Spherically symmetric analysis on open FLRW solution in non-linear massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chien-I; Izumi, Keisuke; Chen, Pisin, E-mail: chienichiang@berkeley.edu, E-mail: izumi@phys.ntu.edu.tw, E-mail: chen@slac.stanford.edu
2012-12-01
We study non-linear massive gravity in the spherically symmetric context. Our main motivation is to investigate the effect of helicity-0 mode which remains elusive after analysis of cosmological perturbation around an open Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. The non-linear form of the effective energy-momentum tensor stemming from the mass term is derived for the spherically symmetric case. Only in the special case where the area of the two sphere is not deviated away from the FLRW universe, the effective energy momentum tensor becomes completely the same as that of cosmological constant. This opens a window for discriminating the non-linear massive gravity frommore » general relativity (GR). Indeed, by further solving these spherically symmetric gravitational equations of motion in vacuum to the linear order, we obtain a solution which has an arbitrary time-dependent parameter. In GR, this parameter is a constant and corresponds to the mass of a star. Our result means that Birkhoff's theorem no longer holds in the non-linear massive gravity and suggests that energy can probably be emitted superluminously (with infinite speed) on the self-accelerating background by the helicity-0 mode, which could be a potential plague of this theory.« less
Emergent universe with wormholes in massive gravity
NASA Astrophysics Data System (ADS)
Paul, B. C.; Majumdar, A. S.
2018-03-01
An emergent universe (EU) scenario is proposed to obtain a universe free from big-bang singularity. In this framework the present universe emerged from a static Einstein universe phase in the infinite past. A flat EU scenario is found to exist in Einstein’s gravity with a non-linear equation of state (EoS). It has been shown subsequently that a physically realistic EU model can be obtained considering cosmic fluid composed of interacting fluids with a non-linear equation of state. It results a viable cosmological model accommodating both early inflation and present accelerating phases. In the present paper, the origin of an initial static Einstein universe needed in the EU model is explored in a massive gravity theory which subsequently emerged to be a dynamically evolving universe. A new gravitational instanton solution in a flat universe is obtained in the massive gravity theory which is a dynamical wormhole that might play an important role in realizing the origin of the initial state of the emergent universe. The emergence of a Lorentzian universe from a Euclidean gravity is understood by a Wick rotation τ = i t . A universe with radiation at the beginning finally transits into the present observed universe with a non-linear EoS as the interactions among the fluids set in. Thus a viable flat EU scenario where the universe stretches back into time infinitely, with no big bang is permitted in a massive gravity.
Non-linear regime of the Generalized Minimal Massive Gravity in critical points
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2016-03-01
The Generalized Minimal Massive Gravity (GMMG) theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. In the present paper we obtain exact solutions to the GMMG field equations in the non-linear regime of the model. GMMG model about AdS_3 space is conjectured to be dual to a 2-dimensional CFT. We study the theory in critical points corresponding to the central charges c_-=0 or c_+=0, in the non-linear regime. We show that AdS_3 wave solutions are present, and have logarithmic form in critical points. Then we study the AdS_3 non-linear deformation solution. Furthermore we obtain logarithmic deformation of extremal BTZ black hole. After that using Abbott-Deser-Tekin method we calculate the energy and angular momentum of these types of black hole solutions.
Topologically massive gravity and galilean conformal algebra: a study of correlation functions
NASA Astrophysics Data System (ADS)
Bagchi, Arjun
2011-02-01
The Galilean Conformal Algebra (GCA) arises from the conformal algebra in the non-relativistic limit. In two dimensions, one can view it as a limit of linear combinations of the two copies Virasoro algebra. Recently, it has been argued that Topologically Massive Gravity (TMG) realizes the quantum 2d GCA in a particular scaling limit of the gravitational Chern-Simons term. To add strength to this claim, we demonstrate a matching of correlation functions on both sides of this correspondence. A priori looking for spatially dependent correlators seems to force us to deal with high spin operators in the bulk. We get around this difficulty by constructing the non-relativistic Energy-Momentum tensor and considering its correlation functions. On the gravity side, our analysis makes heavy use of recent results of Holographic Renormalization in Topologically Massive Gravity.
New and Topologically Massive Gravity, from the Outside In
NASA Astrophysics Data System (ADS)
Cunliff, Colin
This thesis examines the asymptotically anti-de Sitter solutions of higher-derivative gravity in 2+1 dimensions, using a Fefferman-Graham-like approach that expands solutions from the boundary (at infinity) into the interior. First, solutions of topologically massive gravity (TMG) are analyzed for values of the mass parameter in the range mu ≥ 1. The traditional Fefferman-Graham expansion fails to capture the dynamics of TMG, and new terms in the asymptotic expansion are needed to include the massive graviton modes. The linearized modes of Carlip, Deser, Waldron and Wise map onto the non-Einstein solutions for all μ, with nonlinear corrections appearing at higher order in the expansion. A similar result is found for new massive gravity (NMG), where the asymptotic behavior of massive gravitons is found to depend on the coupling parameter m2. Additionally, new boundary conditions are discovered for a range of values -1 < 2m2 l2 < 1 at which non-Einstein modes decay more slowly than the rate required for Brown-Henneaux boundary conditions. The holographically renormalized stress tensor is computed for these modes, and the relevant counterterms are identified up to unphysical ambiguities.
Resolving puzzles of massive gravity with and without violation of Lorentz symmetry
NASA Astrophysics Data System (ADS)
Mironov, Andrei; Mironov, Sergey; Morozov, Alexei; Morozov, Andrey
2010-06-01
We perform a systematic study of various versions of massive gravity with and without violations of the Lorentz symmetry in arbitrary dimension. These theories are well known to possess very unusual properties, unfamiliar from studies of gauge and Lorentz invariant models. These peculiarities are caused by the mixing of familiar transverse fields with the revived longitudinal and pure gauge (Stueckelberg) fields and are all seen already in the quadratic approximation. They are all associated with non-trivial dispersion laws, which easily allow superluminal propagation, ghosts, tachyons and essential irrationalities. Moreover, the coefficients in front of emerging modes are small, which makes the theories essentially non-perturbative within a large Vainshtein radius. Attempts to get rid of unwanted degrees of freedom by giving them infinite masses lead to the DVZ discontinuities in the parameter (moduli) space, caused by non-permutability of different limits. Also, the condition mgh = ∞ can not be preserved already in non-trivial gravitational backgrounds and is unstable under any other perturbations of the linearized gravity. At the same time, an a priori healthy model of massive gravity in the quadratic approximation definitely exists: it is provided by any mass level of the Kaluza-Klein tower. It bypasses the problems because the gravity field is mixed with other fields, and this explains why such mixing helps in other models. At the same time, this can imply that the really healthy massive gravity can still require an infinite number of extra fields beyond the quadratic approximation.
Cutoff for extensions of massive gravity and bi-gravity
NASA Astrophysics Data System (ADS)
Matas, Andrew
2016-04-01
Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware-Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity.
A de Sitter tachyon thick braneworld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto
2013-02-01
Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalarmore » field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.« less
Non-compact nonlinear sigma models
NASA Astrophysics Data System (ADS)
de Rham, Claudia; Tolley, Andrew J.; Zhou, Shuang-Yong
2016-09-01
The target space of a nonlinear sigma model is usually required to be positive definite to avoid ghosts. We introduce a unique class of nonlinear sigma models where the target space metric has a Lorentzian signature, thus the associated group being non-compact. We show that the would-be ghost associated with the negative direction is fully projected out by 2 second-class constraints, and there exist stable solutions in this class of models. This result also has important implications for Lorentz-invariant massive gravity: There exist stable nontrivial vacua in massive gravity that are free from any linear vDVZ-discontinuity and a Λ2 decoupling limit can be defined on these vacua.
Translation invariant time-dependent massive gravity: Hamiltonian analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourad, Jihad; Steer, Danièle A.; Noui, Karim, E-mail: mourad@apc.univ-paris7.fr, E-mail: karim.noui@lmpt.univ-tours.fr, E-mail: steer@apc.univ-paris7.fr
2014-09-01
The canonical structure of the massive gravity in the first order moving frame formalism is studied. We work in the simplified context of translation invariant fields, with mass terms given by general non-derivative interactions, invariant under the diagonal Lorentz group, depending on the moving frame as well as a fixed reference frame. We prove that the only mass terms which give 5 propagating degrees of freedom are the dRGT mass terms, namely those which are linear in the lapse. We also complete the Hamiltonian analysis with the dynamical evolution of the system.
Non-compact nonlinear sigma models
de Rham, Claudia; Tolley, Andrew J.; Zhou, Shuang-Yong
2016-07-19
The target space of a nonlinear sigma model is usually required to be positive definite to avoid ghosts. We introduce a unique class of nonlinear sigma models where the target space metric has a Lorentzian signature, thus the associated group being non-compact. We show that the would-be ghost associated with the negative direction is fully projected out by 2 second-class constraints, and there exist stable solutions in this class of models. This result also has important implications for Lorentz–invariant massive gravity: There exist stable nontrivial vacua in massive gravity that are free from any linear vDVZ-discontinuity and a decoupling limitmore » can be defined on these vacua.« less
Non-compact nonlinear sigma models
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Rham, Claudia; Tolley, Andrew J.; Zhou, Shuang-Yong
The target space of a nonlinear sigma model is usually required to be positive definite to avoid ghosts. We introduce a unique class of nonlinear sigma models where the target space metric has a Lorentzian signature, thus the associated group being non-compact. We show that the would-be ghost associated with the negative direction is fully projected out by 2 second-class constraints, and there exist stable solutions in this class of models. This result also has important implications for Lorentz–invariant massive gravity: There exist stable nontrivial vacua in massive gravity that are free from any linear vDVZ-discontinuity and a decoupling limitmore » can be defined on these vacua.« less
No chiral truncation of quantum log gravity?
NASA Astrophysics Data System (ADS)
Andrade, Tomás; Marolf, Donald
2010-03-01
At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.
Three dimensional magnetic solutions in massive gravity with (non)linear field
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Momennia, M.
2017-12-01
The Noble Prize in physics 2016 motivates one to study different aspects of topological properties and topological defects as their related objects. Considering the significant role of the topological defects (especially magnetic strings) in cosmology, here, we will investigate three dimensional horizonless magnetic solutions in the presence of two generalizations: massive gravity and nonlinear electromagnetic field. The effects of these two generalizations on properties of the solutions and their geometrical structure are investigated. The differences between de Sitter and anti de Sitter solutions are highlighted and conditions regarding the existence of phase transition in geometrical structure of the solutions are studied.
NASA Astrophysics Data System (ADS)
Alishahiha, Mohsen; Qaemmaqami, Mohammad M.; Naseh, Ali; Shirzad, Ahmad
2014-12-01
We study linearized equations of motion of the newly proposed three dimensional gravity, known as minimal massive gravity, using its metric formulation. By making use of a redefinition of the parameters of the model, we observe that the resulting linearized equations are exactly the same as that of TMG. In particular the model admits logarithmic modes at critical points. We also study several vacuum solutions of the model, specially at a certain limit where the contribution of Chern-Simons term vanishes.
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric; Hohm, Olaf; Merbis, Wout; Routh, Alasdair J.; Townsend, Paul K.
2014-07-01
We present an alternative to topologically massive gravity (TMG) with the same ‘minimal’ bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new ‘minimal massive gravity’ has both a positive energy graviton and positive central charges for the asymptotic AdS-boundary conformal algebra.
Charged scalar perturbations on charged black holes in de Rham-Gabadadze-Tolley massive gravity
NASA Astrophysics Data System (ADS)
Burikham, Piyabut; Ponglertsakul, Supakchai; Tannukij, Lunchakorn
2017-12-01
We explore the quasistationary profile of a massive charged scalar field in a class of charged black holes in de Rham-Gabadadze-Tolley (dRGT) massive gravity. We discuss how the linear term in the metric, which is a unique character of the dRGT massive gravity, affects the structure of the spacetime. Numerical calculations of the quasinormal modes are performed for a charged scalar field in the dRGT black hole background. For an asymptotically de Sitter (dS) black hole, an improved asymptotic iteration method is used to obtain the associated quasinormal frequencies. The unstable modes are found for the ℓ=0 case, and their corresponding real parts satisfy the superradiant condition. For ℓ=2 , the results show that all the de Sitter black holes considered here are stable against a small perturbation. For an asymptotically dRGT anti-de Sitter (AdS) black hole, unstable modes are found with the frequency satisfying the superradiant condition. Effects of massive-gravity parameters are discussed. Analytic calculation reveals the unique diffusive nature of quasinormal modes in the massive-gravity model with the linear term. Numerical results confirm the existence of the characteristic diffusive modes in both the dS and AdS cases.
Exact solutions of massive gravity in three dimensions
NASA Astrophysics Data System (ADS)
Chakhad, Mohamed
In recent years, there has been an upsurge in interest in three-dimensional theories of gravity. In particular, two theories of massive gravity in three dimensions hold strong promise in the search for fully consistent theories of quantum gravity, an understanding of which will shed light on the problems of quantum gravity in four dimensions. One of these theories is the "old" third-order theory of topologically massive gravity (TMG) and the other one is a "new" fourth-order theory of massive gravity (NMG). Despite this increase in research activity, the problem of finding and classifying solutions of TMG and NMG remains a wide open area of research. In this thesis, we provide explicit new solutions of massive gravity in three dimensions and suggest future directions of research. These solutions belong to the Kundt class of spacetimes. A systematic analysis of the Kundt solutions with constant scalar polynomial curvature invariants provides a glimpse of the structure of the spaces of solutions of the two theories of massive gravity. We also find explicit solutions of topologically massive gravity whose scalar polynomial curvature invariants are not all constant, and these are the first such solutions. A number of properties of Kundt solutions of TMG and NMG, such as an identification of solutions which lie at the intersection of the full nonlinear and linearized theories, are also derived.
Novel symmetries in Weyl-invariant gravity with massive gauge field
NASA Astrophysics Data System (ADS)
Abhinav, K.; Shukla, A.; Panigrahi, P. K.
2016-11-01
The background field method is used to linearize the Weyl-invariant scalar-tensor gravity, coupled with a Stückelberg field. For a generic background metric, this action is found not to be invariant, under both a diffeomorphism and generalized Weyl symmetry, the latter being a combination of gauge and Weyl transformations. Interestingly, the quadratic Lagrangian, emerging from a background of Minkowski metric, respects both transformations independently. The Becchi-Rouet-Stora-Tyutin symmetry of scalar-tensor gravity coupled with a Stückelberg-like massive gauge particle, possessing a diffeomorphism and generalized Weyl symmetry, reveals that in both cases negative-norm states with unphysical degrees of freedom do exist. We then show that, by combining diffeomorphism and generalized Weyl symmetries, all the ghost states decouple, thereby removing the unphysical redundancies of the theory. During this process, the scalar field does not represent any dynamic mode, yet modifies the usual harmonic gauge condition through non-minimal coupling with gravity.
Massive gravity in three dimensions.
Bergshoeff, Eric A; Hohm, Olaf; Townsend, Paul K
2009-05-22
A particular higher-derivative extension of the Einstein-Hilbert action in three spacetime dimensions is shown to be equivalent at the linearized level to the (unitary) Pauli-Fierz action for a massive spin-2 field. A more general model, which also includes "topologically-massive" gravity as a special case, propagates the two spin-2 helicity states with different masses. We discuss the extension to massive N-extended supergravity, and we present a "cosmological" extension that admits an anti-de Sitter vacuum.
Embeddings of the "New Massive Gravity"
NASA Astrophysics Data System (ADS)
Dalmazi, D.; Mendonça, E. L.
2016-07-01
Here we apply different types of embeddings of the equations of motion of the linearized "New Massive Gravity" in order to generate alternative and even higher-order (in derivatives) massive gravity theories in D=2+1. In the first part of the work we use the Weyl symmetry as a guiding principle for the embeddings. First we show that a Noether gauge embedding of the Weyl symmetry leads to a sixth-order model in derivatives with either a massive or a massless ghost, according to the chosen overall sign of the theory. On the other hand, if the Weyl symmetry is implemented by means of a Stueckelberg field we obtain a new scalar-tensor model for massive gravitons. It is ghost-free and Weyl invariant at the linearized level around Minkowski space. The model can be nonlinearly completed into a scalar field coupled to the NMG theory. The elimination of the scalar field leads to a nonlocal modification of the NMG. In the second part of the work we prove to all orders in derivatives that there is no local, ghost-free embedding of the linearized NMG equations of motion around Minkowski space when written in terms of one symmetric tensor. Regarding that point, NMG differs from the Fierz-Pauli theory, since in the latter case we can replace the Einstein-Hilbert action by specific f(R,Box R) generalizations and still keep the theory ghost-free at the linearized level.
Black holes in massive gravity as heat engines
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Liu, H.; Meng, X.-H.
2018-06-01
The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravity parameters modify the efficiency of engine on a significant level. Furthermore, it will be pointed out that it is possible to have a heat engine for non-spherical black holes in massive gravity, and therefore, we will study the effects of horizon topology on the properties of heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with the hyperbolic horizon, while the lowest one belongs to the spherical black holes.
Topics in Higher-Derivative Supergravity and N = 2 Yang-Mills Theories
NASA Astrophysics Data System (ADS)
Hindawi, Ahmed Abdel-Ati
1997-09-01
In Part I of the thesis we discuss higher-derivative theories of gravity. We start by discussing the field content of quadratic higher-derivative gravity, together with a new example of a massless spin-two field consistently coupled to gravity. The full quadratic gravity theory is shown to be equivalent to a canonical second-order theory of a massive scalar field, a massive spin-two symmetric tensor field and gravity. It is shown that flat-space is the only stable vacuum, and that the spin-two field around it is always ghost-like. We give a procedure for exhibiting the new propagating degrees of freedom in a generic higher-derivative gravity, at the full non-linear level. We show that around any vacuum the elementary excitations remain the massless graviton, a massive scalar field and a massive ghost-like spin-two field. In Part II of the thesis we extend our investigations to the realm of supergravity. We consider the general form of quadratic (1, 1) supergravity in two dimensions. It is demonstrated that the theory possesses stable vacua with vanishing cosmological constant which spontaneously break supersymmetry. We then consider higher-derivative N=1 supergravity in four dimensions. We construct two classes of higher-derivative supergravity theories. They are found to be equivalent to Einstein supergravity coupled to one or two chiral superfields and have a rich vacuum structure. It is demonstrated that theories of the second class can possess a stable vacuum with vanishing cosmological constant that spontaneously breaks supersymmetry. We then proceed to show how spontaneous supersymmetry breaking in the vacuum state of higher-derivative supergravity is transmitted, as explicit soft supersymmetry-breaking terms, to the effective Lagrangian of the standard electroweak model. In Part III we use central charge superspace to give a geometrical construction of the N=2 Abelian vector-tensor multiplet consisting, under N=1 supersymmetry, of one vector and one linear multiplet. We derive the component field supersymmetry and central charge transformations, and show that there is a super-Lagrangian, the higher components of which are all total derivatives, allowing us to construct superfield and component actions.
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2018-01-01
We apply the new fall of conditions presented in the paper [1] on asymptotically flat spacetime solutions of Chern-Simons-like theories of gravity. We show that the considered fall of conditions asymptotically solve equations of motion of generalized minimal massive gravity. We demonstrate that there exist two type of solutions, one of those is trivial and the others are non-trivial. By looking at non-trivial solutions, for asymptotically flat spacetimes in the generalized minimal massive gravity, in contrast to Einstein gravity, cosmological parameter can be non-zero. We obtain the conserved charges of the asymptotically flat spacetimes in generalized minimal massive gravity, and by introducing Fourier modes we show that the asymptotic symmetry algebra is a semidirect product of a BMS3 algebra and two U (1) current algebras. Also we verify that the BMS3 algebra can be obtained by a contraction of the AdS3 asymptotic symmetry algebra when the AdS3 radius tends to infinity in the flat-space limit. Finally we find energy, angular momentum and entropy for a particular case and deduce that these quantities satisfy the first law of flat space cosmologies.
Hamiltonian structure of three-dimensional gravity in Vielbein formalism
NASA Astrophysics Data System (ADS)
Hajihashemi, Mahdi; Shirzad, Ahmad
2018-01-01
Considering Chern-Simons like gravity theories in three dimensions as first order systems, we analyze the Hamiltonian structure of three theories Topological massive gravity, New massive gravity, and Zwei-Dreibein Gravity. We show that these systems demonstrate a new feature of the constrained systems in which a new kind of constraints emerge due to factorization of determinant of the matrix of Poisson brackets of constraints. We find the desired number of degrees of freedom as well as the generating functional of local Lorentz transformations and diffeomorphism through canonical structure of the system. We also compare the Hamiltonian structure of linearized version of the considered models with the original ones.
Behavior of light polarization in photon-scalar interaction
NASA Astrophysics Data System (ADS)
Azizi, Azizollah; Nasirimoghadam, Soudabe
2017-11-01
Quantum theories of gravity help us to improve our insight into the gravitational interactions. Motivated by the interesting effect of gravity on the photon trajectory, we treat a quantum recipe concluding a classical interaction of light and a massive object such as the sun. We use the linear quantum gravity to compute the classical potential of a photon interacting with a massive scalar. The leading terms have a traditional 1/r subordinate and demonstrate a polarization-dependent behavior. This result challenges the equivalence principle; attractive and/or repulsive interactions are admissible.
NASA Astrophysics Data System (ADS)
Setare, M. R.; Sahraee, M.
2013-12-01
In this paper, we investigate the behavior of linearized gravitational excitation in the Born-Infeld gravity in AdS3 space. We obtain the linearized equation of motion and show that this higher-order gravity propagate two gravitons, massless and massive, on the AdS3 background. In contrast to the R2 models, such as TMG or NMG, Born-Infeld gravity does not have a critical point for any regular choice of parameters. So the logarithmic solution is not a solution of this model, due to this one cannot find a logarithmic conformal field theory as a dual model for Born-Infeld gravity.
NASA Astrophysics Data System (ADS)
Wu, Bofeng; Huang, Chao-Guang
2018-04-01
The 1 /r expansion in the distance to the source is applied to the linearized f (R ) gravity, and its multipole expansion in the radiation field with irreducible Cartesian tensors is presented. Then, the energy, momentum, and angular momentum in the gravitational waves are provided for linearized f (R ) gravity. All of these results have two parts, which are associated with the tensor part and the scalar part in the multipole expansion of linearized f (R ) gravity, respectively. The former is the same as that in General Relativity, and the latter, as the correction to the result in General Relativity, is caused by the massive scalar degree of freedom and plays an important role in distinguishing General Relativity and f (R ) gravity.
Kundt solutions of minimal massive 3D gravity
NASA Astrophysics Data System (ADS)
Deger, Nihat Sadik; Sarıoǧlu, Ã.-zgür
2015-11-01
We construct Kundt solutions of minimal massive gravity theory and show that, similar to topologically massive gravity (TMG), most of them are constant scalar invariant (CSI) spacetimes that correspond to deformations of round and warped (A)dS. We also find an explicit non-CSI Kundt solution at the merger point. Finally, we give their algebraic classification with respect to the traceless Ricci tensor (Segre classification) and show that their Segre types match with the types of their counterparts in TMG.
Cosmological perturbation and matter power spectrum in bimetric massive gravity
NASA Astrophysics Data System (ADS)
Geng, Chao-Qiang; Lee, Chung-Chi; Zhang, Kaituo
2018-04-01
We discuss the linear perturbation equations with the synchronous gauge in a minimal scenario of the bimetric massive gravity theory. We find that the matter density perturbation and matter power spectrum are suppressed. We also examine the ghost and stability problems and show that the allowed deviation of this gravitational theory from the cosmological constant is constrained to be smaller than O(10-2) by the large scale structure observational data.
Propagation peculiarities of mean field massive gravity
Deser, S.; Waldron, A.; Zahariade, G.
2015-07-28
Massive gravity (mGR) describes a dynamical “metric” on a fiducial, background one. We investigate fluctuations of the dynamics about mGR solutions, that is about its “mean field theory”. Analyzing mean field massive gravity (m¯GR) propagation characteristics is not only equivalent to studying those of the full non-linear theory, but also in direct correspondence with earlier analyses of charged higher spin systems, the oldest example being the charged, massive spin 3/2 Rarita–Schwinger (RS) theory. The fiducial and mGR mean field background metrics in the m¯GR model correspond to the RS Minkowski metric and external EM field. The common implications in bothmore » systems are that hyperbolicity holds only in a weak background-mean-field limit, immediately ruling both theories out as fundamental theories; a situation in stark contrast with general relativity (GR) which is at least a consistent classical theory. Moreover, even though both m¯GR and RS theories can still in principle be considered as predictive effective models in the weak regime, their lower helicities then exhibit superluminal behavior: lower helicity gravitons are superluminal as compared to photons propagating on either the fiducial or background metric. Thus our approach has uncovered a novel, dispersive, “crystal-like” phenomenon of differing helicities having differing propagation speeds. As a result, this applies both to m¯GR and mGR, and is a peculiar feature that is also problematic for consistent coupling to matter.« less
Unitarity problems in 3D gravity theories
NASA Astrophysics Data System (ADS)
Alkac, Gokhan; Basanisi, Luca; Kilicarslan, Ercan; Tekin, Bayram
2017-07-01
We revisit the problem of the bulk-boundary unitarity clash in 2 +1 -dimensional gravity theories, which has been an obstacle in providing a viable dual two-dimensional conformal field theory for bulk gravity in anti-de Sitter (AdS) spacetime. Chiral gravity, which is a particular limit of cosmological topologically massive gravity (TMG), suffers from perturbative log-modes with negative energies inducing a nonunitary logarithmic boundary field theory. We show here that any f (R ) extension of TMG does not improve the situation. We also study the perturbative modes in the metric formulation of minimal massive gravity—originally constructed in a first-order formulation—and find that the massive mode has again negative energy except in the chiral limit. We comment on this issue and also discuss a possible solution to the problem of negative-energy modes. In any of these theories, the infinitesimal dangerous deformations might not be integrable to full solutions; this suggests a linearization instability of AdS spacetime in the direction of the perturbative log-modes.
Unusual square roots in the ghost-free theory of massive gravity
NASA Astrophysics Data System (ADS)
Golovnev, Alexey; Smirnov, Fedor
2017-06-01
A crucial building block of the ghost free massive gravity is the square root function of a matrix. This is a problematic entity from the viewpoint of existence and uniqueness properties. We accurately describe the freedom of choosing a square root of a (non-degenerate) matrix. It has discrete and (in special cases) continuous parts. When continuous freedom is present, the usual perturbation theory in terms of matrices can be critically ill defined for some choices of the square root. We consider the new formulation of massive and bimetric gravity which deals directly with eigenvalues (in disguise of elementary symmetric polynomials) instead of matrices. It allows for a meaningful discussion of perturbation theory in such cases, even though certain non-analytic features arise.
On the curious spectrum of duality invariant higher-derivative gravity
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Naseer, Usman; Zwiebach, Barton
2016-08-01
We analyze the spectrum of the exactly duality and gauge invariant higher-derivative double field theory. While this theory is based on a chiral CFT and does not correspond to a standard string theory, our analysis illuminates a number of issues central in string theory. The full quadratic action is rewritten as a two-derivative theory with additional fields. This allows for a simple analysis of the spectrum, which contains two massive spin-2 ghosts and massive scalars, in addition to the massless fields. Moreover, in this formulation, the massless or tensionless limit α ' → ∞ is non-singular and leads to an enhanced gauge symmetry. We show that the massive modes can be integrated out exactly at the quadratic level, leading to an infinite series of higher-derivative corrections. Finally, we present a ghost-free massive extension of linearized double field theory, which employs a novel mass term for the dilaton and metric.
NASA Astrophysics Data System (ADS)
Bičák, Jiří; Schmidt, Josef
2016-01-01
The question of the uniqueness of energy-momentum tensors in the linearized general relativity and in the linear massive gravity is analyzed without using variational techniques. We start from a natural ansatz for the form of the tensor (for example, that it is a linear combination of the terms quadratic in the first derivatives), and require it to be conserved as a consequence of field equations. In the case of the linear gravity in a general gauge we find a four-parametric system of conserved second-rank tensors which contains a unique symmetric tensor. This turns out to be the linearized Landau-Lifshitz pseudotensor employed often in full general relativity. We elucidate the relation of the four-parametric system to the expression proposed recently by Butcher et al. "on physical grounds" in harmonic gauge, and we show that the results coincide in the case of high-frequency waves in vacuum after a suitable averaging. In the massive gravity we show how one can arrive at the expression which coincides with the "generalized linear symmetric Landau-Lifshitz" tensor. However, there exists another uniquely given simpler symmetric tensor which can be obtained by adding the divergence of a suitable superpotential to the canonical energy-momentum tensor following from the Fierz-Pauli action. In contrast to the symmetric tensor derived by the Belinfante procedure which involves the second derivatives of the field variables, this expression contains only the field and its first derivatives. It is simpler than the generalized Landau-Lifshitz tensor but both yield the same total quantities since they differ by the divergence of a superpotential. We also discuss the role of the gauge conditions in the proofs of the uniqueness. In the Appendix, the symbolic tensor manipulation software cadabra is briefly described. It is very effective in obtaining various results which would otherwise require lengthy calculations.
On the uniqueness of the non-minimal matter coupling in massive gravity and bigravity
Huang, Qing-Guo; Ribeiro, Raquel H.; Xing, Yu-Hang; ...
2015-07-03
In de Rham–Gabadadze–Tolley (dRGT) massive gravity and bi-gravity, a non-minimal matter coupling involving both metrics generically reintroduces the Boulware–Deser (BD) ghost. A non-minimal matter coupling via a simple, yet specific composite metric has been proposed, which eliminates the BD ghost below the strong coupling scale. Working explicitly in the metric formulation and for arbitrary spacetime dimensions, we show that this composite metric is the unique consistent non-minimal matter coupling below the strong coupling scale, which emerges out of two diagnostics, namely, the absence of Ostrogradski ghosts in the decoupling limit and the absence of the BD ghost from matter quantummore » loop corrections.« less
Hawking-Moss instanton in nonlinear massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying-li; Saito, Ryo; Sasaki, Misao, E-mail: yingli@yukawa.kyoto-u.ac.jp, E-mail: rsaito@yukawa.kyoto-u.ac.jp, E-mail: misao@yukawa.kyoto-u.ac.jp
2013-02-01
As a first step toward understanding a lanscape of vacua in a theory of non-linear massive gravity, we consider a landscape of a single scalar field and study tunneling between a pair of adjacent vacua. We study the Hawking-Moss (HM) instanton that sits at a local maximum of the potential, and evaluate the dependence of the tunneling rate on the parameters of the theory. It is found that provided with the same physical HM Hubble parameter H{sub HM}, depending on the values of parameters α{sub 3} and α{sub 4} in the action (2.2), the corresponding tunneling rate can be eithermore » enhanced or suppressed when compared to the one in the context of General Relativity (GR). Furthermore, we find the constraint on the ratio of the physical Hubble parameter to the fiducial one, which constrains the form of potential. This result is in sharp contrast to GR where there is no bound on the minimum value of the potential.« less
Deformation of the Galactic Centre stellar cusp due to the gravity of a growing gas disc
NASA Astrophysics Data System (ADS)
Kaur, Karamveer; Sridhar, S.
2018-06-01
The nuclear star cluster surrounding the massive black hole at the Galactic Centre consists of young and old stars, with most of the stellar mass in an extended, cuspy distribution of old stars. The compact cluster of young stars was probably born in situ in a massive accretion disc around the black hole. We investigate the effect of the growing gravity of the disc on the orbits of the old stars, using an integrable model of the deformation of a spherical star cluster with anisotropic velocity dispersions. A formula for the perturbed phase-space distribution function is derived using linear theory, and new density and surface density profiles are computed. The cusp undergoes a spheroidal deformation with the flattening increasing strongly at smaller distances from the black hole; the intrinsic axis ratio ˜0.8 at ˜0.15 pc. Stellar orbits are deformed such that they spend more time near the disc plane and sample the dense inner parts of the disc; this could result in enhanced stripping of the envelopes of red giant stars. Linear theory accounts only for orbits whose apsides circulate. The non-linear theory of adiabatic capture into resonance is needed to understand orbits whose apsides librate. The mechanism is a generic dynamical process, and it may be common in galactic nuclei.
f(Lovelock) theories of gravity
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.; Óscar Lasso, A.; Ramírez, Pedro F.
2016-04-01
f(Lovelock) gravities are simple generalizations of the usual f( R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equations are exactly the same as in Einstein gravity up to an overall factor, making them appealing as holographic toy models. We also find constraints on the couplings of a broad family of five-dimensional f(Lovelock) theories using holographic entanglement entropy. Finally, we construct new analytic asymptotically flat and AdS/dS black hole solutions for some classes of f(Lovelock) gravities in various dimensions.
Bosonization of fermions coupled to topologically massive gravity
NASA Astrophysics Data System (ADS)
Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.
2014-03-01
We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.
Extremal black holes, Stueckelberg scalars and phase transitions
NASA Astrophysics Data System (ADS)
Marrani, Alessio; Miskovic, Olivera; Leon, Paula Quezada
2018-02-01
We calculate the entropy of a static extremal black hole in 4D gravity, non-linearly coupled to a massive Stueckelberg scalar. We find that the scalar field does not allow the black hole to be magnetically charged. We also show that the system can exhibit a phase transition due to electric charge variations. For spherical and hyperbolic horizons, the critical point exists only in presence of a cosmological constant, and if the scalar is massive and non-linearly coupled to electromagnetic field. On one side of the critical point, two extremal solutions coexist: Reissner-Nordström (A)dS black hole and the charged hairy (A)dS black hole, while on the other side of the critical point the black hole does not have hair. A near-critical analysis reveals that the hairy black hole has larger entropy, thus giving rise to a zero temperature phase transition. This is characterized by a discontinuous second derivative of the entropy with respect to the electric charge at the critical point. The results obtained here are analytical and based on the entropy function formalism and the second law of thermodynamics.
On the curious spectrum of duality invariant higher-derivative gravity
Hohm, Olaf; Naseer, Usman; Zwiebach, Barton
2016-08-31
Here, we analyze the spectrum of the exactly duality and gauge invariant higher-derivative double field theory. While this theory is based on a chiral CFT and does not correspond to a standard string theory, our analysis illuminates a number of issues central in string theory. The full quadratic action is rewritten as a two-derivative theory with additional fields. This allows for a simple analysis of the spectrum, which contains two massive spin-2 ghosts and massive scalars, in addition to the massless fields. Moreover, in this formulation, the massless or tensionless limit α' → ∞ is non-singular and leads to anmore » enhanced gauge symmetry. We show that the massive modes can be integrated out exactly at the quadratic level, leading to an infinite series of higher-derivative corrections. Lastly, we present a ghost-free massive extension of linearized double field theory, which employs a novel mass term for the dilaton and metric.« less
Holography for Schrödinger backgrounds
NASA Astrophysics Data System (ADS)
Guica, Monica; Skenderis, Kostas; Taylor, Marika; van Rees, Balt C.
2011-02-01
We discuss holography for Schrödinger solutions of both topologically massive gravity in three dimensions and massive vector theories in ( d + 1) dimensions. In both cases the dual field theory can be viewed as a d-dimensional conformal field theory (two dimensional in the case of TMG) deformed by certain operators that respect the Schrödinger symmetry. These operators are irrelevant from the viewpoint of the relativistic conformal group but they are exactly marginal with respect to the non-relativistic conformal group. The spectrum of linear fluctuations around the background solutions corresponds to operators that are labeled by their scaling dimension and the lightcone momentum k v . We set up the holographic dictionary and compute 2-point functions of these operators both holographically and in field theory using conformal perturbation theory and find agreement. The counterterms needed for holographic renormalization are non-local in the v lightcone direction.
Quasi-topological Ricci polynomial gravities
NASA Astrophysics Data System (ADS)
Li, Yue-Zhou; Liu, Hai-Shan; Lü, H.
2018-02-01
Quasi-topological terms in gravity can be viewed as those that give no contribution to the equations of motion for a special subclass of metric ansätze. They therefore play no rôle in constructing these solutions, but can affect the general perturbations. We consider Einstein gravity extended with Ricci tensor polynomial invariants, which admits Einstein metrics with appropriate effective cosmological constants as its vacuum solutions. We construct three types of quasi-topological gravities. The first type is for the most general static metrics with spherical, toroidal or hyperbolic isometries. The second type is for the special static metrics where g tt g rr is constant. The third type is the linearized quasitopological gravities on the Einstein metrics. We construct and classify results that are either dependent on or independent of dimensions, up to the tenth order. We then consider a subset of these three types and obtain Lovelock-like quasi-topological gravities, that are independent of the dimensions. The linearized gravities on Einstein metrics on all dimensions are simply Einstein and hence ghost free. The theories become quasi-topological on static metrics in one specific dimension, but non-trivial in others. We also focus on the quasi-topological Ricci cubic invariant in four dimensions as a specific example to study its effect on holography, including shear viscosity, thermoelectric DC conductivities and butterfly velocity. In particular, we find that the holographic diffusivity bounds can be violated by the quasi-topological terms, which can induce an extra massive mode that yields a butterfly velocity unbound above.
Thermo-electric transport in gauge/gravity models with momentum dissipation
NASA Astrophysics Data System (ADS)
Amoretti, Andrea; Braggio, Alessandro; Maggiore, Nicola; Magnoli, Nicodemo; Musso, Daniele
2014-09-01
We present a systematic definition and analysis of the thermo-electric linear response in gauge/gravity systems focusing especially on models with massive gravity in the bulk and therefore momentum dissipation in the dual field theory. A precise treatment of finite counter-terms proves to be essential to yield a consistent physical picture whose hydrodynamic and beyond-hydrodynamics behaviors noticeably match with field theoretical expectations. The model furnishes a possible gauge/gravity description of the crossover from the quantum-critical to the disorder-dominated Fermi-liquid behaviors, as expected in graphene.
Boundary stress tensor and asymptotically AdS3 non-Einstein spaces at the chiral point
NASA Astrophysics Data System (ADS)
Giribet, Gaston; Goya, Andrés; Leston, Mauricio
2011-09-01
Chiral gravity admits asymptotically AdS3 solutions that are not locally equivalent to AdS3; meaning that solutions do exist which, while obeying the strong boundary conditions usually imposed in general relativity, happen not to be Einstein spaces. In topologically massive gravity (TMG), the existence of non-Einstein solutions is particularly connected to the question about the role played by complex saddle points in the Euclidean path integral. Consequently, studying (the existence of) nonlocally AdS3 solutions to chiral gravity is relevant to understanding the quantum theory. Here, we discuss a special family of nonlocally AdS3 solutions to chiral gravity. In particular, we show that such solutions persist when one deforms the theory by adding the higher-curvature terms of the so-called new massive gravity. Moreover, the addition of higher-curvature terms to the gravity action introduces new nonlocally AdS3 solutions that have no analogues in TMG. Both stationary and time-dependent, axially symmetric solutions that asymptote AdS3 space without being locally equivalent to it appear. Defining the boundary stress tensor for the full theory, we show that these non-Einstein geometries have associated vanishing conserved charges.
Weyl and transverse diffeomorphism invariant spin-2 models in D=2+1
NASA Astrophysics Data System (ADS)
Dalmazi, Denis; dos Santos, A. L. R.; Ghosh, Subir; Mendonça, E. L.
2017-09-01
There are two covariant descriptions of massless spin-2 particles in D=3+1 via a symmetric rank-2 tensor: the linearized Einstein-Hilbert (LEH) theory and the Weyl plus transverse diffeomorphism (WTDIFF) invariant model. From the LEH theory one can obtain the linearized new massive gravity (NMG) in D=2+1 via Kaluza-Klein dimensional reduction followed by a dual master action. Here we show that a similar route takes us from the WTDIFF model to a linearized scalar-tensor NMG which belongs to a larger class of consistent spin-0 modifications of NMG. We also show that a traceless master action applied to a parity singlet furnishes two new spin-2 self-dual models. Moreover, we examine the singular replacement h_{μ ν } → h_{μ ν } - η _{μ ν }h/D and prove that it leads to consistent massive spin-2 models in D=2+1. They include linearized versions of unimodular topologically massive gravity (TMG) and unimodular NMG. Although the free part of those unimodular theories are Weyl invariant, we do not expect any improvement in the renormalizability. Both the linearized K-term (in NMG) and the linearized gravitational Chern-Simons term (in TMG) are invariant under longitudinal reparametrizations δ h_{μ ν } = partial _{μ }partial _{ν }ζ , which is not a symmetry of the WTDIFF Einstein-Hilbert term. Therefore, we still have one degree of freedom whose propagator behaves like 1/p^2 for large momentum.
NASA Astrophysics Data System (ADS)
Moutsopoulos, George
2013-06-01
We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbarz, Alan, E-mail: alan-at@df.uba.ar; Giribet, Gaston, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar; Goya, Andrés, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar
2015-03-26
We consider critical gravity in three dimensions; that is, the New Massive Gravity theory formulated about Anti-de Sitter (AdS) space with the specific value of the graviton mass for which it results dual to a two-dimensional conformai field theory with vanishing central charge. As it happens with Kerr black holes in four-dimensional critical gravity, in three-dimensional critical gravity the Bañados-Teitelboim-Zanelli black holes have vanishing mass and vanishing angular momentum. However, provided suitable asymptotic conditions are chosen, the theory may also admit solutions carrying non-vanishing charges. Here, we give simple examples of exact solutions that exhibit falling-off conditions that are evenmore » weaker than those of the so-called Log-gravity. For such solutions, we define the quasilocal stress-tensor and use it to compute conserved charges. Despite the drastic deformation of AdS{sub 3} asymptotic, these solutions have finite mass and angular momentum, which are shown to be non-zero.« less
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Topologically massive higher spin gravity
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Lal, Shailesh; Saha, Arunabha; Sahoo, Bindusar
2011-10-01
We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the presence of a non-trivial trace and its logarithmic partner at the chiral point. The trace modes carry energy opposite in sign to the traceless modes. The logarithmic partner of the traceless mode carries negative energy indicating an instability at the chiral point. We make several comments on the asymptotic symmetry and its possible deformations at this chiral point and speculate on the higher spin generalisation of LCFT2 dual to the spin-3 massive gravity at the chiral point.
Nonlocal Galileons and self-acceleration
NASA Astrophysics Data System (ADS)
Gabadadze, Gregory; Yu, Siqing
2017-05-01
A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as ;nonlocal Galileons.; We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.
Variations on holography from modifications of gravity in anti-de sitter
NASA Astrophysics Data System (ADS)
Apolo Velez, Luis Alberto
In this thesis we study aspects of the AdS/CFT correspondence that result from modifications of gravity in the bulk and lead to novel features in the dual theories at the boundary. The variations on the holographic theme studied in this thesis are model-independent since we have not assumed a particular UV-completion of gravity. Our results can be applied to a wide class of models that include higher-spin theories and compactifications of string theory on AdS backgrounds. The modifications of the bulk physics studied in this thesis include massive gravitons, higher-derivative terms in the Einstein-Hilbert action, and new boundary conditions for gravity. We begin by showing that it is possible to construct duals with a massive graviton in the bulk by deforming the dual theory at the boundary. This procedure does not break the translation invariance of the dual theory and might be useful in the study of certain condensed matter systems. We then construct the most general class of parity-even tricritical gravities in three and four dimensions. These higher-derivative theories are not unitary and characterized by the logarithmic fall-off of their linearized perturbations. They are conjectured to be dual to rank-3 logarithmic conformal field theories. We will show that, at linear order in the equations of motion, it is possible to truncate the theory to a unitary subsector. We also show that tricritical gravities in three and four dimensions suffer from a linearization instability that forbids unitary truncations beyond linear order. Finally we consider the role of boundary conditions in the AdS3/CFT2 correspondence. We show that free boundary conditions that lead to enhanced asymptotic symmetry groups are dual to 2D theories of quantum gravity in either the conformal or lightcone gauges. In particular we match the generators of symmetries in the bulk and boundary theories and show that a proper identification of the generator of Virasoro transformations in the bulk leads to a vanishing total central charge. We also show that this identification is consistent with the constraint equations of 2D gravity.
Bose-Einstein condensation of the classical axion field in cosmology?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Sacha; Elmer, Martin, E-mail: s.davidson@ipnl.in2p3.fr, E-mail: m.elmer@ipnl.in2p3.fr
The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a Bose-Einstein condensate, and argues that ''gravitational thermalisation'' drives them to a Bose-Einstein condensate during the radiation dominated era. Using classical equations of motion during linear structure formation, we explore whether the gravitational interactions of axions can generate enough entropy. At linear order in G{sub N}, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. Tomore » quantify the rate of entropy creation we use the anisotropic stress to estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.« less
Nonsingular universe in massive gravity's rainbow
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.
2017-06-01
One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.
Stability of warped AdS3 vacua of topologically massive gravity
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Esole, Mboyo; Guica, Monica
2009-10-01
AdS3 vacua of topologically massive gravity (TMG) have been shown to be perturbatively unstable for all values of the coupling constant except the chiral point μl = 1. We study the possibility that the warped vacua of TMG, which exist for all values of μ, are stable under linearized perturbations. In this paper, we show that spacelike warped AdS3 vacua with Compère-Detournay boundary conditions are indeed stable in the range μl>3. This is precisely the range in which black hole solutions arise as discrete identifications of the warped AdS3 vacuum. The situation somewhat resembles chiral gravity: although negative energy modes do exist, they are all excluded by the boundary conditions, and the perturbative spectrum solely consists of boundary (pure large gauge) gravitons.
Mass-induced instability of SAdS black hole in Einstein-Ricci cubic gravity
NASA Astrophysics Data System (ADS)
Myung, Yun Soo
2018-05-01
We perform the stability analysis of Schwarzschild-AdS (SAdS) black hole in the Einstein-Ricci cubic gravity. It shows that the Ricci tensor perturbations exhibit unstable modes for small black holes. We call this the mass-induced instability of SAdS black hole because the instability of small black holes arises from the massiveness in the linearized Einstein-Ricci cubic gravity, but not a feature of higher-order derivative theory giving ghost states. Also, we point out that the correlated stability conjecture holds for the SAdS black hole by computing the Wald entropy of SAdS black hole in Einstein-Ricci cubic gravity.
Effective field theory of broken spatial diffeomorphisms
Lin, Chunshan; Labun, Lance Z.
2016-03-17
We study the low energy effective theory describing gravity with broken spatial diffeomorphism invariance. In the unitary gauge, the Goldstone bosons associated with broken diffeomorphisms are eaten and the graviton becomes a massive spin-2 particle with 5 well-behaved degrees of freedom. In this gauge, the most general theory is built with the lowest dimension operators invariant under only temporal diffeomorphisms. Imposing the additional shift and SO(3) internal symmetries, we analyze the perturbations on a FRW background. At linear perturbation level, the observables of this theory are characterized by five parameters, including the usual cosmological parameters and one additional coupling constantmore » for the symmetry-breaking scalars. In the de Sitter and Minkowski limit, the three Goldstone bosons are supermassive and can be integrated out, leaving two massive tensor modes as the only propagating degrees of freedom. In conclusion, we discuss several examples relevant to theories of massive gravity.« less
Magnetic solutions in Einstein-massive gravity with linear and nonlinear fields
NASA Astrophysics Data System (ADS)
Hendi, Seyed Hossein; Panah, Behzad Eslam; Panahiyan, Shahram; Momennia, Mehrab
2018-06-01
The solutions of U(1) gauge-gravity coupling is one of the interesting models for analyzing the semi-classical nature of spacetime. In this regard, different well-known singular and nonsingular solutions have been taken into account. The paper at hand investigates the geometrical properties of the magnetic solutions by considering Maxwell and power Maxwell invariant (PMI) nonlinear electromagnetic fields in the context of massive gravity. These solutions are free of curvature singularity, but have a conic one which leads to presence of deficit/surplus angle. The emphasize is on modifications that these generalizations impose on deficit angle which determine the total geometrical structure of the solutions, hence, physical/gravitational properties. It will be shown that depending on the background spacetime [being anti de Sitter (AdS) or de Sitter (dS)], these generalizations present different effects and modify the total structure of the solutions differently.
Tackling non-linearities with the effective field theory of dark energy and modified gravity
NASA Astrophysics Data System (ADS)
Frusciante, Noemi; Papadomanolakis, Georgios
2017-12-01
We present the extension of the effective field theory framework to the mildly non-linear scales. The effective field theory approach has been successfully applied to the late time cosmic acceleration phenomenon and it has been shown to be a powerful method to obtain predictions about cosmological observables on linear scales. However, mildly non-linear scales need to be consistently considered when testing gravity theories because a large part of the data comes from those scales. Thus, non-linear corrections to predictions on observables coming from the linear analysis can help in discriminating among different gravity theories. We proceed firstly by identifying the necessary operators which need to be included in the effective field theory Lagrangian in order to go beyond the linear order in perturbations and then we construct the corresponding non-linear action. Moreover, we present the complete recipe to map any single field dark energy and modified gravity models into the non-linear effective field theory framework by considering a general action in the Arnowitt-Deser-Misner formalism. In order to illustrate this recipe we proceed to map the beyond-Horndeski theory and low-energy Hořava gravity into the effective field theory formalism. As a final step we derived the 4th order action in term of the curvature perturbation. This allowed us to identify the non-linear contributions coming from the linear order perturbations which at the next order act like source terms. Moreover, we confirm that the stability requirements, ensuring the positivity of the kinetic term and the speed of propagation for scalar mode, are automatically satisfied once the viability of the theory is demanded at linear level. The approach we present here will allow to construct, in a model independent way, all the relevant predictions on observables at mildly non-linear scales.
Infrared lessons for ultraviolet gravity: the case of massive gravity and Born-Infeld
NASA Astrophysics Data System (ADS)
Beltrán Jiménez, Jose; Heisenberg, Lavinia; Olmo, Gonzalo J.
2014-11-01
We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. In vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.
Complexity-action duality of the shock wave geometry in a massive gravity theory
NASA Astrophysics Data System (ADS)
Miao, Yan-Gang; Zhao, Long
2018-01-01
On the holographic complexity dual to the bulk action, we investigate the action growth for a shock wave geometry in a massive gravity theory within the Wheeler-DeWitt (WDW) patch at the late time limit. For a global shock wave, the graviton mass does not affect the action growth in the bulk, i.e., the complexity on the boundary, showing that the action growth (complexity) is the same for both the Einstein gravity and the massive gravity. Nevertheless, for a local shock wave that depends on transverse coordinates, the action growth (complexity) caused by the boundary disturbance (perturbation) is proportional to the butterfly velocity for the two gravity theories, but the butterfly velocity of the massive gravity theory is smaller than that of the Einstein gravity theory, indicating that the action growth (complexity) of the massive gravity is depressed by the graviton mass. In addition, we extend the black hole thermodynamics of the massive gravity and obtain the right Smarr formula.
NASA Astrophysics Data System (ADS)
Lin, Chunshan; Quintin, Jerome; Brandenberger, Robert H.
2018-01-01
We consider a modified gravity model with a massive graviton, but which nevertheless only propagates two gravitational degrees of freedom and which is free of ghosts. We show that non-singular bouncing cosmological background solutions can be generated. In addition, the mass term for the graviton prevents anisotropies from blowing up in the contracting phase and also suppresses the spectrum of gravitational waves compared to that of the scalar cosmological perturbations. This addresses two of the main problems of the matter bounce scenario.
Generalized soldering of {+-}2 helicity states in D=2+1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalmazi, D.; Mendonca, Elias L.
2009-07-15
The direct sum of a couple of Maxwell-Chern-Simons gauge theories of opposite helicities {+-}1 does not lead to a Proca theory in D=2+1, although both theories share the same spectrum. However, it is known that by adding an interference term between both helicities we can join the complementary pieces together and obtain the physically expected result. A generalized soldering procedure can be defined to generate the missing interference term. Here, we show that the same procedure can be applied to join together {+-}2 helicity states in a full off-shell manner. In particular, by using second-order (in derivatives) self-dual models ofmore » helicities {+-}2 (spin-2 analogues of Maxwell-Chern-Simmons models) the Fierz-Pauli theory is obtained after soldering. Remarkably, if we replace the second-order models by third-order self-dual models (linearized topologically massive gravity) of opposite helicities, after soldering, we end up exactly with the new massive gravity theory of Bergshoeff, Hohm, and Townsend in its linearized approximation.« less
Butterfly effect in 3D gravity
NASA Astrophysics Data System (ADS)
Qaemmaqami, Mohammad M.
2017-11-01
We study the butterfly effect by considering shock wave solutions near the horizon of the anti-de Sitter black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We calculate the butterfly velocities of these models and also we consider the critical points and different limits in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a correspondence between the butterfly velocities and right-left moving degrees of freedom or the central charges of the dual 2D conformal field theories.
Unitarity of spin-2 theories with linearized Weyl symmetry in D=2+1 dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalmazi, D.
2009-10-15
Here we prove unitarity of the recently found fourth-order (in derivatives) self-dual model of spin-2 by investigating the analytic structure of its propagator. The model describes massive particles of helicity +2 (or -2) in D=2+1 dimensions and corresponds to the quadratic truncation of a higher derivative topologically massive gravity about a flat background. It is an intriguing example of a theory where a term in the propagator of the form 1/[{open_square}{sup 2}({open_square}-m{sup 2})] does not lead to ghosts. The crucial role of the linearized Weyl symmetry in getting rid of the ghosts is pointed out. We use a peculiar pairmore » of gauge conditions which fix the linearized reparametrizations and linearized Weyl symmetries separately.« less
Massive graviton on arbitrary background: derivation, syzygies, applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, Laura; Deffayet, Cédric; IHES, Institut des Hautes Études Scientifiques,Le Bois-Marie, 35 route de Chartres, F-91440 Bures-sur-Yvette
2015-06-23
We give the detailed derivation of the fully covariant form of the quadratic action and the derived linear equations of motion for a massive graviton in an arbitrary background metric (which were presented in arXiv:1410.8302 [hep-th]). Our starting point is the de Rham-Gabadadze-Tolley (dRGT) family of ghost free massive gravities and using a simple model of this family, we are able to express this action and these equations of motion in terms of a single metric in which the graviton propagates, hence removing in particular the need for a “reference metric' which is present in the non perturbative formulation. Wemore » show further how 5 covariant constraints can be obtained including one which leads to the tracelessness of the graviton on flat space-time and removes the Boulware-Deser ghost. This last constraint involves powers and combinations of the curvature of the background metric. The 5 constraints are obtained for a background metric which is unconstrained, i.e. which does not have to obey the background field equations. We then apply these results to the case of Einstein space-times, where we show that the 5 constraints become trivial, and Friedmann-Lemaître-Robertson-Walker space-times, for which we correct in particular some results that appeared elsewhere. To reach our results, we derive several non trivial identities, syzygies, involving the graviton fields, its derivatives and the background metric curvature. These identities have their own interest. We also discover that there exist backgrounds for which the dRGT equations cannot be unambiguously linearized.« less
Massive graviton on arbitrary background: derivation, syzygies, applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, Laura; Deffayet, Cédric; Strauss, Mikael von, E-mail: bernard@iap.fr, E-mail: deffayet@iap.fr, E-mail: strauss@iap.fr
2015-06-01
We give the detailed derivation of the fully covariant form of the quadratic action and the derived linear equations of motion for a massive graviton in an arbitrary background metric (which were presented in arXiv:1410.8302 [hep-th]). Our starting point is the de Rham-Gabadadze-Tolley (dRGT) family of ghost free massive gravities and using a simple model of this family, we are able to express this action and these equations of motion in terms of a single metric in which the graviton propagates, hence removing in particular the need for a ''reference metric' which is present in the non perturbative formulation. Wemore » show further how 5 covariant constraints can be obtained including one which leads to the tracelessness of the graviton on flat space-time and removes the Boulware-Deser ghost. This last constraint involves powers and combinations of the curvature of the background metric. The 5 constraints are obtained for a background metric which is unconstrained, i.e. which does not have to obey the background field equations. We then apply these results to the case of Einstein space-times, where we show that the 5 constraints become trivial, and Friedmann-Lemaître-Robertson-Walker space-times, for which we correct in particular some results that appeared elsewhere. To reach our results, we derive several non trivial identities, syzygies, involving the graviton fields, its derivatives and the background metric curvature. These identities have their own interest. We also discover that there exist backgrounds for which the dRGT equations cannot be unambiguously linearized.« less
Fluid/gravity correspondence for massive gravity
NASA Astrophysics Data System (ADS)
Pan, Wen-Jian; Huang, Yong-Chang
2016-11-01
In this paper, we investigate the fluid/gravity correspondence in the framework of massive Einstein gravity. Treating the gravitational mass terms as an effective energy-momentum tensor and utilizing the Petrov-like boundary condition on a timelike hypersurface, we find that the perturbation effects of massive gravity in bulk can be completely governed by the incompressible Navier-Stokes equation living on the cutoff surface under the near horizon and nonrelativistic limits. Furthermore, we have concisely computed the ratio of dynamical viscosity to entropy density for two massive Einstein gravity theories, and found that they still saturate the Kovtun-Son-Starinets (KSS) bound.
Topologically massive gravity and the AdS/CFT correspondence
NASA Astrophysics Data System (ADS)
Skenderis, Kostas; Taylor, Marika; van Rees, Balt C.
2009-09-01
We set up the AdS/CFT correspondence for topologically massive gravity (TMG) in three dimensions. The first step in this procedure is to determine the appropriate fall off conditions at infinity. These cannot be fixed a priori as they depend on the bulk theory under consideration and are derived by solving asymptotically the non-linear field equations. We discuss in detail the asymptotic structure of the field equations for TMG, showing that it contains leading and subleading logarithms, determine the map between bulk fields and CFT operators, obtain the appropriate counterterms needed for holographic renormalization and compute holographically one- and two-point functions at and away from the ``chiral point'' (μ = 1). The 2-point functions at the chiral point are those of a logarithmic CFT (LCFT) with cL = 0,cR = 3l/GN and b = -3l/GN, where b is a parameter characterizing different c = 0 LCFTs. The bulk correlators away from the chiral point (μ ≠ 1) smoothly limit to the LCFT ones as μ → 1. Away from the chiral point, the CFT contains a state of negative norm and the expectation value of the energy momentum tensor in that state is also negative, reflecting a corresponding bulk instability due to negative energy modes.
NASA Astrophysics Data System (ADS)
Vick, Michelle; Lai, Dong; Fuller, Jim
2017-06-01
A white dwarf (WD) captured into a high-eccentricity orbit around a massive black hole (MBH) may undergo many pericentre passages before tidal disruption. During these passages, the tidal potential of the MBH excites internal oscillations or waves in the WD, and the dissipation of these oscillations can significantly influence the physical properties of the WD prior to its disruption. We calculate the amplitude of the tidally excited gravity (buoyancy) waves in the WD as a function of the pericentre distance and eccentricity for realistic WD models, under the assumption that these outgoing gravity waves are efficiently dissipated in the outer layers of the WD by non-linear effects or radiative damping. We obtain fitting formulae for the tidal energy and angular momentum transfer rates as well as the tidal heating rate. We find that these dynamical tides are much weaker than gravitational radiation in driving the orbital decay of the WD-MBH binary, and they are also inefficient in changing the WD spin during the orbital evolution. Incorporating our computed tidal dissipation rate into a mesa-based WD evolution code, we find that tidal heating can lead to appreciable brightening of the WD and may induce runaway fusion in the hydrogen envelope well before the WD undergoes tidal disruption.
Matter coupling in partially constrained vielbein formulation of massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felice, Antonio De; Mukohyama, Shinji; Gümrükçüoğlu, A. Emir
2016-01-01
We consider a linear effective vielbein matter coupling without introducing the Boulware-Deser ghost in ghost-free massive gravity. This is achieved in the partially constrained vielbein formulation. We first introduce the formalism and prove the absence of ghost at all scales. As next we investigate the cosmological application of this coupling in this new formulation. We show that even if the background evolution accords with the metric formulation, the perturbations display important different features in the partially constrained vielbein formulation. We study the cosmological perturbations of the two branches of solutions separately. The tensor perturbations coincide with those in the metricmore » formulation. Concerning the vector and scalar perturbations, the requirement of absence of ghost and gradient instabilities yields slightly different allowed parameter space.« less
Matter coupling in partially constrained vielbein formulation of massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felice, Antonio De; Gümrükçüoğlu, A. Emir; Heisenberg, Lavinia
2016-01-04
We consider a linear effective vielbein matter coupling without introducing the Boulware-Deser ghost in ghost-free massive gravity. This is achieved in the partially constrained vielbein formulation. We first introduce the formalism and prove the absence of ghost at all scales. As next we investigate the cosmological application of this coupling in this new formulation. We show that even if the background evolution accords with the metric formulation, the perturbations display important different features in the partially constrained vielbein formulation. We study the cosmological perturbations of the two branches of solutions separately. The tensor perturbations coincide with those in the metricmore » formulation. Concerning the vector and scalar perturbations, the requirement of absence of ghost and gradient instabilities yields slightly different allowed parameter space.« less
Autovibration and chaotic motion of an unbalanced rotor in massive non-linear compliant supports
NASA Astrophysics Data System (ADS)
Pasynkova, I. A.; Stepanova, P. P.
2018-05-01
Stability loss scenarios of an unbalanced rotor with a flexible massless shaft mounted in massive non-linear compliant supports are studied on the example of cylindrical precession. Dyffing type of non-linearity in compliant supports is considered. The system "rotor - supports" has eight degrees of freedom. Internal and external friction are taken into account. Autovibrations and chaotic vibrations are obtained. The results are confirmed by numerical check.
Translation invariant time-dependent solutions to massive gravity II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourad, J.; Steer, D.A., E-mail: mourad@apc.univ-paris7.fr, E-mail: steer@apc.univ-paris7.fr
2014-06-01
This paper is a sequel to JCAP 12 (2013) 004 and is also devoted to translation-invariant solutions of ghost-free massive gravity in its moving frame formulation. Here we consider a mass term which is linear in the vielbein (corresponding to a β{sub 3} term in the 4D metric formulation) in addition to the cosmological constant. We determine explicitly the constraints, and from the initial value formulation show that the time-dependent solutions can have singularities at a finite time. Although the constraints give, as in the β{sub 1} case, the correct number of degrees of freedom for a massive spin twomore » field, we show that the lapse function can change sign at a finite time causing a singular time evolution. This is very different to the β{sub 1} case where time evolution is always well defined. We conclude that the β{sub 3} mass term can be pathological and should be treated with care.« less
Neutron stars structure in the context of massive gravity
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.
2017-07-01
Motivated by the recent interests in spin-2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.
Exact Solutions in Three-Dimensional Gravity
NASA Astrophysics Data System (ADS)
García-Díaz, Alberto A.
2017-09-01
Preface; 1. Introduction; 2. Point particles; 3. Dust solutions; 4. AdS cyclic symmetric stationary solutions; 5. Perfect fluid static stars; 6. Static perfect fluid stars with Λ; 7. Hydrodynamic equilibrium; 8. Stationary perfect fluid with Λ; 9. Friedmann–Robertson–Walker cosmologies; 10. Dilaton-inflaton FRW cosmologies; 11. Einstein–Maxwell solutions; 12. Nonlinear electrodynamics black hole; 13. Dilaton minimally coupled to gravity; 14. Dilaton non-minimally coupled to gravity; 15. Low energy 2+1 string gravity; 16. Topologically massive gravity; 17. Bianchi type spacetimes in TMG; 18. Petrov type N wave metrics; 19. Kundt spacetimes in TMG; 20. Cotton tensor in Riemannian spacetimes; References; Index.
Holographic heat engine within the framework of massive gravity
NASA Astrophysics Data System (ADS)
Mo, Jie-Xiong; Li, Gu-Qiang
2018-05-01
Heat engine models are constructed within the framework of massive gravity in this paper. For the four-dimensional charged black holes in massive gravity, it is shown that the existence of graviton mass improves the heat engine efficiency significantly. The situation is more complicated for the five-dimensional neutral black holes since the constant which corresponds to the third massive potential also contributes to the efficiency. It is also shown that the existence of graviton mass can improve the heat engine efficiency. Moreover, we probe how the massive gravity influences the behavior of the heat engine efficiency approaching the Carnot efficiency.
Critical N = (1, 1) general massive supergravity
NASA Astrophysics Data System (ADS)
Deger, Nihat Sadik; Moutsopoulos, George; Rosseel, Jan
2018-04-01
In this paper we study the supermultiplet structure of N = (1, 1) General Massive Supergravity at non-critical and critical points of its parameter space. To do this, we first linearize the theory around its maximally supersymmetric AdS3 vacuum and obtain the full linearized Lagrangian including fermionic terms. At generic values, linearized modes can be organized as two massless and 2 massive multiplets where supersymmetry relates them in the standard way. At critical points logarithmic modes appear and we find that in three of such points some of the supersymmetry transformations are non-invertible in logarithmic multiplets. However, in the fourth critical point, there is a massive logarithmic multiplet with invertible supersymmetry transformations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moravveji, Ehsan; Moya, Andres; Guinan, Edward F., E-mail: moravveji@iasbs.ac.ir
2012-04-10
The cores of luminous B- and A-type (BA) supergiant stars are the seeds of later core-collapse supernovae. Thus, constraining the near-core conditions in this class of stars can place tighter constraints on the size, mass, and chemical composition of supernova remnants. Asteroseismology of these massive stars is one possible approach into such investigations. Recently, Moravveji et al. in 2012 (hereafter Paper I) extracted 19 significant frequencies from a 6-year radial velocity monitoring of Rigel ({beta} Ori, B8 Ia). The periods they determined broadly range from 1.22 to 74.74 days. Based on our differentially rotating stellar structure and evolution model, Rigel,more » at its current evolutionary state, is undergoing core He burning and shell H burning. Linear fully non-adiabatic non-radial stability analyses result in the excitation of a dense spectrum of non-radial gravity-dominated mixed modes. The fundamental radial mode (l = 0) and its overtones are all stable. When the hydrogen-burning shell is located even partially in the radiative zone, a favorable condition for destabilization of g-modes through the so-called {epsilon}-mechanism becomes viable. Only those g-modes that have high relative amplitudes in the hydrogen-burning (radiative) zone can survive the strong radiative damping. From the entire observed range of variability periods of Rigel (found in Paper I), and based on our model, only those modes with periods ranging between 21 and 127 days can be theoretically explained by the {epsilon}-mechanism. The origin of the short-period variations (found in Paper I) still remains unexplained. Because Rigel is similar to other massive BA supergiants, we believe that the {epsilon}-mechanism may be able to explain the long-period variations in {alpha} Cygni class of pulsating stars.« less
A general theory of linear cosmological perturbations: bimetric theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagos, Macarena; Ferreira, Pedro G., E-mail: m.lagos13@imperial.ac.uk, E-mail: p.ferreira1@physics.ox.ac.uk
2017-01-01
We implement the method developed in [1] to construct the most general parametrised action for linear cosmological perturbations of bimetric theories of gravity. Specifically, we consider perturbations around a homogeneous and isotropic background, and identify the complete form of the action invariant under diffeomorphism transformations, as well as the number of free parameters characterising this cosmological class of theories. We discuss, in detail, the case without derivative interactions, and compare our results with those found in massive bigravity.
Linear spin-2 fields in most general backgrounds
NASA Astrophysics Data System (ADS)
Bernard, Laura; Deffayet, Cédric; Schmidt-May, Angnis; von Strauss, Mikael
2016-04-01
We derive the full perturbative equations of motion for the most general background solutions in ghost-free bimetric theory in its metric formulation. Clever field redefinitions at the level of fluctuations enable us to circumvent the problem of varying a square-root matrix appearing in the theory. This greatly simplifies the expressions for the linear variation of the bimetric interaction terms. We show that these field redefinitions exist and are uniquely invertible if and only if the variation of the square-root matrix itself has a unique solution, which is a requirement for the linearized theory to be well defined. As an application of our results we examine the constraint structure of ghost-free bimetric theory at the level of linear equations of motion for the first time. We identify a scalar combination of equations which is responsible for the absence of the Boulware-Deser ghost mode in the theory. The bimetric scalar constraint is in general not manifestly covariant in its nature. However, in the massive gravity limit the constraint assumes a covariant form when one of the interaction parameters is set to zero. For that case our analysis provides an alternative and almost trivial proof of the absence of the Boulware-Deser ghost. Our findings generalize previous results in the metric formulation of massive gravity and also agree with studies of its vielbein version.
Scalar-tensor linear inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artymowski, Michał; Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee
2017-04-01
We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead tomore » linear inflation in the strong coupling limit.« less
Linearization instability for generic gravity in AdS spacetime
NASA Astrophysics Data System (ADS)
Altas, Emel; Tekin, Bayram
2018-01-01
In general relativity, perturbation theory about a background solution fails if the background spacetime has a Killing symmetry and a compact spacelike Cauchy surface. This failure, dubbed as linearization instability, shows itself as non-integrability of the perturbative infinitesimal deformation to a finite deformation of the background. Namely, the linearized field equations have spurious solutions which cannot be obtained from the linearization of exact solutions. In practice, one can show the failure of the linear perturbation theory by showing that a certain quadratic (integral) constraint on the linearized solutions is not satisfied. For non-compact Cauchy surfaces, the situation is different and for example, Minkowski space having a non-compact Cauchy surface, is linearization stable. Here we study, the linearization instability in generic metric theories of gravity where Einstein's theory is modified with additional curvature terms. We show that, unlike the case of general relativity, for modified theories even in the non-compact Cauchy surface cases, there are some theories which show linearization instability about their anti-de Sitter backgrounds. Recent D dimensional critical and three dimensional chiral gravity theories are two such examples. This observation sheds light on the paradoxical behavior of vanishing conserved charges (mass, angular momenta) for non-vacuum solutions, such as black holes, in these theories.
f(R) gravity on non-linear scales: the post-Friedmann expansion and the vector potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.B.; Bruni, M.; Koyama, K.
2015-07-01
Many modified gravity theories are under consideration in cosmology as the source of the accelerated expansion of the universe and linear perturbation theory, valid on the largest scales, has been examined in many of these models. However, smaller non-linear scales offer a richer phenomenology with which to constrain modified gravity theories. Here, we consider the Hu-Sawicki form of f(R) gravity and apply the post-Friedmann approach to derive the leading order equations for non-linear scales, i.e. the equations valid in the Newtonian-like regime. We reproduce the standard equations for the scalar field, gravitational slip and the modified Poisson equation in amore » coherent framework. In addition, we derive the equation for the leading order correction to the Newtonian regime, the vector potential. We measure this vector potential from f(R) N-body simulations at redshift zero and one, for two values of the f{sub R{sub 0}} parameter. We find that the vector potential at redshift zero in f(R) gravity can be close to 50% larger than in GR on small scales for |f{sub R{sub 0}}|=1.289 × 10{sup −5}, although this is less for larger scales, earlier times and smaller values of the f{sub R{sub 0}} parameter. Similarly to in GR, the small amplitude of this vector potential suggests that the Newtonian approximation is highly accurate for f(R) gravity, and also that the non-linear cosmological behaviour of f(R) gravity can be completely described by just the scalar potentials and the f(R) field.« less
Black hole perturbation under a 2 +2 decomposition in the action
NASA Astrophysics Data System (ADS)
Ripley, Justin L.; Yagi, Kent
2018-01-01
Black hole perturbation theory is useful for studying the stability of black holes and calculating ringdown gravitational waves after the collision of two black holes. Most previous calculations were carried out at the level of the field equations instead of the action. In this work, we compute the Einstein-Hilbert action to quadratic order in linear metric perturbations about a spherically symmetric vacuum background in Regge-Wheeler gauge. Using a 2 +2 splitting of spacetime, we expand the metric perturbations into a sum over scalar, vector, and tensor spherical harmonics, and dimensionally reduce the action to two dimensions by integrating over the two sphere. We find that the axial perturbation degree of freedom is described by a two-dimensional massive vector action, and that the polar perturbation degree of freedom is described by a two-dimensional dilaton massive gravity action. Varying the dimensionally reduced actions, we rederive covariant and gauge-invariant master equations for the axial and polar degrees of freedom. Thus, the two-dimensional massive vector and massive gravity actions we derive by dimensionally reducing the perturbed Einstein-Hilbert action describe the dynamics of a well-studied physical system: the metric perturbations of a static black hole. The 2 +2 formalism we present can be generalized to m +n -dimensional spacetime splittings, which may be useful in more generic situations, such as expanding metric perturbations in higher dimensional gravity. We provide a self-contained presentation of m +n formalism for vacuum spacetime splittings.
INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T. M.; Lin, D. N. C.; McElwaine, J. N.
2013-07-20
We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation, and consequent angular momentum transport by such waves. We find that these waves are generated efficiently and transport angular momentum on short timescales over large distances. We show that, as in Earth's atmosphere, IGW drive equatorial flows which change magnitude and direction on short timescales. These results have profound consequences for the observational inferences of massive stars, as well as their long term angular momentum evolution. We suggest IGW angular momentum transport may explainmore » many observational mysteries, such as: the misalignment of hot Jupiters around hot stars, the Be class of stars, Ni enrichment anomalies in massive stars, and the non-synchronous orbits of interacting binaries.« less
Classical aspects of higher spin topologically massive gravity
NASA Astrophysics Data System (ADS)
Chen, Bin; Long, Jiang; Zhang, Jian-Dong
2012-10-01
We study the classical solutions of three-dimensional topologically massive gravity (TMG) and its higher spin generalization, in the first-order formulation. The action of higher spin TMG has been proposed by Chen and Long (2011 J. High Energy Phys. JHEP12(2011)114) to be of a Chern-Simons-like form. The equations of motion are more complicated than the ones in pure higher spin AdS3 gravity, but are still tractable. As all the solutions in higher spin gravity are automatically the solutions of higher spin TMG, we focus on other solutions. We manage to find the AdS pp-wave solutions with higher spin hair and find that the non-vanishing higher spin fields may or may not modify the pp-wave geometry. In order to discuss the warped spacetime, we introduce the notion of a special Killing vector, which is defined to be the symmetry on the frame-like fields. We reproduce various warped spacetimes of TMG in our framework, with the help of special Killing vectors.
Growth histories in bimetric massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Marcus; Buchberger, Igor; Enander, Jonas
2012-12-01
We perform cosmological perturbation theory in Hassan-Rosen bimetric gravity for general homogeneous and isotropic backgrounds. In the de Sitter approximation, we obtain decoupled sets of massless and massive scalar gravitational fluctuations. Matter perturbations then evolve like in Einstein gravity. We perturb the future de Sitter regime by the ratio of matter to dark energy, producing quasi-de Sitter space. In this more general setting the massive and massless fluctuations mix. We argue that in the quasi-de Sitter regime, the growth of structure in bimetric gravity differs from that of Einstein gravity.
Signatures of graviton masses on the CMB
NASA Astrophysics Data System (ADS)
Brax, Philippe; Cespedes, Sebastian; Davis, Anne-Christine
2018-03-01
The impact of the existence of gravitons with non-vanishing masses on the B-modes of the Cosmic Microwave Background (CMB) is investigated. We also focus on putative modifications to the speed of the gravitational waves. We find that a change of the graviton speed shifts the acoustic peaks of the CMB and then could be easily constrained. For the case of massive gravity, we show analytically how the B-modes are sourced in a manner differing from the massless case leading to a plateau at low l in the CMB spectrum. We also study the case when there are more than one graviton, and when pressure instabilities are present. The latter would occur in doubly coupled bigravity in the radiation era. We focus on the case where a massless graviton becomes tachyonic in the radiation era whilst a massive one remains stable. As the unstable mode decouples from matter in the radiation era, we find that the effects of the instability is largely reduced on the spectrum of B-modes as long as the unstable graviton does not grow into the non-linear regime. In all cases when both massless and massive gravitons are present, we find that the B-mode CMB spectrum is characterised by a low l plateau together with a shifted position for the first few peaks compared to a purely massive graviton spectrum, a shift which depends on the mixing between the gravitons in their coupling to matter and could serve as a hint in favour of the existence of multiple gravitons.
On the evolution of vortices in massive protoplanetary discs
NASA Astrophysics Data System (ADS)
Pierens, Arnaud; Lin, Min-Kai
2018-05-01
It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vortices. We present the results of 2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in self-gravitating discs with Toomre parameter in the range 4 - 30. We consider isothermal plus non-isothermal disc models that employ either the classical β prescription or a more realistic treatment for cooling. The main aim is to investigate whether the condensating effect of self-gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc models with Q ≳ 15, vortex decay occurs due to the vortex self-gravitational torque. For discs with 3≲ Q ≲ 7, the vortex develops gravitational instabilities within its core and undergoes gravitational collapse, whereas more massive discs give rise to the formation of global eccentric modes. In non-isothermal discs with β cooling, the vortex maintains a turbulent core prior to undergoing gravitational collapse for β ≲ 0.1, whereas it decays if β ≥ 1. In models that incorpore both self-gravity and a better treatment for cooling, however, a stable vortex is formed with aspect ratio χ ˜ 3 - 4. Our results indicate that self-gravity significantly impacts the evolution of vortices forming in protoplanetary discs, although the thermodynamical structure of the vortex is equally important for determining its long-term dynamics.
Critical gravity in four dimensions.
Lü, H; Pope, C N
2011-05-06
We study four-dimensional gravity theories that are rendered renormalizable by the inclusion of curvature-squared terms to the usual Einstein action with a cosmological constant. By choosing the parameters appropriately, the massive scalar mode can be eliminated and the massive spin-2 mode can become massless. This "critical" theory may be viewed as a four-dimensional analogue of chiral topologically massive gravity, or of critical "new massive gravity" with a cosmological constant, in three dimensions. We find that the on-shell energy for the remaining massless gravitons vanishes. There are also logarithmic spin-2 modes, which have positive energy. The mass and entropy of standard Schwarzschild-type black holes vanish. The critical theory might provide a consistent toy model for quantum gravity in four dimensions.
Bounds on graviton mass using weak lensing and SZ effect in galaxy clusters
NASA Astrophysics Data System (ADS)
Rana, Akshay; Jain, Deepak; Mahajan, Shobhit; Mukherjee, Amitabha
2018-06-01
In General Relativity (GR), the graviton is massless. However, a common feature in several theoretical alternatives of GR is a non-zero mass for the graviton. These theories can be described as massive gravity theories. Despite many theoretical complexities in these theories, on phenomenological grounds the implications of massive gravity have been widely used to put bounds on graviton mass. One of the generic implications of giving a mass to the graviton is that the gravitational potential will follow a Yukawa-like fall off. We use this feature of massive gravity theories to probe the mass of graviton by using the largest gravitationally bound objects, namely galaxy clusters. In this work, we use the mass estimates of galaxy clusters measured at various cosmologically defined radial distances measured via weak lensing (WL) and Sunyaev-Zel'dovich (SZ) effect. We also use the model independent values of Hubble parameter H (z) smoothed by a non-parametric method, Gaussian process. Within 1σ confidence region, we obtain the mass of graviton mg < 5.9 ×10-30 eV with the corresponding Compton length scale λg > 6.82 Mpc from weak lensing and mg < 8.31 ×10-30 eV with λg > 5.012 Mpc from SZ effect. This analysis improves the upper bound on graviton mass obtained earlier from galaxy clusters.
Is there vacuum when there is mass? Vacuum and non-vacuum solutions for massive gravity
NASA Astrophysics Data System (ADS)
Martín-Moruno, Prado; Visser, Matt
2013-08-01
Massive gravity is a theory which has a tremendous amount of freedom to describe different cosmologies, but at the same time, the various solutions one encounters must fulfil some rather nontrivial constraints. Most of the freedom comes not from the Lagrangian, which contains only a small number of free parameters (typically three depending on counting conventions), but from the fact that one is in principle free to choose the reference metric almost arbitrarily—which effectively introduces a non-denumerable infinity of free parameters. In the current paper, we stress that although changing the reference metric would lead to a different cosmological model, this does not mean that the dynamics of the universe can be entirely divorced from its matter content. That is, while the choice of reference metric certainly influences the evolution of the physically observable foreground metric, the effect of matter cannot be neglected. Indeed the interplay between matter and geometry can be significantly changed in some specific models; effectively since the graviton would be able to curve the spacetime by itself, without the need of matter. Thus, even the set of vacuum solutions for massive gravity can have significant structure. In some cases, the effect of the reference metric could be so strong that no conceivable material content would be able to drastically affect the cosmological evolution. Dedicated to the memory of Professor Pedro F González-Díaz
Phenomenology in minimal theory of massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felice, Antonio De; Mukohyama, Shinji; Kavli Institute for the Physics and Mathematics of the Universe
2016-04-15
We investigate the minimal theory of massive gravity (MTMG) recently introduced. After reviewing the original construction based on its Hamiltonian in the vielbein formalism, we reformulate it in terms of its Lagrangian in both the vielbein and the metric formalisms. It then becomes obvious that, unlike previous attempts in the literature of Lorentz-violating massive gravity, not only the potential but also the kinetic structure of the action is modified from the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory. We confirm that the number of physical degrees of freedom in MTMG is two at fully nonlinear level. This proves the absence ofmore » various possible pathologies such as superluminality, acausality and strong coupling. Afterwards, we discuss the phenomenology of MTMG in the presence of a dust fluid. We find that on a flat homogeneous and isotropic background we have two branches. One of them (self-accelerating branch) naturally leads to acceleration without the genuine cosmological constant or dark energy. For this branch both the scalar and the vector modes behave exactly as in general relativity (GR). The phenomenology of this branch differs from GR in the tensor modes sector, as the tensor modes acquire a non-zero mass. Hence, MTMG serves as a stable nonlinear completion of the self-accelerating cosmological solution found originally in dRGT theory. The other branch (normal branch) has a dynamics which depends on the time-dependent fiducial metric. For the normal branch, the scalar mode sector, even though as in GR only one scalar mode is present (due to the dust fluid), differs from the one in GR, and, in general, structure formation will follow a different phenomenology. The tensor modes will be massive, whereas the vector modes, for both branches, will have the same phenomenology as in GR.« less
Exact solutions in 3D new massive gravity.
Ahmedov, Haji; Aliev, Alikram N
2011-01-14
We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the "square root" of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.
Exact Solutions in 3D New Massive Gravity
NASA Astrophysics Data System (ADS)
Ahmedov, Haji; Aliev, Alikram N.
2011-01-01
We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the “square root” of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam
Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into themore » structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.« less
Positive signs in massive gravity
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Remmen, Grant N.
2016-04-01
We derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. The high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small island in the parameter space of ghost-free massive gravity. While the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.
NASA Astrophysics Data System (ADS)
Pitts, J. Brian
2016-02-01
What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is algebraic in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive scalar gravity is plausible in terms of relativistic field theory, while violating most interesting versions of Einstein's principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term. What is the 'true' geometry, one might wonder, in line with Poincaré's modal conventionality argument? Infinitely many theories exhibit this bimetric 'geometry,' all with the total stress-energy's trace as source; thus geometry does not explain the field equations. The irrelevance of the Ehlers-Pirani-Schild construction to a critique of conventionalism becomes evident when multi-geometry theories are contemplated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities-indeed an unconceived alternative. At least one version easily could have been developed before General Relativity; it then would have motivated thinking of Einstein's equations along the lines of Einstein's newly re-appreciated "physical strategy" and particle physics and would have suggested a rivalry from massive spin 2 variants of General Relativity (massless spin 2, Pauli and Fierz found in 1939). The Putnam-Grünbaum debate on conventionality is revisited with an emphasis on the broad modal scope of conventionalist views. Massive scalar gravity thus contributes to a historically plausible rational reconstruction of much of 20th-21st century space-time philosophy in the light of particle physics. An appendix reconsiders the Malament-Weatherall-Manchak conformal restriction of conventionality and constructs the 'universal force' influencing the causal structure. Subsequent works will discuss how massive gravity could have provided a template for a more Kant-friendly space-time theory that would have blocked Moritz Schlick's supposed refutation of synthetic a priori knowledge, and how Einstein's false analogy between the Neumann-Seeliger-Einstein modification of Newtonian gravity and the cosmological constant Λ generated lasting confusion that obscured massive gravity as a conceptual possibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckwith, Andrew Walcott, E-mail: Rwill9955b@gmail.com
We review a relationship between cosmological vacuum energy and massive gravitons as given by Garattini and also the nonlinear electrodynamics of Camara et.al (2004) for a non singular universe and NLED. . In evaluating the Garattini result, we find that having the scale factor close to zero due to a given magnetic field value in, an early universe magnetic field affects how we would interpret Garattini’s linkage of the ‘cosmological constant’ value and non zero graviton mass.. We close as to how these initial conditions affect the issue of an early universe initial pressure and its experimental similarities and differencesmore » with results by Corda and Questa as to negative pressure at the surface of a star. Note, that in theDupays et.al. article , the star in question is rapidly spinning, which is not. assumed in the Camara et.al article , for an early universe. Also, Corda and Questa do not assume a spinning star. We conclude with a comparison between the Lagrangian Dupays and other authors bring up for non linear electrodynamics which is for rapidly spinning neutron stars , and a linkage between the Goldstone theorem and NLED. Our conclusion is for generalizing results seen in the Dupays neutron star Lagrangian with conditions which may confirm C. A. Escobar and L. F. Urrutia’s work on the Goldstone theorem and non linear electrodynamics, for some future projects we have in mind. If the universe does not spin, then we will stick with the density analogy given by adapting density as proportional to one over the fourth power of the minimum value of the scale factor as computed by adaptation of the Camara et.al.(2004) theory for non spinning universes. What may happen is that the Camara (2004) density and Quintessential density are both simultaneously satisfied, which would put additional restrictions on the magnetic field, which is one of our considerations, regardless if a universe spins, akin to spinning neutron stars. The spinning universe though may allow for easier reconciliation of the ‘Goldstone’ behavior of gravity and NLED though.« less
NASA Astrophysics Data System (ADS)
Mandelker, Nir; Padnos, Dan; Dekel, Avishai; Birnboim, Yuval; Burkert, Andreas; Krumholz, Mark R.; Steinberg, Elad
2016-12-01
Massive galaxies at high redshift are predicted to be fed from the cosmic web by narrow, dense streams of cold gas that penetrate through the hot medium encompassed by a stable shock near the virial radius of the dark-matter halo. Our long-term goal is to explore the heating and dissipation rate of the streams and their fragmentation and possible breakup, in order to understand how galaxies are fed, and how this affects their star formation rate and morphology. We present here the first step, where we analyse the linear Kelvin-Helmholtz instability (KHI) of a cold, dense slab or cylinder in 3D flowing supersonically through a hot, dilute medium. The current analysis is limited to the adiabatic case with no gravity. By analytically solving the linear dispersion relation, we find a transition from a dominance of the familiar rapidly growing surface modes in the subsonic regime to more slowly growing body modes in the supersonic regime. The system is parametrized by three parameters: the density contrast between stream and medium, the Mach number of stream velocity with respect to the medium and the stream width with respect to the halo virial radius. A realistic choice for these parameters places the streams near the mode transition, with the KHI exponential-growth time in the range 0.01-10 virial crossing times for a perturbation wavelength comparable to the stream width. We confirm our analytic predictions with idealized hydrodynamical simulations. Our linear estimates thus indicate that KHI may be effective in the evolution of streams before they reach the galaxy. More definite conclusions await the extension of the analysis to the non-linear regime and the inclusion of cooling, thermal conduction, the halo potential well, self-gravity and magnetic fields.
Bulk and boundary unitary gravity in 3D: MMG2
NASA Astrophysics Data System (ADS)
Tekin, Bayram
2015-07-01
We construct a massive spin-2 theory in 2 +1 dimensions that is immune to the bulk-boundary unitarity conflict in anti-de Sitter space and hence amenable to holography. The theory is an extension of topologically massive gravity (TMG), just like the recently found minimal massive gravity (MMG), but it has two massive helicity modes instead of a single one. The theory admits all the solutions of TMG with a redefined topological parameter. We calculate the Shapiro time delay and show that flat-space (local) causality is not violated. We show that there is an interesting relation between the theory we present here (which we call MMG2 ), MMG, and the earlier new massive gravity (NMG): namely, field equations of these theories are nontrivially related. We study the bulk excitations and boundary charges of the conformal field theory that could be dual to gravity. We also find the chiral gravity limit for which one of the massive modes becomes massless. The virtue of the model is that one does not have to go to the chiral limit to achieve unitarity in the bulk and on the boundary, and the log-terms that appear in the chiral limit and cause instability do not exist in the generic theory.
Positive signs in massive gravity
Cheung, Clifford; Remmen, Grant N.
2016-04-01
Here, we derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. Furthermore, the high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small islandmore » in the parameter space of ghost-free massive gravity. And while the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.« less
Non-minimal derivative couplings of the composite metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heisenberg, Lavinia, E-mail: laviniah@kth.se
2015-11-01
In the context of massive gravity, bi-gravity and multi-gravity non-minimal matter couplings via a specific composite effective metric were investigated recently. Even if these couplings generically reintroduce the Boulware-Deser ghost, this composite metric is unique in the sense that the ghost reemerges only beyond the decoupling limit and the matter quantum loop corrections do not detune the potential interactions. We consider non-minimal derivative couplings of the composite metric to matter fields for a specific subclass of Horndeski scalar-tensor interactions. We first explore these couplings in the mini-superspace and investigate in which scenario the ghost remains absent. We further study thesemore » non-minimal derivative couplings in the decoupling-limit of the theory and show that the equation of motion for the helicity-0 mode remains second order in derivatives. Finally, we discuss preliminary implications for cosmology.« less
Non-minimal derivative couplings of the composite metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heisenberg, Lavinia; Department of Physics & The Oskar Klein Centre,AlbaNova University Centre, 10691 Stockholm
2015-11-04
In the context of massive gravity, bi-gravity and multi-gravity non-minimal matter couplings via a specific composite effective metric were investigated recently. Even if these couplings generically reintroduce the Boulware-Deser ghost, this composite metric is unique in the sense that the ghost reemerges only beyond the decoupling limit and the matter quantum loop corrections do not detune the potential interactions. We consider non-minimal derivative couplings of the composite metric to matter fields for a specific subclass of Horndeski scalar-tensor interactions. We first explore these couplings in the mini-superspace and investigate in which scenario the ghost remains absent. We further study thesemore » non-minimal derivative couplings in the decoupling-limit of the theory and show that the equation of motion for the helicity-0 mode remains second order in derivatives. Finally, we discuss preliminary implications for cosmology.« less
Instability, finite amplitude pulsation and mass-loss in models of massive OB-type stars
NASA Astrophysics Data System (ADS)
Yadav, Abhay Pratap; Glatzel, Wolfgang
2017-11-01
Variability and mass-loss are common phenomena in massive OB-type stars. It is argued that they are caused by violent strange mode instabilities identified in corresponding stellar models. We present a systematic linear stability analysis with respect to radial perturbations of massive OB-type stars with solar chemical composition and masses between 23 and 100 M⊙. For selected unstable stellar models, we perform non-linear simulations of the evolution of the instabilities into the non-linear regime. Finite amplitude pulsations with periods in the range between hours and 100 d are found to be the final result of the instabilities. The pulsations are associated with a mean acoustic luminosity which can be the origin of a pulsationally driven wind. Corresponding mass-loss rates lie in the range between 10-9 and 10-4 M⊙ yr-1 and may thus affect the evolution of massive stars.
Holographic dark energy in higher derivative gravity with time varying model parameter c2
NASA Astrophysics Data System (ADS)
Borah, B.; Ansari, M.
2015-01-01
Purpose of this paper is to study holographic dark energy in higher derivative gravity assuming the model parameter c2 as a slowly time varying function. Since dark energy emerges as combined effect of linear as well as non-linear terms of curvature, therefore it is important to see holographic dark energy at higher derivative gravity, where action contains both linear as well as non-linear terms of Ricci curvature R. We consider non-interacting scenario of the holographic dark energy with dark matter in spatially flat universe and obtain evolution of the equation of state parameter. Also, we determine deceleration parameter as well as the evolution of dark energy density to explain expansion of the universe. Further, we investigate validity of generalized second law of thermodynamics in this scenario. Finally, we find out a cosmological application of our work by evaluating a relation for the equation of state of holographic dark energy for low red-shifts containing c2 correction.
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Raymond, C.; Smrekar, S.; Millbury, C.
2004-01-01
This viewgraph presentation reviews a Bayesian approach to the inversion of gravity and magnetic data with specific application to the Ismenius Area of Mars. Many inverse problems encountered in geophysics and planetary science are well known to be non-unique (i.e. inversion of gravity the density structure of a body). In hopes of reducing the non-uniqueness of solutions, there has been interest in the joint analysis of data. An example is the joint inversion of gravity and magnetic data, with the assumption that the same physical anomalies generate both the observed magnetic and gravitational anomalies. In this talk, we formulate the joint analysis of different types of data in a Bayesian framework and apply the formalism to the inference of the density and remanent magnetization structure for a local region in the Ismenius area of Mars. The Bayesian approach allows prior information or constraints in the solutions to be incorporated in the inversion, with the "best" solutions those whose forward predictions most closely match the data while remaining consistent with assumed constraints. The application of this framework to the inversion of gravity and magnetic data on Mars reveals two typical challenges - the forward predictions of the data have a linear dependence on some of the quantities of interest, and non-linear dependence on others (termed the "linear" and "non-linear" variables, respectively). For observations with Gaussian noise, a Bayesian approach to inversion for "linear" variables reduces to a linear filtering problem, with an explicitly computable "error" matrix. However, for models whose forward predictions have non-linear dependencies, inference is no longer given by such a simple linear problem, and moreover, the uncertainty in the solution is no longer completely specified by a computable "error matrix". It is therefore important to develop methods for sampling from the full Bayesian posterior to provide a complete and statistically consistent picture of model uncertainty, and what has been learned from observations. We will discuss advanced numerical techniques, including Monte Carlo Markov
Weber's gravitational force as static weak field approximation
NASA Astrophysics Data System (ADS)
Tiandho, Yuant
2016-02-01
Weber's gravitational force (WGF) is one of gravitational model that can accommodate a non-static system because it depends not only on the distance but also on the velocity and the acceleration. Unlike Newton's law of gravitation, WGF can predict the anomalous of Mercury and gravitational bending of light near massive object very well. Then, some researchers use WGF as an alternative model of gravitation and propose a new mechanics theory namely the relational mechanics theory. However, currently we have known that the theory of general relativity which proposed by Einstein can explain gravity with very accurate. Through the static weak field approximation for the non-relativistic object, we also have known that the theory of general relativity will reduce to Newton's law of gravity. In this work, we expand the static weak field approximation that compatible with relativistic object and we obtain a force equation which correspond to WGF. Therefore, WGF is more precise than Newton's gravitational law. The static-weak gravitational field that we used is a solution of the Einstein's equation in the vacuum that satisfy the linear field approximation. The expression of WGF with ξ = 1 and satisfy the requirement of energy conservation are obtained after resolving the geodesic equation. By this result, we can conclude that WGF can be derived from the general relativity.
Holographically viable extensions of topologically massive and minimal massive gravity?
NASA Astrophysics Data System (ADS)
Altas, Emel; Tekin, Bayram
2016-01-01
Recently [E. Bergshoeff et al., Classical Quantum Gravity 31, 145008 (2014)], an extension of the topologically massive gravity (TMG) in 2 +1 dimensions, dubbed as minimal massive gravity (MMG), which is free of the bulk-boundary unitarity clash that inflicts the former theory and all the other known three-dimensional theories, was found. Field equations of MMG differ from those of TMG at quadratic terms in the curvature that do not come from the variation of an action depending on the metric alone. Here we show that MMG is a unique theory and there does not exist a deformation of TMG or MMG at the cubic and quartic order (and beyond) in the curvature that is consistent at the level of the field equations. The only extension of TMG with the desired bulk and boundary properties having a single massive degree of freedom is MMG.
Ghosts, strong coupling, and accidental symmetries in massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deffayet, C.; GReCO/IAP, 98 bis boulevard Arago, 75014 Paris; Rombouts, J.-W.
2005-08-15
We show that the strong self-interaction of the scalar polarization of a massive graviton can be understood in terms of the propagation of an extra ghostlike degree of freedom, thus relating strong coupling to the sixth degree of freedom discussed by Boulware and Deser in their Hamiltonian analysis of massive gravity. This enables one to understand the Vainshtein recovery of solutions of massless gravity as being due to the effect of the exchange of this ghost, which gets frozen at distances larger than the Vainshtein radius. Inside this region, we can trust the two-field Lagrangian perturbatively, while at larger distancesmore » one can use the higher derivative formulation. We also compare massive gravity with other models, namely, deconstructed theories of gravity, as well as the Dvali-Gabadadze-Porrati model. In the latter case, we argue that the Vainshtein recovery process is of a different nature, not involving a ghost degree of freedom.« less
Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..
NASA Astrophysics Data System (ADS)
Berhanu, Michael
2017-04-01
Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)
The halo model in a massive neutrino cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo, E-mail: emassara@sissa.it, E-mail: villaescusa@oats.inaf.it, E-mail: viel@oats.inaf.it
2014-12-01
We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body simulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a ∼20% accuracy up to very non-linear scales of k = 10 h/Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range k = 0.5 – 1 h/Mpc where the 1-halo and 2-halo terms are comparable and are present also inmore » a massless neutrino cosmology. However, at scales k < 0.2 h/Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of < 0.3 eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to k = 1 h/Mpc with ∼30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.« less
Linear and non-linear Modified Gravity forecasts with future surveys
NASA Astrophysics Data System (ADS)
Casas, Santiago; Kunz, Martin; Martinelli, Matteo; Pettorino, Valeria
2017-12-01
Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable way, that can be parameterized by two generic functions (η and μ) of time and space. We bin their time dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with two different semi-analytical approximations. In addition to these future observables, we use a prior covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this work we neglect the information from the cross correlation of these observables, and treat them as independent. Our results show that η and μ in different redshift bins are significantly correlated, but including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to two particular parameterizations of μ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI: we find in this case that future surveys will be able to constrain the current values of η and μ at the 2-5% level when using only linear scales (wavevector k < 0 . 15 h/Mpc), depending on the specific time parameterization; sensitivity improves to about 1% when non-linearities are included.
NASA Astrophysics Data System (ADS)
Brockmann, J. M.; Schuh, W.-D.
2011-07-01
The estimation of the global Earth's gravity field parametrized as a finite spherical harmonic series is computationally demanding. The computational effort depends on the one hand on the maximal resolution of the spherical harmonic expansion (i.e. the number of parameters to be estimated) and on the other hand on the number of observations (which are several millions for e.g. observations from the GOCE satellite missions). To circumvent these restrictions, a massive parallel software based on high-performance computing (HPC) libraries as ScaLAPACK, PBLAS and BLACS was designed in the context of GOCE HPF WP6000 and the GOCO consortium. A prerequisite for the use of these libraries is that all matrices are block-cyclic distributed on a processor grid comprised by a large number of (distributed memory) computers. Using this set of standard HPC libraries has the benefit that once the matrices are distributed across the computer cluster, a huge set of efficient and highly scalable linear algebra operations can be used.
Beyond dRGT as mimetic massive gravity
NASA Astrophysics Data System (ADS)
Golovnev, Alexey
2018-04-01
An interesting proposal has recently been made to extend massive gravity models beyond dRGT by a disformal transformation of the metric. In this Letter we want to note that it can be viewed as a mimetic extension of dRGT gravity which enormously simplifies the Hamiltonian analysis. In particular, pure gravity sector is equivalent to the usual dRGT gravity coupled to a constrained scalar field. And we also give some comments about possible matter couplings.
Complexity growth in minimal massive 3D gravity
NASA Astrophysics Data System (ADS)
Qaemmaqami, Mohammad M.
2018-01-01
We study the complexity growth by using "complexity =action " (CA) proposal in the minimal massive 3D gravity (MMG) model which is proposed for resolving the bulk-boundary clash problem of topologically massive gravity (TMG). We observe that the rate of the complexity growth for Banados-Teitelboim-Zanelli (BTZ) black hole saturates the proposed bound by physical mass of the BTZ black hole in the MMG model, when the angular momentum parameter and the inner horizon of black hole goes to zero.
DEMNUni: ISW, Rees-Sciama, and weak-lensing in the presence of massive neutrinos
NASA Astrophysics Data System (ADS)
Carbone, Carmelita; Petkova, Margarita; Dolag, Klaus
2016-07-01
We present, for the first time in the literature, a full reconstruction of the total (linear and non-linear) ISW/Rees-Sciama effect in the presence of massive neutrinos, together with its cross-correlations with CMB-lensing and weak-lensing signals. The present analyses make use of all-sky maps extracted via ray-tracing across the gravitational potential distribution provided by the ``Dark Energy and Massive Neutrino Universe'' (DEMNUni) project, a set of large-volume, high-resolution cosmological N-body simulations, where neutrinos are treated as separate collisionless particles. We correctly recover, at 1-2% accuracy, the linear predictions from CAMB. Concerning the CMB-lensing and weak-lensing signals, we also recover, with similar accuracy, the signal predicted by Boltzmann codes, once non-linear neutrino corrections to HALOFIT are accounted for. Interestingly, in the ISW/Rees-Sciama signal, and its cross correlation with lensing, we find an excess of power with respect to the massless case, due to free streaming neutrinos, roughly at the transition scale between the linear and non-linear regimes. The excess is ~ 5 - 10% at l ~ 100 for the ISW/Rees-Sciama auto power spectrum, depending on the total neutrino mass Mν, and becomes a factor of ~ 4 for Mν = 0.3 eV, at l ~ 600, for the ISW/Rees-Sciama cross power with CMB-lensing. This effect should be taken into account for the correct estimation of the CMB temperature bispectrum in the presence of massive neutrinos.
Constraining dark sector perturbations I: cosmic shear and CMB lensing
NASA Astrophysics Data System (ADS)
Battye, Richard A.; Moss, Adam; Pearson, Jonathan A.
2015-04-01
We present current and future constraints on equations of state for dark sector perturbations. The equations of state considered are those corresponding to a generalized scalar field model and time-diffeomorphism invariant Script L(g) theories that are equivalent to models of a relativistic elastic medium and also Lorentz violating massive gravity. We develop a theoretical understanding of the observable impact of these models. In order to constrain these models we use CMB temperature data from Planck, BAO measurements, CMB lensing data from Planck and the South Pole Telescope, and weak galaxy lensing data from CFHTLenS. We find non-trivial exclusions on the range of parameters, although the data remains compatible with w=-1. We gauge how future experiments will help to constrain the parameters. This is done via a likelihood analysis for CMB experiments such as CoRE and PRISM, and tomographic galaxy weak lensing surveys, focussing in on the potential discriminatory power of Euclid on mildly non-linear scales.
Cosmological N -body simulations with generic hot dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk
2017-10-01
We have calculated the non-linear effects of generic fermionic and bosonic hot dark matter components in cosmological N -body simulations. For sub-eV masses, the non-linear power spectrum suppression caused by thermal free-streaming resembles the one seen for massive neutrinos, whereas for masses larger than 1 eV, the non-linear relative suppression of power is smaller than in linear theory. We furthermore find that in the non-linear regime, one can map fermionic to bosonic models by performing a simple transformation.
Cosmological N-body simulations with generic hot dark matter
NASA Astrophysics Data System (ADS)
Brandbyge, Jacob; Hannestad, Steen
2017-10-01
We have calculated the non-linear effects of generic fermionic and bosonic hot dark matter components in cosmological N-body simulations. For sub-eV masses, the non-linear power spectrum suppression caused by thermal free-streaming resembles the one seen for massive neutrinos, whereas for masses larger than 1 eV, the non-linear relative suppression of power is smaller than in linear theory. We furthermore find that in the non-linear regime, one can map fermionic to bosonic models by performing a simple transformation.
FAST TRACK COMMUNICATION The Bel-Robinson tensor for topologically massive gravity
NASA Astrophysics Data System (ADS)
Deser, S.; Franklin, J.
2011-02-01
We construct, and establish the (covariant) conservation of, a 4-index 'super stress tensor' for topologically massive gravity. Separately, we discuss its invalidity in quadratic curvature models and suggest a generalization.
DEMNUni: ISW, Rees-Sciama, and weak-lensing in the presence of massive neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbone, Carmelita; Petkova, Margarita; Dolag, Klaus, E-mail: carmelita.carbone@brera.inaf.it, E-mail: mpetkova@usm.lmu.de, E-mail: kdolag@mpa-garching.mpg.de
2016-07-01
We present, for the first time in the literature, a full reconstruction of the total (linear and non-linear) ISW/Rees-Sciama effect in the presence of massive neutrinos, together with its cross-correlations with CMB-lensing and weak-lensing signals. The present analyses make use of all-sky maps extracted via ray-tracing across the gravitational potential distribution provided by the ''Dark Energy and Massive Neutrino Universe'' (DEMNUni) project, a set of large-volume, high-resolution cosmological N-body simulations, where neutrinos are treated as separate collisionless particles. We correctly recover, at 1–2% accuracy, the linear predictions from CAMB. Concerning the CMB-lensing and weak-lensing signals, we also recover, with similarmore » accuracy, the signal predicted by Boltzmann codes, once non-linear neutrino corrections to HALOFIT are accounted for. Interestingly, in the ISW/Rees-Sciama signal, and its cross correlation with lensing, we find an excess of power with respect to the massless case, due to free streaming neutrinos, roughly at the transition scale between the linear and non-linear regimes. The excess is ∼ 5 – 10% at l ∼ 100 for the ISW/Rees-Sciama auto power spectrum, depending on the total neutrino mass M {sub ν}, and becomes a factor of ∼ 4 for M {sub ν} = 0.3 eV, at l ∼ 600, for the ISW/Rees-Sciama cross power with CMB-lensing. This effect should be taken into account for the correct estimation of the CMB temperature bispectrum in the presence of massive neutrinos.« less
Anisotropic strange stars under simplest minimal matter-geometry coupling in the f (R ,T ) gravity
NASA Astrophysics Data System (ADS)
Deb, Debabrata; Guha, B. K.; Rahaman, Farook; Ray, Saibal
2018-04-01
We study strange stars in the framework of f (R ,T ) theory of gravity. To provide exact solutions of the field equations it is considered that the gravitational Lagrangian can be expressed as the linear function of the Ricci scalar R and the trace of the stress-energy tensor T , i.e. f (R ,T )=R +2 χ T , where χ is a constant. We also consider that the strange quark matter (SQM) distribution inside the stellar system is governed by the phenomenological MIT bag model equation of state (EOS), given as pr=1/3 (ρ -4 B ) , where B is the bag constant. Further, for a specific value of B and observed values of mass of the strange star candidates we obtain the exact solution of the modified Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of f (R ,T ) gravity and have studied in detail the dependence of the different physical parameters, like the metric potentials, energy density, radial and tangential pressures and anisotropy etc., due to the chosen different values of χ . Likewise in GR, as have been shown in our previous work [Deb et al., Ann. Phys. (Amsterdam) 387, 239 (2017), 10.1016/j.aop.2017.10.010] in the present work also we find maximum anisotropy at the surface which seems an inherent property of the strange stars in modified f (R ,T ) theory of gravity. To check the physical acceptability and stability of the stellar system based on the obtained solutions we have performed different physical tests, viz., the energy conditions, Herrera cracking concept, adiabatic index etc. In this work, we also have explained the effects, those are arising due to the interaction between the matter and the curvature terms in f (R ,T ) gravity, on the anisotropic compact stellar system. It is interesting to note that as the values of χ increase the strange stars become more massive and their radius increase gradually so that eventually they gradually turn into less dense compact objects. The present study reveals that the modified f (R ,T ) gravity is a suitable theory to explain massive stellar systems like recent magnetars, massive pulsars and super-Chandrasekhar stars, which cannot be explained in the framework of GR. However, for χ =0 the standard results of Einsteinian gravity are retrieved.
Torus Approach in Gravity Field Determination from Simulated GOCE Gravity Gradients
NASA Astrophysics Data System (ADS)
Liu, Huanling; Wen, Hanjiang; Xu, Xinyu; Zhu, Guangbin
2016-08-01
In Torus approach, observations are projected to the nominal orbits with constant radius and inclination, lumped coefficients provides a linear relationship between observations and spherical harmonic coefficients. Based on the relationship, two-dimensional FFT and block-diagonal least-squares adjustment are used to recover Earth's gravity field model. The Earth's gravity field model complete to degree and order 200 is recovered using simulated satellite gravity gradients on a torus grid, and the degree median error is smaller than 10-18, which shows the effectiveness of Torus approach. EGM2008 is employed as a reference model and the gravity field model is resolved using the simulated observations without noise given on GOCE orbits of 61 days. The error from reduction and interpolation can be mitigated by iterations. Due to polar gap, the precision of low-order coefficients is lower. Without considering these coefficients the maximum geoid degree error and cumulative error are 0.022mm and 0.099mm, respectively. The Earth's gravity field model is also recovered from simulated observations with white noise 5mE/Hz1/2, which is compared to that from direct method. In conclusion, it is demonstrated that Torus approach is a valid method for processing massive amount of GOCE gravity gradients.
Acausality of massive gravity.
Deser, S; Waldron, A
2013-03-15
We show, by analyzing its characteristics, that the ghost-free, 5 degree of freedom, Wess-Zumino massive gravity model admits superluminal shock wave solutions and thus is acausal. Ironically, this pathology arises from the very constraint that removes the (sixth) Boulware-Deser ghost mode.
NASA Astrophysics Data System (ADS)
Rodríguez-Tzompantzi, Omar; Escalante, Alberto
2018-05-01
By applying the Faddeev-Jackiw symplectic approach we systematically show that both the local gauge symmetry and the constraint structure of topologically massive gravity with a cosmological constant Λ , elegantly encoded in the zero-modes of the symplectic matrix, can be identified. Thereafter, via a suitable partial gauge-fixing procedure, the time gauge, we calculate the quantization bracket structure (generalized Faddeev-Jackiw brackets) for the dynamic variables and confirm that the number of physical degrees of freedom is one. This approach provides an alternative to explore the dynamical content of massive gravity models.
FAST TRACK COMMUNICATION: Born-Infeld extension of new massive gravity
NASA Astrophysics Data System (ADS)
Güllü, İbrahim; Çaǧri Şişman, Tahsin; Tekin, Bayram
2010-08-01
We present a three-dimensional gravitational Born-Infeld theory which reduces to the recently found new massive gravity (NMG) at the quadratic level in the small curvature expansion and at the cubic order reproduces the deformation of NMG obtained from AdS/CFT. Our action provides a remarkable extension of NMG to all orders in the curvature and might define a consistent quantum gravity.
Acoustic-gravity waves, theory and application
NASA Astrophysics Data System (ADS)
Kadri, Usama; Farrell, William E.; Munk, Walter
2015-04-01
Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.
Soft hairy warped black hole entropy
NASA Astrophysics Data System (ADS)
Grumiller, Daniel; Hacker, Philip; Merbis, Wout
2018-02-01
We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute asymptotic symmetries in any Chern-Simons-like theory of gravity. We use this to show that the near horizon symmetry algebra consists of two u (1) current algebras and recover the surprisingly simple entropy formula S = 2 π( J 0 + + J 0 - ), where J 0 ± are zero mode charges of the current algebras. This provides the first example of a locally non-maximally symmetric configuration exhibiting this entropy law and thus non-trivial evidence for its universality.
Topologically massive magnetic monopoles
NASA Astrophysics Data System (ADS)
Aliev, A. N.; Nutku, Y.; Saygili, K.
2000-10-01
We show that in the Maxwell-Chern-Simons theory of topologically massive electrodynamics the Dirac string of a monopole becomes a cone in anti-de Sitter space with the opening angle of the cone determined by the topological mass, which in turn is related to the square root of the cosmological constant. This proves to be an example of a physical system, a priori completely unrelated to gravity, which nevertheless requires curved spacetime for its very existence. We extend this result to topologically massive gravity coupled to topologically massive electrodynamics within the framework of the theory of Deser, Jackiw and Templeton. The two-component spinor formalism, which is a Newman-Penrose type approach for three dimensions, is extended to include both the electrodynamical and gravitational topologically massive field equations. Using this formalism exact solutions of the coupled Deser-Jackiw-Templeton and Maxwell-Chern-Simons field equations for a topologically massive monopole are presented. These are homogeneous spaces with conical deficit. Pure Einstein gravity coupled to the Maxwell-Chern-Simons field does not admit such a monopole solution.
Massive spin-2 scattering and asymptotic superluminality
NASA Astrophysics Data System (ADS)
Hinterbichler, Kurt; Joyce, Austin; Rosen, Rachel A.
2018-03-01
We place model-independent constraints on theories of massive spin-2 particles by considering the positivity of the phase shift in eikonal scattering. The phase shift is an asymptotic S-matrix observable, related to the time delay/advance experienced by a particle during scattering. Demanding the absence of a time advance leads to constraints on the cubic vertices present in the theory. We find that, in theories with massive spin-2 particles, requiring no time advance means that either: (i) the cubic vertices must appear as a particular linear combination of the Einstein-Hilbert cubic vertex and an h μν 3 potential term or (ii) new degrees of freedom or strong coupling must enter at parametrically the mass of the massive spin-2 field. These conclusions have implications for a variety of situations. Applied to theories of large- N QCD, this indicates that any spectrum with an isolated massive spin-2 at the bottom must have these particular cubic self-couplings. Applied to de Rham-Gabadadze-Tolley massive gravity, the constraint is in accord with results obtained from a shockwave calculation: of the two free dimensionless parameters in the theory there is a one parameter line consistent with a subluminal phase shift.
NASA Astrophysics Data System (ADS)
Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya
2017-10-01
The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N-body simulations of ΛCDM and f(R) gravity with massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N-body to percent level accuracy for both the total and CDM matter power-spectra up to klesssim 1 h/Mpc.
LETTER TO THE EDITOR: A theorem on topologically massive gravity
NASA Astrophysics Data System (ADS)
Aliev, A. N.; Nutku, Y.
1996-03-01
We show that for three dimensional spacetimes admitting a hypersurface orthogonal Killing vector field, Deser, Jackiw and Templeton's vacuum field equations of topologically massive gravity allow only the trivial flat spacetime solution. Thus spin is necessary to support topological mass.
Three-dimensional massive gravity and the bigravity black hole
NASA Astrophysics Data System (ADS)
Bañados, Máximo; Theisen, Stefan
2009-11-01
We study three-dimensional massive gravity formulated as a theory with two dynamical metrics, like the f-g theories of Isham-Salam and Strathdee. The action is parity preserving and has no higher derivative terms. The spectrum contains a single massive graviton. This theory has several features discussed recently in TMG and NMG. We find warped black holes, a critical point, and generalized Brown-Henneaux boundary conditions.
Generalized Vaidya solutions and Misner-Sharp mass for n -dimensional massive gravity
NASA Astrophysics Data System (ADS)
Hu, Ya-Peng; Wu, Xin-Meng; Zhang, Hongsheng
2017-04-01
Dynamical solutions are always of interest to people in gravity theories. We derive a series of generalized Vaidya solutions in the n -dimensional de Rham-Gabadadze-Tolley massive gravity with a singular reference metric. Similar to the case of the Einstein gravity, the generalized Vaidya solution can describe shining/absorbing stars. Moreover, we also find a more general Vaidya-like solution by introducing a more generic matter field than the pure radiation in the original Vaidya spacetime. As a result, the above generalized Vaidya solution is naturally included in this Vaidya-like solution as a special case. We investigate the thermodynamics for this Vaidya-like spacetime by using the unified first law and present the generalized Misner-Sharp mass. Our results show that the generalized Minser-Sharp mass does exist in this spacetime. In addition, the usual Clausius relation δ Q =T d S holds on the apparent horizon, which implicates that the massive gravity is in a thermodynamic equilibrium state. We find that the work density vanishes for the generalized Vaidya solution, while it appears in the more general Vaidya-like solution. Furthermore, the covariant generalized Minser-Sharp mass in the n -dimensional de Rham-Gabadadze-Tolley massive gravity is also derived by taking a general metric ansatz into account.
DEMNUni: massive neutrinos and the bispectrum of large scale structures
NASA Astrophysics Data System (ADS)
Ruggeri, Rossana; Castorina, Emanuele; Carbone, Carmelita; Sefusatti, Emiliano
2018-03-01
The main effect of massive neutrinos on the large-scale structure consists in a few percent suppression of matter perturbations on all scales below their free-streaming scale. Such effect is of particular importance as it allows to constraint the value of the sum of neutrino masses from measurements of the galaxy power spectrum. In this work, we present the first measurements of the next higher-order correlation function, the bispectrum, from N-body simulations that include massive neutrinos as particles. This is the simplest statistics characterising the non-Gaussian properties of the matter and dark matter halos distributions. We investigate, in the first place, the suppression due to massive neutrinos on the matter bispectrum, comparing our measurements with the simplest perturbation theory predictions, finding the approximation of neutrinos contributing at quadratic order in perturbation theory to provide a good fit to the measurements in the simulations. On the other hand, as expected, a linear approximation for neutrino perturbations would lead to Script O(fν) errors on the total matter bispectrum at large scales. We then attempt an extension of previous results on the universality of linear halo bias in neutrino cosmologies, to non-linear and non-local corrections finding consistent results with the power spectrum analysis.
Holographic thermalization and generalized Vaidya-AdS solutions in massive gravity
NASA Astrophysics Data System (ADS)
Hu, Ya-Peng; Zeng, Xiao-Xiong; Zhang, Hai-Qing
2017-02-01
We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Misner-Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Clifford; Remmen, Grant N.
Here, we derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. Furthermore, the high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small islandmore » in the parameter space of ghost-free massive gravity. And while the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.« less
NASA Astrophysics Data System (ADS)
Danielsson, U. H.; Dibitetto, G.; Vargas, S. C.
2017-11-01
We consider known examples of non-supersymmetric AdS7 and AdS4 solutions arising from compactifications of massive type IIA supergravity and study their stability, taking into account the coupling between closed- and open-string sector excitations. Generically, open strings are found to develop modes with masses below the Breitenlohner-Freedman (BF) bound. We comment on the relation with the Weak Gravity Conjecture, and how this analysis may play an important role in examining the validity of non-supersymmetric constructions in string theory.
Palatini formulation of f( R, T) gravity theory, and its cosmological implications
NASA Astrophysics Data System (ADS)
Wu, Jimin; Li, Guangjie; Harko, Tiberiu; Liang, Shi-Dong
2018-05-01
We consider the Palatini formulation of f( R, T) gravity theory, in which a non-minimal coupling between the Ricci scalar and the trace of the energy-momentum tensor is introduced, by considering the metric and the affine connection as independent field variables. The field equations and the equations of motion for massive test particles are derived, and we show that the independent connection can be expressed as the Levi-Civita connection of an auxiliary, energy-momentum trace dependent metric, related to the physical metric by a conformal transformation. Similar to the metric case, the field equations impose the non-conservation of the energy-momentum tensor. We obtain the explicit form of the equations of motion for massive test particles in the case of a perfect fluid, and the expression of the extra force, which is identical to the one obtained in the metric case. The thermodynamic interpretation of the theory is also briefly discussed. We investigate in detail the cosmological implications of the theory, and we obtain the generalized Friedmann equations of the f( R, T) gravity in the Palatini formulation. Cosmological models with Lagrangians of the type f=R-α ^2/R+g(T) and f=R+α ^2R^2+g(T) are investigated. These models lead to evolution equations whose solutions describe accelerating Universes at late times.
Initial conditions for accurate N-body simulations of massive neutrino cosmologies
NASA Astrophysics Data System (ADS)
Zennaro, M.; Bel, J.; Villaescusa-Navarro, F.; Carbone, C.; Sefusatti, E.; Guzzo, L.
2017-04-01
The set-up of the initial conditions in cosmological N-body simulations is usually implemented by rescaling the desired low-redshift linear power spectrum to the required starting redshift consistently with the Newtonian evolution of the simulation. The implementation of this practical solution requires more care in the context of massive neutrino cosmologies, mainly because of the non-trivial scale-dependence of the linear growth that characterizes these models. In this work, we consider a simple two-fluid, Newtonian approximation for cold dark matter and massive neutrinos perturbations that can reproduce the cold matter linear evolution predicted by Boltzmann codes such as CAMB or CLASS with a 0.1 per cent accuracy or below for all redshift relevant to non-linear structure formation. We use this description, in the first place, to quantify the systematic errors induced by several approximations often assumed in numerical simulations, including the typical set-up of the initial conditions for massive neutrino cosmologies adopted in previous works. We then take advantage of the flexibility of this approach to rescale the late-time linear power spectra to the simulation initial redshift, in order to be as consistent as possible with the dynamics of the N-body code and the approximations it assumes. We implement our method in a public code (REPS rescaled power spectra for initial conditions with massive neutrinos https://github.com/matteozennaro/reps) providing the initial displacements and velocities for cold dark matter and neutrino particles that will allow accurate, I.e. 1 per cent level, numerical simulations for this cosmological scenario.
Cosmic velocity-gravity relation in redshift space
NASA Astrophysics Data System (ADS)
Colombi, Stéphane; Chodorowski, Michał J.; Teyssier, Romain
2007-02-01
We propose a simple way to estimate the parameter β ~= Ω0.6/b from 3D galaxy surveys, where Ω is the non-relativistic matter-density parameter of the Universe and b is the bias between the galaxy distribution and the total matter distribution. Our method consists in measuring the relation between the cosmological velocity and gravity fields, and thus requires peculiar velocity measurements. The relation is measured directly in redshift space, so there is no need to reconstruct the density field in real space. In linear theory, the radial components of the gravity and velocity fields in redshift space are expected to be tightly correlated, with a slope given, in the distant observer approximation, by We test extensively this relation using controlled numerical experiments based on a cosmological N-body simulation. To perform the measurements, we propose a new and rather simple adaptive interpolation scheme to estimate the velocity and the gravity field on a grid. One of the most striking results is that non-linear effects, including `fingers of God', affect mainly the tails of the joint probability distribution function (PDF) of the velocity and gravity field: the 1-1.5 σ region around the maximum of the PDF is dominated by the linear theory regime, both in real and redshift space. This is understood explicitly by using the spherical collapse model as a proxy of non-linear dynamics. Applications of the method to real galaxy catalogues are discussed, including a preliminary investigation on homogeneous (volume-limited) `galaxy' samples extracted from the simulation with simple prescriptions based on halo and substructure identification, to quantify the effects of the bias between the galaxy distribution and the total matter distribution, as well as the effects of shot noise.
Cosmic acceleration and the helicity-0 graviton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rham, Claudia de; Heisenberg, Lavinia; Gabadadze, Gregory
2011-05-15
We explore cosmology in the decoupling limit of a nonlinear covariant extension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is indistinguishable from the {Lambda}CDM model. Fluctuations about the self-accelerated background are stable for a certain range of parameters involved.more » Most surprisingly, the fluctuation of the helicity-0 field above its background decouples from an arbitrary source in the linearized theory. We also show how massive gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while evading issues with ghosts. The obtained static solution is stable against small perturbations, suggesting that the degravitation of the vacuum energy is possible in the full theory. Interestingly, however, this mechanism postpones the Vainshtein effect to shorter distance scales. Hence, fifth force measurements severely constrain the value of the cosmological constant that can be neutralized, making this scheme phenomenologically not viable for solving the old cosmological constant problem. We briefly speculate on a possible way out of this issue.« less
Astronaut Thuot and Gemar work with Middeck O-Gravity Dynamics Experiment (MODE)
NASA Technical Reports Server (NTRS)
1994-01-01
Astronauts Pierre J. Thuot (top) and Charles D. (Sam) Gemar show off the Middeck O-Gravity Dynamics Experiment (MODE) aboard the Earth-orbiting Space Shuttle Columbia. The reusable test facility is designed to study the non-linear gravity-dependent behavior of two types of space hardware - large space structures (as depicted here) and contained fluids - planned for future spacecraft.
Simulating cosmologies beyond ΛCDM with PINOCCHIO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Luca A.; Villaescusa-Navarro, Francisco; Monaco, Pierluigi
2017-01-01
We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth factor and the growth rate depend on scale. Such cosmologies comprise, among others, models with massive neutrinos and some classes of modified gravity theories. We validate the code by comparing the halo properties from PINOCCHIO against N-body simulations, focusing on cosmologies with massive neutrinos: νΛCDM. We analyse the halo mass function, halo two-point correlation function and halo power spectrum, showing that PINOCCHIO reproduces the results frommore » simulations with the same level of precision as the original code (∼ 5–10%). We demonstrate that the abundance of halos in cosmologies with massless and massive neutrinos from PINOCCHIO matches very well the outcome of simulations, and point out that PINOCCHIO can reproduce the Ω{sub ν}–σ{sub 8} degeneracy that affects the halo mass function. We finally show that the clustering properties of the halos from PINOCCHIO matches accurately those from simulations both in real and redshift-space, in the latter case up to k = 0.3 h Mpc{sup −1}. We emphasize that the computational time required by PINOCCHIO to generate mock halo catalogues is orders of magnitude lower than the one needed for N-body simulations. This makes this tool ideal for applications like covariance matrix studies within the standard ΛCDM model but also in cosmologies with massive neutrinos or some modified gravity theories.« less
Effect of gravity on terminal particle settling velocity on Moon, Mars and Earth
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.
2013-04-01
Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases due to the interdependence of settling velocity, drag and friction. However, StokeśLaw, the common way of estimating the terminal velocity of a particle moving in a gas of liquid assumes a linear relationship between terminal velocity and gravity. For terrestrial applications, this "error" is not relevant, but it may strongly influence the terminal velocity achieved by settling particles on Mars. False estimates of these settling velocities will, in turn, affect the interpretation of particle sizes observed in sedimentary rocks on Mars. Wrong interpretations may occur, for example, when the texture of sedimentary rocks is linked to the amount and hydraulics of runoff and thus ultimately the environmental conditions on Mars at the time of their formation. A good understanding of particle behaviour in liquids on Mars is therefore essential. In principle, the effect of lower gravity on settling velocity can also be achieved by reducing the difference in density between particle and gas or liquid. However, the use of such analogues simulating the lower gravity on Mars on Earth is creates other problems because the properties (i.e. viscosity) and interaction of the liquids and sediment (i.e. flow around the boundary layer between liquid and particle) differ from those of water and mineral particles. An alternative for measuring the actual settling velocities of particles under Martian gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling tests within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation we report the results of such a test conducted during a reduced gravity flight in November 2012. The results explore the strength of the non-linearity in the gravity-settling velocity relationship for terrestrial, lunar and Martian gravity.
NASA Astrophysics Data System (ADS)
Zhao, Zhen-Hua; Xie, Qun-Ying
2018-05-01
In order to localize U(1) gauge vector field on Randall-Sundrum-like braneworld model with infinite extra dimension, we propose a new kind of non-minimal coupling between the U(1) gauge field and the gravity. We propose three kinds of coupling methods and they all support the localization of zero mode. In addition, one of them can support the localization of massive modes. Moreover, the massive tachyonic modes can be excluded. And our method can be used not only in the thin braneword models but also in the thick ones.
Path integral measure, constraints and ghosts for massive gravitons with a cosmological constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metaxas, Dimitrios
2009-12-15
For massive gravity in a de Sitter background one encounters problems of stability when the curvature is larger than the graviton mass. I analyze this situation from the path integral point of view and show that it is related to the conformal factor problem of Euclidean quantum (massless) gravity. When a constraint for massive gravity is incorporated and the proper treatment of the path integral measure is taken into account one finds that, for particular choices of the DeWitt metric on the space of metrics (in fact, the same choices as in the massless case), one obtains the opposite boundmore » on the graviton mass.« less
Inflation with a massive vector field nonminimally coupled to gravity
NASA Astrophysics Data System (ADS)
Páramos, J.
2018-01-01
The possibility that inflation is driven by a massive vector field with SO(3) global symmetry nonminimally coupled to gravity is presented. Through an appropriate Ansatz for the vector field, the behaviour of the equations of motion is studied through the ensuing dynamical system, focusing on the characterisation of the ensuing fixed points.
NASA Astrophysics Data System (ADS)
Licht, Christian; Tran Thu Ha
2005-02-01
We consider the small transient motions of a coupled system constituted by a linearly elastic body and two heavy, incompressible, non-Newtonian fluids.Through a formulation in terms of non-linear evolution equations in Hilbert spaces of possible states with finite mechanical energy, we obtain existence and uniqueness results and study the influence of gravity. To cite this article: C. Licht, Tran Thu Ha, C. R. Mecanique 333 (2005).
Thermodynamic and classical instability of AdS black holes in fourth-order gravity
NASA Astrophysics Data System (ADS)
Myung, Yun Soo; Moon, Taeyoon
2014-04-01
We study thermodynamic and classical instability of AdS black holes in fourth-order gravity. These include the BTZ black hole in new massive gravity, Schwarzschild-AdS black hole, and higher-dimensional AdS black holes in fourth-order gravity. All thermo-dynamic quantities which are computed using the Abbot-Deser-Tekin method are used to study thermodynamic instability of AdS black holes. On the other hand, we investigate the s-mode Gregory-Laflamme instability of the massive graviton propagating around the AdS black holes. We establish the connection between the thermodynamic instability and the GL instability of AdS black holes in fourth-order gravity. This shows that the Gubser-Mitra conjecture holds for AdS black holes found from fourth-order gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya, E-mail: bill.wright@port.ac.uk, E-mail: hans.winther@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk
The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N -body simulations of ΛCDM and f ( R ) gravity withmore » massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N -body to percent level accuracy for both the total and CDM matter power-spectra up to k ∼< 1 h /Mpc.« less
Aspects of warped AdS3/CFT2 correspondence
NASA Astrophysics Data System (ADS)
Chen, Bin; Zhang, Jia-Ju; Zhang, Jian-Dong; Zhong, De-Liang
2013-04-01
In this paper we apply the thermodynamics method to investigate the holographic pictures for the BTZ black hole, the spacelike and the null warped black holes in three-dimensional topologically massive gravity (TMG) and new massive gravity (NMG). Even though there are higher derivative terms in these theories, the thermodynamics method is still effective. It gives consistent results with the ones obtained by using asymptotical symmetry group (ASG) analysis. In doing the ASG analysis we develop a brute-force realization of the Barnich-Brandt-Compere formalism with Mathematica code, which also allows us to calculate the masses and the angular momenta of the black holes. In particular, we propose the warped AdS3/CFT2 correspondence in the new massive gravity, which states that quantum gravity in the warped spacetime could holographically dual to a two-dimensional CFT with {c_R}={c_L}=24 /{Gm{β^2√{{2( {21-4{β^2}} )}}}}.
Equivalent theories redefine Hamiltonian observables to exhibit change in general relativity
NASA Astrophysics Data System (ADS)
Pitts, J. Brian
2017-03-01
Change and local spatial variation are missing in canonical General Relativity’s observables as usually defined, an aspect of the problem of time. Definitions can be tested using equivalent formulations of a theory, non-gauge and gauge, because they must have equivalent observables and everything is observable in the non-gauge formulation. Taking an observable from the non-gauge formulation and finding the equivalent in the gauge formulation, one requires that the equivalent be an observable, thus constraining definitions. For massive photons, the de Broglie-Proca non-gauge formulation observable {{A}μ} is equivalent to the Stueckelberg-Utiyama gauge formulation quantity {{A}μ}+{{\\partial}μ}φ, which must therefore be an observable. To achieve that result, observables must have 0 Poisson bracket not with each first-class constraint, but with the Rosenfeld-Anderson-Bergmann-Castellani gauge generator G, a tuned sum of first-class constraints, in accord with the Pons-Salisbury-Sundermeyer definition of observables. The definition for external gauge symmetries can be tested using massive gravity, where one can install gauge freedom by parametrization with clock fields X A . The non-gauge observable {{g}μ ν} has the gauge equivalent {{X}A}{{,}μ}{{g}μ ν}{{X}B}{{,}ν}. The Poisson bracket of {{X}A}{{,}μ}{{g}μ ν}{{X}B}{{,}ν} with G turns out to be not 0 but a Lie derivative. This non-zero Poisson bracket refines and systematizes Kuchař’s proposal to relax the 0 Poisson bracket condition with the Hamiltonian constraint. Thus observables need covariance, not invariance, in relation to external gauge symmetries. The Lagrangian and Hamiltonian for massive gravity are those of General Relativity + Λ + 4 scalars, so the same definition of observables applies to General Relativity. Local fields such as {{g}μ ν} are observables. Thus observables change. Requiring equivalent observables for equivalent theories also recovers Hamiltonian-Lagrangian equivalence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk
We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shownmore » to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.« less
NOTE: Circular symmetry in topologically massive gravity
NASA Astrophysics Data System (ADS)
Deser, S.; Franklin, J.
2010-05-01
We re-derive, compactly, a topologically massive gravity (TMG) decoupling theorem: source-free TMG separates into its Einstein and Cotton sectors for spaces with a hypersurface-orthogonal Killing vector, here concretely for circular symmetry. We then generalize the theorem to include matter; surprisingly, the single Killing symmetry also forces conformal invariance, requiring the sources to be null.
Hairy black holes in scalar extended massive gravity
NASA Astrophysics Data System (ADS)
Tolley, Andrew J.; Wu, De-Jun; Zhou, Shuang-Yong
2015-12-01
We construct static, spherically symmetric black hole solutions in scalar extended ghost-free massive gravity and show the existence of hairy black holes in this class of extension. While the existence seems to be a generic feature, we focus on the simplest models of this extension and find that asymptotically flat hairy black holes can exist without fine-tuning the theory parameters, unlike the bi-gravity extension, where asymptotical flatness requires fine-tuning in the parameter space. Like the bi-gravity extension, we are unable to obtain asymptotically dS regular black holes in the simplest models considered, but it is possible to obtain asymptotically AdS black holes.
SU(2) Yang-Mills solitons in R2 gravity
NASA Astrophysics Data System (ADS)
Perapechka, I.; Shnir, Ya.
2018-05-01
We construct new family of spherically symmetric regular solutions of SU (2) Yang-Mills theory coupled to pure R2 gravity. The particle-like field configurations possess non-integer non-Abelian magnetic charge. A discussion of the main properties of the solutions and their differences from the usual Bartnik-McKinnon solitons in the asymptotically flat case is presented. It is shown that there is continuous family of linearly stable non-trivial solutions in which the gauge field has no nodes.
Primordial fluctuations from inflation in dRGT bimetric theory of gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakakihara, Yuki; Research Center for the Early Universe; Tanaka, Takahiro
2016-09-19
We investigate primordial gravitational waves and curvature perturbations in de Rham-Gabadadze-Tolley (dRGT) bimetric gravity. We evaluate the power-spectra in the leading order in slow roll. Taking into account the decay of massive graviton, we find that the action up to the second order reduces to the Einstein theory with a non-minimally coupled scalar field, which is simplified to a minimally coupled model by conformal transformation. We also find that the tensor to scalar ratio for large field inflation with power law potential is larger than the general relativity counterpart for any choice of parameters in dRGT bimetric gravity. In addition,more » we confirm that the usual consistency relation holds and we have a steeper spectrum for gravitational waves.« less
Gravity and the Spin-2 Planar Schrödinger Equation
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric A.; Rosseel, Jan; Townsend, Paul K.
2018-04-01
A Schrödinger equation proposed for the Girvin-MacDonald-Platzman gapped spin-2 mode of fractional quantum Hall states is found from a novel nonrelativistic limit, applicable only in 2 +1 dimensions, of the massive spin-2 Fierz-Pauli field equations. It is also found from a novel null reduction of the linearized Einstein field equations in 3 +1 dimensions, and in this context a uniform distribution of spin-2 particles implies, via a Brinkmann-wave solution of the nonlinear Einstein equations, a confining harmonic oscillator potential for the individual particles.
Complexity growth in massive gravity theories, the effects of chirality, and more
NASA Astrophysics Data System (ADS)
Ghodrati, Mahdis
2017-11-01
To study the effect of parity violation on the rate of complexity growth, by using "complexity=action " conjecture, we find the complexity growth rates in different solutions of the chiral theory of topologically massive gravity (TMG) and parity-preserving theory of new massive gravity (NMG). Using the results, one can see that decreasing the parameter μ , which increases the effect of the Chern-Simons term and increases chirality, would increase the rate of growth of complexity. Also one can observe a stronger correlation between complexity growth and temperature rather than complexity growth and entropy. At the end we comment on the possible meaning of the deforming term of chiral Liouville action for the rate of complexity growth of warped conformal field theories in the tensor network renormalization picture.
Active Response Gravity Offload and Method
NASA Technical Reports Server (NTRS)
Dungan, Larry K. (Inventor); Lieberman, Asher P. (Inventor); Shy, Cecil (Inventor); Bankieris, Derek R. (Inventor); Valle, Paul S. (Inventor); Redden, Lee (Inventor)
2015-01-01
A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.
Long-Lived Inverse Chirp Signals from Core-Collapse in Massive Scalar-Tensor Gravity
NASA Astrophysics Data System (ADS)
Sperhake, Ulrich; Moore, Christopher J.; Rosca, Roxana; Agathos, Michalis; Gerosa, Davide; Ott, Christian D.
2017-11-01
This Letter considers stellar core collapse in massive scalar-tensor theories of gravity. The presence of a mass term for the scalar field allows for dramatic increases in the radiated gravitational wave signal. There are several potential smoking gun signatures of a departure from general relativity associated with this process. These signatures could show up within existing LIGO-Virgo searches.
Axion as a cold dark matter candidate: analysis to third order perturbation for classical axion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Hyerim; Hwang, Jai-chan; Park, Chan-Gyung, E-mail: hr@kasi.re.kr, E-mail: jchan@knu.ac.kr, E-mail: park.chan.gyung@gmail.com
2015-12-01
We investigate aspects of axion as a coherently oscillating massive classical scalar field by analyzing third order perturbations in Einstein's gravity in the axion-comoving gauge. The axion fluid has its characteristic pressure term leading to an axion Jeans scale which is cosmologically negligible for a canonical axion mass. Our classically derived axion pressure term in Einstein's gravity is identical to the one derived in the non-relativistic quantum mechanical context in the literature. We present the general relativistic continuity and Euler equations for an axion fluid valid up to third order perturbation. Equations for axion are exactly the same as thatmore » of a zero-pressure fluid in Einstein's gravity except for an axion pressure term in the Euler equation. Our analysis includes the cosmological constant.« less
Three waves for quantum gravity
NASA Astrophysics Data System (ADS)
Calmet, Xavier; Latosh, Boris
2018-03-01
Using effective field theoretical methods, we show that besides the already observed gravitational waves, quantum gravity predicts two further massive classical fields leading to two new massive waves. We set a limit on the masses of these new modes using data from the Eöt-Wash experiment. We point out that the existence of these new states is a model independent prediction of quantum gravity. We then explain how these new classical fields could impact astrophysical processes and in particular the binary inspirals of neutron stars or black holes. We calculate the emission rate of these new states in binary inspirals astrophysical processes.
NASA Astrophysics Data System (ADS)
Brax, Philippe; Davis, Anne-Christine
2012-01-01
We consider the effect of modified gravity on the peak structure of the cosmic microwave background (CMB) spectrum. We focus on simple models of modified gravity mediated by a massive scalar field coupled to both baryons and cold dark matter. This captures the features of chameleon, symmetron, dilaton, and f(R) models. We find that the CMB peaks can be affected in three independent ways provided the Compton radius of the massive scalar is not far-off the sound horizon at last scattering. When the coupling of the massive scalar to cold dark matter is large, the anomalous growth of the cold dark matter perturbation inside the Compton radius induces a change in the peak amplitudes. When the coupling to baryons is moderately large, the speed of sound is modified and the peaks shifted to higher momenta. Finally when both couplings are nonvanishing, a new contribution proportional to the Newton potential appears in the Sachs-Wolfe temperature and increases the peak amplitudes. We also show how, given any temporal evolution of the scalar field mass, one can engineer a corresponding modified gravity model of the chameleon type. This opens up the possibility of having independent constraints on modified gravity from the CMB peaks and large scale structures at low redshifts.
Spin-3 topologically massive gravity
NASA Astrophysics Data System (ADS)
Chen, Bin; Long, Jiang; Wu, Jun-bao
2011-11-01
In this Letter, we study the spin-3 topologically massive gravity (TMG), paying special attention to its properties at the chiral point. We propose an action describing the higher spin fields coupled to TMG. We discuss the traceless spin-3 fluctuations around the AdS3 vacuum and find that there is an extra local massive mode, besides the left-moving and right-moving boundary massless modes. At the chiral point, such extra mode becomes massless and degenerates with the left-moving mode. We show that at the chiral point the only degrees of freedom in the theory are the boundary right-moving graviton and spin-3 field. We conjecture that spin-3 chiral gravity with generalized Brown-Henneaux boundary condition is holographically dual to 2D chiral CFT with classical W3 algebra and central charge cR = 3 l / G.
Conserved charges of minimal massive gravity coupled to scalar field
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2018-02-01
Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected.
Lifshitz black branes and DC transport coefficients in massive Einstein-Maxwell-dilaton gravity
NASA Astrophysics Data System (ADS)
Kuang, Xiao-Mei; Papantonopoulos, Eleftherios; Wu, Jian-Pin; Zhou, Zhenhua
2018-03-01
We construct analytical Lifshitz massive black brane solutions in massive Einstein-Maxwell-dilaton gravity theory. We also study the thermodynamics of these black brane solutions and obtain the thermodynamical stability conditions. On the dual nonrelativistic boundary field theory with Lifshitz symmetry, we analytically compute the DC transport coefficients, including the electric conductivity, thermoelectric conductivity, and thermal conductivity. The novel property of our model is that the massive term supports the Lifshitz black brane solutions with z ≠1 in such a way that the DC transport coefficients in the dual field theory are finite. We also find that the Wiedemann-Franz law in this dual boundary field theory is violated, which indicates that it may involve strong interactions.
Strange stars in f(R,Script T) gravity
NASA Astrophysics Data System (ADS)
Deb, Debabrata; Rahaman, Farook; Ray, Saibal; Guha, B. K.
2018-03-01
In this article we try to present spherically symmetric isotropic strange star model under the framework of f(R,Script T) theory of gravity. To this end, we consider that the Lagrangian density is a linear function of the Ricci scalar R and the trace of the energy momentum tensor Script T given as f(R,Script T)=R+2χ Script T. We also assume that the quark matter distribution is governed by the simplest form of the MIT bag model equation of state (EOS) as p=1/3(ρ‑4B), where B is the bag constant. We have obtained an exact solution of the modified form of the Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of f(R,Script T) gravity theory and have studied the dependence of different physical properties, viz., the total mass, radius, energy density and pressure for the chosen values of χ. Further, to examine physical acceptability of the proposed stellar model, we have conducted different tests in detail, viz., the energy conditions, modified TOV equation, mass-radius relation, causality condition etc. We have precisely explained the effects arising due to the coupling of the matter and geometry on the compact stellar system. For a chosen value of the bag constant, we have predicted numerical values of the different physical parameters in tabular form for the different strange star candidates. It is found that as the factor χ decreases the strange star candidates become gradually massive and larger in size with less dense stellar configuration. However, when χ increases the stars shrink gradually and become less massive to turn into a more compact stellar system. Hence for χ>0 our proposed model is suitable to explain the ultra-dense compact stars well within the observational limits and for χ<0 case allows to represent the recent massive pulsars and super-Chandrasekhar stars. For χ=0 we retrieve as usual the standard results of the general relativity (GR).
Constraints on massive gravity theory from big bang nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambiase, G., E-mail: lambiase@sa.infn.it
The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also analyzed in the framework of the PAMELA experiment, i.e. an excess of positron events, that the conventional cosmology and particle physics cannot explain.
New massive gravity and AdS(4) counterterms.
Jatkar, Dileep P; Sinha, Aninda
2011-04-29
We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory.
Changing the Bayesian prior: Absolute neutrino mass constraints in nonlocal gravity*
NASA Astrophysics Data System (ADS)
Dirian, Yves
2017-10-01
Prior change is discussed in observational constraints studies of nonlocally modified gravity, where a model characterized by a modification of the form ˜m2R □-2R to the Einstein-Hilbert action was compared against the base Λ CDM one in a Bayesian way. It was found that the competing modified gravity model is significantly disfavored (at 22 ∶1 in terms of betting-odds) against Λ CDM given CMB +SNIa +BAO data, because of a tension appearing in the H0- ΩM plane. We identify the underlying mechanism generating such a tension and show that it is mostly caused by the late-time, quite smooth, phantom nature of the effective dark energy described by the nonlocal model. We find that the tension is resolved by considering an extension of the initial baseline, consisting in allowing the absolute mass of three degenerated massive neutrino species ∑mν/3 to take values within a prior interval consistent with existing data. As a net effect, the absolute neutrino mass is inferred to be nonvanishing at 2 σ level, best-fitting at ∑mν≈0.21 eV , and the Bayesian tension disappears rendering the nonlocal gravity model statistically equivalent to Λ CDM , given recent CMB +SNIa +BAO data. We also discuss constraints from growth rate measurements f σ8, whose fit is found to be improved by a larger massive neutrino fraction as well. The ν -extended nonlocal model also prefers a higher value of H0 than Λ CDM , therefore in better agreement with local measurements. Our study provides one more example suggesting that the neutrino density fraction Ων is partially degenerated with the nature of the dark energy. This emphasizes the importance of cosmological and terrestrial neutrino research and, as a massive neutrino background impacts structure formation observables non-negligibly, proves to be especially relevant for future galaxy surveys.
Planet Formation in Stellar Binaries: How Disk Gravity Can Lower theFragmentation Barrier
NASA Astrophysics Data System (ADS)
Silsbee, Kedron; Rafikov, Roman R.
2014-11-01
Binary star systems present a challenge to current theories of planet formation. Perturbations from the companion star dynamically excite the protoplanetary disk, which can lead to destructive collisions between planetesimals, and prevent growth from 1 km to 100 km sized planetesimals. Despite this apparent barrier to coagulation, planets have been discovered within several small-separation (<20 AU), eccentric (eb 0.4) binaries, such as alpha Cen and gamma Cep. We address this problem by analytically exploring planetesimal dynamics under the simultaneous action of (1) binary perturbation, (2) gas drag (which tends to align planetesimal orbits), and (3), the gravity of an eccentric protoplanetary disk. We then use our dynamical solutions to assess the outcomes of planetesimal collisions (growth, destruction, erosion) for a variety of disk models. We find that planets in small-separation binaries can form at their present locations if the primordial protoplanetary disks were massive (>0.01M⊙) and not very eccentric (eccentricity of order several per cent at the location of planet). This constraint on the disk mass is compatible with the high masses of the giant planets in known gamma Cep-like binaries, which require a large mass reservoir for their formation. We show that for these massive disks, disk gravity is dominant over the gravity of the binary companion at the location of the observed planets. Therefore, planetesimal growth is highly sensitive to disk properties. The requirement of low disk eccentricity is in line with the recent hydrodynamic simulations that tend to show gaseous disks in eccentric binaries developing very low eccentricity, at the level of a few percent. A massive purely axisymmetric disk makes for a friendlier environment for planetesimal growth by driving rapid apsidal precession of planetesimals, and averaging out the eccentricity excitation from the binary companion. When the protoplanetary disk is eccentric we find that the most favorable conditions for planetesimal growth emerge when the disk is non-precessing and is apsidally aligned with the orbit of the binary.
Modeling and Testing Dark Energy and Gravity with Galaxy Cluster Data
NASA Astrophysics Data System (ADS)
Rapetti, David; Cataneo, Matteo; Heneka, Caroline; Mantz, Adam; Allen, Steven W.; Von Der Linden, Anja; Schmidt, Fabian; Lombriser, Lucas; Li, Baojiu; Applegate, Douglas; Kelly, Patrick; Morris, Glenn
2018-06-01
The abundance of galaxy clusters is a powerful probe to constrain the properties of dark energy and gravity at large scales. We employed a self-consistent analysis that includes survey, observable-mass scaling relations and weak gravitational lensing data to obtain constraints on f(R) gravity, which are an order of magnitude tighter than the best previously achieved, as well as on cold dark energy of negligible sound speed. The latter implies clustering of the dark energy fluid at all scales, allowing us to measure the effects of dark energy perturbations at cluster scales. For this study, we recalibrated the halo mass function using the following non-linear characteristic quantities: the spherical collapse threshold, the virial overdensity and an additional mass contribution for cold dark energy. We also presented a new modeling of the f(R) gravity halo mass function that incorporates novel corrections to capture key non-linear effects of the Chameleon screening mechanism, as found in high resolution N-body simulations. All these results permit us to predict, as I will also exemplify, and eventually obtain the next generation of cluster constraints on such models, and provide us with frameworks that can also be applied to other proposed dark energy and modified gravity models using cluster abundance observations.
An exact solution for a rotating black hole in modified gravity
NASA Astrophysics Data System (ADS)
Filippini, Francesco; Tasinato, Gianmassimo
2018-01-01
Exact solutions describing rotating black holes can offer important tests for alternative theories of gravity, motivated by the dark energy and dark matter problems. We present an analytic rotating black hole solution for a class of vector-tensor theories of modified gravity, valid for arbitrary values of the rotation parameter. The new configuration is characterised by parametrically large deviations from the Kerr-Newman geometry, controlled by non-minimal couplings between vectors and gravity. It has an oblate horizon in Boyer-Lindquist coordinates, and it can rotate more rapidly and have a larger ergosphere than black holes in General Relativity (GR) with the same asymptotic properties. We analytically investigate the features of the innermost stable circular orbits for massive objects on the equatorial plane, and show that stable orbits lie further away from the black hole horizon with respect to rotating black holes in GR. We also comment on possible applications of our findings for the extraction of rotational energy from the black hole.
Topologically massive gravity and Ricci-Cotton flow
NASA Astrophysics Data System (ADS)
Lashkari, Nima; Maloney, Alexander
2011-05-01
We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.
Recent developments in bimetric theory
NASA Astrophysics Data System (ADS)
Schmidt-May, Angnis; von Strauss, Mikael
2016-05-01
This review is dedicated to recent progress in the field of classical, interacting, massive spin-2 theories, with a focus on ghost-free bimetric theory. We will outline its history and its development as a nontrivial extension and generalisation of nonlinear massive gravity. We present a detailed discussion of the consistency proofs of both theories, before we review Einstein solutions to the bimetric equations of motion in vacuum as well as the resulting mass spectrum. We introduce couplings to matter and then discuss the general relativity and massive gravity limits of bimetric theory, which correspond to decoupling the massive or the massless spin-2 field from the matter sector, respectively. More general classical solutions are reviewed and the present status of bimetric cosmology is summarised. An interesting corner in the bimetric parameter space which could potentially give rise to a nonlinear theory for partially massless spin-2 fields is also discussed. Relations to higher-curvature theories of gravity are explained and finally we give an overview of possible extensions of the theory and review its formulation in terms of vielbeins.
NASA Astrophysics Data System (ADS)
Aceña, Andrés; López, Ericson; Llerena, Mario
2018-03-01
We study the existence and stability of isoperimetric surfaces in a family of rotating black holes in new massive gravity. We show that the stability of such surfaces is determined by the sign of the hair parameter. We use the isoperimetric surfaces to find a geometric inequality between the area and the angular momentum of the black hole, conjecturing geometric inequalities for more general black holes.
Graviton 1-loop partition function for 3-dimensional massive gravity
NASA Astrophysics Data System (ADS)
Gaberdiel, Matthias R.; Grumiller, Daniel; Vassilevich, Dmitri
2010-11-01
Thegraviton1-loop partition function in Euclidean topologically massivegravity (TMG) is calculated using heat kernel techniques. The partition function does not factorize holomorphically, and at the chiral point it has the structure expected from a logarithmic conformal field theory. This gives strong evidence for the proposal that the dual conformal field theory to TMG at the chiral point is indeed logarithmic. We also generalize our results to new massive gravity.
No hair theorem in quasi-dilaton massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, De-Jun; Zhou, Shuang-Yong
We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter ormore » de Sitter asymptotics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less
Anomalies and Hawking fluxes from the black holes of topologically massive gravity
NASA Astrophysics Data System (ADS)
Porfyriadis, Achilleas P.
2009-05-01
The anomaly cancelation method proposed by Wilczek et al. is applied to the black holes of topologically massive gravity (TMG) and topologically massive gravito-electrodynamics (TMGE). Thus the Hawking temperature and fluxes of the ACL and ACGL black holes are found. The Hawking temperatures obtained agree with the surface gravity formula. Both black holes are rotating and this gives rise to appropriate terms in the effective U (1) gauge field of the reduced (1 + 1)-dimensional theory. It is found that the terms in this U (1) gauge field correspond exactly to the correct angular velocities on the horizon of both black holes as well as the correct electrostatic potential of the ACGL black hole. So the results for the Hawking fluxes derived here from the anomaly cancelation method, are in complete agreement with the ones obtained from integrating the Planck distribution.
No hair theorem in quasi-dilaton massive gravity
Wu, De-Jun; Zhou, Shuang-Yong
2016-04-11
We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter ormore » de Sitter asymptotics. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less
Causality constraints on corrections to the graviton three-point coupling
Camanho, Xián O.; Edelstein, José D.; Maldacena, Juan; ...
2016-02-03
In this paper, we consider higher derivative corrections to the graviton three-point coupling within a weakly coupled theory of gravity. Lorentz invariance allows further structures beyond the one present in the Einstein theory. We argue that these are constrained by causality. We devise a thought experiment involving a high energy scattering process which leads to causality violation if the graviton three-point vertex contains the additional structures. This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But, it can be fixed by adding an in finite tower of extra massive particles with higher spins, J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients |more » $$\\frac{a-c}{c}$$|≲ $$\\frac{1}{2}$$ $${^Δ}_{gap}$$ in terms of Δgap, the dimension of the lightest single trace operator with spin J > 2. Lastly, for inflation, or de Sitter-like solutions, it indicates the existence of massive higher spin particles if the gravity wave non-gaussianity deviates significantly from the one computed in the Einstein theory.« less
Gravitational effective action at second order in curvature and gravitational waves
NASA Astrophysics Data System (ADS)
Calmet, Xavier; Capozziello, Salvatore; Pryer, Daniel
2017-09-01
We consider the full effective theory for quantum gravity at second order in curvature including non-local terms. We show that the theory contains two new degrees of freedom beyond the massless graviton: namely a massive spin-2 ghost and a massive scalar field. Furthermore, we show that it is impossible to fine-tune the parameters of the effective action to eliminate completely the classical spin-2 ghost because of the non-local terms in the effective action. Being a classical field, it is not clear anyway that this ghost is problematic. It simply implies a repulsive contribution to Newton's potential. We then consider how to extract the parameters of the effective action and show that it is possible to measure, at least in principle, the parameters of the local terms independently of each other using a combination of observations of gravitational waves and measurements performed by pendulum type experiments searching for deviations of Newton's potential.
NASA Astrophysics Data System (ADS)
Gonzalez-Martin, S.; Martin, C. P.
2018-01-01
We work out the one-loop and order κ2 mphi2 UV divergent contributions, coming from Unimodular Gravity and General Relativity, to the S matrix element of the scattering process phi + phi→ phi + phi in a λ phi4 theory with mass mphi. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contributions in Dimensional Regularization. This seems to be at odds with the known result that in a multiplicative MS dimensional regularization scheme the General Relativity corrections, in the de Donder gauge, to the beta function, βλ, of the λ coupling do not vanish, whereas the Unimodular Gravity corrections, in a certain gauge, do vanish. Actually, by comparing the UV divergent contributions calculated in this paper with those which give rise to the non-vanishing gravitational corrections to βλ, one readily concludes that the UV divergent contributions that yield the just mentioned non-vanishing gravitational corrections to βλ do not contribute to the UV divergent behaviour of the S matrix element of phi + phi→ phi + phi. This shows that any physical consequence—such as the existence of asymptotic freedom due to gravitational interactions—drawn from the value of βλ is not physically meaningful.
The coupling to matter in massive, bi- and multi-gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noller, Johannes; Melville, Scott, E-mail: noller@physics.ox.ac.uk, E-mail: scott.melville@queens.ox.ac.uk
2015-01-01
In this paper we construct a family of ways in which matter can couple to one or more 'metrics'/spin-2 fields in the vielbein formulation. We do so subject to requiring the weak equivalence principle and the absence of ghosts from pure spin-2 interactions generated by the matter action. Results are presented for Massive, Bi- and Multi-Gravity theories and we give explicit expressions for the effective matter metric in all of these cases.
Horndeski extension of the minimal theory of quasidilaton massive gravity
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Mukohyama, Shinji; Oliosi, Michele
2017-11-01
The minimal theory of quasidilaton massive gravity allows for a stable self-accelerating de Sitter solution in a wide range of parameters. On the other hand, in order for the theory to be compatible with local gravity tests, the fifth force due to the quasidilaton scalar needs to be screened at local scales. The present paper thus extends the theory by inclusion of a cubic Horndeski term in a way that (i) respects the quasidilaton global symmetry, that (ii) maintains the physical degrees of freedom in the theory being 3, that (iii) can accommodate the Vainshtein screening mechanism, and that (iv) still allows for a stable self-accelerating de Sitter solution. After adding the Horndeski term (and a k -essence type nonlinear kinetic term as well) to the precursor action, we switch to the Hamiltonian language and find a complete set of independent constraints. We then construct the minimal theory with 3 physical degrees of freedom by carefully adding a pair of constraints to the total Hamiltonian of the precursor theory. Switching back to the Lagrangian language, we study cosmological solutions and their stability in the minimal theory. In particular, we show that a self-accelerating de Sitter solution is stable for a wide range of parameters. Furthermore, as in the minimal theory of massive gravity, the propagation speed of the massive gravitational waves in the high momentum limit precisely agrees with the speed of light.
Polarization of Young Brown Dwarfs
NASA Astrophysics Data System (ADS)
Manjavacas, Elena; Miles-Páez, Paulo A.; Zapatero-Osorio, Maria Rosa; Goldman, Bertrand; Buenzli, Esther; Henning, Thomas; Pallé, Enric
2016-08-01
Linear polarization due to scattering processes can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases with the degree of oblateness, which is inverse to the surface gravity.We aimed to measure optical linear polarization from a sample of six young brown dwarfs, with spectral types between M6 to L2, and cataloged previously as objects with low gravity using spectroscopy. These targets are believed to have dusty atmospheres as a consequence of their low gravity, therefore linearly polarized light is expected from these objects.Linear polarimetric data were collected in I and R-band using CAFOS at the 2.2m telescope in Calar Alto Observatory.We obtained results of linear polarization in the I-band compatible with non polarization for all the objects, and similar results for the polarization degree in the R-band for all objects with the exception of 2M0422. For this object we find a linear polarization degree of 0.81+-0.18%. 2M0422 is 10 deg to the south of the Taurus star-forming region, thus, we suspect that its polarization is caused by the dust in the cloud in which 2M0422 might be embedded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domènech, Guillem; Hiramatsu, Takashi; Lin, Chunshan
We consider a cosmological model in which the tensor mode becomes massive during inflation, and study the Cosmic Microwave Background (CMB) temperature and polarization bispectra arising from the mixing between the scalar mode and the massive tensor mode during inflation. The model assumes the existence of a preferred spatial frame during inflation. The local Lorentz invariance is already broken in cosmology due to the existence of a preferred rest frame. The existence of a preferred spatial frame further breaks the remaining local SO(3) invariance and in particular gives rise to a mass in the tensor mode. At linear perturbation level,more » we minimize our model so that the vector mode remains non-dynamical, while the scalar mode is the same as the one in single-field slow-roll inflation. At non-linear perturbation level, this inflationary massive graviton phase leads to a sizeable scalar-scalar-tensor coupling, much greater than the scalar-scalar-scalar one, as opposed to the conventional case. This scalar-scalar-tensor interaction imprints a scale dependent feature in the CMB temperature and polarization bispectra. Very intriguingly, we find a surprizing similarity between the predicted scale dependence and the scale-dependent non-Gaussianities at low multipoles hinted in the WMAP and Planck results.« less
MarsSedEx I: feasibility test for sediment settling experiments under Martian gravity
NASA Astrophysics Data System (ADS)
Kuhn, Nikolaus J.
2013-04-01
Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases. However, StokeśLaw, the common way of estimating the terminal velocity of a particle moving in a gas of liquid assumes a linear relationship between terminal velocity and gravity. For terrestrial applications, this "error" is not relevant, but it may strongly influence the terminal velocity achieved by settling particles in the Martian atmosphere or water bodies. In principle, the effect of gravity on settling velocity can also be achieved by reducing the difference in density between particle and gas or liquid. However, the use of analogues simulating the lower gravity on Mars on Earth is difficult because the properties and interaction of the liquids and materials differ from those of water and sediment, .i.e. the viscosity of the liquid or the interaction between charges surfaces and liquid molecules. An alternative for measuring the actual settling velocities of particles under Martian gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling tests within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation we report on the feasibility of such a test based on an experiment conducted during a reduced gravity flight in November 2012.
Gravity localization in sine-Gordon braneworlds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz, W.T., E-mail: wilamicruz@gmail.com; Maluf, R.V., E-mail: r.v.maluf@fisica.ufc.br; Sousa, L.J.S., E-mail: luisjose@fisica.ufc.br
2016-01-15
In this work we study two types of five-dimensional braneworld models given by sine-Gordon potentials. In both scenarios, the thick brane is generated by a real scalar field coupled to gravity. We focus our investigation on the localization of graviton field and the behaviour of the massive spectrum. In particular, we analyse the localization of massive modes by means of a relative probability method in a Quantum Mechanics context. Initially, considering a scalar field sine-Gordon potential, we find a localized state to the graviton at zero mode. However, when we consider a double sine-Gordon potential, the brane structure is changedmore » allowing the existence of massive resonant states. The new results show how the existence of an internal structure can aid in the emergence of massive resonant modes on the brane.« less
Physics from geometry: Non-Kahler compactifications, black rings anddS/CFT
NASA Astrophysics Data System (ADS)
Cyrier, Michelle
The spectrum that arises in four dimensions from compactification of ten dimensional string theory onto six dimensional manifolds is determined entirely by the geometry of the compactification manifold. The massless spectrum for compactifications on Calabi-Yau threefolds, which are Kahler and have complex structure, is well understood. In chapter 2 of this thesis, We study the compactification of heterotic string theory on manifolds that are non-Kahler. Such manifolds arise as a solution for compactifications of heterotic string theory with nonzero H-flux. We begin the study of the massless spectrum arising from compactification using this construction by counting zero modes of the linearized equations of motion for the gaugino in the supergravity approximation. We rephrase the question in terms of a cohomology problem and show that for a trivial gauge bundle, this cohomology reduces to the Dolbeault cohomology of the 3-fold, which we then compute. Another check of string theory is to study the entropy of black holes made in string theory. In Chapter 3, We review the microstate counting of four dimensional black holes made from M theory. We then describe a new solution in five dimensions, the supersymmetric black ring, and describe its microscopic entropy using a similar counting. These agree with the semi-classical Bekenstein-Hawking entropy for these black holes. Finally, one powerful tool for quantum gravity is the holographic duality of string theory in an Anti de Sitter background and a theory living on its conformal boundary. Strominger conjectured a similar duality between quantum gravity in a de Sitter background and the corresponding theory on its boundary. In chapter 4 we examine issues with different representations of the conformal field theory on the boundary for a massive quantum field theory living in the bulk and try to write down a sensible CFT.
Stellar equilibrium configurations of white dwarfs in the f( R, T) gravity
NASA Astrophysics Data System (ADS)
Carvalho, G. A.; Lobato, R. V.; Moraes, P. H. R. S.; Arbañil, José D. V.; Otoniel, E.; Marinho, R. M.; Malheiro, M.
2017-12-01
In this work we investigate the equilibrium configurations of white dwarfs in a modified gravity theory, namely, f( R, T) gravity, for which R and T stand for the Ricci scalar and trace of the energy-momentum tensor, respectively. Considering the functional form f(R,T)=R+2λ T, with λ being a constant, we obtain the hydrostatic equilibrium equation for the theory. Some physical properties of white dwarfs, such as: mass, radius, pressure and energy density, as well as their dependence on the parameter λ are derived. More massive and larger white dwarfs are found for negative values of λ when it decreases. The equilibrium configurations predict a maximum mass limit for white dwarfs slightly above the Chandrasekhar limit, with larger radii and lower central densities when compared to standard gravity outcomes. The most important effect of f( R, T) theory for massive white dwarfs is the increase of the radius in comparison with GR and also f( R) results. By comparing our results with some observational data of massive white dwarfs we also find a lower limit for λ , namely, λ >- 3× 10^{-4}.
Next Generation Robots for STEM Education andResearch at Huston Tillotson University
2017-11-10
dynamics through the following command: roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion : After...understood the system’s natural dynamics. roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion ...is created using the following command: roslaunch mtb_lab6_feedback_linearization gravity_inversion.launch Gravity inversion is just one
Gauge/Gravity correspondence and black hole attractors in various dimensions
NASA Astrophysics Data System (ADS)
Li, Wei
This thesis investigates several topics on Gauge/Gravity correspondence and black hole attractors in various dimensions. The first chapter contains a brief review and summary of main results. Chapters 2 and 3 aim at a microscopic description of black objects in five dimensions. Chapter 2 studies higher-derivative corrections for 5D black rings and spinning black holes. It shows that certain R 2 terms found in Calabi-Yau compactifications of M-theory yield macroscopic corrections to the entropies that match the microscopic corrections. Chapter 3 constructs probe brane configurations that preserve half of the enhanced near-horizon supersymmetry of 5D spinning black holes, whose near-horizon geometry is squashed AdS2 x S 3. There are supersymmetric zero-brane probes stabilized by orbital angular momentum on S3 and one-brane probes with momentum and winding around a U(1)L x U(1)R torus in S3. Chapter 4 constructs and analyzes generic single-centered and multi-centered black hole attractor solutions in various four-dimensional models which, after Kaluza-Klein reduction, admit a description in terms of 3D gravity coupled to a sigma model whose target space is symmetric coset space. The solutions correspond to certain nilpotent generators of the coset algebra. The non-BPS black hole attractors are found to be drastically different from their BPS counterparts. Chapter 5 examines three-dimensional topologically massive gravity with negative cosmological constant in asymptotically AdS 3 spacetimes. It proves that the theory is unitary and stable only at a special value of Chern-Simons coupling, where the theory becomes chiral. This suggests the existence of a stable, consistent quantum gravity theory at the chiral point which is dual to a holomorphic boundary CFT 2. Finally, Chapter 6 studies the two-dimensional N = 1 critical string theory with a linear dilaton background. It constructs time-dependent boundary state solutions that correspond to D0-branes falling toward the Liouville wall. It also shows that there exist four types of stable, falling D0-branes (two branes and two anti-branes) in Type 0A projection and two unstable ones in Type 0B projection.
Prospects for Probing Strong Gravity with a Pulsar-Black Hole System
NASA Technical Reports Server (NTRS)
Wex, N.; Liu, K.; Eatough, R. P.; Kramer, M.; Cordes, J. M.; Lazio, T. J. W.
2012-01-01
The discovery of a pulsar (PSR) in orbit around a black hole (BH) is expected to provide a superb new probe of relativistic gravity and BH properties. Apart from a precise mass measurement for the BH, one could expect a clean verification of the dragging of space-time caused by the BH spin. In order to measure the quadrupole moment of the BH for testing the no-hair theorem of general relativity (GR), one has to hope for a sufficiently massive BH. In this respect, a PSR orbiting the super-massive BH in the center of our Galaxy would be the ultimate laboratory for gravity tests with PSRs. But even for gravity theories that predict the same properties for BHs as GR, a PSR-BH system would constitute an excellent test system, due to the high grade of asymmetry in the strong field properties of these two components. Here we highlight some of the potential gravity tests that one could expect from different PSR-BH systems.
Killing vector fields in three dimensions: a method to solve massive gravity field equations
NASA Astrophysics Data System (ADS)
Gürses, Metin
2010-10-01
Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.
Cosmology in massive gravity with effective composite metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heisenberg, Lavinia; Refregier, Alexandre, E-mail: lavinia.heisenberg@eth-its.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch
This paper is dedicated to scrutinizing the cosmology in massive gravity. A matter field of the dark sector is coupled to an effective composite metric while a standard matter field couples to the dynamical metric in the usual way. For this purpose, we study the dynamical system of cosmological solutions by using phase analysis, which provides an overview of the class of cosmological solutions in this setup. This also permits us to study the critical points of the cosmological equations together with their stability. We show the presence of stable attractor de Sitter critical points relevant to the late-time cosmicmore » acceleration. Furthermore, we study the tensor, vector and scalar perturbations in the presence of standard matter fields and obtain the conditions for the absence of ghost and gradient instabilities. Hence, massive gravity in the presence of the effective composite metric can accommodate interesting dark energy phenomenology, that can be observationally distinguished from the standard model according to the expansion history and cosmic growth.« less
Medium generated gap in gravity and a 3D gauge theory
NASA Astrophysics Data System (ADS)
Gabadadze, Gregory; Older, Daniel
2018-05-01
It is well known that a physical medium that sets a Lorentz frame generates a Lorentz-breaking gap for a graviton. We examine such generated "mass" terms in the presence of a fluid medium whose ground state spontaneously breaks spatial translation invariance in d =D +1 spacetime dimensions, and for a solid in D =2 spatial dimensions. By requiring energy positivity and subluminal propagation, certain constraints are placed on the equation of state of the medium. In the case of D =2 spatial dimensions, classical gravity can be recast as a Chern-Simons gauge theory, and motivated by this we recast the massive theory of gravity in AdS3 as a massive Chern-Simons gauge theory with an unusual mass term. We find that in the flat space limit the Chern-Simons theory has a novel gauge invariance that mixes the kinetic and mass terms, and enables the massive theory with a noncompact internal group to be free of ghosts and tachyons.
Hierarchical clustering in chameleon f(R) gravity
NASA Astrophysics Data System (ADS)
Hellwing, Wojciech A.; Li, Baojiu; Frenk, Carlos S.; Cole, Shaun
2013-11-01
We use a suite of high-resolution state-of-the-art N-body dark matter simulations of chameleon f(R) gravity to study the higher order volume-averaged correlation functions overline{ξ _n} together with the hierarchical nth-order correlation amplitudes S_n=overline{ξ }_n/overline{ξ }_2^{n-1} and density distribution functions (PDF). We show that under the non-linear modifications of gravity the hierarchical scaling of the reduced cumulants is preserved. This is however characterized by significant changes in the values of both overline{ξ _n} and Sn and their scale dependence with respect to General Relativity gravity (GR). In addition, we measure a significant increase of the non-linear σ8 parameter reaching 14, 5 and 0.5 per cent in excess of the GR value for the three flavours of our f(R) models. We further note that the values of the reduced cumulants up to order n = 9 are significantly increased in f(R) gravity for all our models at small scales R ≲ 30 h-1 Mpc. In contrast, the values of the hierarchical amplitudes, Sn, are smaller in f(R) indicating that the modified gravity density distribution functions are deviating from the GR case. Furthermore, we find that the redshift evolution of relative deviations of the f(R) hierarchical correlation amplitudes is fastest at high and moderate redshifts 1 ≤ z ≤ 4. The growth of these deviations significantly slows down in the low-redshift universe. We also compute the PDFs and show that for scales below ˜20 h-1 Mpc, they are significantly shifted in f(R) gravity towards the low densities. Finally, we discuss the implications of our theoretical predictions for measurements of the hierarchical clustering in galaxy redshift surveys, including the important problems of the galaxy biasing and redshift space distortions.
Interacting spin-2 fields in the Stückelberg picture
NASA Astrophysics Data System (ADS)
Noller, Johannes; Scargill, James H. C.; Ferreira, Pedro G.
2014-02-01
We revisit and extend the `Effective field theory for massive gravitons' constructed by Arkani-Hamed, Georgi and Schwartz in the light of recent progress in constructing ghost-free theories with multiple interacting spin-2 fields. We show that there exist several dual ways of restoring gauge invariance in such multi-gravity theories, find a generalised Fierz-Pauli tuning condition relevant in this context and highlight subtleties in demixing tensor and scalar modes. The generic multi-gravity feature of scalar mixing and its consequences for higher order interactions are discussed. In particular we show how the decoupling limit is qualitatively changed in theories of interacting spin-2 fields. We relate this to dRGT (de Rham, Gabadadze, Tolley) massive gravity, Hassan-Rosen bigravity and the multi-gravity constructions by Hinterbichler and Rosen. As an additional application we show that EBI (Eddington-Born-Infeld) bigravity and higher order generalisations thereof possess ghost-like instabilities.
Stellar dynamics around a massive black hole - II. Resonant relaxation
NASA Astrophysics Data System (ADS)
Sridhar, S.; Touma, Jihad R.
2016-06-01
We present a first-principles theory of resonant relaxation (RR) of a low-mass stellar system orbiting a more massive black hole (MBH). We first extend the kinetic theory of Gilbert to include the Keplerian field of a black hole of mass M•. Specializing to a Keplerian stellar system of mass M ≪ M•, we use the orbit-averaging method of Sridhar & Touma to derive a kinetic equation for RR. This describes the collisional evolution of a system of N ≫ 1 Gaussian rings in a reduced 5-dim space, under the combined actions of self-gravity, 1 post-Newtonian (PN) and 1.5 PN relativistic effects of the MBH and an arbitrary external potential. In general geometries, RR is driven by both apsidal and nodal resonances, so the distinction between scalar RR and vector RR disappears. The system passes through a sequence of quasi-steady secular collisionless equilibria, driven by irreversible two-ring correlations that accrue through gravitational interactions, both direct and collective. This correlation function is related to a `wake function', which is the linear response of the system to the perturbation of a chosen ring. The wake function is easier to appreciate, and satisfies a simpler equation, than the correlation function. We discuss general implications for the interplay of secular dynamics and non-equilibrium statistical mechanics in the evolution of Keplerian stellar systems towards secular thermodynamic equilibria, and set the stage for applications to the RR of axisymmetric discs in Paper III.
NASA Astrophysics Data System (ADS)
Preaux, S. A.; Crump, B.; Damiani, T.
2015-12-01
The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project of NOAA's National Geodetic Survey has been collecting airborne gravity data since 2008 using 3 TAGS gravimeters, S-137, S-160 and S-161 (Table 1). The 38 surveys contain 1697 gravimeter calibration readings taken when the aircraft is parked on the ground before and after each flight, called still readings. This dataset is uniquely suited to examine the drift characteristics of these instruments. This study is broken into 3 parts: re-computation of individual still reading values; examination of drift rates during flights and surveys; and examination of long term drift rates. Re-computation of still readings was accomplished by isolating the least-noisy 10-minute segment of gravity data while the aircraft was parked and the beam unclamped. This automated method worked in most cases, but a small number of readings required further examination. This method improved the consistency of pre- and post-flight still readings as compared to those recorded in the field. Preliminary results indicate that the drift rate for these 3 instruments during a typical survey period is both small (95% smaller than 0.35 mGal/day) and linear. The average drift rate during a survey is -0.11 mGal/day with a standard deviation of 0.12 mGal/day (Figure 1). Still readings for most surveys were well represented by a linear trend, but a small number have curvature or discontinuities. The nature and cause of this non-linearity will be investigated. Early results show a long term linear drift rate for these 3 gravimeters between 0.01 and 0.04 mGal/day. There also appears to be significant non-linear variability. Comparing the 1.5-2 year time series of still readings from S-160 and S-161 with the 7.5 year time series for S-137, indicates that data from more than two years are needed to accurately characterize the long-term behavior. Instrumentation and processing causes for this non-linearity will be explored. Table1. Number of surveys and still reading and duration of use for each Gravimeter Meter # of surveys # still readings Duration of use S-137 27 1205 7.5 years S-160 4 288 1.5 years S-161 7 204 2 years
NASA Astrophysics Data System (ADS)
Hu, Ya-Peng; Pan, Feng; Wu, Xin-Meng
2017-09-01
It is well known that the black hole can have temperature and radiate the particles with black body spectrum, i.e. Hawking radiation. Therefore, if the black hole is surrounded by an isolated box, there is a thermal equilibrium between the black hole and radiation gas. A simple case considering the thermal equilibrium between the Schwarzschild black hole and radiation gas in an isolated box has been well investigated previously in detail, i.e. taking the conservation of energy and principle of maximal entropy for the isolated system into account. In this paper, following the above spirit, the effects of massive graviton on the thermal equilibrium will be investigated. For the gravity with massive graviton, we will use the de Rham-Gabadadze-Tolley (dRGT) massive gravity which has been proven to be ghost free. Because the graviton mass depends on two parameters in the dRGT massive gravity, here we just investigate two simple cases related to the two parameters, respectively. Our results show that in the first case the massive graviton can suppress or increase the condensation of black hole in the radiation gas although the T-E diagram is similar as the Schwarzschild black hole case. For the second case, a new T-E diagram has been obtained. Moreover, an interesting and important prediction is that the condensation of black hole just increases from the zero radius of horizon in this case, which is very different from the Schwarzschild black hole case.
Covariant constraints in ghost free massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deffayet, C.; Mourad, J.; Zahariade, G., E-mail: deffayet@iap.fr, E-mail: mourad@apc.univ-paris7.fr, E-mail: zahariad@apc.univ-paris7.fr
2013-01-01
We show that the reformulation of the de Rham-Gabadadze-Tolley massive gravity theory using vielbeins leads to a very simple and covariant way to count constraints, and hence degrees of freedom. Our method singles out a subset of theories, in the de Rham-Gabadadze-Tolley family, where an extra constraint, needed to eliminate the Boulware Deser ghost, is easily seen to appear. As a side result, we also introduce a new method, different from the Stuckelberg trick, to extract kinetic terms for the polarizations propagating in addition to those of the massless graviton.
NASA Astrophysics Data System (ADS)
Alberte, Lasma; Ammon, Martin; Jiménez-Alba, Amadeo; Baggioli, Matteo; Pujolàs, Oriol
2018-04-01
We present a class of holographic massive gravity models that realize a spontaneous breaking of translational symmetry—they exhibit transverse phonon modes whose speed relates to the elastic shear modulus according to elasticity theory. Massive gravity theories thus emerge as versatile and convenient theories to model generic types of translational symmetry breaking: explicit, spontaneous, and a mixture of both. The nature of the breaking is encoded in the radial dependence of the graviton mass. As an application of the model, we compute the temperature dependence of the shear modulus and find that it features a glasslike melting transition.
Stochastic modification of the Schrödinger-Newton equation
NASA Astrophysics Data System (ADS)
Bera, Sayantani; Mohan, Ravi; Singh, Tejinder P.
2015-07-01
The Schrödinger-Newton (SN) equation describes the effect of self-gravity on the evolution of a quantum system, and it has been proposed that gravitationally induced decoherence drives the system to one of the stationary solutions of the SN equation. However, the equation itself lacks a decoherence mechanism, because it does not possess any stochastic feature. In the present work we derive a stochastic modification of the Schrödinger-Newton equation, starting from the Einstein-Langevin equation in the theory of stochastic semiclassical gravity. We specialize this equation to the case of a single massive point particle, and by using Karolyhazy's phase variance method, we derive the Diósi-Penrose criterion for the decoherence time. We obtain a (nonlinear) master equation corresponding to this stochastic SN equation. This equation is, however, linear at the level of the approximation we use to prove decoherence; hence, the no-signaling requirement is met. Lastly, we use physical arguments to obtain expressions for the decoherence length of extended objects.
NASA Astrophysics Data System (ADS)
Vacaru, Sergiu I.
2015-04-01
We reinvestigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and -modified gravity using the anholonomic frame deformation method. New classes of locally anisotropic and (in-) homogeneous cosmological metrics are constructed with open and closed spatial geometries. By resorting to such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass, and other effective sources modeling nonlinear gravitational and matter field interactions with polarization of physical constants and deformations of metrics, which may explain dark energy and dark matter effects. However, we argue that it is not always necessary to modify gravity if we consider the effective generalized Einstein equations with nontrivial vacuum and/or non-minimal coupling with matter. Indeed, we state certain conditions when such configurations mimic interesting solutions in general relativity and modifications, for instance, when we can extract the general Painlevé-Gullstrand and FLRW metrics. In a more general context, we elaborate on a reconstruction procedure for off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes. Finally, open issues and further perspectives are discussed.
The role of disk self-gravity on gap formation of the HL Tau proto-planetary disk
Li, Shengtai; Li, Hui
2016-05-31
Here, we use extensive global hydrodynamic disk gas+dust simulations with embedded planets to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). Since the HL Tau is a relatively massive disk, we find the disk self-gravity (DSG) plays an important role in the gap formation induced by the planets. Our simulation results demonstrate that DSG is necessary in explaining of the dust ring and gap in HL Tau disk. The comparison of simulation results shows that the dust rings and gap structures are more evident when the fullymore » 2D DSG (non-axisymmetric components are included) is used than if 1D axisymmetric DSG (only the axisymetric component is included) is used, or the disk self-gravity is not considered. We also find that the couple dust+gas+planet simulations are required because the gap and ring structure is different between dust and gas surface density.« less
Mesospheric Non-Migrating Tides Generated With Planetary Waves: II Influence of Gravity Waves
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.
2003-01-01
We demonstrated that, in our model, non-linear interactions between planetary waves (PW) and migrating tides could generate in the upper mesosphere non-migrating tides with amplitudes comparable to those observed. The Numerical Spectral Model (NSM) we employ incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GW), which affect in numerous ways the dynamics of the mesosphere. The latitudinal (seasonal) reversals in the temperature and zonal circulation, which are largely caused by GWs (Lindzen, 198l), filter the PWs and contribute to the instabilities that generate the PWs. The PWs in turn are amplified by the momentum deposition of upward propagating GWs, as are the migrating tides. The GWs thus affect significantly the migrating tides and PWs, the building blocks of non-migrating tides. In the present paper, we demonstrate that GW filtering also contributes to the non-linear coupling between PWs and tides. Two computer experiments are presented to make this point. In one, we simply turn off the GW source to show the effect. In the second case, we demonstrate the effect by selectively suppressing the momentum source for the m = 0 non-migrating tides.
A string theory which isn't about strings
NASA Astrophysics Data System (ADS)
Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.
2017-11-01
Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.
Disformal theories of gravity: from the solar system to cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakstein, Jeremy, E-mail: j.a.sakstein@damtp.cam.ac.uk
This paper is concerned with theories of gravity that contain a scalar coupled both conformally and disformally to matter through the metric. By systematically deriving the non-relativistic limit, it is shown that no new non-linear screening mechanisms are present beyond the Vainshtein mechanism and chameleon-like screening. If one includes the cosmological expansion of the universe, disformal effects that are usually taken to be absent can be present in the solar system. When the conformal factor is absent, fifth-forces can be screened on all scales when the cosmological field is slowly-rolling. We investigate the cosmology of these models and use localmore » tests of gravity to place new constraints on the disformal coupling and find M ∼> O(eV), which is not competitive with laboratory tests. Finally, we discuss the future prospects for testing these theories and the implications for other theories of modified gravity. In particular, the Vainshtein radius of solar system objects can be altered from the static prediction when cosmological time-derivatives are non-negligible.« less
Holographic Rényi entropy in AdS3/LCFT2 correspondence
NASA Astrophysics Data System (ADS)
Chen, Bin; Song, Feng-yan; Zhang, Jia-ju
2014-03-01
The recent study in AdS3/CFT2 correspondence shows that the tree level contribution and 1-loop correction of holographic Rényi entanglement entropy (HRE) exactly match the direct CFT computation in the large central charge limit. This allows the Rényi entanglement entropy to be a new window to study the AdS/CFT correspondence. In this paper we generalize the study of Rényi entanglement entropy in pure AdS3 gravity to the massive gravity theories at the critical points. For the cosmological topological massive gravity (CTMG), the dual conformal field theory (CFT) could be a chiral conformal field theory or a logarithmic conformal field theory (LCFT), depending on the asymptotic boundary conditions imposed. In both cases, by studying the short interval expansion of the Rényi entanglement entropy of two disjoint intervals with small cross ratio x, we find that the classical and 1-loop HRE are in exact match with the CFT results, up to order x 6. To this order, the difference between the massless graviton and logarithmic mode can be seen clearly. Moreover, for the cosmological new massive gravity (CNMG) at critical point, which could be dual to a logarithmic CFT as well, we find the similar agreement in the CNMG/LCFT correspondence. Furthermore we read the 2-loop correction of graviton and logarithmic mode to HRE from CFT computation. It has distinct feature from the one in pure AdS3 gravity.
Kennedy, Jeffrey R.; Ferre, Ty P.A.
2015-01-01
The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively high groundwater storage. The accommodation for spatially varying gravity change would be most important for long-duration campaigns, campaigns with very rapid changes in gravity and (or) campaigns where especially precise observed relative-gravity differences are used in the network adjustment.
Curved non-relativistic spacetimes, Newtonian gravitation and massive matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geracie, Michael, E-mail: mgeracie@uchicago.edu; Prabhu, Kartik, E-mail: kartikp@uchicago.edu; Roberts, Matthew M., E-mail: matthewroberts@uchicago.edu
2015-10-15
There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativistic symmetries which supports massive matter fields. In particular, one cannot impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper, we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge fieldmore » which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [M. Geracie et al., e-print http://arxiv.org/abs/1503.02680 ], we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.« less
Inconsistency of topologically massive hypergravity
NASA Technical Reports Server (NTRS)
Aragone, C.; Deser, S.
1985-01-01
The coupled topologically massive spin-5/2 gravity system in D = 3 dimensions whose kinematics represents dynamical propagating gauge invariant massive spin-5/2 and spin-2 excitations, is shown to be inconsistent, or equivalently, not locally hypersymmetric. In contrast to D = 4, the local constraints on the system arising from failure of the fermionic Bianchi identities do not involve the 'highest spin' components of the field, but rather the auxiliary spinor required to construct a consistent massive model.
NASA Astrophysics Data System (ADS)
Cesarone, R. J.
An account is given of the method by which the 'energy gain' accruing to a spacecraft as a result of its 'gravity-assist', parabolic-trajectory flyby of a massive body, such as a planet. The procedure begins with the solution of the two-body portion of the problem, and the results thus obtained are used to calculate changes with respect to the other massive body in the overall scenario, namely the sun. Attention is given to the 'vector diagram' often used to display the gravity-assist effect. The present procedure is noted to be reasonably accurate for flybys in which the plane of the spacecraft's trajectory is approximately the same as that of the planet's orbit around the sun, or the ecliptic plane; this reduces the problem to one in two dimensions.
Extended DBI massive gravity with generalized fiducial metric
NASA Astrophysics Data System (ADS)
Chullaphan, Tossaporn; Tannukij, Lunchakorn; Wongjun, Pitayuth
2015-06-01
We consider an extended model of DBI massive gravity by generalizing the fiducial metric to be an induced metric on the brane corresponding to a domain wall moving in five-dimensional Schwarzschild-Anti-de Sitter spacetime. The model admits all solutions of FLRW metric including flat, closed and open geometries while the original one does not. The background solutions can be divided into two branches namely self-accelerating branch and normal branch. For the self-accelerating branch, the graviton mass plays the role of cosmological constant to drive the late-time acceleration of the universe. It is found that the number degrees of freedom of gravitational sector is not correct similar to the original DBI massive gravity. There are only two propagating degrees of freedom from tensor modes. For normal branch, we restrict our attention to a particular class of the solutions which provides an accelerated expansion of the universe. It is found that the number of degrees of freedom in the model is correct. However, at least one of them is ghost degree of freedom which always present at small scale implying that the theory is not stable.
Compound gravity receptor polarization vectors evidenced by linear vestibular evoked potentials
NASA Technical Reports Server (NTRS)
Jones, S. M.; Jones, T. A.; Bell, P. L.; Taylor, M. J.
2001-01-01
The utricle and saccule are gravity receptor organs of the vestibular system. These receptors rely on a high-density otoconial membrane to detect linear acceleration and the position of the cranium relative to Earth's gravitational vector. The linear vestibular evoked potential (VsEP) has been shown to be an effective non-invasive functional test specifically for otoconial gravity receptors (Jones et al., 1999). Moreover, there is some evidence that the VsEP can be used to independently test utricular and saccular function (Taylor et al., 1997; Jones et al., 1998). Here we characterize compound macular polarization vectors for the utricle and saccule in hatchling chickens. Pulsed linear acceleration stimuli were presented in two axes, the dorsoventral (DV, +/- Z axis) to isolate the saccule, and the interaural (IA, +/- Y axis) to isolate the utricle. Traditional signal averaging was used to resolve responses recorded from the surface of the skull. Latency and amplitude of eighth nerve components of the linear VsEP were measured. Gravity receptor responses exhibited clear preferences for one stimulus direction in each axis. With respect to each utricular macula, lateral translation in the IA axis produced maximum ipsilateral response amplitudes with substantially greater amplitude intensity (AI) slopes than medially directed movement. Downward caudal motions in the DV axis produced substantially larger response amplitudes and AI slopes. The results show that the macula lagena does not contribute to the VsEP compound polarization vectors of the sacculus and utricle. The findings suggest further that preferred compound vectors for the utricle depend on the pars externa (i.e. lateral hair cell field) whereas for the saccule they depend on pars interna (i.e. superior hair cell fields). These data provide evidence that maculae saccule and utricle can be selectively evaluated using the linear VsEP.
Viability of Noether Symmetry of F( R) Theory of Gravity
NASA Astrophysics Data System (ADS)
Sarkar, Kaushik; Sk, Nayem; Debnath, Subhra; Sanyal, Abhik Kumar
2013-04-01
Recently, we have explored vices and virtues of R^{3/2} term in the action which has in-built Noether symmetry and anticipated that a linear term might improve the situation (Sarkar et al., arXiv:1201.2987 [astro-ph.CO], 2012). In the absence of a conserved current it is extremely difficult to obtain an analytical solution of the said fourth order theory of gravity in the presence of a linear term. Here, we therefore enlarge the configuration space by including a scalar field in addition and also taking some of the anisotropic models (in the absence of a scalar field) into account. We observe that Noether symmetry remains obscure and it does not even reproduce the one that already exists in the literature (Sanyal, Gen. Relativ. Gravit., 37:407, 2005). However, there exists in general, a conserved current for F( R) theory of gravity in the presence of a non-minimally coupled scalar field (Sanyal, Phys. Lett. B, 624:81, 2005; Mod. Phys. Lett. A, 25:2667, 2010), which simplifies the field equations considerably. Here, we briefly expatiate the non-Noether conserved current and show that indeed the situation is modified.
Spherical collapse and virialization in f ( T ) gravities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Rui-Hui; Zhai, Xiang-Hua; Li, Xin-Zhou, E-mail: 1000379711@smail.shnu.edu.cn, E-mail: zhaixh@shnu.edu.cn, E-mail: kychz@shnu.edu.cn
2017-03-01
Using the classical top-hat profile, we study the non-linear growth of spherically symmetric density perturbation and structure formation in f ( T ) gravities. In particular, three concrete models, which have been tested against the observation of large-scale evolution and linear perturbation of the universe in the cosmological scenario, are investigated in this framework, covering both minimal and nonminimal coupling cases of f ( T ) gravities. Moreover, we consider the virialization of the overdense region in the models after they detach from the background expanding universe and turn around to collapse. We find that there are constraints in themore » magnitude and occurring epoch of the initial perturbation. The existence of these constraints indicates that a perturbation that is too weak or occurs too late will not be able to stop the expanding of the overdense region. The illustration of the evolution of the perturbation shows that in f ( T ) gravities, the initial perturbation within the constraints can eventually lead to clustering and form structure. The evolution also shows that nonminimal coupling models collapse slower than the minimal coupling one.« less
NASA Astrophysics Data System (ADS)
Bezerra, V. B.; Christiansen, H. R.; Cunha, M. S.; Muniz, C. R.
2017-07-01
We obtain the exact (confluent Heun) solutions to the massive scalar field in a gravity's rainbow Schwarzschild metric. With these solutions at hand, we study the Hawking radiation resulting from the tunneling rate through the event horizon. We show that the emission spectrum obeys nonextensive statistics and is halted when a certain mass remnant is reached. Next, we infer constraints on the rainbow parameters from recent LHC particle physics experiments and Hubble STIS astrophysics measurements. Finally, we study the low frequency limit in order to find the modified energy spectrum around the source.
First law of entanglement entropy in topologically massive gravity
NASA Astrophysics Data System (ADS)
Cheng, Long; Hung, Ling-Yan; Liu, Si-Nong; Zhou, Hong-Zhe
2016-09-01
In this paper we explore the validity of the first law of entanglement entropy in the context of topologically massive gravity (TMG). We find that the variation of the holographic entanglement entropy under perturbation from the pure anti-de Sitter background satisfies the first law upon imposing the bulk equations of motion in a given time slice, despite the appearance of instabilities in the bulk for generic gravitational Chern-Simons coupling μ . The Noether-Wald entropy is different from the holographic entanglement entropy in a general boosted frame. However, this discrepancy does not affect the entanglement first law.
Analytic solutions in nonlinear massive gravity.
Koyama, Kazuya; Niz, Gustavo; Tasinato, Gianmassimo
2011-09-23
We study spherically symmetric solutions in a covariant massive gravity model, which is a candidate for a ghost-free nonlinear completion of the Fierz-Pauli theory. There is a branch of solutions that exhibits the Vainshtein mechanism, recovering general relativity below a Vainshtein radius given by (r(g)m(2))(1/3), where m is the graviton mass and r(g) is the Schwarzschild radius of a matter source. Another branch of exact solutions exists, corresponding to de Sitter-Schwarzschild spacetimes where the curvature scale of de Sitter space is proportional to the mass squared of the graviton.
Interacting spin-2 fields in the Stückelberg picture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noller, Johannes; Ferreira, Pedro G.; Scargill, James H.C., E-mail: noller@physics.ox.ac.uk, E-mail: james.scargill@physics.ox.ac.uk, E-mail: p.ferreira1@physics.ox.ac.uk
2014-02-01
We revisit and extend the 'Effective field theory for massive gravitons' constructed by Arkani-Hamed, Georgi and Schwartz in the light of recent progress in constructing ghost-free theories with multiple interacting spin-2 fields. We show that there exist several dual ways of restoring gauge invariance in such multi-gravity theories, find a generalised Fierz-Pauli tuning condition relevant in this context and highlight subtleties in demixing tensor and scalar modes. The generic multi-gravity feature of scalar mixing and its consequences for higher order interactions are discussed. In particular we show how the decoupling limit is qualitatively changed in theories of interacting spin-2 fields.more » We relate this to dRGT (de Rham, Gabadadze, Tolley) massive gravity, Hassan-Rosen bigravity and the multi-gravity constructions by Hinterbichler and Rosen. As an additional application we show that EBI (Eddington-Born-Infeld) bigravity and higher order generalisations thereof possess ghost-like instabilities.« less
Strong anti-gravity Life in the shock wave
NASA Astrophysics Data System (ADS)
Fabbrichesi, Marco; Roland, Kaj
1992-12-01
Strong anti-gravity is the vanishing of the net force between two massive particles at rest, to all orders in Newton's constant. We study this phenomenon and show that it occurs in any effective theory of gravity which is obtained from a higher-dimensional model by compactification on a manifold with flat directions. We find the exact solution of the Einstein equations in the presence of a point-like source of strong anti-gravity by dimensional reduction of a shock-wave solution in the higher-dimensional model.
Conformally-flat, non-singular static metric in infinite derivative gravity
NASA Astrophysics Data System (ADS)
Buoninfante, Luca; Koshelev, Alexey S.; Lambiase, Gaetano; Marto, João; Mazumdar, Anupam
2018-06-01
In Einstein's theory of general relativity the vacuum solution yields a blackhole with a curvature singularity, where there exists a point-like source with a Dirac delta distribution which is introduced as a boundary condition in the static case. It has been known for a while that ghost-free infinite derivative theory of gravity can ameliorate such a singularity at least at the level of linear perturbation around the Minkowski background. In this paper, we will show that the Schwarzschild metric does not satisfy the boundary condition at the origin within infinite derivative theory of gravity, since a Dirac delta source is smeared out by non-local gravitational interaction. We will also show that the spacetime metric becomes conformally-flat and singularity-free within the non-local region, which can be also made devoid of an event horizon. Furthermore, the scale of non-locality ought to be as large as that of the Schwarzschild radius, in such a way that the gravitational potential in any metric has to be always bounded by one, implying that gravity remains weak from the infrared all the way up to the ultraviolet regime, in concurrence with the results obtained in [arXiv:1707.00273]. The singular Schwarzschild blackhole can now be potentially replaced by a non-singular compact object, whose core is governed by the mass and the effective scale of non-locality.
Very massive neutron stars in Ni's theory of gravity
NASA Technical Reports Server (NTRS)
Mikkelsen, D. R.
1977-01-01
It is shown that in Ni's theory of gravity, which is identical to general relativity in the post-Newtonian limit, neutron stars of arbitrarily large mass are possible. This result is independent, within reasonable bounds, of the equation of state of matter at supernuclear densities.
NASA Astrophysics Data System (ADS)
An, Meiyan; Wang, Zhaokui; Zhang, Yulin
2017-01-01
The self-organizing control strategy for asteroid intelligent detection swarm, which is considered as a space application instance of intelligent swarm, is developed. The leader-follower model for the asteroid intelligent detection swarm is established, and the further analysis is conducted for massive asteroid and small asteroid. For a massive asteroid, the leader spacecraft flies under the gravity field of the asteroid. For a small asteroid, the asteroid gravity is negligible, and a trajectory planning method is proposed based on elliptic cavity virtual potential field. The self-organizing control strategy for the follower spacecraft is developed based on a mechanism of velocity planning and velocity tracking. The simulation results show that the self-organizing control strategy is valid for both massive asteroid and small asteroid, and the exploration swarm forms a stable configuration.
The algebra of supertraces for 2+1 super de Sitter gravity
NASA Technical Reports Server (NTRS)
Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.
1993-01-01
The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.
Gravity from entanglement and RG flow in a top-down approach
NASA Astrophysics Data System (ADS)
Kwon, O.-Kab; Jang, Dongmin; Kim, Yoonbai; Tolla, D. D.
2018-05-01
The duality between a d-dimensional conformal field theory with relevant deformation and a gravity theory on an asymptotically AdS d+1 geometry, has become a suitable tool in the investigation of the emergence of gravity from quantum entanglement in field theory. Recently, we have tested the duality between the mass-deformed ABJM theory and asymptotically AdS4 gravity theory, which is obtained from the KK reduction of the 11-dimensional supergravity on the LLM geometry. In this paper, we extend the KK reduction procedure beyond the linear order and establish non-trivial KK maps between 4-dimensional fields and 11-dimensional fluctuations. We rely on this gauge/gravity duality to calculate the entanglement entropy by using the Ryu-Takayanagi holographic formula and the path integral method developed by Faulkner. We show that the entanglement entropies obtained using these two methods agree when the asymptotically AdS4 metric satisfies the linearized Einstein equation with nonvanishing energy-momentum tensor for two scalar fields. These scalar fields encode the information of the relevant deformation of the ABJM theory. This confirms that the asymptotic limit of LLM geometry is the emergent gravity of the quantum entanglement in the mass-deformed ABJM theory with a small mass parameter. We also comment on the issue of the relative entropy and the Fisher information in our setup.
Crustal Movements and Gravity Variations in the Southeastern Po Plain, Italy
NASA Astrophysics Data System (ADS)
Zerbini, S.; Bruni, S.; Errico, M.; Santi, E.; Wilmes, H.; Wziontek, H.
2014-12-01
At the Medicina observatory, in the southeastern Po Plain, in Italy, we have started a project of continuous GPS and gravity observations in mid 1996. The experiment, focused on a comparison between height and gravity variations, is still ongoing; these uninterrupted time series certainly constitute a most important data base to observe and estimate reliably long-period behaviors but also to derive deeper insights on the nature of the crustal deformation. Almost two decades of continuous GPS observations from two closely located receivers have shown that the coordinate time series are characterized by linear and non-linear variations as well as by sudden jumps. Both over long- and short-period time scales, the GPS height series show signals induced by different phenomena, for example, those related to mass transport in the Earth system. Seasonal effects are clearly recognizable and are mainly associated with the water table seasonal behavior. To understand and separate the contribution of different forcings is not an easy task; to this end, the information provided by the superconducting gravimeter observations and also by absolute gravity measurements offers a most important means to detect and understand mass contributions. In addition to GPS and gravity data, at Medicina, a number of environmental parameters time series are also regularly acquired, among them water table levels. We present the results of study investigating correlations between height, gravity and environmental parameters time series.
Gravity or turbulence? IV. Collapsing cores in out-of-virial disguise
NASA Astrophysics Data System (ADS)
Ballesteros-Paredes, Javier; Vázquez-Semadeni, Enrique; Palau, Aina; Klessen, Ralf S.
2018-06-01
We study the dynamical state of massive cores by using a simple analytical model, an observational sample, and numerical simulations of collapsing massive cores. From the analytical model, we find that cores increase their column density and velocity dispersion as they collapse, resulting in a time evolution path in the Larson velocity dispersion-size diagram from large sizes and small velocity dispersions to small sizes and large velocity dispersions, while they tend to equipartition between gravity and kinetic energy. From the observational sample, we find that: (a) cores with substantially different column densities in the sample do not follow a Larson-like linewidth-size relation. Instead, cores with higher column densities tend to be located in the upper-left corner of the Larson velocity dispersion σv, 3D-size R diagram, a result explained in the hierarchical and chaotic collapse scenario. (b) Cores appear to have overvirial values. Finally, our numerical simulations reproduce the behavior predicted by the analytical model and depicted in the observational sample: collapsing cores evolve towards larger velocity dispersions and smaller sizes as they collapse and increase their column density. More importantly, however, they exhibit overvirial states. This apparent excess is due to the assumption that the gravitational energy is given by the energy of an isolated homogeneous sphere. However, such excess disappears when the gravitational energy is correctly calculated from the actual spatial mass distribution. We conclude that the observed energy budget of cores is consistent with their non-thermal motions being driven by their self-gravity and in the process of dynamical collapse.
Primordial fluctuations and non-Gaussianities from multifield DBI Galileon inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaux-Petel, Sébastien; Mizuno, Shuntaro; Koyama, Kazuya, E-mail: S.Renauxpetel@damtp.cam.ac.uk, E-mail: shuntaro.mizuno@port.ac.uk, E-mail: Kazuya.Koyama@port.ac.uk
2011-11-01
We study a cosmological scenario in which the DBI action governing the motion of a D3-brane in a higher-dimensional spacetime is supplemented with an induced gravity term. The latter reduces to the quartic Galileon Lagrangian when the motion of the brane is non-relativistic and we show that it tends to violate the null energy condition and to render cosmological fluctuations ghosts. There nonetheless exists an interesting parameter space in which a stable phase of quasi-exponential expansion can be achieved while the induced gravity leaves non trivial imprints. We derive the exact second-order action governing the dynamics of linear perturbations andmore » we show that it can be simply understood through a bimetric perspective. In the relativistic regime, we also calculate the dominant contribution to the primordial bispectrum and demonstrate that large non-Gaussianities of orthogonal shape can be generated, for the first time in a concrete model. More generally, we find that the sign and the shape of the bispectrum offer powerful diagnostics of the precise strength of the induced gravity.« less
New universal attractor in nonminimally coupled gravity: Linear inflation
NASA Astrophysics Data System (ADS)
Racioppi, Antonio
2018-06-01
Once quantum corrections are taken into account, the strong coupling limit of the ξ -attractor models (in metric gravity) might depart from the usual Starobinsky solution and move into linear inflation. Furthermore, it is well known that the metric and Palatini formulations of gravity lead to different inflationary predictions in presence of nonminimally couplings between gravity and the inflaton. In this paper, we show that for a certain class of nonminimally coupled models, loop corrections will lead to a linear inflation attractor regardless of the adopted gravity formulation.
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh
Recently, it has been suggested in [S. Chakraborty and N. Dadhich, Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons, J. High Energ. Phys. 12 (2015) 003.] that the Brown-York mechanism can be used to measure the quasilocal energy in Lovelock gravity. We have used this method in a system of M0-branes and show that the Brown-York energy evolves in the process of birth and growth of Lovelock gravity. This can help us to predict phenomenological events which are emerged as due to dynamical structure of Lovelock gravity in our universe. In this model, first, M0-branes join each other and form an M3-brane and an anti-M3-branes connected by an M2-brane. This system is named BIon. Universes and anti-universes live on M3-branes and M2 plays the role of wormhole between them. By passing time, M2 dissolves in M3’s and nonlinear massive gravities like Lovelock massive gravity emerges and grows. By closing M3-branes, BIon evolves and wormhole between branes makes a transition to black hole. During this stage, Brown-York energy increases and shrinks to large values at the colliding points of branes. By approaching M3-branes towards each other, the square energy of their system becomes negative and some tachyonic states are produced. To remove these states, M3-branes compact, the sign of compacted gravity changes, anti-gravity is created which leads to getting away of branes from each other. Also, the Lovelock gravity disappears and its energy forms a new M2 between M3-branes. By getting away of branes from each other, Brown-York energy decreases and shrinks to zero.
NASA Astrophysics Data System (ADS)
Tang, Jiayu; Kayo, Issha; Takada, Masahiro
2011-09-01
We develop a maximum likelihood based method of reconstructing the band powers of the density and velocity power spectra at each wavenumber bin from the measured clustering features of galaxies in redshift space, including marginalization over uncertainties inherent in the small-scale, non-linear redshift distortion, the Fingers-of-God (FoG) effect. The reconstruction can be done assuming that the density and velocity power spectra depend on the redshift-space power spectrum having different angular modulations of μ with μ2n (n= 0, 1, 2) and that the model FoG effect is given as a multiplicative function in the redshift-space spectrum. By using N-body simulations and the halo catalogues, we test our method by comparing the reconstructed power spectra with the spectra directly measured from the simulations. For the spectrum of μ0 or equivalently the density power spectrum Pδδ(k), our method recovers the amplitudes to an accuracy of a few per cent up to k≃ 0.3 h Mpc-1 for both dark matter and haloes. For the power spectrum of μ2, which is equivalent to the density-velocity power spectrum Pδθ(k) in the linear regime, our method can recover, within the statistical errors, the input power spectrum for dark matter up to k≃ 0.2 h Mpc-1 and at both redshifts z= 0 and 1, if the adequate FoG model being marginalized over is employed. However, for the halo spectrum that is least affected by the FoG effect, the reconstructed spectrum shows greater amplitudes than the spectrum Pδθ(k) inferred from the simulations over a range of wavenumbers 0.05 ≤k≤ 0.3 h Mpc-1. We argue that the disagreement may be ascribed to a non-linearity effect that arises from the cross-bispectra of density and velocity perturbations. Using the perturbation theory and assuming Einstein gravity as in simulations, we derive the non-linear correction term to the redshift-space spectrum, and find that the leading-order correction term is proportional to μ2 and increases the μ2-power spectrum amplitudes more significantly at larger k, at lower redshifts and for more massive haloes. We find that adding the non-linearity correction term to the simulation Pδθ(k) can fairly well reproduce the reconstructed Pδθ(k) for haloes up to k≃ 0.2 h Mpc-1.
ADM Analysis of gravity models within the framework of bimetric variational formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovnev, Alexey; Karčiauskas, Mindaugas; Nyrhinen, Hannu J., E-mail: agolovnev@yandex.ru, E-mail: mindaugas.karciauskas@helsinki.fi, E-mail: hannu.nyrhinen@helsinki.fi
2015-05-01
Bimetric variational formalism was recently employed to construct novel bimetric gravity models. In these models an affine connection is generated by an additional tensor field which is independent of the physical metric. In this work we demonstrate how the ADM decomposition can be applied to study such models and provide some technical intermediate details. Using ADM decomposition we are able to prove that a linear model is unstable as has previously been indicated by perturbative analysis. Moreover, we show that it is also very difficult if not impossible to construct a non-linear model which is ghost-free within the framework ofmore » bimetric variational formalism. However, we demonstrate that viable models are possible along similar lines of thought. To this end, we consider a set up in which the affine connection is a variation of the Levi-Civita one. As a proof of principle we construct a gravity model with a massless scalar field obtained this way.« less
Holographic studies of Einsteinian cubic gravity
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.; Ruipérez, Alejandro
2018-03-01
Einsteinian cubic gravity provides a holographic toy model of a nonsupersymmetric CFT in three dimensions, analogous to the one defined by Quasi-topological gravity in four. The theory admits explicit non-hairy AdS4 black holes and allows for numerous exact calculations, fully nonperturbative in the new coupling. We identify several entries of the AdS/CFT dictionary for this theory, and study its thermodynamic phase space, finding interesting new phenomena. We also analyze the dependence of Rényi entropies for disk regions on universal quantities characterizing the CFT. In addition, we show that η/ s is given by a non-analytic function of the ECG coupling, and that the existence of positive-energy black holes strictly forbids violations of the KSS bound. Along the way, we introduce a new method for evaluating Euclidean on-shell actions for general higher-order gravities possessing second-order linearized equations on AdS( d+1). Our generalized action involves the very same Gibbons-Hawking boundary term and counterterms valid for Einstein gravity, which now appear weighted by the universal charge a * controlling the entanglement entropy across a spherical region in the CFT dual to the corresponding higher-order theory.
NASA Astrophysics Data System (ADS)
Abdurro'uf; Akiyama, Masayuki
2017-08-01
We investigate the relation between star formation rate (SFR) and stellar mass (M*) at the sub-galactic scale (˜1 kpc) of 93 local (0.01 < z < 0.02) massive (M* > 1010.5 M⊙) spiral galaxies. To derive a spatially resolved SFR and stellar mass, we perform the so-called pixel-to-pixel spectral energy distribution (SED) fitting, which fits an observed spatially resolved multiband SED with a library of model SEDs using Bayesian statistics. We use two bands (far-ultraviolet or FUV and near-ultraviolet or NUV) and five bands (u, g, r, I and z) of imaging data from Galaxy Evolution Explorer (GALEX) and Sloan Digital Sky Survey (SDSS), respectively. We find a tight nearly linear relation between the local surface density of SFR (ΣSFR) and stellar mass (Σ*), which is flattened at high Σ*. The near linear relation between Σ* and ΣSFR suggests a constant specific SFR (sSFR) throughout the galaxies, and the scatter of the relation is directly related to that of the sSFR. Therefore, we analyse the variation of the sSFR in various scales. More massive galaxies on average have lower sSFR throughout them than less massive galaxies. We also find that barred galaxies have a lower sSFR in the core region than non-barred galaxies. However, in the outer region, the sSFRs of barred and non-barred galaxies are similar and lead to a similar total sSFR.
Some aspects of reconstruction using a scalar field in f( T) gravity
NASA Astrophysics Data System (ADS)
Chakrabarti, Soumya; Said, Jackson Levi; Farrugia, Gabriel
2017-12-01
General relativity characterizes gravity as a geometric property exhibited on spacetime by massive objects, while teleparallel gravity achieves the same results at the level of equations, by taking a torsional perspective of gravity. Similar to the f( R) theory teleparallel gravity can also be generalized to f( T), with the resulting field equations being inherently distinct from f( R) gravity in that they are second order, while in the former case they turn out to be fourth order. In the present case, a minimally coupled scalar field is investigated in the f( T) gravity context for several forms of the scalar field potential. A number of new f( T) solutions are found for these potentials. Their respective state parameters are also being examined.
Horizon fluffs: In the context of generalized minimal massive gravity
NASA Astrophysics Data System (ADS)
Setare, Mohammad Reza; Adami, Hamed
2018-02-01
We consider a metric which describes Bañados geometries and show that the considered metric is a solution of the generalized minimal massive gravity (GMMG) model. We consider the Killing vector field which preserves the form of the considered metric. Using the off-shell quasi-local approach we obtain the asymptotic conserved charges of the given solution. Similar to the Einstein gravity in the presence of negative cosmological constant, for the GMMG model, we also show that the algebra among the asymptotic conserved charges is isomorphic to two copies of the Virasoro algebra. Eventually, we find a relation between the algebra of the near-horizon and the asymptotic conserved charges. This relation shows that the main part of the horizon fluffs proposed by Afshar et al., Sheikh-Jabbari and Yavartanoo appear for generic black holes in the class of Bañados geometries in the context of the GMMG model.
Charged BTZ black holes in the context of massive gravity's rainbow
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Panahiyan, S.; Upadhyay, S.; Eslam Panah, B.
2017-04-01
Banados, Teitelboim, and Zanelli (BTZ) black holes are excellent laboratories for studying black hole thermodynamics, which is a bridge between classical general relativity and the quantum nature of gravitation. In addition, three-dimensional gravity could have equipped us for exploring some of the ideas behind the two-dimensional conformal field theory based on the AdS3/CFT2 . Considering the significant interest in these regards, we examine charged BTZ black holes. We consider the system contains massive gravity with energy dependent spacetime to enrich the results. In order to make high curvature (energy) BTZ black holes more realistic, we modify the theory by energy dependent constants. We investigate thermodynamic properties of the solutions by calculating heat capacity and free energy. We also analyze thermal stability and study the possibility of the Hawking-Page phase transition. At last, we study the geometrical thermodynamics of these black holes and compare the results of various approaches.
Stochastic Convection Parameterizations
NASA Technical Reports Server (NTRS)
Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios
2012-01-01
computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viennot, David
We show that the holonomy of a connection defined on a principal composite bundle is related by a non-Abelian Stokes theorem to the composition of the holonomies associated with the connections of the component bundles of the composite. We apply this formalism to describe the non-Abelian geometric phase (when the geometric phase generator does not commute with the dynamical phase generator). We find then an assumption to obtain a new kind of separation between the dynamical and the geometric phases. We also apply this formalism to the gauge theory of gravity in the presence of a Dirac spinor field inmore » order to decompose the holonomy of the Lorentz connection into holonomies of the linear connection and of the Cartan connection.« less
CHAM: a fast algorithm of modelling non-linear matter power spectrum in the sCreened HAlo Model
NASA Astrophysics Data System (ADS)
Hu, Bin; Liu, Xue-Wen; Cai, Rong-Gen
2018-05-01
We present a fast numerical screened halo model algorithm (CHAM, which stands for the sCreened HAlo Model) for modelling non-linear power spectrum for the alternative models to Λ cold dark matter. This method has three obvious advantages. First of all, it is not being restricted to a specific dark energy/modified gravity model. In principle, all of the screened scalar-tensor theories can be applied. Secondly, the least assumptions are made in the calculation. Hence, the physical picture is very easily understandable. Thirdly, it is very predictable and does not rely on the calibration from N-body simulation. As an example, we show the case of the Hu-Sawicki f(R) gravity. In this case, the typical CPU time with the current parallel PYTHON script (eight threads) is roughly within 10 min. The resulting spectra are in a good agreement with N-body data within a few percentage accuracy up to k ˜ 1 h Mpc-1.
Space–time and spatial geodesic orbits in Schwarzschild geometry
NASA Astrophysics Data System (ADS)
Resca, Lorenzo
2018-05-01
Geodesic orbit equations in the Schwarzschild geometry of general relativity reduce to ordinary conic sections of Newtonian mechanics and gravity for material particles in the non-relativistic limit. On the contrary, geodesic orbit equations for a proper spatial submanifold of Schwarzschild metric at any given coordinate-time correspond to an unphysical gravitational repulsion in the non-relativistic limit. This demonstrates at a basic level the centrality and critical role of relativistic time and its intimate pseudo-Riemannian connection with space. Correspondingly, a commonly popularised depiction of geodesic orbits of planets as resulting from the curvature of space produced by the Sun, represented as a rubber sheet dipped in the middle by the weighing of that massive body, is mistaken and misleading for the essence of relativity, even in the non-relativistic limit.
Canonical Gravity, Non-Inertial Frames, Relativistic Metrology and Dark Matter
NASA Astrophysics Data System (ADS)
Lusanna, Luca
Clock synchronization leads to the definition of instantaneous 3-spaces (to be used as Cauchy surfaces) in non-inertial frames, the only ones allowed by the equivalence principle. ADM canonical tetrad gravity in asymptotically Minkowskian space-times can be described in this framework. This allows to find the York canonical basis in which the inertial (gauge) and tidal (physical) degrees of freedom of the gravitational field can be identified. A Post-Minkowskian linearization with respect to the asymptotic Minkowski metric (asymptotic background) allows to solve the Dirac constraints in non-harmonic 3-orthogonal gauges and to find non-harmonic TT gravitational waves. The inertial gauge variable York time (the trace of the extrinsic curvature of the 3-space) describes the general relativistic freedom in clock synchronization. After a digression on the gauge problem in general relativity and its connection with relativistic metrology, it is shown that dark matter, whose experimental signatures are the rotation curves and the mass of galaxies, may be described (at least partially) as an inertial relativistic effect (absent in Newtonian gravity) connected with the York time, namely with the non-Euclidean nature of 3-spaces as 3-sub-manifolds of space-time.
Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer
NASA Technical Reports Server (NTRS)
Pai, P. F.; Lee, S.-Y.
2003-01-01
This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.
Sequestered gravity in gauge mediation.
Antoniadis, Ignatios; Benakli, Karim; Quiros, Mariano
2016-01-01
We present a novel mechanism of supersymmetry breaking embeddable in string theory and simultaneously sharing the main advantages of (sequestered) gravity and gauge mediation. It is driven by a Scherk-Schwarz deformation along a compact extra dimension, transverse to a brane stack supporting the supersymmetric extension of the Standard Model. This fixes the magnitude of the gravitino mass, together with that of the gauginos of a bulk gauge group, at a scale as high as [Formula: see text] GeV. Supersymmetry breaking is mediated to the observable sector dominantly by gauge interactions using massive messengers transforming non-trivially under the bulk and Standard Model gauge groups and leading to a neutralino LSP as dark matter candidate. The Higgsino mass [Formula: see text] and soft Higgs-bilinear [Formula: see text] term could be generated at the same order of magnitude as the other soft terms by effective supergravity couplings as in the Giudice-Masiero mechanism.
NASA Astrophysics Data System (ADS)
De Laurentis, Mariafelicia; De Martino, Ivan; Lazkoz, Ruth
2018-05-01
Alternative theories of gravity may serve to overcome several shortcomings of the standard cosmological model but, in their weak field limit, general relativity must be recovered so as to match the tight constraints at the Solar System scale. Therefore, testing such alternative models at scales of stellar systems could give a unique opportunity to confirm or rule them out. One of the most straightforward modifications is represented by analytical f (R )-gravity models that introduce a Yukawa-like modification to the Newtonian potential thus modifying the dynamics of particles. Using the geodesics equations, we have illustrated the amplitude of these modifications. First, we have integrated numerically the equations of motion showing the orbital precession of a particle around a massive object. Second, we have computed an analytic expression for the periastron advance of systems having their semimajor axis much shorter than the Yukawa-scale length. Finally, we have extended our results to the case of a binary system composed of two massive objects. Our analysis provides a powerful tool to obtain constraints on the underlying theory of gravity using current and forthcoming data sets.
NASA Astrophysics Data System (ADS)
Behera, Harihar
2017-12-01
Recently reported [Eur. Phys. J. C., 77, 549 (2017). https://doi.org/10.1140/epjc/s10052-017-5116-y] gravitoelectromagnetic equations of Ummarino and Gallerati (UG) in their linearized version of general relativity (GR) are shown to match with (a) our previously reported special relativistic Maxwellian Gravity equations in the non-relativistic limit and with (b) the non-relativistic equations derived here, when the speed of gravity c_g (an undetermined parameter of the theory here) is set equal to c (the speed of light in vacuum). Seen in the light of our new results, the UG equations satisfy the Correspondence Principle (cp), while many other versions of linearized GR equations that are being (or may be) used to interpret the experimental data defy the cp. Such new findings assume significance and relevance in the contexts of recent detection of gravitational waves and the gravitomagnetic field of the spinning earth and their interpretations. Being well-founded and self-consistent, the equations may be of interest and useful to researchers exploring the phenomenology of gravitomagnetism, gravitational waves and the novel interplay of gravity with different states of matter in flat space-time like UG's interesting work on superconductors in weak gravitational fields.
NASA Astrophysics Data System (ADS)
Li, Ping; Li, Xin-zhou; Xi, Ping
2016-06-01
We present a detailed study of the spherically symmetric solutions in Lorentz-breaking massive gravity. There is an undetermined function { F }(X,{w}1,{w}2,{w}3) in the action of Stückelberg fields {S}φ ={{{Λ }}}4\\int {{{d}}}4x\\sqrt{-g}{ F }, which should be resolved through physical means. In general relativity, the spherically symmetric solution to the Einstein equation is a benchmark and its massive deformation also plays a crucial role in Lorentz-breaking massive gravity. { F } will satisfy the constraint equation {T}01=0 from the spherically symmetric Einstein tensor {G}01=0, if we maintain that any reasonable physical theory should possess the spherically symmetric solutions. The Stückelberg field {φ }i is taken as a ‘hedgehog’ configuration {φ }i=φ (r){x}i/r, whose stability is guaranteed by the topological one. Under this ansätz, {T}01=0 is reduced to d{ F }=0. The functions { F } for d{ F }=0 form a commutative ring {R}{ F }. We obtain an expression of the solution to the functional differential equation with spherical symmetry if { F }\\in {R}{ F }. If { F }\\in {R}{ F } and \\partial { F }/\\partial X=0, the functions { F } form a subring {S}{ F }\\subset {R}{ F }. We show that the metric is Schwarzschild, Schwarzschild-AdS or Schwarzschild-dS if { F }\\in {S}{ F }. When { F }\\in {R}{ F } but { F }\
Propagation of acoustic waves in a stratified atmosphere, 1
NASA Technical Reports Server (NTRS)
Kalkofen, W.; Rossi, P.; Bodo, G.; Massaglia, S.
1994-01-01
This work is motivated by the chromospheric 3 minute oscillations observed in the K(sub 2v) bright points. We study acoustic gravity waves in a one-dimensional, gravitationally stratified, isothermal atmosphere. The oscillations are excited either by a velocity pulse imparted to a layer in an atmosphere of infinite vertical extent, or by a piston forming the lower boundary of a semi-infinite medium. We consider both linear and non-linear waves.
1989-09-01
106 3. Program CC Systems Technology, Inc. (STI) of Hawthorne, CA., develops and markets PC control system analysis and design software including...is marketed in Palo Alto, Ca., by Applied i and can be used for both linear and non- linear control system analysis. Using TUTSIM involves developing...gravity centroid ( ucg ) can be calculated as 112 n m pi - 2 zi acg n i (7-5) where pi = poles zi = zeroes n = number of poles m = number of zeroes If K
Gravity-oriented microfluidic device for uniform and massive cell spheroid formation
Lee, Kangsun; Kim, Choong; Young Yang, Jae; Lee, Hun; Ahn, Byungwook; Xu, Linfeng; Yoon Kang, Ji; Oh, Kwang W.
2012-01-01
We propose a simple method for forming massive and uniform three-dimensional (3-D) cell spheroids in a multi-level structured microfluidic device by gravitational force. The concept of orienting the device vertically has allowed spheroid formation, long-term perfusion, and retrieval of the cultured spheroids by user-friendly standard pipetting. We have successfully formed, perfused, and retrieved uniform, size-controllable, well-conditioned spheroids of human embryonic kidney 293 cells (HEK 293) in the gravity-oriented microfluidic device. We expect the proposed method will be a useful tool to study in-vitro 3-D cell models for the proliferation, differentiation, and metabolism of embryoid bodies or tumours. PMID:22662098
Scale-invariant curvature fluctuations from an extended semiclassical gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinamonti, Nicola, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it; INFN Sezione di Genova, Via Dodecaneso 33, 16146 Genova; Siemssen, Daniel, E-mail: pinamont@dima.unige.it, E-mail: siemssen@dima.unige.it
2015-02-15
We present an extension of the semiclassical Einstein equations which couple n-point correlation functions of a stochastic Einstein tensor to the n-point functions of the quantum stress-energy tensor. We apply this extension to calculate the quantum fluctuations during an inflationary period, where we take as a model a massive conformally coupled scalar field on a perturbed de Sitter space and describe how a renormalization independent, almost-scale-invariant power spectrum of the scalar metric perturbation is produced. Furthermore, we discuss how this model yields a natural basis for the calculation of non-Gaussianities of the considered metric fluctuations.
Towards timelike singularity via AdS dual
NASA Astrophysics Data System (ADS)
Bhowmick, Samrat; Chatterjee, Soumyabrata
2017-07-01
It is well known that Kasner geometry with spacelike singularity can be extended to bulk AdS-like geometry, furthermore, one can study field theory on this Kasner space via its gravity dual. In this paper, we show that there exists a Kasner-like geometry with timelike singularity for which one can construct a dual gravity description. We then study various extremal surfaces including spacelike geodesics in the dual gravity description. Finally, we compute correlators of highly massive operators in the boundary field theory with a geodesic approximation.
Three-dimensional earthquake analysis of roller-compacted concrete dams
NASA Astrophysics Data System (ADS)
Kartal, M. E.
2012-07-01
Ground motion effect on a roller-compacted concrete (RCC) dams in the earthquake zone should be taken into account for the most critical conditions. This study presents three-dimensional earthquake response of a RCC dam considering geometrical non-linearity. Besides, material and connection non-linearity are also taken into consideration in the time-history analyses. Bilinear and multilinear kinematic hardening material models are utilized in the materially non-linear analyses for concrete and foundation rock respectively. The contraction joints inside the dam blocks and dam-foundation-reservoir interaction are modeled by the contact elements. The hydrostatic and hydrodynamic pressures of the reservoir water are modeled with the fluid finite elements based on the Lagrangian approach. The gravity and hydrostatic pressure effects are employed as initial condition before the strong ground motion. In the earthquake analyses, viscous dampers are defined in the finite element model to represent infinite boundary conditions. According to numerical solutions, horizontal displacements increase under hydrodynamic pressure. Besides, those also increase in the materially non-linear analyses of the dam. In addition, while the principle stress components by the hydrodynamic pressure effect the reservoir water, those decrease in the materially non-linear time-history analyses.
Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity
NASA Astrophysics Data System (ADS)
Vacaru, Sergiu I.
2016-01-01
Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (in)homogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé-Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing; Xia, Yu-Kai
2017-05-01
We study magnetohydrodynamic (MHD) self-similar collapses and void evolution, with or without shocks, of a general polytropic quasi-spherical magnetofluid permeated by random transverse magnetic fields under the Paczynski-Wiita gravity that captures essential general relativistic effects of a Schwarzschild black hole (BH) with a growing mass. Based on the derived set of non-linear MHD ordinary differential equations, we obtain various asymptotic MHD solutions, the geometric and analytical properties of the magnetosonic critical curve (MSCC) and MHD shock jump conditions. Novel asymptotic MHD solution behaviours near the rim of central expanding voids are derived analytically. By exploring numerical global MHD solutions, we identify allowable boundary conditions at large radii that accommodate a smooth solution and show that a reasonable amount of magnetization significantly increases the mass accretion rate in the expansion-wave-collapse solution scenario. We also construct the counterparts of envelope-expansion-core-collapse solutions that cross the MSCC twice, which are found to be closely paired with a sequence of global smooth solutions satisfying a novel type of central MHD behaviours. MHD shocks with static outer and various inner flow profiles are also examined. Astrophysical applications include dynamic core collapses of magnetized massive stars and compact objects as well as formation of supermassive, hypermassive, dark matter and mixed matter BHs in the Universe, including the early Universe. Such gigantic BHs can be detected in X-ray/gamma-ray sources, quasars, ultraluminous infrared galaxies or extremely luminous infrared galaxies and dark matter overwhelmingly dominated elliptical galaxies as well as massive dark matter halos, etc. Gravitational waves and electromagnetic wave emissions in broad band (including e.g., gamma-ray bursts and fast radio bursts) can result from this type of dynamic collapses of forming BHs involving magnetized media.
Time varying G and \\varLambda cosmology in f(R,T) gravity theory
NASA Astrophysics Data System (ADS)
Tiwari, R. K.; Beesham, A.; Singh, Rameshwar; Tiwari, L. K.
2017-08-01
We have studied the time dependence of the gravitational constant G and cosmological constant Λ by taking into account an anisotropic and homogeneous Bianchi type-I space-time in the framework of the modified f(R,T) theory of gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). For a specific choice of f(R,T)=R+2f(T) where f(T)=-λ T, two solutions of the modified gravity field equations have been generated with the help of a variation law between the expansion anisotropy ({σ}/{θ}) and the scale factor (S), together with a general non-linear equation of state. The solution for m≠3 corresponds to singular model of the universe whereas the solution for m=3 represents a non-singular model. We infer that the models entail a constant value of the deceleration parameter. A careful analysis of all the physical parameters of the models has also been carried out.
Paul Weiss and the genesis of canonical quantization
NASA Astrophysics Data System (ADS)
Rickles, Dean; Blum, Alexander
2015-12-01
This paper describes the life and work of a figure who, we argue, was of primary importance during the early years of field quantisation and (albeit more indirectly) quantum gravity. A student of Dirac and Born, he was interned in Canada during the second world war as an enemy alien and after his release never seemed to regain a good foothold in physics, identifying thereafter as a mathematician. He developed a general method of quantizing (linear and non-linear) field theories based on the parameters labelling an arbitrary hypersurface. This method (the `parameter formalism' often attributed to Dirac), though later discarded, was employed (and viewed at the time as an extremely important tool) by the leading figures associated with canonical quantum gravity: Dirac, Pirani and Schild, Bergmann, DeWitt, and others. We argue that he deserves wider recognition for this and other innovations.
Deviations from a uniform period spacing of gravity modes in a massive star.
Degroote, Pieter; Aerts, Conny; Baglin, Annie; Miglio, Andrea; Briquet, Maryline; Noels, Arlette; Niemczura, Ewa; Montalban, Josefina; Bloemen, Steven; Oreiro, Raquel; Vucković, Maja; Smolders, Kristof; Auvergne, Michel; Baudin, Frederic; Catala, Claude; Michel, Eric
2010-03-11
The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.
Gaussian black holes in Rastall gravity
NASA Astrophysics Data System (ADS)
Spallucci, Euro; Smailagic, Anais
In this short note we present the solution of Rastall gravity equations sourced by a Gaussian matter distribution. We find that the black hole metric shares all the common features of other regular, General Relativity BH solutions discussed in the literature: there is no curvature singularity and the Hawking radiation leaves a remnant at zero temperature in the form of a massive ordinary particle.
Balancing Newtonian gravity and spin to create localized structures
NASA Astrophysics Data System (ADS)
Bush, Michael; Lindner, John
2015-03-01
Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.
Droplet Depinning on Inclined Surfaces at High Reynolds Numbers
NASA Astrophysics Data System (ADS)
White, Edward; Singh, Natasha; Lee, Sungyon
2017-11-01
Contact angle hysteresis enables a sessile liquid drop to adhere to a solid surface when the surface is inclined, the drop is exposed to gas-phase flow, or the drop is exposed to both forcing modalities. Previous work by Schmucker and White (2012.DFD.M4.6) identified critical depinning Weber numbers for water drops subject to gravity- and wind-dominated forcing. This work extends the Schmucker and White data and finds the critical depinning Weber number obeys a two-slope linear model. Under pure wind forcing at Reynolds numbers above 1500 and with zero surface inclination, Wecrit = 8.0 . For non-zero inclinations, α, Wecrit decreases proportionally to A Bo sinα where A is the drop aspect ratio and Bo is its Bond number. The same relationship holds for α < 0 when gravity resists depinning by wind. Above We 4 , depinning is dominated by wind forcing; at We < 4 , depinning is gravity dominated. While Wecrit depends linearly on A Bo sinα in both forcing regimes, the slopes of the the limit lines depend on the forcing regime. The difference is attributed to different drop shapes and contact angle distributions that arise depending on whether wind or gravity dominates the depinning behavior. Supported by the National Science Foundation through Grant CBET-1605947.
Classical r-matrices for the generalised Chern–Simons formulation of 3d gravity
NASA Astrophysics Data System (ADS)
Osei, Prince K.; Schroers, Bernd J.
2018-04-01
We study the conditions for classical r-matrices to be compatible with the generalised Chern–Simons action for 3d gravity. Compatibility means solving the classical Yang–Baxter equations with a prescribed symmetric part for each of the real Lie algebras and bilinear pairings arising in the generalised Chern–Simons action. We give a new construction of r-matrices via a generalised complexification and derive a non-linear set of matrix equations determining the most general compatible r-matrix. We exhibit new families of solutions and show that they contain some known r-matrices for special parameter values.
Gauge fixing in higher-derivative gravity
NASA Astrophysics Data System (ADS)
Bartoli, A.; Julve, J.; Sánchez, E. J.
1999-07-01
Linearized 4-derivative gravity with a general gauge-fixing term is considered. By a Legendre transform and a suitable diagonalization procedure it is cast into a second-order equivalent form where the nature of the physical degrees of freedom, the gauge ghosts, the Weyl ghosts and the intriguing `third ghosts', characteristic to higher-derivative theories, is made explicit. The symmetries of the theory and the structure of the compensating Faddeev-Popov ghost sector exhibit non-trivial peculiarities. The unitarity breaking negative-norm Weyl ghosts, already present in the diff-invariant theory, are out of the reach of the ghost cancellation BRST mechanism.
Disassembling the clockwork mechanism
NASA Astrophysics Data System (ADS)
Craig, Nathaniel; Garcia Garcia, Isabel; Sutherland, Dave
2017-10-01
The clockwork mechanism is a means of naturally generating exponential hierarchies in theories without significant hierarchies among fundamental parameters. We emphasize the role of interactions in the clockwork mechanism, demonstrating that clockwork is an intrinsically abelian phenomenon precluded in non-abelian theories such as Yang-Mills, non-linear sigma models, and gravity. We also show that clockwork is not realized in extra-dimensional theories through purely geometric effects, but may be generated by appropriate localization of zero modes.
The impact of radiation feedback on the assembly of star clusters in a galactic context
NASA Astrophysics Data System (ADS)
Guillard, Nicolas; Emsellem, Eric; Renaud, Florent
2018-07-01
Massive star clusters are observed in galaxies spanning a broad range of luminosities and types, and are assumed to form in dense gas-rich environments. Using a parsec-resolution hydrodynamical simulation of an isolated gas-rich low-mass galaxy, we discuss here the non-linear effects of stellar feedback on the properties of star clusters with a focus on the progenitors of nuclear clusters. Our simulation shows two categories of star clusters: those for which feedback expels gas leftovers associated with their formation sites, and those, in a denser environment, around which feedback fails to totally clear the gas. We confirm that radiation feedback (photoionization and radiative pressure) plays a more important role than Type II supernovae in destroying dense gas structures, and in altering or quenching the subsequent cluster formation. Radiation feedback also disturbs the cluster mass growth, by increasing the internal energy of the gas component to the point at which radiation pressure overcomes the cluster gravity. We discuss how these effects may depend on the local properties of the interstellar medium, and also on the details of the subgrid recipes, which can affect the available cluster gas reservoirs, the evolution of potential nuclear cluster progenitors, and the overall galaxy morphology.
Do massive compact objects without event horizon exist in infinite derivative gravity?
NASA Astrophysics Data System (ADS)
Koshelev, Alexey S.; Mazumdar, Anupam
2017-10-01
Einstein's general theory of relativity is plagued by cosmological and black-hole type singularities Recently, it has been shown that infinite derivative, ghost free, gravity can yield nonsingular cosmological and mini-black hole solutions. In particular, the theory possesses a mass-gap determined by the scale of new physics. This paper provides a plausible argument, not a no-go theorem, based on the Area-law of gravitational entropy that within infinite derivative, ghost free, gravity nonsingular compact objects in the static limit need not have horizons.
Exact Holography of Massive M2-brane Theories and Entanglement Entropy
NASA Astrophysics Data System (ADS)
Jang, Dongmin; Kim, Yoonbai; Kwon, O.-Kab; Tolla, D. D.
2018-01-01
We test the gauge/gravity duality between the N = 6 mass-deformed ABJM theory with Uk(N) × U-k(N) gauge symmetry and the 11-dimensional supergravity on LLM geometries with SO(4)=ℤk × SO(4)=ℤk isometry. Our analysis is based on the evaluation of vacuum expectation values of chiral primary operators from the supersymmetric vacua of mass-deformed ABJM theory and from the implementation of Kaluza-Klein (KK) holography to the LLM geometries. We focus on the chiral primary operator (CPO) with conformal dimension Δ = 1. The non-vanishing vacuum expectation value (vev) implies the breaking of conformal symmetry. In that case, we show that the variation of the holographic entanglement entropy (HEE) from it's value in the CFT, is related to the non-vanishing one-point function due to the relevant deformation as well as the source field. Applying Ryu Takayanagi's HEE conjecture to the 4-dimensional gravity solutions, which are obtained from the KK reduction of the 11-dimensional LLM solutions, we calculate the variation of the HEE. We show how the vev and the value of the source field determine the HEE.
Vortex stretching in self-gravitating protoplanetary discs
NASA Astrophysics Data System (ADS)
Regály, Zs.; Vorobyov, E.
2017-10-01
Horseshoe-shaped brightness asymmetries of several transitional discs are thought to be caused by large-scale vortices. Anticyclonic vortices efficiently collect dust particles, therefore they can play a major role in planet formation. Former studies suggest that the disc self-gravity weakens vortices formed at the edge of the gap opened by a massive planet in discs whose masses are in the range of 0.01 ≤ Mdisc/M* ≤ 0.1. Here, we present an investigation on the long-term evolution of the large-scale vortices formed at the viscosity transition of the discs' dead zone outer edge by means of two-dimensional hydrodynamic simulations taking disc self-gravity into account. We perform a numerical study of low-mass, 0.001 ≤ Mdisc/M* ≤ 0.01, discs, for which cases disc self-gravity was previously neglected. The large-scale vortices are found to be stretched due to disc self-gravity even for low-mass discs with Mdisc/M* ≳ 0.005, where initially the Toomre Q-parameter was ≲ 50 at the vortex distance. As a result of stretching, the vortex aspect ratio increases and a weaker azimuthal density contrast develops. The strength of the vortex stretching is proportional to the disc mass. The vortex stretching can be explained by a combined action of a non-vanishing gravitational torque caused by the vortex and the Keplerian shear of the disc. Self-gravitating vortices are subject to significantly faster decay than non-self-gravitating ones. We found that vortices developed at sharp viscosity transitions of self-gravitating discs can be described by a Goodman - Narayan - Goldreich (GNG) model as long as the disc viscosity is low, I.e. αdz ≤ 10-5.
The Evolution and Stability of Massive Stars
NASA Astrophysics Data System (ADS)
Shiode, Joshua Hajime
Massive stars are the ultimate source for nearly all the elements necessary for life. The first stars forge these elements from the sparse set of ingredients supplied by the Big Bang, and distribute enriched ashes throughout their galactic homes via their winds and explosive deaths. Subsequent generations follow suit, assembling from the enriched ashes of their predecessors. Over the last several decades, the astrophysics community has developed a sophisticated theoretical picture of the evolution of these stars, but it remains an incomplete accounting of the rich set of observations. Using state of the art models of massive stars, I have investigated the internal processes taking place throughout the life-cycles of stars spanning those from the first generation ("Population III") to the present-day ("Population I"). I will argue that early-generation stars were not highly unstable to perturbations, contrary to a host of past investigations, if a correct accounting is made for the viscous effect of convection. For later generations, those with near solar metallicity, I find that this very same convection may excite gravity-mode oscillations that produce observable brightness variations at the stellar surface when the stars are near the main sequence. If confirmed with modern high-precision monitoring experiments, like Kepler and CoRoT, the properties of observed gravity modes in massive stars could provide a direct probe of the poorly constrained physics of gravity mode excitation by convection. Finally, jumping forward in stellar evolutionary time, I propose and explore an entirely new mechanism to explain the giant eruptions observed and inferred to occur during the final phases of massive stellar evolution. This mechanism taps into the vast nuclear fusion luminosity, and accompanying convective luminosity, in the stellar core to excite waves capable of carrying a super-Eddington luminosity out to the stellar envelope. This energy transfer from the core to the envelope has the potential to unbind a significant amount of mass in close proximity to a star's eventual explosion as a core collapse supernova.
Brane SUSY breaking and the gravitino mass
NASA Astrophysics Data System (ADS)
Kitazawa, Noriaki
2018-04-01
Supergravity models with spontaneously broken supersymmetry have been widely investigated over the years, together with some notable non-linear limits. Although in these models the gravitino becomes naturally massive absorbing the degrees of freedom of a Nambu-Goldstone fermion, there are cases in which the naive counting of degrees of freedom does not apply, in particular because of the absence of explicit gravitino mass terms in unitary gauge. The corresponding models require non-trivial de Sitter-like backgrounds, and it becomes of interest to clarify the fate of their Nambu-Goldstone modes. We elaborate on the fact that these non-trivial backgrounds can accommodate, consistently, gravitino fields carrying a number of degrees of freedom that is intermediate between those of massless and massive fields in a flat spacetime. For instance, in a simple supergravity model of this type with de Sitter background, the overall degrees of freedom of gravitino are as many as for a massive spin-3/2 field in flat spacetime, while the gravitino remains massless in the sense that it undergoes null-cone propagation in the stereographic picture. On the other hand, in the ten-dimensional USp(32) Type I Sugimoto model with "brane SUSY breaking", which requires a more complicated background, the degrees of freedom of gravitino are half as many of those of a massive one, and yet it somehow behaves again as a massless one.
Dipolar dark matter with massive bigravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchet, Luc; Heisenberg, Lavinia; Department of Physics & The Oskar Klein Centre, AlbaNova University Centre,Roslagstullsbacken 21, 10691 Stockholm
2015-12-14
Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the twomore » metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.« less
Dipolar dark matter with massive bigravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchet, Luc; Heisenberg, Lavinia, E-mail: blanchet@iap.fr, E-mail: laviniah@kth.se
2015-12-01
Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the twomore » metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.« less
Mesospheric Non-Migrating Tides Generated With Planetary Waves. 1; Characteristics
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.
2003-01-01
We discuss results from a modeling study with our Numerical Spectral Model (NSM) that specifically deals with the non-migrating tides generated in the mesosphere. The NSM extends from the ground to the thermosphere, incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GWs), and it describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the excitation sources of the solar migrating tides, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that are comparable in magnitude to those observed. Large non-migrating tides are produced in the diurnal and semi-diurnal oscillations for the zonal mean (m = 0) and in the semidiurnal oscillation for m = 1. In general, significant eastward and westward propagating tides are generated for all the zonal wave numbers m = 1 to 4. To identify the cause, the NSM is run without the solar heating for the zonal mean (m = 0), and the amplitudes of the resulting non-migrating tides are then negligibly small. In this case, the planetary waves are artificially suppressed, which are generated in the NSM through instabilities. This leads to the conclusion that the non-migrating tides are generated through non-linear interactions between planetary waves and migrating tides, as Forbes et al. and Talaat and Liberman had proposed. In an accompanying paper, we present results from numerical experiments, which indicate that gravity wave filtering contributes significantly to produce the non-linear coupling that is involved.
Unattainable extended spacetime regions in conformal gravity
NASA Astrophysics Data System (ADS)
Chakrabarty, Hrishikesh; Benavides-Gallego, Carlos A.; Bambi, Cosimo; Modesto, Leonardo
2018-03-01
The Janis-Newman-Winicour metric is a solution of Einstein's gravity minimally coupled to a real massless scalar field. The γ-metric is instead a vacuum solution of Einstein's gravity. Both spacetimes have no horizon and possess a naked singularity at a finite value of the radial coordinate, where curvature invariants diverge and the spacetimes are geodetically incomplete. In this paper, we reconsider these solutions in the framework of conformal gravity and we show that it is possible to solve the spacetime singularities with a suitable choice of the conformal factor. Now curvature invariants remain finite over the whole spacetime. Massive particles never reach the previous singular surface and massless particles can never do it with a finite value of their affine parameter. Our results support the conjecture according to which conformal gravity can fix the singularity problem that plagues Einstein's gravity.
Relation of the lunar volcano complexes lying on the identical linear gravity anomaly
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Haruyama, J.; Ohtake, M.; Iwata, T.; Ishihara, Y.
2015-12-01
There are several large-scale volcanic complexes, e.g., Marius Hills, Aristarchus Plateau, Rumker Hills, and Flamsteed area in western Oceanus Procellarum of the lunar nearside. For better understanding of the lunar thermal history, it is important to study these areas intensively. The magmatisms and volcanic eruption mechanisms of these volcanic complexes have been discussed from geophysical and geochemical perspectives using data sets acquired by lunar explorers. In these data sets, precise gravity field data obtained by Gravity Recovery and Interior Laboratory (GRAIL) gives information on mass anomalies below the lunar surface, and useful to estimate location and mass of the embedded magmas. Using GRAIL data, Andrews-Hanna et al. (2014) prepared gravity gradient map of the Moon. They discussed the origin of the quasi-rectangular pattern of narrow linear gravity gradient anomalies located along the border of Oceanus Procellarum and suggested that the underlying dikes played important roles in magma plumbing system. In the gravity gradient map, we found that there are also several small linear gravity gradient anomaly patterns in the inside of the large quasi-rectangular pattern, and that one of the linear anomalies runs through multiple gravity anomalies in the vicinity of Aristarchus, Marius and Flamstead volcano complexes. Our concern is whether the volcanisms of these complexes are caused by common factors or not. To clarify this, we firstly estimated the mass and depth of the embedded magmas as well as the directions of the linear gravity anomalies. The results were interpreted by comparing with the chronological and KREEP distribution maps on the lunar surface. We suggested providing mechanisms of the magma to these regions and finally discussed whether the volcanisms of these multiple volcano complex regions are related with each other or not.
Strong Gravitational Lensing as a Probe of Gravity, Dark-Matter and Super-Massive Black Holes
NASA Astrophysics Data System (ADS)
Koopmans, L.V.E.; Barnabe, M.; Bolton, A.; Bradac, M.; Ciotti, L.; Congdon, A.; Czoske, O.; Dye, S.; Dutton, A.; Elliasdottir, A.; Evans, E.; Fassnacht, C.D.; Jackson, N.; Keeton, C.; Lasio, J.; Moustakas, L.; Meneghetti, M.; Myers, S.; Nipoti, C.; Suyu, S.; van de Ven, G.; Vegetti, S.; Wucknitz, O.; Zhao, H.-S.
Whereas considerable effort has been afforded in understanding the properties of galaxies, a full physical picture, connecting their baryonic and dark-matter content, super-massive black holes, and (metric) theories of gravity, is still ill-defined. Strong gravitational lensing furnishes a powerful method to probe gravity in the central regions of galaxies. It can (1) provide a unique detection-channel of dark-matter substructure beyond the local galaxy group, (2) constrain dark-matter physics, complementary to direct-detection experiments, as well as metric theories of gravity, (3) probe central super-massive black holes, and (4) provide crucial insight into galaxy formation processes from the dark matter point of view, independently of the nature and state of dark matter. To seriously address the above questions, a considerable increase in the number of strong gravitational-lens systems is required. In the timeframe 2010-2020, a staged approach with radio (e.g. EVLA, e-MERLIN, LOFAR, SKA phase-I) and optical (e.g. LSST and JDEM) instruments can provide 10^(2-4) new lenses, and up to 10^(4-6) new lens systems from SKA/LSST/JDEM all-sky surveys around ~2020. Follow-up imaging of (radio) lenses is necessary with moderate ground/space-based optical-IR telescopes and with 30-50m telescopes for spectroscopy (e.g. TMT, GMT, ELT). To answer these fundamental questions through strong gravitational lensing, a strong investment in large radio and optical-IR facilities is therefore critical in the coming decade. In particular, only large-scale radio lens surveys (e.g. with SKA) provide the large numbers of high-resolution and high-fidelity images of lenses needed for SMBH and flux-ratio anomaly studies.
NASA Astrophysics Data System (ADS)
Lyubimova, T. P.; Zubova, N. A.
2017-06-01
This paper presents the results of numerical simulation of the Soret-induced convection of ternary mixture in the rectangular cavity elongated in horizontal direction in gravity field. The cavity has rigid impermeable boundaries. It is heated from the bellow and undergoes translational linearly polarized vibrations of finite amplitude and frequency in the horizontal direction. The problem is solved by finite difference method in the framework of full unsteady non-linear approach. The procedure of diagonalization of the molecular diffusion coefficient matrix is applied, allowing to eliminate cross-diffusion components in the equations and to reduce the number of the governing parameters. The calculations are performed for model ternary mixture with positive separation ratios of the components. The data on the vibration effect on temporal evolution of instantaneous and average fields and integral characteristics of the flow and heat and mass transfer at different levels of gravity are obtained.
Modeling and Control of a Fixed Wing Tilt-Rotor Tri-Copter
NASA Astrophysics Data System (ADS)
Summers, Alexander
The following thesis considers modeling and control of a fixed wing tilt-rotor tri-copter. An emphasis of the conceptual design is made toward payload transport. Aerodynamic panel code and CAD design provide the base aerodynamic, geometric, mass, and inertia properties. A set of non-linear dynamics are created considering gravity, aerodynamics in vertical takeoff and landing (VTOL) and forward flight, and propulsion applied to a three degree of freedom system. A transition strategy, that removes trajectory planning by means of scheduled inputs, is theorized. Three discrete controllers, utilizing separate control techniques, are applied to ensure stability in the aerodynamic regions of VTOL, transition, and forward flight. The controller techniques include linear quadratic regulation, full state integral action, gain scheduling, and proportional integral derivative (PID) flight control. Simulation of the model control system for flight from forward to backward transition is completed with mass and center of gravity variation.
Beyond AdS Space-times, New Holographic Correspondences and Applications
NASA Astrophysics Data System (ADS)
Ghodrati, Mahdis
The AdS/CFT correspondence conjectures a mathematical equivalence between string theories and gauge theories. In a particular limit it allows a description of strongly coupled conformal field theory via weakly coupled gravity. This feature has been used to gain insight into many condensed matter (CM) systems. However, to apply the duality in more physical scenarios, one needs to go beyond the usual AdS/CFT framework and extend the duality to non-AdS situations. To describe Lifshitz and hyperscaling violating (HSV) phenomena in CM one uses gauge fields on the gravity side which naturally realize the breaking of Lorentz invariance. These gravity constructions often contain naked singularities. In this thesis, we construct a resolution of the infra-red (IR) singularity of the HSV background. The idea is to add squared curvature terms to the Einstein-Maxwell dilaton action to build a flow from AdS4 in the ultra violate (UV) to an intermediating HSV region and then to an AdS2 x R 2 region in the IR. This general solution is free from the naked singularities and would be more appropriate for applications of HSV in physical systems. We also study the Schwinger effect by using the AdS/CFT duality. We present the phase diagrams of the Schwinger effect and also the "butterfly shaped-phase diagrams" of the entanglement entropy for four different confining supergravity backgrounds. Comparing different features of all of these diagrams could point out to a potential relation between the Schwinger effect and the entanglement entropy which could lead to a method of measuring entanglement entropy in the laboratory. Finally, we study the "new massive gravity" theory and the different black hole solutions it admits. We first present three different methods of calculating the conserved charges. Then, by calculating the on-shell Gibbs free energy we construct the Hawking-Page phase diagrams for different solutions in two thermodynamical ensembles. As the massive gravity models are dual to dissipating systems, studying the Hawking-Page diagrams could point out to interesting results for the confinement-deconfinement phase transitions of the dual boundary theories. So this thesis discusses various generalizations of the AdS/CFT correspondence of relevance for cases which violate Lorentz symmetry.
Beyond Positivity Bounds and the Fate of Massive Gravity
NASA Astrophysics Data System (ADS)
Bellazzini, Brando; Riva, Francesco; Serra, Javi; Sgarlata, Francesco
2018-04-01
We constrain effective field theories by going beyond the familiar positivity bounds that follow from unitarity, analyticity, and crossing symmetry of the scattering amplitudes. As interesting examples, we discuss the implications of the bounds for the Galileon and ghost-free massive gravity. The combination of our theoretical bounds with the experimental constraints on the graviton mass implies that the latter is either ruled out or unable to describe gravitational phenomena, let alone to consistently implement the Vainshtein mechanism, down to the relevant scales of fifth-force experiments, where general relativity has been successfully tested. We also show that the Galileon theory must contain symmetry-breaking terms that are at most one-loop suppressed compared to the symmetry-preserving ones. We comment as well on other interesting applications of our bounds.
Beyond Positivity Bounds and the Fate of Massive Gravity.
Bellazzini, Brando; Riva, Francesco; Serra, Javi; Sgarlata, Francesco
2018-04-20
We constrain effective field theories by going beyond the familiar positivity bounds that follow from unitarity, analyticity, and crossing symmetry of the scattering amplitudes. As interesting examples, we discuss the implications of the bounds for the Galileon and ghost-free massive gravity. The combination of our theoretical bounds with the experimental constraints on the graviton mass implies that the latter is either ruled out or unable to describe gravitational phenomena, let alone to consistently implement the Vainshtein mechanism, down to the relevant scales of fifth-force experiments, where general relativity has been successfully tested. We also show that the Galileon theory must contain symmetry-breaking terms that are at most one-loop suppressed compared to the symmetry-preserving ones. We comment as well on other interesting applications of our bounds.
Space-Based Gravitational-Wave Observations as Tools for Testing General Relativity
NASA Technical Reports Server (NTRS)
Will, Clifford M.
2004-01-01
We continued a project, to analyse the ways in which detection and study of gravitational waves could provide quantitative tests of general relativity, with particular emphasis on waves that would be detectable by space-based observatories, such as LISA. This work had three foci: 1) Tests of scalar-tensor theories of gravity that, could be done by analyzing gravitational waves from neutron stars inspiralling into massive black holes, as detectable by LISA; 2) Study of alternative theories of gravity in which the graviton could be massive, and of how gravitational-wave observations by space-based detectors, solar-system tests, and cosmological observations could constrain such theories; and 3) Study of gravitational-radiation back reaction of particles orbiting black holes in general relativity, with emphasis on the effects of spin.
Note about a pure spin-connection formulation of general relativity and spin-2 duality in (A)dS
NASA Astrophysics Data System (ADS)
Basile, Thomas; Bekaert, Xavier; Boulanger, Nicolas
2016-06-01
We investigate the problem of finding a pure spin-connection formulation of general relativity with nonvanishing cosmological constant. We first revisit the problem at the linearized level and find that the pure spin-connection, quadratic Lagrangian, takes a form reminiscent to Weyl gravity, given by the square of a Weyl-like tensor. Upon Hodge dualization, we show that the dual gauge field in (A )dSD transforms under G L (D ) in the same representation as a massive graviton in the flat spacetime of the same dimension. We give a detailed proof that the physical degrees of freedom indeed correspond to a massless graviton propagating around the (anti-) de Sitter background and finally speculate about a possible nonlinear pure-connection theory dual to general relativity with cosmological constant.
Superconducting tensor gravity gradiometer for satellite geodesy and inertial navigation
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
A sensitive gravity gradiometer can provide much needed gravity data of the earth and improve the accuracy of inertial navigation. Superconductivity and other properties of materials at low temperatures can be used to obtain a sensitive, low-drift gravity gradiometer; by differencing the outputs of accelerometer pairs using superconducting circuits, it is possible to construct a tensor gravity gradiometer which measures all the in-line and cross components of the tensor simultaneously. Additional superconducting circuits can be provided to determine the linear and angular acceleration vectors. A tensor gravity gradiometer with these features is being developed for satellite geodesy. The device constitutes a complete package of inertial navigation instruments with angular and linear acceleration readouts as well as gravity signals.
NASA Technical Reports Server (NTRS)
Rosenberger, Franz; Vekilov, Peter G.; Lin, Hong; Alexander, J. Iwan D.
1997-01-01
Protein crystallization experiments at reduced gravity have yielded crystals that, depending on the specific material, are either superior or inferior in their structural perfection compared to counterparts grown at normal gravity. A reduction of the crystals' quality due to their growth at low gravity cannot be understood from existing models. Our experimental investigations of the ground-based crystallization of the protein lysozyme have revealed pronounced unsteady growth layer dynamics and associated defect formation under steady external conditions. Through scaling analysis and numerical simulations we show that the observed fluctuations originate from the coupling of bulk transport with non-linear interface kinetics under mixed kinetics-transport control of the growth rate. The amplitude of the fluctuations is smallest when either transport or interfacial kinetics dominate the control of the crystallization process. Thus, depending on the specific system, crystal quality may be improved by either enhancing or suppressing the transport in the solution. These considerations provide, for the first time, a material-dependent rationale for the advantages, as well as the disadvantages, of reduced gravity for (protein) crystallization.
Measurement of absolute gravity acceleration in Firenze
NASA Astrophysics Data System (ADS)
de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.
2011-01-01
This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.
Forced Gravity Waves and the Tropospheric Response to Convection
NASA Astrophysics Data System (ADS)
Halliday, O. J.; Griffiths, S. D.; Parker, D. J.; Stirling, A.
2017-12-01
It has been known for some time that gravity waves facilitate atmospheric adjustment to convective heating. Further, convectively forced gravity waves condition the neighboring atmosphere for the initiation and / or suppression of convection. Despite this, the radiation of gravity waves in macro-scale models (which are typically forced at the grid-scale, by existing parameterization schemes) is not well understood. We present here theoretical and numerical work directed toward improving our understanding of convectively forced gravity wave effects at the mesoscale. Using the linear hydrostatic equations of motion for an incompressible (but non-Boussinesq) fluid with vertically varying buoyancy frequency, we find a radiating solution to prescribed sensible heating. We then interrogate the spatial and temporal sensitivity of the vertical velocity and potential temperature response to different heating functions, considering the remote and near-field forced response both to steady and pulsed heating. We find that the meso-scale tropospheric response to convection is significantly dependent on the upward radiation characteristics of the gravity waves, which are in turn dependent upon the temporal and spatial structure of the source, and stratification of the domain. Moving from a trapped to upwardly-radiating solution there is a 50% reduction in tropospherically averaged vertical velocity, but significant perturbations persist for up to 4 hours in the far-field. We find the tropospheric adjustment to be sensitive to the horizontal length scale which characterizes the heating, observing a 20% reduction in vertical velocity when comparing the response from a 10 km to a 100 km heat source. We assess the implications for parameterization of convection in coarse-grained models in the light of these findings. We show that an idealized `full-physics' nonlinear simulation of deep convection in the UK Met Office Unified Model is qualitatively described by the linear solution: departures are quantified and explored.
Regular black holes in f(T) Gravity through a nonlinear electrodynamics source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junior, Ednaldo L.B.; Rodrigues, Manuel E.; Houndjo, Mahouton J.S., E-mail: ednaldobarrosjr@gmail.com, E-mail: esialg@gmail.com, E-mail: sthoundjo@yahoo.fr
2015-10-01
We seek to obtain a new class of exact solutions of regular black holes in f(T) Gravity with non-linear electrodynamics material content, with spherical symmetry in 4D. The equations of motion provide the regaining of various solutions of General Relativity, as a particular case where the function f(T)=T. We developed a powerful method for finding exact solutions, where we get the first new class of regular black holes solutions in the f(T) Theory, where all the geometrics scalars disappear at the origin of the radial coordinate and are finite everywhere, as well as a new class of singular black holes.
Homogeneous, anisotropic three-manifolds of topologically massive gravity
NASA Astrophysics Data System (ADS)
Nutku, Y.; Baekler, P.
1989-10-01
We present a new class of exact solutions of Deser, Jackiw, and Templeton's theory (DJT) of topologically massive gravity which consists of homogeneous, anisotropic manifolds. In these solutions the coframe is given by the left-invariant 1-forms of 3-dimensional Lie algebras up to constant scale factors. These factors are fixed in terms of the DJT coupling constant μ which is the constant of proportionality between the Einstein and Cotton tensors in 3-dimensions. Differences between the scale factors result in anisotropy which is a common feature of topologically massive 3-manifolds. We have found that only Bianchi Types VI, VIII, and IX lead to nontrivial solutions. Among these, a Bianchi Type IX, squashed 3-sphere solution of the Euclideanized DJT theory has finite action. Bianchi Type VIII, IX solutions can variously be embedded in the de Sitter/anti-de Sitter space. That is, some DJT 3-manifolds that we shall present here can be regarded as the basic constituent of anti-de Sitter space which is the ground state solution in higher dimensional generalization of Einstein's general relativity.
Homogeneous, anisotropic three-manifolds of topologically massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutku, Y.; Baekler, P.
1989-10-01
We present a new class of exact solutions of Deser, Jackiw, and Templeton's theory (DJT) of topologically massive gravity which consists of homogeneous, anisotropic manifolds. In these solutions the coframe is given by the left-invariant 1-forms of 3-dimensional Lie algebras up to constant scale factors. These factors are fixed in terms of the DJT coupling constant {mu}m which is the constant of proportionality between the Einstein and Cotton tensors in 3-dimensions. Differences between the scale factors result in anisotropy which is a common feature of topologically massive 3-manifolds. We have found that only Bianchi Types VI, VIII, and IX leadmore » to nontrivial solutions. Among these, a Bianchi Type IX, squashed 3-sphere solution of the Euclideanized DJT theory has finite action, Bianchi Type VIII, IX solutions can variously be embedded in the de Sitter/anti-de Sitter space. That is, some DJT 3-manifolds that we shall present here can be regarded as the basic constitent of anti-de Sitter space which is the ground state solution in higher dimensional generalizations of Einstein's general relativity. {copyright} 1989 Academic Press, Inc.« less
Polarizations of gravitational waves in Horndeski theory
NASA Astrophysics Data System (ADS)
Hou, Shaoqi; Gong, Yungui; Liu, Yunqi
2018-05-01
We analyze the polarization content of gravitational waves in Horndeski theory. Besides the familiar plus and cross polarizations in Einstein's General Relativity, there is one more polarization state which is the mixture of the transverse breathing and longitudinal polarizations. The additional mode is excited by the massive scalar field. In the massless limit, the longitudinal polarization disappears, while the breathing one persists. The upper bound on the graviton mass severely constrains the amplitude of the longitudinal polarization, which makes its detection highly unlikely by the ground-based or space-borne interferometers in the near future. However, pulsar timing arrays might be able to detect the polarization excited by the massive scalar field. Since additional polarization states appear in alternative theories of gravity, the measurement of the polarizations of gravitational waves can be used to probe the nature of gravity. In addition to the plus and cross states, the detection of the breathing polarization means that gravitation is mediated by massless spin 2 and spin 0 fields, and the detection of both the breathing and longitudinal states means that gravitation is propagated by the massless spin 2 and massive spin 0 fields.
Noether's stars in f (R) gravity
NASA Astrophysics Data System (ADS)
De Laurentis, Mariafelicia
2018-05-01
The Noether Symmetry Approach can be used to construct spherically symmetric solutions in f (R) gravity. Specifically, the Noether conserved quantity is related to the gravitational mass and a gravitational radius that reduces to the Schwarzschild radius in the limit f (R) → R. We show that it is possible to construct the M- R relation for neutron stars depending on the Noether conserved quantity and the associated gravitational radius. This approach enables the recovery of extreme massive stars that could not be stable in the standard Tolman-Oppenheimer-Volkoff based on General Relativity. Examples are given for some power law f (R) gravity models.
Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity
NASA Astrophysics Data System (ADS)
Davison, Richard A.; Grozdanov, Sašo; Janiszewski, Stefan; Kaminski, Matthias
2016-11-01
We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Hořava gravity with Lifshitz exponent z = 1. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Hořava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Hořava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.
Nonnormality increases variance of gravity waves trapped in a tilted box
NASA Astrophysics Data System (ADS)
Harlander, Uwe; Borcia, Ion Dan; Krebs, Andreas
2017-04-01
We study the prototype problem of internal gravity waves in a square domain tilted with respect to the gravity vector by an angle theta. Only when theta is zero regular normal modes exist, for all other angles wave attractors and singularities dominate the flow. We show that the linear operator of the governing PDE becomes non-normal for nonzero theta giving rise to non-modal transient growth. This growth depends on the underlying norm: for the variance norm significant growth rates can be found whereas for the energy norm, no growth is possible since there is no source for energy (in contrast to shear fows, for which the mean flow feeds the perturbations). We continue by showing that the nonnormality of the system matrix is increasing with theta and reaches a maximum when theta is 45 degree. Moreover, the growth rate is increasing as can be expected from the increasing nonnormality of the matrix. Our results imply that at least the most simple wave attractors can be seen as those initial flow fields that gain most of the variance during a given time period.
Was Newton right? A search for non-Newtonian behavior of weak-field gravity
NASA Astrophysics Data System (ADS)
Boynton, Paul; Moore, Michael; Newman, Riley; Berg, Eric; Bonicalzi, Ricco; McKenney, Keven
2014-06-01
Empirical tests of Einstein's metric theory of gravitation, even in the non-relativistic, weak-field limit, could play an important role in judging theory-driven extensions of the current Standard Model of fundamental interactions. Guided by Galileo's work and his own experiments, Newton formulated a theory of gravity in which the force of attraction between two bodies is independent of composition and proportional to the inertia of each, thereby transparently satisfying Galileo's empirically informed conjecture regarding the Universality of Free Fall. Similarly, Einstein honored the manifest success of Newton's theory by assuring that the linearized equations of GTR matched the Newtonian formalism under "classical" conditions. Each of these steps, however, was explicitly an approximation raised to the status of principle. Perhaps, at some level, Newtonian gravity does not accurately describe the physical interaction between uncharged, unmagnetized, macroscopic bits of ordinary matter. What if Newton were wrong? Detecting any significant deviation from Newtonian behavior, no matter how small, could provide new insights and possibly reveal new physics. In the context of physics as an empirical science, for us this yet unanswered question constitutes sufficient motivation to attempt precision measurements of the kind described here. In this paper we report the current status of a project to search for violation of the Newtonian inverse square law of gravity.
NASA Astrophysics Data System (ADS)
Socquet-Juglard, H.; Dysthe, K. B.; Trulsen, K.; Liu, J.; Krogstad, H. E.
2003-04-01
Numerical simulations of a narrow band gaussian spectrum of random surface gravity waves have been carried out in two and three spatial dimensions [7]. Different types of non-linear Schr&{uml;o}dinger equations, [1] and [4], have been used in these simulations. Simulations have now been carried with a JONSWAP spectrum associated with a spreading function of the type cosine-squared [5]. The evolution of the spectrum, skewness, kurtosis, ... will be presented. In addition, some results about stochastic properties of the surface will be shown. Based on the approach found in [2], [3] and [6], the results are presented in terms of deviations from linear Gaussian theory and the standard second order small slope perturbation theory. begin{thebibliography}{9} bibitem{kk96} Trulsen, K. &Dysthe, K. B. (1996). A modified nonlinear Schr&{uml;o}dinger equation for broader bandwidth gravity waves on deep water. Wave Motion, 24, pp. 281-289. bibitem{BK2000} Krogstad, H.E. and S.F. Barstow (2000). A uniform approach to extreme value analysis of ocean waves, Proc. ISOPE'2000, Seattle, USA, 3, pp. 103-108. bibitem{PRK} Prevosto, M., H. E. Krogstad and A. Robin (2000). Probability distributions for maximum wave and crest heights, Coast. Eng., 40, 329-360. bibitem{ketal} Trulsen, K., Kliakhandler, I., Dysthe, K. B. &Velarde, M. G. (2000) On weakly nonlinear modulation of waves on deep water, Phys. Fluids, 12, pp. L25-L28. bibitem{onorato} Onorato, M., Osborne, A.R. and Serio, M. (2002) Extreme wave events in directional, random oceanic sea states, Phys. Fluids, 14, pp. 2432-2437. bibitem{BK2002} Krogstad, H.E. and S.F. Barstow (2002). Analysis and Applications of Second Order Models for the Maximum Crest height, % Proc. 21nd Int. Conf. Offshore Mechanics and Arctic Engineering, Oslo. Paper no. OMAE2002-28479. bibitem{JFMP} Dysthe, K. B., Trulsen, K., Krogstad, H. E. and Socquet-Juglard, H. (2002, in press) Evolution of a narrow band spectrum of random surface gravity waves, J. Fluid Mech.
The black hole at the Galactic Center: Observations and models
NASA Astrophysics Data System (ADS)
Zakharov, Alexander F.
One of the most interesting astronomical objects is the Galactic Center. It is a subject of intensive astronomical observations in different spectral bands in recent years. We concentrate our discussion on a theoretical analysis of observational data of bright stars in the IR-band obtained with large telescopes. We also discuss the importance of VLBI observations of bright structures which could characterize the shadow at the Galactic Center. If we adopt general relativity (GR), there are a number of theoretical models for the Galactic Center, such as a cluster of neutron stars, boson stars, neutrino balls, etc. Some of these models were rejected or the range of their parameters is significantly constrained with consequent observations and theoretical analysis. In recent years, a number of alternative theories of gravity have been proposed because there are dark matter (DM) and dark energy (DE) problems. An alternative theory of gravity may be considered as one possible solution for such problems. Some of these theories have black hole solutions, while other theories have no such solutions. There are attempts to describe the Galactic Center with alternative theories of gravity and in this case one can constrain parameters of such theories with observational data for the Galactic Center. In particular, theories of massive gravity are intensively developing and theorists have overcome pathologies presented in the initial versions of these theories. In theories of massive gravity, a graviton is massive in contrast with GR where a graviton is massless. Now these theories are considered as an alternative to GR. For example, the LIGO-Virgo collaboration obtained the graviton mass constraint of about 1.2 × 10‑22 eV in their first publication about the discovery of the first gravitational wave detection event that resulted of the merger of two massive black holes. Surprisingly, one could obtain a consistent and comparable constraint of graviton mass at a level around mg < 2.9 × 10‑21eV from the analysis of observational data on the trajectory of the star S2 near the Galactic Center. Therefore, observations of bright stars with existing and forthcoming telescopes such as the European extremely large telescope (E-ELT) and the thirty meter telescope (TMT) are extremely useful for investigating the structure of the Galactic Center in the framework of GR, but these observations also give a tool to confirm, rule out or constrain alternative theories of gravity. As we noted earlier, VLBI observations with current and forthcoming global networks (like the Event Horizon Telescope) are used to check the hypothesis about the presence of a supermassive black hole at the Galactic Center.
Higher curvature gravities, unlike GR, cannot be bootstrapped from their (usual) linearizations
NASA Astrophysics Data System (ADS)
Deser, S.
2017-12-01
We show that higher curvature order gravities, in particular the propagating quadratic curvature models, cannot be derived by self-coupling from their linear, flat space, forms, except through an unphysical version of linearization; only GR can. Separately, we comment on an early version of the self-coupling bootstrap.
On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs
NASA Astrophysics Data System (ADS)
Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.
2016-05-01
The dynamical response of edge waves under the influence of self-gravity is examined in an idealised two-dimensional model of a proto-stellar disc, characterised in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius ?. The fluid in basic state is prescribed to rotate with a Keplerian profile ? modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabiliser irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non-Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density In addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect. Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.
Renormalized vacuum polarization of rotating black holes
NASA Astrophysics Data System (ADS)
Ferreira, Hugo R. C.
2015-04-01
Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.
Testing the Larson relations in massive clumps
NASA Astrophysics Data System (ADS)
Traficante, A.; Duarte-Cabral, A.; Elia, D.; Fuller, G. A.; Merello, M.; Molinari, S.; Peretto, N.; Schisano, E.; Di Giorgio, A.
2018-06-01
We tested the validity of the three Larson relations in a sample of 213 massive clumps selected from the Herschel infrared Galactic Plane (Hi-GAL) survey, also using data from the Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey of 3-mm emission lines. The clumps are divided into five evolutionary stages so that we can also discuss the Larson relations as a function of evolution. We show that this ensemble does not follow the three Larson relations, regardless of the clump's evolutionary phase. A consequence of this breakdown is that the dependence of the virial parameter αvir on mass (and radius) is only a function of the gravitational energy, independent of the kinetic energy of the system; thus, αvir is not a good descriptor of clump dynamics. Our results suggest that clumps with clear signatures of infall motions are statistically indistinguishable from clumps with no such signatures. The observed non-thermal motions are not necessarily ascribed to turbulence acting to sustain the gravity, but they might be a result of the gravitational collapse at the clump scales. This seems to be particularly true for the most massive (M ≥ 1000 M⊙) clumps in the sample, where exceptionally high magnetic fields might not be enough to stabilize the collapse.
Effects of the f(R) and f(G) Gravities and the Exotic Particle on Primordial Nucleosynthesis
NASA Astrophysics Data System (ADS)
Kusakabe, Motohiko; Koh, Seoktae; Kim, K. S.; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.
A plateau Li/H abundance of metal-poor stars is smaller than those predicted in the standard big bang nucleosynthesis (BBN) model by a factor of ˜3, for the baryon density determined from Planck. This discrepancy may be caused by a non-standard cosmic thermal history or reactions of a hypothetical particle. We consider the BBN in specific modified gravity models characterized by f(R) and f(G) terms in the gravitational actions. These models have cosmic expansion rates different from that in the standard model, and abundances of all light elements are affected. The modified gravities are constrained mainly from observational deuterium abundances. No solution is found for the Li problem because a significant modification of the expansion rate results in a large change of D abundance. This result is quite a contrast to that of a BBN model including a long-lived negatively charged massive particle X-. The 7Be nuclide is destroyed via the recombination with an X- followed by the radiative proton capture. The X- particle selectively decreases the abundance of 7Be, and the primordial abundance of 7Li originating from the electron capture of 7Be is reduced. We have an important theoretical lesson: Some physical process must have operated preferentially on 7Be nuclei.
The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirk, Helen; Di Francesco, James; Friesen, Rachel K.
We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests thatmore » most of the dense cores are pressure-confined.« less
The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A
NASA Astrophysics Data System (ADS)
Kirk, Helen; Friesen, Rachel K.; Pineda, Jaime E.; Rosolowsky, Erik; Offner, Stella S. R.; Matzner, Christopher D.; Myers, Philip C.; Di Francesco, James; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Chen, How-Huan; Chun-Yuan Chen, Michael; Keown, Jared; Punanova, Anna; Seo, Young Min; Shirley, Yancy; Ginsburg, Adam; Hall, Christine; Singh, Ayushi; Arce, Héctor G.; Goodman, Alyssa A.; Martin, Peter; Redaelli, Elena
2017-09-01
We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.
2012-12-05
A 300-mile-long linear gravity anomaly on the far side of the moon has been revealed by gravity gradients measured by NASA GRAIL mission. GRAIL data are shown on the left, with red and blue corresponding to stronger gravity gradients.
Experimental investigation of three-wave interactions of capillary surface-waves
NASA Astrophysics Data System (ADS)
Berhanu, Michael; Cazaubiel, Annette; Deike, Luc; Jamin, Timothee; Falcon, Eric
2014-11-01
We report experiments studying the non-linear interaction between two crossing wave-trains of gravity-capillary surface waves generated in a closed laboratory tank. Using a capacitive wave gauge and Diffusive Light Photography method, we detect a third wave of smaller amplitude whose frequency and wavenumber are in agreement with the weakly non-linear triadic resonance interaction mechanism. By performing experiments in stationary and transient regimes and taking into account the viscous dissipation, we estimate directly the growth rate of the resonant mode in comparison with theory. These results confirm at least qualitatively and extend earlier experimental results obtained only for unidirectional wave train. Finally we discuss relevance of three-wave interaction mechanisms in recent experiment studying capillary wave turbulence.
Clumpy Disks as a Testbed for Feedback-regulated Galaxy Formation
NASA Astrophysics Data System (ADS)
Mayer, Lucio; Tamburello, Valentina; Lupi, Alessandro; Keller, Ben; Wadsley, James; Madau, Piero
2016-10-01
We study the dependence of fragmentation in massive gas-rich galaxy disks at z > 1 on stellar feedback schemes and hydrodynamical solvers, employing the GASOLINE2 SPH code and the lagrangian mesh-less code GIZMO in finite mass mode. Non-cosmological galaxy disk runs with the standard delayed-cooling blastwave feedback are compared with runs adopting a new superbubble feedback, which produces winds by modeling the detailed physics of supernova-driven bubbles and leads to efficient self-regulation of star formation. We find that, with blastwave feedback, massive star-forming clumps form in comparable number and with very similar masses in GASOLINE2 and GIZMO. Typical clump masses are in the range 107-108 M ⊙, lower than in most previous works, while giant clumps with masses above 109 M ⊙ are exceedingly rare. By contrast, superbubble feedback does not produce massive star-forming bound clumps as galaxies never undergo a phase of violent disk instability. In this scheme, only sporadic, unbound star-forming overdensities lasting a few tens of Myr can arise, triggered by non-linear perturbations from massive satellite companions. We conclude that there is severe tension between explaining massive star-forming clumps observed at z > 1 primarily as the result of disk fragmentation driven by gravitational instability and the prevailing view of feedback-regulated galaxy formation. The link between disk stability and star formation efficiency should thus be regarded as a key testing ground for galaxy formation theory.
Secular instabilities of Keplerian stellar discs
NASA Astrophysics Data System (ADS)
Kaur, Karamveer; Kazandjian, Mher V.; Sridhar, S.; Touma, Jihad R.
2018-05-01
We present idealized models of a razor-thin, axisymmetric, Keplerian stellar disc around a massive black hole, and study non-axisymmetric secular instabilities in the absence of either counter-rotation or loss cones. These discs are prograde mono-energetic waterbags, whose phase-space distribution functions are constant for orbits within a range of eccentricities (e) and zero outside this range. The linear normal modes of waterbags are composed of sinusoidal disturbances of the edges of distribution function in phase space. Waterbags that include circular orbits (polarcaps) have one stable linear normal mode for each azimuthal wavenumber m. The m = 1 mode always has positive pattern speed and, for polarcaps consisting of orbits with e < 0.9428, only the m = 1 mode has positive pattern speed. Waterbags excluding circular orbits (bands) have two linear normal modes for each m, which can be stable or unstable. We derive analytical expressions for the instability condition, pattern speeds, growth rates, and normal mode structure. Narrow bands are unstable to modes with a wide range in m. Numerical simulations confirm linear theory and follow the non-linear evolution of instabilities. Long-time integration suggests that instabilities of different m grow, interact non-linearly, and relax collisionlessly to a coarse-grained equilibrium with a wide range of eccentricities.
NASA Astrophysics Data System (ADS)
Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. B.; Lüthi, D.; Wernli, H.
2004-08-01
A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates.
In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez, Jose Beltrán; Heisenberg, Lavinia; Olmo, Gonzalo J., E-mail: jose.beltran@uclouvain.be, E-mail: Lavinia.Heisenberg@unige.ch, E-mail: gonzalo.olmo@csic.es
We generalize the ultraviolet sector of gravitation via a Born-Infeld action using lessons from massive gravity. The theory contains all of the elementary symmetric polynomials and is treated in the Palatini formalism. We show how the connection can be solved algebraically to be the Levi-Civita connection of an effective metric. The non-linearity of the algebraic equations yields several branches, one of which always reduces to General Relativity at low curvatures. We explore in detail a minimal version of the theory, for which we study solutions in the presence of a perfect fluid with special attention to the cosmological evolution. Inmore » vacuum we recover Ricci-flat solutions, but also an additional physical solution corresponding to an Einstein space. The existence of two physical branches remains for non-vacuum solutions and, in addition, the branch that connects to the Einstein space in vacuum is not very sensitive to the specific value of the energy density. For the branch that connects to the General Relativity limit we generically find three behaviours for the Hubble function depending on the equation of state of the fluid, namely: either there is a maximum value for the energy density that connects continuously with vacuum, or the energy density can be arbitrarily large but the Hubble function saturates and remains constant at high energy densities, or the energy density is unbounded and the Hubble function grows faster than in General Relativity. The second case is particularly interesting because it could offer an interesting inflationary epoch even in the presence of a dust component. Finally, we discuss the possibility of avoiding certain types of singularities within the minimal model.« less
NASA Astrophysics Data System (ADS)
Petrie, Ruth Elizabeth; Bannister, Ross Noel; Priestley Cullen, Michael John
2017-12-01
In developing methods for convective-scale data assimilation (DA), it is necessary to consider the full range of motions governed by the compressible Navier-Stokes equations (including non-hydrostatic and ageostrophic flow). These equations describe motion on a wide range of timescales with non-linear coupling. For the purpose of developing new DA techniques that suit the convective-scale problem, it is helpful to use so-called toy models
that are easy to run and contain the same types of motion as the full equation set. Such a model needs to permit hydrostatic and geostrophic balance at large scales but allow imbalance at small scales, and in particular, it needs to exhibit intermittent convection-like behaviour. Existing toy models
are not always sufficient for investigating these issues. A simplified system of intermediate complexity derived from the Euler equations is presented, which supports dispersive gravity and acoustic modes. In this system, the separation of timescales can be greatly reduced by changing the physical parameters. Unlike in existing toy models, this allows the acoustic modes to be treated explicitly and hence inexpensively. In addition, the non-linear coupling induced by the equation of state is simplified. This means that the gravity and acoustic modes are less coupled than in conventional models. A vertical slice formulation is used which contains only dry dynamics. The model is shown to give physically reasonable results, and convective behaviour is generated by localised compressible effects. This model provides an affordable and flexible framework within which some of the complex issues of convective-scale DA can later be investigated. The model is called the ABC model
after the three tunable parameters introduced: A (the pure gravity wave frequency), B (the modulation of the divergent term in the continuity equation), and C (defining the compressibility).
Generalized massive optimal data compression
NASA Astrophysics Data System (ADS)
Alsing, Justin; Wandelt, Benjamin
2018-05-01
In this paper, we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loéve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.
Connection dynamics of a gauge theory of gravity coupled with matter
NASA Astrophysics Data System (ADS)
Yang, Jian; Banerjee, Kinjal; Ma, Yongge
2013-10-01
We study the coupling of the gravitational action, which is a linear combination of the Hilbert-Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero-Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert-Palatini term and the quadratic torsion term in this gauge theory of gravity.
A Massive-born Neutron Star with a Massive White Dwarf Companion
NASA Astrophysics Data System (ADS)
Cognard, Ismaël; Freire, Paulo C. C.; Guillemot, Lucas; Theureau, Gilles; Tauris, Thomas M.; Wex, Norbert; Graikou, Eleni; Kramer, Michael; Stappers, Benjamin; Lyne, Andrew G.; Bassa, Cees; Desvignes, Gregory; Lazarus, Patrick
2017-08-01
We report on the results of a 4 year timing campaign of PSR J2222-0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m p = 1.76 ± 0.06 M ⊙ and a WD mass m c = 1.293 ± 0.025 M ⊙. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little (< 10-2 M ⊙) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222-0137 puts that system into a poorly tested parameter range.
Stability of metal-rich very massive stars
NASA Astrophysics Data System (ADS)
Goodman, J.; White, Christopher J.
2016-02-01
We revisit the stability of very massive non-rotating main-sequence stars at solar metallicity, with the goal of understanding whether radial pulsations set a physical upper limit to stellar mass. Models of up to 938 solar masses are constructed with the MESA code, and their linear stability in the fundamental mode, assumed to be the most dangerous, is analysed with a fully non-adiabatic method. Models above 100 M⊙ have extended tenuous atmospheres (`shelves') that affect the stability of the fundamental. Even when positive, this growth rate is small, in agreement with previous results. We argue that small growth rates lead to saturation at small amplitudes that are not dangerous to the star. A mechanism for saturation is demonstrated involving non-linear parametric coupling to short-wavelength g-modes and the damping of the latter by radiative diffusion. The shelves are subject to much more rapidly growing strange modes. This also agrees with previous results but is extended here to higher masses. The strange modes probably saturate via shocks rather than mode coupling but have very small amplitudes in the core, where almost all of the stellar mass resides. Although our stellar models are hydrostatic, the structure of their outer parts suggests that optically thick winds, driven by some combination of radiation pressure, transonic convection, and strange modes, are more likely than pulsation in the fundamental mode to limit the main-sequence lifetime.
NASA Astrophysics Data System (ADS)
Agresti, Juri; De Pietri, Roberto; Lusanna, Luca; Martucci, Luca
2004-05-01
In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy {\\hat E}ADM, we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of non-harmonic 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) r_{\\bar a}(\\tau ,\\vec \\sigma ), \\pi_{\\bar a}(\\tau ,\\vec \\sigma ), \\bar a = 1,2. We define a Hamiltonian linearization of the theory, i.e. gravitational waves, without introducing any background 4-metric, by retaining only the linear terms in the DO's in the super-hamiltonian constraint (the Lichnerowicz equation for the conformal factor of the 3-metric) and the quadratic terms in the DO's in {\\hat E}ADM. We solve all the constraints of the linearized theory: this amounts to work in a well defined post-Minkowskian Christodoulou-Klainermann space-time. The Hamilton equations imply the wave equation for the DO's r_{\\bar a}(\\tau ,\\vec \\sigma ), which replace the two polarizations of the TT harmonic gauge, and that linearized Einstein's equations are satisfied. Finally we study the geodesic equation, both for time-like and null geodesics, and the geodesic deviation equation.
KIC 3240411 - the hottest known SPB star with the asymptotic g-mode period spacing
NASA Astrophysics Data System (ADS)
Szewczuk, Wojciech; Daszyńska-Daszkiewicz, Jadwiga
2018-05-01
We report the discovery of the hottest hybrid B-type pulsator, KIC 3240411, that exhibits the period spacing in the low-frequency range. This pattern is associated with asymptotic properties of high-order gravity (g-) modes. Our seismic modelling made simultaneously with the mode identification shows that dipole axisymmetric modes best fit the observations. Evolutionary models are computed with MESA code and pulsational models with the linear non-adiabatic code employing the traditional approximation to include the effects of rotation. The problem of mode excitation is discussed. We confirm that significant modification is indispensable to explain an instability of both pressure and gravity modes in the observed frequency ranges of KIC 3240411.
ERIC Educational Resources Information Center
Ferri, Bonni H.; Ferri, Aldo A.; Majerich, David M.; Madden, Amanda G.
2016-01-01
This paper examines the effects of hands-on learning in an undergraduate circuits class that is taught to non-majors; i.e., students outside of electrical and computing engineering. The course, ECE3710, is taught in a blended format facilitated by the video lectures prepared for two Massive Open Online Courses developed for the Coursera Platform.…
NASA Technical Reports Server (NTRS)
Eaton, J. A.; Wu, C.-C.; Rucinski, S. M.
1980-01-01
The paper presents photometry of the prototype W UMa binary system in three ultraviolet bands with the ANS satellite. It was found that W UMa has low-gravity darkening beta of 0.03; that temperature differences between the components not established by gravity darkening are insignificant; and that the bolometric albedo is not very large. It was also found that W UMa is limb-darkened in the ultraviolet region, and that the inner hemisphere of the less massive component is hotter than that predicted by gravity darkening and the reflection effect. It was concluded that about 20% of the surface area of the component responsible for large gravity darkening is covered by dark spots distributed uniformly in the longitudinal direction. An observational value of the convective darkening exponent of 0.054 plus or minus 0.02 is proposed.
Massive antigravity field and incomplete black hole evaporation
NASA Astrophysics Data System (ADS)
Massa, Corrado
2008-04-01
If gravity is a mixture of the ordinary attractive force carried by the massless graviton, and of a repulsive force carried by a particle with nonzero mass, an evaporating black hole might leave a stable remnant.
A gauge-theoretic approach to gravity.
Krasnov, Kirill
2012-08-08
Einstein's general relativity (GR) is a dynamical theory of the space-time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang-Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach.
Extending applicability of bimetric theory: chameleon bigravity
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Mukohyama, Shinji; Uzan, Jean-Philippe
2018-02-01
This article extends bimetric formulations of massive gravity to make the mass of the graviton to depend on its environment. This minimal extension offers a novel way to reconcile massive gravity with local tests of general relativity without invoking the Vainshtein mechanism. On cosmological scales, it is argued that the model is stable and that it circumvents the Higuchi bound, hence relaxing the constraints on the parameter space. Moreover, with this extension the strong coupling scale is also environmentally dependent in such a way that it is kept sufficiently higher than the expansion rate all the way up to the very early universe, while the present graviton mass is low enough to be phenomenologically interesting. In this sense the extended bigravity theory serves as a partial UV completion of the standard bigravity theory. This extension is very generic and robust and a simple specific example is described.
Spinor formulation of topologically massive gravity
NASA Astrophysics Data System (ADS)
Aliev, A. N.; Nutku, Y.
1995-12-01
In the framework of real 2-component spinors in three dimensional space-time we present a description of topologically massive gravity (TMG) in terms of differential forms with triad scalar coefficients. This is essentially a real version of the Newman-Penrose formalism in general relativity. A triad formulation of TMG was considered earlier by Hall, Morgan and Perjes, however, due to an unfortunate choice of signature some of the spinors underlying the Hall-Morgan-Perjes formalism are real, while others are pure imaginary. We obtain the basic geometrical identities as well as the TMG field equations including a cosmological constant for the appropriate signature. As an application of this formalism we discuss the Bianchi Type $VIII - IX$ exact solutions of TMG and point out that they are parallelizable manifolds. We also consider various re-identifications of these homogeneous spaces that result in black hole solutions of TMG.
Coleman-de Luccia instanton in dRGT massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ying-li; Saito, Ryo; Yeom, Dong-han
2014-02-01
We study the Coleman-de Luccia (CDL) instanton characterizing the tunneling from a false vacuum to the true vacuum in a semi-classical way in dRGT (deRham-Gabadadze-Tolley) massive gravity theory, and evaluate the dependence of the tunneling rate on the model parameters. It is found that provided with the same physical Hubble parameters for the true vacuum H{sub T} and the false vacuum H{sub F} as in General Relativity (GR), the thin-wall approximation method implies the same tunneling rate as GR. However, deviations of tunneling rate from GR arise when one goes beyond the thin-wall approximation and they change monotonically until themore » Hawking-Moss (HM) case. Moreover, under the thin-wall approximation, the HM process may dominate over the CDL one if the value for the graviton mass is larger than the inverse of the radius of the bubble.« less
Asymptotically anti-de Sitter spacetimes in topologically massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henneaux, Marc; Physique theorique et mathematique, Universite Libre de Bruxelles and International Solvay Institutes, ULB Campus Plaine C.P. 231, B-1050 Bruxelles; Martinez, Cristian
2009-04-15
We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter {mu} ({mu}{ne}0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |{mu}l|=1 (where l is the anti-demore » Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.« less
Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.
Yunes, Nicolás; Siemens, Xavier
2013-01-01
This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime . Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.
NASA Astrophysics Data System (ADS)
Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui
2017-11-01
Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1's accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.
Enhanced asymptotic symmetry algebra of (2 +1 ) -dimensional flat space
NASA Astrophysics Data System (ADS)
Detournay, Stéphane; Riegler, Max
2017-02-01
In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2 +1 ) -dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007), 10.1088/0264-9381/24/5/F01]. These new boundary conditions lead to an asymptotic symmetry algebra that is generated by a bms3 algebra and two affine u ^(1 ) current algebras. We then apply these boundary conditions to topologically massive gravity (TMG) and determine how the presence of the gravitational Chern-Simons term affects the central extensions of the asymptotic symmetry algebra. We furthermore determine the thermal entropy of solutions obeying our new boundary conditions for both Einstein gravity and TMG.
Unitarity check in gravitational Higgs mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezhiani, Lasha; Mirbabayi, Mehrdad
2011-03-15
The effective field theory of massive gravity has long been formulated in a generally covariant way [N. Arkani-Hamed, H. Georgi, and M. D. Schwartz, Ann. Phys. (N.Y.) 305, 96 (2003).]. Using this formalism, it has been found recently that there exists a class of massive nonlinear theories that are free of the Boulware-Deser ghosts, at least in the decoupling limit [C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020 (2010).]. In this work we study other recently proposed models that go under the name of 'gravitational Higgs theories' [A. H. Chamseddine and V. Mukhanov, J. High Energy Phys.more » 08 (2010) 011.]. We show that these models, although seemingly different from the effective field theories of massive gravity, are in fact equivalent to them. Furthermore, based on the results obtained in the effective field theory approach, we conclude that the gravitational Higgs theories need the same adjustment of the Lagrangian to avoid the ghosts. We also show the equivalence between the noncovariant mode decomposition used in the Higgs theories, and the covariant Stueckelberg parametrization adopted in the effective field theories, thus proving that the presence or absence of the ghost is independent of the parametrization used in either theory.« less
Role of matter in extended quasidilaton massive gravity
NASA Astrophysics Data System (ADS)
Gümrükçüoǧlu, A. Emir; Koyama, Kazuya; Mukohyama, Shinji
2016-12-01
The extended quasidilaton theory is one of the simplest Lorentz-invariant massive gravity theories which can accommodate a stable self-accelerating vacuum solution. In this paper we revisit this theory and study the effect of matter fields. For a matter sector that couples minimally to the physical metric, we find hints of a Jeans type instability in the IR. In the analogue k-essence field setup, this instability manifests itself as an IR ghost for the scalar field perturbation, but this can be interpreted as a classical instability that becomes relevant below some momentum scale in terms of matter density perturbations. We also consider the effect of the background evolution influenced by matter on the stability of the gravity sector perturbations. In particular, we address the previous claims of ghost instability in the IR around the late time attractor. We show that, although the matter-induced modification of the evolution potentially brings tension to the stability conditions, one goes beyond the regime of validity of the effective theory well before the solutions become unstable. We also draw attention to the fact that the IR stability conditions are also enforced by the existence requirements of consistent background solutions.
The matter-ekpyrotic bounce scenario in Loop Quantum Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haro, Jaume; Amorós, Jaume; Saló, Llibert Aresté, E-mail: jaime.haro@upc.edu, E-mail: jaume.amoros@upc.edu, E-mail: llibert.areste@estudiant.upc.edu
We will perform a detailed study of the matter-ekpyrotic bouncing scenario in Loop Quantum Cosmology using the methods of the dynamical systems theory. We will show that when the background is driven by a single scalar field, at very late times, in the contracting phase, all orbits depict a matter dominated Universe, which evolves to an ekpyrotic phase. After the bounce the Universe enters in the expanding phase, where the orbits leave the ekpyrotic regime going to a kination (also named deflationary) regime. Moreover, this scenario supports the production of heavy massive particles conformally coupled with gravity, which reheats themore » universe at temperatures compatible with the nucleosynthesis bounds and also the production of massless particles non-conformally coupled with gravity leading to very high reheating temperatures but ensuring the nucleosynthesis success. Dealing with cosmological perturbations, these background dynamics produce a nearly scale invariant power spectrum for the modes that leave the Hubble radius, in the contracting phase, when the Universe is quasi-matter dominated, whose spectral index and corresponding running is compatible with the recent experimental data obtained by PLANCK's team.« less
A noncompact Weyl-Einstein-Yang-Mills model: A semiclassical quantum gravity
NASA Astrophysics Data System (ADS)
Dengiz, Suat
2017-08-01
We construct and study perturbative unitarity (i.e., ghost and tachyon analysis) of a 3 + 1-dimensional noncompact Weyl-Einstein-Yang-Mills model. The model describes a local noncompact Weyl's scale plus SU(N) phase invariant Higgs-like field,conformally coupled to a generic Weyl-invariant dynamical background. Here, the Higgs-like sector generates the Weyl's conformal invariance of system. The action does not admit any dimensionful parameter and genuine presence of de Sitter vacuum spontaneously breaks the noncompact gauge symmetry in an analogous manner to the Standard Model Higgs mechanism. As to flat spacetime, the dimensionful parameter is generated within the dimensional transmutation in quantum field theories, and thus the symmetry is radiatively broken through the one-loop Effective Coleman-Weinberg potential. We show that the mere expectation of reducing to Einstein's gravity in the broken phases forbids anti-de Sitter space to be its stable vacua. The model is unitary in de Sitter and flat vacua around which a massless graviton, N2 - 1 massless scalar bosons, N massless Dirac fermions, N2 - 1 Proca-type massive Abelian and non-Abelian vector bosons are generically propagated.
Baby de Sitter black holes and dS3/CFT2
NASA Astrophysics Data System (ADS)
de Buyl, Sophie; Detournay, Stéphane; Giribet, Gaston; Ng, Gim Seng
2014-02-01
Unlike three-dimensional Einstein gravity, three-dimensional massive gravity admits asymptotically de Sitter space (dS) black hole solutions. These black holes present interesting features and provide us with toy models to study the dS/CFT correspondence. A remarkable property of these black holes is that they are always in thermal equilibrium with the cosmological horizon of the space that hosts them. This invites us to study the thermodynamics of these solutions within the context of dS/CFT. We study the asymptotic symmetry group of the theory and find that it indeed coincides with the local two-dimensional conformal algebra. The charge algebra associated to the asymptotic Killing vectors consists of two copies of the Virasoro algebra with non-vanishing central extension. We compute the mass and angular momentum of the dS black holes and verify that a naive application of Cardy's formula exactly reproduces the entropy of both the black hole and the cosmological horizon. By adapting the holographic renormalization techniques to the case of dS space, we define the boundary stress tensor of the dual Euclidean conformal field theory.
Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind
NASA Technical Reports Server (NTRS)
Alexander, M. J.; Rosenlof, K. H.
1996-01-01
The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.
The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona
Pool, D.R.
2008-01-01
Coincident monitoring of gravity and water levels at 39 wells in southern Arizona indicate that water-level change might not be a reliable indicator of aquifer-storage change for alluvial aquifer systems. One reason is that water levels in wells that are screened across single or multiple aquifers might not represent the hydraulic head and storage change in a local unconfined aquifer. Gravity estimates of aquifer-storage change can be approximated as a one-dimensional feature except near some withdrawal wells and recharge sources. The aquifer storage coefficient is estimated by the linear regression slope of storage change (estimated using gravity methods) and water-level change. Nonaquifer storage change that does not percolate to the aquifer can be significant, greater than 3 ??Gal, when water is held in the root zone during brief periods following extreme rates of precipitation. Monitor-ing of storage change using gravity methods at wells also can improve understanding of local hydrogeologic conditions. In the study area, confined aquifer conditions are likely at three wells where large water-level variations were accompanied by little gravity change. Unconfined conditions were indicated at 15 wells where significant water-level and gravity change were positively linearly correlated. Good positive linear correlations resulted in extremely large specific-yield values, greater than 0.35, at seven wells where it is likely that significant ephemeral streamflow infiltration resulted in unsaturated storage change. Poor or negative linear correlations indicate the occurrence of confined, multiple, or perched aquifers. Monitoring of a multiple compressible aquifer system at one well resulted in negative correlation of rising water levels and subsidence-corrected gravity change, which suggests that water-level trends at the well are not a good indicatior of overall storage change. ?? 2008 Society of Exploration Geophysicists. All rights reserved.
Lorentz and diffeomorphism violations in linearized gravity
NASA Astrophysics Data System (ADS)
Kostelecký, V. Alan; Mewes, Matthew
2018-04-01
Lorentz and diffeomorphism violations are studied in linearized gravity using effective field theory. A classification of all gauge-invariant and gauge-violating terms is given. The exact covariant dispersion relation for gravitational modes involving operators of arbitrary mass dimension is constructed, and various special limits are discussed.
CLUMPY DISKS AS A TESTBED FOR FEEDBACK-REGULATED GALAXY FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Lucio; Tamburello, Valentina; Lupi, Alessandro
2016-10-10
We study the dependence of fragmentation in massive gas-rich galaxy disks at z >1 on stellar feedback schemes and hydrodynamical solvers, employing the GASOLINE2 SPH code and the lagrangian mesh-less code GIZMO in finite mass mode. Non-cosmological galaxy disk runs with the standard delayed-cooling blastwave feedback are compared with runs adopting a new superbubble feedback, which produces winds by modeling the detailed physics of supernova-driven bubbles and leads to efficient self-regulation of star formation. We find that, with blastwave feedback, massive star-forming clumps form in comparable number and with very similar masses in GASOLINE2 and GIZMO. Typical clump masses aremore » in the range 10{sup 7}–10{sup 8} M {sub ⊙}, lower than in most previous works, while giant clumps with masses above 10{sup 9} M {sub ⊙} are exceedingly rare. By contrast, superbubble feedback does not produce massive star-forming bound clumps as galaxies never undergo a phase of violent disk instability. In this scheme, only sporadic, unbound star-forming overdensities lasting a few tens of Myr can arise, triggered by non-linear perturbations from massive satellite companions. We conclude that there is severe tension between explaining massive star-forming clumps observed at z >1 primarily as the result of disk fragmentation driven by gravitational instability and the prevailing view of feedback-regulated galaxy formation. The link between disk stability and star formation efficiency should thus be regarded as a key testing ground for galaxy formation theory.« less
Dark energy and doubly coupled bigravity
NASA Astrophysics Data System (ADS)
Brax, Philippe; Davis, Anne-Christine; Noller, Johannes
2017-05-01
We analyse the late time cosmology and the gravitational properties of doubly coupled bigravity in the constrained vielbein formalism (equivalent to the metric formalism) when the mass of the massive graviton is of the order of the present Hubble rate. We focus on one of the two branches of background cosmology where the ratio between the scale factors of the two metrics is algebraically determined. We find that the late time physics depends on the mass of the graviton, which dictates the future asymptotic cosmological constant. The Universe evolves from a matter dominated epoch to a dark energy dominated era where the equation of state of dark energy can always be made close to -1 now by appropriately tuning the graviton mass. We also analyse the perturbative spectrum of the theory in the quasi-static approximation, well below the strong coupling scale where no instability is present, and we show that there are five scalar degrees of freedom, two vectors and two gravitons. In Minkowski space, where the four Newtonian potentials vanish, the theory manifestly reduces to one massive and one massless graviton. In a cosmological FRW background for both metrics, four of the five scalars are Newtonian potentials which lead to a modification of gravity on large scales. The fifth one gives rise to a ghost which decouples from pressure-less matter in the quasi-static approximation. In this scalar sector, gravity is modified with effects on both the growth of structure and the lensing potential. In particular, we find that the Σ parameter governing the Poisson equation of the weak lensing potential can differ from one in the recent past of the Universe. Overall, the nature of the modification of gravity at low energy, which reveals itself in the growth of structure and the lensing potential, is intrinsically dependent on the couplings to matter and the potential term of the vielbeins. We also find that the time variation of Newton’s constant in the Jordan frame can easily satisfy the bound from solar system tests of gravity. Finally we show that the two gravitons present in the spectrum have a non-trivial mass matrix whose origin follows from the potential term of bigravity. This mixing leads to gravitational birefringence.
London equation for monodromy inflation
NASA Astrophysics Data System (ADS)
Kaloper, Nemanja; Lawrence, Albion
2017-03-01
We focus on the massive gauge theory formulation of axion monodromy inflation. We argue that a gauge symmetry hidden in these models is the key mechanism protecting inflation from dangerous field theory and quantum gravity corrections. The effective theory of large-field inflation is dual to a massive U (1 ) 4-form gauge theory, which is similar to a massive gauge theory description of superconductivity. The gauge theory explicitly realizes the old Julia-Toulouse proposal for a low-energy description of a gauge theory in a defect condensate. While we work mostly with the example of quadratic axion potential induced by flux monodromy, we discuss how other types of potentials can arise from the inclusion of gauge-invariant corrections to the theory.
Higgs mechanism for gravity. II. Higher spin connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boulanger, Nicolas; Kirsch, Ingo; Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
We continue the work of [Phys. Rev. D 72, 024001 (2005)] in which gravity is considered as the Goldstone realization of a spontaneously broken diffeomorphism group. We complete the discussion of the coset space Diff (d,R)/SO(1,d-1) formed by the d-dimensional group of analytic diffeomorphisms and the Lorentz group. We find that this coset space is parametrized by coordinates, a metric, and an infinite tower of higher-spin or generalized connections. We then study effective actions for the corresponding symmetry breaking which gives mass to the higher spin connections. Our model predicts that gravity is modified at high energies by the exchangemore » of massive higher spin particles.« less
Gravity Anomaly Intersects Moon Basin
2012-12-05
A linear gravity anomaly intersecting the Crisium basin on the nearside of the moon has been revealed by NASA GRAIL mission. The GRAIL gravity gradient data are shown at left, with the location of the anomaly indicated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnich, Glenn; Troessaert, Cedric
2009-04-15
In the reduced phase space of electromagnetism, the generator of duality rotations in the usual Poisson bracket is shown to generate Maxwell's equations in a second, much simpler Poisson bracket. This gives rise to a hierarchy of bi-Hamiltonian evolution equations in the standard way. The result can be extended to linearized Yang-Mills theory, linearized gravity, and massless higher spin gauge fields.
Testing Verlinde's emergent gravity in early-type galaxies
NASA Astrophysics Data System (ADS)
Tortora, C.; Koopmans, L. V. E.; Napolitano, N. R.; Valentijn, E. A.
2018-01-01
Emergent Gravity (EG) has been proposed to resolve the missing mass problem in galaxies, replacing the potential of dark matter (DM) by the effect of the entropy displacement of dark energy by baryonic matter. This apparent DM depends only on the baryonic mass distribution and the present-day value of the Hubble parameter. In this paper we test the EG proposition, formalized by Verlinde for a spherical and isolated mass distribution using the central dynamics (Sloan Digital Sky Survey velocity dispersion, σ) and the K-band light distribution in a sample of 4032 massive (M_{\\star }≳ 10^{10} M_{⊙}) and local early-type galaxies (ETGs) from the SPIDER datasample. Our results remain unaltered if we consider the sample of 750 roundest field galaxies. Using these observations we derive the predictions by EG for the stellar mass-to-light ratio (M/L) and the initial mass function (IMF). We demonstrate that, consistently with a classical Newtonian framework with a DM halo component or alternative theories of gravity as MOdified Newtonian Dynamics (MOND), the central dynamics can be fitted if the IMF is assumed non-universal and systematically changing with σ. For the case of EG, we find lower, but still acceptable, stellar M/L if compared with the DM-based Navarro, Frenk & White (NFW) model and with MOND, but pretty similar to adiabatically contracted DM haloes and with expectations from spectral gravity-sensitive features. If the strain caused by the entropy displacement would be not maximal, as adopted in the current formulation, then the dynamics of ETGs could be reproduced with larger M/L.
LaAlO3: A substrate material with unusual ferroelastic properties
NASA Astrophysics Data System (ADS)
Kustov, S.; Liubimova, Iu.; Salje, E. K. H.
2018-01-01
Twin boundary dynamics in LaAlO3 is associated with non-linear anelasticity. Ultrasonic studies of non-linear twin boundary dynamics between 80 and 520 K show that cooling substrates from temperatures near the ferroelastic transition at 813 K generate three characteristic thermal regimes with different non-linear dynamics. Twin boundaries are initially highly mobile. Anelastic strain amplitudes versus stress are power law distributed with an exponent of 2.5. No de-pinning was found down to elastic strain amplitudes of ɛ0 ˜ 10-7. The power law is gradually replaced between 370 K and 280 K by few large singularities (jerks) due to massive rearrangements of the domain structure for ɛ0 larger than ca. 5 × 10-5. At lower temperatures, the domain structure is pinned with well-defined thresholds for de-pinning. The de-pinning is not accompanied by global rearrangements of twin patterns below room temperature. Unexpectedly, the low-temperature critical de-pinning strain amplitude decreases with decreasing temperature, which may indicate an additional, so far unknown phase transition near 40 K.
Recent gravity monitoring of ETS transient deformation in the northern Cascadia Subduction Zone
NASA Astrophysics Data System (ADS)
Henton, J. A.; Dragert, H.; Lambert, A.; Nykolaishen, L.; Liard, J.; Courtier, N.
2012-12-01
High-precision gravity observations are sensitive to vertical motion of the observation site as well as mass redistribution and can be used to investigate the physical processes involved in Episodic Tremor and Slip (ETS). For the 2011 ETS event in the northern portion of the Cascadia Subduction Zone, absolute gravity (AG) observations and continuous gravity monitoring with an earth tide (ET) gravimeter were carried out at the Pacific Geoscience Centre (PGC) in order to augment the GPS and borehole strainmeter (BSM) data used in constraining models of slip on the subduction plate interface. Unfortunately, the surface displacements and strains for the August 2011 slow slip event were significantly less for southern Vancouver Island than those recorded for previous events making this particular ETS episode less than ideal for the search for attendant gravity signals. Nonetheless, preliminary AG results for the 2011 ETS event show a subtle (≤ 1μGal) negative transient gravity signal but its origin is not clear. This residual gravity change, after accounting for the gravity offset predicted from the observed height change, may reflect a migration of fluids and/or a change in mean density. No significant vertical change is observed in the GPS data. Based on previous events, this is expected since PGC lies close to the hinge-line for vertical deformation for regional ETS. We attempt to improve the resolution of the GPS results by including results from NRCan's PPP software in our analyses. Data from the 3 co-located BSM's operated by the Plate Boundary Observatory show discrepancies that indicate interfering signals of likely non-tectonic origin. Preliminary data from the ET gravimeter appear to be dominated by non-linear instrumental drift that is often observed at the outset of continuous operation at a new location. To improve the resolution of the gravity signal, future monitoring of ETS events will be supplemented at PGC by continuous gravity measurements with a superconducting gravimeter. For the 2012 ETS event in northern Cascadia, AG observations are also planned for Port Renfrew, British Columbia. The Port Renfrew region is targeted since it has typically had large (~7mm) vertical displacements and strains during past ETS episodes. Analysis of the multiple-epoch series of AG observations at Port Renfrew during the 2010 ETS event indicate a gravity decrease larger than expected for observed GPS height change associated with thrust faulting.
Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling
NASA Technical Reports Server (NTRS)
Rios, Joseph Lucio; Ross, Kevin
2009-01-01
Optimal scheduling of air traffic over the entire National Airspace System is a computationally difficult task. To speed computation, Dantzig-Wolfe decomposition is applied to a known linear integer programming approach for assigning delays to flights. The optimization model is proven to have the block-angular structure necessary for Dantzig-Wolfe decomposition. The subproblems for this decomposition are solved in parallel via independent computation threads. Experimental evidence suggests that as the number of subproblems/threads increases (and their respective sizes decrease), the solution quality, convergence, and runtime improve. A demonstration of this is provided by using one flight per subproblem, which is the finest possible decomposition. This results in thousands of subproblems and associated computation threads. This massively parallel approach is compared to one with few threads and to standard (non-decomposed) approaches in terms of solution quality and runtime. Since this method generally provides a non-integral (relaxed) solution to the original optimization problem, two heuristics are developed to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a near-optimal (sometimes optimal) solution to the original problem hundreds of times faster than standard (non-decomposed) approaches. In addition, when massive decomposition is employed, the solution is shown to be more likely integral, which obviates the need for an integerization step. These results indicate that nationwide, real-time, high fidelity, optimal traffic flow scheduling is achievable for (at least) 3 hour planning horizons.
NASA Technical Reports Server (NTRS)
Ustinov, Eugene A.; Sunseri, Richard F.
2005-01-01
An approach is presented to the inversion of gravity fields based on evaluation of partials of observables with respect to gravity harmonics using the solution of adjoint problem of orbital dynamics of the spacecraft. Corresponding adjoint operator is derived directly from the linear operator of the linearized forward problem of orbital dynamics. The resulting adjoint problem is similar to the forward problem and can be solved by the same methods. For given highest degree N of gravity harmonics desired, this method involves integration of N adjoint solutions as compared to integration of N2 partials of the forward solution with respect to gravity harmonics in the conventional approach. Thus, for higher resolution gravity models, this approach becomes increasingly more effective in terms of computer resources as compared to the approach based on the solution of the forward problem of orbital dynamics.
From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect
NASA Astrophysics Data System (ADS)
Lusanna, Luca
Clock synchronization leads to the definition of instantaneous 3-spaces (to be used as Cauchy surfaces) in non-inertial frames, the only ones allowed by the equivalence principle. ADM canonical tetrad gravity in asymptotically Minkowskian space-times can be described in this framework. This allows to find the York canonical basis in which the inertial (gauge) and tidal (physical) degrees of freedom of the gravitational field can be identified. A Post-Minkowskian linearization with respect to the asymptotic Minkowski metric (asymptotic background) allows to solve the Dirac constraints in non-harmonic 3-orthogonal gauges and to find non-harmonic TT gravitational waves. The inertial gauge variable York time (the trace of the extrinsic curvature of the 3-space) describes the general relativistic freedom in clock synchronization. After a digression on the gauge problem in general relativity, it is shown that dark matter, whose experimental signatures are the rotation curves and the mass of galaxies, may be described (at least partially) as an inertial relativistic effect (absent in Newton gravity) connected with the York time.
Otolith-Canal Convergence In Vestibular Nuclei Neurons
NASA Technical Reports Server (NTRS)
Dickman, J. David; Si, Xiao-Hong
2002-01-01
The current final report covers the period from June 1, 1999 to May 31, 2002. The primary objective of the investigation was to determine how information regarding head movements and head position relative to gravity is received and processed by central vestibular nuclei neurons in the brainstem. Specialized receptors in the vestibular labyrinths of the inner ear function to detect angular and linear accelerations of the head, with receptors located in the semicircular canals transducing rotational head movements and receptors located in the otolith organs transducing changes in head position relative to gravity or linear accelerations of the head. The information from these different receptors is then transmitted to central vestibular nuclei neurons which process the input signals, then project the appropriate output information to the eye, head, and body musculature motor neurons to control compensatory reflexes. Although a number of studies have reported on the responsiveness of vestibular nuclei neurons, it has not yet been possible to determine precisely how these cells combine the information from the different angular and linear acceleration receptors into a correct neural output signal. In the present project, rotational and linear motion stimuli were separately delivered while recording responses from vestibular nuclei neurons that were characterized according to direct input from the labyrinth and eye movement sensitivity. Responses from neurons receiving convergent input from the semicircular canals and otolith organs were quantified and compared to non-convergent neurons.
Strange mode instabilities and mass loss in evolved massive primordial stars
NASA Astrophysics Data System (ADS)
Yadav, Abhay Pratap; Kühnrich Biavatti, Stefan Henrique; Glatzel, Wolfgang
2018-04-01
A linear stability analysis of models for evolved primordial stars with masses between 150 and 250 M⊙ is presented. Strange mode instabilities with growth rates in the dynamical range are identified for stellar models with effective temperatures below log Teff = 4.5. For selected models, the final fate of the instabilities is determined by numerical simulation of their evolution into the non-linear regime. As a result, the instabilities lead to finite amplitude pulsations. Associated with them are acoustic energy fluxes capable of driving stellar winds with mass-loss rates in the range between 7.7 × 10-7 and 3.5 × 10-4 M⊙ yr-1.
NASA Astrophysics Data System (ADS)
Jia, Feng; Lei, Yaguo; Lin, Jing; Zhou, Xin; Lu, Na
2016-05-01
Aiming to promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rotating machinery. Among these studies, the methods based on artificial neural networks (ANNs) are commonly used, which employ signal processing techniques for extracting features and further input the features to ANNs for classifying faults. Though these methods did work in intelligent fault diagnosis of rotating machinery, they still have two deficiencies. (1) The features are manually extracted depending on much prior knowledge about signal processing techniques and diagnostic expertise. In addition, these manual features are extracted according to a specific diagnosis issue and probably unsuitable for other issues. (2) The ANNs adopted in these methods have shallow architectures, which limits the capacity of ANNs to learn the complex non-linear relationships in fault diagnosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential to overcome the aforementioned deficiencies. Through deep learning, deep neural networks (DNNs) with deep architectures, instead of shallow ones, could be established to mine the useful information from raw data and approximate complex non-linear functions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of the proposed method is validated using datasets from rolling element bearings and planetary gearboxes. These datasets contain massive measured signals involving different health conditions under various operating conditions. The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.
NASA Astrophysics Data System (ADS)
Romero, Pilar; Barderas, Gonzalo; Mejuto, Javier
2018-05-01
We present a qualitative analysis in a phase space to determine the longitudinal equilibrium positions on the planetary stationary orbits by applying an analytical model that considers linear gravitational perturbations. We discuss how these longitudes are related with the orientation of the planetary principal inertia axes with respect to their Prime Meridians, and then we use this determination to derive their positions with respect to the International Celestial Reference Frame. Finally, a numerical analysis of the non-linear effects of the gravitational fields on the equilibrium point locations is developed and their correlation with gravity field anomalies shown.
NASA Astrophysics Data System (ADS)
Brissaud, Q.; Garcia, R.; Sladen, A.; Martin, R.; Komatitsch, D.
2016-12-01
Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite-difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with spatially non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including variations with altitude of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from shallow water simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.
A gauge-theoretic approach to gravity
Krasnov, Kirill
2012-01-01
Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040
KiDS-450: testing extensions to the standard cosmological model
NASA Astrophysics Data System (ADS)
Joudaki, Shahab; Mead, Alexander; Blake, Chris; Choi, Ami; de Jong, Jelte; Erben, Thomas; Fenech Conti, Ian; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Joachimi, Benjamin; Klaes, Dominik; Köhlinger, Fabian; Kuijken, Konrad; McFarland, John; Miller, Lance; Schneider, Peter; Viola, Massimo
2017-10-01
We test extensions to the standard cosmological model with weak gravitational lensing tomography using 450 deg2 of imaging data from the Kilo Degree Survey (KiDS). In these extended cosmologies, which include massive neutrinos, non-zero curvature, evolving dark energy, modified gravity and running of the scalar spectral index, we also examine the discordance between KiDS and cosmic microwave background (CMB) measurements from Planck. The discordance between the two data sets is largely unaffected by a more conservative treatment of the lensing systematics and the removal of angular scales most sensitive to non-linear physics. The only extended cosmology that simultaneously alleviates the discordance with Planck and is at least moderately favoured by the data includes evolving dark energy with a time-dependent equation of state (in the form of the w0 - wa parametrization). In this model, the respective S_8=σ _8√{Ω m/0.3} constraints agree at the 1σ level, and there is 'substantial concordance' between the KiDS and Planck data sets when accounting for the full parameter space. Moreover, the Planck constraint on the Hubble constant is wider than in Λ cold dark matter (ΛCDM) and in agreement with the Riess et al. (2016) direct measurement of H0. The dark energy model is moderately favoured as compared to ΛCDM when combining the KiDS and Planck measurements, and marginalized constraints in the w0-wa plane are discrepant with a cosmological constant at the 3σ level. KiDS further constrains the sum of neutrino masses to 4.0 eV (95% CL), finds no preference for time or scale-dependent modifications to the metric potentials, and is consistent with flatness and no running of the spectral index.
Aspects of general higher-order gravities
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.; Min, Vincent S.; Visser, Manus R.
2017-02-01
We study several aspects of higher-order gravities constructed from general contractions of the Riemann tensor and the metric in arbitrary dimensions. First, we use the fast-linearization procedure presented in [P. Bueno and P. A. Cano, arXiv:1607.06463] to obtain the equations satisfied by the metric perturbation modes on a maximally symmetric background in the presence of matter and to classify L (Riemann ) theories according to their spectrum. Then, we linearize all theories up to quartic order in curvature and use this result to construct quartic versions of Einsteinian cubic gravity. In addition, we show that the most general cubic gravity constructed in a dimension-independent way and which does not propagate the ghostlike spin-2 mode (but can propagate the scalar) is a linear combination of f (Lovelock ) invariants, plus the Einsteinian cubic gravity term, plus a new ghost-free gravity term. Next, we construct the generalized Newton potential and the post-Newtonian parameter γ for general L (Riemann ) gravities in arbitrary dimensions, unveiling some interesting differences with respect to the four-dimensional case. We also study the emission and propagation of gravitational radiation from sources for these theories in four dimensions, providing a generalized formula for the power emitted. Finally, we review Wald's formalism for general L (Riemann ) theories and construct new explicit expressions for the relevant quantities involved. Many examples illustrate our calculations.
Asymptotic Charges at Null Infinity in Any Dimension
NASA Astrophysics Data System (ADS)
Campoleoni, Andrea; Francia, Dario; Heissenberg, Carlo
2018-03-01
We analyse the conservation laws associated with large gauge transformations of massless fields in Minkowski space. Our aim is to highlight the interplay between boundary conditions and finiteness of the asymptotically conserved charges in any space-time dimension, both even and odd, greater than or equal to three. After discussing non-linear Yang-Mills theory and revisiting linearised gravity, our investigation extends to cover the infrared behaviour of bosonic massless quanta of any spin.
NASA Astrophysics Data System (ADS)
Inoue, Tsuyoshi; Hennebelle, Patrick; Fukui, Yasuo; Matsumoto, Tomoaki; Iwasaki, Kazunari; Inutsuka, Shu-ichiro
2018-05-01
Recent observations suggest an that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics simulations with the effect of self-gravity. Adaptive mesh refinement and sink particle techniques are used to follow the long-time evolution of the shocked cloud. We find that the shock compression of a turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field, as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe a high accretion rate \\dot{M}_acc> 10^{-4} M_{⊙}yr-1 that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M > 50 M_{⊙} in a few times 105 yr after the onset of the filament collapse.
Scattering of fermions in the Yukawa theory coupled to unimodular gravity
NASA Astrophysics Data System (ADS)
Gonzalez-Martin, S.; Martin, C. P.
2018-03-01
We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermion→ fermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κ y^2 order of the vertex involving two fermions and one graviton only.
Planckian Interacting Massive Particles as Dark Matter.
Garny, Mathias; Sandora, McCullen; Sloth, Martin S
2016-03-11
The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.
On the local structure of spacetime in ghost-free bimetric theory and massive gravity
NASA Astrophysics Data System (ADS)
Hassan, S. F.; Kocic, Mikica
2018-05-01
The ghost-free bimetric theory describes interactions of gravity with another spin-2 field in terms of two Lorentzian metrics. However, if the two metrics do not admit compatible notions of space and time, the formulation of the initial value problem becomes problematic. Furthermore, the interaction potential is given in terms of the square root of a matrix which is in general nonunique and possibly nonreal. In this paper we show that both these issues are evaded by requiring reality and general covariance of the equations. First we prove that the reality of the square root matrix leads to a classification of the allowed metrics in terms of the intersections of their null cones. Then, the requirement of general covariance further restricts the allowed metrics to geometries that admit compatible notions of space and time. It also selects a unique definition of the square root matrix. The restrictions are compatible with the equations of motion. These results ensure that the ghost-free bimetric theory can be defined unambiguously and that the two metrics always admit compatible 3+1 decompositions, at least locally. In particular, these considerations rule out certain solutions of massive gravity with locally Closed Causal Curves, which have been used to argue that the theory is acausal.
Modelling the chemistry of a gravitationally unstable protoplanetary disc
NASA Astrophysics Data System (ADS)
Ilee, J. D.; Boley, A. C.; Caselli, P.; Durisen, R. H.; Hartquist, T. W.; Rawlings, J. M. C.
2011-05-01
Until now, axisymmetric, α-disc simulations have been adopted to describe the dynamics used in the construction of chemical models of protoplanetary discs. While this approach is reasonable for many discs, it is not appropriate for young, massive discs in which self-gravity is important. Spiral waves and shocks cause significant temperature and density variations which affect the chemistry. We have used a dynamical model of solar mass star surrounded by a massive (0.39 M⊙), self-gravitating disc to model the chemistry of one of these objects.
Nonminimally coupled massive scalar field in a 2D black hole: Exactly solvable model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, V.; Zelnikov, A.
2001-06-15
We study a nonminimal massive scalar field in the background of a two-dimensional black hole spacetime. We consider the black hole which is the solution of the 2D dilaton gravity derived from string-theoretical models. We find an explicit solution in a closed form for all modes and the Green function of the scalar field with an arbitrary mass and a nonminimal coupling to the curvature. Greybody factors, the Hawking radiation, and 2>{sup ren} are calculated explicitly for this exactly solvable model.
Noncommutative massive unquenched ABJM
NASA Astrophysics Data System (ADS)
Bea, Yago; Jokela, Niko; Pönni, Arttu; Ramallo, Alfonso V.
2018-05-01
In this paper, we study noncommutative massive unquenched Chern-Simons matter theory using its gravity dual. We construct this novel background by applying a TsT-transformation on the known parent commutative solution. We discuss several aspects of this solution to the Type IIA supergravity equations of motion and, amongst others, check that it preserves 𝒩 = 1 supersymmetry. We then turn our attention to applications and investigate how dynamical flavor degrees of freedom affect numerous observables of interest. Our framework can be regarded as a key step toward the construction of holographic quantum Hall states on a noncommutative plane.
NASA Astrophysics Data System (ADS)
Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent
2014-05-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link, and optionally a laser link, measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The Preliminary Design Review was achieved successfully on November 2013. The FEEU Engineering Model is under test. Preliminary results on electronic unit will be compared with the expected performance. The integration of the SUM Engineering Model and the first ground levitation of the proof-mass will be presented. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. The post-processing needed to achieve the performance, in particular with regards to the temperature stability, will be explained.
NASA Astrophysics Data System (ADS)
Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh
2015-04-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014 and will be achieved on January 2015. The results of the Engineering Model tests and the status of the Flight Models will be presented.
NASA Astrophysics Data System (ADS)
Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.
2015-12-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The tests will be achieved from July to November 2015. The results of the Engineering Model and Flight Models tests will be presented.
Singularity-free spinors in gravity with propagating torsion
NASA Astrophysics Data System (ADS)
Fabbri, Luca
2017-12-01
We consider the most general renormalizable theory of propagating torsion in Einstein gravity for the Dirac matter distribution and we demonstrate that in this case, torsion is a massive axial-vector field whose coupling to the spinor gives rise to conditions in terms of which gravitational singularities are not bound to form; we discuss how our results improve those that are presented in the existing literature, and that no further improvement can be achieved unless one is ready to re-evaluate some considerations on the renormalizability of the theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harko, Tiberiu; Lobo, Francisco S.N.; Otalora, G.
2014-12-01
We present an extension of f(T) gravity, allowing for a general coupling of the torsion scalar T with the trace of the matter energy-momentum tensor T. The resulting f(T,T) theory is a new modified gravity, since it is different from all the existing torsion or curvature based constructions. Applied to a cosmological framework, it leads to interesting phenomenology. In particular, one can obtain a unified description of the initial inflationary phase, the subsequent non-accelerating, matter-dominated expansion, and then the transition to a late-time accelerating phase. Additionally, the effective dark energy sector can be quintessence or phantom-like, or exhibit the phantom-dividemore » crossing during the evolution. Moreover, in the far future the universe results either to a de Sitter exponential expansion, or to eternal power-law accelerated expansions. Finally, a detailed study of the scalar perturbations at the linear level reveals that f(T,T) cosmology can be free of ghosts and instabilities for a wide class of ansatzes and model parameters.« less
Using absolute gravimeter data to determine vertical gravity gradients
Robertson, D.S.
2001-01-01
The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.
On the covariant gauge {alpha} of the linearized gravity in de Sitter spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheong, Lee Yen
2012-09-26
In previous work, we studied the linearized gravity with covariant gauge {beta}= 2/3 and {alpha}= 5/3. It was found that the sum of the source and initial contributions reproduces the correct field configuration over the whole de Sitter spacetime. In this paper, we extend this work to generalizing the linearized gravitational field in an arbitrary value of the gauge parameter {alpha} but the gauge parameter {beta} remains the same.
Quasilocal conserved charges in a covariant theory of gravity.
Kim, Wontae; Kulkarni, Shailesh; Yi, Sang-Heon
2013-08-23
In any generally covariant theory of gravity, we show the relationship between the linearized asymptotically conserved current and its nonlinear completion through the identically conserved current. Our formulation for conserved charges is based on the Lagrangian description, and so completely covariant. By using this result, we give a prescription to define quasilocal conserved charges in any higher derivative gravity. As applications of our approach, we demonstrate the angular momentum invariance along the radial direction of black holes and reproduce more efficiently the linearized potential on the asymptotic anti-de Sitter space.
Anisotropic deformations of spatially open cosmology in massive gravity theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazuet, Charles; Volkov, Mikhail S.; Mukohyama, Shinji, E-mail: charles.mazuet@lmpt.univ-tours.fr, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: volkov@lmpt.univ-tours.fr
We combine analytical and numerical methods to study anisotropic deformations of the spatially open homogeneous and isotropic cosmology in the ghost free massive gravity theory with flat reference metric. We find that if the initial perturbations are not too strong then the physical metric relaxes back to the isotropic de Sitter state. However, the dumping of the anisotropies is achieved at the expense of exciting the Stueckelberg fields in such a way that the reference metric changes and does not share anymore with the physical metric the same rotational and translational symmetries. As a result, the universe evolves towards amore » fixed point which does not coincide with the original solution, but for which the physical metric is still de Sitter. If the initial perturbation is strong, then its evolution generically leads to a singular anisotropic state or, for some parameter values, to a decay into flat spacetime. We also present an infinite dimensional family of new homogeneous and isotropic cosmologies in the theory.« less
Density response of the mesospheric sodium layer to gravity wave perturbations
NASA Technical Reports Server (NTRS)
Shelton, J. D.; Gardner, C. S.; Sechrist, C. F., Jr.
1980-01-01
Lidar observations of the mesospheric sodium layer often reveal wavelike features moving through the layer. It is often assumed that these features are a layer density response to gravity waves. Chiu and Ching (1978) described the approximate form of the linear response of atmospheric layers to gravity waves. In this paper, their results are used to predict the response of the sodium layer to gravity waves. These simulations are compared with experimental observations and a good correlation is found between the two. Because of the thickness of the sodium layer and the density gradients found in it, a linear model of the layer response is not always adequate to describe gravity wave-sodium layer interactions. Inclusion of nonlinearities in the layer response is briefly discussed. Experimental data is seen to contain features consistent with the predicted nonlinearities.
Gravitational field of static p -branes in linearized ghost-free gravity
NASA Astrophysics Data System (ADS)
Boos, Jens; Frolov, Valeri P.; Zelnikov, Andrei
2018-04-01
We study the gravitational field of static p -branes in D -dimensional Minkowski space in the framework of linearized ghost-free (GF) gravity. The concrete models of GF gravity we consider are parametrized by the nonlocal form factors exp (-□/μ2) and exp (□2/μ4) , where μ-1 is the scale of nonlocality. We show that the singular behavior of the gravitational field of p -branes in general relativity is cured by short-range modifications introduced by the nonlocalities, and we derive exact expressions of the regularized gravitational fields, whose geometry can be written as a warped metric. For large distances compared to the scale of nonlocality, μ r →∞ , our solutions approach those found in linearized general relativity.
Scaling law on formation and rupture of a dynamical liquid bridge
NASA Astrophysics Data System (ADS)
Zhang, Huang; Zhang, Zehao; Liu, Qianfeng; Li, Shuiqing; Department of Thermal Engineering, Tsinghua University Collaboration; Institute of Nuclear Energy; Technology, Tsinghua University Collaboration
2017-11-01
The formation and breakup of a pendular liquid bridge in dynamic state is investigated experimentally. The experimental setup arises from a system to measure the coefficient of restitution (COR) of a glass sphere impacting and bouncing on a wetted surface. We compare the effect of surface tension and gravity on the liquid bridge rupture by the capillary length κ-1. For water and liquid 1 (50% water mixed with 50% glycerol), the gravity is dominant on the liquid bridge breakup. And we find that the rupture distance is in good linear trend with the non-dimensional number G by the scaling law analysis. Further, for liquid 2 (25% water mixed with 75% glycerol) that is relatively high viscous, the linear changing of the rupture distance with the capillary number Ca is found. The relation of the rupture distance with G and Ca would be helpful in understanding the complex behavior of the dynamical liquid bridge. This work was funded by the Major State Basic Research Development Program of China (Grant No. 2016YFC0203705) and the China Postdoctoral Science Foundation (Grant No. 2016M601024).
Unveiling Galaxy Bias via the Halo Model, KiDS and GAMA
NASA Astrophysics Data System (ADS)
Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Schneider, Peter; Amon, Alexandra; Nakajima, Reiko; Viola, Massimo; Choi, Ami; Erben, Thomas; Farrow, Daniel J.; Heymans, Catherine; Hildebrandt, Hendrik; Sifón, Cristóbal; Wang, Lingyu
2018-06-01
We measure the projected galaxy clustering and galaxy-galaxy lensing signals using the Galaxy And Mass Assembly (GAMA) survey and Kilo-Degree Survey (KiDS) to study galaxy bias. We use the concept of non-linear and stochastic galaxy biasing in the framework of halo occupation statistics to constrain the parameters of the halo occupation statistics and to unveil the origin of galaxy biasing. The bias function Γgm(rp), where rp is the projected comoving separation, is evaluated using the analytical halo model from which the scale dependence of Γgm(rp), and the origin of the non-linearity and stochasticity in halo occupation models can be inferred. Our observations unveil the physical reason for the non-linearity and stochasticity, further explored using hydrodynamical simulations, with the stochasticity mostly originating from the non-Poissonian behaviour of satellite galaxies in the dark matter haloes and their spatial distribution, which does not follow the spatial distribution of dark matter in the halo. The observed non-linearity is mostly due to the presence of the central galaxies, as was noted from previous theoretical work on the same topic. We also see that overall, more massive galaxies reveal a stronger scale dependence, and out to a larger radius. Our results show that a wealth of information about galaxy bias is hidden in halo occupation models. These models should therefore be used to determine the influence of galaxy bias in cosmological studies.
Brownian motion of massive skyrmions in magnetic thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com; Núñez, Álvaro S., E-mail: alnunez@dfi.uchile.cl
2014-12-15
We report on the thermal effects on the motion of current-driven massive magnetic skyrmions. The reduced equation for the motion of skyrmion has the form of a stochastic generalized Thiele’s equation. We propose an ansatz for the magnetization texture of a non-rigid single skyrmion that depends linearly with the velocity. By using this ansatz it is found that the skyrmion mass tensor is closely related to intrinsic skyrmion parameters, such as Gilbert damping, skyrmion-charge and dissipative force. We have found an exact expression for the average drift velocity as well as the mean-square velocity of the skyrmion. The longitudinal andmore » transverse mobility of skyrmions for small spin-velocity of electrons is also determined and found to be independent of the skyrmion mass.« less
On Mass, Spacetime Curvature, and Gravity
ERIC Educational Resources Information Center
Janis, Allen I.
2018-01-01
The frequently used analogy of a massive ball distorting an elastic sheet, which is used to illustrate why mass causes spacetime curvature and gravitational attraction, is criticized in this article. A different analogy that draws on the students' previous knowledge of spacetime diagrams in special relativity is suggested.
Spacetime completeness of non-singular black holes in conformal gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bambi, Cosimo; Rachwał, Lesław; Modesto, Leonardo, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: grzerach@gmail.com
We explicitly prove that the Weyl conformal symmetry solves the black hole singularity problem, otherwise unavoidable in a generally covariant local or non-local gravitational theory. Moreover, we yield explicit examples of local and non-local theories enjoying Weyl and diffeomorphism symmetry (in short co-covariant theories). Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free spherically symmetric and axi-symmetric exact solutions for black hole spacetimes conformally equivalent to the Schwarzschild or the Kerr spacetime. We first check the absence of divergences in the Kretschmann invariant for the rescaled metrics. Afterwords, we show that the new typesmore » of black holes are geodesically complete and linked by a Newman-Janis transformation just as in standard general relativity (based on Einstein-Hilbert action). Furthermore, we argue that no massive or massless particles can reach the former Schwarzschild singularity or touch the former Kerr ring singularity in a finite amount of their proper time or of their affine parameter. Finally, we discuss the Raychaudhuri equation in a co-covariant theory and we show that the expansion parameter for congruences of both types of geodesics (for massless and massive particles) never reaches minus infinity. Actually, the null geodesics become parallel at the r =0 point in the Schwarzschild spacetime (the origin) and the focusing of geodesics is avoided. The arguments of regularity of curvature invariants, geodesic completeness, and finiteness of geodesics' expansion parameter ensure us that we are dealing with singularity-free and geodesically-complete black hole spacetimes.« less
NASA Astrophysics Data System (ADS)
Silsbee, Kedron; Rafikov, Roman R.
2015-01-01
Detections of planets in eccentric, close (separations of ~20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additional planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (gsim 10-2 M ⊙) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.
A method for evaluating dynamical friction in linear ball bearings.
Fujii, Yusaku; Maru, Koichi; Jin, Tao; Yupapin, Preecha P; Mitatha, Somsak
2010-01-01
A method is proposed for evaluating the dynamical friction of linear bearings, whose motion is not perfectly linear due to some play in its internal mechanism. In this method, the moving part of a linear bearing is made to move freely, and the force acting on the moving part is measured as the inertial force given by the product of its mass and the acceleration of its centre of gravity. To evaluate the acceleration of its centre of gravity, the acceleration of two different points on it is measured using a dual-axis optical interferometer.
Non-Newtonian gravity or gravity anomalies?
NASA Technical Reports Server (NTRS)
Rubincam, David P.; Chao, B. Fong; Schatten, Kenneth H.; Sager, William W.
1988-01-01
Geophysical measurements of G differ from laboratory values, indicating that gravity may be non-Newtonian. A spherical harmonic formulation is presented for the variation of (Newtonian) gravity inside the Earth. Using the GEM-10B Earth Gravitational Field Model, it is shown that long-wavelength gravity anomalies, if not corrected, may masquerade as non-Newtonian gravity by providing significant influences on experimental observation of delta g/delta r and G. An apparent contradiction in other studies is also resolved: i.e., local densities appear in equations when average densities of layers seem to be called for.
On the shape of things: From holography to elastica
NASA Astrophysics Data System (ADS)
Fonda, Piermarco; Jejjala, Vishnu; Veliz-Osorio, Alvaro
2017-10-01
We explore the question of which shape a manifold is compelled to take when immersed in another one, provided it must be the extremum of some functional. We consider a family of functionals which depend quadratically on the extrinsic curvatures and on projections of the ambient curvatures. These functionals capture a number of physical setups ranging from holography to the study of membranes and elastica. We present a detailed derivation of the equations of motion, known as the shape equations, placing particular emphasis on the issue of gauge freedom in the choice of normal frame. We apply these equations to the particular case of holographic entanglement entropy for higher curvature three dimensional gravity and find new classes of entangling curves. In particular, we discuss the case of New Massive Gravity where we show that non-geodesic entangling curves have always a smaller on-shell value of the entropy functional. Then we apply this formalism to the computation of the entanglement entropy for dual logarithmic CFTs. Nevertheless, the correct value for the entanglement entropy is provided by geodesics. Then, we discuss the importance of these equations in the context of classical elastica and comment on terms that break gauge invariance.
NASA Astrophysics Data System (ADS)
Accioly, Antonio; Correia, Gilson; de Brito, Gustavo P.; de Almeida, José; Herdy, Wallace
2017-03-01
Simple prescriptions for computing the D-dimensional classical potential related to electromagnetic and gravitational models, based on the functional generator, are built out. These recipes are employed afterward as a support for probing the premise that renormalizable higher-order systems have a finite classical potential at the origin. It is also shown that the opposite of the conjecture above is not true. In other words, if a higher-order model is renormalizable, it is necessarily endowed with a finite classical potential at the origin, but the reverse of this statement is untrue. The systems used to check the conjecture were D-dimensional fourth-order Lee-Wick electrodynamics, and the D-dimensional fourth- and sixth-order gravity models. A special attention is devoted to New Massive Gravity (NMG) since it was the analysis of this model that inspired our surmise. In particular, we made use of our premise to resolve trivially the issue of the renormalizability of NMG, which was initially considered to be renormalizable, but it was shown some years later to be non-renormalizable. We remark that our analysis is restricted to local models in which the propagator has simple and real poles.
Axion as a Cold Dark Matter Candidate: Proof to Fully Nonlinear Order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Hyerim; Hwang, Jai-chan; Park, Chan-Gyung
2017-09-01
We present proof of the axion as a cold dark matter (CDM) candidate to the fully nonlinear order perturbations based on Einstein’s gravity. We consider the axion as a coherently oscillating massive classical scalar field without interaction. We present the fully nonlinear and exact, except for ignoring the transverse-tracefree tensor-type perturbation, hydrodynamic equations for an axion fluid in Einstein’s gravity. We show that the axion has the characteristic pressure and anisotropic stress; the latter starts to appear from the second-order perturbation. But these terms do not directly affect the hydrodynamic equations in our axion treatment. Instead, what behaves as themore » effective pressure term in relativistic hydrodynamic equations is the perturbed lapse function and the relativistic result coincides exactly with the one known in the previous non-relativistic studies. The effective pressure term leads to a Jeans scale that is of the solar-system scale for conventional axion mass. As the fully nonlinear and relativistic hydrodynamic equations for an axion fluid coincide exactly with the ones of a zero-pressure fluid in the super-Jeans scale, we have proved the CDM nature of such an axion in that scale.« less
GRACE storage-runoff hystereses reveal the dynamics of ...
Watersheds function as integrated systems where climate and geology govern the movement of water. In situ instrumentation can provide local-scale insights into the non-linear relationship between streamflow and water stored in a watershed as snow, soil moisture, and groundwater. However, there is a poor understanding of these processes at the regional scale—primarily because of our inability to measure water stores and fluxes in the subsurface. Now NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites quantify changes in the amount of water stored across and through the Earth, providing measurements of regional hydrologic behavior. Here we apply GRACE data to characterize for the first time how regional watersheds function as simple, dynamic systems through a series of hysteresis loops. While the physical processes underlying the loops are inherently complex, the vertical integration of terrestrial water in the GRACE signal provides process-based insights into the dynamic and non-linear function of regional-scale watersheds. We use this process-based understanding with GRACE data to effectively forecast seasonal runoff (mean R2 of 0.91) and monthly runoff (mean R2 of 0.77) in three regional-scale watersheds (>150,000 km2) of the Columbia River Basin, USA. Data from the Gravity Recovery and Climate Experiment (GRACE) satellites provide a novel dataset for understanding changes in the amount of water stored across and through the surface of the Ear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhawan, Suhail; Goobar, Ariel; Mörtsell, Edvard
Recent re-calibration of the Type Ia supernova (SNe Ia) magnitude-redshift relation combined with cosmic microwave background (CMB) and baryon acoustic oscillation (BAO) data have provided excellent constraints on the standard cosmological model. Here, we examine particular classes of alternative cosmologies, motivated by various physical mechanisms, e.g. scalar fields, modified gravity and phase transitions to test their consistency with observations of SNe Ia and the ratio of the angular diameter distances from the CMB and BAO. Using a model selection criterion for a relative comparison of the models (the Bayes Factor), we find moderate to strong evidence that the data prefermore » flat ΛCDM over models invoking a thawing behaviour of the quintessence scalar field. However, some exotic models like the growing neutrino mass cosmology and vacuum metamorphosis still present acceptable evidence values. The bimetric gravity model with only the linear interaction term as well as a simplified Galileon model can be ruled out by the combination of SNe Ia and CMB/BAO datasets whereas the model with linear and quadratic interaction terms has a comparable evidence value to standard ΛCDM. Thawing models are found to have significantly poorer evidence compared to flat ΛCDM cosmology under the assumption that the CMB compressed likelihood provides an adequate description for these non-standard cosmologies. We also present estimates for constraints from future data and find that geometric probes from oncoming surveys can put severe limits on non-standard cosmological models.« less
Signal and noise extraction from analog memory elements for neuromorphic computing.
Gong, N; Idé, T; Kim, S; Boybat, I; Sebastian, A; Narayanan, V; Ando, T
2018-05-29
Dense crossbar arrays of non-volatile memory (NVM) can potentially enable massively parallel and highly energy-efficient neuromorphic computing systems. The key requirements for the NVM elements are continuous (analog-like) conductance tuning capability and switching symmetry with acceptable noise levels. However, most NVM devices show non-linear and asymmetric switching behaviors. Such non-linear behaviors render separation of signal and noise extremely difficult with conventional characterization techniques. In this study, we establish a practical methodology based on Gaussian process regression to address this issue. The methodology is agnostic to switching mechanisms and applicable to various NVM devices. We show tradeoff between switching symmetry and signal-to-noise ratio for HfO 2 -based resistive random access memory. Then, we characterize 1000 phase-change memory devices based on Ge 2 Sb 2 Te 5 and separate total variability into device-to-device variability and inherent randomness from individual devices. These results highlight the usefulness of our methodology to realize ideal NVM devices for neuromorphic computing.
How Much Gravity Is Needed to Establish the Perceptual Upright?
Harris, Laurence R.; Herpers, Rainer; Hofhammer, Thomas; Jenkin, Michael
2014-01-01
Might the gravity levels found on other planets and on the moon be sufficient to provide an adequate perception of upright for astronauts? Can the amount of gravity required be predicted from the physiological threshold for linear acceleration? The perception of upright is determined not only by gravity but also visual information when available and assumptions about the orientation of the body. Here, we used a human centrifuge to simulate gravity levels from zero to earth gravity along the long-axis of the body and measured observers' perception of upright using the Oriented Character Recognition Test (OCHART) with and without visual cues arranged to indicate a direction of gravity that differed from the body's long axis. This procedure allowed us to assess the relative contribution of the added gravity in determining the perceptual upright. Control experiments off the centrifuge allowed us to measure the relative contributions of normal gravity, vision, and body orientation for each participant. We found that the influence of 1 g in determining the perceptual upright did not depend on whether the acceleration was created by lying on the centrifuge or by normal gravity. The 50% threshold for centrifuge-simulated gravity's ability to influence the perceptual upright was at around 0.15 g, close to the level of moon gravity but much higher than the threshold for detecting linear acceleration along the long axis of the body. This observation may partially explain the instability of moonwalkers but is good news for future missions to Mars. PMID:25184481
How much gravity is needed to establish the perceptual upright?
Harris, Laurence R; Herpers, Rainer; Hofhammer, Thomas; Jenkin, Michael
2014-01-01
Might the gravity levels found on other planets and on the moon be sufficient to provide an adequate perception of upright for astronauts? Can the amount of gravity required be predicted from the physiological threshold for linear acceleration? The perception of upright is determined not only by gravity but also visual information when available and assumptions about the orientation of the body. Here, we used a human centrifuge to simulate gravity levels from zero to earth gravity along the long-axis of the body and measured observers' perception of upright using the Oriented Character Recognition Test (OCHART) with and without visual cues arranged to indicate a direction of gravity that differed from the body's long axis. This procedure allowed us to assess the relative contribution of the added gravity in determining the perceptual upright. Control experiments off the centrifuge allowed us to measure the relative contributions of normal gravity, vision, and body orientation for each participant. We found that the influence of 1 g in determining the perceptual upright did not depend on whether the acceleration was created by lying on the centrifuge or by normal gravity. The 50% threshold for centrifuge-simulated gravity's ability to influence the perceptual upright was at around 0.15 g, close to the level of moon gravity but much higher than the threshold for detecting linear acceleration along the long axis of the body. This observation may partially explain the instability of moonwalkers but is good news for future missions to Mars.
Beyond generalized Proca theories
NASA Astrophysics Data System (ADS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-09-01
We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar-tensor Horndeski theories to Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories. On the isotropic cosmological background, we show the existence of a constraint with a vanishing Hamiltonian that removes the would-be Ostrogradski ghost. We study the behavior of linear perturbations on top of the isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories (two tensor polarizations, two transverse vector modes, and two scalar modes). Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations. We observe key differences in the scalar sound speed, which is mixed with the matter sound speed outside the domain of generalized Proca theories.
Cosmology in generalized Proca theories
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-06-01
We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable parameter spaces in which the no-ghost and stability conditions are satisfied during the cosmic expansion history.
Stratified flows in complex terrain
NASA Astrophysics Data System (ADS)
Retallack, Charles
The focus of this dissertation is the study of stratified atmospheric flows in the presence of complex terrain. Two large-scale field study campaigns were carried out, each with a focus on a specific archetypal terrain. Each field study involved the utilization of remote and in-situ atmospheric monitoring devices to collect experimental data. The first of the two field studies focused on pollution transport mechanisms near an escarpment. The analysis aimed to determine the combined effect of the escarpment and ambient density stratification on the flow and aerosol pollution transport. It was found that under specific atmospheric conditions, the escarpment prompted the channeling, down-mixing, and trapping of aerosol pollutant plumes. The objective of the second field campaign was the study of stratified flows in a mountain valley. Analysis revealed that buoyancy driven katabatic currents originating on the surrounding valley slopes created a scenario in which a down-slope gravity current transitioned into an intrusive gravity current. The intrusive gravity current propagated near the interface of a density stratified lower ambient layer and a non-stratified upper ambient layer. A combination of shallow water theory and energy arguments is used to produce a model for the propagation of a gravity current moving along the interface of a homogeneous ambient layer and a linearly stratified layer. It is found that the gravity current propagating entirely within the homogeneous layer travels at the greatest speed. As the relative density of the gravity current is increased, the gravity current begins to slump below the interface of the two layers and the propagation speed decreases.
[Relationship between the refractive index and specific gravity of the rat urine (author's transl)].
Kitagawa, Y F; Takahashi, T; Hayashi, H
1981-07-01
The relationship between the refractive index and specific gravity of urine was studied with specimens from 165 Sprague-Dawley rats, by graphic analysis of the plot of the refractometrically determined index against the specific gravity which was measured with a pycnometer. 1. A linear regression was demonstrated between the refractive index and specific gravity. 2. The nomogram fitted the data of even those samples with high refractive index and specific gravity, irrespective of changes in food or water intake and protein or glucose contents in the urine. 3. The nomogram was in good agreement, in respect of linearity, with the regression line derived from the conversion table of TS meter by the American Optical Corporation and also with the nomogram of the Japanese Society of Clinical Pathology. It approximated more closely to the former than to the latter.
Path integral measure and triangulation independence in discrete gravity
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Steinhaus, Sebastian
2012-02-01
A path integral measure for gravity should also preserve the fundamental symmetry of general relativity, which is diffeomorphism symmetry. In previous work, we argued that a successful implementation of this symmetry into discrete quantum gravity models would imply discretization independence. We therefore consider the requirement of triangulation independence for the measure in (linearized) Regge calculus, which is a discrete model for quantum gravity, appearing in the semi-classical limit of spin foam models. To this end we develop a technique to evaluate the linearized Regge action associated to Pachner moves in 3D and 4D and show that it has a simple, factorized structure. We succeed in finding a local measure for 3D (linearized) Regge calculus that leads to triangulation independence. This measure factor coincides with the asymptotics of the Ponzano Regge Model, a 3D spin foam model for gravity. We furthermore discuss to which extent one can find a triangulation independent measure for 4D Regge calculus and how such a measure would be related to a quantum model for 4D flat space. To this end, we also determine the dependence of classical Regge calculus on the choice of triangulation in 3D and 4D.
A computer program for the simulation of folds of different sizes under the influence of gravity
NASA Astrophysics Data System (ADS)
Vacas Peña, José M.; Martínez Catalán, José R.
2004-02-01
Folding&g is a computer program, based on the finite element method, developed to simulate the process of natural folding from small to large scales in two dimensions. Written in Pascal code and compiled with Borland Delphi 3.0, the program has a friendly interactive user interface and can be used for research as well as educational purposes. Four main menu options allow the user to import or to build and to save a model data file, select the type of graphic output, introduce and modify several physical parameters and enter the calculation routines. The program employs isoparametric, initially rectangular elements with eight nodes, which can sustain large deformations. The mathematical procedure is based on the elasticity equations, but has been modified to simulate a viscous rheology, either linear or of power-law type. The parameters to be introduced include either the linear viscosity, or, when the viscosity is non-linear, the material constant, activation energy, temperature and power of the differential stress. All the parameters can be set by rows, which simulate layers. A toggle permits gravity to be introduced into the calculations. In this case, the density of the different rows must be specified, and the sizes of the finite elements and of the whole model become meaningful. Viscosity values can also be assigned to blocks of several rows and columns, which permits the modelling of heterogeneities such as rectangular areas of high strength, which can be used to simulate shearing components interfering with the buckling process. The program is applied to several cases of folding, including a single competent bed and multilayers, and its results compared with analytical and experimental results. The influence of gravity is illustrated by the modelling of diapiric structures and of a large recumbent fold.
R 2 inflation to probe non-perturbative quantum gravity
NASA Astrophysics Data System (ADS)
Koshelev, Alexey S.; Sravan Kumar, K.; Starobinsky, Alexei A.
2018-03-01
It is natural to expect a consistent inflationary model of the very early Universe to be an effective theory of quantum gravity, at least at energies much less than the Planck one. For the moment, R + R 2, or shortly R 2, inflation is the most successful in accounting for the latest CMB data from the PLANCK satellite and other experiments. Moreover, recently it was shown to be ultra-violet (UV) complete via an embedding into an analytic infinite derivative (AID) non-local gravity. In this paper, we derive a most general theory of gravity that contributes to perturbed linear equations of motion around maximally symmetric space-times. We show that such a theory is quadratic in the Ricci scalar and the Weyl tensor with AID operators along with the Einstein-Hilbert term and possibly a cosmological constant. We explicitly demonstrate that introduction of the Ricci tensor squared term is redundant. Working in this quadratic AID gravity framework without a cosmological term we prove that for a specified class of space homogeneous space-times, a space of solutions to the equations of motion is identical to the space of backgrounds in a local R 2 model. We further compute the full second order perturbed action around any background belonging to that class. We proceed by extracting the key inflationary parameters of our model such as a spectral index ( n s ), a tensor-to-scalar ratio ( r) and a tensor tilt ( n t ). It appears that n s remains the same as in the local R 2 inflation in the leading slow-roll approximation, while r and n t get modified due to modification of the tensor power spectrum. This class of models allows for any value of r < 0.07 with a modified consistency relation which can be fixed by future observations of primordial B-modes of the CMB polarization. This makes the UV complete R 2 gravity a natural target for future CMB probes.
Beraneck, Mathieu; Bojados, Mickael; Le Séac'h, Anne; Jamon, Marc; Vidal, Pierre-Paul
2012-01-01
The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.
Beraneck, Mathieu; Bojados, Mickael; Le Séac’h, Anne; Jamon, Marc; Vidal, Pierre-Paul
2012-01-01
The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period. PMID:22808156
Long-wave-instability-induced pattern formation in an evaporating sessile or pendent liquid layer
NASA Astrophysics Data System (ADS)
Wei, Tao; Duan, Fei
2018-03-01
We investigate the nonlinear dynamics and stability of an evaporating liquid layer subject to vapor recoil, capillarity, thermocapillarity, ambient cooling, viscosity, and negative or positive gravity combined with buoyancy effects in the lubrication approximation. Using linear theory, we identify the mechanisms of finite-time rupture, independent of thermocapillarity and direction of gravity, and predict the effective growth rate of an interfacial perturbation which reveals competition among the mechanisms. A stability diagram is predicted for the onset of long-wave (LW) evaporative convection. In the two-dimensional simulation, we observe well-defined capillary ridges on both sides of the valley under positive gravity and main and secondary droplets under negative gravity, while a ridge can be trapped in a large-scale drained region in both cases. Neglecting the other non-Boussinesq effects, buoyancy does not have a significant influence on interfacial evolution and rupture time but makes contributions to the evaporation-driven convection and heat transfer. The average Nusselt number is found to increase with a stronger buoyancy effect. The flow field and interface profile jointly manifest the LW Marangoni-Rayleigh-Bénard convection under positive gravity and the LW Marangoni convection under negative gravity. In the three-dimensional simulation of moderate evaporation with a random perturbation, the rupture patterns are characterized by irregular ridge networks with distinct height scales for positive and negative gravity. A variety of interfacial and internal dynamics are displayed, depending on evaporation conditions, gravity, Marangoni effect, and ambient cooling. Reasonable agreement is found between the present results and the reported experiments and simulations. The concept of dissipative compacton also sheds light on the properties of interfacial fractalization.
Magnetic Fields Versus Gravity
NASA Astrophysics Data System (ADS)
Hensley, Kerry
2018-04-01
Deep within giant molecular clouds, hidden by dense gas and dust, stars form. Unprecedented data from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the intricate magnetic structureswoven throughout one of the most massive star-forming regions in the Milky Way.How Stars Are BornThe Horsehead Nebulasdense column of gas and dust is opaque to visible light, but this infrared image reveals the young stars hidden in the dust. [NASA/ESA/Hubble Heritage Team]Simple theory dictates that when a dense clump of molecular gas becomes massive enough that its self-gravity overwhelms the thermal pressure of the cloud, the gas collapses and forms a star. In reality, however, star formation is more complicated than a simple give and take between gravity and pressure. Thedusty molecular gas in stellar nurseries is permeated with magnetic fields, which are thought to impede the inward pull of gravity and slow the rate of star formation.How can we learn about the magnetic fields of distant objects? One way is by measuring dust polarization. An elongated dust grain will tend to align itself with its short axis parallel to the direction of the magnetic field. This systematic alignment of the dust grains along the magnetic field lines polarizes the dust grains emission perpendicular to the local magnetic field. This allows us to infer the direction of the magnetic field from the direction of polarization.Magnetic field orientations for protostars e2 and e8 derived from Submillimeter Array observations (panels a through c) and ALMA observations (panels d and e). Click to enlarge. [Adapted from Koch et al. 2018]Tracing Magnetic FieldsPatrick Koch (Academia Sinica, Taiwan) and collaborators used high-sensitivity ALMA observations of dust polarization to learn more about the magnetic field morphology of Milky Way star-forming region W51. W51 is one of the largest star-forming regions in our galaxy, home to high-mass protostars e2, e8, and North.The ALMA observations reveal polarized emission toward all three sources. By extracting the magnetic field orientations from the polarization vectors, Koch and collaborators found that the molecular cloud contains an ordered magnetic field with never-before-seen structures. Several small clumps on the perimeter of the massive star-forming cores exhibit comet-shaped magnetic field structures, which could indicate that these smaller cores are being pulled toward the more massive cores.These findings hint that the magnetic field structure can tell us about the flow of material within star-forming regions key to understanding the nature of star formation itself.Maps of sin for two of the protostars (e2 and e8) and their surroundings. [Adapted from Koch et al. 2018]Guiding Star FormationDo the magnetic fields in W51 help or hinder star formation? To explore this question,Koch and collaborators introduced the quantity sin , where is the angle between the local gravity and the local magnetic field.When the angle between gravity and the magnetic field is small (sin 0), the magnetic field has little effect on the collapse of the cloud. If gravity and the magnetic field are perpendicular (sin 1), the magnetic field can slow the infall of gas and inhibit star formation.Based on this parameter, Koch and collaborators identified narrow channels where gravity acts unimpeded by the magnetic field. These magnetic channels may funnel gas toward the dense cores and aid the star-formation process.The authors observations demonstrate just one example of the broad realm ALMAs polarimetry capabilities have opened to discovery. These and future observations of dust polarization will continue to reveal more about the delicate magnetic structure within molecular clouds, furtherilluminating the role that magnetic fields play in star formation.CitationPatrick M. Koch et al 2018 ApJ 855 39. doi:10.3847/1538-4357/aaa4c1
Constraining generalized non-local cosmology from Noether symmetries.
Bahamonde, Sebastian; Capozziello, Salvatore; Dialektopoulos, Konstantinos F
2017-01-01
We study a generalized non-local theory of gravity which, in specific limits, can become either the curvature non-local or teleparallel non-local theory. Using the Noether symmetry approach, we find that the coupling functions coming from the non-local terms are constrained to be either exponential or linear in form. It is well known that in some non-local theories, a certain kind of exponential non-local couplings is needed in order to achieve a renormalizable theory. In this paper, we explicitly show that this kind of coupling does not need to be introduced by hand, instead, it appears naturally from the symmetries of the Lagrangian in flat Friedmann-Robertson-Walker cosmology. Finally, we find de Sitter and power-law cosmological solutions for different non-local theories. The symmetries for the generalized non-local theory are also found and some cosmological solutions are also achieved using the full theory.
Constraining generalized non-local cosmology from Noether symmetries
NASA Astrophysics Data System (ADS)
Bahamonde, Sebastian; Capozziello, Salvatore; Dialektopoulos, Konstantinos F.
2017-11-01
We study a generalized non-local theory of gravity which, in specific limits, can become either the curvature non-local or teleparallel non-local theory. Using the Noether symmetry approach, we find that the coupling functions coming from the non-local terms are constrained to be either exponential or linear in form. It is well known that in some non-local theories, a certain kind of exponential non-local couplings is needed in order to achieve a renormalizable theory. In this paper, we explicitly show that this kind of coupling does not need to be introduced by hand, instead, it appears naturally from the symmetries of the Lagrangian in flat Friedmann-Robertson-Walker cosmology. Finally, we find de Sitter and power-law cosmological solutions for different non-local theories. The symmetries for the generalized non-local theory are also found and some cosmological solutions are also achieved using the full theory.
Gravity, Magnetism, and "Down": Non-Physics College Students' Conceptions of Gravity
ERIC Educational Resources Information Center
Asghar, Anila; Libarkin, Julie C.
2010-01-01
This study investigates how students enrolled in entry-level geology, most of whom would graduate from college without university-level physics courses, thought about and applied the concept of gravity while solving problems concerning gravity. The repercussions of students' gravity concepts are then considered in the context of non-physics…
Magnetic suppression of turbulence and the star formation activity of molecular clouds
NASA Astrophysics Data System (ADS)
Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique; Körtgen, Bastian; Banerjee, Robi; Hartmann, Lee
2018-03-01
We present magnetohydrodynamic simulations aimed at studying the effect of the magnetic suppression of turbulence (generated through various instabilities during the formation of molecular clouds by converging) on the subsequent star formation (SF) activity. We study four magnetically supercritical models with magnetic field strengths B = 0, 1, 2, and 3 μG (corresponding to mass-to-flux ratios of ∞, 4.76, 2.38, and 1.59 times the critical value), with the magnetic field, initially being aligned with the flows. We find that, for increasing magnetic field strength, the clouds formed tend to be more massive, denser, less turbulent, and with higher SF activity. This causes the onset of SF activity in the non-magnetic or more weakly magnetized cases to be delayed by a few Myr in comparison to the more strongly magnetized cases. We attribute this behaviour to the suppression of the non-linear thin shell instability (NTSI) by the magnetic field, previously found by Heitsch and coworkers. This result is contrary to the standard notion that the magnetic field provides support to the clouds, thus reducing their star formation rate. However, our result is a completely non-linear one, and could not be foreseen from simple linear considerations.
kruX: matrix-based non-parametric eQTL discovery.
Qi, Jianlong; Asl, Hassan Foroughi; Björkegren, Johan; Michoel, Tom
2014-01-14
The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive. We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive linear associations. kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com.
Pipe rehabilitation and trenchless pipe replacement technologies have seen a steadily increasing use over the past 30 to 40 years. Despite the massive public investment in the rehabilitation of the US water and wastewater infrastructure, there has been little formal and quantita...
NASA Astrophysics Data System (ADS)
Özer, Hatice; Delice, Özgür
2018-03-01
Two different ways of generalizing Einstein’s general theory of relativity with a cosmological constant to Brans–Dicke type scalar–tensor theories are investigated in the linearized field approximation. In the first case a cosmological constant term is coupled to a scalar field linearly whereas in the second case an arbitrary potential plays the role of a variable cosmological term. We see that the former configuration leads to a massless scalar field whereas the latter leads to a massive scalar field. General solutions of these linearized field equations for both cases are obtained corresponding to a static point mass. Geodesics of these solutions are also presented and solar system effects such as the advance of the perihelion, deflection of light rays and gravitational redshift were discussed. In general relativity a cosmological constant has no role in these phenomena. We see that for the Brans–Dicke theory, the cosmological constant also has no effect on these phenomena. This is because solar system observations require very large values of the Brans–Dicke parameter and the correction terms to these phenomena becomes identical to GR for these large values of this parameter. This result is also observed for the theory with arbitrary potential if the mass of the scalar field is very light. For a very heavy scalar field, however, there is no such limit on the value of this parameter and there are ranges of this parameter where these contributions may become relevant in these scales. Galactic and intergalactic dynamics is also discussed for these theories at the latter part of the paper with similar conclusions.
A Novel Approach to Solve Linearized Stellar Pulsation Equations
NASA Astrophysics Data System (ADS)
Bard, Christopher; Teitler, S.
2011-01-01
We present a new approach to modeling linearized, non-radial pulsations in differentially rotating, massive stars. As a first step in this direction, we consider adiabatic pulsations and adopt the Cowling approximation that perturbations of the gravitational potential and its radial derivative are negligible. The angular dependence of the pulsation modes is expressed as a series expansion of associated Legendre polynomials; the resulting coupled system of differential equations is then solved by finding the eigenfrequencies at which the determinant of a characteristic matrix vanishes. Our method improves on previous treatments by removing the requirement that an arbitrary normalization be applied to the eigenfunctions; this brings the benefit of improved numerical robustness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-García, Carlos; Maroto, Antonio L.; Martín-Moruno, Prado, E-mail: cargar08@ucm.es, E-mail: maroto@ucm.es, E-mail: pradomm@ucm.es
We study cosmological implications of bigravity and massive gravity solutions with non-simultaneously diagonal metrics by considering the generalized Gordon and Kerr-Schild ansatzes. The scenario that we obtain is equivalent to that of General Relativity with additional non-comoving perfect fluids. We show that the most general ghost-free bimetric theory generates three kinds of effective fluids whose equations of state are fixed by a function of the ansatz. Different choices of such function allow to reproduce the behaviour of different dark fluids. In particular, the Gordon ansatz is suitable for the description of various kinds of slowly-moving fluids, whereas the Kerr-Schild onemore » is shown to describe a null dark energy component. The motion of those dark fluids with respect to the CMB is shown to generate, in turn, a relative motion of baryonic matter with respect to radition which contributes to the CMB anisotropies. CMB dipole observations are able to set stringent limits on the dark sector described by the effective bimetric fluid.« less
Wave Dynamics and Transport in the Stratosphere
NASA Technical Reports Server (NTRS)
Holton, James R.; Alexander, M. Joan
1999-01-01
The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.
Wave Driven Non-linear Flow Oscillator for the 22-Year Solar Cycle
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Wolff, Charles L.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)
2000-01-01
In the Earth's atmosphere, a zonal flow oscillation is observed with periods between 20 and 32 months, the Quasi Biennial Oscillation. This oscillation does not require external time dependent forcing but is maintained by non-linear wave momentum deposition. It is proposed that such a mechanism also drives long-period oscillations in planetary and stellar interiors. We apply this mechanism to generate a flow oscillation for the 22-year solar cycle. The oscillation would occur just below the convective envelope where waves can propagate. Using scale analysis, we present results from a simplified model that incorporates Hines' gravity wave parameterization. Wave amplitudes less than 10 m/s can produce reversing zonal flows of 25 m/s that should be sufficient to generate a corresponding oscillation in the poloidal magnetic field. Low buoyancy frequency and the associated increase in turbulence help to produce the desired oscillation period of the flow.
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
NASA Astrophysics Data System (ADS)
González, J. J.; Guzmán, F.
2015-12-01
In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
Ponce, David A.; Mankinen, E.A.; Davidson, J.G.; Morin, R.L.; Blakely, R.J.
2000-01-01
An isostatic gravity map of the Nevada Test Site area was prepared from publicly available gravity data (Ponce, 1997) and from gravity data recently collected by the U.S. Geological Survey (Mankinen and others, 1999; Morin and Blakely, 1999). Gravity data were processed using standard gravity data reduction techniques. Southwest Nevada is characterized by gravity anomalies that reflect the distribution of pre-Cenozoic carbonate rocks, thick sequences of volcanic rocks, and thick alluvial basins. In addition, regional gravity data reveal the presence of linear features that reflect large-scale faults whereas detailed gravity data can indicate the presence of smaller-scale faults.
Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.
Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2016-04-22
Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
Galilean-invariant scalar fields can strengthen gravitational lensing.
Wyman, Mark
2011-05-20
The mystery of dark energy suggests that there is new gravitational physics on long length scales. Yet light degrees of freedom in gravity are strictly limited by Solar System observations. We can resolve this apparent contradiction by adding a Galilean-invariant scalar field to gravity. Called Galileons, these scalars have strong self-interactions near overdensities, like the Solar System, that suppress their dynamical effect. These nonlinearities are weak on cosmological scales, permitting new physics to operate. In this Letter, we point out that a massive-gravity-inspired coupling of Galileons to stress energy can enhance gravitational lensing. Because the enhancement appears at a fixed scaled location for dark matter halos of a wide range of masses, stacked cluster analysis of weak lensing data should be able to detect or constrain this effect.
Modified Gravity and its test on galaxy clusters
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Theodorus M.; Morandi, Andrea; Limousin, Marceau
2018-05-01
The MOdified Gravity (MOG) theory of J. Moffat assumes a massive vector particle which causes a repulsive contribution to the tensor gravitation. For the galaxy cluster A1689 new data for the X-ray gas and the strong lensing properties are presented. Fits to MOG are possible by adjusting the galaxy density profile. However, this appears to work as an effective dark matter component, posing a serious problem for MOG. New gas and strong lensing data for the cluster A1835 support these conclusions and point at a tendency of the gas alone to overestimate the lensing effects in MOG theory.
The Gravity-Probe-B relativity gyroscope experiment - An update on progress
NASA Technical Reports Server (NTRS)
Parkinson, Bradford W.; Everitt, C. W. Francis; Turneaure, John P.
1987-01-01
The Gravity-Probe-B (GP-B) relativity gyroscope experiment will test two effects of general relativity: (1) the geodetic precession of a gyroscope due to its Fermi-Walker transport around a massive central body; and (2) the motional or gravitomagnetic precession of the gyroscope due to rotation of the central body itself. The experiment will also provide a determination of the deflection of starlight by the sun and an improved determination of the distance to Rigel. In the Shuttle testing phase of the program, prototype hardware is being developed for a full-scale ground model of the GP-B instrument.
MassiveNuS: cosmological massive neutrino simulations
NASA Astrophysics Data System (ADS)
Liu, Jia; Bird, Simeon; Zorrilla Matilla, José Manuel; Hill, J. Colin; Haiman, Zoltán; Madhavacheril, Mathew S.; Petri, Andrea; Spergel, David N.
2018-03-01
The non-zero mass of neutrinos suppresses the growth of cosmic structure on small scales. Since the level of suppression depends on the sum of the masses of the three active neutrino species, the evolution of large-scale structure is a promising tool to constrain the total mass of neutrinos and possibly shed light on the mass hierarchy. In this work, we investigate these effects via a large suite of N-body simulations that include massive neutrinos using an analytic linear-response approximation: the Cosmological Massive Neutrino Simulations (MassiveNuS). The simulations include the effects of radiation on the background expansion, as well as the clustering of neutrinos in response to the nonlinear dark matter evolution. We allow three cosmological parameters to vary: the neutrino mass sum Mν in the range of 0–0.6 eV, the total matter density Ωm, and the primordial power spectrum amplitude As. The rms density fluctuation in spheres of 8 comoving Mpc/h (σ8) is a derived parameter as a result. Our data products include N-body snapshots, halo catalogues, merger trees, ray-traced galaxy lensing convergence maps for four source redshift planes between zs=1–2.5, and ray-traced cosmic microwave background lensing convergence maps. We describe the simulation procedures and code validation in this paper. The data are publicly available at http://columbialensing.org.
A Massive-born Neutron Star with a Massive White Dwarf Companion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cognard, Ismaël; Guillemot, Lucas; Theureau, Gilles
We report on the results of a 4 year timing campaign of PSR J2222−0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m {sub p} = 1.76 ± 0.06 M {sub ⊙} and a WD mass m {sub c} = 1.293 ± 0.025 M {sub ⊙}. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massivemore » WD progenitor star led to a rapid X-ray binary phase with little (< 10{sup −2} M {sub ⊙}) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222−0137 puts that system into a poorly tested parameter range.« less
The Feasibility of Linear Motors and High-Energy Thrusters for Massive Aerospace Vehicles
NASA Astrophysics Data System (ADS)
Stull, M. A.
A combination of two propulsion technologies, superconducting linear motors using ambient magnetic fields and high- energy particle beam thrusters, may make it possible to develop massive aerospace vehicles the size of aircraft carriers. If certain critical thresholds can be attained, linear motors can enable massive vehicles to fly within the atmosphere and can propel them to orbit. Thrusters can do neither, because power requirements are prohibitive. However, unless superconductors having extremely high critical current densities can be developed, the interplanetary magnetic field is too weak for linear motors to provide sufficient acceleration to reach even nearby planets. On the other hand, high-energy thrusters can provide adequate acceleration using a minimal amount of reaction mass, at achievable levels of power generation. If the requirements for linear motor propulsion can be met, combining the two modes of propulsion could enable huge nuclear powered spacecraft to reach at least the inner planets of the solar system, the asteroid belt, and possibly Jupiter, in reasonably short times under continuous acceleration, opening them to exploration, resource development and colonization.
Gravity-assist engine for space propulsion
NASA Astrophysics Data System (ADS)
Bergstrom, Arne
2014-06-01
As a possible alternative to rockets, the present article describes a new type of engine for space travel, based on the gravity-assist concept for space propulsion. The new engine is to a great extent inspired by the conversion of rotational angular momentum to orbital angular momentum occurring in tidal locking between astronomical bodies. It is also greatly influenced by Minovitch's gravity-assist concept, which has revolutionized modern space technology, and without which the deep-space probes to the outer planets and beyond would not have been possible. Two of the three gravitating bodies in Minovitch's concept are in the gravity-assist engine discussed in this article replaced by an extremely massive ‘springbell' (in principle a spinning dumbbell with a powerful spring) incorporated into the spacecraft itself, and creating a three-body interaction when orbiting around a gravitating body. This makes gravity-assist propulsion possible without having to find suitably aligned astronomical bodies. Detailed numerical simulations are presented, showing how an actual spacecraft can use a ca 10-m diameter springbell engine in order to leave the earth's gravitational field and enter an escape trajectory towards interplanetary destinations.
Modelization of highly nonlinear waves in coastal regions
NASA Astrophysics Data System (ADS)
Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre
2015-04-01
The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.
Strange metal transport realized by gauge/gravity duality.
Faulkner, Thomas; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David
2010-08-27
Fermi liquid theory explains the thermodynamic and transport properties of most metals. The so-called non-Fermi liquids deviate from these expectations and include exotic systems such as the strange metal phase of cuprate superconductors and heavy fermion materials near a quantum phase transition. We used the anti-de-Sitter/conformal field theory correspondence to identify a class of non-Fermi liquids; their low-energy behavior is found to be governed by a nontrivial infrared fixed point, which exhibits nonanalytic scaling behavior only in the time direction. For some representatives of this class, the resistivity has a linear temperature dependence, as is the case for strange metals.
Light rays and the tidal gravitational pendulum
NASA Astrophysics Data System (ADS)
Farley, A. N. St J.
2018-05-01
Null geodesic deviation in classical general relativity is expressed in terms of a scalar function, defined as the invariant magnitude of the connecting vector between neighbouring light rays in a null geodesic congruence projected onto a two-dimensional screen space orthogonal to the rays, where λ is an affine parameter along the rays. We demonstrate that η satisfies a harmonic oscillator-like equation with a λ-dependent frequency, which comprises terms accounting for local matter affecting the congruence and tidal gravitational effects from distant matter or gravitational waves passing through the congruence, represented by the amplitude, of a complex Weyl driving term. Oscillating solutions for η imply the presence of conjugate or focal points along the rays. A polarisation angle, is introduced comprising the orientation of the connecting vector on the screen space and the phase, of the Weyl driving term. Interpreting β as the polarisation of a gravitational wave encountering the light rays, we consider linearly polarised waves in the first instance. A highly non-linear, second-order ordinary differential equation, (the tidal pendulum equation), is then derived, so-called due to its analogy with the equation describing a non-linear, variable-length pendulum oscillating under gravity. The variable pendulum length is represented by the connecting vector magnitude, whilst the acceleration due to gravity in the familiar pendulum formulation is effectively replaced by . A tidal torque interpretation is also developed, where the torque is expressed as a coupling between the moment of inertia of the pendulum and the tidal gravitational field. Precessional effects are briefly discussed. A solution to the tidal pendulum equation in terms of familiar gravitational lensing variables is presented. The potential emergence of chaos in general relativity is discussed in the context of circularly, elliptically or randomly polarised gravitational waves encountering the null congruence.
Probing hybrid modified gravity by stellar motion around Galactic Center
NASA Astrophysics Data System (ADS)
Borka, D.; Capozziello, S.; Jovanović, P.; Borka Jovanović, V.
2016-06-01
We consider possible signatures for the so called hybrid gravity within the Galactic Central Parsec. This modified theory of gravity consists of a superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatiniand can be easily reduced to an equivalent scalar-tensor theory. Such an approach is introduced in order to cure the shortcomings related to f(R) gravity, in general formulated either in metric or in metric-affine frameworks. Hybrid gravity allows to disentangle the further gravitational degrees of freedom with respect to those of standard General Relativity. The present analysis is based on the S2 star orbital precession around the massive compact dark object at the Galactic Center where the simulated orbits in hybrid modified gravity are compared with astronomical observations. These simulations result with constraints on the range of hybrid gravity interaction parameter ϕ0, showing that in the case of S2 star it is between -0.0009 and -0.0002. At the same time, we are also able to obtain the constraints on the effective mass parameter mϕ, and found that it is between -0.0034 and -0.0025 AU-1 for S2 star. Furthermore, the hybrid gravity potential induces precession of S2 star orbit in the same direction as General Relativity. In previous papers, we considered other types of extended gravities, like metric power law f(R)∝Rn gravity, inducing Yukawa and Sanders-like gravitational potentials, but it seems that hybrid gravity is the best among these models to explain different gravitational phenomena at different astronomical scales.
Generalized geometry and non-symmetric metric gravity
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Khoo, Fech Scen; Schupp, Peter; Vysoký, Jan
2016-04-01
Generalized geometry provides the framework for a systematic approach to non-symmetric metric gravity theory and naturally leads to an Einstein-Kalb-Ramond gravity theory with totally anti-symmetric contortion. The approach is related to the study of the low-energy effective closed string gravity actions.
Combined analysis of magnetic and gravity anomalies using normalized source strength (NSS)
NASA Astrophysics Data System (ADS)
Li, L.; Wu, Y.
2017-12-01
Gravity field and magnetic field belong to potential fields which lead inherent multi-solution. Combined analysis of magnetic and gravity anomalies based on Poisson's relation is used to determinate homology gravity and magnetic anomalies and decrease the ambiguity. The traditional combined analysis uses the linear regression of the reduction to pole (RTP) magnetic anomaly to the first order vertical derivative of the gravity anomaly, and provides the quantitative or semi-quantitative interpretation by calculating the correlation coefficient, slope and intercept. In the calculation process, due to the effect of remanent magnetization, the RTP anomaly still contains the effect of oblique magnetization. In this case the homology gravity and magnetic anomalies display irrelevant results in the linear regression calculation. The normalized source strength (NSS) can be transformed from the magnetic tensor matrix, which is insensitive to the remanence. Here we present a new combined analysis using NSS. Based on the Poisson's relation, the gravity tensor matrix can be transformed into the pseudomagnetic tensor matrix of the direction of geomagnetic field magnetization under the homologous condition. The NSS of pseudomagnetic tensor matrix and original magnetic tensor matrix are calculated and linear regression analysis is carried out. The calculated correlation coefficient, slope and intercept indicate the homology level, Poisson's ratio and the distribution of remanent respectively. We test the approach using synthetic model under complex magnetization, the results show that it can still distinguish the same source under the condition of strong remanence, and establish the Poisson's ratio. Finally, this approach is applied in China. The results demonstrated that our approach is feasible.
Stability issues of black hole in non-local gravity
NASA Astrophysics Data System (ADS)
Myung, Yun Soo; Park, Young-Jai
2018-04-01
We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability analysis of black hole for the unitary and renormalizable non-local gravity with γ2 = - 2γ0 cannot be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-renormalizable case with γ2 = 0, the black hole is stable against the metric perturbations. For non-unitary and renormalizable local gravity with γ2 = - 2γ0 = const (fourth-order gravity), the small black holes are unstable against the metric perturbations. This implies that what makes the problem difficult in stability analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the Minkowski spacetime.
Relativistic weak lensing from a fully non-linear cosmological density field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D.B.; Bruni, M.; Wands, D., E-mail: thomas.daniel@ucy.ac.cy, E-mail: marco.bruni@port.ac.uk, E-mail: david.wands@port.ac.uk
2015-09-01
In this paper we examine cosmological weak lensing on non-linear scales and show that there are Newtonian and relativistic contributions and that the latter can also be extracted from standard Newtonian simulations. We use the post-Friedmann formalism, a post-Newtonian type framework for cosmology, to derive the full weak-lensing deflection angle valid on non-linear scales for any metric theory of gravity. We show that the only contributing term that is quadratic in the first order deflection is the expected Born correction and lens-lens coupling term. We use this deflection angle to analyse the vector and tensor contributions to the E- andmore » B- mode cosmic shear power spectra. In our approach, once the gravitational theory has been specified, the metric components are related to the matter content in a well-defined manner. Specifying General Relativity, we write down a complete set of equations for a GR+ΛCDM universe for computing all of the possible lensing terms from Newtonian N-body simulations. We illustrate this with the vector potential and show that, in a GR+ΛCDM universe, its contribution to the E-mode is negligible with respect to that of the conventional Newtonian scalar potential, even on non-linear scales. Thus, under the standard assumption that Newtonian N-body simulations give a good approximation of the matter dynamics, we show that the standard ray tracing approach gives a good description for a ΛCDM cosmology.« less
Beyond δ: Tailoring marked statistics to reveal modified gravity
NASA Astrophysics Data System (ADS)
Valogiannis, Georgios; Bean, Rachel
2018-01-01
Models which attempt to explain the accelerated expansion of the universe through large-scale modifications to General Relativity (GR), must satisfy the stringent experimental constraints of GR in the solar system. Viable candidates invoke a “screening” mechanism, that dynamically suppresses deviations in high density environments, making their overall detection challenging even for ambitious future large-scale structure surveys. We present methods to efficiently simulate the non-linear properties of such theories, and consider how a series of statistics that reweight the density field to accentuate deviations from GR can be applied to enhance the overall signal-to-noise ratio in differentiating the models from GR. Our results demonstrate that the cosmic density field can yield additional, invaluable cosmological information, beyond the simple density power spectrum, that will enable surveys to more confidently discriminate between modified gravity models and ΛCDM.
Consequences and assessment of human vestibular failure: implications for postural control.
Colebatch, James G
2002-01-01
Labyrinthine afferents respond to both angular velocity (semicircular canals) and linear acceleration (otoliths), including gravity. Given their response to gravity, the otoliths are likely to have an important role in the postural functions of the vestibular apparatus. Unilateral vestibular ablation has dramatic effects on posture in many animals, but less so in primates. Nevertheless, bilateral vestibular lesions lead to disabling symptoms in man related to disturbed ocular and postural control and impaired perception of slopes and accelerations. While seimicircular canal function can be assessed through its effects on vestibular ocular reflexes, assessment of otolith function in man has traditionally been much more difficult. Recent definition of a short latency vestibulocollic reflex, activated by sound and appearing to arise from the saccule, shows promise as a new method of non-invasive assessment of otolith function.
Structure of the midcontinent basement. Topography, gravity, seismic, and remote sensing
NASA Technical Reports Server (NTRS)
Guinness, E. A.; Strebeck, J. W.; Arvidson, R. E.; Scholz, K.; Davies, G. F.
1981-01-01
Some 600,000 discrete Bouguer gravity estimates of the continental United States were spatially filtered to produce a continuous tone image. The filtered data were also digitally painted in color coded form onto a shaded relief map. The resultant image is a colored shaded relief map where the hue and saturation of a given image element is controlled by the value of the Bouguer anomaly. Major structural features (e.g., midcontinent gravity high) are readily discernible in these data, as are a number of subtle and previously unrecognized features. A linear gravity low that is approximately 120 to 150 km wide extends from southeastern Nebraska, at a break in the midcontinent gravity high, through the Ozark Plateau, and across the Mississippi embayment. The low is also aligned with the Lewis and Clark lineament (Montana to Washington), forming a linear feature of approximately 2800 km in length. In southeastern Missouri the gravity low has an amplitude of 30 milligals, a value that is too high to be explained by simple valley fill by sedimentary rocks.
The middeck 0-gravity dynamics experiment
NASA Technical Reports Server (NTRS)
Crawley, Edward F.; Vanschoor, Marthinus C.; Bokhour, Edward B.
1993-01-01
The Middeck 0-Gravity Dynamics Experiment (MODE), flown onboard the Shuttle STS-48 Mission, consists of three major elements: the Experiment Support Module, a dynamics test bed providing computer experiment control, analog signal conditioning, power conditioning, an operator interface consisting of a keypad and display, experiment electrical and thermal control, and archival data storage: the Fluid Test Article assembly, used to investigate the dynamics of fluid-structure interaction in 0-gravity; and the Structural Test Article for investigating the open-loop dynamics of structures in 0-gravity. Deployable, erectable, and rotary modules were assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. Change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity. An experimental study of the lateral slosh behavior of contained fluids is also presented. A comparison of the measured earth and space results identifies and highlights the effects of gravity on the linear and nonlinear slosh behavior of these fluids.
Magnetized cosmological perturbations in the post-recombination era
NASA Astrophysics Data System (ADS)
Vasileiou, Hera; Tsagas, Christos G.
2016-01-01
We study inhomogeneous magnetized cosmologies through the post-recombination era in the framework of Newtonian gravity and the ideal-magnetohydrodynamic limit. The non-linear kinematic and dynamic equations are derived and linearized around the Newtonian counterpart of the Einstein-de Sitter universe. This allows for a direct comparison with the earlier relativistic treatments of the issue. Focusing on the evolution of linear density perturbations, we provide new analytic solutions which include the effects of the magnetic pressure as well as those of the field's tension. We confirm that the pressure of field inhibits the growth of density distortions and can induce a purely magnetic Jeans length. On scales larger than the aforementioned characteristic length the inhomogeneities grow, though slower than in non-magnetized universes. Wavelengths smaller than the magnetic Jeans length typically oscillate with decreasing amplitude. We also identify a narrow range of scales, just below the Jeans length, where the perturbations exhibit a slower power-law decay. In all cases, the effect of the field is proportional to its strength and increases as we move to progressively smaller lengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silsbee, Kedron; Rafikov, Roman R., E-mail: ksilsbee@astro.princeton.edu
2015-01-10
Detections of planets in eccentric, close (separations of ∼20 AU) binary systems such as α Cen or γ Cep provide an important test of planet formation theories. Gravitational perturbations from the companion are expected to excite high planetesimal eccentricities, resulting in destruction rather than growth of objects with sizes of up to several hundred kilometers in collisions of similar-sized bodies. It was recently suggested that the gravity of a massive axisymmetric gaseous disk in which planetesimals are embedded drives rapid precession of their orbits, suppressing eccentricity excitation. However, disks in binaries are themselves expected to be eccentric, leading to additionalmore » planetesimal excitation. Here we develop a secular theory of eccentricity evolution for planetesimals perturbed by the gravity of an elliptical protoplanetary disk (neglecting gas drag) and the companion. For the first time, we derive an expression for the disturbing function due to an eccentric disk, which can be used for a variety of other astrophysical problems. We obtain explicit analytical solutions for planetesimal eccentricity evolution neglecting gas drag and delineate four different regimes of dynamical excitation. We show that in systems with massive (≳ 10{sup –2} M {sub ☉}) disks, planetesimal eccentricity is usually determined by the gravity of the eccentric disk alone, and is comparable to the disk eccentricity. As a result, the latter imposes a lower limit on collisional velocities of solids, making their growth problematic. In the absence of gas drag, this fragmentation barrier can be alleviated if the gaseous disk rapidly precesses or if its own self-gravity is efficient at lowering disk eccentricity.« less
Seafloor Topography Estimation from Gravity Gradient Using Simulated Annealing
NASA Astrophysics Data System (ADS)
Yang, J.; Jekeli, C.; Liu, L.
2017-12-01
Inferring seafloor topography from gravimetry is an indirect yet proven and efficient means to map the ocean floor. Standard techniques rely on an approximate, linear relationship (Parker's formula) between topography and gravity. It has been reported that in the very rugged areas the discrepancies between prediction and ship soundings are very large, partly because the linear term of Parker's infinite series is dominant only in areas where the local topography is small compared with the regional topography. The validity of the linear approximation is therefore in need of analysis. In this study the nonlinear effects caused by terrain are quantified by both numerical tests and an algorithmic approach called coherency. It is shown that the nonlinear effects are more significant at higher frequencies, which suggests that estimation algorithms with nonlinear approximation in the modeled relationship between gravity gradient and topography should be developed in preparation for future high-resolution gravity gradient missions. The simulated annealing (SA) method is such an optimization technique that can process nonlinear inverse problems, and is used to estimate the seafloor topography parameters in a forward model by minimizing the difference between the observed and forward-computed vertical gravity gradients. Careful treatments like choosing suitable truncation distance, padding the vicinity of the study area with a known topography model, and using the relative cost function, are considered to improve the estimation accuracy. This study uses the gravity gradient, which is more sensitive to topography at short wavelengths than gravity anomaly. The gravity gradient data are derived from satellite altimetry, but the SA has no restrictions on data distribution, as required in Parker's infinite series model, thus enabling the use of airborne gravity gradient data, whose survey trajectories are irregular. The SA method is tested in an area of Guyots (E 156°-158° in longitude, N 20°-22° in latitude). Comparison between the estimation and ship sounding shows that half of the discrepancy is within 110 m, which improves the result from standard techniques by 32%.
Massive Star Goes Out With a Whimper Instead of a Bang (Artist's Concept)
2017-05-25
Every second a star somewhere out in the universe explodes as a supernova. But some extremely massive stars go out with a whimper instead of a bang. When they do, they can collapse under the crushing tug of gravity and vanish out of sight, only to leave behind a black hole. The doomed star N6946-BH1 was 25 times as massive as our sun. It began to brighten weakly in 2009. But, by 2015, it appeared to have winked out of existence. By a careful process of elimination, based on observations by the Large Binocular Telescope and NASA's Hubble and Spitzer space telescopes, researchers eventually concluded that the star must have become a black hole. This may be the fate for extremely massive stars in the universe. This illustration shows the final stages in the life of a supermassive star that fails to explode as a supernova, but instead implodes to form a black hole. https://photojournal.jpl.nasa.gov/catalog/PIA21466
Essa, Khalid S
2014-01-01
A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values.
Essa, Khalid S.
2013-01-01
A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values. PMID:25685472
NASA Astrophysics Data System (ADS)
Liu, Molin; Lu, Junwang
2011-05-01
Motivated by recent logarithmic entropy of Hořava-Lifshitz gravity, we investigate Hawking radiation for Kehagias-Sfetsos black hole from tunneling perspective. After considering the effect of self-gravitation, we calculate the emission rate and entropy of quantum tunneling by using Kraus-Parikh-Wilczek method. Meanwhile, both massless and massive particles are considered in this Letter. Interestingly, two types tunneling particles have the same emission rate Γ and entropy Sb whose analytical formulae are Γ=exp[π(rin2-rout2)/2+π/αln rin/rout] and Sb=A/4+π/αln(A/4), respectively. Here, α is the Hořava-Lifshitz field parameter. The results show that the logarithmic entropy of Hořava-Lifshitz gravity could be explained well by the self-gravitation, which is totally different from other methods. The study of this semiclassical tunneling process may shed light on understanding the Hořava-Lifshitz gravity.
Quasi-normal modes of extremal BTZ black holes in TMG
NASA Astrophysics Data System (ADS)
Afshar, Hamid R.; Alishahiha, Mohsen; Mosaffa, Amir E.
2010-08-01
We study the spectrum of tensor perturbations on extremal BTZ black holes in topologically massive gravity for arbitrary values of the coefficient of the Chern-Simons term, μ. Imposing proper boundary conditions at the boundary of the space and at the horizon, we find that the spectrum contains quasi-normal modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalaydzhyan, Tigran
Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators tomore » the effects of gravity. The main observable – maximal energy of the scattered photons – would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. In conclusion, we confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.« less
Testing general relativity on accelerators
Kalaydzhyan, Tigran
2015-09-07
Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators tomore » the effects of gravity. The main observable – maximal energy of the scattered photons – would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. In conclusion, we confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.« less
Black string in dRGT massive gravity
NASA Astrophysics Data System (ADS)
Tannukij, Lunchakorn; Wongjun, Pitayuth; Ghosh, Suchant G.
2017-12-01
We present a cylindrically symmetric solution, both charged and uncharged, which is known as a black string solution to the nonlinear ghost-free massive gravity found by de Rham, Gabadadze, and Tolley (dRGT). This "dRGT black string" can be thought of as a generalization of the black string solution found by Lemos. Moreover, the dRGT black string solution includes other classes of black string solution such as the monopole-black string ones since the graviton mass contributes to the global monopole term as well as the cosmological-constant term. To investigate the solution, we compute mass, temperature, and entropy of the dRGT black string. We found that the existence of the graviton mass drastically affects the thermodynamics of the black string. Furthermore, the Hawking-Page phase transition is found to be possible for the dRGT black string as well as the charged dRGT black string. The dRGT black string solution is thermodynamically stable for r>r_c with negative thermodynamical potential and positive heat capacity while it is unstable for r
Solar g-modes? Comparison of detected asymptotic g-mode frequencies with solar model predictions
NASA Astrophysics Data System (ADS)
Wood, Suzannah Rebecca; Guzik, Joyce Ann; Mussack, Katie; Bradley, Paul A.
2018-06-01
After many years of searching for solar gravity modes, Fossat et al. (2017) reported detection of the nearly equally spaced high-order g-modes periods using a 15-year time series of GOLF data from the SOHO spacecraft. Here we report progress towards and challenges associated with calculating and comparing g-mode period predictions for several previously published standard solar models using various abundance mixtures and opacities, as well as the predictions for some non-standard models incorporating early mass loss, and compare with the periods reported by Fossat et al (2017). Additionally, we have a side-by-side comparison of results of different stellar pulsation codes for calculating g-mode predictions. These comparisons will allow for testing of nonstandard physics input that affect the core, including an early more massive Sun and dynamic electron screening.
NASA Astrophysics Data System (ADS)
La, I.; Yum, S. S.; Yeom, J. M.; Gultepe, I.
2017-12-01
Since microphysical and dynamical processes of fog are not well-known and have non-linear relationships among processes that are related to fog formation, improving the accuracy of the fog forecasting/nowcasting system is challenging. For these reasons, understanding the fog mechanism is needed to develop the fog forecasting system. So, we focus on understanding fog-turbulence interactions and fog-gravity wave interactions. Many studies noted that turbulence plays important roles in fog. However, a discrepancy between arguments for the effect of turbulent mixing on fog formation exists. Several studies suggested that turbulent mixing suppresses fog formation. Some other studies reported that turbulent mixing contributes to fog formation. On the other hand, several quasi-periodic oscillations of temperature, visibility, and vertical velocity, which have period of 10-20 minutes, were observed to be related to gravity waves in fog; because gravity waves play significant dynamic roles in the atmosphere. Furthermore, a numerical study suggested that gravity waves, simulated near the top of the fog layer, may affect fog microphysics. Thus, we investigate the effects of turbulent mixing on fog formation and the influences of gravity waves on fog microphysics to understand fog structure in Pyeongchang. In these studies, we analyze the data that are obtained from doppler lidar and 3.5 m meteorological observation tower including 3D-ultrasonic anemometer, IR sensor, and fog monitor during ICE-POP (International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games) campaign. In these instruments, doppler lidar is a good instrument to observe the gravity waves near the fog top, while in situ measurements have small spatial coverage. The instruments are installed at the mountainous terrain of Pyeongchang, Korea. More details will be presented at the conference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, J.E.; Alcaniz, J.S.; Carvalho, J.C., E-mail: javierernesto@on.br, E-mail: alcaniz@on.br, E-mail: jcarvalho@on.br
The existing degeneracy between different dark energy and modified gravity cosmologies at the background level may be broken by analyzing quantities at the perturbative level. In this work, we apply a non-parametric smoothing (NPS) method to reconstruct the expansion history of the Universe ( H ( z )) from model-independent cosmic chronometers and high- z quasar data. Assuming a homogeneous and isotropic flat universe and general relativity (GR) as the gravity theory, we calculate the non-relativistic matter perturbations in the linear regime using the H ( z ) reconstruction and realistic values of Ω {sub m} {sub 0} and σ{submore » 8} from Planck and WMAP-9 collaborations. We find a good agreement between the measurements of the growth rate and f σ{sub 8}( z ) from current large-scale structure observations and the estimates obtained from the reconstruction of the cosmic expansion history. Considering a recently proposed null test for GR using matter perturbations, we also apply the NPS method to reconstruct f σ{sub 8}( z ). For this case, we find a ∼ 3σ tension (good agreement) with the standard relativistic cosmology when the Planck (WMAP-9) priors are used.« less
Can neutrino decay-driven mock gravity save hot dark matter?
NASA Technical Reports Server (NTRS)
Splinter, Randall J.; Melott, Adrian L.
1992-01-01
The radiative decay of a 30 eV neutrino with a lifetime of order 10 exp 23-24 s has recently been shown to yield a satisfactory explanation of a wide range of problems in astrophysics. In this paper, it is investigated whether the photon flux generated by the radiative decay of a massive neutrino is capable of generating sufficient radiation pressure to cause a 'mock gravitational' collapse of primordial hydrogen clouds. It is shown that when using neutral hydrogen as a source of opacity for mock gravity the time scale for mock gravitational collapse is significantly larger than the expansion time scale. Thus, the model fails as a source of galactic seed perturbations. Furthermore, it is argued that nonlinear feedback mechanisms will be unable to increase the collapse rate of the cloud under mock gravity.
Exact solutions in 3D gravity with torsion
NASA Astrophysics Data System (ADS)
González, P. A.; Vásquez, Yerko
2011-08-01
We study the three-dimensional gravity with torsion given by the Mielke-Baekler (MB) model coupled to gravitational Chern-Simons term, and that possess electric charge described by Maxwell-Chern-Simons electrodynamics. We find and discuss this theory's charged black holes solutions and uncharged solutions. We find that for vanishing torsion our solutions by means of a coordinate transformation can be written as three-dimensional Chern-Simons black holes. We also discuss a special case of this theory, Topologically Massive Gravity (TMG) at chiral point, and we show that the logarithmic solution of TMG is also a solution of the MB model at a fixed point in the space of parameters. Furthermore, we show that our solutions generalize Gödel type solutions in a particular case. Also, we recover BTZ black hole in Riemann-Cartan spacetime for vanishing charge.
Ghirardi-Rimini-Weber model with massive flashes
NASA Astrophysics Data System (ADS)
Tilloy, Antoine
2018-01-01
I introduce a modification of the Ghirardi-Rimini-Weber (GRW) model in which the flashes (or space-time collapse events) source a classical gravitational field. The resulting semiclassical theory of Newtonian gravity preserves the statistical interpretation of quantum states of matter in contrast with mean field approaches. It can be seen as a discrete version of recent proposals of consistent hybrid quantum classical theories. The model is in agreement with known experimental data and introduces new falsifiable predictions: (1) single particles do not self-interact, (2) the 1 /r gravitational potential of Newtonian gravity is cut off at short (≲10-7 m ) distances, and (3) gravity makes spatial superpositions decohere at a rate inversely proportional to that coming from the vanilla GRW model. Together, the last two predictions make the model experimentally falsifiable for all values of its parameters.
Enceladus's crust as a non-uniform thin shell: I tidal deformations
NASA Astrophysics Data System (ADS)
Beuthe, Mikael
2018-03-01
The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should take into account the lateral variations of shell structure. I construct here the theory of non-uniform viscoelastic thin shells, allowing for depth-dependent rheology and large lateral variations of shell thickness and rheology. Coupling to tides yields two 2D linear partial differential equations of the fourth order on the sphere which take into account self-gravity, density stratification below the shell, and core viscoelasticity. If the shell is laterally uniform, the solution agrees with analytical formulas for tidal Love numbers; errors on displacements and stresses are less than 5% and 15%, respectively, if the thickness is less than 10% of the radius. If the shell is non-uniform, the tidal thin shell equations are solved as a system of coupled linear equations in a spherical harmonic basis. Compared to finite element models, thin shell predictions are similar for the deformations due to Enceladus's pressurized ocean, but differ for the tides of Ganymede. If Enceladus's shell is conductive with isostatic thickness variations, surface stresses are approximately inversely proportional to the local shell thickness. The radial tide is only moderately enhanced at the south pole. The combination of crustal thinning and convection below the poles can amplify south polar stresses by a factor of 10, but it cannot explain the apparent time lag between the maximum plume brightness and the opening of tiger stripes. In a second paper, I will study the impact of a non-uniform crust on tidal dissipation.
A simple depth-averaged model for dry granular flow
NASA Astrophysics Data System (ADS)
Hung, Chi-Yao; Stark, Colin P.; Capart, Herve
Granular flow over an erodible bed is an important phenomenon in both industrial and geophysical settings. Here we develop a depth-averaged theory for dry erosive flows using balance equations for mass, momentum and (crucially) kinetic energy. We assume a linearized GDR-Midi rheology for granular deformation and Coulomb friction along the sidewalls. The theory predicts the kinematic behavior of channelized flows under a variety of conditions, which we test in two sets of experiments: (1) a linear chute, where abrupt changes in tilt drive unsteady uniform flows; (2) a rotating drum, to explore steady non-uniform flow. The theoretical predictions match the experimental results well in all cases, without the need to tune parameters or invoke an ad hoc equation for entrainment at the base of the flow. Here we focus on the drum problem. A dimensionless rotation rate (related to Froude number) characterizes flow geometry and accounts not just for spin rate, drum radius and gravity, but also for grain size, wall friction and channel width. By incorporating Coriolis force the theory can treat behavior under centrifuge-induced enhanced gravity. We identify asymptotic flow regimes at low and high dimensionless rotation rates that exhibit distinct power-law scaling behaviors.
NASA Astrophysics Data System (ADS)
Lebat, V.; Boulanger, D.; Christophe, B.; Foulon, B.; Liorzou, F.; Perrot, E.; Huynh, P. A.
2014-12-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Preliminary Design Review was achieved successfully on November 2013. The Engineering Model (EM) was integrated successfully and is under test, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The complete EM tests will be achieved on October 2014. The Critical Design Review is scheduled at the end of September 2014, and the integration of the first Flight Model will begin on October 2014. The results of the Engineering Model tests and the status of the Flight Models will be presented.
Shifting of the resonance location for planets embedded in circumstellar disks
NASA Astrophysics Data System (ADS)
Marzari, F.
2018-03-01
Context. In the early evolution of a planetary system, a pair of planets may be captured in a mean motion resonance while still embedded in their nesting circumstellar disk. Aims: The goal is to estimate the direction and amount of shift in the semimajor axis of the resonance location due to the disk gravity as a function of the gas density and mass of the planets. The stability of the resonance lock when the disk dissipates is also tested. Methods: The orbital evolution of a large number of systems is numerically integrated within a three-body problem in which the disk potential is computed as a series of expansion. This is a good approximation, at least over a limited amount of time. Results: Two different resonances are studied: the 2:1 and the 3:2. In both cases the shift is inwards, even if by a different amount, when the planets are massive and carve a gap in the disk. For super-Earths, the shift is instead outwards. Different disk densities, Σ, are considered and the resonance shift depends almost linearly on Σ. The gas dissipation leads to destabilization of a significant number of resonant systems, in particular if it is fast. Conclusions: The presence of a massive circumstellar disk may significantly affect the resonant behavior of a pair of planets by shifting the resonant location and by decreasing the size of the stability region. The disk dissipation may explain some systems found close to a resonance but not locked in it.
NASA Astrophysics Data System (ADS)
Sarhan, Mohammad Abdelfattah
2017-12-01
The present work investigates the efficiency of applying volume seismic attributes to differentiate between massive and non-massive carbonate sedimentary successions on using seismic data. The main objective of this work is to provide a pre-drilling technique to recognize the porous carbonate section (probable hydrocarbon reservoirs) based on seismic data. A case study from the Upper Cretaceous - Eocene carbonate successions of Abu Gharadig Basin, northern Western Desert of Egypt has been tested in this work. The qualitative interpretations of the well-log data of four available wells distributed in the study area, namely; AG-2, AG-5, AG-6 and AG-15 wells, has confirmed that the Upper Cretaceous Khoman A Member represents the massive carbonate section whereas the Eocene Apollonia Formation represents the non-massive carbonate unit. The present work have proved that the most promising seismic attributes capable of differentiating between massive and non-massive carbonate sequences are; Root Mean Square (RMS) Amplitude, Envelope (Reflection Strength), Instantaneous Frequency, Chaos, Local Flatness and Relative Acoustic Impedance.
Spontaneous Breaking of Scale Invariance in U(N) Chern-Simons Gauge Theories in Three Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardeen, William A.
2015-09-24
I explore the existence of a massive phase in a conformally invariant U(N) Chern-Simons gauge theories in D = 3 with matter fields in the fundamental representation. These models have attracted recent attention as being dual, in the conformal phase, to theories of higher spin gravity on AdS 4. Using the 0t Hooft large N expansion, exact solutions are obtained for scalar current correlators in the massive phase where the conformal symmetry is spontaneously broken. A massless dilaton appears as a composite state, and its properties are discussed. Solutions exist for matters field that are either bosons or fermions.
Spontaneous Breaking of Scale Invariance in U(N) Chern-Simons Gauge Theories in Three Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardeen, William
2014-10-24
I explore the existence of a massive phase in a conformally invariant U(N) Chern-Simons gauge theories in D = 3 with matter fields in the fundamental representation. These models have attracted recent attention as being dual, in the conformal phase, to theories of higher spin gravity on AdS 4. Using the 1t Hooft large N expansion, exact solutions are obtained for scalar current correlators in the massive phase where the conformal symmetry is spontaneously broken. A massless dilaton appears as a composite state, and its properties are discussed. Solutions exist for matters field that are either bosons or fermions.
dRGT theory of massive gravity from spontaneous symmetry breaking
NASA Astrophysics Data System (ADS)
Torabian, Mahdi
2018-05-01
In this note we propose a topological action for a Poincare times diffeomorphism invariant gauge theory. We show that there is Higgs phase where the gauge symmetry is spontaneous broken to a diagonal Lorentz subgroup and gives the Einstein-Hilbert action plus the dRGT potential terms. In this vacuum, there are five (three from Goldstone modes) propagating degrees of freedom which form polarizations of a massive spin 2 particle, an extra healthy heavy scalar (Higgs) mode and no Boulware-Deser ghost mode. We further show that the action can be derived in a limit from a topological de Sitter invariant gauge theory in 4 dimensions.
Hawking tunneling and boomerang behaviour of massive particles with E < m
NASA Astrophysics Data System (ADS)
Jannes, Gil; Philbin, Thomas G.; Rousseaux, Germain
2012-07-01
Massive particles are radiated from black holes through the Hawking mechanism together with the more familiar radiation of massless particles. For E >= m, the emission rate is identical to the massless case. But E < m particles can also tunnel across the horizon. A study of the dispersion relation and wave packet simulations show that their classical trajectory is similar to that of a boomerang. The tunneling formalism is used to calculate the probability for detecting such E < m particles, for a Schwarzschild black hole of astrophysical size or in an analogue gravity experiment, as a function of the distance from the horizon and the energy of the particle.
Variations in the fine-structure constant constraining gravity theories
NASA Astrophysics Data System (ADS)
Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.
2016-08-01
In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.
Topology and dark energy: testing gravity in voids.
Spolyar, Douglas; Sahlén, Martin; Silk, Joe
2013-12-13
Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field--here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.
Temporal gravity field modeling based on least square collocation with short-arc approach
NASA Astrophysics Data System (ADS)
ran, jiangjun; Zhong, Min; Xu, Houze; Liu, Chengshu; Tangdamrongsub, Natthachet
2014-05-01
After the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002, several research centers have attempted to produce the finest gravity model based on different approaches. In this study, we present an alternative approach to derive the Earth's gravity field, and two main objectives are discussed. Firstly, we seek the optimal method to estimate the accelerometer parameters, and secondly, we intend to recover the monthly gravity model based on least square collocation method. The method has been paid less attention compared to the least square adjustment method because of the massive computational resource's requirement. The positions of twin satellites are treated as pseudo-observations and unknown parameters at the same time. The variance covariance matrices of the pseudo-observations and the unknown parameters are valuable information to improve the accuracy of the estimated gravity solutions. Our analyses showed that introducing a drift parameter as an additional accelerometer parameter, compared to using only a bias parameter, leads to a significant improvement of our estimated monthly gravity field. The gravity errors outside the continents are significantly reduced based on the selected set of the accelerometer parameters. We introduced the improved gravity model namely the second version of Institute of Geodesy and Geophysics, Chinese Academy of Sciences (IGG-CAS 02). The accuracy of IGG-CAS 02 model is comparable to the gravity solutions computed from the Geoforschungszentrum (GFZ), the Center for Space Research (CSR) and the NASA Jet Propulsion Laboratory (JPL). In term of the equivalent water height, the correlation coefficients over the study regions (the Yangtze River valley, the Sahara desert, and the Amazon) among four gravity models are greater than 0.80.
NASA Astrophysics Data System (ADS)
Zhao, J.; Wang, S.
2017-12-01
Gravity wave drag (GWD) is among the drivers of meridional overturning in the middle atmosphere, also known as the Brewer-Dobson Circulation, and of the quasi-biennial oscillation (QBO). The small spatial scales and complications due to wave breaking require their effects to be parameterised. GWD parameterizations are usually divided into two parts, orographic and non-orographic. The basic dynamical and physical processes of the middle atmosphere and the mechanism of the interactions between the troposphere and the middle atmosphere were studied in the frame of a general circulation model. The model for the troposphere was expanded to a global model considering middle atmosphere with the capability of describing the basic processes in the middle atmosphere and the troposphere-middle atmosphere interactions. Currently, it is too costly to include full non-hydrostatic and rotational wave dynamics in an operational parameterization. The hydrostatic non-rotational wave dynamics which allow an efficient implementation that is suitably fast for operation. The simplified parameterization of non-orographic GWD follows from the WM96 scheme in which a framework is developed using conservative propagation of gravity waves, critical level filtering, and non-linear dissipation. In order to simulate and analysis the influence of non-orographic GWD on the stratospheric wind and temperature fields, experiments using Stratospheric Sudden Warming (SSW) event case occurred in January 2013 were carried out, and results of objective weather forecast verifications of the two months period were compared in detail. The verification of monthly mean of forecast anomaly correlation (ACC) and root mean square (RMS) errors shows consistently positive impact of non-orographic GWD on skill score of forecasting for the three to eight days, both in the stratosphere and troposphere, and visible positive impact on prediction of the stratospheric wind and temperature fields. Numerical simulation during SSW event demonstrates that the influence on the temperature of middle stratosphere is mainly positive and there were larger departure both for the wind and temperature fields considering the non-orographic GWD during the warming process.
kruX: matrix-based non-parametric eQTL discovery
2014-01-01
Background The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive. Results We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive linear associations. Conclusion kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com. PMID:24423115
Mass hierarchy, mass gap and corrections to Newton's law on thick branes with Poincaré symmetry
NASA Astrophysics Data System (ADS)
Barbosa-Cendejas, Nandinii; Herrera-Aguilar, Alfredo; Kanakoglou, Konstantinos; Nucamendi, Ulises; Quiros, Israel
2014-01-01
We consider a scalar thick brane configuration arising in a 5D theory of gravity coupled to a self-interacting scalar field in a Riemannian manifold. We start from known classical solutions of the corresponding field equations and elaborate on the physics of the transverse traceless modes of linear fluctuations of the classical background, which obey a Schrödinger-like equation. We further consider two special cases in which this equation can be solved analytically for any massive mode with , in contrast with numerical approaches, allowing us to study in closed form the massive spectrum of Kaluza-Klein (KK) excitations and to analytically compute the corrections to Newton's law in the thin brane limit. In the first case we consider a novel solution with a mass gap in the spectrum of KK fluctuations with two bound states—the massless 4D graviton free of tachyonic instabilities and a massive KK excitation—as well as a tower of continuous massive KK modes which obey a Legendre equation. The mass gap is defined by the inverse of the brane thickness, allowing us to get rid of the potentially dangerous multiplicity of arbitrarily light KK modes. It is shown that due to this lucky circumstance, the solution of the mass hierarchy problem is much simpler and transparent than in the thin Randall-Sundrum (RS) two-brane configuration. In the second case we present a smooth version of the RS model with a single massless bound state, which accounts for the 4D graviton, and a sector of continuous fluctuation modes with no mass gap, which obey a confluent Heun equation in the Ince limit. (The latter seems to have physical applications for the first time within braneworld models). For this solution the mass hierarchy problem is solved with positive branes as in the Lykken-Randall (LR) model and the model is completely free of naked singularities. We also show that the scalar-tensor system is stable under scalar perturbations with no scalar modes localized on the braneworld configuration.
High-Performance Modeling and Simulation of Anchoring in Granular Media for NEO Applications
NASA Technical Reports Server (NTRS)
Quadrelli, Marco B.; Jain, Abhinandan; Negrut, Dan; Mazhar, Hammad
2012-01-01
NASA is interested in designing a spacecraft capable of visiting a near-Earth object (NEO), performing experiments, and then returning safely. Certain periods of this mission would require the spacecraft to remain stationary relative to the NEO, in an environment characterized by very low gravity levels; such situations require an anchoring mechanism that is compact, easy to deploy, and upon mission completion, easy to remove. The design philosophy used in this task relies on the simulation capability of a high-performance multibody dynamics physics engine. On Earth, it is difficult to create low-gravity conditions, and testing in low-gravity environments, whether artificial or in space, can be costly and very difficult to achieve. Through simulation, the effect of gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine, a simulation pack age capable of utilizing massively parallel Graphic Processing Unit (GPU) hardware, several validation experiments were performed. Modeling of the regolith interaction has been carried out, after which the anchor penetration tests were performed and analyzed. The regolith was modeled by a granular medium composed of very large numbers of convex three-dimensional rigid bodies, subject to microgravity levels and interacting with each other with contact, friction, and cohesional forces. The multibody dynamics simulation approach used for simulating anchors penetrating a soil uses a differential variational inequality (DVI) methodology to solve the contact problem posed as a linear complementarity method (LCP). Implemented within a GPU processing environment, collision detection is greatly accelerated compared to traditional CPU (central processing unit)- based collision detection. Hence, systems of millions of particles interacting with complex dynamic systems can be efficiently analyzed, and design recommendations can be made in a much shorter time. The figure shows an example of this capability where the Brazil Nut problem is simulated: as the container full of granular material is vibrated, the large ball slowly moves upwards. This capability was expanded to account for anchors of different shapes and penetration velocities, interacting with granular soils.
Effect of nuclear stars gravity on quasar radiation feedback on the parsec-scale
NASA Astrophysics Data System (ADS)
Yang, Xiao-Hong; Bu, De-Fu
2018-05-01
It is often suggested that a super massive black hole is embedded in a nuclear bulge of size of a few 102 parsec . The nuclear stars gravity is not negligible near ˜10parsec. In order to study the effect of nuclear stars gravity on quasar radiation feedback on the parsec scale, we have simulated the parsec scale flows irradiated by a quasar by taking into account the gravitational potential of both the black hole and the nuclear star cluster. We find that the effect of nuclear stars gravity on the parsec-scale flows is related to the fraction of X-ray photons in quasar radiation. For the models in which the fraction of X-ray photons is not small (e.g. the X-ray photons contribute to 20% of the quasar radiation), the nuclear stars gravity is very helpful to collimate the outflows driven by UV photons, significantly weakens the outflow power at the outer boundary and significantly enhances the net accretion rate onto the black hole. For the models in which X-ray photons are significantly decreased (e.g. the X-ray photons contribute to 5% of the quasar radiation), the nuclear stars gravity can just slightly change properties of outflow and slightly enhance the net accretion rate onto the black hole.
Gravity and Height Variations at Medicina, Italy
NASA Astrophysics Data System (ADS)
Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio; Wziontek, Hartmut
2017-04-01
Since 1996, at the Medicina station, height and gravity variations are monitored continuously by means of GPS, VLBI and superconducting gravimeter (SG) data. Additionally, absolute gravity observations are performed twice a year and environmental parameters, among others water table levels, are regularly acquired. Levelling between the different monuments at the site area is also carried out repeatedly to constrain local ties in the vertical position. Two GPS systems are located very close to each other, and both are in close proximity to the VLBI antenna. Twenty years of data are now available, which allow investigating both long- and short-period height and gravity signals together with their relevant correlations. Natural land subsidence, which is well known to occur in the area, is a major component of the observed long-term behavior; however, non-linear long-period signatures are also present in the time series. On a shorter time scale, fingerprints of the water table seasonal oscillations can be recognized in the data. The Medicina site is characterized by clayey soil subjected to consolidation effects when the water table lowers during summer periods. The pillar on which the SG is installed is especially affected because of its shallow foundation, causing height decreases in the order of 2.5-3 cm for water table lowering of 2 m. This study presents a comparative analysis of the different data sets with the aim of separating mass and deformation contributions in the SG gravity record.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.
1988-01-01
Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).
Dynamical behavior of surface tension on rotating fluids in low and microgravity environments
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.
1989-01-01
Consideration is given to the time-dependent evolutions of the free surface profile (bubble shapes) of a cylindrical container, partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry in low and microgravity environments. The dynamics of the bubble shapes are calculated for four cases: linear time-dependent functions of spin-up and spin-down in low and microgravity, linear time-dependent functions of increasing and decreasing gravity at high and low rotating cylinder speeds, time-dependent step functions of spin-up and spin-down in low gravity, and sinusoidal function oscillation of the gravity environment in high and low rotating cylinder speeds. It is shown that the computer algorithms developed by Hung et al. (1988) may be used to simulate the profile of time-dependent bubble shapes under variations of centrifugal, capillary, and gravity forces.
NASA Astrophysics Data System (ADS)
Ćaǧatay Uçgun, Filiz; Esen, Oǧul; Gümral, Hasan
2018-01-01
We present Skinner-Rusk and Hamiltonian formalisms of second order degenerate Clément and Sarıoğlu-Tekin Lagrangians. The Dirac-Bergmann constraint algorithm is employed to obtain Hamiltonian realizations of Lagrangian theories. The Gotay-Nester-Hinds algorithm is used to investigate Skinner-Rusk formalisms of these systems.
Stephen Hawking bags big new 3m physics prize
NASA Astrophysics Data System (ADS)
Johnston, Hamish
2013-01-01
A massive 3m in prize money has gone to the British cosmologist Stephen Hawking for his work on black holes, quantum gravity and the early universe. The award is one of two "special fundamental physics prizes" from the Fundamental Physics Prize Foundation, which was set up earlier this year by the Russian physicist-turned-entrepreneur Yuri Milner.
Testing local Lorentz invariance with short-range gravity
Kostelecký, V. Alan; Mewes, Matthew
2017-01-10
The Newton limit of gravity is studied in the presence of Lorentz-violating gravitational operators of arbitrary mass dimension. The linearized modified Einstein equations are obtained and the perturbative solutions are constructed and characterized. We develop a formalism for data analysis in laboratory experiments testing gravity at short range and demonstrate that these tests provide unique sensitivity to deviations from local Lorentz invariance.
Scale-invariant fluctuations from Galilean genesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Brandenberger, Robert, E-mail: wangyi@physics.mcgill.ca, E-mail: rhb@physics.mcgill.ca
2012-10-01
We study the spectrum of cosmological fluctuations in scenarios such as Galilean Genesis \\cite(Nicolis) in which a spectator scalar field acquires a scale-invariant spectrum of perturbations during an early phase which asymptotes in the far past to Minkowski space-time. In the case of minimal coupling to gravity and standard scalar field Lagrangian, the induced curvature fluctuations depend quadratically on the spectator field and are hence non-scale-invariant and highly non-Gaussian. We show that if higher dimensional operators (the same operators that lead to the η-problem for inflation) are considered, a linear coupling between background and spectator field fluctuations is induced whichmore » leads to scale-invariant and Gaussian curvature fluctuations.« less
NASA Astrophysics Data System (ADS)
Hegedűs, Árpád
2018-03-01
In this paper, using the light-cone lattice regularization, we compute the finite volume expectation values of the composite operator \\overline{Ψ}Ψ between pure fermion states in the Massive Thirring Model. In the light-cone regularized picture, this expectation value is related to 2-point functions of lattice spin operators being located at neighboring sites of the lattice. The operator \\overline{Ψ}Ψ is proportional to the trace of the stress-energy tensor. This is why the continuum finite volume expectation values can be computed also from the set of non-linear integral equations (NLIE) governing the finite volume spectrum of the theory. Our results for the expectation values coming from the computation of lattice correlators agree with those of the NLIE computations. Previous conjectures for the LeClair-Mussardo-type series representation of the expectation values are also checked.
A biconjugate gradient type algorithm on massively parallel architectures
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Hochbruck, Marlis
1991-01-01
The biconjugate gradient (BCG) method is the natural generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. Recently, Freund and Nachtigal have proposed a novel BCG type approach, the quasi-minimal residual method (QMR), which overcomes the problems of BCG. Here, an implementation is presented of QMR based on an s-step version of the nonsymmetric look-ahead Lanczos algorithm. The main feature of the s-step Lanczos algorithm is that, in general, all inner products, except for one, can be computed in parallel at the end of each block; this is unlike the other standard Lanczos process where inner products are generated sequentially. The resulting implementation of QMR is particularly attractive on massively parallel SIMD architectures, such as the Connection Machine.
Why do galactic spins flip in the cosmic web? A Theory of Tidal Torques near saddles
NASA Astrophysics Data System (ADS)
Pichon, Christophe; Codis, Sandrine; Pogosyan, Dmitry; Dubois, Yohan; Desjacques, Vincent; Devriendt, Julien
2016-10-01
Filaments of the cosmic web drive spin acquisition of disc galaxies. The point process of filament-type saddle represent best this environment and can be used to revisit the Tidal Torque Theory in the context of an anisotropic peak (saddle) background split. The constrained misalignment between the tidal tensor and the Hessian of the density field generated in the vicinity of filament saddle points simply explains the corresponding transverse and longitudinal point-reflection symmetric geometry of spin distribution. It predicts in particular an azimuthal orientation of the spins of more massive galaxies and spin alignment with the filament for less massive galaxies. Its scale dependence also allows us to relate the transition mass corresponding to the alignment of dark matter halos' spin relative to the direction of their neighboring filament to this geometry, and to predict accordingly it's scaling with the mass of non linearity, as was measured in simulations.
Effect of Spacecraft Rotation on Fluid Convection Under Microgravity
NASA Technical Reports Server (NTRS)
Yuferev, Valentin S.; Kolesnikova, Elvira N.; Polovko, Yuri A.; Zhmakin, Alexander I.
1996-01-01
The influence of the rotational effects on two-dimensional fluid convection in a rectangular enclosure with rigid walls during the orbital flight is considered. It is shown that the Coriolis force influence both on steady and oscillatory convection becomes significant at Ekman numbers which are quite attainable in the space orbital conditions. In the case of harmonic oscillations of the gravity force appearance of the resonance phenomena is demonstrated. Dependence of the height and shape of the resonance peak on aspect ratio of a rectangular domain and orientation of vectors of the gravity force and the angular rotation velocity is studied. Special attention is given to non-linear effects caused by convective terms of Navier-Stokes equations. The convection produced by variations of the angular rotation velocity of a spacecraft is also discussed. It is shown that in some cases the latter convection can be comparable with another kinds of convection.
NASA Astrophysics Data System (ADS)
Rumsey, Clare; Perrott, Yvette C.; Olamaie, Malak; Saunders, Richard D. E.; Hobson, Michael P.; Stroe, Andra; Schammel, Michel P.; Grainge, Keith J. B.
2017-10-01
Arcminute Microkelvin Imager observations towards CIZA J2242+5301, in comparison with observations of weak gravitational lensing and X-ray emission from the literature, are used to investigate the behaviour of non-baryonic dark matter (NBDM) and gas during the merger. Analysis of the Sunyaev-Zel'dovich (SZ) signal indicates the presence of high pressure gas elongated perpendicularly to the X-ray and weak-lensing morphologies, which, given the merger-axis constraints in the literature, implies that high pressure gas is pushed out into a linear structure during core passing. Simulations in the literature closely matching the inferred merger scenario show the formation of gas density and temperature structures perpendicular to the merger axis. These SZ observations are challenging for modified gravity theories in which NBDM is not the dominant contributor to galaxy-cluster gravity.
NASA Astrophysics Data System (ADS)
Ishihara, Yoshiro; Yuri, Onishi; Tsuda, Keisuke; Yokokawa, Miwa
2017-04-01
Spaced planar laminations (SPL), or so-called traction carpet deposits, are frequently observed in deposits of sediment gravity flows. Several sedimentation models for a succession of inversely graded units have been suggested from field observations and flume experiments. The formation of the inversely graded unit could be summarized as follows: (1) abrupt sedimentation on freezing of an inversely graded layer, or (2) interruptions in flow causing a freezing of an inversely graded layer at the most basal part of flow. In either case, traction carpets as a bed load overlying the erosive boundary at the base of flow are required. Although some descriptions have reported SPLs forming antidune bedform-like structures and the association of SPLs with structureless massive deposits have not been clearly explained. In this study, we suggest a novel model of SPL formation by repetition of basal erosion and resurgence to high-sedimentation rates, based on detail examinations of SPLs both showing bedform-like structures and lateral extents of hundreds of meters. SPLs were investigated in the Mio-Pliocene Kiyosumi Formation in central Japan and the Miocene Aoshima Formation in southwest Japan. In a turbidite in the Kiyosumi Formation, SPLs show three mound-like structures, suggesting antidune bedforms with wavelengths of about 6 to 7 m. On the upcurrent flanks, SPLs show lenticular cross laminations or pinching out of units; those units do not show clear inverse grading. Rip-up mud clasts and relatively high-angle imbrications are also observed. On the other hand, SPLs on the downcurrent flanks show relatively clear inverse grading and transition downcurrent into a massive structureless bed. In the Aoshima Formation, SPLs with ca. 1 cm unit thickness continue approximately 50 m along a palaeocurrent direction without changes in thickness. These SPLs gradually transition upward into a massive structureless unit. From the observations described above, in addition to descriptions from previous studies, it is suggested that SPLs comprising mound-like bedforms exhibit erosive conditions in the upcurrent flanks and depositional conditions in the downcurrent flanks, whereas SPLs on flat sea-floor extensively maintain their structure. Also, massive structureless beds are observed when erosion did not occur. These facts indicate that SPLs are strongly associated with an erosional process at the base of sediment gravity flows under a supercritical flow condition. The formation of SPLs does not necessary require a traction carpet and they may reflect basal erosion with a lag deposit of fine-grained particles, followed by resurgence to conditions of high sedimentation rates and massive structureless bed deposition. Repetitions of inversely graded units could occur when basal shear stresses are changed by fluctuations of flow depth, such as internal waves in a sediment gravity flow. This model can explain the concurrence of massive structureless beds with SPLs and examples of bedform-like structures without a unit thickness control.
Hawking radiation and the boomerang behavior of massive modes near a horizon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannes, G.; Low Temperature Laboratory, Aalto University School of Science, PO Box 15100, 00076 Aalto; Maiessa, P.
2011-05-15
We discuss the behavior of massive modes near a horizon based on a study of the dispersion relation and wave packet simulations of the Klein-Gordon equation. We point out an apparent paradox between two (in principle equivalent) pictures of black-hole evaporation through Hawking radiation. In the picture in which the evaporation is due to the emission of positive-energy modes, one immediately obtains a threshold for the emission of massive particles. In the picture in which the evaporation is due to the absorption of negative-energy modes, such a threshold apparently does not exist. We resolve this paradox by tracing the evolutionmore » of the positive-energy massive modes with an energy below the threshold. These are seen to be emitted and move away from the black-hole horizon, but they bounce back at a 'red horizon' and are reabsorbed by the black hole, thus compensating exactly for the difference between the two pictures. For astrophysical black holes, the consequences are curious but do not affect the terrestrial constraints on observing Hawking radiation. For analogue-gravity systems with massive modes, however, the consequences are crucial and rather surprising.« less
Hawking radiation and the boomerang behavior of massive modes near a horizon
NASA Astrophysics Data System (ADS)
Jannes, G.; Maïssa, P.; Philbin, T. G.; Rousseaux, G.
2011-05-01
We discuss the behavior of massive modes near a horizon based on a study of the dispersion relation and wave packet simulations of the Klein-Gordon equation. We point out an apparent paradox between two (in principle equivalent) pictures of black-hole evaporation through Hawking radiation. In the picture in which the evaporation is due to the emission of positive-energy modes, one immediately obtains a threshold for the emission of massive particles. In the picture in which the evaporation is due to the absorption of negative-energy modes, such a threshold apparently does not exist. We resolve this paradox by tracing the evolution of the positive-energy massive modes with an energy below the threshold. These are seen to be emitted and move away from the black-hole horizon, but they bounce back at a “red horizon” and are reabsorbed by the black hole, thus compensating exactly for the difference between the two pictures. For astrophysical black holes, the consequences are curious but do not affect the terrestrial constraints on observing Hawking radiation. For analogue-gravity systems with massive modes, however, the consequences are crucial and rather surprising.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunes, Rafael C.; Abreu, Everton M.C.; Neto, Jorge Ananias
Based on the relationship between thermodynamics and gravity we propose, with the aid of Verlinde's formalism, an alternative interpretation of the dynamical evolution of the Friedmann-Robertson-Walker Universe. This description takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there through non-gaussian statistical theories proposed by Tsallis and Kaniadakis. The effect of these non-gaussian statistics in the cosmological context is to change the strength of the gravitational constant. In this paper, we consider the w CDM model modified by the non-gaussian statistics and investigate the compatibility of these non-gaussian modificationmore » with the cosmological observations. In order to analyze in which extend the cosmological data constrain these non-extensive statistics, we will use type Ia supernovae, baryon acoustic oscillations, Hubble expansion rate function and the linear growth of matter density perturbations data. We show that Tsallis' statistics is favored at 1σ confidence level.« less
Testing Chern-Simons modified gravity with observations of extreme-mass-ratio binaries
NASA Astrophysics Data System (ADS)
Canizares, P.; Gair, J. R.; Sopuerta, C. F.
2012-06-01
Extreme-Mass-Ratio Inspirals (EMRIs) are one of the most promising sources of gravitational waves (GWs) for space-based detectors like the Laser Interferometer Space Antenna (LISA). EMRIs consist of a compact stellar object orbiting around a massive black hole (MBH). Since EMRI signals are expected to be long lasting (containing of the order of hundred thousand cycles), they will encode the structure of the MBH gravitational potential in a precise way such that features depending on the theory of gravity governing the system may be distinguished. That is, EMRI signals may be used to test gravity and the geometry of black holes. However, the development of a practical methodology for computing the generation and propagation of GWs from EMRIs in theories of gravity different than General Relativity (GR) has only recently begun. In this paper, we present a parameter estimation study of EMRIs in a particular modification of GR, which is described by a four-dimensional Chern-Simons (CS) gravitational term. We focus on determining to what extent a space-based GW observatory like LISA could distinguish between GR and CS gravity through the detection of GWs from EMRIs.
Gapless topological order, gravity, and black holes
NASA Astrophysics Data System (ADS)
Rasmussen, Alex; Jermyn, Adam S.
2018-04-01
In this work we demonstrate that linearized gravity exhibits gapless topological order with an extensive ground state degeneracy. This phenomenon is closely related both to the topological order of the pyrochlore U (1 ) spin liquid and to recent work by Hawking and co-workers, who used the soft-photon and graviton theorems to demonstrate that the vacuum in linearized gravity is not unique. We first consider lattice models whose low-energy behavior is described by electromagnetism and linearized gravity, and then argue that the topological nature of these models carries over into the continuum. We demonstrate that these models can have many ground states without making assumptions about the topology of spacetime or about the high-energy nature of the theory, and show that the infinite family of symmetries described by Hawking and co-workers is simply the different topological sectors. We argue that in this context black holes appear as topological defects in the infrared theory, and that this suggests a potential approach to understanding both the firewall paradox and information encoding in gravitational theories. Finally, we use insights from the soft-boson theorems to make connections between deconfined gauge theories with continuous gauge groups and gapless topological order.
Intrinsic problems of the gravitational baryogenesis
NASA Astrophysics Data System (ADS)
Arbuzova, E. V.; Dolgov, A. D.
2017-06-01
Modification of gravity due to the curvature dependent term in the gravitational baryogenesis scenario is considered. It is shown that this term leads to the fourth order differential equation of motion for the curvature scalar instead of the algebraic one of General Relativity (GR). The fourth order gravitational equations are generically unstable with respect to small perturbations. Non-linear in curvature terms may stabilize the solution but the magnitude of the stabilized curvature scalar would be much larger than that dictated by GR, so the standard cosmology would be strongly distorted.
N-MODY: A Code for Collisionless N-body Simulations in Modified Newtonian Dynamics
NASA Astrophysics Data System (ADS)
Londrillo, Pasquale; Nipoti, Carlo
2011-02-01
N-MODY is a parallel particle-mesh code for collisionless N-body simulations in modified Newtonian dynamics (MOND). N-MODY is based on a numerical potential solver in spherical coordinates that solves the non-linear MOND field equation, and is ideally suited to simulate isolated stellar systems. N-MODY can be used also to compute the MOND potential of arbitrary static density distributions. A few applications of N-MODY indicate that some astrophysically relevant dynamical processes are profoundly different in MOND and in Newtonian gravity with dark matter.
Rapidly rotating neutron stars with a massive scalar field—structure and universal relations
NASA Astrophysics Data System (ADS)
Doneva, Daniela D.; Yazadjiev, Stoytcho S.
2016-11-01
We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I-Love-Q relations.
Visser's massive graviton bimetric theory revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roany, Alain de; Chauvineau, Bertrand; Freitas Pacheco, Jose A. de
2011-10-15
A massive gravity theory was proposed by Visser in the late 1990s. This theory, based on a background metric b{sub {alpha}{beta}} and on an usual dynamical metric g{sub {alpha}{beta}} has the advantage of being free of ghosts as well as discontinuities present in other massive theories proposed in the past. In the present investigation, the equations of Visser's theory are revisited with particular care on the related conservation laws. It will be shown that a multiplicative factor is missing in the graviton tensor originally derived by Visser, which has no incidence on the weak field approach but becomes important inmore » the strong field regime when, for instance, cosmological applications are considered. In this case, contrary to some previous claims found in the literature, we conclude that a nonstatic background metric is required in order to obtain a solution able to mimic the {Lambda}CDM cosmology.« less