Rigatos, Gerasimos G
2016-06-01
It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered. PMID:27187988
Rigatos, Gerasimos G
2016-06-01
It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.
NASA Astrophysics Data System (ADS)
Rath, N.; Onofri, M.; Barnes, D.; Romero, J.; the TAE Team
2015-11-01
The C-2U device has recently demonstrated sustainment of an advanced, beam-driven FRC over time scales longer than the characteristic times for confinement, fast ion slow-down, and wall current decay. In anticipation of further advances in plasma lifetime, we are developing feedback control techniques for major FRC parameters and resistive instabilities. The LamyRidge code solves the time-dependent extended MHD equations in axisymmetric geometry. In the Q2D code, LamyRidge is combined with a 3-D kinetic code that tracks fast ions and runs in parallel with LamyRidge. Periodically, the background fields in the kinetic code are updated from the MHD simulation and the averaged fast particle distribution is integrated into the fluid equations. Recently, we have added the capability to run Q2D simulations as subordinate processes in Simulink, giving us the ability to run non-linear, closed-loop simulations using control algorithms developed in Simulink. The same Simulink models can be exported to real-time targets (CPU or FPGA) to perform feedback control in experiments. We present closed-loop simulations of beam-driven FRCs under magnetically-actuated feedback control. Results for positionally unstable FRCs are compared with the predictions of a linearized rigid-plasma model. Plasmas predicted to be passively stabilized by the linear model are found to exhibit Alfvenic growth in several cases. Feedback gains predicted to be stabilizing in the linear model are generally found to be insufficient in non-linear simulations, and vice versa. Control of separatrix geometry is demonstrated.
NASA Astrophysics Data System (ADS)
Song, Ningfang; Luo, Xinkai; Li, Huipeng; Li, Jiao
2015-10-01
The non-linearity of the phase shifting mechanism in white light interferometry system can seriously affect the measuring accuracy of the system. In this paper, the correcting method is to combine the displacement feedback control technology with the fuzzy PID control technology. Displacement feedback control mechanism and fuzzy PID controller are designed and then try to figure it out through Matlab simulation and experiment.. The result shows that combining the displacement feedback control technology with the fuzzy PID control technology can fulfill decent overall non-linear correction in the white light interferometry measuring system. Meanwhile, the accuracy of the correction is high and the non-linearity drop from 2% to 0.1%.
Non-linear controls on the persistence of La Nina
NASA Astrophysics Data System (ADS)
Di Nezio, P. N.; Deser, C.
2013-12-01
Non-linear controls on the persistence of La Nina Pedro DiNezio and Clara Deser Up to half of the observed La Nina events last for two years or more. Most El Nino events, in contrast, last no longer than one year. The physical processes causing this asymmetry in the duration of warm and cold ENSO events is unknown. The persistence of La Nina, not only exacerbates the climate impacts, especially in regions prone to drought, but also is highly unpredictable. In this talk we will explore the nonlinear processes that generate the persistence of La Nina in observations and in CCSM4 - a coupled climate model that simulates this feature realistically. First, we develop a non-linear delayed-oscillator model (nonlinDO) based on CCSM4's heat budget. All positive and negative feedbacks of nonlinDO capture the nonlinear and seasonal dependence exhibited by CCSM4. The nonlinear behavior is due to: 1) weaker atmospheric damping of cold events with respect to warm events, 2) stronger wind response for large warm events, and 3) weaker coupling between thermocline and sea-surface temperature anomalies when the thermocline deepens. We force the simple model with white Gaussian noise resulting in seasonal modulation of variance and skewness, and a spectral peak, that are in agreement with CCSM4. Sensitivity experiments with nonlinDO show that the thermocline nonlinearity (3) is the sole process controlling the duration of La Nina events. Linear ENSO theory indicates that La Nina events drive a delayed thermocline deepening that leads to their demise. However, the thermocline nonlinearity (3) renders this response ineffective as La Nina events become stronger. This diminishing of the delayed-thermocline feedback prevents the equatorial Pacific from returning to neutral or warm conditions and cold conditions persist for a second year. Observations show evidence for this thermocline nonlinearity suggesting that this process could be at work in the real world. Last, we show evidence that
Passive dynamic controllers for non-linear mechanical systems
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Wu, Shih-Chin; Phan, Minh; Longman, Richard W.
1992-01-01
The objective is to develop active model-independent controllers for slewing and vibration control of nonlinear multibody flexible systems, including flexible robots. The topics are presented in viewgraph form and include: passive stabilization; work-energy rate principle; Liapunov theory; displacement feedback; dynamic controller; displacement and acceleration feedback; velocity feedback; displacement feedback; physical interaction; a 6-DOF robot; and simulation results.
Tunneling control using classical non-linear oscillator
Kar, Susmita; Bhattacharyya, S. P.
2014-04-24
A quantum particle is placed in symmetric double well potential which is coupled to a classical non-linear oscillator via a coupling function. With different spatial symmetry of the coupling and under various controlling fashions, the tunneling of the quantum particle can be enhanced or suppressed, or totally destroyed.
Extending a Lippmann style seismometer's dynamic range by using a non-linear feedback circuit
NASA Astrophysics Data System (ADS)
Romeo, G.; Spinelli, G.
2013-10-01
A Lippmann style seismometer (Lippmann and Gebrande, 1983) uses a single-coil velocity-feedback method in order to extend toward lower frequencies a geophone's frequency response. Strong seismic signals may saturate the electronics, sometimes clipping the signal or producing the characteristic whale-shaped recording. Adding a non linear feedback in the electronic circuit may avoid saturation, allowing the strong-motion use of the seismometer without affecting the usual performance. Such a seismometer will allow unsaturated data in epicentral area while offering nice low signal recording for far events.
Computational models of signalling networks for non-linear control.
Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M
2013-05-01
Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.
NASA Astrophysics Data System (ADS)
Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun
2016-04-01
In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.
NASA Astrophysics Data System (ADS)
Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.
2015-12-01
We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.
Drive Control of an Electric Vehicle by a Non-linear Controller
NASA Astrophysics Data System (ADS)
Mubin, Marizan; Ouchi, Shigeto; Anabuki, Masatoshi; Hirata, Hiroshi
The driving force of automobiles is transmitted by the frictional force between the tires and the road surface. This frictional force is a function of the weight of the car-body and the friction coefficient μ between the tires and the road surface. The friction coefficient μ is also a function of the following parameters: the slip ratio λ determined by the car-body speed and the wheel speed, and the condition of the road surface. Slippage of automobiles which causes much damage often occurs during accelerating and braking. In this paper, we propose a new drive control system which has an effect on acceleration and braking. In the drive control system, a non-linear controller designed by using a Lyapunov function is used. This non-linear controller has two functions: first one is μ control which moves the car-body, another one is λ control. The controller is designed in order that μ and λ work at noslip and with slip respectively. As another controller, a disturbance observer is used for estimating the car-body speed which is difficult to be measured. Then, this lead to the proof of the stability condition of the combined system which consists of two controllers: the non-linear controller and the disturbance observer. Finally, the effectiveness of this control system is proved by a very satisfactory simulation and experimental results for two cases.
Non linear predictive control of a LEGO mobile robot
NASA Astrophysics Data System (ADS)
Merabti, H.; Bouchemal, B.; Belarbi, K.; Boucherma, D.; Amouri, A.
2014-10-01
Metaheuristics are general purpose heuristics which have shown a great potential for the solution of difficult optimization problems. In this work, we apply the meta heuristic, namely particle swarm optimization, PSO, for the solution of the optimization problem arising in NLMPC. This algorithm is easy to code and may be considered as alternatives for the more classical solution procedures. The PSO- NLMPC is applied to control a mobile robot for the tracking trajectory and obstacles avoidance. Experimental results show the strength of this approach.
Fault-tolerant control for a class of non-linear systems with dead-zone
NASA Astrophysics Data System (ADS)
Chen, Mou; Jiang, Bin; Guo, William W.
2016-05-01
In this paper, a fault-tolerant control scheme is proposed for a class of single-input and single-output non-linear systems with the unknown time-varying system fault and the dead-zone. The non-linear state observer is designed for the non-linear system using differential mean value theorem, and the non-linear fault estimator that estimates the unknown time-varying system fault is developed. On the basis of the designed fault estimator, the observer-based fault-tolerant tracking control is then developed using the backstepping technique for non-linear systems with the dead-zone. The stability of the whole closed-loop system is rigorously proved via Lyapunov analysis and the satisfactory tracking control performance is guaranteed in the presence of the unknown time-varying system fault and the dead-zone. Numerical simulation results are presented to illustrate the effectiveness of the proposed backstepping fault-tolerant control scheme for non-linear systems.
A Signal Transmission Technique for Stability Analysis of Multivariable Non-Linear Control Systems
NASA Technical Reports Server (NTRS)
Jackson, Mark; Zimpfer, Doug; Adams, Neil; Lindsey, K. L. (Technical Monitor)
2000-01-01
Among the difficulties associated with multivariable, non-linear control systems is the problem of assessing closed-loop stability. Of particular interest is the class of non-linear systems controlled with on/off actuators, such as spacecraft thrusters or electrical relays. With such systems, standard describing function techniques are typically too conservative, and time-domain simulation analysis is prohibitively extensive, This paper presents an open-loop analysis technique for this class of non-linear systems. The technique is centered around an innovative use of multivariable signal transmission theory to quantify the plant response to worst case control commands. The technique has been applied to assess stability of thruster controlled flexible space structures. Examples are provided for Space Shuttle attitude control with attached flexible payloads.
Stabilization and robustness of non-linear unity-feedback system - Factorization approach
NASA Technical Reports Server (NTRS)
Desoer, C. A.; Kabuli, M. G.
1988-01-01
The paper is a self-contained discussion of a right factorization approach in the stability analysis of the nonlinear continuous-time or discrete-time, time-invariant or time-varying, well-posed unity-feedback system S1(P, C). It is shown that a well-posed stable feedback system S1(P, C) implies that P and C have right factorizations. In the case where C is stable, P has a normalized right-coprime factorization. The factorization approach is used in stabilization and simultaneous stabilization results.
NASA Astrophysics Data System (ADS)
Wang, Gang; Wang, Chaoli; Du, Qinghui; Cai, Xuan
2016-10-01
In this paper, we address the output consensus problem of tracking a desired trajectory for a group of second-order agents on a directed graph with a fixed topology. Each agent is modelled by a second-order non-linear system with unknown non-linear dynamics and unknown non-linear control gains. Only a subset of the agents is given access to the desired trajectory information directly. A distributed adaptive consensus protocol driving all agents to track the desired trajectory is presented using the backstepping technique and approximation technique of Fourier series (FSs). The FS structure is taken not only for tracking the non-linear dynamics but also the unknown portion in the controller design procedure, which can avoid virtual controllers containing the uncertain terms. Stability analysis and parameter convergence of the proposed algorithm are conducted based on the Lyapunov theory and the algebraic graph theory. It is also demonstrated that arbitrary small tracking errors can be achieved by appropriately choosing design parameters. Though the proposed work is applicable for second-order non-linear systems containing unknown non-linear control gains, the proposed controller design can be easily extended to higher-order non-linear systems containing unknown non-linear control gains. Simulation results show the effectiveness of the proposed schemes.
Non-linear controls influence functions in an aircraft dynamics simulator
NASA Astrophysics Data System (ADS)
Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.
2006-03-01
In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft's control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland's continuing study of active wing load control.
Non-linear adaptive sliding mode switching control with average dwell-time
NASA Astrophysics Data System (ADS)
Yu, Lei; Zhang, Maoqing; Fei, Shumin
2013-03-01
In this article, an adaptive integral sliding mode control scheme is addressed for switched non-linear systems in the presence of model uncertainties and external disturbances. The control law includes two parts: a slide mode controller for the reduced model of the plant and a compensation controller to deal with the non-linear systems with parameter uncertainties. The adaptive updated laws have been derived from the switched multiple Lyapunov function method, also an admissible switching signal with average dwell-time technique is given. The simplicity of the proposed control scheme facilitates its implementation and the overall control scheme guarantees the global asymptotic stability in the Lyapunov sense such that the sliding surface of the control system is well reached. Simulation results are presented to demonstrate the effectiveness and the feasibility of the proposed approach.
Model predictive control of non-linear systems over networks with data quantization and packet loss.
Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping
2015-11-01
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.
Model predictive control of non-linear systems over networks with data quantization and packet loss.
Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping
2015-11-01
This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method. PMID:26341070
Intelligent control of non-linear dynamical system based on the adaptive neurocontroller
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Kobezhicov, V.
2015-10-01
This paper presents an adaptive neuro-controller for intelligent control of non-linear dynamical system. The formed as the fuzzy selective neural net the adaptive neuro-controller on the base of system's state, creates the effective control signal under random perturbations. The validity and advantages of the proposed adaptive neuro-controller are demonstrated by numerical simulations. The simulation results show that the proposed controller scheme achieves real-time control speed and the competitive performance, as compared to PID, fuzzy logic controllers.
Real-time non-linear flight control of a fixed-wing UAV
NASA Astrophysics Data System (ADS)
Landry, Mario
In this thesis we studied the implementation and design of a typical configuration fixed-wing research UAV. The ultimate goal being the flight test of an advanced control technique. This objective was achieved through the achievement of several milestones that are also the subject of each chapter of this thesis. Among these include: modeling of the UAV and its experimental parameters for the realization of a non-linear simulation close to reality, the design of the non-linear flight control, the development of the control card and its software, development of the ground station's software with LabVIEW and ultimately the achievement of the flight tests. The ultimate goal which was the application of an advanced control technique in an experimental flight was successfully completed. Indeed, the experimentation of the UAV's fast dynamics inversion yielded very good results without using the classic longitudinal and lateral movements decoupling technique along with a gain scheduling based controller. Furthermore, the final system remains easy to use and completely eliminates the time between a control technique design's completion with the non-linear simulation and its implementation in the real UAV for a flight test.
Non-linear controls influence functions in an aircraft dynamics simulator
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.
2006-01-01
In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft s control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland s continuing study of active wing load control.
Iterated non-linear model predictive control based on tubes and contractive constraints.
Murillo, M; Sánchez, G; Giovanini, L
2016-05-01
This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle.
Iterated non-linear model predictive control based on tubes and contractive constraints.
Murillo, M; Sánchez, G; Giovanini, L
2016-05-01
This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle. PMID:26850752
Non-linear control of the ''clam'' wave energy device. Final report
Not Available
1983-09-01
A promising wave energy device being currently investigated is the ''clam'' device. The clam extracts energy by pumping air through a specially designed (Wells) turbine. Although operation of the Wells turbine does not require a rectified air flow, some additional control will be necessary to optimize the phase of the clam motion for good efficiencies. An examination of the equation of motion in the time domain suggests the possibility of non-linear phase control by mechanical, power take-off, or pneumatic latching. Latching can be shown to increase the efficiency of the device in the longer wavelengths of the wave spectrum, i.e. those of high incident wave power.
NASA Astrophysics Data System (ADS)
Yokoyama, Kazuto; Takahashi, Masaki
2015-02-01
A dynamics-based non-linear controller with energy shaping to accelerate a pendulum-type mobility is proposed. The concept of this study is to control translational acceleration of the vehicle in a dynamically reasonable manner. The body angle is controlled to maintain a reference state where the vehicle is statically unstable but dynamically stable, which leads to a constant translational acceleration due to instability of the system. The accelerating motion is like a sprinter moving from crouch start and it fully exploits dynamics of the vehicle. To achieve it, the total energy of the system is shaped to have the minimum at a given reference state and the system is controlled to converge to it. The controller can achieve various properties through the energy shaping procedure. Especially, an energy function that will lead to safe operation of the vehicle is proposed. The effectiveness of the controller is verified in simulations and experiments.
Linear and non-linear control techniques applied to actively lubricated journal bearings
NASA Astrophysics Data System (ADS)
Nicoletti, R.; Santos, I. F.
2003-03-01
The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can use the conventional hydrodynamic lubrication. For further reduction of shaft vibrations one can use the active lubrication action, which is based on injecting pressurized oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and a non-linear controller, applied to a tilting-pad journal bearing, are analysed and discussed. Important conclusions about the application of integral controllers, responsible for changing the rotor-bearing equilibrium position and consequently the "passive" oil film damping coefficients, are achieved. Numerical results show an effective vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0-80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated, illustrating clearly one of its most promising applications.
Non-linear modelling and control of semi-active suspensions with variable damping
NASA Astrophysics Data System (ADS)
Chen, Huang; Long, Chen; Yuan, Chao-Chun; Jiang, Hao-Bin
2013-10-01
Electro-hydraulic dampers can provide variable damping force that is modulated by varying the command current; furthermore, they offer advantages such as lower power, rapid response, lower cost, and simple hardware. However, accurate characterisation of non-linear f-v properties in pre-yield and force saturation in post-yield is still required. Meanwhile, traditional linear or quarter vehicle models contain various non-linearities. The development of a multi-body dynamics model is very complex, and therefore, SIMPACK was used with suitable improvements for model development and numerical simulations. A semi-active suspension was built based on a belief-desire-intention (BDI)-agent model framework. Vehicle handling dynamics were analysed, and a co-simulation analysis was conducted in SIMPACK and MATLAB to evaluate the BDI-agent controller. The design effectively improved ride comfort, handling stability, and driving safety. A rapid control prototype was built based on dSPACE to conduct a real vehicle test. The test and simulation results were consistent, which verified the simulation.
Cerebral autoregulation of preterm neonates--a non-linear control system?
Zernikow, B; Michel, E; Kohlmann, G; Steck, J; Schmitt, R M; Jorch, G
1994-01-01
The low frequency cerebral blood flow velocity (CBFV) oscillations in neonates are commonly attributed to an under-dampened immature linear type cerebral autoregulation, and the 'instability' is regarded as causative for peri-intraventricular haemorrhage/periventricular leukomalacia. In contrast, oscillations susceptible to frequency entrainment are a fundamental part of the stable function of non-linear control systems. To classify the autoregulation an observational study was done on the relationship between CBFV oscillations, heart rate variability, and artificial ventilation. In 10 preterm neonates (gestational age 26 to 35 weeks) we serially Doppler traced arterial CBFV continuously for 12 minutes between days 1 and 49 of life. The individual time series of CBFV and heart rate were subjected to spectral analysis. Forty six of 47 tracings showed significant low frequency CBFV oscillations. Low frequency heart rate oscillations were not a prerequisite thereof. All patients with < 30% of total power in the low frequency band of CBFV oscillations were on the ventilator. Three of them demonstrated a shift of spectral power from low frequency to a frequency equal or harmonic to the ventilator rate indicating entrainment. The findings of CBFV oscillations combined with entrainment classify the autoregulation as a non-linear system. It is suggested that entrainment by periodic high amplitude stimuli might challenge the regulatory capacity to its limits thus increasing the risk for cerebral damage. PMID:8198408
Non-linear adaptive controllers for an over-actuated pneumatic MR-compatible stepper.
Hollnagel, Christoph; Vallery, Heike; Schädler, Rainer; López, Isaac Gómez-Lor; Jaeger, Lukas; Wolf, Peter; Riener, Robert; Marchal-Crespo, Laura
2013-07-01
Pneumatics is one of the few actuation principles that can be used in an MR environment, since it can produce high forces without affecting imaging quality. However, pneumatic control is challenging, due to the air high compliance and cylinders non-linearities. Furthermore, the system's properties may change for each subject. Here, we present novel control strategies that adapt to the subject's individual anatomy and needs while performing accurate periodic gait-like movements with an MRI compatible pneumatically driven robot. In subject-passive mode, an iterative learning controller (ILC) was implemented to reduce the system's periodic disturbances. To allow the subjects to intend the task by themselves, a zero-force controller minimized the interaction forces between subject and robot. To assist patients who may be too weak, an assist-as-needed controller that adapts the assistance based on online measurement of the subject's performance was designed. The controllers were experimentally tested. The ILC successfully learned to reduce the variability and tracking errors. The zero-force controller allowed subjects to step in a transparent environment. The assist-as-needed controller adapted the assistance based on individual needs, while still challenged the subjects to perform the task. The presented controllers can provide accurate pneumatic control in MR environments to allow assessments of brain activation. PMID:23430329
NASA Astrophysics Data System (ADS)
Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.
2009-12-01
We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.
NASA Astrophysics Data System (ADS)
Lubineau, D.; Dion, J. M.; Dugard, L.; Roye, D.
2000-02-01
This paper mainly deals with the design of an advanced control law for induction motors and its real-time implementation on an experimental test benchmark. First, relationship between the classical field oriented control (FOC) and non linear linearizing control laws is studied. It is shown that both control laws are similar. Classical non linear linearizing control improves the performances but not in a spectacular way when the observer and the controller are designed independently. A new non linear observer based control law is designed, which is shown to be globally stable and is implemented on an experimental test-bench. The control algorithm is studied and applied in many configurations (various set-points, flux and speed profiles and torque disturbances) and is shown to be very efficient.
Non-linear stochastic optimal control of acceleration parametrically excited systems
NASA Astrophysics Data System (ADS)
Wang, Yong; Jin, Xiaoling; Huang, Zhilong
2016-02-01
Acceleration parametrical excitations have not been taken into account due to the lack of physical significance in macroscopic structures. The explosive development of microtechnology and nanotechnology, however, motivates the investigation of the acceleration parametrically excited systems. The adsorption and desorption effects dramatically change the mass of nano-sized structures, which significantly reduces the precision of nanoscale sensors or can be reasonably utilised to detect molecular mass. This manuscript proposes a non-linear stochastic optimal control strategy for stochastic systems with acceleration parametric excitation based on stochastic averaging of energy envelope and stochastic dynamic programming principle. System acceleration is approximately expressed as a function of system displacement in a short time range under the conditions of light damping and weak excitations, and the acceleration parametrically excited system is shown to be equivalent to a constructed system with an additional displacement parametric excitation term. Then, the controlled system is converted into a partially averaged Itô equation with respect to the total system energy through stochastic averaging of energy envelope, and the optimal control strategy for the averaged system is derived from solving the associated dynamic programming equation. Numerical results for a controlled Duffing oscillator indicate the efficacy of the proposed control strategy.
A non-linear model predictive controller with obstacle avoidance for a space robot
NASA Astrophysics Data System (ADS)
Wang, Mingming; Luo, Jianjun; Walter, Ulrich
2016-04-01
This study investigates the use of the non-linear model predictive control (NMPC) strategy for a kinematically redundant space robot to approach an un-cooperative target in complex space environment. Collision avoidance, traditionally treated as a high level planning problem, can be effectively translated into control constraints as part of the NMPC. The objective of this paper is to evaluate the performance of the predictive controller in a constrained workspace and to investigate the feasibility of imposing additional constraints into the NMPC. In this paper, we reformulated the issue of the space robot motion control by using NMPC with predefined objectives under input, output and obstacle constraints over a receding horizon. An on-line quadratic programming (QP) procedure is employed to obtain the constrained optimal control decisions in real-time. This study has been implemented for a 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a 6 DOF free-floating spacecraft via simulation studies. Real-time trajectory tracking and collision avoidance particularly demonstrate the effectiveness and potential of the proposed NMPC strategy for the space robot.
Quantum Process Tomography of an Optically-Controlled Kerr Non-linearity.
Kupchak, Connor; Rind, Samuel; Jordaan, Bertus; Figueroa, Eden
2015-01-01
Any optical quantum information processing machine would be comprised of fully-characterized constituent devices for both single state manipulations and tasks involving the interaction between multiple quantum optical states. Ideally for the latter, would be an apparatus capable of deterministic optical phase shifts that operate on input quantum states with the action mediated solely by auxiliary signal fields. Here we present the complete experimental characterization of a system designed for optically controlled phase shifts acting on single-photon level probe coherent states. Our setup is based on a warm vapor of rubidium atoms under the conditions of electromagnetically induced transparency with its dispersion properties modified through the use of an optically triggered N-type Kerr non-linearity. We fully characterize the performance of our device by sending in a set of input probe states and measuring the corresponding output via time-domain homodyne tomography and subsequently performing the technique of coherent state quantum process tomography. This method provides us with the precise knowledge of how our optical phase shift will modify any arbitrary input quantum state engineered in the mode of the reconstruction. PMID:26585904
Stable myoelectric control of a hand prosthesis using non-linear incremental learning
Gijsberts, Arjan; Bohra, Rashida; Sierra González, David; Werner, Alexander; Nowak, Markus; Caputo, Barbara; Roa, Maximo A.; Castellini, Claudio
2014-01-01
Stable myoelectric control of hand prostheses remains an open problem. The only successful human–machine interface is surface electromyography, typically allowing control of a few degrees of freedom. Machine learning techniques may have the potential to remove these limitations, but their performance is thus far inadequate: myoelectric signals change over time under the influence of various factors, deteriorating control performance. It is therefore necessary, in the standard approach, to regularly retrain a new model from scratch. We hereby propose a non-linear incremental learning method in which occasional updates with a modest amount of novel training data allow continual adaptation to the changes in the signals. In particular, Incremental Ridge Regression and an approximation of the Gaussian Kernel known as Random Fourier Features are combined to predict finger forces from myoelectric signals, both finger-by-finger and grouped in grasping patterns. We show that the approach is effective and practically applicable to this problem by first analyzing its performance while predicting single-finger forces. Surface electromyography and finger forces were collected from 10 intact subjects during four sessions spread over two different days; the results of the analysis show that small incremental updates are indeed effective to maintain a stable level of performance. Subsequently, we employed the same method on-line to teleoperate a humanoid robotic arm equipped with a state-of-the-art commercial prosthetic hand. The subject could reliably grasp, carry and release everyday-life objects, enforcing stable grasping irrespective of the signal changes, hand/arm movements and wrist pronation and supination. PMID:24616697
Soil Organic Matter Content: A Non-linear Control on Microbial Respiration in Soils
NASA Astrophysics Data System (ADS)
Schnecker, J.; Grandy, S.
2015-12-01
Decomposition of soil organic matter (SOM) and the amount of CO2 respired from soil largely depends on the amount of substrate available to microbes. Soils with high SOM concentrations will have higher respiration rates than soils with low SOM concentrations given similar environmental conditions. It is widely assumed that microbial activity and respiration rates respond linearly to substrate concentrations. This assumption remains however largely untested. In a lab incubation experiment, we amended a mixture of agricultural soil and sand with increasing amounts of one of three plant residues differing in their C/N ratio (clover 14; rye 23 and wheat straw 110). We used 9 levels of organic carbon (OC) content ranging from 0.25% to 5.7%. The mixtures were then incubated at constant temperature and water contents for 63 days. Our results show that across substrates CO2 production increased with increasing OC content following a quadratic function instead of the expected linear one up to 2.2% OC. Above that point CO2 production leveled off and increased linearly. We hypothesize that the probability that a microbe meets a substrate also increases with increasing amounts of plant residues. At all substrate concentrations, samples amended with clover had the highest carbon losses, followed by rye and straw. Differences between the three kinds of plant residue might have been caused by their C/N ratios and thus the amount of available N. High amounts of N might have led to an increase in microbial biomass, which could occupy more space and is thus more likely to meet new substrate. Additional analysis of microbial biomass, enzyme activities and N pools will help to understand the mechanism leading to the observed CO2 patterns. A non-linear relation of CO2 production and OC content indicates that spatial separation as an inherent property of SOM content is an important control on decomposition at low OC contents. Knowledge of this controlling effect could be used to enhance
Zhu, Z. W.; Zhang, W. D. Xu, J.
2014-03-15
The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.
Non-linear Conjugate Gradient Time-Domain Controlled Inversion Source
2006-11-16
Software that simulates and inverts time-domain electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a step-wise source signal from either galvanic (grounded wires) or inductive (magnetic loops) sources. The inversion process is carried inductive (magnetic loops) sources. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code TEM3D ver. 2.0. The upgrade includes the following components: (1) Improved (faster)memory access during gradient computation. (2) Data parellelization scheme: Multiple transmitters (sources) can be distributed accross several banks of processors (daa-planes). Similarly, the receivers of each source are also distributed accross the corresponding data-plane. (3) Improved data-IO.« less
Non-linear Conjugate Gradient Time-Domain Controlled Inversion Source
Newman, Gregory A.; Commer, Michael
2006-11-16
Software that simulates and inverts time-domain electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a step-wise source signal from either galvanic (grounded wires) or inductive (magnetic loops) sources. The inversion process is carried inductive (magnetic loops) sources. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria. The software is an upgrade from the code TEM3D ver. 2.0. The upgrade includes the following components: (1) Improved (faster)memory access during gradient computation. (2) Data parellelization scheme: Multiple transmitters (sources) can be distributed accross several banks of processors (daa-planes). Similarly, the receivers of each source are also distributed accross the corresponding data-plane. (3) Improved data-IO.
Designing Genetic Feedback Controllers.
Harris, Andreas W K; Dolan, James A; Kelly, Ciarán L; Anderson, James; Papachristodoulou, Antonis
2015-08-01
By incorporating feedback around systems we wish to manipulate, it is possible to improve their performance and robustness properties to meet pre-specified design objectives. For decades control engineers have been successfully implementing feedback controllers for complex mechanical and electrical systems such as aircraft and sports cars. Natural biological systems use feedback extensively for regulation and adaptation but apart from the most basic designs, there is no systematic framework for designing feedback controllers in Synthetic Biology. In this paper we describe how classical approaches from linear control theory can be used to close the loop. This includes the design of genetic circuits using feedback control and the presentation of a biological phase lag controller. PMID:26390502
NASA Astrophysics Data System (ADS)
Lin, Cheng-Jian; Lee, Chi-Yung
2010-04-01
This article introduces a recurrent fuzzy neural network based on improved particle swarm optimisation (IPSO) for non-linear system control. An IPSO method which consists of the modified evolutionary direction operator (MEDO) and the Particle Swarm Optimisation (PSO) is proposed in this article. A MEDO combining the evolutionary direction operator and the migration operation is also proposed. The MEDO will improve the global search solution. Experimental results have shown that the proposed IPSO method controls the magnetic levitation system and the planetary train type inverted pendulum system better than the traditional PSO and the genetic algorithm methods.
A Non-Linear Approach to Spacecraft Formation Control in the Vicinity of a Collinear Libration Point
NASA Technical Reports Server (NTRS)
Luquette, Richard J.; Sanner, Robert M.; Bauer, Frank H. (Technical Monitor)
2001-01-01
An expanding interest in mission design strategies that exploit libration point regions, demands the continued development of enhanced, efficient, control algorithms for station-keeping and formation maintenance. Linear control strategies have been developed for station-keeping. However, their region of stability is bounded by the assumptions required for linearizing the governing equations of motion. For example, reference [I] discusses the development of a linear control design for maintaining a halo orbit about the Earth-Moon L2 libration point. Trial runs indicated the trajectory was unstable for starting points exceeding 45,000 km from the L2 point. Also, there was significant growth in the control effort required to maintain the orbit as the nominal radius increased. This result is a consequence of the increased influence of the system non-linearities, as the trajectory deviated from the linearization point, L2. As an alternative, this paper presents the development of a non-linear control strategy, based on a Hamiltonian formulation of the equations of motion. The control strategy is applied to the problem of formation maintenance, rather than simple station
A Non-Linear Approach to Spacecraft Formation Control in the Vicinity of a Collinear Libration Point
NASA Technical Reports Server (NTRS)
Luquette, Richard J.; Sanner, Robert M.; Bauer, Frank H. (Technical Monitor)
2001-01-01
An expanding interest in mission design strategies that exploit libration point regions demands the continued development of enhanced, efficient, control algorithms for station-keeping and formation maintenance. This paper discusses the development of a non-linear, formation maintenance, control algorithm for trajectories in the vicinity of a libration point. However, the formulation holds for any trajectory governed by the equations of motion for the restricted three body problem. The control law guarantees exponential convergence, based on a Lyaponov analysis. FreeFlyer and MATLAB provide the simulation environment for controller performance evaluation. The simulation, modeled after the MAXIM Pathfinder mission, maintains the relative position of a "follower" spacecraft with respect to a "leader" spacecraft, stationed near the L2 libration point in the Sun-Earth system. Evaluation metrics are fuel usage and tracking accuracy.
Multi input single output model predictive control of non-linear bio-polymerization process
Arumugasamy, Senthil Kumar; Ahmad, Z.
2015-05-15
This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.
Apthorp, Deborah; Nagle, Fintan; Palmisano, Stephen
2014-01-01
Visually-induced illusions of self-motion (vection) can be compelling for some people, but they are subject to large individual variations in strength. Do these variations depend, at least in part, on the extent to which people rely on vision to maintain their postural stability? We investigated by comparing physical posture measures to subjective vection ratings. Using a Bertec balance plate in a brightly-lit room, we measured 13 participants' excursions of the centre of foot pressure (CoP) over a 60-second period with eyes open and with eyes closed during quiet stance. Subsequently, we collected vection strength ratings for large optic flow displays while seated, using both verbal ratings and online throttle measures. We also collected measures of postural sway (changes in anterior-posterior CoP) in response to the same visual motion stimuli while standing on the plate. The magnitude of standing sway in response to expanding optic flow (in comparison to blank fixation periods) was predictive of both verbal and throttle measures for seated vection. In addition, the ratio between eyes-open and eyes-closed CoP excursions during quiet stance (using the area of postural sway) significantly predicted seated vection for both measures. Interestingly, these relationships were weaker for contracting optic flow displays, though these produced both stronger vection and more sway. Next we used a non-linear analysis (recurrence quantification analysis, RQA) of the fluctuations in anterior-posterior position during quiet stance (both with eyes closed and eyes open); this was a much stronger predictor of seated vection for both expanding and contracting stimuli. Given the complex multisensory integration involved in postural control, our study adds to the growing evidence that non-linear measures drawn from complexity theory may provide a more informative measure of postural sway than the conventional linear measures. PMID:25462216
Apthorp, Deborah; Nagle, Fintan; Palmisano, Stephen
2014-01-01
Visually-induced illusions of self-motion (vection) can be compelling for some people, but they are subject to large individual variations in strength. Do these variations depend, at least in part, on the extent to which people rely on vision to maintain their postural stability? We investigated by comparing physical posture measures to subjective vection ratings. Using a Bertec balance plate in a brightly-lit room, we measured 13 participants' excursions of the centre of foot pressure (CoP) over a 60-second period with eyes open and with eyes closed during quiet stance. Subsequently, we collected vection strength ratings for large optic flow displays while seated, using both verbal ratings and online throttle measures. We also collected measures of postural sway (changes in anterior-posterior CoP) in response to the same visual motion stimuli while standing on the plate. The magnitude of standing sway in response to expanding optic flow (in comparison to blank fixation periods) was predictive of both verbal and throttle measures for seated vection. In addition, the ratio between eyes-open and eyes-closed CoP excursions during quiet stance (using the area of postural sway) significantly predicted seated vection for both measures. Interestingly, these relationships were weaker for contracting optic flow displays, though these produced both stronger vection and more sway. Next we used a non-linear analysis (recurrence quantification analysis, RQA) of the fluctuations in anterior-posterior position during quiet stance (both with eyes closed and eyes open); this was a much stronger predictor of seated vection for both expanding and contracting stimuli. Given the complex multisensory integration involved in postural control, our study adds to the growing evidence that non-linear measures drawn from complexity theory may provide a more informative measure of postural sway than the conventional linear measures. PMID:25462216
Feedback sensor noise rejection control strategy for quadrotor UAV system
NASA Astrophysics Data System (ADS)
Tanveer, M. Hassan; Hazry, D.; Ahmed, S. Faiz; Joyo, M. Kamran; Warsi, Faizan A.; Kamarudin, H.; Wan, Khairunizam; Razlan, Zuradzman M.; Shahriman A., B.; Hussain, A. T.
2015-05-01
This paper describes a methodology for estimating the true value of all parameters from feedback sensor of quadrotor systems. A simple gyroscope and accelerometer sensors are taken into account for calculating the accurate value of system. Secondly, for filtering and controlling the feedback data of system, a Non-linear Model Predictive Control (NMPC) is proposed. For testing the accuracy of proposed technique a complete model of quadrotor with feedback system is implemented on Matlab and simulation results shows the effectiveness of proposed technique and controller design.
NASA Astrophysics Data System (ADS)
Sun, Hongfei; Yang, Zhiling; Meng, Bin
2015-05-01
A new tracking-control method for general non-linear systems is proposed. A virtual controller and some command references are introduced to asymptotically stabilise the system of the tracking error dynamics. Then, the actual controller and command references are derived by solving a system of linear algebraic equations. Compared with other tracking-control methods in the literature, the tracking-controller design in this paper is simple because it needs only to solve a system of linear algebraic equations. The boundedness of the tracking controller and command references is guaranteed by the solvability of the terminal value problem (TVP) of an ordinary differential equation. For non-linear systems with minimum-phase properties, the TVP is automatically solvable. A numerical example shows that the tracking-control method is still available for some systems with non-minimum-phase properties. To enhance the robustness of the tracking controller, a non-linear disturbance observer (NDO) is introduced to estimate the disturbance. The combination of the tracking controller and the NDO is applied to the tracking control of an air-breathing hypersonic vehicle.
NASA Astrophysics Data System (ADS)
Maurya, M. K.; Yadav, R. A.
2010-06-01
In the photorefractive wave-mixing system, fluctuation in the signal beam intensity of the photorefractive output with a reflection grating has been analyzed by employing pump feedback method. In this method, fluctuations of the photorefractive wave-mixing process not only induce the intensity fluctuation of the mixing waves but also induce phase fluctuation of the mixing waves. Thus, the phase of the pump and signal beams at the output surface fluctuates in time around a mean value. Using such a positive feedback method of a pump beams, the relative fluctuation in the photorefractive output signal beam intensity with respect to its mean intensity can be minimized significantly without reducing its mean intensity. The factors that control the fluctuation in the signal beam intensity, such as the phase fluctuation of the output pump beam, absorption strength of the material and the feedback reflectivity of the cavity mirrors, on the relative fluctuation of the output signal intensity in the photorefractive wave-mixing systems have been studied in detail. It has been found that the fluctuation of the output signal intensity relative to its mean intensity in the photorefractive wave-mixing system can be suppressed to larger extent by taking lower value of feedback reflectivity of the cavity mirrors which could exist at a higher value of absorption strength of the photorefractive materials.
NASA Astrophysics Data System (ADS)
Durham, Joseph; Moehlis, Jeff
2008-03-01
We present a control mechanism for tuning a fast-slow dynamical system undergoing a supercritical Hopf bifurcation to be in the canard regime, the tiny parameter window between small and large periodic behavior. Our control strategy uses continuous feedback control via a slow control variable to cause the system to drift on average toward canard orbits. We apply this to tune the FitzHugh-Nagumo model to produce maximal canard orbits. When the controller is improperly configured, periodic or chaotic mixed-mode oscillations are found. We also investigate the effects of noise on this control mechanism. Finally, we demonstrate that a sensor tuned in this way to operate near the canard regime can detect tiny changes in system parameters.
NASA Astrophysics Data System (ADS)
Joyce, M.; Marcos, B.; Baertschiger, T.
2009-04-01
The effects of discreteness arising from the use of the N-body method on the accuracy of simulations of cosmological structure formation are not currently well understood. In the first part of this paper, we discuss the essential question of how the relevant parameters introduced by this discretization should be extrapolated in convergence studies if the goal is to recover the Vlasov-Poisson limit. In the second part of the paper, we study numerically, and with analytical methods developed recently by us, the central issue of how finite particle density affects the precision of results above the force-smoothing scale. In particular, we focus on the precision of results for the power spectrum at wavenumbers around and above the Nyquist wavenumber, in simulations in which the force resolution is taken to be smaller than the initial interparticle spacing. Using simulations of identical theoretical initial conditions sampled on four different `pre-initial' configurations (three different Bravais lattices and a glass), we obtain a lower bound on the real discreteness error. With the guidance of our analytical results, which match extremely well this measured dispersion into the weakly non-linear regime, and of further controlled tests for dependences on the relevant discreteness parameters, we establish with confidence that the measured dispersion is not contaminated either by finite box size effects or by subtle numerical effects. Our results notably show that, at wavenumbers below the Nyquist wavenumber, the dispersion increases monotonically in time throughout the simulation, while the same is true above the Nyquist wavenumber once non-linearity sets in. For normalizations typical of cosmological simulations, we find lower bounds on errors at the Nyquist wavenumber of the order of 1 per cent, and larger above this scale. Our main conclusion is that the only way this error may be reduced below these levels at these physical scales, and indeed convergence to the
NASA Astrophysics Data System (ADS)
Rafaely, Boaz
This thesis is concerned with the development an application of feedback control techniques for active sound control. Both fixed and adaptive controllers are considered. The controller design problem for active sound control is formulated as a constrained optimisation problem with an H2 performance objective, of minimising the variance of the control error, and H2 and H∞ design constraints involving control power output, disturbance enhancement, and robust stability. An Internal Model Controller with an FIR control filter is assumed. Conventional H2 design methods for feedback controllers are studied first. Although such controllers can satisfy the design constraints by employing effort terms in the quadratic cost function, they do not achieve the best possible performance, and when adapted using LMS-based algorithms, they suffer from instabilities if the plant response varies significantly. Improved H2/H∞ design methods for fixed and adaptive controllers are then developed, which achieve the best H2 performance under the design constraints, offer an improved stability when made adaptive, and in general outperform the conventional H2 controllers. The H2/H∞ design problems employ convex programming to ensure a unique solution. The Sequential Quadratic Programming methods is used for the off-line design of fixed controllers, and penalty and barrier function methods, together with frequency domain LMS-based algorithms are employed in the H2/H∞ adaptive controllers. The controllers studied and developed here were applied to three active sound control systems: a noise-reducing headset, an active headrest, and a sound radiating panel. The emphasis was put on developing control strategies that improve system performance. First, a high performance controller for the noise-reducing headset was implemented in real-time, which combines analogue and adaptive digital controllers, and can thus reject disturbances which has both broad-band and periodic components. Then
NASA Astrophysics Data System (ADS)
López-Lineros, M.; Estévez, J.; Giráldez, J. V.; Madueño, A.
2014-03-01
The main purpose of this work is the develop of a new quality control method based on non-linear autoregressive neural networks (NARNN) for validating hydrological information, more specifically of 10-min river stage data, for automatic detection of incorrect records. To assess the effectiveness of this new approach, a comparison with adapted conventional validation tests extensively used for hydro-meteorological data was carried out. Different parameters of NARNN and their stability were also analyzed in order to select the most appropriate configuration for obtaining the optimal performance. A set of errors of different magnitudes was artificially introduced into the dataset to evaluate detection efficiency. The NARNN method detected more than 90% of altered records, when the magnitude of error introduced was very high, while conventional tests detected only around 13%. In addition, the NARNN method maintained a similar efficiency at the intermediate and lower error ratios, while the conventional tests were not able to detect more than 6% of erroneous data.
NASA Astrophysics Data System (ADS)
Rincon, F.; Schekochihin, A. A.; Cowley, S. C.
2015-02-01
Slow dynamical changes in magnetic-field strength and invariance of the particles' magnetic moments generate ubiquitous pressure anisotropies in weakly collisional, magnetized astrophysical plasmas. This renders them unstable to fast, small-scale mirror and firehose instabilities, which are capable of exerting feedback on the macroscale dynamics of the system. By way of a new asymptotic theory of the early non-linear evolution of the mirror instability in a plasma subject to slow shearing or compression, we show that the instability does not saturate quasi-linearly at a steady, low-amplitude level. Instead, the trapping of particles in small-scale mirrors leads to non-linear secular growth of magnetic perturbations, δB/B ∝ t2/3. Our theory explains recent collisionless simulation results, provides a prediction of the mirror evolution in weakly collisional plasmas and establishes a foundation for a theory of non-linear mirror dynamics with trapping, valid up to δB/B = O(1).
Feedback control of waiting times
NASA Astrophysics Data System (ADS)
Brandes, Tobias; Emary, Clive
2016-04-01
Feedback loops are known as a versatile tool for controlling transport in small systems, which usually have large intrinsic fluctuations. Here we investigate the control of a temporal correlation function, the waiting-time distribution, under active and passive feedback conditions. We develop a general formalism and then specify to the simple unidirectional transport model, where we compare costs of open-loop and feedback control and use methods from optimal control theory to optimize waiting-time distributions.
Duck, F
2010-01-01
The propagation of acoustic waves is a fundamentally non-linear process, and only waves with infinitesimally small amplitudes may be described by linear expressions. In practice, all ultrasound propagation is associated with a progressive distortion in the acoustic waveform and the generation of frequency harmonics. At the frequencies and amplitudes used for medical diagnostic scanning, the waveform distortion can result in the formation of acoustic shocks, excess deposition of energy, and acoustic saturation. These effects occur most strongly when ultrasound propagates within liquids with comparatively low acoustic attenuation, such as water, amniotic fluid, or urine. Attenuation by soft tissues limits but does not extinguish these non-linear effects. Harmonics may be used to create tissue harmonic images. These offer improvements over conventional B-mode images in spatial resolution and, more significantly, in the suppression of acoustic clutter and side-lobe artefacts. The quantity B/A has promise as a parameter for tissue characterization, but methods for imaging B/A have shown only limited success. Standard methods for the prediction of tissue in-situ exposure from acoustic measurements in water, whether for regulatory purposes, for safety assessment, or for planning therapeutic regimes, may be in error because of unaccounted non-linear losses. Biological effects mechanisms are altered by finite-amplitude effects. PMID:20349813
Non-linearity in Johnson noise thermometry
NASA Astrophysics Data System (ADS)
White, D. R.
2012-12-01
This paper discusses the effects of non-linearity, some of the mechanisms responsible for non-linearity, and methods for measuring non-linearity in Johnson noise thermometry. Mechanisms considered include quantum tunnelling, bipolar junction transistor and junction field-effect transistor amplifiers, feedback, clipping, output-stage crossover, quantization and dither. It is found that even- and odd-order effects behave differently in correlator-based noise thermometers, with the dominant even-order effects contributing as intermodulation products whereas the dominant odd-order contributions are third-order and at the same frequencies as the parent signals. Possible test methods include the use of discrete tones, changes in spectral shape, and direct measurement using reference noise powers. For correlators operated at constant noise power, direct measurement of non-linearity using reference noise powers enables corrections to be made with negligible additional uncertainty and measurement time.
Research on output feedback control
NASA Technical Reports Server (NTRS)
Calise, Anthony J.
1988-01-01
A summary is presented of the main results obtained during the course of research on output feedback control. The term output feedback is used to denote a controller design approach which does not rely on an observer to estimate the states of the system. Thus, the order of the controller is fixed, and can even be zero order, which amounts to constant gain ouput feedback. The emphasis has been on optimal output feedback. That is, a fixed order controller is designed based on minimizing a suitably chosen quadratic performance index. A number of problem areas that arise in this context have been addressed. These include developing suitable methods for selecting an index of performance, both time domain and frequency domain methods for achieving robustness of the closed loop system, developing canonical forms to achieve a minimal parameterization for the controller, two time scale design formulations for ill-conditioned systems, and the development of convergent numerical algorithms for solving the output feedback problem.
Balanced bridge feedback control system
NASA Technical Reports Server (NTRS)
Lurie, Boris J. (Inventor)
1990-01-01
In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.
Feedback control indirect response models.
Zhang, Yaping; D'Argenio, David Z
2016-08-01
A general framework is introduced for modeling pharmacodynamic processes that are subject to autoregulation, which combines the indirect response (IDR) model approach with methods from classical feedback control of engineered systems. The canonical IDR models are modified to incorporate linear combinations of feedback control terms related to the time course of the difference (the error signal) between the pharmacodynamic response and its basal value. Following the well-established approach of traditional engineering control theory, the proposed feedback control indirect response models incorporate terms proportional to the error signal itself, the integral of the error signal, the derivative of the error signal or combinations thereof. Simulations are presented to illustrate the types of responses produced by the proposed feedback control indirect response model framework, and to illustrate comparisons with other PK/PD modeling approaches incorporating feedback. In addition, four examples from literature are used to illustrate the implementation and applicability of the proposed feedback control framework. The examples reflect each of the four mechanisms of drug action as modeled by each of the four canonical IDR models and include: selective serotonin reuptake inhibitors and extracellular serotonin; histamine H2-receptor antagonists and gastric acid; growth hormone secretagogues and circulating growth hormone; β2-selective adrenergic agonists and potassium. The proposed feedback control indirect response approach may serve as an exploratory modeling tool and may provide a bridge for development of more mechanistic systems pharmacology models. PMID:27394724
NASA Astrophysics Data System (ADS)
Soulsby, C.; Birkel, C.; Geris, J.; Tetzlaff, D.
2015-12-01
We assess the influence of storage dynamics and non-linearities in hydrological connectivity on runoff generation and stream water ages, using a long-term record of daily isotopes in precipitation and stream flow. These were used to test a parsimonious tracer-aided runoff model for a Scottish catchment. The model tracks tracers and the ages of water fluxes through and between conceptual stores representing steeper hillslopes, dynamically saturated riparian peatlands and deeper groundwater (i.e. the main landscape units involved in runoff generation). Storage is largest in groundwater and on the steep hillslopes, though most dynamic mixing occurs in smaller stores in the riparian peat. The model also couples the ecohydrological effects of different vegetation communities in contrasting landscape units, by estimating evaporation, resulting moisture deficits and the ages of evaporated waters, which also affect the generation and age of runoff. Both stream flow and isotope variations are well-captured by the model, and the simulated storage and tracer dynamics in the main landscape units are consistent with independent measurements. The model predicts the mean age of runoff as ~1.8 years. On a daily basis, this varies from ~1 month in storm events, when younger waters draining the riparian peatland dominate, to around 4 years in dry periods, when groundwater sustains flow. Hydrological connectivity between the units varies non-linearly with storage which depends upon antecedent conditions and event characteristics. This, in turn, determines the spatial distribution of flow paths and the integration of their contrasting non-stationary ages. Improving the representation of storage dynamics and quantifying the ages of water fluxes in such models gives a more complete conceptualisation of the importance of the soil water fluxes in critical zone processes and a framework for tracking diffuse pollutants in water quality assessment.
ASDTIC - A feedback control innovation.
NASA Technical Reports Server (NTRS)
Lalli, V. R.; Schoenfeld, A. D.
1972-01-01
The ASDTIC (analog signal to discrete time interval converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.
ASDTIC: A feedback control innovation
NASA Technical Reports Server (NTRS)
Lalli, V. R.; Schoenfeld, A. D.
1972-01-01
The ASDTIC (Analog Signal to Discrete Time Interval Converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment.
2006-11-17
Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less
Fedota, John R; Matous, Allison L; Salmeron, Betty Jo; Gu, Hong; Ross, Thomas J; Stein, Elliot A
2016-09-01
Deficits in cognitive control processes are a primary characteristic of nicotine addiction. However, while network-based connectivity measures of dysfunction have frequently been observed, empirical evidence of task-based dysfunction in these processes has been inconsistent. Here, in a sample of smokers (n=35) and non-smokers (n=21), a previously validated parametric flanker task is employed to characterize addiction-related alterations in responses to varying (ie, high, intermediate, and low) demands for cognitive control. This approach yields a demand-response curve that aims to characterize potential non-linear responses to increased demand for control, including insensitivities or lags in fully activating the cognitive control network. We further used task-based differences in activation between groups as seeds for resting-state analysis of network dysfunction in an effort to more closely link prior inconsistencies in task-related activation with evidence of impaired network connectivity in smokers. For both smokers and non-smokers, neuroimaging results showed similar increases in activation in brain areas associated with cognitive control. However, reduced activation in right insula was seen only in smokers and only when processing intermediate demand for cognitive control. Further, in smokers, this task-modulated right insula showed weaker functional connectivity with the superior frontal gyrus, a component of the task-positive executive control network. These results demonstrate that the neural instantiation of salience attribution in smokers is both more effortful to fully activate and has more difficulty communicating with the exogenous, task-positive, executive control network. Together, these findings further articulate the cognitive control dysfunction associated with smoking and illustrate a specific brain circuit potentially responsible.
Feedback control of multibunch instabilities
Galayda, J. )
1992-03-10
This lecture is intended to be an introduction to the use of feedback control to counteract multibunch instabilities. Furthermore, the intent is to make the most direct connection possible between feedback system design and the linear equations of motion of a single particle in an accelerator. Descriptions of the electronic design and considerations of gain versus stability have been treated in the literature (1,2,3) and will be glossed over in this lecture. The exposition is aimed at an audience with reasonable background in linear charged particle optics and minimal familiarity with circuit theory and electronics design. We begin with a brief description of the sources of instability and a description of the function of a feedback system in terms of the equation of motion of a beam bunch. We will try to list the fundamentals of the design process of a feedback system in such a way as to give the reader a framework within which to evaluate the subsequent material. Section 2 develops simple definitions of feedback system performance parameters: damping time constant, gain, and power requirements. Sections 3 and 4 give a perspective on feedback signal processing, using several betatron damping systems to exemplify time domain signal processing. Section 5 views the signal processing problem in frequency domain, using the CERN PS Booster longitudinal damper as an example.
NASA Astrophysics Data System (ADS)
Blackwell, Mark W.; Tutty, Owen R.; Rogers, Eric; Sandberg, Richard D.
2016-01-01
The inclusion of smart devices in wind turbine rotor blades could, in conjunction with collective and individual pitch control, improve the aerodynamic performance of the rotors. This is currently an active area of research with the primary objective of reducing the fatigue loads but mitigating the effects of extreme loads is also of interest. The aerodynamic loads on a wind turbine blade contain periodic and non-periodic components and one approach is to consider the application of iterative learning control algorithms. In this paper, the control design is based on a simple, in relative terms, computational fluid dynamics model that uses non-linear wake effects to represent flow past an airfoil. A representation for the actuator dynamics is included to undertake a detailed investigation into the level of control possible and on how performance can be effectively measured.
NASA Astrophysics Data System (ADS)
Şeker, Murat; Zergeroğlu, Erkan; Tatlicioğlu, Enver
2016-01-01
In this study, a robust backstepping approach for the control problem of the variable-speed wind turbine with a permanent magnet synchronous generator is presented. Specifically, to overcome the negative effects of parametric uncertainties in both mechanical and electrical subsystems, a robust controller with a differentiable compensation term is proposed. The proposed methodology ensures the generator velocity tracking error to uniformly approach a small bound where practical tracking is achieved. Stability of the overall system is ensured by Lyapunov-based arguments. Comparative simulation studies with a standard proportional-integral-type controller are performed to illustrate the effectiveness, feasibility and efficiency of the proposed controller.
NASA Technical Reports Server (NTRS)
Chung, W. W.; Mcneill, W. E.; Stortz, M. W.
1993-01-01
The nonlinear inverse transformation flight control system design method is applied to the Lockheed Ft. Worth Company's E-7D short takeoff and vertical land (STOVL) supersonic fighter/attack aircraft design with a modified General Electric F110 engine which has augmented propulsive lift capability. The system is fully augmented to provide flight path control and velocity control, and rate command attitude hold for angular axes during the transition and hover operations. In cruise mode, the flight control system is configured to provide direct thrust command, rate command attitude hold for pitch and roll axes, and sideslip command with turn coordination. A control selector based on the nonlinear inverse transformation method is designed specifically to be compatible with the propulsion system's physical configuration which has a two dimensional convergent-divergent aft nozzle, a vectorable ventral nozzle, and a thrust augmented ejector. The nonlinear inverse transformation is used to determine the propulsive forces and nozzle deflections, which in combination with the aerodynamic forces and moments (including propulsive induced contributions), and gravitational force, are required to achieve the longitudinal and vertical acceleration commands. The longitudinal control axes are fully decoupled within the propulsion system's performance envelope. A piloted motion-base flight simulation was conducted on the Vertical Motion Simulator (VMS) at NASA Ames Research Center to examine the handling qualities of this design. Based on results of the simulation, refinements to the control system have been made and will also be covered in the report.
NASA Astrophysics Data System (ADS)
Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Gochis, D. J.; Litvak, M. E.; Ewers, B. E.; Broxton, P. D.; Reed, D. E.
2013-12-01
Unprecedented levels of tree mortality from insect infestation and wildfire are dramatically altering forest structure and composition in Western North America. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how these changes in forest structure will interact with ongoing climate change to affect snowmelt water resources either for society or for ecosystem recovery following mortality. Because surface discharge, groundwater recharge, and ecosystem productivity all depend on seasonal snowmelt, a critical knowledge gap exists not only in predicting discharge, but in quantifying spatial and temporal variability in the partitioning of snowfall into abiotic vapor loss, plant available water, recharge, and streamflow within the complex mosaic of forest disturbance and topography that characterizes western mountain catchments. This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a climate gradient from Arizona to Wyoming; including undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input in a warming climate will increase only in topographically sheltered areas. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. Empirical analyses and modeling are being developed to identify landscapes most sensitive to
Feedback control of resistive instabilities
White, R.B.; Rutherford, P.H.; Furth, H.P.; Park, W.; Chen, L.
1985-12-01
Resistive instabilities are responsible for much of the global behavior and the determination of the possible domains of operation of tokamaks. Their successful control could have definite advantages, even making available new regimes of operation. Elimination of sawtoothing might allow operation with higher currents and more peaked current profiles, with q on axis well below unity. In this work different feedback schemes are explored. Simple analytical derivations of the effects of local heating and current drive feedback are presented. Although control of modes with m greater than or equal to 2 is fairly straightforward, the control of the m = 1 mode is more difficult because of its proximity to ideal instability. The most promising scheme utilizes high energy trapped particles. 20 refs., 3 figs.
Knoop, P.; Culick, F.E.C.; Zukoski, E.E.
1996-07-01
This report presents the first quantitative data establishing the details of hysteresis whose existence in dynamical behavior was reported by Sterling and Zukoski. The new idea was demonstrated that the presence of dynamical hysteresis provides opportunity for a novel strategy of active nonlinear control of unsteady motions in combustors. A figure shows the hysteresis exhibited for the amplitude of pressure oscillations as a function of equivalence ratio in a combustor having a recirculation zone, in this case a dump combustor.
Experimental Feedback Control of Flow Induced Cavity Tones
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.; Kegerise, Michael A.; Cox, David E.; Gibbs, Gary P.
2002-01-01
An experimental study of the application of discrete-time, linear quadratic control design methods to the cavity tone problem is described. State space models of the dynamics from a synthetic jet actuator at the leading edge of the cavity to two pressure sensors in the cavity were computed from experimental data. Variations in model order, control order, control bandwidth, and properties of a Kalman state estimator were studied. Feedback control reduced the levels of multiple cavity tones at Mach 0.275, 0.35, and 0.45. Closed loop performance was often limited by excitation of sidebands of cavity tones, and creation of new tones in the spectrum. State space models were useful for explaining some of these limitations, but were not able to account for non-linear dynamics, such as interactions between tones at different frequencies.
Feedback control and output feedback control for the stabilisation of switched Boolean networks
NASA Astrophysics Data System (ADS)
Li, Fangfei; Yu, Zhaoxu
2016-02-01
This paper presents the feedback control and output feedback control for the stabilisation of switched Boolean network. A necessary condition for the existence of a state feedback controller for the stabilisation of switched Boolean networks under arbitrary switching signal is derived first, and constructive procedures for feedback control and output feedback control design are provided. An example is introduced to show the effectiveness of this paper.
Realizing actual feedback control of complex network
NASA Astrophysics Data System (ADS)
Tu, Chengyi; Cheng, Yuhua
2014-06-01
In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.
Precision Intelligent Control of Electrorheological Fluids with Feedback
NASA Astrophysics Data System (ADS)
Radcliffe, C. J.; Lloyd, J. R.
1997-03-01
Electrorheological (ER) fluids have electrically controllable stiffness, heat transfer and viscosity properties. Since their recognition in the last century, ER fluids have been proposed for wide application to the electrical control of systems such as hydraulic valves, clutches, heat exchangers and suspension systems. Previous approaches to application of ER fluids have been hampered by the slow, strongly time-dependent, non-linear behavior of these fluid systems. The effects of electric field activation history, temperature and humidity also contribute to wide variation in "open-loop" speed and strength of response. Successfull application of ER fluids to engineering systems requires fast, precise control of the internal fluid state which yields the controllable properties to be exploited. This work presents an intelligent feedback control approach of ER fluid state which uses laser sensing to allow higher initial field strengths to speed ER response while lowering the level of applied electric field to exactly that level required to maintain a specified level of ER fluid viscosity, stiffness, thermal conductivity or transmissibility. An analytical model for both the ER fluid and control system are developed which predicts system response as controlled field drive is varied. Laser sensing and feedback allows the use of these fluids in a wide variety of applications where the lack of fast, precise control limited their past use. The ability to quickly and precisely control ER fluid response may make possible the applications of ER fluids promised since their invention 5 decades ago. When compared against conventional "open-loop" fluid control methods, laboratory tests of "closed-loop feedback control demonstrate ER fluid response 30 times faster with 30 times more precision than previously possible
van der Kooij, Herman; Peterka, Robert J
2011-06-01
We developed a theory of human stance control that predicted (1) how subjects re-weight their utilization of proprioceptive and graviceptive orientation information in experiments where eyes closed stance was perturbed by surface-tilt stimuli with different amplitudes, (2) the experimentally observed increase in body sway variability (i.e. the "remnant" body sway that could not be attributed to the stimulus) with increasing surface-tilt amplitude, (3) neural controller feedback gains that determine the amount of corrective torque generated in relation to sensory cues signaling body orientation, and (4) the magnitude and structure of spontaneous body sway. Responses to surface-tilt perturbations with different amplitudes were interpreted using a feedback control model to determine control parameters and changes in these parameters with stimulus amplitude. Different combinations of internal sensory and/or motor noise sources were added to the model to identify the properties of noise sources that were able to account for the experimental remnant sway characteristics. Various behavioral criteria were investigated to determine if optimization of these criteria could predict the identified model parameters and amplitude-dependent parameter changes. Robust findings were that remnant sway characteristics were best predicted by models that included both sensory and motor noise, the graviceptive noise magnitude was about ten times larger than the proprioceptive noise, and noise sources with signal-dependent properties provided better explanations of remnant sway. Overall results indicate that humans dynamically weight sensory system contributions to stance control and tune their corrective responses to minimize the energetic effects of sensory noise and external stimuli.
Modal insensitivity with optimality. [in feedback control
NASA Technical Reports Server (NTRS)
Calise, A. J.; Raman, K. V.
1984-01-01
This paper deals with the design of a constant gain, feedback controller which results in selected modal insensitivity, and at the same time optimizes a quadratic performance index representative of desired system performance for nominal plant parameter values. Both full state and output feedback control are considered. A constraint is established for the feedback gain matrix that results in modal insensitivity, and necessary conditions for optimality subject to this constraint are given. This forms the basis for a numerical algorithm to compute the optimal feedback gain. To illustrate the procedure, a design is carried out using the lateral dynamics of an L-1011 aircraft.
Feedback control of coupled-bunch instabilities
Fox, J.D.; Eisen, N.; Hindi, H.; Linscott, I.; Oxoby, G.; Sapozhnikov, L.; Serio, M.
1993-05-01
The next generation of synchrotron light sources and particle accelerators will require active feedback systems to control multi-bunch instabilities. Stabilizing hundreds or thousands of potentially unstable modes in these accelerator designs presents many technical challenges. Feedback systems to stabilize coupled-bunch instabilities may be understood in the frequency domain (mode-based feedback) or in the time domain (bunch-by-bunch feedback). In both approaches an external amplifier system is used to create damping fields that prevent coupled-bunch oscillations from growing without bound. The system requirements for transverse (betatron) and longitudinal (synchrotron) feedback are presented, and possible implementation options developed. Feedback system designs based on digital signal-processing techniques are described. Experimental results are shown from a synchrotron oscillation damper in the SSRL/SLAC storage ring SPEAR that uses digital signal-processing techniques.
Control and diagnostic uses of feedback
Sen, A. K.
2000-05-01
Recent results on multimode feedback control of magnetohydrodynamic (MHD) modes and a variety of diagnostic uses of feedback are summarized. First, is the report on reduction and scaling of transport under feedback. By controlling the fluctuation amplitudes and consequently the transport via feedback, it is found that the scaling of the diffusion coefficient is linear with root-mean-square rms fluctuation level. The scaling appears not to agree with any generic theory. A variety of other diagnostic uses of feedback have been developed. The primary goal is an experimental methodology for the determination of dynamic models of plasma turbulence, both for better transport understanding and more credible feedback controller designs. A specific motivation is to search for a low-order dynamic model, suitable for the convenient study of both transport and feedback. First, the time series analysis method is used for the determination of chaotic attractor dimension of plasma fluctuations. For ExB rotational flute modes it is found to be close to three, indicating that a low-order dynamic model may be adequate for transport prediction and feedback controller design. Second, a new method for direct experimental determination of nonlinear dynamical models of plasma turbulence using feedback has been developed. Specifically, the process begins with a standard three-wave coupling model and introduces a variable feedback gain. The power spectrum, delayed power spectrum, and bispectrum of fluctuations are then experimentally obtained. By varying the feedback gain continuously, an arbitrary number of numerical equations for a fixed number of unknowns can be generated. Their numerical solution yields the linear dispersion, as well as nonlinear coupling coefficients. This method has been successfully applied for ExB rotationally driven flute modes. (c) 2000 American Institute of Physics.
Control and diagnostic uses of feedback
NASA Astrophysics Data System (ADS)
Sen, A. K.
2000-05-01
Recent results on multimode feedback control of magnetohydrodynamic (MHD) modes and a variety of diagnostic uses of feedback are summarized. First, is the report on reduction and scaling of transport under feedback. By controlling the fluctuation amplitudes and consequently the transport via feedback, it is found that the scaling of the diffusion coefficient is linear with root-mean-square rms fluctuation level. The scaling appears not to agree with any generic theory. A variety of other diagnostic uses of feedback have been developed. The primary goal is an experimental methodology for the determination of dynamic models of plasma turbulence, both for better transport understanding and more credible feedback controller designs. A specific motivation is to search for a low-order dynamic model, suitable for the convenient study of both transport and feedback. First, the time series analysis method is used for the determination of chaotic attractor dimension of plasma fluctuations. For E×B rotational flute modes it is found to be close to three, indicating that a low-order dynamic model may be adequate for transport prediction and feedback controller design. Second, a new method for direct experimental determination of nonlinear dynamical models of plasma turbulence using feedback has been developed. Specifically, the process begins with a standard three-wave coupling model and introduces a variable feedback gain. The power spectrum, delayed power spectrum, and bispectrum of fluctuations are then experimentally obtained. By varying the feedback gain continuously, an arbitrary number of numerical equations for a fixed number of unknowns can be generated. Their numerical solution yields the linear dispersion, as well as nonlinear coupling coefficients. This method has been successfully applied for E×B rotationally driven flute modes.
Artificial proprioceptive feedback for myoelectric control.
Pistohl, Tobias; Joshi, Deepak; Ganesh, Gowrishankar; Jackson, Andrew; Nazarpour, Kianoush
2015-05-01
The typical control of myoelectric interfaces, whether in laboratory settings or real-life prosthetic applications, largely relies on visual feedback because proprioceptive signals from the controlling muscles are either not available or very noisy. We conducted a set of experiments to test whether artificial proprioceptive feedback, delivered noninvasively to another limb, can improve control of a two-dimensional myoelectrically-controlled computer interface. In these experiments, participants were required to reach a target with a visual cursor that was controlled by electromyogram signals recorded from muscles of the left hand, while they were provided with an additional proprioceptive feedback on their right arm by moving it with a robotic manipulandum. Provision of additional artificial proprioceptive feedback improved the angular accuracy of their movements when compared to using visual feedback alone but did not increase the overall accuracy quantified with the average distance between the cursor and the target. The advantages conferred by proprioception were present only when the proprioceptive feedback had similar orientation to the visual feedback in the task space and not when it was mirrored, demonstrating the importance of congruency in feedback modalities for multi-sensory integration. Our results reveal the ability of the human motor system to learn new inter-limb sensory-motor associations; the motor system can utilize task-related sensory feedback, even when it is available on a limb distinct from the one being actuated. In addition, the proposed task structure provides a flexible test paradigm by which the effectiveness of various sensory feedback and multi-sensory integration for myoelectric prosthesis control can be evaluated.
Nonlinear feedback control of multiple robot arms
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Yun, X.; Bejczy, A. K.
1987-01-01
Multiple coordinated robot arms are modeled by considering the arms: (1) as closed kinematic chains, and (2) as a force constrained mechanical system working on the same object simultaneously. In both formulations a new dynamic control method is discussed. It is based on a feedback linearization and simultaneous output decoupling technique. Applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, by choosing a general output equation, researchers can superimpose the position and velocity error feedback with the force-torque error feedback in the task space simultaneously.
Experimental Feedback Control of Flow Induced Cavity Tones
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.; Kegerise, Michael A.; Cox, David E.; Gibbs, Gary P.
2005-01-01
Discrete-time, linear quadratic methods were used to design feedback controllers for reducing tones generated by flow over a cavity. The dynamics of a synthetic jet actuator mounted at the leading edge of the cavity as observed by two microphones in the cavity were modeled over a broad frequency range using state space models computed from experimental data. Variations in closed loop performance as a function of model order, control order, control bandwidth, and state estimator design were studied using a cavity in the Probe Calibration Tunnel at NASA Langley. The controller successfully reduced the levels of multiple cavity tones at the tested flow speeds of Mach 0.275, 0.35, and 0.45. In some cases, the closed loop results were limited by excitation of sidebands of the cavity tones, or the creation of new tones at frequencies away from the cavity tones. Nonetheless, the results validate the combination of optimal control and experimentally-generated state space models, and suggest this approach may be useful for other flow control problems. The models were not able to account for non-linear dynamics, such as interactions between tones at different frequencies.
Non-linear Flood Risk Assessment
NASA Astrophysics Data System (ADS)
Mazzarella, A.
The genesis of floodings is very complex depending on hydrologic, meteorological and evapo-transpirative factors that are linked among themselves in a non linear way with numerous feedback processes. The Cantor dust and the rank-ordering statistics supply a proper framework for identifying a kind of a non linear order in the time succession of the floodings and so provide a basis for their prediction. When a catalogue is analysed, it is necessary to test its completeness with respect to the size of the recorded events and results obtained from analysis of catalogues that do not take into account such a test are suspect and possibly wrong, or, at least, unreliable. Floodings have no instrumentally determined magnitude scale, like that conventionally used for earthquakes, and this is why they are generally described in qualitative terms. For this reason, a semi-quantitative index, called ASI (Alluvial Strength Index) has been here developed that combines attributes of alluvial triggering mechanisms and effects on the territorial and hydraulic system.The historical succession of alluvial events occurred at high valley of Po river (Northern Italy), mean valley of Calore river (Southern Italy) and at Sarno, near Naples, have been accurately reconstructed on the basis of old documents and classified according to their ASI. The catalogues have been verified to be complete only for events classified at least as moderate and this probably because many of the lowest energetic events, especially in the past, escaped the detection. The identification of scale-invariances in the time clustering of alluvial events, both on short and long time scales, even if indicative of the complexity of their genesis, might be very helpful for the assessment and reduction of the hazard of future disasters. For example, on the basis of the results of the rank-ordering statistics, the most probable occurrence of an alluvial event at Sarno, classified at least as strong, is predicted to occur
NASA Astrophysics Data System (ADS)
Hu, Xiaoxiang; Wu, Ligang; Hu, Changhua; Wang, Zhaoqiang; Gao, Huijun
2014-08-01
By utilising Takagi-Sugeno (T-S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics' enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T-S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T-S fuzzy dynamic output feedback control method is demonstrated by numerical simulations.
Feedback controlled electrostatic and electromagnetic sample positioners
NASA Technical Reports Server (NTRS)
Rhim, Won-Kyu; Elleman, D. D.
1990-01-01
Four different sample positioners are discussed. The four systems share a common operating principle in that the sample positioning is achieved by feedback controlled forces which can be electrostatic, dielectrophoretic, or electromagnetic. The first system is the electrostatic liquid drop positioner which operates at the near ambient position. The second system is the tetrahedral electrostatic positioner which is being developed for the high temperature materials processing in vacuum. The third system is essentially the the same tetrahedral system above except that the position control is achieved by dielectrophoretic forces in the pressurized gas environment. Finally, the feasibility of a feedback controlled electromagnetic positioner is discussed.
NASA Astrophysics Data System (ADS)
Xiang, Xingcan; Mutlu, Rahim; Alici, Gursel; Li, Weihua
2014-03-01
Conducting polymer actuators have shown significant potential in articulating micro instruments, manipulation devices, and robotics. However, implementing a feedback control strategy to enhance their positioning ability and accuracy in any application requires a feedback sensor, which is extremely large in size compared to the size of the actuators. Therefore, this paper proposes a new sensorless control scheme without the use of a position feedback sensor. With the help of the system identification technique and particle swarm optimization, the control scheme, which we call the simulated feedback control system, showed a satisfactory command tracking performance for the conducting polymer actuator’s step and dynamic displacement responses, especially under a disturbance, without needing a physical feedback loop, but using a simulated feedback loop. The primary contribution of this study is to propose and experimentally evaluate the simulated feedback control scheme for a class of the conducting polymer actuators known as tri-layer polymer actuators, which can operate both in dry and wet media. This control approach can also be extended to other smart actuators or systems, for which the feedback control based on external sensing is impractical.
Nonsmooth feedback controls of nonlocal dispersal models
NASA Astrophysics Data System (ADS)
Malaguti, Luisa; Rubbioni, Paola
2016-03-01
The paper deals with a nonlocal diffusion equation which is a model for biological invasion and disease spread. A nonsmooth feedback control term is included and the existence of controlled dynamics is proved, satisfying different kinds of nonlocal condition. Jump discontinuities appear in the process. The existence of optimal control strategies is also shown, under suitably regular control functionals. The investigation makes use of techniques of multivalued analysis and is based on the degree theory for condensing operators in Hilbert spaces.
Balanced-Bridge Feedback Control Of Motor
NASA Technical Reports Server (NTRS)
Lurie, Boris J.
1990-01-01
Sensitivity to variations in electrical and mechanical characteristics reduced. Proposed control system for motor-driven rotary actuator includes three nested feedback loops which, when properly designed, decoupled from each other. Intended to increase accuracy of control by mitigating such degrading effects as vibrations and variations in electrical and mechanical characteristics of structure rotated. Lends itself to optimization of performance via independent optimization of each of three loops. Includes outer, actuator, and driver feedback loops, configured so that actuator is subsystem, and driver is subsystem of actuator.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1992-01-01
The results of a study of the application of H infinity and mu synthesis techniques to the design of feedback control laws for the longitudinal dynamics of the High Angle of Attack Research Vehicle (HARV) are presented. The objective of this study is to develop methods for the design of feedback control laws which cause the closed loop longitudinal dynamics of the HARV to meet handling quality specifications over the entire flight envelope. Control law designs are based on models of the HARV linearized at various flight conditions. The control laws are evaluated by both linear and nonlinear simulations of typical maneuvers. The fixed gain control laws resulting from both the H infinity and mu synthesis techniques result in excellent performance even when the aircraft performs maneuvers in which the system states vary significantly from their equilibrium design values. Both the H infinity and mu synthesis control laws result in performance which compares favorably with an existing baseline longitudinal control law.
Applying vision feedback to crane controller design
NASA Astrophysics Data System (ADS)
Lee, Lun-Hui; Huang, Pei-Hsiang; Pan, Shing-Tai; Wijaya Lie, Handra; Chiang, Tung-Chien; Chang, Cheng-Yuan
2015-01-01
Encoders are generally used to track the motion of industrial mechanisms. However, the information obtained by encoders may have errors due to encoder aging or mechanism-design problem. Therefore, information by visual feedback is a better way to track the movement of industrial mechanisms. However, image information costs lots of computing effort so it is not easy to be used in real-time control applications. This manuscript derives a simple but effective visual feedback method to follow the target and the image information is obtained only by a general handy camcorder. Besides, the proposed method can track multi-locations in a meantime. Fast image pattern recognition and localisation of the colour histogram by using a moving tracking block is applied to increase the calculation speed. Finally, the obtained locations information by the proposed visual feedback method is applied in an industrial crane control system to verify the effectiveness.
Chaves, Eric N; Coelho, Ernane A A; Carvalho, Henrique T M; Freitas, Luiz C G; Júnior, João B V; Freitas, Luiz C
2016-09-01
This paper presents the design of a controller based on Internal Model Control (IMC) applied to a grid-connected single-phase PWM inverter. The mathematical modeling of the inverter and the LCL output filter, used to project the 1-DOF IMC controller, is presented and the decoupling of grid voltage by a Feedforward strategy is analyzed. A Proportional - Resonant Controller (P+Res) was used for the control of the same plant in the running of experimental results, thus moving towards the discussion of differences regarding IMC and P+Res performances, which arrived at the evaluation of the proposed control strategy. The results are presented for typical conditions, for weak-grid and for non-linear local load, in order to verify the behavior of the controller against such situations. PMID:27236535
Chaves, Eric N; Coelho, Ernane A A; Carvalho, Henrique T M; Freitas, Luiz C G; Júnior, João B V; Freitas, Luiz C
2016-09-01
This paper presents the design of a controller based on Internal Model Control (IMC) applied to a grid-connected single-phase PWM inverter. The mathematical modeling of the inverter and the LCL output filter, used to project the 1-DOF IMC controller, is presented and the decoupling of grid voltage by a Feedforward strategy is analyzed. A Proportional - Resonant Controller (P+Res) was used for the control of the same plant in the running of experimental results, thus moving towards the discussion of differences regarding IMC and P+Res performances, which arrived at the evaluation of the proposed control strategy. The results are presented for typical conditions, for weak-grid and for non-linear local load, in order to verify the behavior of the controller against such situations.
Non-Linear Transformation of the Criterion.
ERIC Educational Resources Information Center
McNeil, Keith; And Others
The utility of a non-linear transformation of the criterion is established. The Pythagorean Theorem is used as the example to demonstrate the point. The functional relationships may be such (as in the Pythagorean Theorem) that an R-squared of 1.00 cannot be found without making a non-linear transformation of the criterion. The goal of…
Sauer's non-linear voltage division.
Schwan, H P; McAdams, E T; Jossinet, J
2002-09-01
The non-linearity of the electrode-tissue interface impedance gives rise to harmonics and thus degrades the accuracy of impedance measurements. Also, electrodes are often driven into the non-linear range of their polarisation impedance. This is particularly true in clinical applications. Techniques to correct for electrode effects are usually based on linear electrode impedance data. However, these data can be very different from the non-linear values needed. Non-linear electrode data suggested a model based on simple assumptions. It is useful in predicting the frequency dependence of non-linear effects from linear properties. Sauer's treatment is a first attempt to provide a more general and rigorous basis for modelling the non-linear state. The paper reports Sauer's treatment of the non-linear case and points out its limitations. The paper considers Sauer's treatment of a series arrangement of two impedances. The tissue impedance is represented by a linear voltage-current characteristic. The interface impedance is represented by a Volterra expansion. The response of this network to periodic signals is calculated up to the second-order term of the series expansion. The resultant, time-dependent current is found to contain a DC term (rectification), as well as frequency-dependent terms. Sauer's treatment assumes a voltage clamp across the impedances and neglects higher-order terms in the series expansion. As a consequence, it fails adequately to represent some experimentally observed phenomena. It is therefore suggested that Sauer's expressions for the voltage divider should be combined with the non-linear treatments previously published by the co-authors. Although Sauer's work on the non-linear voltage divider was originally applied to the study of the non-linear behaviour of the electrode-electrolyte interface and biological tissues, it is stressed, however, that the work is applicable to a wide range of research areas.
Optimal Feedback Control of Thermal Networks
NASA Technical Reports Server (NTRS)
Papalexandris, Miltiadis
2003-01-01
An improved approach to the mathematical modeling of feedback control of thermal networks has been devised. Heretofore software for feedback control of thermal networks has been developed by time-consuming trial-and-error methods that depend on engineers expertise. In contrast, the present approach is a systematic means of developing algorithms for feedback control that is optimal in the sense that it combines performance with low cost of implementation. An additional advantage of the present approach is that a thermal engineer need not be expert in control theory. Thermal networks are lumped-parameter approximations used to represent complex thermal systems. Thermal networks are closely related to electrical networks commonly represented by lumped-parameter circuit diagrams. Like such electrical circuits, thermal networks are mathematically modeled by systems of differential-algebraic equations (DAEs) that is, ordinary differential equations subject to a set of algebraic constraints. In the present approach, emphasis is placed on applications in which thermal networks are subject to constant disturbances and, therefore, integral control action is necessary to obtain steady-state responses. The mathematical development of the present approach begins with the derivation of optimal integral-control laws via minimization of an appropriate cost functional that involves augmented state vectors. Subsequently, classical variational arguments provide optimality conditions in the form of the Hamiltonian equations for the standard linear-quadratic-regulator (LQR) problem. These equations are reduced to an algebraic Riccati equation (ARE) with respect to the augmented state vector. The solution of the ARE leads to the direct computation of the optimal proportional- and integral-feedback control gains. In cases of very complex networks, large numbers of state variables make it difficult to implement optimal controllers in the manner described in the preceding paragraph.
Channel Capacity of Non-Linear Transmission Systems
NASA Astrophysics Data System (ADS)
Ellis, Andrew D.; Zhao, Jian
Since their introduction in the late 1970s, the capacity of optical communication links has grown exponentially, fuelled by a series of key innovations including movement between the three telecommunication windows of 850 nm, 1,310 nm and 1,550 nm, distributed feedback laser, erbium-doped fibre amplifiers (EDFAs), dispersion-shifted and dispersion-managed fibre links, external modulation, wavelength division multiplexing, optical switching, forward error correction (FEC), Raman amplification, and most recently, coherent detection, electronic signal processing and optical orthogonal frequency division multiplexing (OFDM). Throughout this evolution, one constant factor has been the use of single-mode optical fibre, whose fundamental principles dated back to the 1800s, when Irish scientist, John Tyndall demonstrated in a lecture to the Royal Society in London that light could be guided through a curved stream of water [1]. Following many developments, including the proposal for waveguides by J.J. Thompson [2], the presentation of detailed calculations for dielectric waveguides by Snitzer [3], the proposal [4] and fabrication [5] of ultra low loss fibres, single-mode fibres were first adopted for non-experimental use in Dorset, UK in 1975, and are still in use today, despite the evolving designs to control chromatic dispersion and non-linearity.
Fractional non-linear modelling of ultracapacitors
NASA Astrophysics Data System (ADS)
Bertrand, Nicolas; Sabatier, Jocelyn; Briat, Olivier; Vinassa, Jean-Michel
2010-05-01
In this paper, it is demonstrated that an ultracapacitor exhibits a non-linear behaviour in relation to the operating voltage. A set of fractional order linear systems resulting from a frequency analysis of the ultracapacitor at various operating points is first obtained. Then, a non-linear model is deduced from the linear systems set, so that its Taylor linearization around the considered operating points (for the frequency analysis), produces the linear system set. The resulting non-linear model is validated on a Hybrid Electric Vehicle (HEV) application.
Feedback control of unstable cellular solidification fronts.
Pons, A J; Karma, A; Akamatsu, S; Newey, M; Pomerance, A; Singer, H; Losert, W
2007-02-01
We present a feedback control scheme to stabilize unstable cellular patterns during the directional solidification of a binary alloy. The scheme is based on local heating of cell tips which protrude ahead of the mean position of all tips in the array. The feasibility of this scheme is demonstrated using phase-field simulations and, experimentally, using a real-time image processing algorithm, to track cell tips, coupled with a movable laser spot array device to heat the tips locally. We demonstrate, both numerically and experimentally, that spacings well below the threshold for a period-doubling instability can be stabilized. As predicted by the numerical calculations, cellular arrays become stable with uniform spacing through the feedback control which is maintained with minimal heating.
Thermodynamics of Nonequilibrium Systems with Feedback Control
NASA Astrophysics Data System (ADS)
Sagawa, Takahiro
2015-03-01
In modern nonequilibrium physics, ``Maxwell's demon'' has attracted renewed attentions in both terms of theory and experiment. The demon plays a key role to unify thermodynamics and information theory, which can extract the useful work from a heat bath by using the obtained information via feedback control. In this talk, I will talk about the recent development of thermodynamics of information. In particular, I will focus on the generalizations of the second law of thermodynamics and the Jarzynski equality in the presence of feedback control, where information contents and thermodynamic quantities are treated on an equal footing. I will also discuss recent experimental results that realized Maxwell's demon by colloidal particles and single electrons.
Controlling dynamical systems using multiple delay feedback control
NASA Astrophysics Data System (ADS)
Ahlborn, Alexander; Parlitz, Ulrich
2005-07-01
Multiple delay feedback control (MDFC) with two, three, or four different and independent delay times is used to stabilize steady states of various chaotic dynamical systems. A comparison with delayed feedback control methods that are based on a single (fundamental) delay time [Pyragas’ time delay auto synchronization (TDAS) and extended TDAS] shows that MDFC is more effective for fixed point stabilization in terms of stability and flexibility, in particular for large delay times.
Cones perform a non-linear transformation on natural stimuli
Endeman, D; Kamermans, M
2010-01-01
Visual information in natural scenes is distributed over a broad range of intensities and contrasts. This distribution has to be compressed in the retina to match the dynamic range of retinal neurons. In this study we examined how cones perform this compression and investigated which physiological processes contribute to this operation. M- and L-cones of the goldfish were stimulated with a natural time series of intensities (NTSI) and their responses were recorded. The NTSI displays an intensity distribution which is skewed towards the lower intensities and has a long tail into the high intensity region. Cones transform this skewed distribution into a more symmetrical one. The voltage responses of the goldfish cones were compared to those of a linear filter and a non-linear biophysical model of the photoreceptor. The results show that the linear filter under-represents contrasts at low intensities compared to the actual cone whereas the non-linear biophysical model performs well over the whole intensity range used. Quantitative analysis of the two approaches indicates that the non-linear biophysical model can capture 91 ± 5% of the coherence rate (a biased measure of information rate) of the actual cone, where the linear filter only reaches 48 ± 8%. These results demonstrate that cone photoreceptors transform an NTSI in a non-linear fashion. The comparison between current clamp and voltage clamp recordings and analysis of the behaviour of the biophysical model indicates that both the calcium feedback loop in the outer segment and the hydrolysis of cGMP are the major components that introduce the specific non-linear response properties found in the goldfish cones. PMID:20008463
Adaptive output feedback control of flexible systems
NASA Astrophysics Data System (ADS)
Yang, Bong-Jun
Neural network-based adaptive output feedback approaches that augment a linear control design are described in this thesis, and emphasis is placed on their real-time implementation with flexible systems. Two different control architectures that are robust to parametric uncertainties and unmodelled dynamics are presented. The unmodelled effects can consist of minimum phase internal dynamics of the system together with external disturbance process. Within this context, adaptive compensation for external disturbances is addressed. In the first approach, internal model-following control, adaptive elements are designed using feedback inversion. The effect of an actuator limit is treated using control hedging, and the effect of other actuation nonlinearities, such as dead zone and backlash, is mitigated by a disturbance observer-based control design. The effectiveness of the approach is illustrated through simulation and experimental testing with a three-disk torsional system, which is subjected to control voltage limit and stiction. While the internal model-following control is limited to minimum phase systems, the second approach, external model-following control, does not involve feedback linearization and can be applied to non-minimum phase systems. The unstable zero dynamics are assumed to have been modelled in the design of the existing linear controller. The laboratory tests for this method include a three-disk torsional pendulum, an inverted pendulum, and a flexible-base robot manipulator. The external model-following control architecture is further extended in three ways. The first extension is an approach for control of multivariable nonlinear systems. The second extension is a decentralized adaptive control approach for large-scale interconnected systems. The third extension is to make use of an adaptive observer to augment a linear observer-based controller. In this extension, augmenting terms for the adaptive observer can be used to achieve adaptation in
Control of parallel manipulators using force feedback
NASA Technical Reports Server (NTRS)
Nanua, Prabjot
1994-01-01
Two control schemes are compared for parallel robotic mechanisms actuated by hydraulic cylinders. One scheme, the 'rate based scheme', uses the position and rate information only for feedback. The second scheme, the 'force based scheme' feeds back the force information also. The force control scheme is shown to improve the response over the rate control one. It is a simple constant gain control scheme better suited to parallel mechanisms. The force control scheme can be easily modified for the dynamic forces on the end effector. This paper presents the results of a computer simulation of both the rate and force control schemes. The gains in the force based scheme can be individually adjusted in all three directions, whereas the adjustment in just one direction of the rate based scheme directly affects the other two directions.
EMG spike time difference based feedback control.
Butala, Jaydrath; Arkles, Anthony; Gray, John R
2007-01-01
Flight control in insects has been studied extensively; however the underlying neural mechanisms are not fully understood. Output from the central nervous system (CNS) must drive wing phase shifts and flight muscle depressor asymmetries associated with adaptive flight maneuvers. These maneuvers will, in turn, influence the insect's sensory environment, thus closing the feedback loop. We present a novel method that utilizes asymmetrical timing of bilateral depressor muscles, the forewing first basalars (m97), of the locust to close a visual feedback loop in a computer-generated flight simulator. The method converts the time difference between left and right m97s to analog voltage values. These voltage values can be obtained using open-loop experiments (visual motion controlled by the experimenter), or can be used to control closed-loop experiments (muscle activity controls the visual stimuli) experiments. Electromyographic (EMG) signals were obtained from right and left m97 muscles; spike time difference between them was calculated and converted to voltage values. Testing this circuit with real animals, we were able to detect the spike time difference and convert that to voltage that controlled the presentation of a stimulus in a closed-loop environment. This method may be used in conjunction with the flight simulator to understand the manner in which sensory information is integrated with the activity of the flight circuitry to study the neural control of this complex behaviour. PMID:18003414
Analysis of a non-linear structure by considering two non-linear formulations
NASA Astrophysics Data System (ADS)
Majed, R.; Raynaud, J. L.
2003-03-01
In recent years, modal synthesis methods have been extended for solving non-linear dynamic problems subjected to harmonic excitation. These methods are based on the notion of non-linear or linearized modes and exploited in the case of structures affected by localized non-linearity. Actually, the experimental tests executed on non-linear structures are time consuming, particularly when repeated experimental tests are needed. It is often preferable to consider new non-linear methods with a view to decrease significantly the number of attempts during prototype tests and improving the accuracy of the dynamic behaviour. This article describes two fundamental non-linear formulations based on two different strategies. The first formulation exploits the eigensolutions of the associated linear system and the dynamics characteristics of each localized non-linearity. The second formulation is based on the exploitation of the linearized eigensolutions obtained using an iterative process. This article contains a numerical and an experimental study which examines the non-linear behaviour of the structure affected by localized non-linearities. The study is intended to validate the numerical algorithm and to evaluate the problems arising from the introduction of non-linearities. The complex responses are evaluated using the iterative Newton-Raphson method and for a series of discrete frequencies. The theory has been applied to a bi-dimensional structure and consists of evaluating the harmonic responses obtained using the proposed formulations by comparing measured and calculated transfer functions.
Smart building temperature control using occupant feedback
NASA Astrophysics Data System (ADS)
Gupta, Santosh K.
This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as
NASA Astrophysics Data System (ADS)
Kim, Young Woo; Matsuzaki, Sinya; Narikiyo, Tatsuo
In this paper, we propose a non-analytical but effective self-organizing modeling method, where system dynamics of interest are constructed in a polynomial affine formation with high granularity. The conventional data mining technique has the assessment scheme for representativeness of the developed model. However, if the model is applied to extract the desired values without considering the structural peculiarities such as input pattern used for constructing the dynamics, hardware specification used for data acquisition, and so on, it possibly shows substantial margin of modeling error. In order to correspond this type of control paradigm, we define the permissible set of state and input variables in order to characterize the data used for developing the model. The developed model is then applied to the programming based optimal control scheme where the optimal inputs are selected among the permissible set of the input variable, considering all the limitations specified by linear inequalities.
Smart building temperature control using occupant feedback
NASA Astrophysics Data System (ADS)
Gupta, Santosh K.
This work was motivated by the problem of computing optimal commonly-agreeable thermal settings in spaces with multiple occupants. In this work we propose algorithms that take into account each occupant's preferences along with the thermal correlations between different zones in a building, to arrive at optimal thermal settings for all zones of the building in a coordinated manner. In the first part of this work we incorporate active occupant feedback to minimize aggregate user discomfort and total energy cost. User feedback is used to estimate the users comfort range, taking into account possible inaccuracies in the feedback. The control algorithm takes the energy cost into account, trading it off optimally with the aggregate user discomfort. A lumped heat transfer model based on thermal resistance and capacitance is used to model a multi-zone building. We provide a stability analysis and establish convergence of the proposed solution to a desired temperature that minimizes the sum of energy cost and aggregate user discomfort. However, for convergence to the optimal, sufficient separation between the user feedback frequency and the dynamics of the system is necessary; otherwise, the user feedback provided do not correctly reflect the effect of current control input value on user discomfort. The algorithm is further extended using singular perturbation theory to determine the minimum time between successive user feedback solicitations. Under sufficient time scale separation, we establish convergence of the proposed solution. Simulation study and experimental runs on the Watervliet based test facility demonstrates performance of the algorithm. In the second part we develop a consensus algorithm for attaining a common temperature set-point that is agreeable to all occupants of a zone in a typical multi-occupant space. The information on the comfort range functions is indeed held privately by each occupant. Using occupant differentiated dynamically adjusted prices as
Optogenetic feedback control of neural activity
Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M
2015-01-01
Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329
Practical scheme for error control using feedback
Sarovar, Mohan; Milburn, Gerard J.; Ahn, Charlene; Jacobs, Kurt
2004-05-01
We describe a scheme for quantum-error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols [for example, Ahn et al. Phys. Rev. A 65, 042301 (2001)], is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit flips. We also consider implementation in a solid-state quantum-computation architecture and estimate the maximal error rate that could be corrected with current technology.
Speech Production as State Feedback Control
Houde, John F.; Nagarajan, Srikantan S.
2011-01-01
Spoken language exists because of a remarkable neural process. Inside a speaker's brain, an intended message gives rise to neural signals activating the muscles of the vocal tract. The process is remarkable because these muscles are activated in just the right way that the vocal tract produces sounds a listener understands as the intended message. What is the best approach to understanding the neural substrate of this crucial motor control process? One of the key recent modeling developments in neuroscience has been the use of state feedback control (SFC) theory to explain the role of the CNS in motor control. SFC postulates that the CNS controls motor output by (1) estimating the current dynamic state of the thing (e.g., arm) being controlled, and (2) generating controls based on this estimated state. SFC has successfully predicted a great range of non-speech motor phenomena, but as yet has not received attention in the speech motor control community. Here, we review some of the key characteristics of speech motor control and what they say about the role of the CNS in the process. We then discuss prior efforts to model the role of CNS in speech motor control, and argue that these models have inherent limitations – limitations that are overcome by an SFC model of speech motor control which we describe. We conclude by discussing a plausible neural substrate of our model. PMID:22046152
Feedback Error Learning in neuromotor control
NASA Astrophysics Data System (ADS)
Ishihara, Abraham K.
This thesis is concerned with adaptive human motor control. Adaptation is a highly desirable characteristic of any biological system. Failure is an undesirable, yet very real, characteristic of the human motor control systems. Variability is a ubiquitous observation in human movements that has no direct analogue in the design and analysis of robotic control algorithms. This thesis attempts to link these three aspects of motor control under the constraints of a biologically inspired control framework termed Feedback Error Learning (FEL). Utilizing nonlinear and adaptive control methods we prove conditions for which the FEL framework is stable and successful learning can occur. Utilizing singular perturbation methods, we derive conditions for which the system is guaranteed to fail. Variability is analyzed using Ito Calculus and stochastic Lyapunov functionals where signal dependent noise, a commonly observed phenomenon, enters in the learning algorithm. We also show how signal dependent noise might benefit biological control systems despite the inherent variability introduced into the motor control loops. Lastly, we investigate a force tracking control task, where subjects are asked to track a time-varying plant. Using basic control and system identification techniques, we probe the human motor learning system and extract learning rates with respect to the FEL model.
Feedback controlled hybrid fast ferrite tuners
Remsen, D.B.; Phelps, D.A.; deGrassie, J.S.; Cary, W.P.; Pinsker, R.I.; Moeller, C.P.; Arnold, W.; Martin, S.; Pivit, E.
1993-09-01
A low power ANT-Bosch fast ferrite tuner (FFT) was successfully tested into (1) the lumped circuit equivalent of an antenna strap with dynamic plasma loading, and (2) a plasma loaded antenna strap in DIII-D. When the FFT accessible mismatch range was phase-shifted to encompass the plasma-induced variation in reflection coefficient, the 50 {Omega} source was matched (to within the desired 1.4 : 1 voltage standing wave ratio). The time required to achieve this match (i.e., the response time) was typically a few hundred milliseconds, mostly due to a relatively slow network analyzer-computer system. The response time for the active components of the FFT was 10 to 20 msec, or much faster than the present state-of-the-art for dynamic stub tuners. Future FFT tests are planned, that will utilize the DIII-D computer (capable of submillisecond feedback control), as well as several upgrades to the active control circuit, to produce a FFT feedback control system with a response time approaching 1 msec.
Feedback Controller Design for the Synchronization of Boolean Control Networks.
Liu, Yang; Sun, Liangjie; Lu, Jianquan; Liang, Jinling
2016-09-01
This brief investigates the partial and complete synchronization of two Boolean control networks (BCNs). Necessary and sufficient conditions for partial and complete synchronization are established by the algebraic representations of logical dynamics. An algorithm is obtained to construct the feedback controller that guarantees the synchronization of master and slave BCNs. Two biological examples are provided to illustrate the effectiveness of the obtained results.
Inferring Network Connectivity by Delayed Feedback Control
Yu, Dongchuan; Parlitz, Ulrich
2011-01-01
We suggest a control based approach to topology estimation of networks with elements. This method first drives the network to steady states by a delayed feedback control; then performs structural perturbations for shifting the steady states times; and finally infers the connection topology from the steady states' shifts by matrix inverse algorithm () or -norm convex optimization strategy applicable to estimate the topology of sparse networks from perturbations. We discuss as well some aspects important for applications, such as the topology reconstruction quality and error sources, advantages and disadvantages of the suggested method, and the influence of (control) perturbations, inhomegenity, sparsity, coupling functions, and measurement noise. Some examples of networks with Chua's oscillators are presented to illustrate the reliability of the suggested technique. PMID:21969856
Information-Technology Approach to Quantum Feedback Control
NASA Astrophysics Data System (ADS)
Dong, Dao-Yi; Zhang, Chen-Bin; Chen, Zong-Hai; Chen, Chun-Lin
Quantum control theory is profitably reexamined from the perspective of quantum information, two results on the role of quantum information technology in quantum feedback control are presented and two quantum feedback control schemes, teleportation-based distant quantum feedback control and quantum feedback control with quantum cloning, are proposed. In the first feedback scheme, the output from the quantum system to be controlled is fed back into the distant actuator via teleportation to alter the dynamics of system. The result theoretically shows that it can accomplish some tasks such as distant feedback quantum control that Markovian or Bayesian quantum feedback can not complete. In the second feedback strategy, the design of quantum feedback control algorithms is separated into a state recognition step, which gives "on-off" signal to the actuator through recognizing some copies from the cloning machine, and a feedback (control) step using another copies of cloning machine. A compromise between information acquisition and measurement disturbance is established, and this strategy can perform some quantum control tasks with coherent feedback.
Stability of non-linear integrable accelerator
Batalov, I.; Valishev, A.; /Fermilab
2011-09-01
The stability of non-linear Integrable Optics Test Accelerator (IOTA) model developed in [1] was tested. The area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether a dynamic aperture limitation present in the system. The system was also tested with sextupoles included in the machine for chromaticity compensation. A method of evaluation of the beam size in the linear part of the accelerator was proposed.
Non-linear Post Processing Image Enhancement
NASA Technical Reports Server (NTRS)
Hunt, Shawn; Lopez, Alex; Torres, Angel
1997-01-01
A non-linear filter for image post processing based on the feedforward Neural Network topology is presented. This study was undertaken to investigate the usefulness of "smart" filters in image post processing. The filter has shown to be useful in recovering high frequencies, such as those lost during the JPEG compression-decompression process. The filtered images have a higher signal to noise ratio, and a higher perceived image quality. Simulation studies comparing the proposed filter with the optimum mean square non-linear filter, showing examples of the high frequency recovery, and the statistical properties of the filter are given,
Optimal haptic feedback control of artificial muscles
NASA Astrophysics Data System (ADS)
Chen, Daniel; Besier, Thor; Anderson, Iain; McKay, Thomas
2014-03-01
As our population ages, and trends in obesity continue to grow, joint degenerative diseases like osteoarthritis (OA) are becoming increasingly prevalent. With no cure currently in sight, the only effective treatments for OA are orthopaedic surgery and prolonged rehabilitation, neither of which is guaranteed to succeed. Gait retraining has tremendous potential to alter the contact forces in the joints due to walking, reducing the risk of one developing hip and knee OA. Dielectric Elastomer Actuators (DEAs) are being explored as a potential way of applying intuitive haptic feedback to alter a patient's walking gait. The main challenge with the use of DEAs in this application is producing large enough forces and strains to induce sensation when coupled to a patient's skin. A novel controller has been proposed to solve this issue. The controller uses simultaneous capacitive self-sensing and actuation which will optimally apply a haptic sensation to the patient's skin independent of variability in DEAs and patient geometries.
Non-linear cord-rubber composites
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.
1989-01-01
A method is presented for calculating the stress-strain relations in a multi-layer composite made up of materials whose individual stress-strain characteristics are non-linear and possibly different. The method is applied to the case of asymmetric tubes in tension, and comparisons with experimentally measured data are given.
Characterising dynamic non-linearity in floating wind turbines
NASA Astrophysics Data System (ADS)
Lupton, R. C.
2014-12-01
Fully coupled aero-hydro-control-elastic codes are being developed to cope with the new modelling challenges presented by floating wind turbines, but there is also a place for more efficient methods of analysis. One option is linearisation and analysis in the frequency domain. For this to be an effective method, the non-linearities in the system must be well understood. The present study focusses on understanding the dynamic response of the rotor to the overall platform motion, as would arise from wave loading, by using a simple model of a floating wind turbine with a rigid tower and flexible rotor (represented by hinged rigid blades). First, an equation of motion of the blade is derived and an approximate solution for the blade response is found using the perturbation method. Secondly, the full non-linear solution is found by time- domain simulation. The response is found to be linear at lower platform pitching frequencies, becoming non-linear at higher frequencies, with the approximate solution giving good results for weakly non-linear behaviour. Higher rotor speeds have a stabilising effect on the response. In the context of typical floating turbine parameters, it is concluded that the blade flapwise response is likely to be linear.
Design of turbofan engine controls using output feedback regulator theory
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1977-01-01
A multivariable control design procedure based on output feedback regulator (OFR) theory is applied to the F100 turbofan engine. Results for the OFR design are compared to a design based on linear quadratic regulator (LQR) theory. The OFR feedback control is designed in the full order state space and thus eliminates any need for model reduction techniques. Using the performance measure and control structure of the LQR design, an equivalent OFR feedback control is obtained. The flexibility of the OFR as a control design procedure is demonstrated, and differing feedback control structures are evaluated.
Sample-Clock Phase-Control Feedback
NASA Technical Reports Server (NTRS)
Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy
2012-01-01
To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.
Combustion diagnostic for active engine feedback control
Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton
2007-10-02
This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.
Optimal Feedback Controlled Assembly of Perfect Crystals.
Tang, Xun; Rupp, Bradley; Yang, Yuguang; Edwards, Tara D; Grover, Martha A; Bevan, Michael A
2016-07-26
Perfectly ordered states are targets in diverse molecular to microscale systems involving, for example, atomic clusters, protein folding, protein crystallization, nanoparticle superlattices, and colloidal crystals. However, there is no obvious approach to control the assembly of perfectly ordered global free energy minimum structures; near-equilibrium assembly is impractically slow, and faster out-of-equilibrium processes generally terminate in defective states. Here, we demonstrate the rapid and robust assembly of perfect crystals by navigating kinetic bottlenecks using closed-loop control of electric field mediated crystallization of colloidal particles. An optimal policy is computed with dynamic programming using a reaction coordinate based dynamic model. By tracking real-time stochastic particle configurations and adjusting applied fields via feedback, the evolution of unassembled particles is guided through polycrystalline states into single domain crystals. This approach to controlling the assembly of a target structure is based on general principles that make it applicable to a broad range of processes from nano- to microscales (where tuning a global thermodynamic variable yields temporal control over thermal sampling of different states via their relative free energies).
[Feedback control mechanisms of plant cell expansion
Cosgrove, D.J.
1992-01-01
We have generated considerable evidence for the significance of wall stress relaxation in the control of plant growth and found that several agents (gibberellin, light, genetic loci for dwarf stature) influence growth rate via alteration of wall relaxation. We have refined our methods for measuring wall relaxation and, moreover, have found that wall relaxation properties bear only a distance relationship to wall mechanical properties. We have garnered novel insights into the nature of cell expansion mechanisms by analyzing spontaneous fluctuations of plant growth rate in seedlings. These experiments involved the application of mathematical techniques for analyzing growth rate fluctuations and the development of new instrumentation for measuring and forcing plant growth in a controlled fashion. These studies conclude that growth rate fluctuations generated by the plant as consequence of a feedback control system. This conclusion has important implications for the nature of wall loosening processes and demands a different framework for thinking about growth control. It also implies the existence of a growth rate sensor.
Minimal-Inversion Feedforward-And-Feedback Control System
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.
GGOPT: an unconstrained non-linear optimizer.
Bassingthwaighte, J B; Chan, I S; Goldstein, A A; Russak, I B
1988-01-01
GGOPT is a derivative-free non-linear optimizer for smooth functions with added noise. If the function values arise from observations or from extensive computations, these errors can be considerable. GGOPT uses an adjustable mesh together with linear least squares to find smoothed values of the function, gradient and Hessian at the center of the mesh. These values drive a descent method that estimates optimal parameters. The smoothed values usually result in increased accuracy.
Autonomous benthic algal cultivator under feedback control of ecosystem metabolism
Technology Transfer Automated Retrieval System (TEKTRAN)
An autonomous and internally-controlled techno-ecological hybrid was developed that controls primary production of algae in a laboratory-scale cultivator. The technoecosystem is based on an algal turf scrubber (ATS) system that combines engineered feedback control programming with internal feedback...
Non-linear dark energy clustering
Anselmi, Stefano; Ballesteros, Guillermo; Pietroni, Massimo E-mail: ballesteros@pd.infn.it
2011-11-01
We consider a dark energy fluid with arbitrary sound speed and equation of state and discuss the effect of its clustering on the cold dark matter distribution at the non-linear level. We write the continuity, Euler and Poisson equations for the system in the Newtonian approximation. Then, using the time renormalization group method to resum perturbative corrections at all orders, we compute the total clustering power spectrum and matter power spectrum. At the linear level, a sound speed of dark energy different from that of light modifies the power spectrum on observationally interesting scales, such as those relevant for baryonic acoustic oscillations. We show that the effect of varying the sound speed of dark energy on the non-linear corrections to the matter power spectrum is below the per cent level, and therefore these corrections can be well modelled by their counterpart in cosmological scenarios with smooth dark energy. We also show that the non-linear effects on the matter growth index can be as large as 10–15 per cent for small scales.
Disrupting vagal feedback affects birdsong motor control
Méndez, Jorge M.; Dall'Asén, Analía G.; Goller, Franz
2010-01-01
Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback. PMID:21113000
Self-Controlled Feedback in 10-Year-Old Children: Higher Feedback Frequencies Enhance Learning
ERIC Educational Resources Information Center
Chiviacowsky, Suzete; Wulf, Gabriele; de Medeiros, Franklin Laroque; Kaefer, Angelica; Wally, Raquel
2008-01-01
The purpose of the present study was to examine whether learning in 10-year-old children--that is, the age group for which the Chiviacowsky et al. (2006) study found benefits of self-controlled knowledge of results (KR)--would differ depending on the frequency of feedback they chose. The authors surmised that a relatively high feedback frequency…
Sensory-Feedback Exoskeletal Arm Controller
NASA Technical Reports Server (NTRS)
An, Bin; Massie, Thomas H.; Vayner, Vladimir
2004-01-01
An electromechanical exoskeletal arm apparatus has been designed for use in controlling a remote robotic manipulator arm. The apparatus, called a force-feedback exoskeleton arm master (F-EAM) is comfortable to wear and easy to don and doff. It provides control signals from the wearer s arm to a robot arm or a computer simulator (e.g., a virtual-reality system); it also provides force and torque feedback from sensors on the robot arm or from the computer simulator to the wearer s arm. The F-EAM enables the wearer to make the robot arm gently touch objects and finely manipulate them without exerting excessive forces. The F-EAM features a lightweight design in which the motors and gear heads that generate force and torque feedback are made smaller than they ordinarily would be: this is achieved by driving the motors to power levels greater than would ordinarily be used in order to obtain higher torques, and by providing active liquid cooling of the motors to prevent overheating at the high drive levels. The F-EAM (see figure) includes an assembly that resembles a backpack and is worn like a backpack, plus an exoskeletal arm mechanism. The FEAM has five degrees of freedom (DOFs) that correspond to those of the human arm: 1. The first DOF is that of the side-to-side rotation of the upper arm about the shoulder (rotation about axis 1). The reflected torque for this DOF is provided by motor 1 via drum 1 and a planar four-bar linkage. 2. The second DOF is that of the up-and-down rotation of the arm about the shoulder. The reflected torque for this DOF is provided by motor 2 via drum 2. 3. The third DOF is that of twisting of the upper arm about its longitudinal axis. This DOF is implemented in a cable remote-center mechanism (CRCM). The reflected torque for this DOF is provided by motor 3, which drives the upper-arm cuff and the mechanism below it. A bladder inflatable by gas or liquid is placed between the cuff and the wearer s upper arm to compensate for misalignment
Hansen, Steve; Pfeiffer, Jacob; Patterson, Jae Todd
2011-01-01
A traditional control group yoked to a group that self-controls their reception of feedback receives feedback in the same relative and absolute manner. This traditional control group typically does not learn the task as well as the self-control group. Although the groups are matched for the amount of feedback they receive, the information is provided on trials in which the individual may not request feedback if he or she were provided the opportunity. Similarly, individuals may not receive feedback on trials for which it would be a beneficial learning experience. Subsequently, the mismatch between the provision of feedback and the potential learning opportunity leads to a decrement in retention. The present study was designed to examine motor learning for a yoked group with the same absolute amount of feedback, but who could self-control when they received feedback. Increased mental processing of error detection and correction was expected for the participants in the yoked self-control group because of their choice to employ a limited resource in the form of a decreasing amount of feedback opportunities. Participants in the yoked with self-control group committed fewer errors than the self-control group in retention and the traditional yoked group in both the retention and time transfer blocks. The results suggest that the yoked with self-control group was able to produce efficient learning effects and can be a viable control group for further motor learning studies. PMID:21347953
Multichannel electrotactile feedback for simultaneous and proportional myoelectric control
NASA Astrophysics Data System (ADS)
Patel, Gauravkumar K.; Dosen, Strahinja; Castellini, Claudio; Farina, Dario
2016-10-01
Objective. Closing the loop in myoelectric prostheses by providing artificial somatosensory feedback to the user is an important need for prosthetic users. Previous studies investigated feedback strategies in combination with the control of one degree of freedom of simple grippers. Modern hands, however, are sophisticated multifunction systems. In this study, we assessed multichannel electrotactile feedback integrated with an advanced method for the simultaneous and proportional control of individual fingers of a dexterous hand. Approach. The feedback used spatial and frequency coding to provide information on the finger positions (normalized flexion angles). A comprehensive set of conditions have been investigated in 28 able-bodied subjects, including feedback modalities (visual, electrotactile and no feedback), control tasks (fingers and grasps), systems (virtual and real hand), control methods (ideal and realistic) and range of motion (low and high). The task for the subjects was to operate the hand using closed-loop myoelectric control and generate the desired movement (e.g., selected finger or grasp at a specific level of closure). Main results. The subjects could perceive the multichannel and multivariable electrotactile feedback and effectively exploit it to improve the control performance with respect to open-loop grasping. The improvement however depended on the reliability of the feedforward control, with less consistent control exhibiting performance trends that were more complex across the conditions. Significance. The results are promising for the potential application of advanced feedback to close the control loop in sophisticated prosthetic systems.
NASA Technical Reports Server (NTRS)
Fleming, P.
1985-01-01
A design technique is proposed for linear regulators in which a feedback controller of fixed structure is chosen to minimize an integral quadratic objective function subject to the satisfaction of integral quadratic constraint functions. Application of a non-linear programming algorithm to this mathematically tractable formulation results in an efficient and useful computer-aided design tool. Particular attention is paid to computational efficiency and various recommendations are made. Two design examples illustrate the flexibility of the approach and highlight the special insight afforded to the designer.
Feedback control of flow vorticity at low Reynolds numbers.
Zeitz, Maria; Gurevich, Pavel; Stark, Holger
2015-03-01
Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times.
Role of feedback in voluntary control of heart rate.
Manuck, S B; Levenson, R W; Hinrichsen, J J; Gryll, S L
1975-06-01
The relative effectiveness of biofeedback techniques on the voluntary control of heart rate was examined by randomly assigning 32 Ss to one of four feedback conditions in a bi-directional heart-rate control task: (1) no feedback, (2) binary feedback--S was signaled when an interbeat interval had changed in the correct direction, (3) "real-time," proportional feedback--S was provided information about the relative duration of successive interbeat intervals, and (4) numerical, proportional feedback--each interbeat interval was represented as a numeral indicating its relationship to pre-trial mean by direction and magnitude. Significant over-all heart-rate changes were evidenced for both increase and decrease directions, but no differences were found between the feedback conditions. While these data suggest that feedback may be a relatively insignificant factor in voluntary heart-rate control, it was recommended that further investigation examine the role of feedback within the context of other training, mediating and motivational variables.
[Cells in the system of multicelular organisms from positions of non-linear dynamics].
Kotolupov, V A; Isaeva, V V
2012-01-01
The organism physiological systems forming a hierarchic network with mutual dependence and subordination can be considered as systems with non-linear dynamics including positive and negative feedbacks. In the course of evolution there occurred selection of robust, flexible, modular systems capable for adaptive self-organization by non-linear interaction of components, which leads to formation of the ordered in space and time robust and plastic organization of the whole. Cells of multicellular organisms are capable for coordinated "social" behavior with formation of ordered cell assemblies, which provides a possibility of morphological and functional variability correlating with manifestations of the large spectrum of adaptive reactions. The multicellular organism is the multilevel system with hierarchy of numerous subsystems capable for adaptive self-organization; disturbance of their homeostasis can lead to pathological changes. The healthy organism regulates homeostasis, self-renewal, differentiation, and apoptosis of cells serving its parts and construction blocks by preserving its integrity and controlling behavior of cells. The systemic approach taking into account biological regularities of the appearance and development of functions in evolution of multicellular organisms opens new possibilities for diagnostics and treatment of many diseases.
Non-Linear Dynamics of Saturn's Rings
NASA Astrophysics Data System (ADS)
Esposito, Larry W.
2015-04-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible Results of driven N-body systems by Stuart Robbins: Even unforced rings show large variations; Forcing triggers aggregation; Some limit cycles and phase lags seen, but not always as predicted by predator-prey model. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw'. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon
Non-Linear Dynamics of Saturn's Rings
NASA Astrophysics Data System (ADS)
Esposito, L. W.
2015-10-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Results of driven N-body systems by Stuart Robbins: Even unforced rings show large variations; Forcing triggers aggregation; Some limit cycles and phase lags seen, but not always as predicted by predator-prey model. Summary of Halo Results: A predatorprey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw'. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon
Control of force through feedback in small driven systems.
Dieterich, E; Camunas-Soler, J; Ribezzi-Crivellari, M; Seifert, U; Ritort, F
2016-07-01
Controlling a time-dependent force applied to single molecules or colloidal particles is crucial for many types of experiments. Since in optical tweezers the primary controlled variable is the position of the trap, imposing a target force requires an active feedback process. We analyze this feedback process for the paradigmatic case of a nonequilibrium steady state generated by a dichotomous force protocol, first theoretically for a colloidal particle in a harmonic trap and then with both simulations and experiments for a long DNA hairpin. For the first setup, we find there is an optimal feedback gain separating monotonic from oscillatory response, whereas a too strong feedback leads to an instability. For the DNA molecule, reaching the target force requires substantial feedback gain since weak feedback cannot overcome the tendency to relax towards the equilibrium force. PMID:27575077
Control of force through feedback in small driven systems.
Dieterich, E; Camunas-Soler, J; Ribezzi-Crivellari, M; Seifert, U; Ritort, F
2016-07-01
Controlling a time-dependent force applied to single molecules or colloidal particles is crucial for many types of experiments. Since in optical tweezers the primary controlled variable is the position of the trap, imposing a target force requires an active feedback process. We analyze this feedback process for the paradigmatic case of a nonequilibrium steady state generated by a dichotomous force protocol, first theoretically for a colloidal particle in a harmonic trap and then with both simulations and experiments for a long DNA hairpin. For the first setup, we find there is an optimal feedback gain separating monotonic from oscillatory response, whereas a too strong feedback leads to an instability. For the DNA molecule, reaching the target force requires substantial feedback gain since weak feedback cannot overcome the tendency to relax towards the equilibrium force.
Control of force through feedback in small driven systems
NASA Astrophysics Data System (ADS)
Dieterich, E.; Camunas-Soler, J.; Ribezzi-Crivellari, M.; Seifert, U.; Ritort, F.
2016-07-01
Controlling a time-dependent force applied to single molecules or colloidal particles is crucial for many types of experiments. Since in optical tweezers the primary controlled variable is the position of the trap, imposing a target force requires an active feedback process. We analyze this feedback process for the paradigmatic case of a nonequilibrium steady state generated by a dichotomous force protocol, first theoretically for a colloidal particle in a harmonic trap and then with both simulations and experiments for a long DNA hairpin. For the first setup, we find there is an optimal feedback gain separating monotonic from oscillatory response, whereas a too strong feedback leads to an instability. For the DNA molecule, reaching the target force requires substantial feedback gain since weak feedback cannot overcome the tendency to relax towards the equilibrium force.
Non-linear aeroelastic prediction for aircraft applications
NASA Astrophysics Data System (ADS)
de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.
2007-05-01
in this domain. This is set within the context of a generic industrial process and the requirements of UK and US aeroelastic qualification. A range of test cases, from simple small DOF cases to full aircraft, have been used to evaluate and validate the non-linear methods developed and to make comparison with the linear methods in everyday use. These have focused mainly on aerodynamic non-linearity, although some results for structural non-linearity are also presented. The challenges associated with time domain (coupled computational fluid dynamics-computational structural model (CFD-CSM)) methods have been addressed through the development of grid movement, fluid-structure coupling, and control surface movement technologies. Conclusions regarding the accuracy and computational cost of these are presented. The computational cost of time-domain methods, despite substantial improvements in efficiency, remains high. However, significant advances have been made in reduced order methods, that allow non-linear behaviour to be modelled, but at a cost comparable with that of the regular linear methods. Of particular note is a method based on Hopf bifurcation that has reached an appropriate maturity for deployment on real aircraft configurations, though only limited results are presented herein. Results are also presented for dynamically linearised CFD approaches that hold out the possibility of non-linear results at a fraction of the cost of time coupled CFD-CSM methods. Local linearisation approaches (higher order harmonic balance and continuation method) are also presented; these have the advantage that no prior assumption of the nature of the aeroelastic instability is required, but currently these methods are limited to low DOF problems and it is thought that these will not reach a level of maturity appropriate to real aircraft problems for some years to come. Nevertheless, guidance on the most likely approaches has been derived and this forms the basis for ongoing
Lyapunov optimal feedback control of a nonlinear inverted pendulum
NASA Technical Reports Server (NTRS)
Grantham, W. J.; Anderson, M. J.
1989-01-01
Liapunov optimal feedback control is applied to a nonlinear inverted pendulum in which the control torque was constrained to be less than the nonlinear gravity torque in the model. This necessitates a control algorithm which 'rocks' the pendulum out of its potential wells, in order to stabilize it at a unique vertical position. Simulation results indicate that a preliminary Liapunov feedback controller can successfully overcome the nonlinearity and bring almost all trajectories to the target.
Thermodynamics of quantum-jump-conditioned feedback control.
Strasberg, Philipp; Schaller, Gernot; Brandes, Tobias; Esposito, Massimiliano
2013-12-01
We consider open quantum systems weakly coupled to thermal reservoirs and subjected to quantum feedback operations triggered with or without delay by monitored quantum jumps. We establish a thermodynamic description of such systems and analyze how the first and second law of thermodynamics are modified by the feedback. We apply our formalism to study the efficiency of a qubit subjected to a quantum feedback control and operating as a heat pump between two reservoirs. We also demonstrate that quantum feedbacks can be used to stabilize coherences in nonequilibrium stationary states which in some cases may even become pure quantum states. PMID:24483386
Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control.
Loveday, P W; Rogers, C A
1998-01-01
A method for analyzing the effect of feedback control on the dynamics of piezoelectric resonators used in vibratory gyroscopes has been developed. This method can be used to determine the feasibility of replacing the traditional mechanical balancing operations, used to adjust the resonant frequency, by displacement feedback and for determining the velocity feedback required to produce a particular bandwidth. Experiments were performed on a cylindrical resonator with discrete piezoelectric actuation and sensing elements to demonstrate the principles. Good agreement between analysis and experiment was obtained, and it was shown that this type of resonator could be balanced by displacement feedback. The analysis method presented also is applicable to micromachined piezoelectric gyroscopes. PMID:18244281
Direct laser additive fabrication system with image feedback control
Griffith, Michelle L.; Hofmeister, William H.; Knorovsky, Gerald A.; MacCallum, Danny O.; Schlienger, M. Eric; Smugeresky, John E.
2002-01-01
A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.
Non-Linear Dynamics of Saturn's Rings
NASA Astrophysics Data System (ADS)
Esposito, L. W.
2015-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from
Coherent feedback control of a single qubit in diamond
NASA Astrophysics Data System (ADS)
Hirose, Masashi; Cappellaro, Paola
2016-04-01
Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation
Coherent feedback control of a single qubit in diamond.
Hirose, Masashi; Cappellaro, Paola
2016-04-01
Engineering desired operations on qubits subjected to the deleterious effects of their environment is a critical task in quantum information processing, quantum simulation and sensing. The most common approach relies on open-loop quantum control techniques, including optimal-control algorithms based on analytical or numerical solutions, Lyapunov design and Hamiltonian engineering. An alternative strategy, inspired by the success of classical control, is feedback control. Because of the complications introduced by quantum measurement, closed-loop control is less pervasive in the quantum setting and, with exceptions, its experimental implementations have been mainly limited to quantum optics experiments. Here we implement a feedback-control algorithm using a solid-state spin qubit system associated with the nitrogen vacancy centre in diamond, using coherent feedback to overcome the limitations of measurement-based feedback, and show that it can protect the qubit against intrinsic dephasing noise for milliseconds. In coherent feedback, the quantum system is connected to an auxiliary quantum controller (ancilla) that acquires information about the output state of the system (by an entangling operation) and performs an appropriate feedback action (by a conditional gate). In contrast to open-loop dynamical decoupling techniques, feedback control can protect the qubit even against Markovian noise and for an arbitrary period of time (limited only by the coherence time of the ancilla), while allowing gate operations. It is thus more closely related to quantum error-correction schemes, although these require larger and increasing qubit overheads. Increasing the number of fresh ancillas enables protection beyond their coherence time. We further evaluate the robustness of the feedback protocol, which could be applied to quantum computation and sensing, by exploring a trade-off between information gain and decoherence protection, as measurement of the ancilla-qubit correlation
Neural mechanisms underlying auditory feedback control of speech.
Tourville, Jason A; Reilly, Kevin J; Guenther, Frank H
2008-02-01
The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 136 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech.
Quantum effects improve the energy efficiency of feedback control.
Horowitz, Jordan M; Jacobs, Kurt
2014-04-01
The laws of thermodynamics apply equally well to quantum systems as to classical systems, and because of this, quantum effects do not change the fundamental thermodynamic efficiency of isothermal refrigerators or engines. We show that, despite this fact, quantum mechanics permits measurement-based feedback control protocols that are more thermodynamically efficient than their classical counterparts. As part of our analysis, we perform a detailed accounting of the thermodynamics of unitary feedback control and elucidate the sources of inefficiency in measurement-based and coherent feedback.
Quantum effects improve the energy efficiency of feedback control.
Horowitz, Jordan M; Jacobs, Kurt
2014-04-01
The laws of thermodynamics apply equally well to quantum systems as to classical systems, and because of this, quantum effects do not change the fundamental thermodynamic efficiency of isothermal refrigerators or engines. We show that, despite this fact, quantum mechanics permits measurement-based feedback control protocols that are more thermodynamically efficient than their classical counterparts. As part of our analysis, we perform a detailed accounting of the thermodynamics of unitary feedback control and elucidate the sources of inefficiency in measurement-based and coherent feedback. PMID:24827219
Adaptive method with intercessory feedback control for an intelligent agent
Goldsmith, Steven Y.
2004-06-22
An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.
Optical measurement of the weak non-linearity in the eardrum vibration response to auditory stimuli
NASA Astrophysics Data System (ADS)
Aerts, Johan
The mammalian hearing organ consists of the external ear (auricle and ear canal) followed by the middle ear (eardrum and ossicles) and the inner ear (cochlea). Its function is to convert the incoming sound waves and convert them into nerve pulses which are processed in the final stage by the brain. The main task of the external and middle ear is to concentrate the incoming sound waves on a smaller surface to reduce the loss that would normally occur in transmission from air to inner ear fluid. In the past it has been shown that this is a linear process, thus without serious distortions, for sound waves going up to pressures of 130 dB SPL (˜90 Pa). However, at large pressure changes up to several kPa, the middle ear movement clearly shows non-linear behaviour. Thus, it is possible that some small non-linear distortions are also present in the middle ear vibration at lower sound pressures. In this thesis a sensitive measurement set-up is presented to detect this weak non-linear behaviour. Essentially, this set-up consists of a loud-speaker which excites the middle ear, and the resulting vibration is measured with an heterodyne vibrometer. The use of specially designed acoustic excitation signals (odd random phase multisines) enables the separation of the linear and non-linear response. The application of this technique on the middle ear demonstrates that there are already non-linear distortions present in the vibration of the middle ear at a sound pressure of 93 dB SPL. This non-linear component also grows strongly with increasing sound pressure. Knowledge of this non-linear component can contribute to the improvement of modern hearing aids, which operate at higher sound pressures where the non-linearities could distort the signal considerably. It is also important to know the contribution of middle ear non-linearity to otoacoustic emissions. This are non-linearities caused by the active feedback amplifier in the inner ear, and can be detected in the external and
A variable-gain output feedback control design methodology
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Moerder, Daniel D.; Broussard, John R.; Taylor, Deborah B.
1989-01-01
A digital control system design technique is developed in which the control system gain matrix varies with the plant operating point parameters. The design technique is obtained by formulating the problem as an optimal stochastic output feedback control law with variable gains. This approach provides a control theory framework within which the operating range of a control law can be significantly extended. Furthermore, the approach avoids the major shortcomings of the conventional gain-scheduling techniques. The optimal variable gain output feedback control problem is solved by embedding the Multi-Configuration Control (MCC) problem, previously solved at ICS. An algorithm to compute the optimal variable gain output feedback control gain matrices is developed. The algorithm is a modified version of the MCC algorithm improved so as to handle the large dimensionality which arises particularly in variable-gain control problems. The design methodology developed is applied to a reconfigurable aircraft control problem. A variable-gain output feedback control problem was formulated to design a flight control law for an AFTI F-16 aircraft which can automatically reconfigure its control strategy to accommodate failures in the horizontal tail control surface. Simulations of the closed-loop reconfigurable system show that the approach produces a control design which can accommodate such failures with relative ease. The technique can be applied to many other problems including sensor failure accommodation, mode switching control laws and super agility.
Control, Transport Reduction and Diagnostic use of Feedback
NASA Astrophysics Data System (ADS)
Sen, A. K.
1999-11-01
In the past we have reported on feedback suppression of a variety of micro-instabilities in the Columbia Linear Machine via an electron/ion beam suppressor. These include a curvature driven trapped particle mode, an E×B flute mode and an ITG mode; sometimes two of them simultaneously. We now report on reduction and scaling of transport under feedback. The anomalous particle transport due to an E×B centrifugally driven mode has been measured via cross-correlation of density and potential fluctuations. The transport is found to be reduced by up to a factor of three under feedback. By controlling the fluctuation amplitudes and consequently the transport via feedback, we find the scaling of diffusion coefficient to be linear with RMS fluctuation level. The scaling appears not to agree with any generic theory. Recently, we have performed a numerical experiment on feedback control of dissipative drift wave instability in collaboration with ETP, University of Marseille. The preliminary result is that even a highly chaotic state of the instability can be suppressed, if the feedback delay is less than the correlation time of fluctuations. We will explore the implication of these results for the remote prospect of reduction of micro-turbulence and associated transport. We are also persuing a variety of diagnostic uses of feedback. The primary goal is an experimental methodology for the determination of dynamic models of plasma turbulence, both for better transport understanding and more credible feedback controller designs. A specific motivation is to search for a low order dynamic model, suitable for the convenient study of both transport and feedback. First, we use time series analysis method for the determination of chaotic attractor dimension of plasma fluctuations. For E×B rotational flute modes it is found to be close to three, indicating that a model of three coupled modes may be adequate for transport prediction and feedback controller design. Secondly, we have
Control of resistance plug welding using quantitative feedback theory
Bentley, A.E.; Horowitz, I. ||; Chait, Y.; Rodrigues, J.
1996-12-01
Resistance welding is used extensively throughout the manufacturing industry. Variations in weld quality often result in costly post-weld inspections. Applications of feed-back control to such processes have been limited by the lack of accurate models describing the nonlinear dynamics of this process. A new system based on electrode displacement feedback is developed that greatly improves quality control of the resistance plug welding process. The system is capable of producing repeatable welds of consistent displacement (and thus consistent quality), with wide variations in weld parameters. This paper describes the feedback design of a robust controller using Quantitative Feedback Theory for this highly complex process, and the experimental results of the applied system.
Feedback Control Systems Loop Shaping Design with Practical Considerations
NASA Technical Reports Server (NTRS)
Kopsakis, George
2007-01-01
This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.
Sampled-Data State Feedback Stabilization of Boolean Control Networks.
Liu, Yang; Cao, Jinde; Sun, Liangjie; Lu, Jianquan
2016-04-01
In this letter, we investigate the sampled-data state feedback control (SDSFC) problem of Boolean control networks (BCNs). Some necessary and sufficient conditions are obtained for the global stabilization of BCNs by SDSFC. Different from conventional state feedback controls, new phenomena observed the study of SDSFC. Based on the controllability matrix, we derive some necessary and sufficient conditions under which the trajectories of BCNs can be stabilized to a fixed point by piecewise constant control (PCC). It is proved that the global stabilization of BCNs under SDSFC is equivalent to that by PCC. Moreover, algorithms are given to construct the sampled-data state feedback controllers. Numerical examples are given to illustrate the efficiency of the obtained results.
A New Multi-tanh-Based Non-linear Function Synthesiser
NASA Astrophysics Data System (ADS)
Taher Abuelma'atti, Muhammad; Radhi Al-Abbas, Saad
2016-11-01
A new complementary metal-oxide-semiconductor transadmittance-mode with input voltage and output current, analogue non-linear odd-function synthesiser is presented. The proposed circuit is based on the assumption that a non-linear odd- function can be approximated by the summation of hyperbolic tangent (tanh) functions with different arguments. Each term of the tanh function expansion is realised by exploiting to advantage the inherent non-linearity of a current-controlled current-conveyor (CCCCII) (or an operational transconductance amplifier (OTA)) with a different bias current. The output currents of these CCCCIIs (OTAs) are weighted using the gains of current amplifiers. These weighted currents are algebraically added to form the required non-linear function. The proposed circuit is suitable for integration, can be easily extended to include higher order terms of the tanh-odd-function expansion and can be programmed to realise arbitrary hard non-linear odd-functions that cannot be easily realised using already existing techniques, based on the Taylor-series expansion, for synthesising non-linear functions. PSPICE simulation results, obtained from CCCCII-based realisations of selected hard non-linearities, demonstrating the functionality of the proposed circuit are included.
Control of Cardiac Arrhythmia by Nonlinear Spatiotemporal Delayed Feedback
NASA Astrophysics Data System (ADS)
Boroujeni, Forough Rezaei; Vasegh, Nastaran; Sedigh, Ali Khaki
The dynamic feedback control of the cardiac pacing interval has been widely used to suppress alternans. In this paper, temporally and spatially suppressing the alternans for cardiac tissue consisting of a one-dimensional chain of cardiac units is investigated. The model employed is a nonlinear partial difference equation. The model's fixed points and their stability conditions are determined, and bifurcations and chaos phenomenon have been studied by numerical simulations. The main objective of this paper is to stabilize the unstable fixed point of the model. The proposed approach is nonlinear spatiotemporal delayed feedback, and the appropriate interval for controller feedback gain is calculated using the linear stability analysis. It is proven that the proposed approach is robust with respect to all bifurcation parameter variations. Also, set point tracking is achieved by employing delayed feedback with an integrator. Finally, simulation results are provided to show the effectiveness of the proposed methodology.
Cognitive Evaluation Theory, Locus of Control and Positive Verbal Feedback.
ERIC Educational Resources Information Center
Lonky, Edward; Reihman, Jacqueline
This study tests the hypothesis that individual differences in locus of control orientation may mediate elementary school students' responses to positive verbal feedback. A total of 30 kindergarten through fourth grade subjects were assessed for locus of control orientation using the Bialer Children's Locus of Control Questionnaire. To establish a…
Non-linear optical titanyl arsenates: Crystal growth and properties
NASA Astrophysics Data System (ADS)
Nordborg, Jenni Eva Louise
Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic
Characterization of non-linear distortion in hearing aids using coherence analysis. A pilot study.
Dyrlund, O
1989-01-01
Coherence is a frequency-domain measure of linear dependence between input and output of a system, e.g. a hearing aid, and describes the cumulative effect of different forms of signal corruption, e.g. noise and non-linear distortion. From the coherence function, a general frequency-dependent signal-to-noise ratio can be derived. In this investigation, the applicability of this measuring technique is demonstrated in connection with non-linear distortion in hearing aids. The influence of hearing aid gain and automatic gain control is illustrated, with speech-shaped noise as input signal. For the three hearing aids tested. The gain setting influences the signal-to-noise ratio heavily due to non-linear distortion, especially near maximum gain. The introduction of automatic gain control reduces the effect of non-linear distortion somewhat at high gain settings.
Dong, Jiuxiang; Wang, Youyi; Yang, Guang-Hong
2010-12-01
This paper considers the output feedback control problem for nonlinear discrete-time systems, which are represented by a type of fuzzy systems with local nonlinear models. By using the estimations of the states and nonlinear functions in local models, sufficient conditions for designing observer-based controllers are given for discrete-time nonlinear systems. First, a separation property, i.e., the controller and the observer can be independently designed, is proved for the class of fuzzy systems. Second, a two-step procedure with cone complementarity linearization algorithms is also developed for solving the H( ∞) dynamic output feedback (DOF) control problem. Moreover, for the case where the nonlinear functions in local submodels are measurable, a convex condition for designing H(∞) controllers is given by a new DOF control scheme. In contrast to the existing methods, the new methods can design output feedback controllers with fewer fuzzy rules as well as less computational burden, which is helpful for controller designs and implementations. Lastly, numerical examples are given to illustrate the effectiveness of the proposed methods.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1995-01-01
During this year, we concentrated our efforts on the design of controllers for lateral/directional control using mu synthesis. This proved to be a more difficult task than we anticipated and we are still working on the designs. In the lateral-directional control problem, the inputs are pilot lateral stick and pedal commands and the outputs are roll rate about the velocity vector and side slip angle. The control effectors are ailerons, rudder deflection, and directional thrust vectoring vane deflection which produces a yawing moment about the body axis. Our math model does not contain any provision for thrust vectoring of rolling moment. This has resulted in limitations of performance at high angles of attack. During 1994-95, the following tasks for the lateral-directional controllers were accomplished: (1) Designed both inner and outer loop dynamic inversion controllers. These controllers are implemented using accelerometer outputs rather than an a priori model of the vehicle aerodynamics; (2) Used classical techniques to design controllers for the system linearized by dynamics inversion. These controllers acted to control roll rate and Dutch roll response; (3) Implemented the inner loop dynamic inversion and classical controllers on the six DOF simulation; (4) Developed a lateral-directional control allocation scheme based on minimizing required control effort among the ailerons, rudder, and directional thrust vectoring; and (5) Developed mu outer loop controllers combined with classical inner loop controllers.
EMG feedback as a muscle reeducation technique: a controlled study.
Middaugh, S J
1978-01-01
In an effort to evaluate the efficacy and function of EMG feedback in muscle reeducation, improvement of the abductor function of the abductor hallucis muscle was studied under three training conditions involving 1) EMG feedback, 2) sensory stimulation or 3) equal time for unassisted practice; and a fourth, control condition involving testing without training. Active range of motion was measured before and after training to assess ability to use the muscle as an abductor. EMG activity was quantified for a 1-minute test contraction to evaluate ability to maintain and maximize a voluntary contraction of the target muscle. The results indicated that EMG feedback was highly effective when subjects had little initial use of the target muscle. EMG feedback improved the ability of these subjects to maintain and maximize voluntary muscle contractions, as demonstrated on the EMG measure. EMG feedback did not add to the learning situation when only a relatively brief, phasic contraction was required, as on the range-of-motion measure; similar gains were made with equivalent practive without EMG feedback. When subjects already had considerable use of the target muscle prior to training, EMG feedback may have actually interfered with training; in this case unassisted practice was more effective.
Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Eure, Kenneth W.
1998-01-01
Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.
ERIC Educational Resources Information Center
Stenstrom, Anna-Brita
A study of feedback in conversational question-response exchanges focused on the questioner's feedback to the respondent. It examined three types of "followup" moves: the ordinary type revealing the questioner's attitude to the response and closing the exchange; the type signaling the questioner's reaction to the response and inviting further…
Effects on non-linearities on aircraft poststall motion
Rohacs, J.; Thomasson, P.; Mosehilde, E.
1994-12-31
The poststall maneuverability controlled by thrust vectoring has become one of the important aspects of new fighter development projects. In simplified case, the motion of aircraft can be described by 6DOF nonlinear system. The lecture deals with the longitudinal motion of poststall maneuverable aircraft. The investigation made about the effects of non-linearities in aerodynamic coefficients having considerable non-linearities and hysteresisis an the poststall motions. There were used some different models of aerodynamic coefficients. The results of investigation have shown that the poststall domain of vectored aircraft can be divided into five different pHs in field of thrust - pitch vector angle, and the chaotic motions of aircraft can be found at the different frequencies of thrust deflection. There were defined an unstable right domain with an unstable oscillation and a field of overpulling at poststall motion. The certain frequency chaotic attractors were got at frequencies of Oxitation between the 0.15 and 0.65 rad/sec. The pitching moment derivatives had the big influence on the chaotic motions, while the lift coefficient derivatives bad the reasonable effects, only.
Dynamic output feedback H ∞ control for affine fuzzy systems
NASA Astrophysics Data System (ADS)
Wang, Huimin; Yang, Guang-Hong
2013-06-01
This article investigates the problem of designing H ∞ dynamic output feedback controllers for nonlinear systems, which are described by affine fuzzy models. The system outputs have been chosen as premise variables, which can guarantee that the plant and the controller always switch to the same region. By using a piecewise Lyapunov function and adding slack matrix variables, a piecewise-affine dynamic output feedback controller design method is obtained in the formulation of linear matrix inequalities (LMIs), which can be efficiently solved numerically. In contrast to the existing work, the proposed approach needs less LMI constraints and leads to less conservatism. Finally, numerical examples illustrate the effectiveness of the new result.
Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors
NASA Technical Reports Server (NTRS)
Bean, Jacob; Fuller, Chris; Schiller, Noah
2016-01-01
Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.
Nonlinear feedback control of highly manoeuvrable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Enns, Dale F.; Snell, S. A.
1992-01-01
This paper describes the application of nonlinear quadratic regulator (NLQR) theory to the design of control laws for a typical high-performance aircraft. The NLQR controller design is performed using truncated solutions of the Hamilton-Jacobi-Bellman equation of optimal control theory. The performance of the NLQR controller is compared with the performance of a conventional P + I gain scheduled controller designed by applying standard frequency response techniques to the equations of motion of the aircraft linearized at various angles of attack. Both techniques result in control laws which are very similar in structure to one another and which yield similar performance. The results of applying both control laws to a high-g vertical turn are illustrated by nonlinear simulation.
Effect of motor dynamics on nonlinear feedback robot arm control
NASA Technical Reports Server (NTRS)
Tarn, Tzyh-Jong; Li, Zuofeng; Bejczy, Antal K.; Yun, Xiaoping
1991-01-01
A nonlinear feedback robot controller that incorporates the robot manipulator dynamics and the robot joint motor dynamics is proposed. The manipulator dynamics and the motor dynamics are coupled to obtain a third-order-dynamic model, and differential geometric control theory is applied to produce a linearized and decoupled robot controller. The derived robot controller operates in the robot task space, thus eliminating the need for decomposition of motion commands into robot joint space commands. Computer simulations are performed to verify the feasibility of the proposed robot controller. The controller is further experimentally evaluated on the PUMA 560 robot arm. The experiments show that the proposed controller produces good trajectory tracking performances and is robust in the presence of model inaccuracies. Compared with a nonlinear feedback robot controller based on the manipulator dynamics only, the proposed robot controller yields conspicuously improved performance.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1994-01-01
During the first half of the year, the investigators concentrated their efforts on completing the design of control laws for the longitudinal axis of the HARV. During the second half of the year they concentrated on the synthesis of control laws for the lateral-directional axes. The longitudinal control law design efforts can be briefly summarized as follows. Longitudinal control laws were developed for the HARV using mu synthesis design techniques coupled with dynamic inversion. An inner loop dynamic inversion controller was used to simplify the system dynamics by eliminating the aerodynamic nonlinearities and inertial cross coupling. Models of the errors resulting from uncertainties in the principal longitudinal aerodynamic terms were developed and included in the model of the HARV with the inner loop dynamic inversion controller. This resulted in an inner loop transfer function model which was an integrator with the modeling errors characterized as uncertainties in gain and phase. Outer loop controllers were then designed using mu synthesis to provide robustness to these modeling errors and give desired response to pilot inputs. Both pitch rate and angle of attack command following systems were designed. The following tasks have been accomplished for the lateral-directional controllers: inner and outer loop dynamic inversion controllers have been designed; an error model based on a linearized perturbation model of the inner loop system was derived; controllers for the inner loop system have been designed, using classical techniques, that control roll rate and Dutch roll response; the inner loop dynamic inversion and classical controllers have been implemented on the six degree of freedom simulation; and lateral-directional control allocation scheme has been developed based on minimizing required control effort.
A multi-time scale, non-linear approach to understanding soil respiration
NASA Astrophysics Data System (ADS)
Nickerson, N. R.; Phillips, C.; Risk, D. A.
2010-12-01
To understand the processes that drive soil respiration and to make accurate predictions about global carbon cycling and potential climate feedbacks, it is critical that we develop accurate models that are useful on a range of timescales. There is, however, little agreement on the functional form and parameters that should be associated with modeling total soil respiration. Field data provides the most realistic platform for this assessment, but the environmental controls on soil respiration have been difficult to estimate in the field with good accuracy due to a combination of factors, including: (1) physical and biological uncertainties that are present in the field (ie. heat and gas diffusion, nutrient and substrate limitation); (2) the absence of a standardized and theoretically sound method for calculating model parameters using field data, and; (3) the absence of suitable long term, high temporal resolution respiration data from field studies, which is now becoming more available. This research focuses on multi-time scale non-linear analysis techniques, and their role in guiding the development of new soil respiration models that accurately predict respiration on a range of timescales. Using a physical model as a proxy of real world conditions, we focus on the confounding effect of physical factors, such as heat and gas diffusion and CO2 production depth, which have been found to be the cause of a considerable amount of error in past studies. Preliminary results show that for estimating temperature sensitivity, the non-linear approach is the best (compared to the typical log transform linear approach) in all circumstances, although caution should be exercised when analyzing short time series (i.e. diel) data because the lag and damping cause by gas diffusion may affect estimates. This work also examines moisture sensitivity parameters and the confounding effects of moisture on temperature sensitivity estimates. Finally we provide an evaluation of temporal
ELM frequency feedback control on JET
NASA Astrophysics Data System (ADS)
Lennholm, M.; Beaumont, P. S.; Carvalho, I. S.; Chapman, I. T.; Felton, R.; Frigione, D.; Garzotti, L.; Goodyear, A.; Graves, J.; Grist, D.; Jachmich, S.; Lang, P.; Lerche, E.; de la Luna, E.; Mooney, R.; Morris, J.; Nave, M. F. F.; Rimini, F.; Sips, G.; Solano, E.; Tsalas, M.; EFDA Contributors, JET
2015-06-01
This paper describes the first development and implementation of a closed loop edge localized mode (ELM) frequency controller using gas injection as the actuator. The controller has been extensively used in recent experiments on JET and it has proved to work well at ELM frequencies in the 15-40 Hz range. The controller responds effectively to a variety of disturbances, generally recovering the requested ELM frequency within approximately 500 ms. Controlling the ELM frequency has become of prime importance in the new JET configuration with all metal walls, where insufficient ELM frequency is associated with excessive tungsten influx. The controller has allowed successful operation near the minimum acceptable ELM frequency where the best plasma confinement can be achieved. Use of the ELM frequency controller in conjunction with pellet injection has enabled investigations of ELM triggering by pellets while maintaining the desired ELM frequency even when pellets fail to trigger ELMs.
Feedback controlled optics with wavefront compensation
NASA Technical Reports Server (NTRS)
Breckenridge, William G. (Inventor); Redding, David C. (Inventor)
1993-01-01
The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.
Dynamics for Linear Feedback Controlled Two-Dimensional Benard Equations with Distributed Controls
Lee, Hyung-Chun; Shin, Byeong Chun
2001-07-01
The long-time behavior of solutions for some feedback distributed control problems associated with the Benard equations is studied. Some linear feedback solutions for the Benard equations are constructed. Then we prove that these feedback solutions possess the decay (in time) properties.
FEEDBACK CONTROL OF THE DIII-D ECH SYSTEM
J. LOHR; J.R. FERRON; Y.A. GORELOV; K. KAJIWARA; D. PONCE; M.R. WADE
2002-08-01
The output power of the DIII-D gyrotron complex has been modulated by the plasma control system using feedback on the difference between a desired electron temperature and the ECE measurement. Operation was stable and permitted control of the flux penetration during initiation of the discharge.
NASA Astrophysics Data System (ADS)
Buoso, Stefano; Palacios, Rafael
2016-04-01
This work presents a numerical framework for the simulation and design of integrally actuated membrane wings with feedback control. The performance of the aeroelastic system are evaluated using a high-fidelity model. It consists in a fluid solver based on the direct numerical integration of the unsteady Navier-Stokes equations implicitly coupled with a geometrically non-linear dynamic structural model which has been calibrated using experimental data. The rate-dependent constitutive law for the dielectric elastomer considered for the integral wing actuation is based on a non-linear formulation. The framework also includes a methodology for the model reduction of the fully-coupled system. The resulting low-order description showed to retain the main system dynamics, and can therefore be used for the design of the control scheme for the wing. Results highlights the potential to achieve on-demand aerodynamics using the actuation concept proposed. In particular, it is shown that the wing aerodynamic performance is noticeably enhanced through the actuation and the disturbances on the lift in case of gusts can be reduced up to 60%.
Non-linear behavior of fiber composite laminates
NASA Technical Reports Server (NTRS)
Hashin, Z.; Bagchi, D.; Rosen, B. W.
1974-01-01
The non-linear behavior of fiber composite laminates which results from lamina non-linear characteristics was examined. The analysis uses a Ramberg-Osgood representation of the lamina transverse and shear stress strain curves in conjunction with deformation theory to describe the resultant laminate non-linear behavior. A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.
CONTROLLING ABSOLUTE FREQUENCY OF FEEDBACK IN A SELF-CONTROLLED SITUATION ENHANCES MOTOR LEARNING.
Tsai, Min-Jen; Jwo, Hank
2015-12-01
The guidance hypothesis suggested that excessive extrinsic feedback facilitates motor performance but blocks the processing of intrinsic information. The present study tested the tenet of guidance hypothesis in self-controlled feedback by controlling the feedback frequency. The motor learning effect of limiting absolute feedback frequency was examined. Thirty-six participants (25 men, 11 women; M age=25.1 yr., SD=2.2) practiced a hand-grip force control task on a dynamometer by the non-dominant hand with varying amounts of feedback. They were randomly assigned to: (a) Self-controlled, (b) Yoked with self-controlled, and (c) Limited self-controlled conditions. In acquisition, two-way analysis of variance indicated significantly lower absolute error in both the yoked and limited self-controlled groups than the self-controlled group. The effect size of absolute error between trials with feedback and without feedback in the limited self-controlled condition was larger than that of the self-controlled condition. In the retention and transfer tests, the Limited self-controlled feedback group had significantly lower absolute error than the other two groups. The results indicated an increased motor learning effect of limiting absolute frequency of feedback in the self-controlled condition.
Feedback Linearized Aircraft Control Using Dynamic Cell Structure
NASA Technical Reports Server (NTRS)
Jorgensen, C. C.
1998-01-01
A Dynamic Cell Structure (DCS ) Neural Network was developed which learns a topology representing network (TRN) of F-15 aircraft aerodynamic stability and control derivatives. The network is combined with a feedback linearized tracking controller to produce a robust control architecture capable of handling multiple accident and off-nominal flight scenarios. This paper describes network and its performance for accident scenarios including differential stabilator lock, soft sensor failure, control, stability derivative variation, and turbulence.
Feedback Implementation of Zermelo's Optimal Control by Sugeno Approximation
NASA Technical Reports Server (NTRS)
Clifton, C.; Homaifax, A.; Bikdash, M.
1997-01-01
This paper proposes an approach to implement optimal control laws of nonlinear systems in real time. Our methodology does not require solving two-point boundary value problems online and may not require it off-line either. The optimal control law is learned using the original Sugeno controller (OSC) from a family of optimal trajectories. We compare the trajectories generated by the OSC and the trajectories yielded by the optimal feedback control law when applied to Zermelo's ship steering problem.
Feedback control of singular systems with applications to incompressible flows
NASA Astrophysics Data System (ADS)
Gandikota, Ramakrishna V.
2000-10-01
Singular systems of differential equations, also referred to as differential algebraic equation (DAE) systems, arise as models in a variety of engineering applications. In chemical engineering, they typically arise under the quasi-steady state assumptions of phase, reaction or thermal equilibrium in the modeling of processes with fast mass transfer, reaction or heat transfer. They also arise in incompressible fluid flow systems. The control of singular systems has attracted considerable attention in the last two decades. The majority of the developed methods are on the state feedback control of linear and nonlinear singular systems in continuous-time, and they rely on the derivation of standard state space realizations (i.e. ODE descriptions) that can be used as the basis for the controller design. This thesis addresses (i) the derivation of state space realizations for the output feedback control of linear singular systems in continuous time, (ii) the derivation of state space realizations of singular systems of difference equations, which can be used for the state feedback control of nonlinear discrete time singular systems, (iii) a parallel analysis of the continuous in space and discretized in space incompressible Navier Stokes equations, with emphasis on the derivation of standard PDE and ODE descriptions respectively, and (iv) a case study on the numerical simulation and feedback control of the flow pattern in a lid-driven cavity. The performance of the developed controllers is illustrated via numerical simulation studies.
Non linear processes modulated by low doses of radiation exposure
NASA Astrophysics Data System (ADS)
Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio
The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.
Integrated Control with Structural Feedback to Enable Lightweight Aircraft
NASA Technical Reports Server (NTRS)
Taylor, Brian R.
2011-01-01
This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.
A biopsychosocial model based on negative feedback and control
Carey, Timothy A.; Mansell, Warren; Tai, Sara J.
2014-01-01
Although the biopsychosocial model has been a popular topic of discussion for over four decades it has not had the traction in fields of research that might be expected of such an intuitively appealing idea. One reason for this might be the absence of an identified mechanism or a functional architecture that is authentically biopsychosocial. What is needed is a robust mechanism that is equally important to biochemical processes as it is to psychological and social processes. Negative feedback may be the mechanism that is required. Negative feedback has been implicated in the regulation of neurotransmitters as well as important psychological and social processes such as emotional regulation and the relationship between a psychotherapist and a client. Moreover, negative feedback is purported to also govern the activity of all other organisms as well as humans. Perceptual Control Theory (PCT) describes the way in which negative feedback establishes control at increasing levels of perceptual complexity. Thus, PCT may be the first biopsychosocial model to be articulated in functional terms. In this paper we outline the working model of PCT and explain how PCT provides an embodied hierarchical neural architecture that utilizes negative feedback to control physiological, psychological, and social variables. PCT has major implications for both research and practice and, importantly, provides a guide by which fields of research that are currently separated may be integrated to bring about substantial progress in understanding the way in which the brain alters, and is altered by, its behavioral and environmental context. PMID:24616685
A biopsychosocial model based on negative feedback and control.
Carey, Timothy A; Mansell, Warren; Tai, Sara J
2014-01-01
Although the biopsychosocial model has been a popular topic of discussion for over four decades it has not had the traction in fields of research that might be expected of such an intuitively appealing idea. One reason for this might be the absence of an identified mechanism or a functional architecture that is authentically biopsychosocial. What is needed is a robust mechanism that is equally important to biochemical processes as it is to psychological and social processes. Negative feedback may be the mechanism that is required. Negative feedback has been implicated in the regulation of neurotransmitters as well as important psychological and social processes such as emotional regulation and the relationship between a psychotherapist and a client. Moreover, negative feedback is purported to also govern the activity of all other organisms as well as humans. Perceptual Control Theory (PCT) describes the way in which negative feedback establishes control at increasing levels of perceptual complexity. Thus, PCT may be the first biopsychosocial model to be articulated in functional terms. In this paper we outline the working model of PCT and explain how PCT provides an embodied hierarchical neural architecture that utilizes negative feedback to control physiological, psychological, and social variables. PCT has major implications for both research and practice and, importantly, provides a guide by which fields of research that are currently separated may be integrated to bring about substantial progress in understanding the way in which the brain alters, and is altered by, its behavioral and environmental context.
Stabilization and feedback control of weak measurement monitored quantum oscillators
NASA Astrophysics Data System (ADS)
Uys, Hermann; Du Toit, Pieter; Burd, Shaun; Konrad, Thomas
2016-05-01
We study feedback control of quantum oscillators, monitored through periodic weak measurement. By implementing reversals of measurement perturbations based on a Bayesian estimate of the state dynamics, we demonstrate suppressed measurement noise leading to greater oscillator stability and improved quantum feedback control. The work in this paper was supported in part by the National Research Foundation of South Africa through Grant No. 93602 as well as an award by the United States Airforce Office of Scientific Research, Award No. FA9550-14-1-0151.
Output feedback regulator design for jet engine control systems
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1977-01-01
A multivariable control design procedure based on the output feedback regulator formulation is described and applied to turbofan engine model. Full order model dynamics, were incorporated in the example design. The effect of actuator dynamics on closed loop performance was investigaged. Also, the importance of turbine inlet temperature as an element of the dynamic feedback was studied. Step responses were given to indicate the improvement in system performance with this control. Calculation times for all experiments are given in CPU seconds for comparison purposes.
Preliminary results on reflectance feedback control of photocoagulation in vivo.
Jerath, M R; Chundru, R; Barrett, S F; Rylander, H G; Welch, A J
1994-02-01
The size of therapeutic laser-induced retinal lesions is critical for effective treatment and minimal complications. Due to tissue variability, the size of a lesion that results from a given set of laser irradiation parameters cannot be predicted. Real time feedback control of lesion size is implemented based on two-dimensional reflectance images acquired during irradiation. Preliminary results of feedback controlled lesions formed in pigmented rabbits demonstrate an ability to produce uniform lesions despite variations in tissue absorption or changes in laser power.
A stochastic optimal feedforward and feedback control methodology for superagility
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Direskeneli, Haldun; Taylor, Deborah B.
1992-01-01
A new control design methodology is developed: Stochastic Optimal Feedforward and Feedback Technology (SOFFT). Traditional design techniques optimize a single cost function (which expresses the design objectives) to obtain both the feedforward and feedback control laws. This approach places conflicting demands on the control law such as fast tracking versus noise atttenuation/disturbance rejection. In the SOFFT approach, two cost functions are defined. The feedforward control law is designed to optimize one cost function, the feedback optimizes the other. By separating the design objectives and decoupling the feedforward and feedback design processes, both objectives can be achieved fully. A new measure of command tracking performance, Z-plots, is also developed. By analyzing these plots at off-nominal conditions, the sensitivity or robustness of the system in tracking commands can be predicted. Z-plots provide an important tool for designing robust control systems. The Variable-Gain SOFFT methodology was used to design a flight control system for the F/A-18 aircraft. It is shown that SOFFT can be used to expand the operating regime and provide greater performance (flying/handling qualities) throughout the extended flight regime. This work was performed under the NASA SBIR program. ICS plans to market the software developed as a new module in its commercial CACSD software package: ACET.
Is feedback control effective for ecosystem-based fisheries management?
Matsuda, Hiroyuki; Abrams, Peter A
2013-12-21
We investigate the effects of species interactions on the robustness of feedback control of the harvesting of prey species. We consider the consequences of feedback control of fishing effort. If a prey species is exploited, increasing fishing effort decreases predator abundance more than it does the prey abundance. Feedback control of fishing effort may cause the extinction of the predator, even if the prey population is well controlled. Even when fishing effort is controlled by predator density, it is difficult for the fishery and the predator to coexist, and, if they do so, the system exhibits complex dynamic behaviors. If the predator and fishery coexist, feedback control of fishing effort converges to a stable equilibrium, a synchronous cycle, or an asynchronous cycle. In the last case, the system undergoes more complex cycling with a longer period than that when the fishing effort is kept constant. These analyses suggest that there is no effective strategy that is robust against measurement errors, process errors and complex interactions in ecosystem dynamics.
Is feedback control effective for ecosystem-based fisheries management?
Matsuda, Hiroyuki; Abrams, Peter A
2013-12-21
We investigate the effects of species interactions on the robustness of feedback control of the harvesting of prey species. We consider the consequences of feedback control of fishing effort. If a prey species is exploited, increasing fishing effort decreases predator abundance more than it does the prey abundance. Feedback control of fishing effort may cause the extinction of the predator, even if the prey population is well controlled. Even when fishing effort is controlled by predator density, it is difficult for the fishery and the predator to coexist, and, if they do so, the system exhibits complex dynamic behaviors. If the predator and fishery coexist, feedback control of fishing effort converges to a stable equilibrium, a synchronous cycle, or an asynchronous cycle. In the last case, the system undergoes more complex cycling with a longer period than that when the fishing effort is kept constant. These analyses suggest that there is no effective strategy that is robust against measurement errors, process errors and complex interactions in ecosystem dynamics. PMID:23792332
Feedback control as a framework for understanding tradeoffs in biology.
Cowan, Noah J; Ankarali, Mert M; Dyhr, Jonathan P; Madhav, Manu S; Roth, Eatai; Sefati, Shahin; Sponberg, Simon; Stamper, Sarah A; Fortune, Eric S; Daniel, Thomas L
2014-07-01
Control theory arose from a need to control synthetic systems. From regulating steam engines to tuning radios to devices capable of autonomous movement, it provided a formal mathematical basis for understanding the role of feedback in the stability (or change) of dynamical systems. It provides a framework for understanding any system with regulation via feedback, including biological ones such as regulatory gene networks, cellular metabolic systems, sensorimotor dynamics of moving animals, and even ecological or evolutionary dynamics of organisms and populations. Here, we focus on four case studies of the sensorimotor dynamics of animals, each of which involves the application of principles from control theory to probe stability and feedback in an organism's response to perturbations. We use examples from aquatic (two behaviors performed by electric fish), terrestrial (following of walls by cockroaches), and aerial environments (flight control by moths) to highlight how one can use control theory to understand the way feedback mechanisms interact with the physical dynamics of animals to determine their stability and response to sensory inputs and perturbations. Each case study is cast as a control problem with sensory input, neural processing, and motor dynamics, the output of which feeds back to the sensory inputs. Collectively, the interaction of these systems in a closed loop determines the behavior of the entire system. PMID:24893678
Theory of feedback controlled brain stimulations for Parkinson's disease
NASA Astrophysics Data System (ADS)
Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.
2016-01-01
Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.
Active flutter suppression using optical output feedback digital controllers
NASA Technical Reports Server (NTRS)
1982-01-01
A method for synthesizing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A convergent algorithm is employed to determine constrained control law parameters that minimize an infinite time discrete quadratic performance index. Low order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. An input noise adjustment procedure is used to improve the stability margins of the digital active flutter controller. Sample rate variation, prefilter pole variation, control structure variation and gain scheduling are discussed. A digital control law which accommodates computation delay can stabilize the wing with reasonable rms performance and adequate stability margins.
Detecting non-linearities in neuro-electrical signals: A study of synchronous local field potentials
NASA Astrophysics Data System (ADS)
Müller-Gerking, Johannes; Martinerie, Jacques; Neuenschwander, Sergio; Pezard, Laurent; Renault, Bernard; Varela, Francisco J.
The question of the presence and detection of non-linear dynamics and possibly low-dimensional chaos in the brain is still an open question, with recent results indicating that initial claims for low dimensionality were faulted by incomplete statistical testing. To make some progress on this question, our approach was to use stringent data analysis of precisely controlled and behaviorally significant neuroelectric data. There are strong indications that functional brain activity is correlated with synchronous local field potentials. We examine here such synchronous episodes in data recorded from the visual system of behaving cats and pigeons. Our purpose was to examine under these ideal conditions whether the time series showed any evidence of non-linearity concommitantly with the arising of synchrony. To test for non-linearity we have used surrogate sets for non-linear forecasting, the false nearest strands method, and an examination of deterministic vs stochastic modeling. Our results indicate that the time series under examination do show evidence for traces of non-linear dynamics but weakly, since they are not robust under changes of parameters. We conclude that low-dimensional chaos is unlikely to be found in the brain, and that a robust detection and characterization of higher-dimensional non-linear dynamics is beyond the reach of current analytical tools.
Discrete-time infinity control problem with measurement feedback
NASA Technical Reports Server (NTRS)
Stoorvogel, A. A.; Saberi, A.; Chen, B. M.
1992-01-01
The paper is concerned with the discrete-time H(sub infinity) control problem with measurement feedback. The authors extend previous results by having weaker assumptions on the system parameters. The authors also show explicitly the structure of H(sub infinity) controllers. Finally, they show that it is in certain cases possible, without loss of performance, to reduce the dynamical order of the controllers.
Multiple feedback control apparatus for power conditioning equipment
NASA Technical Reports Server (NTRS)
Biess, John (Inventor); Yu, Yuan (Inventor)
1977-01-01
An improved feedback control system to govern the cyclic operation of the power switch of a non-dissipative power conditioning equipment. The apparatus includes two or three control loops working in unison. The first causes the output DC level to be compared with a reference, and the error amplified for control purposes. The second utilizes the AC component of the voltage across the output filter inductor or the current through the output filter capacitor, and the third loop senses the output transients.
Robust Feedback Control of Flow Induced Structural Radiation of Sound
NASA Technical Reports Server (NTRS)
Heatwole, Craig M.; Bernhard, Robert J.; Franchek, Matthew A.
1997-01-01
A significant component of the interior noise of aircraft and automobiles is a result of turbulent boundary layer excitation of the vehicular structure. In this work, active robust feedback control of the noise due to this non-predictable excitation is investigated. Both an analytical model and experimental investigations are used to determine the characteristics of the flow induced structural sound radiation problem. The problem is shown to be broadband in nature with large system uncertainties associated with the various operating conditions. Furthermore the delay associated with sound propagation is shown to restrict the use of microphone feedback. The state of the art control methodologies, IL synthesis and adaptive feedback control, are evaluated and shown to have limited success for solving this problem. A robust frequency domain controller design methodology is developed for the problem of sound radiated from turbulent flow driven plates. The control design methodology uses frequency domain sequential loop shaping techniques. System uncertainty, sound pressure level reduction performance, and actuator constraints are included in the design process. Using this design method, phase lag was added using non-minimum phase zeros such that the beneficial plant dynamics could be used. This general control approach has application to lightly damped vibration and sound radiation problems where there are high bandwidth control objectives requiring a low controller DC gain and controller order.
Nonlinear feedback control for high alpha flight
NASA Technical Reports Server (NTRS)
Stalford, Harold
1990-01-01
Analytical aerodynamic models are derived from a high alpha 6 DOF wind tunnel model. One detail model requires some interpolation between nonlinear functions of alpha. One analytical model requires no interpolation and as such is a completely continuous model. Flight path optimization is conducted on the basic maneuvers: half-loop, 90 degree pitch-up, and level turn. The optimal control analysis uses the derived analytical model in the equations of motion and is based on both moment and force equations. The maximum principle solution for the half-loop is poststall trajectory performing the half-loop in 13.6 seconds. The agility induced by thrust vectoring capability provided a minimum effect on reducing the maneuver time. By means of thrust vectoring control the 90 degrees pitch-up maneuver can be executed in a small place over a short time interval. The agility capability of thrust vectoring is quite beneficial for pitch-up maneuvers. The level turn results are based currently on only outer layer solutions of singular perturbation. Poststall solutions provide high turn rates but generate higher losses of energy than that of classical sustained solutions.
Feedback and Modularity in Cell Cycle Control
NASA Astrophysics Data System (ADS)
Skotheim, Jan
2009-03-01
Underlying the wonderful diversity of natural forms is the ability of an organism to grow into its appropriate shape. Regulation ensures that cells grow, divide and differentiate so that the organism and its constitutive parts are properly proportioned and of suitable size. Although the size-control mechanism active in an individual cell is of fundamental importance to this process, it is difficult to isolate and study in complex multi-cellular systems and remains poorly understood. This motivates our use of the budding yeast model organism, whose Start checkpoint integrates multiple internal (e.g. cell size) and external signals into an irreversible decision to enter the cell cycle. We have endeavored to address the following two questions: What makes the Start transition irreversible? How does a cell compute its own size? I will report on the progress we have made. Our work is part of an emerging framework for understanding biological control circuits, which will allow us to discern the function of natural systems and aid us in engineering synthetic systems.
Microgravity vibration isolation: Optimal preview and feedback control
NASA Technical Reports Server (NTRS)
Hampton, R. D.; Knospe, C. R.; Grodsinsky, C. M.; Allaire, P. E.; Lewis, D. W.
1992-01-01
In order to achieve adequate low-frequency vibration isolation for certain space experiments an active control is needed, due to inherent passive-isolator limitations. Proposed here are five possible state-space models for a one-dimensional vibration isolation system with a quadratic performance index. The five models are subsets of a general set of nonhomogeneous state space equations which includes disturbance terms. An optimal control is determined, using a differential equations approach, for this class of problems. This control is expressed in terms of constant, Linear Quadratic Regulator (LQR) feedback gains and constant feedforward (preview) gains. The gains can be easily determined numerically. They result in a robust controller and offers substantial improvements over a control that uses standard LQR feedback alone.
Ultrashort pulse laser microsurgery system with plasma luminescence feedback control
Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Gold, D.M.; Darrow, C.B.; Da Silva, L.B.
1997-11-10
Plasma luminescence spectroscopy was used for precise ablation of bone tissue during ultrashort pulse laser (USPL) micro-spinal surgery. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.
Design of multivariable feedback control systems via spectral assignment
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Marefat, M.
1983-01-01
The applicability of spectral assignment techniques to the design of multivariable feedback control systems was investigated. A fractional representation design procedure for unstable plants is presented and illustrated with an example. A computer aided design software package implementing eigenvalue/eigenvector design procedures is described. A design example which illustrates the use of the program is explained.
Toward broadband electroacoustic resonators through optimized feedback control strategies
NASA Astrophysics Data System (ADS)
Boulandet, R.; Lissek, H.
2014-09-01
This paper presents a methodology for the design of broadband electroacoustic resonators for low-frequency room equalization. An electroacoustic resonator denotes a loudspeaker used as a membrane resonator, the acoustic impedance of which can be modified through proportional feedback control, to match a target impedance. However, such impedance matching only occurs over a limited bandwidth around resonance, which can limit its use for the low-frequency equalization of rooms, requiring an effective control at least up to the Schroeder frequency. Previous experiments have shown that impedance matching can be achieved over a range of a few octaves using a simple proportional control law. But there is still a limit to the feedback gain, beyond which the feedback-controlled loudspeaker becomes non-dissipative. This paper evaluates the benefits of using PID control and phase compensation techniques to improve the overall performance of the electroacoustic resonator. More specifically, it is shown that some adverse effects due to high-order dynamics in the moving-coil transducer can be mitigated. The corresponding control settings are also identified with equivalent electroacoustic resonator parameters, allowing a straightforward design of the controller. Experimental results using PID control and phase compensation are finally compared in terms of sound absorption performances. As a conclusion the overall performances of electroacoustic resonators for damping the modal resonances inside a duct are presented, along with general discussions on practical implementation and the extension to actual room modes damping.
Accessibility, stabilizability, and feedback control of continuous orbital transfer.
Gurfil, Pini
2004-05-01
This paper investigates the problem of low-thrust orbital transfer using orbital element feedback from a control-theoretic standpoint, concepts of controllability, feedback stabilizability, and their interaction. The Gauss variational equations (GVEs) are used to model the state-space dynamics. First, the notion of accessibility, a weaker form of controllability, is presented. It is then shown that the GVEs are globally accessible. Based on the accessibility result, a nonlinear feedback controller is derived that asymptotically steers a vehicle from an initial elliptic Keplerian orbit to any given elliptic Keplerian orbit. The performance of the new controller is illustrated by simulating an orbital transfer between two geosynchronous Earth orbits. It is shown that the low-thrust controller requires less fuel than an impulsive maneuver for the same transfer time. Closed-form, analytic expressions for the new orbital transfer controller are given. Finally, it is proved, based on a topological nonlinear stabilizability test, that there does not exist a continuous closed-loop controller that can transfer a spacecraft to a parabolic escape trajectory.
Feedback control of major disruptions in International Thermonuclear Experimental Reactor
Sen, A. K.
2011-08-15
It is argued that major disruptions in ITER can be avoided by the feedback control of the causative MHD precursors. The sensors will be 2D-arrays of ECE detectors and the suppressors will be modulated ECH beams injected radially to produce non-thermal radial pressures to counter the radial dynamics of MHD modes. The appropriate amplitude and phase of this signal can stabilize the relevant MHD modes and prevent their evolution to a major disruption. For multimode MHD precursors, an optimal feedback scheme with a Kalman filter is discussed.
L1 adaptive output-feedback control architectures
NASA Astrophysics Data System (ADS)
Kharisov, Evgeny
This research focuses on development of L 1 adaptive output-feedback control. The objective is to extend the L1 adaptive control framework to a wider class of systems, as well as obtain architectures that afford more straightforward tuning. We start by considering an existing L1 adaptive output-feedback controller for non-strictly positive real systems based on piecewise constant adaptation law. It is shown that L 1 adaptive control architectures achieve decoupling of adaptation from control, which leads to bounded away from zero time-delay and gain margins in the presence of arbitrarily fast adaptation. Computed performance bounds provide quantifiable performance guarantees both for system output and control signal in transient and steady state. A noticeable feature of the L1 adaptive controller is that its output behavior can be made close to the behavior of a linear time-invariant system. In particular, proper design of the lowpass filter can achieve output response, which almost scales for different step reference commands. This property is relevant to applications with human operator in the loop (for example: control augmentation systems of piloted aircraft), since predictability of the system response is necessary for adequate performance of the operator. Next we present applications of the L1 adaptive output-feedback controller in two different fields of engineering: feedback control of human anesthesia, and ascent control of a NASA crew launch vehicle (CLV). The purpose of the feedback controller for anesthesia is to ensure that the patient's level of sedation during surgery follows a prespecified profile. The L1 controller is enabled by anesthesiologist after he/she achieves sufficient patient sedation level by introducing sedatives manually. This problem formulation requires safe switching mechanism, which avoids controller initialization transients. For this purpose, we used an L1 adaptive controller with special output predictor initialization routine
Predictability of extremes in non-linear hierarchically organized systems
NASA Astrophysics Data System (ADS)
Kossobokov, V. G.; Soloviev, A.
2011-12-01
Understanding the complexity of non-linear dynamics of hierarchically organized systems progresses to new approaches in assessing hazard and risk of the extreme catastrophic events. In particular, a series of interrelated step-by-step studies of seismic process along with its non-stationary though self-organized behaviors, has led already to reproducible intermediate-term middle-range earthquake forecast/prediction technique that has passed control in forward real-time applications during the last two decades. The observed seismic dynamics prior to and after many mega, great, major, and strong earthquakes demonstrate common features of predictability and diverse behavior in course durable phase transitions in complex hierarchical non-linear system of blocks-and-faults of the Earth lithosphere. The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable analytical models, which leads to widespread practice of their deceptive application. The consequences of underestimation of seismic hazard propagate non-linearly into inflicted underestimation of risk and, eventually, into unexpected societal losses due to earthquakes and associated phenomena (i.e., collapse of buildings, landslides, tsunamis, liquefaction, etc.). The studies aimed at forecast/prediction of extreme events (interpreted as critical transitions) in geophysical and socio-economical systems include: (i) large earthquakes in geophysical systems of the lithosphere blocks-and-faults, (ii) starts and ends of economic recessions, (iii) episodes of a sharp increase in the unemployment rate, (iv) surge of the homicides in socio-economic systems. These studies are based on a heuristic search of phenomena preceding critical transitions and application of methodologies of pattern recognition of infrequent events. Any study of rare
Feedback Control of Two-Component Regulatory Systems.
Groisman, Eduardo A
2016-09-01
Two-component systems are a dominant form of bacterial signal transduction. The prototypical two-component system consists of a sensor that responds to a specific input(s) by modifying the output of a cognate regulator. Because the output of a two-component system is the amount of phosphorylated regulator, feedback mechanisms may alter the amount of regulator, and/or modify the ability of a sensor or other proteins to alter the phosphorylation state of the regulator. Two-component systems may display intrinsic feedback whereby the amount of phosphorylated regulator changes under constant inducing conditions and without the participation of additional proteins. Feedback control allows a two-component system to achieve particular steady-state levels, to reach a given steady state with distinct dynamics, to express coregulated genes in a given order, and to activate a regulator to different extents, depending on the signal acting on the sensor. PMID:27607549
Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight
NASA Technical Reports Server (NTRS)
Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.
2011-01-01
We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, <20 cm radius) in a darkened room is utilized to elicit otolith reflexes in the lateral plane without concordant canal or visual cues. A Tilt-Translation Sled (TTS) is capable of synchronizing pitch tilt with fore-aft translation to align the resultant gravitoinertial vector with the longitudinal body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a
Output feedback control of a quadrotor UAV using neural networks.
Dierks, Travis; Jagannathan, Sarangapani
2010-01-01
In this paper, a new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is proposed using neural networks (NNs) and output feedback. The assumption on the availability of UAV dynamics is not always practical, especially in an outdoor environment. Therefore, in this work, an NN is introduced to learn the complete dynamics of the UAV online, including uncertain nonlinear terms like aerodynamic friction and blade flapping. Although a quadrotor UAV is underactuated, a novel NN virtual control input scheme is proposed which allows all six degrees of freedom (DOF) of the UAV to be controlled using only four control inputs. Furthermore, an NN observer is introduced to estimate the translational and angular velocities of the UAV, and an output feedback control law is developed in which only the position and the attitude of the UAV are considered measurable. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semiglobally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional reconstruction errors while simultaneously relaxing the separation principle. The effectiveness of proposed output feedback control scheme is then demonstrated in the presence of unknown nonlinear dynamics and disturbances, and simulation results are included to demonstrate the theoretical conjecture.
Feedback control of chlorine inductively coupled plasma etch processing
Lin Chaung; Leou, K.-C.; Shiao, K.-M.
2005-03-01
Feedback control has been applied to poly-Si etch processing using a chlorine inductively coupled plasma. Since the positive ion flux and ion energy incident upon the wafer surface are the key factors that influence the etch rate, the ion current and the root mean square (rms) rf voltage on the wafer stage, which are measured using an impedance meter connected to the wafer stage, are adopted as the controlled variables to enhance etch rate. The actuators are two 13.56 MHz rf power generators, which adjust ion density and ion energy, respectively. The results of closed-loop control show that the advantages of feedback control can be achieved. For example, with feedback control, etch rate variation under the transient chamber wall condition is reduced roughly by a factor of 2 as compared to the open-loop case. In addition, the capability of the disturbance rejection was also investigated. For a gas pressure variation of 20%, the largest etch rate variation is about 2.4% with closed-loop control as compared with as large as about 6% variation using open-loop control. Also the effect of ion current and rms rf voltage on etch rate was studied using 2{sup 2} factorial design whose results were used to derive a model equation. The obtained formula was used to adjust the set point of ion current and rf voltage so that the desired etch rate was obtained.
Acceleration and torque feedback for robotic control - Experimental results
NASA Technical Reports Server (NTRS)
Mclnroy, John E.; Saridis, George N.
1990-01-01
Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.
Low Order Empirical Galerkin Models for Feedback Flow Control
NASA Astrophysics Data System (ADS)
Tadmor, Gilead; Noack, Bernd
2005-11-01
Model-based feedback control restrictions on model order and complexity stem from several generic considerations: real time computation, the ability to either measure or reliably estimate the state in real time and avoiding sensitivity to noise, uncertainty and numerical ill-conditioning are high on that list. Empirical POD Galerkin models are attractive in the sense that they are simple and (optimally) efficient, but are notoriously fragile, and commonly fail to capture transients and control effects. In this talk we review recent efforts to enhance empirical Galerkin models and make them suitable for feedback design. Enablers include `subgrid' estimation of turbulence and pressure representations, tunable models using modes from multiple operating points, and actuation models. An invariant manifold defines the model's dynamic envelope. It must be respected and can be exploited in observer and control design. These ideas are benchmarked in the cylinder wake system and validated by a systematic DNS investigation of a 3-dimensional Galerkin model of the controlled wake.
Nonlinear feedback method of robot control - A preliminary experimental study
NASA Technical Reports Server (NTRS)
Tarn, T. J.; Ganguly, S.; Li, Z.; Bejczy, A. K.
1990-01-01
The nonlinear feedback method of robot control has been experimentally implemented on two PUMA 560 robot arms. The feasibility of the proposed controller, which was shown viable through simulation results earlier, is stressed. The servomechanism operates in task space, and the nonlinear feedback takes care of the necessary transformations to compute the necessary joint currents. A discussion is presented of the implementation with details of the experiments performed. The performance of the controller is encouraging but was limited to 100-Hz sampling frequency and to derived velocity information at the time of the experimentation. The setup of the lab, the software aspects, results, and the control hardware architecture that has recently been implemented are discussed.
Output-feedback control of reactive batch distillation columns
Monroy-Loperena, R.; Alvarez-Ramirez, J.
2000-02-01
In this work, an output-feedback, control for the regulation of distillate purity via manipulations of the reflux ratio in reactive batch distillation is designed. The approach is based on an approximate model of the composition dynamics and makes use of a reduced-order observer to estimate the modeling error. An input/output linearizing feedback is proposed where the estimated modeling error is included to achieve robust tracking of a composition reference. It is shown that the resulting controller has the structure of a proportional-integral derivative (PID) controller with antireset windup. The controller performance is tested using a simulation example including strong uncertainties in the reaction model. An interesting finding is that the required reflux ratio policy to reach asymptotically a constant reference resembles the reflux ratio policy obtained from posing an optimization technique.
Force Feedback Control of Robotic Forceps for Minimally Invasive Surgery
NASA Astrophysics Data System (ADS)
Ishii, Chiharu; Kamei, Yusuke
2008-06-01
Recently, the robotic surgical support systems are in clinical use for minimally invasive surgery. For improvement in operativity and safety of minimally invasive surgery, the development of haptic forceps manipulator is in demand to help surgeon's immersion and dexterity. We have developed a multi-DOF robotic forceps manipulator using a novel omni-directional bending mechanism, so far. In this paper, in order to control the developed robotic forceps as a slave manipulator, joy-stick type master manipulator with force feedback mechanism for remote control is designed and built, and force feedback bilateral control system was constructed for grasping and bending motions of the robotic forceps. Experimental works were carried out and experimental results showed the effectiveness of the proposed control system.
Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J
1994-03-01
Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the
Electrotactile EMG feedback improves the control of prosthesis grasping force
NASA Astrophysics Data System (ADS)
Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario
2016-10-01
Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for
Non-linear pattern formation in bone growth and architecture.
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent
Non-linear pattern formation in bone growth and architecture.
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent
Multiple electrokinetic actuators for feedback control of colloidal crystal size.
Juárez, Jaime J; Mathai, Pramod P; Liddle, J Alexander; Bevan, Michael A
2012-10-21
We report a feedback control method to precisely target the number of colloidal particles in quasi-2D ensembles and their subsequent assembly into crystals in a quadrupole electrode. Our approach relies on tracking the number of particles within a quadrupole electrode, which is used in a real-time feedback control algorithm to dynamically actuate competing electrokinetic transport mechanisms. Particles are removed from the quadrupole using DC-field mediated electrophoretic-electroosmotic transport, while high-frequency AC-field mediated dielectrophoretic transport is used to concentrate and assemble colloidal crystals. Our results show successful control of the size of crystals containing 20 to 250 colloidal particles with less than 10% error. Assembled crystals are characterized by their radius of gyration, crystallinity, and number of edge particles, and demonstrate the expected size-dependent properties. Our findings demonstrate successful ensemble feedback control of the assembly of different sized colloidal crystals using multiple actuators, which has broad implications for control over nano- and micro- scale assembly processes involving colloidal components.
Computer modeling of batteries from non-linear circuit elements
NASA Technical Reports Server (NTRS)
Waaben, S.; Federico, J.; Moskowitz, I.
1983-01-01
A simple non-linear circuit model for battery behavior is given. It is based on time-dependent features of the well-known PIN change storage diode, whose behavior is described by equations similar to those associated with electrochemical cells. The circuit simulation computer program ADVICE was used to predict non-linear response from a topological description of the battery analog built from advice components. By a reasonable choice of one set of parameters, the circuit accurately simulates a wide spectrum of measured non-linear battery responses to within a few millivolts.
Analysis of non-linearity in differential wavefront sensing technique.
Duan, Hui-Zong; Liang, Yu-Rong; Yeh, Hsien-Chi
2016-03-01
An analytical model of a differential wavefront sensing (DWS) technique based on Gaussian Beam propagation has been derived. Compared with the result of the interference signals detected by quadrant photodiode, which is calculated by using the numerical method, the analytical model has been verified. Both the analytical model and numerical simulation show milli-radians level non-linearity effect of DWS detection. In addition, the beam clipping has strong influence on the non-linearity of DWS. The larger the beam clipping is, the smaller the non-linearity is. However, the beam walking effect hardly has influence on DWS. Thus, it can be ignored in laser interferometer. PMID:26974079
An integrated optical sensor for GMAW feedback control
NASA Astrophysics Data System (ADS)
Taylor, P. L.; Watkins, A. D.; Larsen, E. D.; Smartt, H. B.
The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major 'off-the-shelf' components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.
Scanning ablation of root caries with acoustic feedback control
NASA Astrophysics Data System (ADS)
Fan, Kenneth; Fried, Daniel
2007-02-01
It has been previously demonstrated that short λ=355-nm laser pulses can be used for the selective removal of caries lesions and composite restorative materials from occlusal surfaces with minimal damage to the peripheral sound tooth structure. One advantage of laser-systems is they can be integrated with acoustic and optical feedback systems for the automated discrimination of dental caries and restorative materials. The objective of this study was to test the hypothesis that root caries could be selectively removed from tooth surfaces using a computer controlled laserscanning system coupled with an acoustic feedback system. Dental root caries surfaces on extracted teeth were scanned with λ=355-nm laser pulses at irradiation intensities ranging from 0.6 to 0.8 J/cm2. Acoustic feedback signals were acquired and used to control the laser output and scanning stages were used to position the laser over carious dentin until all the caries were removed to a fixed depth. Polarization optical coherence tomography (PSOCT) was used to acquire images of the root caries lesions before and after removal by the laser in order to assess if ablation was selective. The amplitude of the acoustic waves generated during the ablation of carious dentin was higher than for sound dentin allowing the acoustic feedback system to discriminate between sound and carious dentin. PS-OCT showed that caries were removed to a depth of up to 1.5-mm with minimal peripheral damage to peripheral sound dentin. The acoustic feedback was successfully used to distinguish between root caries and sound dentin, enabling the selective removal of caries from dentin surfaces using a λ=355-nm, Nd:YAG Q-switched laser system.
Ultrasensitive Negative Feedback Control: A Natural Approach for the Design of Synthetic Controllers
Montefusco, Francesco; Akman, Ozgur E.; Soyer, Orkun S.; Bates, Declan G.
2016-01-01
Many of the most important potential applications of Synthetic Biology will require the ability to design and implement high performance feedback control systems that can accurately regulate the dynamics of multiple molecular species within the cell. Here, we argue that the use of design strategies based on combining ultrasensitive response dynamics with negative feedback represents a natural approach to this problem that fully exploits the strongly nonlinear nature of cellular information processing. We propose that such feedback mechanisms can explain the adaptive responses observed in one of the most widely studied biomolecular feedback systems—the yeast osmoregulatory response network. Based on our analysis of such system, we identify strong links with a well-known branch of mathematical systems theory from the field of Control Engineering, known as Sliding Mode Control. These insights allow us to develop design guidelines that can inform the construction of feedback controllers for synthetic biological systems. PMID:27537373
Montefusco, Francesco; Akman, Ozgur E; Soyer, Orkun S; Bates, Declan G
2016-01-01
Many of the most important potential applications of Synthetic Biology will require the ability to design and implement high performance feedback control systems that can accurately regulate the dynamics of multiple molecular species within the cell. Here, we argue that the use of design strategies based on combining ultrasensitive response dynamics with negative feedback represents a natural approach to this problem that fully exploits the strongly nonlinear nature of cellular information processing. We propose that such feedback mechanisms can explain the adaptive responses observed in one of the most widely studied biomolecular feedback systems-the yeast osmoregulatory response network. Based on our analysis of such system, we identify strong links with a well-known branch of mathematical systems theory from the field of Control Engineering, known as Sliding Mode Control. These insights allow us to develop design guidelines that can inform the construction of feedback controllers for synthetic biological systems. PMID:27537373
Constrained output feedback control of flexible rotor-bearing systems
NASA Astrophysics Data System (ADS)
Kim, Jong-Sun; Lee, Chong-Won
1990-04-01
The design of an optimal constrained output feedback controller for a rotor-bearing system is described, based on a reduced order model. The aims are to stabilize the unstable or marginally stable motion and to control the large build-up of periodic disturbances occurring during operation. The reduced order model is constructed on the basis of a modal model and singular perturbation, retaining the advantages of the two methods. The onset of instability due to spillover is prevented by the constrained optimization, and the robustness and pole assignability are improved by designing not merely a static output feedback but a dynamic compensator. The periodic disturbances, usually caused by rotation, are reduced by using the disturbance observer and feed-forward compensation. The efficiency of the proposed method is demonstrated through two simulation models, a rigid shaft supported by soft bearings at its ends and an overhung rotor system with a tip disk, under both transient vibration and sudden imbalance situations.
Conformal grasping using feedback controlled bubble actuator array
NASA Astrophysics Data System (ADS)
Carrigan, Wei; Stein, Richard; Mittal, Manoj; Wijesundara, Muthu B. J.
2014-06-01
This paper presents an implementation of a bubble actuator array (BAA) based active robotic skin, a modular system, onto existing low cost robotic end-effectors or prosthetic hands for conformal grasping of objects. The active skin is comprised of pneumatically controlled polyurethane rubber bubbles with overlaid sensors for feedback control. Sensor feedback allows the BAA based robotic skin to conformally grasp an object with an explicit uniform force distribution. The bubble actuator array reported here is capable of applying up to 4N of force at each point of contact and tested for conformally grasping objects with a radius of curvature up to 57.15mm. Once integrated onto a two-finger gripper with one degree of freedom (DOF), the active skin was shown to reduce point of contact forces of up to 50% for grasped objects.
Improved Position Sensor for Feedback Control of Levitation
NASA Technical Reports Server (NTRS)
Hyers, Robert; Savage, Larry; Rogers, Jan
2004-01-01
An improved optoelectronic apparatus has been developed to provide the position feedback needed for controlling the levitation subsystem of a containerless-processing system. As explained, the advantage of this apparatus over prior optoelectronic apparatuses that have served this purpose stems from the use of an incandescent lamp, instead of a laser, to illuminate the levitated object. In containerless processing, a small object to be processed is levitated (e.g., by use of a microwave, low-frequency electromagnetic, electrostatic, or acoustic field) so that it is not in contact with the wall of the processing chamber or with any other solid object during processing. In the case of electrostatic or low-frequency electromagnetic levitation, real-time measurement of the displacement of the levitated object from its nominal levitation position along the vertical axis (and, in some cases, along one or two horizontal axes) is needed for feedback control of the levitating field.
Acoustic emission feedback control for control of boiling in a microwave oven
White, Terry L.
1991-01-01
An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.
Mode matching in high non linear susceptibility metamaterials
NASA Astrophysics Data System (ADS)
Héron, Sébastien; Bouchon, Patrick; Haïdar, Riad
2016-04-01
Sub-wavelength Fabry-Perot like resonators are studied both in reflection and transmission for the purpose of second order frequency conversion. The latter are able to hugely confine incoming electric field at resonance inducing great quantity of non linear polarization and thus resonant Sum or Difference Frequency Generation. A metamaterial model is used to homogenize the structure composed of an alternation of non linear dielectric crystal and of metal to predict its resonance wavelengths. The subsequent effective non linear susceptibility for the homogenized layer is driven by the nonlinearities of the dielectric material and by the geometrical parameters, thus leading to much higher susceptibility than existing materials. Besides, the obtained frequency spectra offer a great visibility on the various mode matching scenarios that allow to reach enhanced non linear efficiency highly depending on whether the produced wave is back- or forward propagating.
Dilatonic non-linear sigma models and Ricci flow extensions
NASA Astrophysics Data System (ADS)
Carfora, M.; Marzuoli, A.
2016-09-01
We review our recent work describing, in terms of the Wasserstein geometry over the space of probability measures, the embedding of the Ricci flow in the renormalization group flow for dilatonic non-linear sigma models.
Feedback-Controlled LED Photobioreactor for Photophysiological Studies of Cyanobacteria
Melnicki, Matthew R.; Pinchuk, Grigoriy E.; Hill, Eric A.; Kucek, Leo A.; Stolyar, Sergey; Fredrickson, Jim K.; Konopka, Allan; Beliaev, Alex S.
2013-04-09
A custom photobioreactor (PBR) was designed to enable automatic light adjustments using computerized feedback control. A black anodized aluminum enclosure, constructed to surround the borosilicate reactor vessel, prevents the transmission of ambient light and serves as a mount for arrays of light-emitting diodes (LEDs). The high-output LEDs provide narrow-band light of either 630 or 680 nm for preferential excitation of the cyanobacterial light-harvesting pigments, phycobilin or chlorophyll a, respectively. Custom developed software BioLume provides automatic control of optical properties and a computer feedback loop can automatically adjust the incident irradiance as necessary to maintain a fixed transmitted light through the culture, based on user-determined set points. This feedback control serves to compensate for culture dynamics which have optical effects, (e.g., changing cell density, pigment adaptations) and thus can determine the appropriate light conditions for physiological comparisons or to cultivate light-sensitive strains, without prior analyses. The LED PBR may also be controlled as a turbidostat, using a feedback loop to continuously adjust the rate of media-dilution based on the transmitted light measurements, with a fast and precise response. This cultivation system gains further merit as a high-performance analytical device, using non-invasive tools (e.g., dissolved gas sensors, online mass spectrometry) to automate real-time measurements, thus permitting unsupervised experiments to search for optimal growth conditions, to monitor physiological responses to perturbations, as well as to quantitate photophysiological parameters using an in situ light-saturation response routine.
Optimal feedback control infinite dimensional parabolic evolution systems: Approximation techniques
NASA Technical Reports Server (NTRS)
Banks, H. T.; Wang, C.
1989-01-01
A general approximation framework is discussed for computation of optimal feedback controls in linear quadratic regular problems for nonautonomous parabolic distributed parameter systems. This is done in the context of a theoretical framework using general evolution systems in infinite dimensional Hilbert spaces. Conditions are discussed for preservation under approximation of stabilizability and detectability hypotheses on the infinite dimensional system. The special case of periodic systems is also treated.
A model for reverberating circuits with controlled feedback
NASA Astrophysics Data System (ADS)
Rodrigues, Vanessa de Freitas; de Castro, Maria Clícia Stelling; Wedemann, Roseli Suzi; Cortez, Celia Martins
2015-12-01
We studied the behavior of a mathematic-computational model for a reverberating neuronal circuit with controlled feedback, verifying the output pattern of the circuit, by means simulations using a program in language C++. Using values obtained from surveying the literature from animal experiments, we observed that the model was able to reproduce the polissynaptic activity of a neuron group of a vigil rat, with looping time of three neurons of the order of magnitude of 102 ms.
Fiber optic sensor: Feedback control design and implementation
Tung, D.; Bertram, L.; Hillaire, R.; Anderson, S.; Leonard, S.; Marburger, S.
1997-07-01
Digital feedback control of Gas Tungsten Arc Welding (GTAW) has been demonstrated on a tube sample of stainless steel and titanium alloy. A fiber optic sensor returns a signal proportional to backside radiance from the workpiece; that signal is used by the controller to compute a compensation weld current. The controller executes 10 times a second on an Intel 486 chip. For travel speeds of 3 to 6 inches per minute and thicknesses between 0.025 and 0.10 inches, constant backside bead width was maintained within 0.02 inches, from startup to tie-in.
Approach to control moment gyroscope steering using feedback linearization
NASA Technical Reports Server (NTRS)
Dzielski, John; Bergmann, Edward; Paradiso, Joseph A.; Rowell, Derek; Wormley, David
1991-01-01
This paper presents an approach for controlling spacecraft equipped with control moment gyroscopes. A technique from feedback linearization theory is used to transform the original nonlinear problem to an equivalent linear form without approximating assumptions. In this form, the spacecraft dynamics appear linearly, and are decoupled from redundancy in the system of gyroscopes. A general approach to distributing control effort among the available actuators is described which includes provisions for redistribution of rotors, explicit bounds in gimbal rates, and guaranteed operation at or near singular configurations. A particular algorithm is developed for systems of double-gimbal devices, and demonstrated in two examples for which existing approaches fail to give adequate performance.
Output feedback sliding mode control under networked environment
NASA Astrophysics Data System (ADS)
Zhang, Jinhui; Lam, James; Xia, Yuanqing
2013-04-01
This article considers the problem of sliding mode output feedback control for networked control systems (NCSs). The key idea is to make use of not only the current and previous measurements, but also previous inputs for the reconstruction of the state variables. Using this idea, sliding mode controllers are designed for systems with constant or time-varying network delay. The approach is not only more practical but also easy to implement. To illustrate this, the design technique is applied to an inverted pendulum system.
Practical Loop-Shaping Design of Feedback Control Systems
NASA Technical Reports Server (NTRS)
Kopasakis, George
2010-01-01
An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the
Task driven feedback control of robot arms - A step toward intelligent control
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Tarn, T. J.; Li, Z. F.
1986-01-01
The process of connecting task descriptions originating from machine intelligence planning programs to the mechanization of feedback control of robot arms is analyzed. It is shown in this paper that control theories and practices can be extended to a higher level where feedback control of robot arms directly can respond to work space task commands provided that the work space task as a command is given in the form of a closed function of time. A general mathematical procedure using tools from differential geometry is introduced for synthesizing task space motion planning so that the planned motion can be used as a direct input to the robot arm feedback control system to achieve desired robot hand motion. By definition, 'intelligent control' is being manifested through robot performance in the task space relative to task space commands. Thus, the capability of implementing feedback control of robot arms directly driven by appropriate task descriptions in the workspace as commands is a step toward intelligent control.
Evidence for feedback control of pineal melatonin secretion.
Bedrosian, Tracy A; Herring, Kamillya L; Walton, James C; Fonken, Laura K; Weil, Zachary M; Nelson, Randy J
2013-05-10
Melatonin is the principle hormonal product of the pineal gland. It is secreted with a robust daily rhythm, peaking near the middle of the night. During the daytime, concentrations remain very low, as exposure to light robustly suppresses its secretion. The regulation of melatonin by light is well-characterized, but an interesting feature of the daily melatonin rhythm is that its peak occurs near the middle of the night and then levels begin to drop hours before morning light exposure. The mechanism underlying the light-independent drop in melatonin during late night remains unspecified. Feedback control is one mechanism of hormone regulation, but no studies thus far have explored the possibility of such regulation in the pineal of white-footed mice (Peromyscus leucopus). The pineal gland and SCN express melatonin receptors, and melatonin regulates its own receptor density in the brain. We investigated the possibility of feedback control of melatonin by administering melatonin receptor antagonists to female white-footed mice and then measuring plasma melatonin concentrations. In the first experiment, we observed that luzindole, a dual MT1/MT2 receptor antagonist administered 1h after lights off, caused an increase in plasma melatonin both 1 and 2h later. In a second experiment, we did not observe a change in melatonin concentrations following injection of an antagonist specific for the MT2 subtype. These results suggest the possibility of feedback control of melatonin release, occurring preferentially through the MT1 receptor subtype. PMID:23528860
NASA Astrophysics Data System (ADS)
Alkhalifah, Tariq; Choi, Yunseok
2012-12-01
Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.
Towards Quantum Cybernetics:. Optimal Feedback Control in Quantum Bio Informatics
NASA Astrophysics Data System (ADS)
Belavkin, V. P.
2009-02-01
A brief account of the quantum information dynamics and dynamical programming methods for the purpose of optimal control in quantum cybernetics with convex constraints and cońcave cost and bequest functions of the quantum state is given. Consideration is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme with continuous observations we exploit the separation theorem of filtering and control aspects for quantum stochastic micro-dynamics of the total system. This allows to start with the Belavkin quantum filtering equation and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to only Hamiltonian terms in the filtering equation. A controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.
Non-linear effects of soda taxes on consumption and weight outcomes.
Fletcher, Jason M; Frisvold, David E; Tefft, Nathan
2015-05-01
The potential health impacts of imposing large taxes on soda to improve population health have been of interest for over a decade. As estimates of the effects of existing soda taxes with low rates suggest little health improvements, recent proposals suggest that large taxes may be effective in reducing weight because of non-linear consumption responses or threshold effects. This paper tests this hypothesis in two ways. First, we estimate non-linear effects of taxes using the range of current rates. Second, we leverage the sudden, relatively large soda tax increase in two states during the early 1990s combined with new synthetic control methods useful for comparative case studies. Our findings suggest virtually no evidence of non-linear or threshold effects. PMID:24615758
Non-linear effects of soda taxes on consumption and weight outcomes.
Fletcher, Jason M; Frisvold, David E; Tefft, Nathan
2015-05-01
The potential health impacts of imposing large taxes on soda to improve population health have been of interest for over a decade. As estimates of the effects of existing soda taxes with low rates suggest little health improvements, recent proposals suggest that large taxes may be effective in reducing weight because of non-linear consumption responses or threshold effects. This paper tests this hypothesis in two ways. First, we estimate non-linear effects of taxes using the range of current rates. Second, we leverage the sudden, relatively large soda tax increase in two states during the early 1990s combined with new synthetic control methods useful for comparative case studies. Our findings suggest virtually no evidence of non-linear or threshold effects.
Optimal open-loop and feedback control using single gimbal control moment gyroscopes
NASA Technical Reports Server (NTRS)
Hoelscher, Brian R.; Vadali, Srinvas R.
1993-01-01
Methods for control of spacecraft maneuvers through the use of single gimbal control moment gyroscopes are developed. The development employs an integrated model of the spacecraft dynamics with the control moment gyroscope dynamics. Smooth and continuous open-loop control profiles are obtained which minimize a weighted function of maneuver time, magnitude of control effort, and proximity to singular gimbal configurations. Closed-loop state feedback control laws are derived by invoking Lyapunov stability theory. The schemes are presented for implementing the commanded state feedback: gimbal rate control and gimbal acceleration control. The appropriate handling of singular gimbal configurations is also discussed.
Independent modal space control with positive position feedback
NASA Technical Reports Server (NTRS)
Baz, A.; Poh, S.; Fedor, J.
1989-01-01
An independent modal space control (IMSC) algorithm is presented, whose modal control forces are generated from a positive position feedback (PPF) strategy. The proposed algorithm combines the attributes of both the IMSC and the PPF, and maintains the simplicity of the IMSC as it designs the controller of a complex structure at the uncoupled modal level. The effectiveness of the algorithm in damping out the vibration of flexible structures is validated experimentally. A simple cantilevered beam is employed as an example of a flexible structure whose multimodes of vibration are controlled by a single actuator. Performance of the active control system is determined in the frequency and the time domains. The experimental results indicate the potential of the proposed methodology as a viable method for controlling the vibration of large flexible structures.
Mechanisms in Adaptive Feedback Control: Photoisomerization in a Liquid
Hoki, Kunihito; Brumer, Paul
2005-10-14
The underlying mechanism for Adaptive Feedback Control in the experimental photoisomerization of 3,3'-diethyl-2,2'-thiacyanine iodide (NK88) in methanol is exposed theoretically. With given laboratory limitations on laser output, the complicated electric fields are shown to achieve their targets in qualitatively simple ways. Further, control over the cis population without laser limitations reveals an incoherent pump-dump scenario as the optimal isomerization strategy. In neither case are there substantial contributions from quantum multiple-path interference or from nuclear wave packet coherence. Environmentally induced decoherence is shown to justify the use of a simplified theoretical model.
Discretization chaos - Feedback control and transition to chaos
NASA Technical Reports Server (NTRS)
Grantham, Walter J.; Athalye, Amit M.
1990-01-01
Problems in the design of feedback controllers for chaotic dynamical systems are considered theoretically, focusing on two cases where chaos arises only when a nonchaotic continuous-time system is discretized into a simpler discrete-time systems (exponential discretization and pseudo-Euler integration applied to Lotka-Volterra competition and prey-predator systems). Numerical simulation results are presented in extensive graphs and discussed in detail. It is concluded that care must be taken in applying standard dynamical-systems methods to control systems that may be discontinuous or nondifferentiable.
Cosmological non-linear hydrodynamics with post-Newtonian corrections
Hwang, Jai-chan; Noh, Hyerim; Puetzfeld, Dirk E-mail: hr@kasi.re.kr
2008-03-15
The purpose of this paper is to present general relativistic cosmological hydrodynamic equations in Newtonian-like forms using the post-Newtonian (PN) method. The PN approximation, based on the assumptions of weak gravitational fields and slow motions, provides a way to estimate general relativistic effects in the fully non-linear evolution stage of the large-scale cosmic structures. We extend Chandrasekhar's first-order PN (1PN) hydrodynamics based on the Minkowski background to the one based on the Robertson-Walker background. We assume the presence of Friedmann's cosmological spacetime as a background. In the background we include the 3-space curvature, the cosmological constant and general pressure. In the Newtonian order and 1PN order we include general pressure, stress, and flux. We show that the Newtonian hydrodynamic equations appear naturally in the 0PN order. The spatial gauge degree of freedom is fixed in a unique manner and the basic equations are arranged without taking the temporal gauge condition. In this way we can conveniently try alternative temporal gauge conditions depending on the mathematical convenience. We investigate a number of temporal gauge conditions under which all the remaining variables are equivalently gauge invariant. We show that compared with the action-at-a-distance nature of the Newtonian gravitational potential, 1PN corrections make the propagation speed of a perturbed potential dependent on the temporal gauge condition; we show that to 1PN order the physically relevant propagation speed of gravity is the same as the speed of light. Our aim is to present the fully non-linear cosmological 1PN equations in a form suitable for implementation in conventional Newtonian hydrodynamic simulations with minimal extensions. The 1PN terms can be considered as relativistic corrections added to the well-known Newtonian equations. The proper arrangement of the variables and equations in combination with suitable gauge conditions would allow
Wang, Huanqing; Liu, Kefu; Liu, Xiaoping; Chen, Bing; Lin, Chong
2015-09-01
In this paper, we consider the problem of observer-based adaptive neural output-feedback control for a class of stochastic nonlinear systems with nonstrict-feedback structure. To overcome the design difficulty from the nonstrict-feedback structure, a variable separation approach is introduced by using the monotonically increasing property of system bounding functions. On the basis of the state observer, and by combining the adaptive backstepping technique with radial basis function neural networks' universal approximation capability, an adaptive neural output feedback control algorithm is presented. It is shown that the proposed controller can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded in the sense of mean quartic value. Simulation results are provided to show the effectiveness of the proposed control scheme.
Reinforcement learning output feedback NN control using deterministic learning technique.
Xu, Bin; Yang, Chenguang; Shi, Zhongke
2014-03-01
In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is employed to minimize both the strategic utility function and the tracking error. A deterministic learning technique has been employed to guarantee that the partial persistent excitation condition of internal states is satisfied during tracking control to a periodic reference orbit. The uniformly ultimate boundedness of closed-loop signals is shown via Lyapunov stability analysis. Simulation results are presented to demonstrate the effectiveness of the proposed control. PMID:24807456
Reinforcement learning output feedback NN control using deterministic learning technique.
Xu, Bin; Yang, Chenguang; Shi, Zhongke
2014-03-01
In this brief, a novel adaptive-critic-based neural network (NN) controller is investigated for nonlinear pure-feedback systems. The controller design is based on the transformed predictor form, and the actor-critic NN control architecture includes two NNs, whereas the critic NN is used to approximate the strategic utility function, and the action NN is employed to minimize both the strategic utility function and the tracking error. A deterministic learning technique has been employed to guarantee that the partial persistent excitation condition of internal states is satisfied during tracking control to a periodic reference orbit. The uniformly ultimate boundedness of closed-loop signals is shown via Lyapunov stability analysis. Simulation results are presented to demonstrate the effectiveness of the proposed control.
Feedback control by online learning an inverse model.
Waegeman, Tim; Wyffels, Francis; Schrauwen, Francis
2012-10-01
A model, predictor, or error estimator is often used by a feedback controller to control a plant. Creating such a model is difficult when the plant exhibits nonlinear behavior. In this paper, a novel online learning control framework is proposed that does not require explicit knowledge about the plant. This framework uses two learning modules, one for creating an inverse model, and the other for actually controlling the plant. Except for their inputs, they are identical. The inverse model learns by the exploration performed by the not yet fully trained controller, while the actual controller is based on the currently learned model. The proposed framework allows fast online learning of an accurate controller. The controller can be applied on a broad range of tasks with different dynamic characteristics. We validate this claim by applying our control framework on several control tasks: 1) the heating tank problem (slow nonlinear dynamics); 2) flight pitch control (slow linear dynamics); and 3) the balancing problem of a double inverted pendulum (fast linear and nonlinear dynamics). The results of these experiments show that fast learning and accurate control can be achieved. Furthermore, a comparison is made with some classical control approaches, and observations concerning convergence and stability are made. PMID:24808008
Learning arm's posture control using reinforcement learning and feedback-error-learning.
Kambara, H; Kim, J; Sato, M; Koike, Y
2004-01-01
In this paper, we propose a learning model using the Actor-Critic method and the feedback-error-learning scheme. The Actor-Critic method, which is one of the major frameworks in reinforcement learning, has attracted attention as a computational learning model in the basal ganglia. Meanwhile, the feedback-error-learning is learning architecture proposed as a computationally coherent model of cerebellar motor learning. This learning architecture's purpose is to acquire a feed-forward controller by using a feedback controller's output as an error signal. In past researches, a predetermined constant gain feedback controller was used for the feedback-error-learning. We use the Actor-Critic method for obtaining a feedback controller in the feedback-error-earning. By applying the proposed learning model to an arm's posture control, we show that high-performance feedback and feed-forward controller can be acquired from only by using a scalar value of reward. PMID:17271719
Feedback inhibition controls spike transfer in hybrid thalamic circuits
NASA Astrophysics Data System (ADS)
Le Masson, Gwendal; Renaud-Le Masson, Sylvie; Debay, Damien; Bal, Thierry
2002-06-01
Sensory information reaches the cerebral cortex through the thalamus, which differentially relays this input depending on the state of arousal. Such `gating' involves inhibition of the thalamocortical relay neurons by the reticular nucleus of the thalamus, but the underlying mechanisms are poorly understood. We reconstructed the thalamocortical circuit as an artificial and biological hybrid network in vitro. With visual input simulated as retinal cell activity, we show here that when the gain in the thalamic inhibitory feedback loop is greater than a critical value, the circuit tends towards oscillations-and thus imposes a temporal decorrelation of retinal cell input and thalamic relay output. This results in the functional disconnection of the cortex from the sensory drive, a feature typical of sleep states. Conversely, low gain in the feedback inhibition and the action of noradrenaline, a known modulator of arousal, converge to increase input-output correlation in relay neurons. Combining gain control of feedback inhibition and modulation of membrane excitability thus enables thalamic circuits to finely tune the gating of spike transmission from sensory organs to the cortex.
Modeling and sensory feedback control for space manipulators
NASA Technical Reports Server (NTRS)
Masutani, Yasuhiro; Miyazaki, Fumio; Arimoto, Suguru
1989-01-01
The positioning control problem of the endtip of space manipulators whose base are uncontrolled is examined. In such a case, the conventional control method for industrial robots based on a local feedback at each joint is not applicable, because a solution of the joint displacements that satisfies a given position and orientation of the endtip is not decided uniquely. A sensory feedback control scheme for space manipulators based on an artificial potential defined in a task-oriented coordinates is proposed. Using this scheme, the controller can easily determine the input torque of each joint from the data of an external sensor such as a visual device. Since the external sensor is mounted on the unfixed base, the manipulator must track the moving image of the target in sensor coordinates. Moreover the dynamics of the base and the manipulator are interactive. However, the endtip is proven to asymptotically approach the stationary target in an inertial coordinate frame by the Liapunov's method. Finally results of computer simulation for a 6-link space manipulator model show the effectiveness of the proposed scheme.
Control of cardiac alternans by mechanical and electrical feedback
NASA Astrophysics Data System (ADS)
Yapari, Felicia; Deshpande, Dipen; Belhamadia, Youssef; Dubljevic, Stevan
2014-07-01
A persistent alternation in the cardiac action potential duration has been linked to the onset of ventricular arrhythmia, which may lead to sudden cardiac death. A coupling between these cardiac alternans and the intracellular calcium dynamics has also been identified in previous studies. In this paper, the system of PDEs describing the small amplitude of alternans and the alternation of peak intracellular Ca2+ are stabilized by optimal boundary and spatially distributed actuation. A simulation study demonstrating the successful annihilation of both alternans on a one-dimensional cable of cardiac cells by utilizing the full-state feedback controller is presented. Complimentary to these studies, a three variable Nash-Panfilov model is used to investigate alternans annihilation via mechanical (or stretch) perturbations. The coupled model includes the active stress which defines the mechanical properties of the tissue and is utilized in the feedback algorithm as an independent input from the pacing based controller realization in alternans annihilation. Simulation studies of both control methods demonstrate that the proposed methods can successfully annihilate alternans in cables that are significantly longer than 1 cm, thus overcoming the limitations of earlier control efforts.
Output feedback control of a mechanical system using magnetic levitation.
Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C; Favela-Contreras, A
2015-07-01
This paper presents an application of a nonlinear magnetic levitation system to the problem of efficient active control of mass-spring-damper mechanical systems. An output feedback control scheme is proposed for reference position trajectory tracking tasks on the flexible mechanical system. The electromagnetically actuated system is shown to be a differentially flat nonlinear system. An extended state estimation approach is also proposed to obtain estimates of velocity, acceleration and disturbance signals. The differential flatness structural property of the system is then employed for the synthesis of the controller and the signal estimation approach presented in this work. Some experimental and simulation results are included to show the efficient performance of the control approach and the effective estimation of the unknown signals.
Controller Design for EMA in TVC Incorporating Force Feedback
NASA Technical Reports Server (NTRS)
Schinstock, Dale E.; Scott, Douglas A.
1998-01-01
The objective of this research was to develop control schemes and control design procedures for electromechanical actuators (EMA) in thrust vector control (TVC) applications. For a variety of reasons, there is a tendency within the aerospace community to use electromechanical actuators in applications where hydraulics have traditionally been employed. TVC of rocket engines is one such application. However, there is considerable research, development, and testing to be done before EMA will be accepted by the community at large for these types of applications. Besides the development of design procedures for the basic position controller, two major concerns are dealt with in this research by incorporating force feedback: 1) the effects of resonance on the performance of EMA-TVC-rocket-engine systems, and 2) the effects of engine start transients on EMA. This report only highlights the major contributions of this research.
The muscle spindle as a feedback element in muscle control
NASA Technical Reports Server (NTRS)
Andrews, L. T.; Iannone, A. M.; Ewing, D. J.
1973-01-01
The muscle spindle, the feedback element in the myotatic (stretch) reflex, is a major contributor to muscular control. Therefore, an accurate description of behavior of the muscle spindle during active contraction of the muscle, as well as during passive stretch, is essential to the understanding of muscle control. Animal experiments were performed in order to obtain the data necessary to model the muscle spindle. Spectral density functions were used to identify a linear approximation of the two types of nerve endings from the spindle. A model reference adaptive control system was used on a hybrid computer to optimize the anatomically defined lumped parameter estimate of the spindle. The derived nonlinear model accurately predicts the behavior of the muscle spindle both during active discharge and during its silent period. This model is used to determine the mechanism employed to control muscle movement.
Output feedback control of a mechanical system using magnetic levitation.
Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C; Favela-Contreras, A
2015-07-01
This paper presents an application of a nonlinear magnetic levitation system to the problem of efficient active control of mass-spring-damper mechanical systems. An output feedback control scheme is proposed for reference position trajectory tracking tasks on the flexible mechanical system. The electromagnetically actuated system is shown to be a differentially flat nonlinear system. An extended state estimation approach is also proposed to obtain estimates of velocity, acceleration and disturbance signals. The differential flatness structural property of the system is then employed for the synthesis of the controller and the signal estimation approach presented in this work. Some experimental and simulation results are included to show the efficient performance of the control approach and the effective estimation of the unknown signals. PMID:25707718
Decoupling Suspension Controller Based on Magnetic Flux Feedback
Zhang, Wenqing; Li, Jie; Zhang, Kun; Cui, Peng
2013-01-01
The suspension module control system model has been established based on MIMO (multiple input and multiple output) state feedback linearization. We have completed decoupling between double suspension points, and the new decoupling method has been applied to CMS04 magnetic suspension vehicle in national mid-low-speed maglev experiment field of Tangshan city in China. Double suspension system model is very accurate for investigating stability property of maglev control system. When magnetic flux signal is taken back to the suspension control system, the suspension module's antijamming capacity for resisting suspension load variety has been proved. Also, the external force interference has been enhanced. As a result, the robustness and stability properties of double-electromagnet suspension control system have been enhanced. PMID:23844415
Non-linear dynamic modeling of an automobile hydraulic active suspension system
NASA Astrophysics Data System (ADS)
Mrad, R. Ben; Levitt, J. A.; Fassois, S. D.
1994-09-01
Motived by the strong need for realistically describing the dynamical behaviour of automotive systems through adequate mathematical models, a computer-stimulation-suitable non-linear quarter-car model of a hydraulic active suspension system is developed. Unlike previously available linear models characterised by idealised actuator and component behaviour, the developed model accounts for the dynamics of the main system components, including the suspension bushing, pump, accumulator, power and bypass valves, and hydraulic actuator, while also incorporating preliminary versions of the system controllers. Significant system characteristics, such as non-linear pressure-flow relationships, fluid compressibility, pump and valve non-linearities, leakages, as well as Coulomb friction, are also explicitly accounted for, and the underpinning assumptions are discussed. Simulation results obtained by exercising the model provide insight into the system behavior, illustrate the importance of the actuator/component dynamics and their associated non-linearities and reveal the inadequacy of the idealised linear models in capturing the system behaviour, demonstrate specific effects of valve leakage and fluid bulk modulus, are in qualitative agreement with experimental measurements, and stress the need for proper control law design and tuning. The developed model is particularly suitable for analysis, design, control law optimisation, and diagnostic strategies development.
Non-linear system identification in flow-induced vibration
Spanos, P.D.; Zeldin, B.A.; Lu, R.
1996-12-31
The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.
Non-linear Growth Models in Mplus and SAS
Grimm, Kevin J.; Ram, Nilam
2013-01-01
Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134
Non-linear dynamic analysis of anisotropic cylindrical shells
Lakis, A.A.; Selmane, A.; Toledano, A.
1996-12-01
A theory to predict the influence of geometric non-linearities on the natural frequencies of an empty anisotropic cylindrical shell is presented in this paper. It is a hybrid of finite element and classical thin shell theories. Sanders-Koiter non-linear and strain-displacement relations are used. Displacement functions are evaluated using linearized equations of motion. Modal coefficients are then obtained for these displacement functions. Expressions for the mass, linear and non-linear stiffness matrices are derived through the finite element method. The uncoupled equations are solved with the help of elliptic functions. The period and frequency variations are first determined as a function of shell amplitudes and then compared with the results in the literature.
Modelling human balance using switched systems with linear feedback control.
Kowalczyk, Piotr; Glendinning, Paul; Brown, Martin; Medrano-Cerda, Gustavo; Dallali, Houman; Shapiro, Jonathan
2012-02-01
We are interested in understanding the mechanisms behind and the character of the sway motion of healthy human subjects during quiet standing. We assume that a human body can be modelled as a single-link inverted pendulum, and the balance is achieved using linear feedback control. Using these assumptions, we derive a switched model which we then investigate. Stable periodic motions (limit cycles) about an upright position are found. The existence of these limit cycles is studied as a function of system parameters. The exploration of the parameter space leads to the detection of multi-stability and homoclinic bifurcations. PMID:21697168
Quantum-trajectory thermodynamics with discrete feedback control
NASA Astrophysics Data System (ADS)
Gong, Zongping; Ashida, Yuto; Ueda, Masahito
2016-07-01
We employ the quantum-jump-trajectory approach to construct a systematic framework to study the thermodynamics at the trajectory level in a nonequilibrium open quantum system under discrete feedback control. Within this framework, we derive quantum versions of the generalized Jarzynski equalities, which are demonstrated in an isolated pseudospin system and a coherently driven two-level open quantum system. Due to quantum coherence and measurement backaction, a fundamental distinction from the classical generalized Jarzynski equalities emerges in the quantum versions, which is characterized by a large negative information gain reflecting genuinely quantum rare events. A possible experimental scheme to test our findings in superconducting qubits is discussed.
Modelling human balance using switched systems with linear feedback control.
Kowalczyk, Piotr; Glendinning, Paul; Brown, Martin; Medrano-Cerda, Gustavo; Dallali, Houman; Shapiro, Jonathan
2012-02-01
We are interested in understanding the mechanisms behind and the character of the sway motion of healthy human subjects during quiet standing. We assume that a human body can be modelled as a single-link inverted pendulum, and the balance is achieved using linear feedback control. Using these assumptions, we derive a switched model which we then investigate. Stable periodic motions (limit cycles) about an upright position are found. The existence of these limit cycles is studied as a function of system parameters. The exploration of the parameter space leads to the detection of multi-stability and homoclinic bifurcations.
Hybrid FES orthosis incorporating closed loop control and sensory feedback.
Andrews, B J; Baxendale, R H; Barnett, R; Phillips, G F; Yamazaki, T; Paul, J P; Freeman, P A
1988-04-01
A hybrid functional electrical stimulation (FES) orthosis is described, comprising a rigid ankle-foot brace, a multi-channel FES stimulator with surface electrodes, body mounted sensors, a 'rule-based' controller and an electro-cutaneous display for supplementary sensory feedback. The mechanical brace provides stability, without FES activation of muscles, for standing postures normally adopted by patients. This avoids inducing muscle fatigue during prolonged upright activity. However, stability is conditional upon the position of the ground reaction vector (GRV) relative to the knee joint. The finite state FES controller reacts automatically to destabilizing shifts of the GRV by stimulating appropriate anti-gravity musculature to brace the leg. The FES system also features a control mode to initiate and terminate flexion of the leg during forward progression. A simple mode of supplementary sensory feedback was used during the laboratory standing tests to assist the patient in maintaining a set posture. Preliminary results of laboratory tests for two spinal cord injured subjects are presented. PMID:3361878
NASA Technical Reports Server (NTRS)
Hein, C.; Meystel, A.
1994-01-01
There are many multi-stage optimization problems that are not easily solved through any known direct method when the stages are coupled. For instance, we have investigated the problem of planning a vehicle's control sequence to negotiate obstacles and reach a goal in minimum time. The vehicle has a known mass, and the controlling forces have finite limits. We have developed a technique that finds admissible control trajectories which tend to minimize the vehicle's transit time through the obstacle field. The immediate applications is that of a space robot which must rapidly traverse around 2-or-3 dimensional structures via application of a rotating thruster or non-rotating on-off for such vehicles is located at the Marshall Space Flight Center in Huntsville Alabama. However, it appears that the development method is applicable to a general set of optimization problems in which the cost function and the multi-dimensional multi-state system can be any nonlinear functions, which are continuous in the operating regions. Other applications included the planning of optimal navigation pathways through a transversability graph; the planning of control input for under-water maneuvering vehicles which have complex control state-space relationships; the planning of control sequences for milling and manufacturing robots; the planning of control and trajectories for automated delivery vehicles; and the optimization and athletic training in slalom sports.
Effect of vibrotactile feedback on an EMG-based proportional cursor control system.
Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang
2013-01-01
Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.
Realization of non-linear coherent states by photonic lattices
Dehdashti, Shahram Li, Rujiang; Chen, Hongsheng; Liu, Jiarui Yu, Faxin
2015-06-15
In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.
Arithmetic coding as a non-linear dynamical system
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin; Vaidya, Prabhakar G.; Bhat, Kishor G.
2009-04-01
In order to perform source coding (data compression), we treat messages emitted by independent and identically distributed sources as imprecise measurements (symbolic sequence) of a chaotic, ergodic, Lebesgue measure preserving, non-linear dynamical system known as Generalized Luröth Series (GLS). GLS achieves Shannon's entropy bound and turns out to be a generalization of arithmetic coding, a popular source coding algorithm, used in international compression standards such as JPEG2000 and H.264. We further generalize GLS to piecewise non-linear maps (Skewed-nGLS). We motivate the use of Skewed-nGLS as a framework for joint source coding and encryption.
Photocrosslinkable copolymers for non-linear optical applications
Kawatsuki, N.; Pakbaz, K.; Schmidt, H.W.
1993-12-31
New photocrosslinkable copolymers have been synthesized and applied as non-linear optical materials. The copolymers are based on methyl methacrylate, a photo-excitable benzophenone monomer, a non-linear optical active 4`-[(2-hydroxyethyl)ethylamino]-4-nitro-azobenzene (disperse red 1) side chain monomer and a crosslinkable 2-butenyl monomer. These copolymers can be crosslinked by UV light at 366 nm in the poled state and show a stable alignment of NLO chromophore by monitoring the adsorption spectra. The crosslinked and poled film did not change its alignment after storing 4 weeks at room temperature.
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
BEAM-BASED NON-LINEAR OPTICS CORRECTIONS IN COLLIDERS.
PILAT, R.; LUO, Y.; MALITSKY, N.; PTITSYN, V.
2005-05-16
A method has been developed to measure and correct operationally the non-linear effects of the final focusing magnets in colliders, that gives access to the effects of multi-pole errors by applying closed orbit bumps, and analyzing the resulting tune and orbit shifts. This technique has been tested and used during 4 years of RHIC (the Relativistic Heavy Ion Collider at BNL) operations. I will discuss here the theoretical basis of the method, the experimental set-up, the correction results, the present understanding of the machine model, the potential and limitations of the method itself as compared with other non-linear correction techniques.
Non-linear effects in bunch compressor of TARLA
NASA Astrophysics Data System (ADS)
Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin
2016-03-01
Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.
GPUbased, Microsecond Latency, HectoChannel MIMO Feedback Control of Magnetically Confined Plasmas
NASA Astrophysics Data System (ADS)
Rath, Nikolaus
Feedback control has become a crucial tool in the research on magnetic confinement of plasmas for achieving controlled nuclear fusion. This thesis presents a novel plasma feedback control system that, for the first time, employs a Graphics Processing Unit (GPU) for microsecond-latency, real-time control computations. This novel application area for GPU computing is opened up by a new system architecture that is optimized for low-latency computations on less than kilobyte sized data samples as they occur in typical plasma control algorithms. In contrast to traditional GPU computing approaches that target complex, high-throughput computations with massive amounts of data, the architecture presented in this thesis uses the GPU as the primary processing unit rather than as an auxiliary of the CPU, and data is transferred from A-D/D-A converters directly into GPU memory using peer-to-peer PCI Express transfers. The described design has been implemented in a new, GPU-based control system for the High-Beta Tokamak - Extended Pulse (HBT-EP) device. The system is built from commodity hardware and uses an NVIDIA GeForce GPU and D-TACQ A-D/D-A converters providing a total of 96 input and 64 output channels. The system is able to run with sampling periods down to 4 μs and latencies down to 8 μs. The GPU provides a total processing power of 1.5 x 1012 floating point operations per second. To illustrate the performance and versatility of both the general architecture and concrete implementation, a new control algorithm has been developed. The algorithm is designed for the control of multiple rotating magnetic perturbations in situations where the plasma equilibrium is not known exactly and features an adaptive system model: instead of requiring the rotation frequencies and growth rates embedded in the system model to be set a priori, the adaptive algorithm derives these parameters from the evolution of the perturbation amplitudes themselves. This results in non-linear control
NASA Astrophysics Data System (ADS)
Kraft, Manuel; Hein, Sven M.; Lehnert, Judith; Schöll, Eckehard; Hughes, Stephen; Knorr, Andreas
2016-08-01
Quantum coherent feedback control is a measurement-free control method fully preserving quantum coherence. In this paper we show how time-delayed quantum coherent feedback can be used to control the degree of squeezing in the output field of a cavity containing a degenerate parametric oscillator. We focus on the specific situation of Pyragas-type feedback control where time-delayed signals are fed back directly into the quantum system. Our results show how time-delayed feedback can enhance or decrease the degree of squeezing as a function of time delay and feedback strength.
Automatic Overset Grid Generation with Heuristic Feedback Control
NASA Technical Reports Server (NTRS)
Robinson, Peter I.
2001-01-01
An advancing front grid generation system for structured Overset grids is presented which automatically modifies Overset structured surface grids and control lines until user-specified grid qualities are achieved. The system is demonstrated on two examples: the first refines a space shuttle fuselage control line until global truncation error is achieved; the second advances, from control lines, the space shuttle orbiter fuselage top and fuselage side surface grids until proper overlap is achieved. Surface grids are generated in minutes for complex geometries. The system is implemented as a heuristic feedback control (HFC) expert system which iteratively modifies the input specifications for Overset control line and surface grids. It is developed as an extension of modern control theory, production rules systems and subsumption architectures. The methodology provides benefits over the full knowledge lifecycle of an expert system for knowledge acquisition, knowledge representation, and knowledge execution. The vector/matrix framework of modern control theory systematically acquires and represents expert system knowledge. Missing matrix elements imply missing expert knowledge. The execution of the expert system knowledge is performed through symbolic execution of the matrix algebra equations of modern control theory. The dot product operation of matrix algebra is generalized for heuristic symbolic terms. Constant time execution is guaranteed.
NASA Astrophysics Data System (ADS)
Iwamoto, Hiroyuki; Tanaka, Nobuo; Hill, Simon G.
2012-10-01
This study presents the feedback control of flexural waves propagating in a rectangular panel. The objective of this paper (part 2) is to experimentally implement the feedback wave control method which was proposed in part 1 of the two series papers. Firstly, based on the collocation of sensors and actuators, clustered velocity and displacement feedback (C-VDFB) is newly proposed. Next, linking C-VDFB with the active wave control proposed in part 1, it is clarified that the active wave control system can be realized to a limited extent. Then, from a viewpoint of numerical simulations, the characteristics of the feedback gains of C-VDFB and its control performance are clarified. It is shown that C-VDFB enables the inactivation of vibration modes at the target frequencies. Furthermore, it is clarified that even at the non-target frequencies, the proposed method sufficiently reduces the structural vibration. Finally, experiments on the reflected wave absorbing control using clustered direct velocity and displacement feedback are carried out. The experimental results show good agreement with those obtained in the simulation.
Phenomenon of Life: Between Equilibrium and Non-Linearity
NASA Astrophysics Data System (ADS)
Galimov, E. M.
2004-12-01
A model of ordering applicable to biological evolution is presented. It is shown that a steady state (more precisely approaching to a steady state) system of irreversible processes, under conditions of disproportionation of entropy, produces a lower-entropy product, that is, ordering. The ordering is defined as restricting of degrees of freedom: freedom of motion, interactions etc. The model differs from previous ones in that it relates the ordering to processes running not far from equilibrium, described in the linear field of non-equilibrium thermodynamics. It is shown that a system, which includes adenosine triphosphate (ATP) to adenosine diphosphate (ADP) conversion meets the demands of the physical model: it provides energy maintaining steady state conditions, and hydrolysis of ATP proceeding with consumption of water can be tightly conjugated with the most important reactions of synthesis of organic polymers (peptides, nucleotide chains etc.), which proceed with release of water. For these and other reasons ATP seems to be a key molecule of prebiotic evolution. It is argued that the elementary chemical reaction proceeding under control of an enzyme is not necessarily far from equilibrium. The experimental evidence supporting this idea, is presented. It is based on isotope data. Carbon isotope distribution in biochemical systems reveals regularity, which is inherent to steady state systems of chemical reactions, proceeding not far from equilibrium. In living organisms this feature appears at the statistical level, as many completely irreversible and non-linear processes occur in organisms. However not-far-from-equilibrium reactions are inherent to biochemical systems as a matter of principle. They are reconcilable with biochemical behavior. Extant organisms are highly evolved entities which, however, show in their basis the same features, as the simplest chemical systems must have had been involved in the origin of life. Some consequences following from the
Robust Nonlinear Feedback Control of Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.; Litt, Jonathan (Technical Monitor)
2001-01-01
This is the final report on the research performed under NASA Glen grant NASA/NAG-3-1975 concerning feedback control of the Pratt & Whitney (PW) STF 952, a twin spool, mixed flow, after burning turbofan engine. The research focussed on the design of linear and gain-scheduled, multivariable inner-loop controllers for the PW turbofan engine using H-infinity and linear, parameter-varying (LPV) control techniques. The nonlinear turbofan engine simulation was provided by PW within the NASA Rocket Engine Transient Simulator (ROCETS) simulation software environment. ROCETS was used to generate linearized models of the turbofan engine for control design and analysis as well as the simulation environment to evaluate the performance and robustness of the controllers. Comparison between the H-infinity, and LPV controllers are made with the baseline multivariable controller and developed by Pratt & Whitney engineers included in the ROCETS simulation. Simulation results indicate that H-infinity and LPV techniques effectively achieve desired response characteristics with minimal cross coupling between commanded values and are very robust to unmodeled dynamics and sensor noise.
Evolution equation for non-linear cosmological perturbations
Brustein, Ram; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch
2011-11-01
We present a novel approach, based entirely on the gravitational potential, for studying the evolution of non-linear cosmological matter perturbations. Starting from the perturbed Einstein equations, we integrate out the non-relativistic degrees of freedom of the cosmic fluid and obtain a single closed equation for the gravitational potential. We then verify the validity of the new equation by comparing its approximate solutions to known results in the theory of non-linear cosmological perturbations. First, we show explicitly that the perturbative solution of our equation matches the standard perturbative solutions. Next, using the mean field approximation to the equation, we show that its solution reproduces in a simple way the exponential suppression of the non-linear propagator on small scales due to the velocity dispersion. Our approach can therefore reproduce the main features of the renormalized perturbation theory and (time)-renormalization group approaches to the study of non-linear cosmological perturbations, with some possibly important differences. We conclude by a preliminary discussion of the nature of the full solutions of the equation and their significance.
Rare earth ion doped non linear laser crystals
NASA Astrophysics Data System (ADS)
Jaque, D.; Romero, J. J.; Ramirez, M. O.; Garcia, J. A. S.; de Las Heras, C.; Bausa, L. E.; Sole, J. G.
2003-01-01
We show how non linear crystals activated with Yb3+ or Nd3+ ions can be used to develop diode pumped solid state lasers emitting in the visible region of the electromagnetic spectrum. For this purpose we have selected relevant examples of systems investigated in our laboratory.
Non-linear protocell models: synchronization and chaos
NASA Astrophysics Data System (ADS)
Filisetti, A.; Serra, R.; Carletti, T.; Villani, M.; Poli, I.
2010-09-01
We consider generic protocells models allowing linear and non-linear kinetics for the main involved chemical reactions. We are interested in understanding if and how the protocell division and the metabolism do synchronise to give rise to sustainable evolution of the protocell.
Non-linear Langmuir waves in a warm quantum plasma
Dubinov, Alexander E. Kitaev, Ilya N.
2014-10-15
A non-linear differential equation describing the Langmuir waves in a warm quantum electron-ion plasma has been derived. Its numerical solutions of the equation show that ordinary electronic oscillations, similar to the classical oscillations, occur along with small-scale quantum Langmuir oscillations induced by the Bohm quantum force.
Non-linear dynamic analysis of geared systems, part 2
NASA Technical Reports Server (NTRS)
Singh, Rajendra; Houser, Donald R.; Kahraman, Ahmet
1990-01-01
A good understanding of the steady state dynamic behavior of a geared system is required in order to design reliable and quiet transmissions. This study focuses on a system containing a spur gear pair with backlash and periodically time-varying mesh stiffness, and rolling element bearings with clearance type non-linearities. A dynamic finite element model of the linear time-invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and force vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solution with the finite element model results. Several key system parameters such as mean load and damping ratio are identified and their effects on the non-linear frequency response are evaluated quantitatively. Other fundamental issues such as the dynamic coupling between non-linear modes, dynamic interactions between component non-linearities and time-varying mesh stiffness, and the existence of subharmonic and chaotic solutions including routes to chaos have also been examined in depth.
Multiobjective controller synthesis via eigenstructure assignment with state feedback
NASA Astrophysics Data System (ADS)
Li, Zhao; Lam, James
2016-10-01
A general parameter scheme for multiobjective controller synthesis via eigenstructure assignment with state feedback is proposed. The scheme provides total pole configurability, that is, pole assignment constraints, partial pole assignment constraints, generalised regional pole assignment constraints can be dealt with simultaneously without introducing essential conservatism. The scheme is derived from the pole assignment approach using Sylvester equations, and the parameter space is the Cartesian product of some subspaces characterising the free parameters. Under the scheme, the controller design problems are formulated as nonlinear optimisation problems with both objectives and constraints being differentiable and can be solved by derivative-based nonlinear programming technique. Numerical examples are given to illustrate the efficiency of the proposed method.
Cooperative vocal control in marmoset monkeys via vocal feedback
Choi, Jung Yoon; Takahashi, Daniel Y.
2015-01-01
Humans adjust speech amplitude as a function of distance from a listener; we do so in a manner that would compensate for such distance. This ability is presumed to be the product of high-level sociocognitive skills. Nonhuman primates are thought to lack such socially related flexibility in vocal production. Using predictions from a simple arousal-based model whereby vocal feedback from a conspecific modulates the drive to produce a vocalization, we tested whether another primate exhibits this type of cooperative vocal control. We conducted a playback experiment with marmoset monkeys and simulated “far-away” and “nearby” conspecifics using contact calls that differed in sound intensity. We found that marmoset monkeys increased the amplitude of their contact calls and produced such calls with shorter response latencies toward more distant conspecifics. The same was not true in response to changing levels of background noise. To account for how simulated conspecific distance can change both the amplitude and timing of vocal responses, we developed a model that incorporates dynamic interactions between the auditory system and limbic “drive” systems. Overall, our data show that, like humans, marmoset monkeys cooperatively control the acoustics of their vocalizations according to changes in listener distance, increasing the likelihood that a conspecific will hear their call. However, we propose that such cooperative vocal control is a system property that does not necessitate any particularly advanced sociocognitive skill. At least in marmosets, this vocal control can be parsimoniously explained by the regulation of arousal states across two interacting individuals via vocal feedback. PMID:25925323
Effects of positive and negative feedback on behavior control in hyperactive and normal boys.
Worland, J
1976-01-01
The hypothesis that hyperactive boys have relatively less response to negative feedback than to positive feedback was studied. Sixteen hyperactive boys and 16 controls were compared on two tasks under different feedback conditions. Feedback conditions were no feedback, positive feedback, and negative feedback. Tasks were symbol encoding and correcting spelling words. Hyperactives and controls were compared in amount of time on-task and amount of work correctly completed. Hyperactives were on-task significantly more under conditions of negative feedback than under positive feedback, but negative feedback significantly increased errors on the spelling correction task. Controls were equally responsive to positive, negative, or no feedback. Hyperactives accomplished significantly less than controls on the coding task, but performed as well as controls on the spelling correction task, which was administered to each boy at his own level of spelling ability. The results imply that while consistent negative feedback can reduce off-task behavior for hyperactives, it can also decrease the accuracy of the work they are doing.
Non-linearity in Bayesian 1-D magnetotelluric inversion
NASA Astrophysics Data System (ADS)
Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dettmer, Jan; Tong, Xiaozhong
2011-05-01
This paper applies a Bayesian approach to examine non-linearity for the 1-D magnetotelluric (MT) inverse problem. In a Bayesian formulation the posterior probability density (PPD), which combines data and prior information, is interpreted in terms of parameter estimates and uncertainties, which requires optimizing and integrating the PPD. Much work on 1-D MT inversion has been based on (approximate) linearized solutions, but more recently fully non-linear (numerical) approaches have been applied. This paper directly compares results of linearized and non-linear uncertainty estimation for 1-D MT inversion; to do so, advanced methods for both approaches are applied. In the non-linear formulation used here, numerical optimization is carried out using an adaptive-hybrid algorithm. Numerical integration applies Metropolis-Hastings sampling, rotated to a principal-component parameter space for efficient sampling of correlated parameters, and employing non-unity sampling temperatures to ensure global sampling. Since appropriate model parametrizations are generally not known a priori, both under- and overparametrized approaches are considered. For underparametrization, the Bayesian information criterion is applied to determine the number of layers consistent with the resolving power of the data. For overparametrization, prior information is included which favours simple structure in a manner similar to regularized inversion. The data variance and/or trade-off parameter regulating data and prior information are treated in several ways, including applying fixed optimal estimates (an empirical Bayesian approach) or including them as hyperparameters in the sampling (hierarchical Bayesian). The latter approach has the benefit of accounting for the uncertainty in the hyperparameters in estimating model parameter uncertainties. Non-linear and linearized inversion results are compared for synthetic test cases and for the measured COPROD1 MT data by considering marginal probability
Feedback control of acoustic musical instruments: collocated control using physical analogs.
Berdahl, Edgar; Smith, Julius O; Niemeyer, Günter
2012-01-01
Traditionally, the average professional musician has owned numerous acoustic musical instruments, many of them having distinctive acoustic qualities. However, a modern musician could prefer to have a single musical instrument whose acoustics are programmable by feedback control, where acoustic variables are estimated from sensor measurements in real time and then fed back in order to influence the controlled variables. In this paper, theory is presented that describes stable feedback control of an acoustic musical instrument. The presentation should be accessible to members of the musical acoustics community who may have limited or no experience with feedback control. First, the only control strategy guaranteed to be stable subject to any musical instrument mobility is described: the sensors and actuators must be collocated, and the controller must emulate a physical analog system. Next, the most fundamental feedback controllers and the corresponding physical analog systems are presented. The effects that these controllers have on acoustic musical instruments are described. Finally, practical design challenges are discussed. A proof explains why changing the resonance frequency of a musical resonance requires much more control power than changing the decay time of the resonance.
Effect of intermittent feedback control on robustness of human-like postural control system
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-01-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281
Effect of intermittent feedback control on robustness of human-like postural control system
NASA Astrophysics Data System (ADS)
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Effect of intermittent feedback control on robustness of human-like postural control system.
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-01-01
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies. PMID:26931281
Effect of intermittent feedback control on robustness of human-like postural control system.
Tanabe, Hiroko; Fujii, Keisuke; Suzuki, Yasuyuki; Kouzaki, Motoki
2016-03-02
Humans have to acquire postural robustness to maintain stability against internal and external perturbations. Human standing has been recently modelled using an intermittent feedback control. However, the causality inside of the closed-loop postural control system associated with the neural control strategy is still unknown. Here, we examined the effect of intermittent feedback control on postural robustness and of changes in active/passive components on joint coordinative structure. We implemented computer simulation of a quadruple inverted pendulum that is mechanically close to human tiptoe standing. We simulated three pairs of joint viscoelasticity and three choices of neural control strategies for each joint: intermittent, continuous, or passive control. We examined postural robustness for each parameter set by analysing the region of active feedback gain. We found intermittent control at the hip joint was necessary for model stabilisation and model parameters affected the robustness of the pendulum. Joint sways of the pendulum model were partially smaller than or similar to those of experimental data. In conclusion, intermittent feedback control was necessary for the stabilisation of the quadruple inverted pendulum. Also, postural robustness of human-like multi-link standing would be achieved by both passive joint viscoelasticity and neural joint control strategies.
Feedback Control and Learning To Program with the CMU Lisp Tutor.
ERIC Educational Resources Information Center
Corbett, Albert T.; Anderson, John R.
This study manipulated the timing and control of error feedback in problem solving and examined their effects on skill acquisition by 40 undergraduate students learning to program in the computer language Lisp under four error feedback conditions. These four conditions included two types of symbol-by-symbol feedback that vary in content, a…
Simulation and design of feedback control on resistive wall modes in Keda Torus eXperiment
Li, Chenguang; Liu, Wandong; Li, Hong
2014-12-15
The feedback control of resistive wall modes (RWMs) in Keda Torus eXperiment (KTX) (Liu et al., Plasma Phys. Controlled Fusion 56, 094009 (2014)) is investigated by simulation. A linear model is built to describe the growth of the unstable modes in the absence of feedback and the resulting mode suppression due to feedback, given the typical reversed field pinch plasma equilibrium. The layout of KTX with two shell structures (the vacuum vessel and the stabilizing shell) is taken into account. The feedback performance is explored both in the scheme of “clean mode control” (Zanca et al., Nucl. Fusion 47, 1425 (2007)) and “raw mode control.” The discrete time control model with specific characteristic times will mimic the real feedback control action and lead to the favored control cycle. Moreover, the conceptual design of feedback control system is also presented, targeting on both RWMs and tearing modes.
Spectral element method and the delayed feedback control of chaos.
Tweten, Dennis J; Mann, Brian P
2012-10-01
A spectral element approach is introduced to determine the Floquet exponents (FEs) of unstable periodic orbits (UPOs) stabilized by extended delayed feedback control (EDFC). The spectral approach does not require solving time-dependent eigenproblems that existing methods require. Instead, the spectral approach determines the stability of the delay differential equations of the system by numerical approximation. The method is capable of analyzing systems whose UPOs arise from bifurcations other than period-doubling. Results are presented for stabilizing UPOs in Duffing systems. The FEs calculated by the spectral approach are compared to published results for two examples. In both cases, the spectral method results agree well with those determined by previous methods. In addition, the spectral method was used to analyze a high-dimensional, asymmetrical system with a UPO in chaos arising from tori doubling following a Hopf bifurcation. PMID:23214670
Population-dynamics method with a multicanonical feedback control.
Nemoto, Takahiro; Bouchet, Freddy; Jack, Robert L; Lecomte, Vivien
2016-06-01
We discuss the Giardinà-Kurchan-Peliti population dynamics method for evaluating large deviations of time-averaged quantities in Markov processes [Phys. Rev. Lett. 96, 120603 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.120603]. This method exhibits systematic errors which can be large in some circumstances, particularly for systems with weak noise, with many degrees of freedom, or close to dynamical phase transitions. We show how these errors can be mitigated by introducing control forces within the algorithm. These forces are determined by an iteration-and-feedback scheme, inspired by multicanonical methods in equilibrium sampling. We demonstrate substantially improved results in a simple model, and we discuss potential applications to more complex systems. PMID:27415224
Noise Control in Gene Regulatory Networks with Negative Feedback.
Hinczewski, Michael; Thirumalai, D
2016-07-01
Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.
Treatment with a position feedback-controlled head stabilizer.
Harris, F A
1979-08-01
A position feedback-controlled head stabilizer has been developed to provide cerebral palsied individuals with resistive exercise to strengthen the neck musculature. This apparatus detects "involuntary" head motion and stabilizes the head by applying opposing forces; it also can be used to facilitate muscular contraction by resisting the subject's voluntary movements. The purpose of the present study was to determine whether voluntary head control in cerebral palsied individuals can be improved through systematic exercise using the stabilizer to strengthen the muscles of the neck and improve their balance of action. The findings support the author's contention that this is possible. The apparatus consists of a helmet and shoulder pads, interconnected so that the head is supported in the helmet by a manipulator arm. At its lower end, the manipulator arm is attached to the shoulder pad mounting frame via a gimbal assembly which allows head movement in two planes of tilt (pitch, or forward-and back, and roll, or side-to-side). Feedback control circuitry is so arranged that any deviation of the head from the desired position leads to actuation of pneumatic cylinders, which apply torques to the manipulator gimbal axes so as to oppose or conteract the incipient head movement. It is particularly significant that none of these patients participating in these experiments were at all apprehensive about or resisted being placed in the apparatus. (Even the youngest subject to use the apparatus--five year old-- did not mind being restrained by the shoulder pads or having his head gripped by helment.) While JG utilized the safety release valve quite often during the first few head control training sessions, he soon became confident enough in the action of the stabilizer that he did not even bother to grip the handle of the release valve. While DA had the action of safety valve explained and demonstrated for her, she never bothered to use it even from the outset of her experience
On the non-linear scale of cosmological perturbation theory
Blas, Diego; Garny, Mathias; Konstandin, Thomas E-mail: mathias.garny@desy.de
2013-09-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections at any order in perturbation theory. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
Non-linear Young's double-slit experiment.
San Roman, Julio; Ruiz, Camilo; Perez, Jose Antonio; Delgado, Diego; Mendez, Cruz; Plaja, Luis; Roso, Luis
2006-04-01
The Young's double slit experiment is recreated using intense and short laser pulses. Our experiment evidences the role of the non-linear Kerr effect in the formation of interference patterns. In particular, our results evidence a mixed mechanism in which the zeroth diffraction order of each slit are mainly affected by self-focusing and self-phase modulation, while the higher orders propagate linearly. Despite of the complexity of the general problem of non-linear propagation, we demonstrate that this experiment retains its simplicity and allows for a geometrical interpretation in terms of simple optical paths. In consequence, our results may provide key ideas on experiments on the formation of interference patterns with intense laser fields in Kerr media.
New non-linear photovoltaic effect in uniform bipolar semiconductor
Volovichev, I.
2014-11-21
A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.
V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies
NASA Technical Reports Server (NTRS)
Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.
1973-01-01
An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.
Algorithms for output feedback, multiple-model, and decentralized control problems
NASA Technical Reports Server (NTRS)
Halyo, N.; Broussard, J. R.
1984-01-01
The optimal stochastic output feedback, multiple-model, and decentralized control problems with dynamic compensation are formulated and discussed. Algorithms for each problem are presented, and their relationship to a basic output feedback algorithm is discussed. An aircraft control design problem is posed as a combined decentralized, multiple-model, output feedback problem. A control design is obtained using the combined algorithm. An analysis of the design is presented.
Linear Algebraic Method for Non-Linear Map Analysis
Yu,L.; Nash, B.
2009-05-04
We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.
Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas
Hnat, B.
2011-09-22
Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.
NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS.
TOMAS,R.FISCHER,W.JAIN,A.LUO,Y.PILAT,F.
2004-07-05
For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability.
Non linear identities between unitary minimal Virasoro characters
NASA Astrophysics Data System (ADS)
Taormina, Anne
Non linear identities between unitary minimal Virasoro characters at low levels (m = 3, 4, 5) are presented as well as a sketch of some proofs. The first identity gives the Ising model characters (m = 3) as bilinears in tricritical Ising model characters (m = 4), while the second one gives the tricritical Ising model characters as bilinears in the Ising model characters and the six combinations of m = 5 Virasoro characters which do not appear in the spectrum of the three state Potts model.
Non-linear stochastic growth rates and redshift space distortions
Jennings, Elise; Jennings, David
2015-04-09
The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc^{-1} to 25 per cent at k ~ 0.45 h Mpc^{-1} at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 10^{12} M_{⊙} h^{-1}, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -f_{LT}δ, where f_{LT }is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc^{-1}. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of f_{LT} from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of f_{LT} extracted using models which assume a linear, deterministic expression.
Non-linear stochastic growth rates and redshift space distortions
Jennings, Elise; Jennings, David
2015-04-09
The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc-1 to 25 per cent at kmore » ~ 0.45 h Mpc-1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 1012 M⊙ h-1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -fLTδ, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc-1. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of fLT from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.« less
Hopf bifurcation control in a congestion control model via dynamic delayed feedback.
Guo, Songtao; Feng, Gang; Liao, Xiaofeng; Liu, Qun
2008-12-01
A typical objective of bifurcation control is to delay the onset of undesirable bifurcation. In this paper, the problem of Hopf bifurcation control in a second-order congestion control model is considered. In particular, a suitable Hopf bifurcation is created at a desired location with preferred properties and a dynamic delayed feedback controller is developed for the creation of the Hopf bifurcation. With this controller, one can increase the critical value of the communication delay, and thus guarantee a stationary data sending rate for larger delay. Furthermore, explicit formulae to determine the period and the direction of periodic solutions bifurcating from the equilibrium are obtained by applying perturbation approach. Finally, numerical simulation results are presented to show that the dynamic delayed feedback controller is efficient in controlling Hopf bifurcation.
Multi-disformal invariance of non-linear primordial perturbations
NASA Astrophysics Data System (ADS)
Watanabe, Yuki; Naruko, Atsushi; Sasaki, Misao
2015-08-01
We study disformal transformations of the metric in the cosmological context. We first consider the disformal transformation generated by a scalar field ϕ and show that the curvature and tensor perturbations on the uniform ϕ slicing, on which the scalar field is homogeneous, are non-linearly invariant under the disformal transformation. Then we discuss the transformation properties of the evolution equations for the curvature and tensor perturbations at full non-linear order in the context of spatial gradient expansion as well as at linear order. In particular, we show that the transformation can be described in two different ways: one that clearly shows the physical invariance and the other that shows an apparent change of the causal structure. Finally we consider a new type of disformal transformation in which a multi-component scalar field comes into play, which we call a “multi-disformal transformation”. We show that the curvature and tensor perturbations are invariant at linear order, and also at non-linear order, provided that the system has reached the adiabatic limit.
Non-linear characteristics of Rayleigh-Taylor instable perturbations
NASA Astrophysics Data System (ADS)
Fan, Zhengfeng; Luo, Jisheng
2008-04-01
The direct numerical simulation method is adopted to study the non-linear characteristics of Rayleigh-Taylor instable perturbations at the ablation front of a 200 μm planar CH ablation target. In the simulation, the classical electrical thermal conductivity is included, and NND difference scheme is used. The linear growth rates obtained from the simulation agree with the Takabe formula. The amplitude distribution of the density perturbation at the ablation front is obtained for the linear growth case. The non-linear characteristics of Rayleigh-Taylor instable perturbations are analyzed and the numerical results show that the amplitude distributions of the compulsive harmonics are very different from that of the fundamental perturbation. The characteristics of the amplitude distributions of the harmonics and their fast growth explain why spikes occur at the ablation front. The numerical results also show that non-linear effects have relations with the phase differences of double mode initial perturbations, and different phase differences lead to varied spikes.
Non-linear Compton Scattering in Short Laser Pulses
NASA Astrophysics Data System (ADS)
Krajewska, Katarzyna; Kamiński, Jerzy
2012-06-01
The generation of short X-ray laser pulses attracts a great deal of attention. One of mechanisms to achieve this goal is the non-linear Compton scattering at very high laser powers. The majority of previous works on the non-linear Compton scattering have been devoted to the case when the incident laser field is treated as a monochromatic plane wave. There is, however, recent interest in analyzing the effect of a pulsed laser field on the non-linear Compton scattering [1-4]. We study the process for different durations of the incident laser pulse and compare it with the results for both a plane wave laser field and a laser pulse train. [4pt] [1] M. Boca and V. Florescu, Phys. Rev. A 80, 053403 (2009).[0pt] [2] M. Boca and V. Florescu, Eur. Phys. J. D 61, 446 (2011).[0pt] [3] D. Seipt and B. Kämpfer, Phys. Rev. A 83, 022101 (2011).[0pt] [4] F. Mackenroth and A. Di Piazza, Phys. Rev. A 83, 032106 (2011).
Non-linear HRV indices under autonomic nervous system blockade.
Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel
2014-01-01
Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.
Feedback loop process for controlling inertial cavitation: experimental evidence
NASA Astrophysics Data System (ADS)
Inserra, Claude; Sabraoui, Abbas; Reslan, Lina; Bera, Jean-Christophe; Gilles, Bruno; Mestas, Jean-Louis
2011-09-01
Applications involving cavitation mechanisms, such as sonoporation, are irreproducible in the case of a fixed-intensity sonication, due to the non-stationary behavior of cavitation. We then propose to work at a fixed-cavitation level instead of under fixed-intensity sonication conditions. For this purpose a regulated cavitation generator has been developed in a stationary wave field configuration, which allows regulation of the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop based on acoustic cavitation measurements. The cavitation level indicator was quantified by the broadband spectrum noise level relative to inertial cavitation events. This generated inertial cavitation was characterized by both acoustic and chemical measurements, quantifying hydroxyl radicals produced by water sonolysis. While the cavitation level is obtained with a 40% standard deviation for fixed applied acoustic intensities in the range [0.01 3.44] W/cm2, the regulated generator reproduces the cavitation level with a standard deviation of 3%. The results show that the hydroxyl radical production is better correlated with the cavitation level setting than with the applied acoustic intensity, highlighting the fact that broadband noise is a good indicator of inertial cavitation, with greatest interest for cavitation monitoring. In summary, the regulated device generates a cavitation level that is reproducible, repeatable and stable in time. This system produces reproducible effects that allow consideration of biological applications such as sonoporation to be independent of the experimental ultrasound device, as confirmed by transfection efficiency and cell cytotoxicity studies. Thus, this feedback loop process presents interesting perspectives for monitoring and controlling in-vivo cavitation.
Movement goals and feedback and feedforward control mechanisms in speech production
Perkell, Joseph S.
2010-01-01
Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences. PMID:22661828
Global feedback control of Turing patterns in network-organized activator-inhibitor systems
NASA Astrophysics Data System (ADS)
Hata, S.; Nakao, H.; Mikhailov, A. S.
2012-06-01
Results of the first systematic study on feedback control of nonequilibrium pattern formation in networks are reported. Effects of global feedback control on Turing patterns in network-organized activator-inhibitor system have been investigated. The feedback signal was introduced into one of the parameters of the system and was proportional to the amplitude of the developing Turing pattern. Without the control, the Turing instability corresponded to a subcritical bifurcation and hysteresis effects were observed. Sufficiently strong feedback control rendered, however, the bifurcation supercritical and eliminated the hysteresis effects.
Feedback control design for the complete synchronisation of two coupled Boolean networks
NASA Astrophysics Data System (ADS)
Li, Fangfei
2016-09-01
In the literatures, to design state feedback controllers to make the response Boolean network synchronise with the drive Boolean network is rarely considered. Motivated by this, feedback control design for the complete synchronisation of two coupled Boolean networks is investigated in this paper. A necessary condition for the existence of a state feedback controller achieving the complete synchronisation is established first. Then, based on the necessary condition, the feedback control law is proposed. Finally, an example is worked out to illustrate the proposed design procedure.
Walking Flexibility after Hemispherectomy: Split-Belt Treadmill Adaptation and Feedback Control
ERIC Educational Resources Information Center
Choi, Julia T.; Vining, Eileen P. G.; Reisman, Darcy S.; Bastian, Amy J.
2009-01-01
Walking flexibility depends on use of feedback or reactive control to respond to unexpected changes in the environment, and the ability to adapt feedforward or predictive control for sustained alterations. Recent work has demonstrated that cerebellar damage impairs feedforward adaptation, but not feedback control, during human split-belt treadmill…
Control Quality of a Feedback Control System under Cyclostationary Noise in Power Line Communication
NASA Astrophysics Data System (ADS)
Carrizo, Cesar; Kobayashi, Kentaro; Okada, Hiraku; Katayama, Masaaki
This paper discusses a control system that employs a power line to transfer signals to control the motion of a single machine, and explores the influence of packet losses on the quality of the control. As an example of a controlled system, a controller with a rotary inverted pendulum as a controlled object, is considered. The feedback loop in between is the power line. The control performance is evaluated in the power line cyclostationary noise environment and compared against the performance in a stationary noise environment. As a result, it is confirmed that the power line and its cyclostationary noise features present an advantage against transmission in a channel with stationary noise.
Pulsed klystrons with feedback controlled mod-anode modulators
Reass, William A; Baca, David M; Jerry, Davis L; Rees, Daniel E
2009-01-01
This paper describes a fast rise and fall, totem-pole mod-anode modulators for klystron application. Details of these systems as recently installed utilizing a beam switch tube ''on-deck'' and a planar triode ''off-deck'' in a grid-catch feedback regulated configuration will be provided. The grid-catch configuration regulates the klystron mod-anode voltage at a specified set-point during switching as well as providing a control mechanism that flat-top regulates the klystron beam current during the pulse. This flat-topped klystron beam current is maintained while the capacitor bank droops. In addition, we will review more modern on-deck designs using a high gain, high voltage planar triode as a regulating and switching element. These designs are being developed, tested, and implemented for the Los Alamos Neutron Science Center (LANSCE) accelerator refurbishment project, ''LANSCE-R''. An advantage of the planar triode is that the tube can be directly operated with solid state linear components and provides for a very compact design. The tubes are inexpensive compared to stacked semiconductor switching assemblies and also provide a linear control capability. Details of these designs are provided as well as operational and developmental results.
Proximal Blade Twist Feedback Control for Heliogyro Solar Sails
NASA Astrophysics Data System (ADS)
Smith, Sarah Mitchell
mode is on the order of 0.005%, meaning there is almost no inherent damping in the blade. Next, the proximal blade twist feedback control design was successful in overcoming friction in the root actuator and added damping to the blade. The damping ratio for the lowest frequency torsional mode was increased from 0.001% to 0.09%, which is a significant amount for a heliogyro spacecraft. Finally, the camera sensor used for the proximal differential twist measurement proved to be feasible and quantization from these measurements only decreased the damping ratio to 0.075%. This research provides the first indication that a physically realizable blade root controller can deal with friction in an effective way, thus taking a step towards advancing the technology readiness level of the heliogyro spacecraft.
Temperature feedback control for long-term carrier-envelope phase locking
Chang, Zenghu; Yun, Chenxia; Chen, Shouyuan; Wang, He; Chini, Michael
2012-07-24
A feedback control module for stabilizing a carrier-envelope phase of an output of a laser oscillator system comprises a first photodetector, a second photodetector, a phase stabilizer, an optical modulator, and a thermal control element. The first photodetector may generate a first feedback signal corresponding to a first portion of a laser beam from an oscillator. The second photodetector may generate a second feedback signal corresponding to a second portion of the laser beam filtered by a low-pass filter. The phase stabilizer may divide the frequency of the first feedback signal by a factor and generate an error signal corresponding to the difference between the frequency-divided first feedback signal and the second feedback signal. The optical modulator may modulate the laser beam within the oscillator corresponding to the error signal. The thermal control unit may change the temperature of the oscillator corresponding to a signal operable to control the optical modulator.
Influence of self-controlled feedback on learning a serial motor skill.
Lim, Soowoen; Ali, Asif; Kim, Wonchan; Kim, Jingu; Choi, Sungmook; Radlo, Steven J
2015-04-01
Self-controlled feedback on a variety of tasks are well established as effective means of facilitating motor skill learning. This study assessed the effects of self-controlled feedback on the performance of a serial motor skill. The task was to learn the sequence of 18 movements that make up the Taekwondo Poomsae Taegeuk first, which is the first beginner's practice form learned in this martial art. Twenty-four novice female participants (M age=27.2 yr., SD=1.8) were divided into two groups. All participants performed 16 trials in 4 blocks of the acquisition phase and 20 hr. later, 8 trials in 2 blocks of the retention phase. The self-controlled feedback group had significantly higher performance compared to the yoked-feedback group with regard to acquisition and retention. The results of this study may contribute to the literature regarding feedback by extending the usefulness of self-controlled feedback for learning a serial skill.
Precise feedback control underlies sensorimotor learning in speech.
Vaughn, Chris; Nasir, Sazzad M
2015-02-01
Acquiring the skill of speaking in another language, or for that matter a child's learning to talk, does not follow a single recipe. People learn by variable amounts. A major component of speech learnability seems to be sensing precise feedback errors to correct subsequent utterances that help maintain speech goals. We have tested this idea in a speech motor learning paradigm under altered auditory feedback, in which subjects repeated a word while their auditory feedback was changed online. Subjects learned the task to variable degrees, with some simply failing to learn. We assessed feedback contribution by computing one-lag covariance between formant trajectories of the current feedback and the following utterance that was found to be a significant predictor of learning. Our findings rely on a novel use of information-rich formant trajectories in evaluating speech motor learning and argue for their relevance in auditory speech goals of vowel sounds.
Active control of a flexible structure using a modal positive position feedback controller
NASA Technical Reports Server (NTRS)
Poh, S.; Baz, A.
1990-01-01
The feasibility of a new Modal Positive Position Feedback (MPPF) strategy in controlling the vibration of a complex flexible structure using a single piezo-electric active structural member is demonstrated. The control strategy generates its control forces by manipulating only the modal position signals of the structure to provide a damping action to undamped modes. This is in contrast to conventional modal controllers that rely in their operation on negative feedback of both the modal position and velocity. The proposed strategy is very simple to design and implement as it designs the controller at the uncoupled modal level and utilizes simple first order filters to achieve the Positive Position Feedback effect. The performance of the new strategy is enhanced by augmenting it with a time sharing strategy to share a small number of actuators between larger number of modes. The effectiveness of the new strategy is validated experimentally on a flexible box-type structure that has four bays and its first two bending modes are 2.015 and 6.535 Hz, respectively. A single piezo-electric actuator is utilized as an active structural member to control several transverse bending modes of the structure. The performance of the active control system is determined in the time and the frequency domains. The results are compared with those obtained when using the Independent Modal Space Control (IMSC) of Meirovitch. The experimental results suggest the potential of the proposed strategy as a viable means for controlling the vibration of large flexible structures in real time.
Active control of a flexible structure using a modal positive position feedback controller
NASA Technical Reports Server (NTRS)
Poh, S.; Baz, A.
1990-01-01
The feasibility of a new Modal Positive Position Feedback (MPPF) strategy in controlling the vibration of a complex flexible structure using a single piezo-electric active structural member is demonstrated. The control strategy generates its control forces by manipulating only the modal position signals of the structure to provide a damping action to undamped modes. This is in contrast to conventional modal controllers that rely in their operation on negative feedback of both the modal position and velocity. The proposed strategy is very simple to design and implement as it designs the controller at the uncoupled modal level and utilizes simple first order filters to achieve the Positive Position Feedback effect. The performance of the new strategy is enhanced by augmenting it with a time sharing strategy to share a small number of actuators between larger number of modes. The effectiveness of the new strategy is validated experimentally on a flexible box-type structure that has four bays and its first two bending modes are 2.015 and 6.535 Hz respectively. A single piezo-electric actuator is utilized as an active structural member to control several transverse bending modes of the structure. The performance of the active control system is determined in the time and the frequency domains. The results are compared with those obtained when using the Independent Modal Space Control (IMSC) of Meirovitch. The experimental results suggest the potential of the proposed strategy as a viable means for controlling the vibration of large flexible structures in real time.
Collins, Susan E; Kirouac, Megan; Lewis, Melissa A; Witkiewitz, Katie; Carey, Kate B
2014-01-01
Objective: Web-based personalized feedback interventions, particularly personalized normative feedback (PNF), are efficacious in improving college drinking outcomes; however, no personalized feedback interventions to date have provided college drinkers with feedback about their own decisional balance. This study tested the relative efficacy of a novel decisional balance feedback (DBF) intervention, PNF, and an assessment-only control condition. Method: Participants (N = 724; 56% female) were undergraduate students at a 4-year university in the U.S. Pacific Northwest and were randomized to receive one-time exposure to web-based DBF, PNF, or assessment only. Web-based assessment occurred at baseline and at 1-, 6-, and 12-month follow-ups and included measures of motivation to change, drinking quantity norms, drinking frequency/quantity, and alcohol-related problems. Results: At the 1-month follow-up, DBF and PNF participants reported reductions in alcohol-related problems; however, only PNF participants reduced their drinking frequency and quantity. At the 6-month follow-up, only DBF participants showed significant reductions in drinking quantity and alcohol-related problems. Neither group maintained reductions in alcohol use or alcohol-related problems at the 12-month follow-up. Conclusions: This study provided preliminary evidence that web-based DBF and PNF are efficacious interventions for college drinkers, with DBF having somewhat longer lasting effects. PMID:25343656
NASA Astrophysics Data System (ADS)
Kim, Nakwan
Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.
Learning feedback and feedforward control in a mirror-reversed visual environment.
Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn
2015-10-01
When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. PMID:26245313
NASA Technical Reports Server (NTRS)
Liberty, S. R.; Mielke, R. R.; Tung, L. J.
1981-01-01
Applied research in the area of spectral assignment in multivariable systems is reported. A frequency domain technique for determining the set of all stabilizing controllers for a single feedback loop multivariable system is described. It is shown that decoupling and tracking are achievable using this procedure. The technique is illustrated with a simple example.
Chen, Weisheng; Jiao, Licheng; Li, Jing; Li, Ruihong
2010-06-01
For the first time, this paper addresses the problem of adaptive output-feedback control for a class of uncertain stochastic nonlinear strict-feedback systems with time-varying delays using neural networks (NNs). The circle criterion is applied to designing a nonlinear observer, and no linear growth condition is imposed on nonlinear functions depending on system states. Under the assumption that time-varying delays exist in the system output, only an NN is employed to compensate for all unknown nonlinear terms depending on the delayed output, and thus, the proposed control algorithm is more simple even than the existing NN backstepping control schemes for uncertain systems described by ordinary differential equations. Three examples are given to demonstrate the effectiveness of the control scheme proposed in this paper.
Li, Yongming; Tong, Shaocheng; Li, Tieshan
2015-10-01
In this paper, a composite adaptive fuzzy output-feedback control approach is proposed for a class of single-input and single-output strict-feedback nonlinear systems with unmeasured states and input saturation. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the unmeasured states. By utilizing the designed fuzzy state observer, a serial-parallel estimation model is established. Based on adaptive backstepping dynamic surface control technique and utilizing the prediction error between the system states observer model and the serial-parallel estimation model, a new fuzzy controller with the composite parameters adaptive laws are developed. It is proved that all the signals of the closed-loop system are bounded and the system output can follow the given bounded reference signal. A numerical example and simulation comparisons with previous control methods are provided to show the effectiveness of the proposed approach.
Feature Visibility Limits in the Non-Linear Enhancement of Turbid Images
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.
2003-01-01
The advancement of non-linear processing methods for generic automatic clarification of turbid imagery has led us from extensions of entirely passive multiscale Retinex processing to a new framework of active measurement and control of the enhancement process called the Visual Servo. In the process of testing this new non-linear computational scheme, we have identified that feature visibility limits in the post-enhancement image now simplify to a single signal-to-noise figure of merit: a feature is visible if the feature-background signal difference is greater than the RMS noise level. In other words, a signal-to-noise limit of approximately unity constitutes a lower limit on feature visibility.
Explicit PREDICTOR-MULTICORRECTOR Time Discontinuous Galerkin Methods for Non-Linear Dynamics
NASA Astrophysics Data System (ADS)
Bonelli, A.; Bursi, O. S.; Mancuso, M.
2002-09-01
Explicit predictor-multicorrector time discontinuous Galerkin (TDG) methods developed for linear structural dynamics are formulated and implemented in a form suitable for arbitrary non-linear analysis of structural dynamics problems. The formulation is intended to inherit the accuracy properties of the exact parent implicit TDG methods. To this end, suitable predictors and correctors are designed to achieve third order accuracy, large stability limits and controllable numerical dissipation by means of an algorithmic parameter. As the study of a general non-linear case is rather complex, the analysis of the convergence properties of the resulting algorithms are restricted to conservative Duffing oscillators, for which closed-form solutions are available. It is shown that the main properties of the underlying parent scheme can be retained. Finally, results of representative numerical simulations relevant to Duffing oscillators and to a stiff spring pendulum discretized with finite elements illustrate the performance of the numerical schemes and confirm the analytical estimates.
Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets
NASA Astrophysics Data System (ADS)
Panagiotopoulos, P.; Papazoglou, D. G.; Couairon, A.; Tzortzakis, S.
2013-10-01
Controlling the propagation of intense optical wavepackets in transparent media is not a trivial task. During propagation, low- and high-order non-linear effects, including the Kerr effect, multiphoton absorption and ionization, lead to an uncontrolled complex reshaping of the optical wavepacket that involves pulse splitting, refocusing cycles in space and significant variations of the focus. Here we demonstrate both numerically and experimentally that intense, abruptly autofocusing beams in the form of accelerating ring-Airy beams are able to reshape into non-linear intense light-bullet wavepackets propagating over extended distances, while their positioning in space is extremely well defined. These unique wavepackets can offer significant advantages in numerous fields such as the generation of high harmonics and attosecond physics or the precise micro-engineering of materials.
Localization of Non-Linearly Modeled Autonomous Mobile Robots Using Out-of-Sequence Measurements
Besada-Portas, Eva; Lopez-Orozco, Jose A.; Lanillos, Pablo; de la Cruz, Jesus M.
2012-01-01
This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost. PMID:22736962
Localization of non-linearly modeled autonomous mobile robots using out-of-sequence measurements.
Besada-Portas, Eva; Lopez-Orozco, Jose A; Lanillos, Pablo; de la Cruz, Jesus M
2012-01-01
This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.
Localization of non-linearly modeled autonomous mobile robots using out-of-sequence measurements.
Besada-Portas, Eva; Lopez-Orozco, Jose A; Lanillos, Pablo; de la Cruz, Jesus M
2012-01-01
This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost. PMID:22736962
Motivation in vigilance - Effects of self-evaluation and experimenter-controlled feedback.
NASA Technical Reports Server (NTRS)
Warm, J. S.; Kanfer, F. H.; Kuwada, S.; Clark, J. L.
1972-01-01
Vigilance experiments have been performed to study the relative efficiency of feedback operations in enhancing vigilance performance. Two feedback operations were compared - i.e., experimenter-controlled feedback in the form of knowledge of results (KR) regarding response times to signal detections, and subject-controlled feedback in the form of self-evaluation (SE) of response times to signal detections. The subjects responded to the aperiodic offset of a visual signal during a 1-hr vigil. Both feedback operations were found to enhance performance efficiency: subjects in the KR and SE conditions had faster response times than controls receiving no evaluative feedback. Moreover, the data of the KR and SE groups did not differ significantly from each other. The results are discussed in terms of the hypothesis that self-evaluation is a critical factor underlying the incentive value of KR in vigilance tasks.
Developing an active artificial hair cell using nonlinear feedback control
NASA Astrophysics Data System (ADS)
Joyce, Bryan S.; Tarazaga, Pablo A.
2015-09-01
The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.
Global non-linear effect of temperature on economic production.
Burke, Marshall; Hsiang, Solomon M; Miguel, Edward
2015-11-12
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Global non-linear effect of temperature on economic production
NASA Astrophysics Data System (ADS)
Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward
2015-11-01
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.
Global non-linear effect of temperature on economic production.
Burke, Marshall; Hsiang, Solomon M; Miguel, Edward
2015-11-12
Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate. PMID:26503051
Grand, Kirk F; Bruzi, Alessandro T; Dyke, Ford B; Godwin, Maurice M; Leiker, Amber M; Thompson, Andrew G; Buchanan, Taylor L; Miller, Matthew W
2015-10-01
It was tested whether learners who choose when to receive augmented feedback while practicing a motor skill exhibit enhanced augmented feedback processing and intrinsic motivation, along with superior learning, relative to learners who do not control their feedback. Accordingly, participants were assigned to either self-control (Self) or yoked groups and asked to practice a non-dominant arm beanbag toss. Self participants received augmented feedback at their discretion, whereas Yoked participants were given feedback schedules matched to Self counterparts. Participants' visual feedback was occluded, and when they received augmented feedback, their processing of it was indexed with the electroencephalography-derived feedback-related negativity (FRN). Participants self-reported intrinsic motivation via the Intrinsic Motivation Inventory (IMI) after practice, and completed a retention and transfer test the next day to index learning. Results partially support the hypothesis. Specifically, Self participants reported higher IMI scores, exhibited larger FRNs, and demonstrated better accuracy on the transfer test, but not on the retention test, nor did they exhibit greater consistency on the retention or transfer tests. Additionally, post-hoc multiple regression analysis indicated FRN amplitude predicted transfer test accuracy (accounting for IMI score). Results suggest self-controlled feedback schedules enhance feedback processing, which enhances the transfer of a newly acquired motor skill.
Grand, Kirk F; Bruzi, Alessandro T; Dyke, Ford B; Godwin, Maurice M; Leiker, Amber M; Thompson, Andrew G; Buchanan, Taylor L; Miller, Matthew W
2015-10-01
It was tested whether learners who choose when to receive augmented feedback while practicing a motor skill exhibit enhanced augmented feedback processing and intrinsic motivation, along with superior learning, relative to learners who do not control their feedback. Accordingly, participants were assigned to either self-control (Self) or yoked groups and asked to practice a non-dominant arm beanbag toss. Self participants received augmented feedback at their discretion, whereas Yoked participants were given feedback schedules matched to Self counterparts. Participants' visual feedback was occluded, and when they received augmented feedback, their processing of it was indexed with the electroencephalography-derived feedback-related negativity (FRN). Participants self-reported intrinsic motivation via the Intrinsic Motivation Inventory (IMI) after practice, and completed a retention and transfer test the next day to index learning. Results partially support the hypothesis. Specifically, Self participants reported higher IMI scores, exhibited larger FRNs, and demonstrated better accuracy on the transfer test, but not on the retention test, nor did they exhibit greater consistency on the retention or transfer tests. Additionally, post-hoc multiple regression analysis indicated FRN amplitude predicted transfer test accuracy (accounting for IMI score). Results suggest self-controlled feedback schedules enhance feedback processing, which enhances the transfer of a newly acquired motor skill. PMID:26163375
Non-linear dynamics of compound sawteeth in tokamaks
NASA Astrophysics Data System (ADS)
Ahn, J.-H.; Garbet, X.; Lütjens, H.; Marx, A.; Nicolas, T.; Sabot, R.; Luciani, J.-F.; Guirlet, R.; Février, O.; Maget, P.
2016-05-01
Compound sawteeth is studied with the XTOR-2F code. Non-linear full 3D magnetohydrodynamic simulations show that the plasma hot core is radially displaced and rotates during the partial crash, but is not fully expelled out of the q = 1 surface. Partial crashes occur when the radius of the q = 1 surface exceeds a critical value, at fixed poloidal beta. This critical value depends on the plasma elongation. The partial crash time is larger than the collapse time of an ordinary sawtooth, likely due to a weaker diamagnetic stabilization. This suggests that partial crashes result from a competition between destabilizing effects such as the q = 1 radius and diamagnetic stabilization.
Recognizing Human Activities Using Non-linear SVM Decision Tree
NASA Astrophysics Data System (ADS)
Zhao, Haiyong; Liu, Zhijing; Zhang, Hao
This paper presents a new method of human activity recognition, which is based on R transform and non-linear SVM Decision Tree (NSVMDT). For a key binary human silhouette, R transform is employed to represent low-level features. The advantage of the R transform lies in its low computational complexity and geometric invariance. We utilize NSVMDT to train and classify video sequences, and demonstrate the usability with many sequences. Compared with other methods, ours is superior because the descriptor is robust to frame loss in superior because the descriptor is robust to frame loss in activities recognition, simple representation, computational complexity and template generalization. Sufficient experiments have proved the efficiency.
Non-linear identification of a squeeze-film damper
NASA Technical Reports Server (NTRS)
Stanway, Roger; Mottershead, John; Firoozian, Riaz
1987-01-01
Described is an experimental study to identify the damping laws associated with a squeeze-film vibration damper. This is achieved by using a non-linear filtering algorithm to process displacement responses of the damper ring to synchronous excitation and thus to estimate the parameters in an nth-power velocity model. The experimental facility is described in detail and a representative selection of results is included. The identified models are validated through the prediction of damper-ring orbits and comparison with observed responses.
Non-Linear Dynamics of Saturn’s Rings
NASA Astrophysics Data System (ADS)
Esposito, Larry W.
2015-11-01
Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects
8-PSK Signaling over non-linear satellite channels
NASA Technical Reports Server (NTRS)
Horan, Sheila B.; Caballero, Ruben B. Eng.
1996-01-01
Space agencies are under pressure to utilize better bandwidth-efficient communication methods due to the actual allocated frequency bands becoming more congested. Also budget reductions is another problem that the space agencies must deal with. This budget constraint results in simpler spacecraft carrying less communication capabilities and also the reduction in staff to capture data in the earth stations. It is then imperative that the most bandwidth efficient communication methods be utilized. This thesis presents a study of 8-ary Phase Shift Keying (8PSK) modulation with respect to bandwidth, power efficiency, spurious emissions and interference susceptibility over a non-linear satellite channel.
Non-linear isocurvature perturbations and non-Gaussianities
Langlois, David; Vernizzi, Filippo; Wands, David E-mail: filippo.vernizzi@cea.fr
2008-12-15
We study non-linear primordial adiabatic and isocurvature perturbations and their non-Gaussianity. After giving a general formulation in the context of an extended {delta}N formalism, we analyse in detail two illustrative examples. The first is a mixed curvaton-inflaton scenario in which fluctuations of both the inflaton and a curvaton (a light isocurvature field during inflation) contribute to the primordial density perturbation. The second example is that of double inflation involving two decoupled massive scalar fields during inflation. In the mixed curvaton-inflaton scenario we find that the bispectrum of primordial isocurvature perturbations may be large and comparable to the bispectrum of adiabatic curvature perturbations.
NASA Technical Reports Server (NTRS)
Bienert, W. B.
1974-01-01
The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.
Stochastic non-linear oscillator models of EEG: the Alzheimer's disease case.
Ghorbanian, Parham; Ramakrishnan, Subramanian; Ashrafiuon, Hashem
2015-01-01
In this article, the Electroencephalography (EEG) signal of the human brain is modeled as the output of stochastic non-linear coupled oscillator networks. It is shown that EEG signals recorded under different brain states in healthy as well as Alzheimer's disease (AD) patients may be understood as distinct, statistically significant realizations of the model. EEG signals recorded during resting eyes-open (EO) and eyes-closed (EC) resting conditions in a pilot study with AD patients and age-matched healthy control subjects (CTL) are employed. An optimization scheme is then utilized to match the output of the stochastic Duffing-van der Pol double oscillator network with EEG signals recorded during each condition for AD and CTL subjects by selecting the model physical parameters and noise intensity. The selected signal characteristics are power spectral densities in major brain frequency bands Shannon and sample entropies. These measures allow matching of linear time varying frequency content as well as non-linear signal information content and complexity. The main finding of the work is that statistically significant unique models represent the EC and EO conditions for both CTL and AD subjects. However, it is also shown that the inclusion of sample entropy in the optimization process, to match the complexity of the EEG signal, enhances the stochastic non-linear oscillator model performance. PMID:25964756
Stochastic non-linear oscillator models of EEG: the Alzheimer's disease case
Ghorbanian, Parham; Ramakrishnan, Subramanian; Ashrafiuon, Hashem
2015-01-01
In this article, the Electroencephalography (EEG) signal of the human brain is modeled as the output of stochastic non-linear coupled oscillator networks. It is shown that EEG signals recorded under different brain states in healthy as well as Alzheimer's disease (AD) patients may be understood as distinct, statistically significant realizations of the model. EEG signals recorded during resting eyes-open (EO) and eyes-closed (EC) resting conditions in a pilot study with AD patients and age-matched healthy control subjects (CTL) are employed. An optimization scheme is then utilized to match the output of the stochastic Duffing—van der Pol double oscillator network with EEG signals recorded during each condition for AD and CTL subjects by selecting the model physical parameters and noise intensity. The selected signal characteristics are power spectral densities in major brain frequency bands Shannon and sample entropies. These measures allow matching of linear time varying frequency content as well as non-linear signal information content and complexity. The main finding of the work is that statistically significant unique models represent the EC and EO conditions for both CTL and AD subjects. However, it is also shown that the inclusion of sample entropy in the optimization process, to match the complexity of the EEG signal, enhances the stochastic non-linear oscillator model performance. PMID:25964756
Power quality improvement for distribution systems under non-linear conditions
NASA Astrophysics Data System (ADS)
El-Sadaany, Ehab Fahmy
The proliferation of non-linear and electronically switched devices has increased the presence of nonsinusoidal currents and voltages in electrical distribution systems. The analysis of harmonics on the distribution systems has been described as being essential to understanding the nature of harmonic performance. One of the basic reasons for conducting a harmonic study is to analyze the effectiveness of proposed remedies to any existing harmonic problem. The analysis and design of any mitigation equipment requires precise calculation of both voltage and current waveforms. Moreover, the parameters that affect the harmonic performance have to be accurately identified and examined. This thesis offers a new time-domain based approach for the determination of both voltage and current waveforms in non-linear distribution systems taking into account the interaction between both voltage and current harmonics (attenuation effect). In addition, the parameters that control the generation and propagation of harmonics into the distribution systems have been identified and investigated. A simple but efficient time-domain based technique has been developed and employed in order to estimate the combined non-linear load susceptance at different harmonic frequencies based on the previously calculated voltage and current waveforms and with the attenuation phenomenon considered. A novel design and implementation of reactance one-port compensators has been applied to reduce both voltage and current harmonic distortion levels in non-linear distribution systems. This application represents a significant contribution to distribution systems analysis as it successfully limits the system distortion. The performance of the proposed compensator is assessed by both simulation and experimental testing.
Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)
NASA Technical Reports Server (NTRS)
Weisbrich, R.; Perley, R.; Howes, H.
1977-01-01
The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight.
Non-linear plasma wake growth of electron holes
Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.
2015-03-15
An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.
Non-linear leak currents affect mammalian neuron physiology
Huang, Shiwei; Hong, Sungho; De Schutter, Erik
2015-01-01
In their seminal works on squid giant axons, Hodgkin, and Huxley approximated the membrane leak current as Ohmic, i.e., linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted) varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents) and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells. PMID:26594148
Polycarbonate-Based Blends for Optical Non-linear Applications
NASA Astrophysics Data System (ADS)
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised. PMID:26873262
Feedback Control of Floor Reaction Force Based on Force-Reflecting-Type Multilateral Control
NASA Astrophysics Data System (ADS)
Nagase, Kazuki; Katsura, Seiichiro
Real-world haptics is being studied not only for improving feedback on real-world haptic information in teleoperation but also for developing key technologies for future human support. For the remote operating of systems at distant places, haptic information is required in addition to visual information. The haptic information around a work environment can be the floor reaction force, which can be obtained using a movement-type haptic device. The floor reaction force from the environment that the mobile haptic device touches is fed back accurately to the operator. First, this paper proposes a general force-reflecting-type multilateral control. Second, this paper extends the control to feedback control of the floor reaction force by using force-reflecting-type multilateral control and a novel haptic device employing a biped robot with a slave system. The position response of a master system is transformed to a leg tip position command for the biped-type haptic device. In addition, the floor reaction force determined by the biped-type haptic device is fed back to the master system. The proposed method can determine the force feedback to the sole of the foot, which is not possible with a conventional stationary system. As a result, the floor reaction force from a large area can be obtained, and the operability of the control system is improved by using the proposed system.
Liu Zhuo; Kuang Luelin; Hu Kai; Xu Luting; Wei Suhua; Guo Lingzhen; Li Xinqi
2010-09-15
In a solid-state circuit QED system, we demonstrate that a homodyne-current-based feedback can create and stabilize highly entangled two-qubit states in the presence of a moderate noisy environment. Particularly, we present an extended analysis for the current-based Markovian feedback, which leads to an improved feedback scheme. We show that this is essential to achieve a desirable control effect by the use of dispersive measurement.
Rapid feedback control and stabilization of an optical tweezers with a budget microcontroller
NASA Astrophysics Data System (ADS)
Nino, Daniel; Wang, Haowei; Milstein, Joshua N.
2014-09-01
Laboratories ranging the scientific disciplines employ feedback control to regulate variables within their experiments, from the flow of liquids within a microfluidic device to the temperature within a cell incubator. We have built an inexpensive, yet fast and rapidly deployed, feedback control system that is straightforward and flexible to implement from a commercially available Arduino Due microcontroller. This is in comparison with the complex, time-consuming and often expensive electronics that are commonly implemented. As an example of its utility, we apply our feedback controller to the task of stabilizing the main trapping laser of an optical tweezers. The feedback controller, which is inexpensive yet fast and rapidly deployed, was implemented from hacking an open source Arduino Due microcontroller. Our microcontroller based feedback system can stabilize the laser intensity to a few tenths of a per cent at 200 kHz, which is an order of magnitude better than the laser's base specifications, illustrating the utility of these devices.
NASA Astrophysics Data System (ADS)
Georgiou, K.; Tang, J.; Riley, W. J.; Torn, M. S.
2014-12-01
Soil organic matter (SOM) decomposition is regulated by biotic and abiotic processes. Feedback interactions between such processes may act to dampen oscillatory responses to perturbations from equilibrium. Indeed, although biological oscillations have been observed in small-scale laboratory incubations, the overlying behavior at the plot-scale exhibits a relatively stable response to disturbances in input rates and temperature. Recent studies have demonstrated the ability of microbial models to capture nonlinear feedbacks in SOM decomposition that linear Century-type models are unable to reproduce, such as soil priming in response to increased carbon input. However, these microbial models often exhibit strong oscillatory behavior that is deemed unrealistic. The inherently nonlinear dynamics of SOM decomposition have important implications for global climate-carbon and carbon-concentration feedbacks. It is therefore imperative to represent these dynamics in Earth System Models (ESMs) by introducing sub-models that accurately represent microbial and abiotic processes. In the present study we explore, both analytically and numerically, four microbe-enabled model structures of varying levels of complexity. The most complex model combines microbial physiology, a non-linear mineral sorption isotherm, and enzyme dynamics. Based on detailed stability analysis of the nonlinear dynamics, we calculate the system modes as functions of model parameters. This dependence provides insight into the source of state oscillations. We find that feedback mechanisms that emerge from careful representation of enzyme and mineral interactions, with parameter values in a prescribed range, are critical for both maintaining system stability and capturing realistic responses to disturbances. Corroborating and expanding upon the results of recent studies, we explain the emergence of oscillatory responses and discuss the appropriate microbe-enabled model structure for inclusion in ESMs.
Active vibration control for flexible rotor by optimal direct-output feedback control
NASA Technical Reports Server (NTRS)
Nonami, Kenzou; Dirusso, Eliseo; Fleming, David P.
1989-01-01
Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 micrometers down to approximately 25 micrometers (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.
Active vibration control for flexible rotor by optimal direct-output feedback control
NASA Technical Reports Server (NTRS)
Nonami, K.; Dirusso, E.; Fleming, D. P.
1989-01-01
Experimental research tests were performed to actively control the rotor vibrations of a flexible rotor mounted on flexible bearing supports. The active control method used in the tests is called optimal direct-output feedback control. This method uses four electrodynamic actuators to apply control forces directly to the bearing housings in order to achieve effective vibration control of the rotor. The force actuators are controlled by an analog controller that accepts rotor displacement as input. The controller is programmed with experimentally determined feedback coefficients; the output is a control signal to the force actuators. The tests showed that this active control method reduced the rotor resonance peaks due to unbalance from approximately 250 microns down to approximately 25 microns (essentially runout level). The tests were conducted over a speed range from 0 to 10,000 rpm; the rotor system had nine critical speeds within this speed range. The method was effective in significantly reducing the rotor vibration for all of the vibration modes and critical speeds.
Scheerer, Nichole E; Jones, Jeffery A
2014-12-01
Speech production requires the combined effort of a feedback control system driven by sensory feedback, and a feedforward control system driven by internal models. However, the factors that dictate the relative weighting of these feedback and feedforward control systems are unclear. In this event-related potential (ERP) study, participants produced vocalisations while being exposed to blocks of frequency-altered feedback (FAF) perturbations that were either predictable in magnitude (consistently either 50 or 100 cents) or unpredictable in magnitude (50- and 100-cent perturbations varying randomly within each vocalisation). Vocal and P1-N1-P2 ERP responses revealed decreases in the magnitude and trial-to-trial variability of vocal responses, smaller N1 amplitudes, and shorter vocal, P1 and N1 response latencies following predictable FAF perturbation magnitudes. In addition, vocal response magnitudes correlated with N1 amplitudes, vocal response latencies, and P2 latencies. This pattern of results suggests that after repeated exposure to predictable FAF perturbations, the contribution of the feedforward control system increases. Examination of the presentation order of the FAF perturbations revealed smaller compensatory responses, smaller P1 and P2 amplitudes, and shorter N1 latencies when the block of predictable 100-cent perturbations occurred prior to the block of predictable 50-cent perturbations. These results suggest that exposure to large perturbations modulates responses to subsequent perturbations of equal or smaller size. Similarly, exposure to a 100-cent perturbation prior to a 50-cent perturbation within a vocalisation decreased the magnitude of vocal and N1 responses, but increased P1 and P2 latencies. Thus, exposure to a single perturbation can affect responses to subsequent perturbations.
Ih channels control feedback regulation from amacrine cells to photoreceptors.
Hu, Wen; Wang, Tingting; Wang, Xiao; Han, Junhai
2015-04-01
In both vertebrates and invertebrates, photoreceptors' output is regulated by feedback signals from interneurons that contribute to several important visual functions. Although synaptic feedback regulation of photoreceptors is known to occur in Drosophila, many questions about the underlying molecular mechanisms and physiological implementation remain unclear. Here, we systematically investigated these questions using a broad range of experimental methods. We isolated two Ih mutant fly lines that exhibit rhythmic photoreceptor depolarization without light stimulation. We discovered that Ih channels regulate glutamate release from amacrine cells by modulating calcium channel activity. Moreover, we showed that the eye-enriched kainate receptor (EKAR) is expressed in photoreceptors and receives the glutamate signal released from amacrine cells. Finally, we presented evidence that amacrine cell feedback regulation helps maintain light sensitivity in ambient light. Our findings suggest plausible molecular underpinnings and physiological effects of feedback regulation from amacrine cells to photoreceptors. These results provide new mechanistic insight into how synaptic feedback regulation can participate in network processing by modulating neural information transfer and circuit excitability.
Reduced state feedback gain computation. [optimization and control theory for aircraft control
NASA Technical Reports Server (NTRS)
Kaufman, H.
1976-01-01
Because application of conventional optimal linear regulator theory to flight controller design requires the capability of measuring and/or estimating the entire state vector, it is of interest to consider procedures for computing controls which are restricted to be linear feedback functions of a lower dimensional output vector and which take into account the presence of measurement noise and process uncertainty. Therefore, a stochastic linear model that was developed is presented which accounts for aircraft parameter and initial uncertainty, measurement noise, turbulence, pilot command and a restricted number of measurable outputs. Optimization with respect to the corresponding output feedback gains was performed for both finite and infinite time performance indices without gradient computation by using Zangwill's modification of a procedure originally proposed by Powell. Results using a seventh order process show the proposed procedures to be very effective.
NASA Technical Reports Server (NTRS)
Ahrens, Markus; Kucera, Ladislav
1996-01-01
For flywheel rotors or other rotors with significant ratios of moments of inertia, the influence of gyroscopic effects has to be considered. While conservative or damped systems remain stable even under gyroscopic effects, magnetically suspended rotors can be destabilized with increasing rotational speed. The influence of gyroscopic effects on the stability and behavior of a magnetic bearing system is analyzed. The analysis is carried out with a rigid body model for the rotor and a nonlinear model for the magnetic bearing and its amplifier. Cross feedback control can compensate gyroscopic effects. This compensation leads to better system performance and can avoid instability. Furthermore, the implementation of this compensation is simple. The main structure of a decentralized controller can still be used. It has only to be expanded by the cross feedback path.
Interior Noise Reduction by Adaptive Feedback Vibration Control
NASA Technical Reports Server (NTRS)
Lim, Tae W.
1998-01-01
. The on-line identification algorithm developed in this research will be useful in constructing a state estimator for feedback vibration control.
Eco-hydrological feedback mechanisms control ecological services in wetlands
NASA Astrophysics Data System (ADS)
Coletti, J.; Hinz, C.; Vogwill, R.; Tareque, H.; Hipsey, M. R.
2011-12-01
Wetland ecosystems contain various feedback mechanisms between their abiotc and biotic components. The feedbacks are triggered by climate and propagate into patterns of environment partitioning based on distinct zones of hydrological function that vary in time and space. This partitioning co-evolves with vegetation, defines carbon metabolism and creates niches that govern patterns of flora and fauna abundance and distribution. Using a minimalistic model for wetland eco-hydrology, we explore vegetation adaptation to climate variability and the net metabolism of a wetland ecosystem given a range of climate conditions. We then apply the model to characterize the changes in niche habitat availability for a tortoise population endangered by a drying climate.
The generalized pole assignment problem. [dynamic output feedback control systems
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
For some linear, strictly proper system given by its transfer function, two dynamic output feedback problems can be posed. The first one is that of using dynamic-output feedback to assign the closed-loop characteristic polynomial and the second that of assigning the closed-loop invariant factors. These problems and their interrelationships are discussed. The formulation is done in the frequency domain and the investigation carried out from an algebraic point of view, in terms of linear equations over rings of polynomials. Using the notion of genericity, several necessary and sufficient conditions are expressed.
ERIC Educational Resources Information Center
Hayman, Marilyn J.
1981-01-01
Investigated the effectiveness of supervisor feedback in contributing to learning counseling skills. Counselor trainees (N=64) were assigned to supervisor feedback, no supervisor feedback, or control groups for three training sessions. Results indicated counseling skills were learned best by students with no supervisor feedback but self and peer…
A Case Study of Representing Signal Transduction in Liver Cells as a Feedback Control Problem
ERIC Educational Resources Information Center
Singh, Abhay; Jayaraman, Arul; Hahn, Juergen
2007-01-01
Cell signaling pathways often contain feedback loops where proteins are produced that regulate signaling. While feedback regulatory mechanisms are commonly found in signaling pathways, there is no example available in the literature that is simple enough to be presented in an undergraduate control class. This paper presents a simulation study of…
The Effects of Self-Controlled Video Feedback on the Learning of the Basketball Set Shot
Aiken, Christopher Adam; Fairbrother, Jeffrey T.; Post, Phillip Guy
2012-01-01
Allowing learners to control some aspect of instructional support (e.g., augmented feedback) appears to facilitate motor skill acquisition. No studies, however, have examined self-controlled (SC) video feedback without the provision of additional attentional cueing. The purpose of this study was to extend previous SC research using video feedback about movement form for the basketball set shot without explicitly directing attention to specific aspects of the movement. The SC group requested video feedback of their performance following any trial during the acquisition phase. The yoked group received feedback according to a schedule created by a SC counterpart. During acquisition participants were also allowed to view written instructional cues at any time. Results revealed that the SC group had significantly higher form scores during the transfer phase and utilized the instructional cues more frequently during acquisition. Post-training questionnaire responses indicated no preference for requesting or receiving feedback following good trials as reported by Chiviacowsky and Wulf (2002, 2005). The nature of the task was such that participants could have assigned both positive and negative evaluations to different aspects of the movement during the same trial. Thus, the lack of preferences along with the similarity in scores for feedback and no-feedback trials may simply have reflected this complexity. Importantly, however, the results indicated that SC video feedback conferred a learning benefit without the provision of explicit additional attentional cueing. PMID:22973257
The effects of self-controlled video feedback on the learning of the basketball set shot.
Aiken, Christopher Adam; Fairbrother, Jeffrey T; Post, Phillip Guy
2012-01-01
Allowing learners to control some aspect of instructional support (e.g., augmented feedback) appears to facilitate motor skill acquisition. No studies, however, have examined self-controlled (SC) video feedback without the provision of additional attentional cueing. The purpose of this study was to extend previous SC research using video feedback about movement form for the basketball set shot without explicitly directing attention to specific aspects of the movement. The SC group requested video feedback of their performance following any trial during the acquisition phase. The yoked group received feedback according to a schedule created by a SC counterpart. During acquisition participants were also allowed to view written instructional cues at any time. Results revealed that the SC group had significantly higher form scores during the transfer phase and utilized the instructional cues more frequently during acquisition. Post-training questionnaire responses indicated no preference for requesting or receiving feedback following good trials as reported by Chiviacowsky and Wulf (2002, 2005). The nature of the task was such that participants could have assigned both positive and negative evaluations to different aspects of the movement during the same trial. Thus, the lack of preferences along with the similarity in scores for feedback and no-feedback trials may simply have reflected this complexity. Importantly, however, the results indicated that SC video feedback conferred a learning benefit without the provision of explicit additional attentional cueing.
Non-linear PIC simulation in a penning trap
Delzanno, G. L.; Lapenta, G. M.; Finn, J. M.
2001-01-01
We study the non-linear dynamics of a Penning trap plasma, including the effect of the finite length and end curvature of the plasma column. A new cylindrical PIC code, called KANDINSKY, has been implemented by using a new interpolation scheme. The principal idea is to calculate the volume of each cell from a particle volume, in the same manner as it is done for the cell charge. With this new method, the density is conserved along streamlines and artificial sources of compressibility are avoided. The code has been validated with a reference Eulerian fluid code. We compare the dynamics of three different models: a model with compression effects, the standard Euler model and a geophysical fluid dynamics model. The results of our investigation prove that Penning traps can really be used to simulate geophysical fluids.
Characterization of porous media structure by non linear NMR methods.
Capuani, S; Alesiani, M; Alessandri, F M; Maraviglia, B
2001-01-01
In this paper we discuss the possibility of modifying the multiple spin echoes existing theory, developed for a homogeneous system, to describe also an inhomogeneous system such as a porous medium. We report here the first experimental application of MSE methods to materials like travertine. The ratio A(2)/A(1) from water in travertine presents minima for characteristic values of the delay time tau, like what was previously observed in the trabecular bone. By a judicious choice of the delay time tau and of the G gradient strength, the MSE sequence can be made sensitive to a specific length-scale of the sample heterogeneity. Furthermore the MSE image shows a particular new contrast that makes the non linear NMR method very attractive for the assessment of variations of the porous structure in porous systems. PMID:11445306
Anderson Localization, Non-linearity and Stable Genetic Diversity
NASA Astrophysics Data System (ADS)
Epstein, Charles L.
2006-07-01
In many models of genotypic evolution, the vector of genotype populations satisfies a system of linear ordinary differential equations. This system of equations models a competition between differential replication rates (fitness) and mutation. Mutation operates as a generalized diffusion process on genotype space. In the large time asymptotics, the replication term tends to produce a single dominant quasi-species, unless the mutation rate is too high, in which case the asymptotic population becomes de-localized. We introduce a more macroscopic picture of genotypic evolution wherein a random fitness term in the linear model produces features analogous to Anderson localization. When coupled with density dependent non-linearities, which limit the population of any given genotype, we obtain a model whose large time asymptotics display stable genotypic diversity.
Learning Petri net models of non-linear gene interactions.
Mayo, Michael
2005-10-01
Understanding how an individual's genetic make-up influences their risk of disease is a problem of paramount importance. Although machine-learning techniques are able to uncover the relationships between genotype and disease, the problem of automatically building the best biochemical model or "explanation" of the relationship has received less attention. In this paper, I describe a method based on random hill climbing that automatically builds Petri net models of non-linear (or multi-factorial) disease-causing gene-gene interactions. Petri nets are a suitable formalism for this problem, because they are used to model concurrent, dynamic processes analogous to biochemical reaction networks. I show that this method is routinely able to identify perfect Petri net models for three disease-causing gene-gene interactions recently reported in the literature.
Engineering Non-Classical Light with Non-Linear Microwaveguides
NASA Astrophysics Data System (ADS)
Grimsmo, Arne; Clerk, Aashish; Blais, Alexandre
The quest for ever increasing fidelity and scalability in measurement of superconducting qubits to be used for fault-tolerant quantum computing has recently led to the development of near quantum-limited broadband phase preserving amplifiers in the microwave regime. These devices are, however, more than just amplifiers: They are sources of high-quality, broadband two-mode squeezed light. We show how bottom-up engineering of Josephson junction embedded waveguides can be used to design novel squeezing spectra. Furthermore, the entanglement in the two-mode squeezed output field can be imprinted onto quantum systems coupled to the device's output. These broadband microwave amplifiers constitute a realization of non-linear waveguide QED, a very interesting playground for non-equilibrium many-body physics.
Method and system for non-linear motion estimation
NASA Technical Reports Server (NTRS)
Lu, Ligang (Inventor)
2011-01-01
A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.
Transformation matrices between non-linear and linear differential equations
NASA Technical Reports Server (NTRS)
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
Detector noise statistics in the non-linear regime
NASA Technical Reports Server (NTRS)
Shopbell, P. L.; Bland-Hawthorn, J.
1992-01-01
The statistical behavior of an idealized linear detector in the presence of threshold and saturation levels is examined. It is assumed that the noise is governed by the statistical fluctuations in the number of photons emitted by the source during an exposure. Since physical detectors cannot have infinite dynamic range, our model illustrates that all devices have non-linear regimes, particularly at high count rates. The primary effect is a decrease in the statistical variance about the mean signal due to a portion of the expected noise distribution being removed via clipping. Higher order statistical moments are also examined, in particular, skewness and kurtosis. In principle, the expected distortion in the detector noise characteristics can be calibrated using flatfield observations with count rates matched to the observations. For this purpose, some basic statistical methods that utilize Fourier analysis techniques are described.
Non-linear radial spinwave modes in thin magnetic disks
Helsen, M. De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Weigand, M.
2015-01-19
We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point.
The mathematics of non-linear metrics for nested networks
NASA Astrophysics Data System (ADS)
Wu, Rui-Jie; Shi, Gui-Yuan; Zhang, Yi-Cheng; Mariani, Manuel Sebastian
2016-10-01
Numerical analysis of data from international trade and ecological networks has shown that the non-linear fitness-complexity metric is the best candidate to rank nodes by importance in bipartite networks that exhibit a nested structure. Despite its relevance for real networks, the mathematical properties of the metric and its variants remain largely unexplored. Here, we perform an analytic and numeric study of the fitness-complexity metric and a new variant, called minimal extremal metric. We rigorously derive exact expressions for node scores for perfectly nested networks and show that these expressions explain the non-trivial convergence properties of the metrics. A comparison between the fitness-complexity metric and the minimal extremal metric on real data reveals that the latter can produce improved rankings if the input data are reliable.
Attractor reconstruction for non-linear systems: a methodological note
Nichols, J.M.; Nichols, J.D.
2001-01-01
Attractor reconstruction is an important step in the process of making predictions for non-linear time-series and in the computation of certain invariant quantities used to characterize the dynamics of such series. The utility of computed predictions and invariant quantities is dependent on the accuracy of attractor reconstruction, which in turn is determined by the methods used in the reconstruction process. This paper suggests methods by which the delay and embedding dimension may be selected for a typical delay coordinate reconstruction. A comparison is drawn between the use of the autocorrelation function and mutual information in quantifying the delay. In addition, a false nearest neighbor (FNN) approach is used in minimizing the number of delay vectors needed. Results highlight the need for an accurate reconstruction in the computation of the Lyapunov spectrum and in prediction algorithms.
Non-linear optical crystal vibration sensing device
Kalibjian, Ralph
1994-01-11
A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).
Non-linear optical crystal vibration sensing device
Kalibjian, R.
1994-08-09
A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.
DYNAMIC NON LINEAR IMPACT ANALYSIS OF FUEL CASK CONTAINMENT VESSELS
Leduc, D
2008-06-10
Large fuel casks present challenges when evaluating their performance in the accident sequence specified in 10CFR 71. Testing is often limited because of cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing using simplified analytical methods. This paper details the use of dynamic non-linear analysis of large fuel casks using advanced computational techniques. Results from the dynamic analysis of two casks, the T-3 Spent Fuel Cask and the Hanford Un-irradiated Fuel Package are examined in detail. These analyses are used to fully evaluate containment vessel stresses and strains resulting from complex loads experienced by cask components during impacts. Importantly, these advanced analytical analyses are capable of examining stresses in key regions of the cask including the cask closure. This paper compares these advanced analytical results with the results of simplified cask analyses like those detailed in NUREG 3966.
Black hole hair removal: non-linear analysis
NASA Astrophysics Data System (ADS)
Jatkar, Dileep P.; Sen, Ashoke; Srivastava, Yogesh K.
2010-02-01
BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, — degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.
Neural networks: What non-linearity to choose
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.; Quintana, Chris
1991-01-01
Neural networks are now one of the most successful learning formalisms. Neurons transform inputs (x(sub 1),...,x(sub n)) into an output f(w(sub 1)x(sub 1) + ... + w(sub n)x(sub n)), where f is a non-linear function and w, are adjustable weights. What f to choose? Usually the logistic function is chosen, but sometimes the use of different functions improves the practical efficiency of the network. The problem of choosing f as a mathematical optimization problem is formulated and solved under different optimality criteria. As a result, a list of functions f that are optimal under these criteria are determined. This list includes both the functions that were empirically proved to be the best for some problems, and some new functions that may be worth trying.
Image enhancement by non-linear extrapolation in frequency space
NASA Technical Reports Server (NTRS)
Anderson, Charles H. (Inventor); Greenspan, Hayit K. (Inventor)
1998-01-01
An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures.
Spontaneous Lorentz symmetry breaking in non-linear electrodynamics
Urrutia, Luis F.
2010-07-29
A recently proposed model of non-linear electrodynamics arising from a gauge invariant spontaneous Lorentz symmetry breaking is reviewed. The potential providing the symmetry breaking is argued to arise from the integration of gauge bosons and fermions in an underlying theory. The invariant subgroups remaining after the symmetry breaking are determined, as well as the dispersion relations and polarization modes of the propagating linear sector or the model. Strong bounds upon the predicted anisotropy of the speed of light are obtained by embedding the model in the electromagnetic sector of the Standard Model Extension and taking advantage of the restrictions in the parameters derived there. Finally, a reasonable estimation of the intergalactic magnetic field is obtained by assuming that the vacuum energy of the model is described by the standard cosmological constant.
Discriminative Non-Linear Stationary Subspace Analysis for Video Classification.
Baktashmotlagh, Mahsa; Harandi, Mehrtash; Lovell, Brian C; Salzmann, Mathieu
2014-12-01
Low-dimensional representations are key to the success of many video classification algorithms. However, the commonly-used dimensionality reduction techniques fail to account for the fact that only part of the signal is shared across all the videos in one class. As a consequence, the resulting representations contain instance-specific information, which introduces noise in the classification process. In this paper, we introduce non-linear stationary subspace analysis: a method that overcomes this issue by explicitly separating the stationary parts of the video signal (i.e., the parts shared across all videos in one class), from its non-stationary parts (i.e., the parts specific to individual videos). Our method also encourages the new representation to be discriminative, thus accounting for the underlying classification problem. We demonstrate the effectiveness of our approach on dynamic texture recognition, scene classification and action recognition. PMID:26353144
Force and Position Control in Humans - The Role of Augmented Feedback.
Lauber, Benedikt; Keller, Martin; Leukel, Christian; Gollhofer, Albert; Taube, Wolfgang
2016-01-01
During motor behaviour, humans interact with the environment by for example manipulating objects and this is only possible because sensory feedback is constantly integrated into the central nervous system and these sensory inputs need to be weighted in order meet the task specific goals. Additional feedback presented as augmented feedback was shown to have an impact on motor control and motor learning. A number of studies investigated whether force or position feedback has an influence on motor control and neural activation. However, as in the previous studies the presentation of the force and position feedback was always identical, a recent study assessed whether not only the content but also the interpretation of the feedback has an influence on the time to fatigue of a sustained submaximal contraction and the (inhibitory) activity of the primary motor cortex using subthreshold transcranial magnetic stimulation. This paper describes one possible way to investigate the influence of the interpretation of feedback on motor behaviour by investigating the time to fatigue of submaximal sustained contractions together with the neuromuscular adaptations that can be investigated using surface EMG. Furthermore, the current protocol also describes how motor cortical (inhibitory) activity can be investigated using subthreshold TMS, a method known to act solely on the cortical level. The results show that when participants interpret the feedback as position feedback, they display a significantly shorter time to fatigue of a submaximal sustained contraction. Furthermore, subjects also displayed an increased inhibitory activity of the primary cortex when they believed to receive position feedback compared when they believed to receive force feedback. Accordingly, the results show that interpretation of feedback results in differences on a behavioural level (time to fatigue) that is also reflected in interpretation-specific differences in the amount of inhibitory M1 activity
Controlled Trial Using Computerized Feedback to Improve Physicians' Diagnostic Judgments.
ERIC Educational Resources Information Center
Poses, Roy M.; And Others
1992-01-01
A study involving 14 experienced physicians investigated the effectiveness of a computer program (providing statistical feedback to teach a clinical diagnostic rule that predicts the probability of streptococcal pharyngitis), in conjunction with traditional lecture and periodic disease-prevalence reports. Results suggest the integrated method is a…
Towards a non-linear theory for fluid pressure and osmosis in shales
NASA Astrophysics Data System (ADS)
Droghei, Riccardo; Salusti, Ettore
2015-04-01
In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.
Note: An in situ method for measuring the non-linear response of a Fabry-Perot cavity
NASA Astrophysics Data System (ADS)
Bu, Wenhao; Liu, Mengke; Xie, Dizhou; Yan, Bo
2016-09-01
The transfer cavity is a very important frequency reference for laser stabilization and is widely used for applications such as precision measurements and laser cooling of ions or molecules. But the non-linear response of the piezoelectric ceramic transducer (PZT) in the Fabry-Perot cavity limits the performance of the laser stabilization. Thus, measuring and controlling such non-linearity is essential. Here we report an in situ, optical method to characterize this non-linearity by measuring the resonant signals of a dual-frequency laser. The differential measurement makes it insensitive to the laser and cavity drifts, while maintaining a very high sensitivity. It can be applied for various applications with PZTs, especially in an optical lab.
NASA Astrophysics Data System (ADS)
Mustafa, M.; Khan, Junaid Ahmad
2015-07-01
Present work deals with the magneto-hydro-dynamic flow and heat transfer of Casson nanofluid over a non-linearly stretching sheet. Non-linear temperature distribution across the sheet is considered. More physically acceptable model of passively controlled wall nanoparticle volume fraction is accounted. The arising mathematical problem is governed by interesting parameters which include Casson fluid parameter, magnetic field parameter, power-law index, Brownian motion parameter, thermophoresis parameter, Prandtl number and Schmidt number. Numerical solutions are computed through fourth-fifth-order-Runge-Kutta integration approach combined with the shooting technique. Both temperature and nanoparticle volume fraction are increasing functions of Casson fluid parameter.
Ganesan, S; Victoire, T Aruldoss Albert; Vijayalakshmy, G
2014-01-01
In this paper, the work is mainly concentrated on removing non-linear parameters to make the physiological signals more linear and reducing the complexity of the signals. This paper discusses three different types of techniques that can be successfully utilised to remove non-linear parameters in EEG and ECG. (i) Transformation technique using Discrete Walsh-Hadamard Transform (DWHT); (ii) application of fuzzy logic control and (iii) building the Adaptive Neuro-Fuzzy Inference System (ANFIS) model for fuzzy. This work has been inspired by the need to arrive at an efficient, simple, accurate and quicker method for analysis of bio-signal. PMID:24589837
The role of feed-forward and feedback processes for closed-loop prosthesis control
2011-01-01
Background It is widely believed that both feed-forward and feed-back mechanisms are required for successful object manipulation. Open-loop upper-limb prosthesis wearers receive no tactile feedback, which may be the cause of their limited dexterity and compromised grip force control. In this paper we ask whether observed prosthesis control impairments are due to lack of feedback or due to inadequate feed-forward control. Methods Healthy subjects were fitted with a closed-loop robotic hand and instructed to grasp and lift objects of different weights as we recorded trajectories and force profiles. We conducted three experiments under different feed-forward and feed-back configurations to elucidate the role of tactile feedback (i) in ideal conditions, (ii) under sensory deprivation, and (iii) under feed-forward uncertainty. Results (i) We found that subjects formed economical grasps in ideal conditions. (ii) To our surprise, this ability was preserved even when visual and tactile feedback were removed. (iii) When we introduced uncertainty into the hand controller performance degraded significantly in the absence of either visual or tactile feedback. Greatest performance was achieved when both sources of feedback were present. Conclusions We have introduced a novel method to understand the cognitive processes underlying grasping and lifting. We have shown quantitatively that tactile feedback can significantly improve performance in the presence of feed-forward uncertainty. However, our results indicate that feed-forward and feed-back mechanisms serve complementary roles, suggesting that to improve on the state-of-the-art in prosthetic hands we must develop prostheses that empower users to correct for the inevitable uncertainty in their feed-forward control. PMID:22032545
Fake feedback on pain tolerance impacts proactive versus reactive control strategies.
Rigoni, Davide; Braem, Senne; Pourtois, Gilles; Brass, Marcel
2016-05-01
It is well-known that beliefs about one's own ability to execute a task influence task performance. Here, we tested the hypothesis that beliefs about a specific self-control capacity, namely pain tolerance, modulate basic cognitive control processes. Participants received fake comparative social feedback that their ability to tolerate painful stimulations was either very poor or outstanding after which they performed an unrelated go/no-go task. Participants receiving low-tolerance feedback, relative to high-tolerance feedback, were less successful at inhibiting their responses and more influenced by previous trial conditions, as indicated by an increased slowdown following errors and more failed inhibitions following go-trials. These observations demonstrate a shift from a more proactive to a more reactive control mode. This study shows that providing feedback about one's own capacity to control impulsive reactions to painful stimulations directly influences low-level cognitive control dynamics.
Fake feedback on pain tolerance impacts proactive versus reactive control strategies.
Rigoni, Davide; Braem, Senne; Pourtois, Gilles; Brass, Marcel
2016-05-01
It is well-known that beliefs about one's own ability to execute a task influence task performance. Here, we tested the hypothesis that beliefs about a specific self-control capacity, namely pain tolerance, modulate basic cognitive control processes. Participants received fake comparative social feedback that their ability to tolerate painful stimulations was either very poor or outstanding after which they performed an unrelated go/no-go task. Participants receiving low-tolerance feedback, relative to high-tolerance feedback, were less successful at inhibiting their responses and more influenced by previous trial conditions, as indicated by an increased slowdown following errors and more failed inhibitions following go-trials. These observations demonstrate a shift from a more proactive to a more reactive control mode. This study shows that providing feedback about one's own capacity to control impulsive reactions to painful stimulations directly influences low-level cognitive control dynamics. PMID:27149180
Drueke, Barbara; Boecker, Maren; Mainz, Verena; Gauggel, Siegfried; Mungard, Lydia
2012-01-01
Executive control describes a wide range of cognitive processes which are critical for the goal-directed regulation of stimulus processing and action regulation. Previous studies have shown that executive control performance declines with age but yet, it is still not clear whether different internal and external factors—as performance feedback and age—influence these cognitive processes and how they might interact with each other. Therefore, we investigated feedback effects in the flanker task in young as well as in older adults in two experiments. Performance feedback significantly improved executive performance in younger adults at the expense of errors. In older adults, feedback also led to higher error rates, but had no significant effect on executive performance which might be due to stronger interference. Results indicate that executive functions can be positively influenced by performance feedback in younger adults, but not necessarily in older adults. PMID:22529793
Discriminating Non-Linearity from Linearity: Its Cognitive Foundations in Five-Year-Olds
ERIC Educational Resources Information Center
Ebersbach, Mirjam; Van Dooren, Wim; Goudriaan, Margje N.; Verschaffel, Lieven
2010-01-01
People often have difficulties in understanding situations that involve non-linear processes. Also, the topic of non-linear functions is introduced relatively late in the curriculum. Previous research has nevertheless shown that already children aged 6 years and older are able to discriminate non-linear from linear processes. Within the present…
State-variable analysis of non-linear circuits with a desk computer
NASA Technical Reports Server (NTRS)
Cohen, E.
1981-01-01
State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.
Li, Ning; Cao, Jinde
2015-01-01
In this paper, we investigate synchronization for memristor-based neural networks with time-varying delay via an adaptive and feedback controller. Under the framework of Filippov's solution and differential inclusion theory, and by using the adaptive control technique and structuring a novel Lyapunov functional, an adaptive updated law was designed, and two synchronization criteria were derived for memristor-based neural networks with time-varying delay. By removing some of the basic literature assumptions, the derived synchronization criteria were found to be more general than those in existing literature. Finally, two simulation examples are provided to illustrate the effectiveness of the theoretical results.
Li, Ning; Cao, Jinde
2015-01-01
In this paper, we investigate synchronization for memristor-based neural networks with time-varying delay via an adaptive and feedback controller. Under the framework of Filippov's solution and differential inclusion theory, and by using the adaptive control technique and structuring a novel Lyapunov functional, an adaptive updated law was designed, and two synchronization criteria were derived for memristor-based neural networks with time-varying delay. By removing some of the basic literature assumptions, the derived synchronization criteria were found to be more general than those in existing literature. Finally, two simulation examples are provided to illustrate the effectiveness of the theoretical results. PMID:25299765
On stability theory. [of nonlinear feedback control systems
NASA Technical Reports Server (NTRS)
Safonov, M. G.; Athans, M.
1979-01-01
It is found that under mild assumptions, feedback system stability can be concluded if one can 'topologically separate' the infinite-dimensional function space containing the system's dynamical input-output relations into two regions, one region containing the dynamical input-output relation of the 'feedforward' element of the system and the other region containing the dynamical output-input relation of the 'feedback' element. Nonlinear system stability criteria of both the input-output type and the state-space (Liapunov) type are interpreted in this context. The abstract generality and conceptual simplicity afforded by the topological separation perspective clarifies some of the basic issues underlying stability theory and serves to suggest improvements in existing stability criteria. A generalization of Zames' (1966) conic-relation stability criterion is proved, laying the foundation for improved multivariable generalizations of the frequency-domain circle stability criterion for nonlinear systems.
Haptic control of the hand force feedback system
NASA Astrophysics Data System (ADS)
Prisco, Giuseppe M.; Ortiz, Massimiliano; Barbagli, Frederico; Avizzano, Carlo A.; Bergamasco, Massimo
1999-11-01
The Hand Force Feedback System is an anthropomorphic haptic interface for the replication of the forces arising during grasping and fine manipulation operations. It is composed of four independent finger dorsal exoskeletons which wrap up four fingers of the human hand (the little finger is excluded). Each finger possesses three electrically actuated DOF placed in correspondence with the human finger flexion axes and a passive DOF allowing finger abduction movements.
Zamani, Mohamad Hosein; Fatemi, Rouholah; Soroushmoghadam, Keyvan
2015-01-01
Background: Feedback can improve task learning in children with developmental coordination disorder (DCD). However, the frequency and type of feedback may play different role in learning and needs to more investigations. Objectives: The aim of this study was to evaluate the acquisition and retention of new feedback skills in children with DCD under different frequency of self-control and control examiner feedback. Materials and Methods: In this quasi-experimental study with pretest-posttest design, participants based on their retention were divided into four feedback groups: self-controlled feedback groups with frequencies of 50% and75%, experimenter controls with frequencies of 50% and 75%. The study sample consisted of 24 boys with DCD aged between 9 to 11 years old in Ahvaz City, Iran. Then subjects practiced 30 throwing (6 blocks of 5 attempts) in eighth session. Acquisition test immediately after the last training session, and then the retention test were taken. Data were analyzed using the paired t-test, ANOVA and Tukey tests. Results: The results showed no significant difference between groups in the acquisition phase (P > 0.05). However,in the retention session, group of self-control showed better performance than the control tester group (P < 0.05). Conclusions: Based on the current findings, self-control feedback with high frequency leads to more learning in DCD children. The results of this study can be used in rehabilitation programs to improve performance and learning in children with DCD. PMID:26834805
Feedback control in a general almost periodic discrete system of plankton allelopathy.
Yin, Wenshuang
2014-01-01
We study the properties of almost periodic solutions for a general discrete system of plankton allelopathy with feedback controls and establish a theorem on the uniformly asymptotic stability of almost periodic solutions. PMID:24592189
Narrowband feedback for narrowband control of resonant and non-resonant vibration
NASA Astrophysics Data System (ADS)
Kim, Sang-Myeong; Brennan, Michael J.; Abreu, Gustavo L. C. M.
2016-08-01
This paper presents a simple feedback methodology that uses second order filters to control narrowband resonant and non-resonant vibration of a structural system. In particular, a single degree-of-freedom system is studied throughout the paper. The idea of the methodology is based on the fact that direct feedback is effective for in-phase vibration control. Thus, the position, velocity and acceleration are respectively fed back to control the low, resonant and high frequency vibration of the system. Each of these is passed through a band pass filter of second order that is inserted to extract and feed back the in-phase signal component only. This is called narrowband feedback. It is demonstrated with experiments that narrowband feedback is useful for narrowband control of resonant and non-resonant vibration.
Feedback control of nuclear spin bath for a single hole spin in a quantum dot
NASA Astrophysics Data System (ADS)
Pang, Hongliang; Gong, Zhirui; Yao, Wang
2014-03-01
In a semiconductor quantum dot, the nuclear spin bath plays an important role as the ultimate environment of an electron or hole spin at low temperature. Through dynamic nuclear spin polarization driven by an oscillating electric field, we show that feedback controls can be implemented on the nuclear spin bath of a single hole spin. The feedback controls utilize the anisotropic hyperfine interaction between the hole spin and the nuclear spins. The negative feedback can suppress the statistical fluctuations of the nuclear hyperfine field and lead to longer coherence time of the hole spin. Positive feedback can possibly lead to cat like state of nuclear spin bath. The efficiency of the controls schemes is investigated under different parameters and control strategies. The work is supported by the Croucher Foundation under the Croucher Innovation Award, and the Research Grant Council of Hong Kong (HKU706309P, HKU8/CRF/11G).
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
NASA Astrophysics Data System (ADS)
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2007-09-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2008-01-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes, and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this nonconservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot. PMID:17873426
NASA Astrophysics Data System (ADS)
Wang, Gang; Chen, Changzheng; Yu, Shenbo
2016-09-01
In this paper, the static output-feedback control problem of active suspension systems with information structure constraints is investigated. In order to simultaneously improve the ride comfort and stability, a half car model is used. Other constraints such as suspension deflection, actuator saturation, and controller constrained information are also considered. A novel static output-feedback design method based on the variable substitution is employed in the controller design. A single-step linear matrix inequality (LMI) optimization problem is solved to derive the initial feasible solution with a sparsity constraint. The initial infeasibility issue of the static output-feedback is resolved by using state-feedback information. Specifically, an optimization algorithm is proposed to search for less conservative results based on the feasible controller gain matrix. Finally, the validity of the designed controller for different road profiles is illustrated through numerical examples. The simulation results indicate that the optimized static output-feedback controller can achieve better suspension performances when compared with the feasible static output-feedback controller.
Towards easier realization of time-delayed feedback control of odd-number orbits.
Flunkert, V; Schöll, E
2011-07-01
We develop generalized time-delayed feedback schemes for the stabilization of periodic orbits with an odd number of positive Floquet exponents, which are particularly well suited for experimental realization. We construct the parameter regimes of successful control and validate these by numerical simulations and numerical continuation methods. In particular, it is shown how periodic orbits can be stabilized with symmetric feedback matrices by introducing an additional latency time in the control loop. Finally, we show using normal form analysis and numerical simulations how our results could be implemented in a laser setup using optoelectronic feedback.
Quan, Li-Di; Xue, Chao; Shao, Cheng-Gang; Yang, Shan-Qing; Tu, Liang-Cheng; Luo, Jun; Wang, Yong-Ji
2014-01-15
The performance of the feedback control system is of central importance in the measurement of the Newton's gravitational constant G with angular acceleration method. In this paper, a PID (Proportion-Integration-Differentiation) feedback loop is discussed in detail. Experimental results show that, with the feedback control activated, the twist angle of the torsion balance is limited to 7.3×10{sup −7} rad /√( Hz ) at the signal frequency of 2 mHz, which contributes a 0.4 ppm uncertainty to the G value.
Non-linear processes in the Earth atmosphere boundary layer
NASA Astrophysics Data System (ADS)
Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay
2013-04-01
The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components
Non-linear evolution of the cosmic neutrino background
Villaescusa-Navarro, Francisco; Viel, Matteo; Peña-Garay, Carlos E-mail: spb@ias.edu E-mail: viel@oats.inaf.it
2013-03-01
We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with
Method for neural network control of motion using real-time environmental feedback
NASA Technical Reports Server (NTRS)
Buckley, Theresa M. (Inventor)
1997-01-01
A method of motion control for robotics and other automatically controlled machinery using a neural network controller with real-time environmental feedback. The method is illustrated with a two-finger robotic hand having proximity sensors and force sensors that provide environmental feedback signals. The neural network controller is taught to control the robotic hand through training sets using back- propagation methods. The training sets are created by recording the control signals and the feedback signal as the robotic hand or a simulation of the robotic hand is moved through a representative grasping motion. The data recorded is divided into discrete increments of time and the feedback data is shifted out of phase with the control signal data so that the feedback signal data lag one time increment behind the control signal data. The modified data is presented to the neural network controller as a training set. The time lag introduced into the data allows the neural network controller to account for the temporal component of the robotic motion. Thus trained, the neural network controlled robotic hand is able to grasp a wide variety of different objects by generalizing from the training sets.
Nonlinear feedforward-feedback control of clutch-to-clutch shift technique
NASA Astrophysics Data System (ADS)
Gao, Bingzhao; Chen, Hong; Hu, Yunfeng; Sanada, Kazushi
2011-12-01
To improve the shift quality of the vehicle with clutch-to-clutch gear shifts, a nonlinear feedforward-feedback control scheme is proposed for clutch slip control during the shift inertia phase. The feedforward control is designed based on flatness in consideration of the system nonlinearities, and the linear feedback control is given to accommodate the model errors and the disturbances. Lookup tables, which are widely used to represent complex nonlinear characteristics of powertrain systems, appear in their original form in the designed feedforward controller, while the linear feedback controller is calculated through linear matrix inequalities such that the control system is robust against the parameter uncertainties. Finally, the designed controller is tested on an AMESim powertrain simulation model, which contains a time-variant model of clutch actuators.
Vibration suppression for large scale adaptive truss structures using direct output feedback control
NASA Technical Reports Server (NTRS)
Lu, Lyan-Ywan; Utku, Senol; Wada, Ben K.
1993-01-01
In this article, the vibration control of adaptive truss structures, where the control actuation is provided by length adjustable active members, is formulated as a direct output feedback control problem. A control method named Model Truncated Output Feedback (MTOF) is presented. The method allows the control feedback gain to be determined in a decoupled and truncated modal space in which only the critical vibration modes are retained. The on-board computation required by MTOF is minimal; thus, the method is favorable for the applications of vibration control of large scale structures. The truncation of the modal space inevitably introduces spillover effect during the control process. In this article, the effect is quantified in terms of active member locations, and it is shown that the optimal placement of active members, which minimizes the spillover effect (and thus, maximizes the control performance) can be sought. The problem of optimally selecting the locations of active members is also treated.
Sources of non-linearity in the mitotic trigger
NASA Astrophysics Data System (ADS)
Ferrell, James
2010-03-01
Quantitative biochemical studies have shown that the Cdk1/APC system, which drives entry into and exit from mitosis, functions as a relaxation oscillator. The bistable switch for the oscillator is provided by the Cdk1/Wee1/Cdc25 sub-system, which consists of a pair of mirror-image positive feedback and double-negative feedback loops. In turn, the bistable switch relies on the ultrasensitive sigmoidal response functions of the two loops' components. Here we have investigated the mechanisms through which Wee1 and Cdc25 generate ultrasensitive responses. Our results argue that the ultrasensitivity arises mainly through cooperative multisite phosphorylation and competition.
RKH space approximations for the feedback operator in a linear hereditary control system
NASA Technical Reports Server (NTRS)
Reneke, J. A.; Fennell, R. E.
1987-01-01
Computational implementation of feedback control laws for linear hereditary systems requires the approximation of infinite dimensional feedback operators with finite dimensional operators. The dense subspaces of K-polygonal functions in reproducing kernel Hilbert spaces, RKH spaces, suggest finite dimensional approximations of the matrix representations of the control operators. A convergence theorem is developed for the approximations and the numerical implementation of the approximations is discussed.
Feedback control of a solid-state qubit using high-fidelity projective measurement.
Ristè, D; Bultink, C C; Lehnert, K W; DiCarlo, L
2012-12-14
We demonstrate feedback control of a superconducting transmon qubit using discrete, projective measurement and conditional coherent driving. Feedback realizes a fast and deterministic qubit reset to a target state with 2.4% error averaged over input superposition states, and allows concatenating experiments more than 10 times faster than by passive initialization. This closed-loop qubit control is necessary for measurement-based protocols such as quantum error correction and teleportation. PMID:23368293
Controlling chaos in some laser systems via variable coupling and feedback time delays
NASA Astrophysics Data System (ADS)
Shahverdiev, E. M.
2016-09-01
We study numerically a system of two lasers cross-coupled optoelectronically with a time delay where the output intensity of each laser modulates the pump current of the other laser. We demonstrate control of chaos via variable coupling time delay by converting the laser intensity chaos to the steady-state. We also show that wavelength chaos in an electrically tunable distributed Bragg reflector (DBR) laser diode with a feedback loop that can be controlled via variable feedback time delay.
Kreula, J M; Clark, S R; Jaksch, D
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case.
Kreula, J. M.; Clark, S. R.; Jaksch, D.
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
Kreula, J M; Clark, S R; Jaksch, D
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
NASA Astrophysics Data System (ADS)
Kreula, J. M.; Clark, S. R.; Jaksch, D.
2016-09-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case.
Advanced feedback control methods in EXTRAP T2R reversed field pinch
NASA Astrophysics Data System (ADS)
Yadikin, D.; Brunsell, P. R.; Paccagnella, R.
2006-07-01
Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of td≈10τw is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system.
STATISTICAL BASED NON-LINEAR MODEL UPDATING USING FEATURE EXTRACTION
Schultz, J.F.; Hemez, F.M.
2000-10-01
This research presents a new method to improve analytical model fidelity for non-linear systems. The approach investigates several mechanisms to assist the analyst in updating an analytical model based on experimental data and statistical analysis of parameter effects. The first is a new approach at data reduction called feature extraction. This is an expansion of the update metrics to include specific phenomena or character of the response that is critical to model application. This is an extension of the classical linear updating paradigm of utilizing the eigen-parameters or FRFs to include such devices as peak acceleration, time of arrival or standard deviation of model error. The next expansion of the updating process is the inclusion of statistical based parameter analysis to quantify the effects of uncertain or significant effect parameters in the construction of a meta-model. This provides indicators of the statistical variation associated with parameters as well as confidence intervals on the coefficients of the resulting meta-model, Also included in this method is the investigation of linear parameter effect screening using a partial factorial variable array for simulation. This is intended to aid the analyst in eliminating from the investigation the parameters that do not have a significant variation effect on the feature metric, Finally an investigation of the model to replicate the measured response variation is examined.
Non-linear optical measurements using a scanned, Bessel beam
NASA Astrophysics Data System (ADS)
Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.
2015-03-01
Oftentimes cells are removed from the body for disease diagnosis or cellular research. This typically requires fluorescent labeling followed by sorting with a flow cytometer; however, possible disruption of cellular function or even cell death due to the presence of the label can occur. This may be acceptable for ex vivo applications, but as cells are more frequently moving from the lab to the body, label-free methods of cell sorting are needed to eliminate these issues. This is especially true of the growing field of stem cell research where specialized cells are needed for treatments. Because differentiation processes are not completely efficient, cells must be sorted to eliminate any unwanted cells (i.e. un-differentiated or differentiated into an unwanted cell type). In order to perform label-free measurements, non-linear optics (NLO) have been increasingly utilized for single cell analysis because of their ability to not disrupt cellular function. An optical system was developed for the measurement of NLO in a microfluidic channel similar to a flow cytometer. In order to improve the excitation efficiency of NLO, a scanned Bessel beam was utilized to create a light-sheet across the channel. The system was tested by monitoring twophoton fluorescence from polystyrene microbeads of different sizes. Fluorescence intensity obtained from light-sheet measurements were significantly greater than measurements made using a static Gaussian beam. In addition, the increase in intensity from larger sized beads was more evident for the light-sheet system.
Amplitude relations in non-linear sigma model
NASA Astrophysics Data System (ADS)
Chen, Gang; Du, Yi-Jian
2014-01-01
In this paper, we investigate tree-level scattering amplitude relations in U( N) non-linear sigma model. We use Cayley parametrization. As was shown in the recent works [23,24], both on-shell amplitudes and off-shell currents with odd points have to vanish under Cayley parametrization. We prove the off-shell U(1) identity and fundamental BCJ relation for even-point currents. By taking the on-shell limits of the off-shell relations, we show that the color-ordered tree amplitudes with even points satisfy U(1)-decoupling identity and fundamental BCJ relation, which have the same formations within Yang-Mills theory. We further state that all the on-shell general KK, BCJ relations as well as the minimal-basis expansion are also satisfied by color-ordered tree amplitudes. As a consequence of the relations among color-ordered amplitudes, the total 2 m-point tree amplitudes satisfy DDM form of color decomposition as well as KLT relation.
Non-linear modulation of short wavelength compressional Alfven eigenmodes
Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B.; Bortolon, A.; Crocker, N. A.; Levinton, F. M.; Yuh, H.
2013-04-15
Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.
On classical mechanical systems with non-linear constraints
NASA Astrophysics Data System (ADS)
Terra, Gláucio; Kobayashi, Marcelo H.
2004-03-01
In the present work, we analyze classical mechanical systems with non-linear constraints in the velocities. We prove that the d'Alembert-Chetaev trajectories of a constrained mechanical system satisfy both Gauss' principle of least constraint and Hölder's principle. In the case of a free mechanics, they also satisfy Hertz's principle of least curvature if the constraint manifold is a cone. We show that the Gibbs-Maggi-Appell (GMA) vector field (i.e. the second-order vector field which defines the d'Alembert-Chetaev trajectories) conserves energy for any potential energy if, and only if, the constraint is homogeneous (i.e. if the Liouville vector field is tangent to the constraint manifold). We introduce the Jacobi-Carathéodory metric tensor and prove Jacobi-Carathéodory's theorem assuming that the constraint manifold is a cone. Finally, we present a version of Liouville's theorem on the conservation of volume for the flow of the GMA vector field.
Non-linear model for compression tests on articular cartilage.
Grillo, Alfio; Guaily, Amr; Giverso, Chiara; Federico, Salvatore
2015-07-01
Hydrated soft tissues, such as articular cartilage, are often modeled as biphasic systems with individually incompressible solid and fluid phases, and biphasic models are employed to fit experimental data in order to determine the mechanical and hydraulic properties of the tissues. Two of the most common experimental setups are confined and unconfined compression. Analytical solutions exist for the unconfined case with the linear, isotropic, homogeneous model of articular cartilage, and for the confined case with the non-linear, isotropic, homogeneous model. The aim of this contribution is to provide an easily implementable numerical tool to determine a solution to the governing differential equations of (homogeneous and isotropic) unconfined and (inhomogeneous and isotropic) confined compression under large deformations. The large-deformation governing equations are reduced to equivalent diffusive equations, which are then solved by means of finite difference (FD) methods. The solution strategy proposed here could be used to generate benchmark tests for validating complex user-defined material models within finite element (FE) implementations, and for determining the tissue's mechanical and hydraulic properties from experimental data.
Non-linear calibration models for near infrared spectroscopy.
Ni, Wangdong; Nørgaard, Lars; Mørup, Morten
2014-02-27
Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS-SVM is also attractive due to its good predictive performance for both linear and nonlinear calibrations.
Optimum Damping in a Non-Linear Base Isolation System
NASA Astrophysics Data System (ADS)
Jangid, R. S.
1996-02-01
Optimum isolation damping for minimum acceleration of a base-isolated structure subjected to earthquake ground excitation is investigated. The stochastic model of the El-Centro1940 earthquake, which preserves the non-stationary evolution of amplitude and frequency content of ground motion, is used as an earthquake excitation. The base isolated structure consists of a linear flexible shear type multi-storey building supported on a base isolation system. The resilient-friction base isolator (R-FBI) is considered as an isolation system. The non-stationary stochastic response of the system is obtained by the time dependent equivalent linearization technique as the force-deformation of the R-FBI system is non-linear. The optimum damping of the R-FBI system is obtained under important parametric variations; i.e., the coefficient of friction of the R-FBI system, the period and damping of the superstructure; the effective period of base isolation. The criterion selected for optimality is the minimization of the top floor root mean square (r.m.s.) acceleration. It is shown that the above parameters have significant effects on optimum isolation damping.
Organic non-linear optics and opto-electronics
NASA Astrophysics Data System (ADS)
Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.
2010-12-01
π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.
Experimental study of a linear/non-linear flux rope
DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart
2015-08-15
Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, r{sub plasma} = 30 cm, n{sub o} = 10{sup 12 }cm{sup −3}, T{sub e} = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowing it to freely move about the anode. At large currents (I > πr{sup 2}B{sub 0}c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.
Feedback and Feedforward Control of Frequency Tuning to Naturalistic Stimuli
Chacron, Maurice J.; Maler, Leonard; Bastian, Joseph
2016-01-01
Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input. PMID:15944380
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
Feedback control of plasma instabilities with charged particle beams and study of plasma turbulence
NASA Technical Reports Server (NTRS)
Tham, Philip Kin-Wah
1994-01-01
A new non-perturbing technique for feedback control of plasma instabilities has been developed in the Columbia Linear Machine (CLM). The feedback control scheme involves the injection of a feedback modulated ion beam as a remote suppressor. The ion beam was obtained from a compact ion beam source which was developed for this purpose. A Langmuir probe was used as the feedback sensor. The feedback controller consisted of a phase-shifter and amplifiers. This technique was demonstrated by stabilizing various plasma instabilities to the background noise level, like the trapped particle instability, the ExB instability and the ion-temperature-gradient (ITG) driven instability. An important feature of this scheme is that the injected ion beam is non-perturbing to the plasma equilibrium parameters. The robustness of this feedback stabilization scheme was also investigated. The principal result is that the scheme is fairly robust, tolerating about 100% variation about the nominal parameter values. Next, this scheme is extended to the unsolved general problem of controlling multimode plasma instabilities simultaneously with a single sensor-suppressor pair. A single sensor-suppressor pair of feedback probes is desirable to reduce the perturbation caused by the probes. Two plasma instabilities the ExB and the ITG modes, were simultaneously stabilized. A simple 'state' feedback type method was used where more state information was generated from the single sensor Langmuir probe by appropriate signal processing, in this case, by differentiation. This proof-of-principle experiment demonstrated for the first time that by designing a more sophisticated electronic feedback controller, many plasma instabilities may be simultaneously controlled. Simple theoretical models showed generally good agreement with the feedback experimental results. On a parallel research front, a better understanding of the saturated state of a plasma instability was sought partly with the help of feedback
Raul, P R; Dwivedula, R V; Pagilla, P R
2016-07-01
The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed. PMID:27126600
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1987-01-01
A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.
High alpha feedback control for agile half-loop maneuvers of the F-18 airplane
NASA Technical Reports Server (NTRS)
Stalford, Harold
1988-01-01
A nonlinear feedback control law for the F/A-18 airplane that provides time-optimal or agile maneuvering of the half-loop maneuver at high angles of attack is given. The feedback control law was developed using the mathematical approach of singular perturbations, in which the control devices considered were conventional aerodynamic control surfaces and thrusting. The derived nonlinear control law was used to simulate F/A-18 half-loop maneuvers. The simulated results at Mach 0.6 and 0.9 compared well with pilot simulations conducted at NASA.
Haematite natural crystals: non-linear initial susceptibility at low temperature
NASA Astrophysics Data System (ADS)
Guerrero-Suarez, S.; Martín-Hernández, F.
2016-06-01
Several works have reported that haematite has non-linear initial susceptibility at room temperature, like pyrrhotite or titanomagnetite, but there is no explanation for the observed behaviours yet. This study sets out to determine which physical property (grain size, foreign cations content and domain walls displacements) controls the initial susceptibility. The performed measurements include microprobe analysis to determine magnetic phases different to haematite; initial susceptibility (300 K); hysteresis loops, SIRM and backfield curves at 77 and 300 K to calculate magnetic parameters and minor loops at 77 K, to analyse initial susceptibility and magnetization behaviours below Morin transition. The magnetic moment study at low temperature is completed with measurements of zero field cooled-field cooled and AC susceptibility in a range from 5 to 300 K. The minor loops show that the non-linearity of initial susceptibility is closely related to Barkhausen jumps. Because of initial magnetic susceptibility is controlled by domain structure it is difficult to establish a mathematical model to separate magnetic subfabrics in haematite-bearing rocks.
NASA Astrophysics Data System (ADS)
Wu, Fen; Hays, Scott
2013-09-01
This paper investigates nonlinear gain-scheduling control approaches for a class of polynomial nonlinear systems, containing an output-dependent vector field with input saturation. Using the polytopic differential inclusion and norm-bounded differential inclusion (NDI) of saturation and dead-zone functions, the nonlinear plants are transformed into systems with measurable parameters. For the polytopic differential inclusion description, a quasi-linear parameter varying (quasi-LPV) output-feedback controller will be sought for saturation control. On the other hand, the NDI model leads to a nonlinear fractional transformation (NFT) output-feedback controller for saturated nonlinear systems. The quasi-LPV and NFT output-feedback control synthesis conditions are derived in the forms of output-dependent matrix inequalities. They can be reformulated as sum-of-squares (SOS) optimisations and solved efficiently using SOS programming. The proposed nonlinear gain-scheduling saturation control approaches will be demonstrated using the Van der Pol equation.
Robust MPC for a non-linear system - a neural network approach
NASA Astrophysics Data System (ADS)
Luzar, Marcel; Witczak, Marcin
2014-12-01
The aim of the paper is to design a robust actuator fault-tolerant control for a non-linear discrete-time system. Considered system is described by the Linear Parameter-Varying (LPV) model obtained with recurrent neural network. The proposed solution starts with a discretetime quasi-LPV system identification using artificial neural network. Subsequently, the robust controller is proposed, which does not take into account actuator saturation level and deals with the previously estimated faults. To check if the compensation problem is feasible, the robust invariant set is employed, which takes into account actuator saturation level. When the current state does not belong to the set, then a predictive control is performed in order to make such set larger. This makes it possible to increase the domain of attraction, which makes the proposed methodology an efficient solution for the fault-tolerant control. The last part of the paper presents an experimental results regarding wind turbines.
Hua, Chang-Chun; Wang, Qing-Guo; Guan, Xin-Ping
2009-04-01
In this paper, the robust-control problem is investigated for a class of uncertain nonlinear time-delay systems via dynamic output-feedback approach. The considered system is in the strict-feedback form with unknown control direction. A full-order observer is constructed with the gains computed via linear matrix inequality at first. Then, with the bounds of uncertain functions known, we design the dynamic output-feedback controller such that the closed-loop system is asymptotically stable. Furthermore, when the bound functions of uncertainties are not available, the adaptive fuzzy-logic system is employed to approximate the uncertain function, and the corresponding output-feedback controller is designed. It is shown that the resulting closed-loop system is stable in the sense of semiglobal uniform ultimate boundedness. Finally, simulations are done to verify the feasibility and effectiveness of the obtained theoretical results.
NASA Astrophysics Data System (ADS)
Nakagawa, Shinsuke; Yamaguchi, Takashi
In magnetic disk drives, mechanical resonance modes prevent a higher bandwidth servo being used for head positioning control. To overcome this limitation and realize more precise head positioning, a strain feedback controller which is added to a conventional head-position feedback loop was developed. The controller of a strain-feedback control system was designed so that the gain and the phase delay of the sensitivity function of the strain-feedback control system were both reduced below the frequency of a primary mechanical resonance. The controller achieves gain suppression by about 10dB at a primary mechanical resonance and phase delay of about zero degrees. It was found that the head-position control system (i.e., the strain feedback plus the conventional head-position feedback loop) increases the servo bandwidth by 17% and improves the positioning accuracy by 18%. It was also confirmed that unlike conventional servo system, the new servo design does not suffer degradation of servo characteristics at high temperature.
Hydraulic engine valve actuation system including independent feedback control
Marriott, Craig D
2013-06-04
A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.
New MHD feedback control schemes using the MARTe framework in RFX-mod
NASA Astrophysics Data System (ADS)
Piron, Chiara; Manduchi, Gabriele; Marrelli, Lionello; Piovesan, Paolo; Zanca, Paolo
2013-10-01
Real-time feedback control of MHD instabilities is a topic of major interest in magnetic thermonuclear fusion, since it allows to optimize a device performance even beyond its stability bounds. The stability properties of different magnetic configurations are important test benches for real-time control systems. RFX-mod, a Reversed Field Pinch experiment that can also operate as a tokamak, is a well suited device to investigate this topic. It is equipped with a sophisticated magnetic feedback system that controls MHD instabilities and error fields by means of 192 active coils and a corresponding grid of sensors. In addition, the RFX-mod control system has recently gained new potentialities thanks to the introduction of the MARTe framework and of a new CPU architecture. These capabilities allow to study new feedback algorithms relevant to both RFP and tokamak operation and to contribute to the debate on the optimal feedback strategy. This work focuses on the design of new feedback schemes. For this purpose new magnetic sensors have been explored, together with new algorithms that refine the de-aliasing computation of the radial sideband harmonics. The comparison of different sensor and feedback strategy performance is described in both RFP and tokamak experiments.
Influence of self-controlled feedback on learning a serial motor skill.
Lim, Soowoen; Ali, Asif; Kim, Wonchan; Kim, Jingu; Choi, Sungmook; Radlo, Steven J
2015-04-01
Self-controlled feedback on a variety of tasks are well established as effective means of facilitating motor skill learning. This study assessed the effects of self-controlled feedback on the performance of a serial motor skill. The task was to learn the sequence of 18 movements that make up the Taekwondo Poomsae Taegeuk first, which is the first beginner's practice form learned in this martial art. Twenty-four novice female participants (M age=27.2 yr., SD=1.8) were divided into two groups. All participants performed 16 trials in 4 blocks of the acquisition phase and 20 hr. later, 8 trials in 2 blocks of the retention phase. The self-controlled feedback group had significantly higher performance compared to the yoked-feedback group with regard to acquisition and retention. The results of this study may contribute to the literature regarding feedback by extending the usefulness of self-controlled feedback for learning a serial skill. PMID:25914937
Nguyen, L K; Kulasiri, D
2011-03-01
Molecular fluctuations are known to affect dynamics of cellular systems in important ways. Studies aimed at understanding how molecular systems of certain regulatory architectures control noise therefore become essential. The interplay between feedback regulation and noise has been previously explored for cellular networks governed by a single negative feedback loop. However, similar issues within networks consisting of more complex regulatory structures remain elusive. The authors investigate how negative feedback loops manage noise within a biochemical cascade concurrently governed by multiple negative feedback loops, using the prokaryotic tryptophan (trp) operon system in Escherechia coli as the model system. To the authors knowledge, this is the first study of noise in the trp operon system. They show that the loops in the trp operon system possess distinct, even opposing, noise-controlling effects despite their seemingly analogous feedback structures. The enzyme inhibition loop, although controlling the last reaction of the cascade, was found to suppress noise not only for the tryptophan output but also for other upstream components. In contrast, the Repression (Rep) loop enhances noise for all systems components. Attenuation (Att) poses intermediate effects by attenuating noise for the upstream components but promoting noise for components downstream of its target. Regarding noise at the output tryptophan, Rep and Att can be categorised as noise-enhancing loops whereas Enzyme Inhibition as a noise-reducing loop. These findings suggest novel implications in how cellular systems with multiple feedback mechanisms control noise. [Includes supplementary material]. PMID:21405203
Simulation of the fast steering mirror control system based on gyro velocity feedback
NASA Astrophysics Data System (ADS)
Kuang, Jiagming; Tang, Tao; Fu, Chengyu; Ding, Ke; Yu, Wei
2009-11-01
The fast steering mirror is a significant element of the photoelectric precision tracking system and is mainly used for attenuating the tracking error of the main axis and rejecting the line-of-sight jitter caused by various disturbances. A control loop model is constructed and object parameters have been identified according to this model in this paper. Low sampling frequency introduce great delay into the imaging tracking system, which may restrict greatly the closed-loop bandwidth, reduce tracking precision of the system and even make the system unsteady. Various elements which limit tracking loop bandwidth are presented and analyzed. Three tracking systems with different sampling frequency are simulated and analyzed. From the simulation result the conclusion can be drawn that it is difficult to increase the closedloop bandwidth in the presence of great delay by means of the general control method. Accordingly feedback control or feed forward control may be tried to improve the error attenuation of the system. The micro-mechanical gyro can be used for measuring the angular velocity of fast steering mirror, so output of velocity gyro as velocity loop feedback may improve the system performance. Furthermore, the velocity loop feedback can enhance the rigidity and the output stability of the tracking system. Finally, the velocity feedback can increase the type of the open loop system; consequently it will improve the error attenuation of the system. The simulation result shows that the tracking precision of the system with velocity feedback is 10 times better than the system without velocity feedback.
Non-Linear Pattern Formation in Bone Growth and Architecture
Salmon, Phil
2014-01-01
The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here – chaotic non-linear pattern formation (NPF) – which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of “group intelligence” exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called “particle swarm optimization” (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating “socially” in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or “feedback” between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the
Rotor-state feedback in the design of flight control laws for a hovering helicopter
NASA Technical Reports Server (NTRS)
Takahashi, Marc D.
1994-01-01
The use of rigid-body and rotor-state feedback gains in the design of helicopter flight control laws was investigated analytically on a blade element, articulated rotor, helicopter model. The study was conducted while designing a control law to meet an existing military rotorcraft handling qualities design specification (ADS-33C) in low-speed flight. A systematic approach to meet this specification was developed along with an assessment of the function of these gains in the feedback loops. Using the results of this assessment, the pitch and roll crossover behavior was easily modified by adjusting the body attitude and rotor-flap feedback gains. Critical to understanding the feedback gains is that the roll and pitch rate dynamics each have second-order behavior, not the classic first-order behavior, which arises from a quasi-static rotor, six degree-of-freedom model.
Global Output-Feedback Control for Simultaneous Tracking and Stabilization of Wheeled Mobile Robots
NASA Astrophysics Data System (ADS)
Chang, J.; Zhang, L. J.; Xue, D.
A time-varying global output-feedback controller is presented that solves both tracking and stabilization for wheeled mobile robots simultaneously at the torque level. The controller synthesis is based on a coordinate transformation, Lyapunov direct method and backstepping technique. The performance of the proposed controller is demonstrated by simulation.
Optimal control of nonlinear continuous-time systems in strict-feedback form.
Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani
2015-10-01
This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results. PMID:26111400
Delayed Visual Feedback of One’s Own Action Promotes Sense of Control for Auditory Events
Kawabe, Takahiro
2015-01-01
Sense of control refers to one’s feelings to control environmental events through one’s own action. A prevailing view is that the sense of control is strong (or is not diminished) when predicted sensory signals, which are generated in motor control mechanisms, are consistent with afferent sensory signals. Such intact sense of control often leads to the misjudgment of temporal relation between timings of one’s action and its effect (so-called, intentional binding). The present study showed that the intentional binding could be enhanced by the delayed visual feedback of an agent’s action. We asked participants to press a button to produce a tone as action outcome. In some conditions, they were given the delayed visual feedback of their button press. Participants judged whether the onset of the auditory outcome was delayed from the timing of their button press. Consequently, delay detection thresholds were significantly higher when the feedback was given 0.2 and 0.4 s delays than when no feedback was displayed to the participants. The results indicate that action agents misjudge the timing of their action (button press) in the presence of the delayed visual feedback of their action. Interestingly, delay detection thresholds were strongly correlated with the subjective magnitude of the sense of control. Thus, the sense of control is possibly determined by cross-modal processing for action-related and outcome-related sensory signals. PMID:26635552
Delayed Visual Feedback of One's Own Action Promotes Sense of Control for Auditory Events.
Kawabe, Takahiro
2015-01-01
Sense of control refers to one's feelings to control environmental events through one's own action. A prevailing view is that the sense of control is strong (or is not diminished) when predicted sensory signals, which are generated in motor control mechanisms, are consistent with afferent sensory signals. Such intact sense of control often leads to the misjudgment of temporal relation between timings of one's action and its effect (so-called, intentional binding). The present study showed that the intentional binding could be enhanced by the delayed visual feedback of an agent's action. We asked participants to press a button to produce a tone as action outcome. In some conditions, they were given the delayed visual feedback of their button press. Participants judged whether the onset of the auditory outcome was delayed from the timing of their button press. Consequently, delay detection thresholds were significantly higher when the feedback was given 0.2 and 0.4 s delays than when no feedback was displayed to the participants. The results indicate that action agents misjudge the timing of their action (button press) in the presence of the delayed visual feedback of their action. Interestingly, delay detection thresholds were strongly correlated with the subjective magnitude of the sense of control. Thus, the sense of control is possibly determined by cross-modal processing for action-related and outcome-related sensory signals. PMID:26635552
Schikora, S; Wünsche, H-J; Henneberger, F
2011-02-01
A subcritical Hopf bifurcation is prepared in a multisection semiconductor laser. In the free-running state, hysteresis is absent due to noise-induced escape processes. The missing branches are recovered by stabilizing them against noise through application of phase-sensitive noninvasive delayed optical feedback control. The same type of control is successfully used to stabilize the unstable pulsations born in the Hopf bifurcation. This experimental finding represents an optical counterexample to the so-called odd-number limitation of delayed feedback control. However, as a leftover of the limitation, the domains of control are extremely small.
Global adaptive output feedback control for a class of nonlinear time-delay systems.
Zhai, Jun-yong; Zha, Wen-ting
2014-01-01
This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems.
Advanced feedback control of indoor air quality using real-time computational fluid dynamics
Ratnam, E.; Campbell, T.; Bradley, R.
1998-10-01
This paper describes the partial implementation of a novel method of controlling indoor air quality (IAQ) for critical applications. The proposed method uses a numerical modeling technique known as computational fluid dynamics (CFD) for modeling the effect of variable ventilation rates for intelligent and rapid control of air contamination in space. This paper describes how a CFD model is made to run in real time linked to a feedback control loop. The technique was simulated in a graphical programming language. The simulation results indicate that a quasi-transient potential flow CFD model is a viable technique for feedback control of IAQ, and it is currently being implemented in an experimental validation.
NASA Astrophysics Data System (ADS)
Wang, Ronghao; Xing, Jianchun; Li, Juelong; Xiang, Zhengrong
2016-10-01
This paper studies the problem of stabilising a sampled-data switched linear system by quantised feedback asynchronously switched controllers. The idea of a quantised feedback asynchronously switched control strategy originates in earlier work reflecting actual system characteristic of switching and quantising, respectively. A quantised scheme is designed depending on switching time using dynamic quantiser. When sampling time, system switching time and controller switching time are all not uniform, the proposed switching controllers guarantee the system to be finite-time stable by a piecewise Lyapunov function and the average dwell-time method. Simulation examples are provided to show the effectiveness of the developed results.
Pyragas, V; Pyragas, K
2006-03-01
We develop an analytical approach for the delayed feedback control of the Lorenz system close to a subcritical Hopf bifurcation. The periodic orbits arising at this bifurcation have no torsion and cannot be stabilized by a conventional delayed feedback control technique. We utilize a modification based on an unstable delayed feedback controller. The analytical approach employs the center manifold theory and the near identity transformation. We derive the characteristic equation for the Floquet exponents of the controlled orbit in an analytical form and obtain simple expressions for the threshold of stability as well as for an optimal value of the control gain. The analytical results are supported by numerical analysis of the original system of nonlinear differential-difference equations.
Novel fuzzy feedback linearization strategy for control via differential geometry approach.
Li, Tzuu-Hseng S; Huang, Chiou-Jye; Chen, Chung-Cheng
2010-07-01
The study investigates a novel fuzzy feedback linearization strategy for control. The main contributions of this study are to construct a control strategy such that the resulting closed-loop system is valid for any initial condition with almost disturbance decoupling performance, and develop the feedback linearization design for some class of nonlinear control systems. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. Once the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control is immediately applied via a human expert's knowledge to improve the convergence rate. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the almost disturbance decoupling and the convergence rate performances are easily achieved by the proposed approach.
Novel fuzzy feedback linearization strategy for control via differential geometry approach.
Li, Tzuu-Hseng S; Huang, Chiou-Jye; Chen, Chung-Cheng
2010-07-01
The study investigates a novel fuzzy feedback linearization strategy for control. The main contributions of this study are to construct a control strategy such that the resulting closed-loop system is valid for any initial condition with almost disturbance decoupling performance, and develop the feedback linearization design for some class of nonlinear control systems. The feedback linearization control guarantees the almost disturbance decoupling performance and the uniform ultimate bounded stability of the tracking error system. Once the tracking errors are driven to touch the global final attractor with the desired radius, the fuzzy logic control is immediately applied via a human expert's knowledge to improve the convergence rate. One example, which cannot be solved by the first paper on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the almost disturbance decoupling and the convergence rate performances are easily achieved by the proposed approach. PMID:20347083
Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks
Sun, Z.; Sen, A.K.; Longman, R.W.
2006-01-15
An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.
NASA Astrophysics Data System (ADS)
Lei, Jing; Jiang, Zuo; Li, Ya-Li; Li, Wu-Xin
2014-10-01
The problem of nonlinear vibration control for active vehicle suspension systems with actuator delay is considered. Through feedback linearization, the open-loop nonlinearity is eliminated by the feedback nonlinear term. Based on the finite spectrum assignment, the quarter-car suspension system with actuator delay is converted into an equivalent delay-free one. The nonlinear control includes a linear feedback term, a feedforward compensator, and a control memory term, which can be derived from a Riccati equation and a Sylvester equation, so that the effects produced by the road disturbances and the actuator delay are compensated, respectively. A predictor is designed to implement the predictive state in the designed control. Moreover, a reduced-order observer is constructed to solve its physical unrealisability problem. The stability proofs for the zero dynamics and the closed-loop system are provided. Numerical simulations illustrate the effectiveness and the simplicity of the designed control.