. The non-linear feature ‘Hurst’ was computed using Rescaled Range Statistics (RRS) and Finite Variance Scaling (FVS) methods. New Hurst features were proposed by combining the existing RRS and FVS methods with Higher Order Statistics (HOS). The features were then classified using four classifiers – Bayesian Classifier, Regression Tree, K- nearest neighbor and Fuzzy K-nearest neighbor. Seventy percent of the features were used for training and thirty percent for testing the algorithm. Results Analysis of Variance (ANOVA) conveyed that Hurst and the proposed features were statistically significant (p < 0.001). Hurst computed using RRS and FVS methods showed similar classification accuracy. The features obtained by combining FVS and HOS performed better with a maximum accuracy of 92.87% and 76.45% for classifying the six emotional states using random and subject independent validation respectively. Conclusions The results indicate that the combination of non-linear analysis and HOS tend to capture the finer emotional changes that can be seen in healthy ECG data. This work can be further fine tuned to develop a real time system. PMID:23680041
A continuous model of the dynamical systems capable to memorise multiple shapes
NASA Astrophysics Data System (ADS)
Yudashkin, Alexander
2008-10-01
This paper proposes the novel approach to the mathematical synthesis of continuous self-organising systems capable to memorise and restore own multiple shapes defined by means of functions of single spatial variable or parametric models in two-dimensional space. The model is based on the certain universal form of the integral operator with the kernel representing the system memory. The technique for memorising shapes uses the composition of singular kernels of integral operators. The whole system is described by the potential function, whose minimisation leads to the non-linear dynamics of shape reconstruction by integro-differential non-linear equations with partial derivatives. The corresponding models are proposed and analysed for both parametric and non-parametric shape definitions. Main features of the proposed model are considered, and the results of numerical simulation are shown in case of three shapes memorising and retrieval. The proposed model can be used in theory of smart materials, artificial intelligence and some other branches of non-linear sciences where the effect of multiple shapes memorising and retrieval appears as the core feature.
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Orsini, Lorenzo; Resta, Ferruccio
2015-04-01
Non-linear behavior is present in many mechanical system operating conditions. In these cases, a common engineering practice is to linearize the equation of motion around a particular operating point, and to design a linear controller. The main disadvantage is that the stability properties and validity of the controller are local. In order to improve the controller performance, non-linear control techniques represent a very attractive solution for many smart structures. The aim of this paper is to compare non-linear model-based and non-model-based control techniques. In particular the model-based sliding-mode-control (SMC) technique is considered because of its easy implementation and the strong robustness of the controller even under heavy model uncertainties. Among the non-model-based control techniques, the fuzzy control (FC), allowing designing the controller according to if-then rules, has been considered. It defines the controller without a system reference model, offering many advantages such as an intrinsic robustness. These techniques have been tested on the pendulum nonlinear system.
NASA Astrophysics Data System (ADS)
Chiroux, Robert Charles
The objective of this research was to produce a three dimensional, non-linear, dynamic simulation of the interaction between a hyperelastic wheel rolling over compactable soil. The finite element models developed to produce the simulation utilized the ABAQUS/Explicit computer code. Within the simulation two separate bodies were modeled, the hyperelastic wheel and a compactable soil-bed. Interaction between the bodies was achieved by allowing them to come in contact but not to penetrate the contact surface. The simulation included dynamic loading of a hyperelastic, rubber tire in contact with compactable soil with an applied constant angular velocity or torque, including a tow load, applied to the wheel hub. The constraints on the wheel model produced a straight and curved path. In addition the simulation included a shear limit between the tire and soil allowing for the introduction of slip. Soil properties were simulated using the Drucker-Prager, Cap Plasticity model available within the ABAQUS/Explicit program. Numerical results obtained from the three dimensional model were compared with related experimental data and showed good correlation for similar conditions. Numerical and experimental data compared well for both stress and wheel rut formation depth under a weight of 5.8 kN and a constant angular velocity applied to the wheel hub. The simulation results provided a demonstration of the benefit of three-dimensional simulation in comparison to previous two-dimensional, plane strain simulations.
The non-linear relationship between body size and function in parrotfishes
NASA Astrophysics Data System (ADS)
Lokrantz, J.; Nyström, M.; Thyresson, M.; Johansson, C.
2008-12-01
Parrotfishes are a group of herbivores that play an important functional role in structuring benthic communities on coral reefs. Increasingly, these fish are being targeted by fishermen, and resultant declines in biomass and abundance may have severe consequences for the dynamics and regeneration of coral reefs. However, the impact of overfishing extends beyond declining fish stocks. It can also lead to demographic changes within species populations where mean body size is reduced. The effect of reduced mean body size on population dynamics is well described in literature but virtually no information exists on how this may influence important ecological functions. The study investigated how one important function, scraping (i.e., the capacity to remove algae and open up bare substratum for coral larval settlement), by three common species of parrotfishes ( Scarus niger, Chlorurus sordidus, and Chlorurus strongylocephalus) on coral reefs at Zanzibar (Tanzania) was influenced by the size of individual fishes. There was a non-linear relationship between body size and scraping function for all species examined, and impact through scraping was also found to increase markedly when fish reached a size of 15 20 cm. Thus, coral reefs which have a high abundance and biomass of parrotfish may nonetheless be functionally impaired if dominated by small-sized individuals. Reductions in mean body size within parrotfish populations could, therefore, have functional impacts on coral reefs that previously have been overlooked.
Ben Ahmed, A; Feki, H; Abid, Y; Boughzala, H; Minot, C
2010-01-01
This paper presents the results of our calculations on the geometric parameters, vibrational spectra and hyperpolarizability of a non-linear optical material L-histidine chloride monohydrate. Due to the lack of sufficiently precise information on geometric parameters available in literature, theoretical calculations were preceded by re-determination of the crystal X-ray structure. Single crystal of L-histidine chloride monohydrate has been growing by slow evaporation of an aqueous solution at room temperature. The compound crystallizes in the non-Centro-symmetric space group P2(1)2(1)2(1) of orthorhombic system. IR spectrum has been recorded in the range [400-4000 cm(-1)]. All the experimental vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our calculations. The optimized geometric bond lengths and bond angles obtained by using DFT//B3LYP/6-31G (d) method show a good agreement with the experimental data. The calculated vibrational spectra are in well agreement with the experimental one. To investigate microscopic second-order non-linear optical NLO behavior of the examined complex, the electric dipole mu, the polarizability alpha and the hyperpolarizability beta were computed using DFT//B3LYP/6-31G (d) method. The time-dependent density functional theory (TD-DFT) was employed to descript the molecular electron structure of the title compound using the B3LYP/6-31G (d) method. According to our calculations, L-histidine chloride monohydrate exhibits non-zero beta value revealing microscopic second-order NLO behavior. PMID:19926520
NASA Astrophysics Data System (ADS)
Ahmed, A. Ben; Feki, H.; Abid, Y.; Boughzala, H.; Minot, C.
2010-01-01
This paper presents the results of our calculations on the geometric parameters, vibrational spectra and hyperpolarizability of a non-linear optical material L-histidine chloride monohydrate. Due to the lack of sufficiently precise information on geometric parameters available in literature, theoretical calculations were preceded by re-determination of the crystal X-ray structure. Single crystal of L-histidine chloride monohydrate has been growing by slow evaporation of an aqueous solution at room temperature. The compound crystallizes in the non-Centro-symmetric space group P2 12 12 1 of orthorhombic system. IR spectrum has been recorded in the range [400-4000 cm -1]. All the experimental vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our calculations. The optimized geometric bond lengths and bond angles obtained by using DFT//B3LYP/6-31G (d) method show a good agreement with the experimental data. The calculated vibrational spectra are in well agreement with the experimental one. To investigate microscopic second-order non-linear optical NLO behavior of the examined complex, the electric dipole μ, the polarizability α and the hyperpolarizability β were computed using DFT//B3LYP/6-31G (d) method. The time-dependent density functional theory (TD-DFT) was employed to descript the molecular electron structure of the title compound using the B3LYP/6-31G (d) method. According to our calculations, L-histidine chloride monohydrate exhibits non-zero β value revealing microscopic second-order NLO behavior.
An incrementally non-linear model for clays with directional stiffness and a small strain emphasis
NASA Astrophysics Data System (ADS)
Tu, Xuxin
In response to construction activities and loads from permanent structures, soil generally is subjected to a variety of loading modes varying both in time and location. It also has been increasingly appreciated that the strains around well-designed foundations, excavations and tunnels are mostly small, with soil responses at this strain level generally being non-linear and anisotropic. To make accurate prediction of the performance of a geo-system, it is highly desirable to understand soil behavior at small strains along multiple loading directions, and accordingly to incorporate these responses in an appropriate constitutive model implemented in a finite element analysis. This dissertation presents a model based on a series of stress probe tests with small strain measurements performed on compressible Chicago glacial clays. The proposed model is formulated in an original constitutive framework, in which the tangent stiffness matrix is constructed in accordance with the mechanical nature of frictional materials and the tangent moduli therein are described explicitly. The stiffness description includes evolution relations with regard to length of stress path, and directionality relations in terms of stress path direction. The former relations provide distinctive definitions for small-strain and large-strain behaviors, and distinguish soil responses in shearing and compression. The latter relations make this model incrementally non-linear and thus capable of modeling inelastic behavior. A new algorithm based on a classical substepping scheme is developed to numerically integrate this model. A consistent tangent matrix is derived for the proposed model with the upgraded substepping scheme. The code is written in FORTRAN and implemented in FEM via UMAT of ABAQUS. The model is exercised in a variety of applications ranging from oedometer, triaxial and biaxial test simulations to a C-class prediction for a well-instrumented excavation. The computed results indicate that
Non-linear diffusion paths in two-phase ternary diffusion couples
NASA Astrophysics Data System (ADS)
Yang, Hongwei
2005-11-01
Prediction of diffusion paths facilitates the understanding of interdiffusion microstructure development at the vicinity of a common interface between two alloys. Understanding the influence of interdiffusion on microstructure is critically important to the design of many advanced materials systems such as high temperature coatings. The current study using DICTRA finite difference software predicts non-linear features formed on the diffusion path as the initial interface is approached. The non-linear diffusion path deviates from the linear zigzag shape predicted by an error function model for multiphase diffusion couples. The deviations appear as "horns" that protrude from the linear paths. The horns were found to be of two types. When the two outer legs of the diffusion path bend in the same direction, a "single-horn" is formed. When they bend in opposite directions a "double-horn" is formed. The formation of horns is attributed to the concentration dependence of the diffusivity. It results in a shift on the maximum of the flux profile from the initial interface, which accordingly leads to a rapid rise or decrease of the precipitate fraction as the interface is approached. It was found that the horn length is proportional to the composition vector component along the major eigenvector of the effective diffusivity matrix. Applying these results to a study on Ni-Cr-Al diffusion couples prepared from gamma + beta alloys, it also was found that the formation of single-phase beta layers could be attributed to the horns pointing away from each other, in which case the diffusion path could intersect the single phase beta region of the phase diagram. Comparison between EPMA data and DICTRA simulation shows that existence of second phase could introduce microstructure effect on diffusion. This microstructure effect may be taken into account for promoting or blocking the diffusion.
Non-linear analysis of body responses to functional electrical stimulation on hemiplegic subjects.
Yu, W W; Acharya, U R; Lim, T C; Low, H W
2009-08-01
Functional electrical stimulation (FES) is a method of applying low-level electrical currents to restore or improve body functions lost through nervous system impairment. FES is applied to peripheral nerves that control specific muscles or muscle groups. Application of advanced signal computing techniques to the medical field has helped to achieve practical solutions to the health care problems accurately. The physiological signals are essentially non-stationary and may contain indicators of current disease, or even warnings about impending diseases. These indicators may be present at all times or may occur at random on the timescale. However, to study and pinpoint these subtle changes in the voluminous data collected over several hours is tedious. These signals, e.g. walking-related accelerometer signals, are not simply linear and involve non-linear contributions. Hence, non-linear signal-processing methods may be useful to extract the hidden complexities of the signal and to aid physicians in their diagnosis. In this work, a young female subject with major neuromuscular dysfunction of the left lower limb, which resulted in an asymmetric hemiplegic gait, participated in a series of FES-assisted walking experiments. Two three-axis accelerometers were attached to her left and right ankles and their corresponding signals were recorded during FES-assisted walking. The accelerometer signals were studied in three directions using the Hurst exponent H, the fractal dimension (FD), the phase space plot, and recurrence plots (RPs). The results showed that the H and FD values increase with increasing FES, indicating more synchronized variability due to FES for the left leg (paralysed leg). However, the variation in the normal right leg is more chaotic on FES. PMID:19743632
CANFIS: A non-linear regression procedure to produce statistical air-quality forecast models
Burrows, W.R.; Montpetit, J.; Pudykiewicz, J.
1997-12-31
Statistical models for forecasts of environmental variables can provide a good trade-off between significance and precision in return for substantial saving of computer execution time. Recent non-linear regression techniques give significantly increased accuracy compared to traditional linear regression methods. Two are Classification and Regression Trees (CART) and the Neuro-Fuzzy Inference System (NFIS). Both can model predict and distributions, including the tails, with much better accuracy than linear regression. Given a learning data set of matched predict and predictors, CART regression produces a non-linear, tree-based, piecewise-continuous model of the predict and data. Its variance-minimizing procedure optimizes the task of predictor selection, often greatly reducing initial data dimensionality. NFIS reduces dimensionality by a procedure known as subtractive clustering but it does not of itself eliminate predictors. Over-lapping coverage in predictor space is enhanced by NFIS with a Gaussian membership function for each cluster component. Coefficients for a continuous response model based on the fuzzified cluster centers are obtained by a least-squares estimation procedure. CANFIS is a two-stage data-modeling technique that combines the strength of CART to optimize the process of selecting predictors from a large pool of potential predictors with the modeling strength of NFIS. A CANFIS model requires negligible computer time to run. CANFIS models for ground-level O{sub 3}, particulates, and other pollutants will be produced for each of about 100 Canadian sites. The air-quality models will run twice daily using a small number of predictors isolated from a large pool of upstream and local Lagrangian potential predictors.
Dynamic Information Architecture System
Christiansen, John
1997-02-12
The Dynamic Information System (DIAS) is a flexible object-based software framework for concurrent, multidiscplinary modeling of arbitrary (but related) processes. These processes are modeled as interrelated actions caused by and affecting the collection of diverse real-world objects represented in a simulation. The DIAS architecture allows independent process models to work together harmoniously in the same frame of reference and provides a wide range of data ingestion and output capabilities, including Geographic Information System (GIS) type map-based displays and photorealistic visualization of simulations in progress. In the DIAS implementation of the object-based approach, software objects carry within them not only the data which describe their static characteristics, but also the methods, or functions, which describe their dynamic behaviors. There are two categories of objects: (1) Entity objects which have real-world counterparts and are the actors in a simulation, and (2) Software infrastructure objects which make it possible to carry out the simulations. The Entity objects contain lists of Aspect objects, each of which addresses a single aspect of the Entity''s behavior. For example, a DIAS Stream Entity representing a section of a river can have many aspects correspondimg to its behavior in terms of hydrology (as a drainage system component), navigation (as a link in a waterborne transportation system), meteorology (in terms of moisture, heat, and momentum exchange with the atmospheric boundary layer), and visualization (for photorealistic visualization or map type displays), etc. This makes it possible for each real-world object to exhibit any or all of its unique behaviors within the context of a single simulation.
Dynamic Information Architecture System
1997-02-12
The Dynamic Information System (DIAS) is a flexible object-based software framework for concurrent, multidiscplinary modeling of arbitrary (but related) processes. These processes are modeled as interrelated actions caused by and affecting the collection of diverse real-world objects represented in a simulation. The DIAS architecture allows independent process models to work together harmoniously in the same frame of reference and provides a wide range of data ingestion and output capabilities, including Geographic Information System (GIS) typemore » map-based displays and photorealistic visualization of simulations in progress. In the DIAS implementation of the object-based approach, software objects carry within them not only the data which describe their static characteristics, but also the methods, or functions, which describe their dynamic behaviors. There are two categories of objects: (1) Entity objects which have real-world counterparts and are the actors in a simulation, and (2) Software infrastructure objects which make it possible to carry out the simulations. The Entity objects contain lists of Aspect objects, each of which addresses a single aspect of the Entity''s behavior. For example, a DIAS Stream Entity representing a section of a river can have many aspects correspondimg to its behavior in terms of hydrology (as a drainage system component), navigation (as a link in a waterborne transportation system), meteorology (in terms of moisture, heat, and momentum exchange with the atmospheric boundary layer), and visualization (for photorealistic visualization or map type displays), etc. This makes it possible for each real-world object to exhibit any or all of its unique behaviors within the context of a single simulation.« less
The role of model dynamics in ensemble Kalman filter performance for chaotic systems
Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.
2011-01-01
The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.