Science.gov

Sample records for non-linear parametric generation

  1. Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications.

    PubMed

    Gottschall, Thomas; Meyer, Tobias; Schmitt, Michael; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas

    2015-09-07

    A novel concept for an optical parametric oscillator based on four-wave mixing (FOPO) in an optical fiber is presented. This setup has the ability of generating highly chirped signal and idler pulses with compressed pulse durations below 600 fs and pulse energies of up to 250 nJ. At a fixed pump wavelength of 1040 nm, the emerging signal and idler wavelengths can be easily tuned between 867 to 918 nm and 1200 to 1300 nm, respectively, only by altering the cavity length. With compressed peak powers >100 kW and a repetition rate of only 785 kHz, this source provides tunable intense ultra-short pulses at moderate average powers. This setup constitutes a stable, simple and in many ways superior alternative to bulk state-of-the-art OPO light converters for demanding biomedical applications and non-linear microspectroscopy.

  2. Resonance of Non-Linear Systems Subjected to Multi-Parametrically Excited Structures: (Comparison Between two Methods, Response and Stability)

    NASA Astrophysics Data System (ADS)

    El-Bassiouny, A. F.; Eissa, M.

    2004-01-01

    Most mechanical systems or structures are subject to parametric or self excitations. In the present work, simultaneous principal parametric resonance of two-degree-of-freedom systems with quadratic and cubic non-linearities subject to multi-frequency parametric excitations in the presence of two-to-one internal resonance is investigated. Two approximate methods are applied to construct a set of first order, non-linear ordinary differential equations governing the modulation of the amplitudes and phases of oscillations. The applied methods are; the method of multiple time scale perturbation and the generalized synchronization methods. Steady state solutions and their stability are studied for selected values of the different parameters. The obtained results from both methods are in excellent agreement.

  3. Effects of non-linearities on magnetic field generation

    SciTech Connect

    Nalson, Ellie; Malik, Karim A.; Christopherson, Adam J. E-mail: achristopherson@gmail.com

    2014-09-01

    Magnetic fields are present on all scales in the Universe. While we understand the processes which amplify the fields fairly well, we do not have a ''natural'' mechanism to generate the small initial seed fields. By using fully relativistic cosmological perturbation theory and going beyond the usual confines of linear theory we show analytically how magnetic fields are generated. This is the first analytical calculation of the magnetic field at second order, using gauge-invariant cosmological perturbation theory, and including all the source terms. To this end, we have rederived the full set of governing equations independently. Our results suggest that magnetic fields of the order of 10{sup -30}- 10{sup -27} G can be generated (although this depends on the small scale cut-off of the integral), which is largely in agreement with previous results that relied upon numerical calculations. These fields are likely too small to act as the primordial seed fields for dynamo mechanisms.

  4. Finite element simulation of non-linear acoustic generation in a horn loudspeaker

    NASA Astrophysics Data System (ADS)

    Tsuchiya, T.; Kagawa, Y.; Doi, M.; Tsuji, T.

    2003-10-01

    The loudspeaker is an electro-acoustic device for sound reproduction which requires the distortion as small as possible. The distortion may arise from the magnetic non-linearity of the york, the uneven magnetic field distribution, the mechanical non-linearity at the diaphragm suspension and the acoustic non-linearity due to the high sound pressure and velocity in the duct-radiation system. A horn is sometimes provided in front of the vibrating diaphragm radiator, which plays an important role to increase the efficiency by matching the acoustic impedance between the radiator and the ambient medium. The horn is in many cases folded twice or three times to shorten the length, which further degrades the reproduction quality. The sound intensity and velocity are apt to attain very high in the small cross-sectional area in the throat and in the folded regions, which may cause the distortion due to the non-linear effect of the medium. The present paper is to investigate the frequency characteristics of the loudspeaker numerically evaluating the generation of the harmonics and sub-harmonics. An axisymmetric folded horn is considered for which the wave equation with the non-linear term retained is solved by the finite element method. The solution is made in time domain in which the sound pressure calculated at the opening end of the horn is Fourier-transformed to the frequency domain to evaluate the distortion, while the wave marching in the horn is visualized.

  5. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    SciTech Connect

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-06-20

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R{sup n}. An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R{sup d}(d<

  6. Generating Correlated, Non-normally Distributed Data Using a Non-linear Structural Model.

    PubMed

    Auerswald, Max; Moshagen, Morten

    2015-12-01

    An approach to generate non-normality in multivariate data based on a structural model with normally distributed latent variables is presented. The key idea is to create non-normality in the manifest variables by applying non-linear linking functions to the latent part, the error part, or both. The algorithm corrects the covariance matrix for the applied function by approximating the deviance using an approximated normal variable. We show that the root mean square error (RMSE) for the covariance matrix converges to zero as sample size increases and closely approximates the RMSE as obtained when generating normally distributed variables. Our algorithm creates non-normality affecting every moment, is computationally undemanding, easy to apply, and particularly useful for simulation studies in structural equation modeling.

  7. Optimal Reservoir Operation for Hydropower Generation using Non-linear Programming Model

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Jothiprakash, V.

    2012-05-01

    Hydropower generation is one of the vital components of reservoir operation, especially for a large multi-purpose reservoir. Deriving optimal operational rules for such a large multi-purpose reservoir serving various purposes like irrigation, hydropower and flood control are complex, because of the large dimension of the problem and the complexity is more if the hydropower production is not an incidental. Thus optimizing the operations of a reservoir serving various purposes requires a systematic study. In the present study such a large multi-purpose reservoir, namely, Koyna reservoir operations are optimized for maximizing the hydropower production subject to the condition of satisfying the irrigation demands using a non-linear programming model. The hydropower production from the reservoir is analysed for three different dependable inflow conditions, representing wet, normal and dry years. For each dependable inflow conditions, various scenarios have been analyzed based on the constraints on the releases and the results are compared. The annual power production, combined monthly power production from all the powerhouses, end of month storage levels, evaporation losses and surplus are discussed. From different scenarios, it is observed that more hydropower can be generated for various dependable inflow conditions, if the restrictions on releases are slightly relaxed. The study shows that Koyna dam is having potential to generate more hydropower.

  8. Parametric light generation.

    PubMed

    Ebrahimzadeh, M

    2003-12-15

    Since its invention more than 40 years ago, the laser has become an indispensable optical tool, capable of transforming light from its naturally incoherent state to a highly coherent state in space and time. Yet, due to fundamental limitations, operation of the laser remains confined to restricted spectral and temporal regions. Nonlinear optics can overcome this limitation by allowing access to new spectral and temporal regimes through the exploitation of suitable dielectric materials in combination with the laser. In particular, optical parametric oscillators are versatile coherent light sources with unique flexibility that can provide optical radiation across an entire spectral range from the ultraviolet to the far-infrared and over all temporal scales from continuous wave to the ultrafast femtosecond domain.

  9. Generating Non-Linear Concentration Gradients in Microfluidic Devices for Cell Studies

    PubMed Central

    Selimović, Šeila; Sim, Woo Young; Kim, Sang Bok; Jang, Yun Ho; Lee, Won Gu; Khabiry, Masoud; Bae, Hojae; Jambovane, Sachin; Hong, Jong Wook; Khademhosseini, Ali

    2011-01-01

    We describe a microfluidic device for generating non-linear (exponential and sigmoidal) concentration gradients, coupled with a microwell array for cell storage and analysis. The device has two inputs for co-flowing multiple aqueous solutions, a main co-flow channel and an asymmetrical grid of fluidic channels that allows the two solutions to combine at intersection points without fully mixing. Due to this asymmetry and diffusion of the two species in the co-flow channel, varying amounts of the two solutions enter each fluidic path. This induces exponential and sigmoidal concentration gradients at low and high flow rates, respectively, making the microfluidic device versatile. A key feature of this design is that it is space-saving, as it does not require multiplexing or a separate array of mixing channels. Furthermore, the gradient structure can be utilized in concert with cell experiments, to expose cells captured in microwells to various concentrations of soluble factors. We demonstrate the utility of this design to assess the viability of fibroblast cells in response to a range of hydrogen peroxide (H2O2) concentrations. PMID:21344866

  10. Flow of a non-linear (density-gradient-dependent) viscous fluid with heat generation, viscous dissipation and radiation

    SciTech Connect

    Massoudi, Mehrdad; Tran, P.X.

    2008-09-22

    In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed

  11. Flow of a non-linear (density-gradient-dependent) viscous fluid with heat generation, viscous dissipation and radiation

    SciTech Connect

    Massoudi, Mehrdad; Phuoc, Tran X.

    2008-09-25

    In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source team, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed.

  12. Generating Entangled State with Parametric Amplifier

    NASA Astrophysics Data System (ADS)

    Huang, Jian

    2017-04-01

    We present a scheme for generating entangled state with parametric amplifier with different initial states. Its shown that the entangled state is always generated except some special cases by adjusting the coupling strength and the total number of photons.

  13. Broadband and three-dimensional vibration energy harvesting by a non-linear magnetoelectric generator

    NASA Astrophysics Data System (ADS)

    Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Li, Jun; Liu, Jun; Awais, Qasim; Yang, Jin

    2016-12-01

    Vibration, widely existing in an ambient environment with a variety of forms and wide-range of scales, recently becomes an attractive target for energy harvesting. However, its time-varying directions and frequencies render a lack of effective energy technology to scavenge it. Here, we report a rationally designed nonlinear magnetoelectric generator for broadband and multi-directional vibration energy harvesting. By using a stabilized three-dimensional (3D) magnetic interaction and spring force, the device working bandwidth was largely broadened, which was demonstrated both experimentally and theoretically. The multidirectional vibration energy harvesting was enabled by three identical suspended springs with equal intersection angles, which are all connected to a cylindrical magnet. Numerical simulations and experimental results show that the nonlinear harvester can sustain large-amplitude oscillations over a wide frequency range, and it can generate power efficiently in an arbitrary direction. Moreover, the experimental data suggest that the proposed nonlinear energy harvester has the potential to scavenge vibrational energy over a broad range of ambient frequencies in 3D space.

  14. Storage Dynamics and Non-Linear Connectivity between Landscape Units Control Runoff Generation and Stream Water Age Distributions

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Birkel, C.; Geris, J.; Tetzlaff, D.

    2015-12-01

    We assess the influence of storage dynamics and non-linearities in hydrological connectivity on runoff generation and stream water ages, using a long-term record of daily isotopes in precipitation and stream flow. These were used to test a parsimonious tracer-aided runoff model for a Scottish catchment. The model tracks tracers and the ages of water fluxes through and between conceptual stores representing steeper hillslopes, dynamically saturated riparian peatlands and deeper groundwater (i.e. the main landscape units involved in runoff generation). Storage is largest in groundwater and on the steep hillslopes, though most dynamic mixing occurs in smaller stores in the riparian peat. The model also couples the ecohydrological effects of different vegetation communities in contrasting landscape units, by estimating evaporation, resulting moisture deficits and the ages of evaporated waters, which also affect the generation and age of runoff. Both stream flow and isotope variations are well-captured by the model, and the simulated storage and tracer dynamics in the main landscape units are consistent with independent measurements. The model predicts the mean age of runoff as ~1.8 years. On a daily basis, this varies from ~1 month in storm events, when younger waters draining the riparian peatland dominate, to around 4 years in dry periods, when groundwater sustains flow. Hydrological connectivity between the units varies non-linearly with storage which depends upon antecedent conditions and event characteristics. This, in turn, determines the spatial distribution of flow paths and the integration of their contrasting non-stationary ages. Improving the representation of storage dynamics and quantifying the ages of water fluxes in such models gives a more complete conceptualisation of the importance of the soil water fluxes in critical zone processes and a framework for tracking diffuse pollutants in water quality assessment.

  15. Non-linear generation of acoustic noise in the IAR spacecraft

    NASA Technical Reports Server (NTRS)

    Westley, R.; Nguyen, K.; Westley, M. S.

    1990-01-01

    The requirement to produce high level acoustic noise fields with increasing accuracy in environmental test facilities dictates that a more precise understanding is required of the factors controlling nonlinear noise generation. Details are given of various nonlinear effects found in acoustic performance data taken from the IAR Spacecraft Acoustic Chamber. This type of data has enabled the IAR to test large spacecraft to relatively tight acoustic tolerances over a wide frequency range using manually set controls. An analog random noise automatic control system was available and modified to provide automatic selection of the chamber's spectral sound pressure levels. The automatic control system when used to complete a typical qualification test appeared to equal the accuracy of the manual system and had the added advantage that parallel spectra could be easily achieved during preset tests.

  16. Non-linear control of variable-speed wind turbines with permanent magnet synchronous generators: a robust backstepping approach

    NASA Astrophysics Data System (ADS)

    Şeker, Murat; Zergeroğlu, Erkan; Tatlicioğlu, Enver

    2016-01-01

    In this study, a robust backstepping approach for the control problem of the variable-speed wind turbine with a permanent magnet synchronous generator is presented. Specifically, to overcome the negative effects of parametric uncertainties in both mechanical and electrical subsystems, a robust controller with a differentiable compensation term is proposed. The proposed methodology ensures the generator velocity tracking error to uniformly approach a small bound where practical tracking is achieved. Stability of the overall system is ensured by Lyapunov-based arguments. Comparative simulation studies with a standard proportional-integral-type controller are performed to illustrate the effectiveness, feasibility and efficiency of the proposed controller.

  17. Contrast and Intensity upgrades to the Texas Petawatt laser for hadron generation and non-linear QED experiments

    NASA Astrophysics Data System (ADS)

    Hegelich, Bjorn M.; Arefiev, Alexey; Ditmire, Todd; Donovan, Michael E.; Dyer, Gillis; Gaul, Erhard; Labun, Lance; Luedtke, Scott; Martinez, Mikael; McCarry, Edward; Stark, David; Pomerantz, Ishay; Tiwari, Ganesh; Toncian, Toma

    2015-11-01

    Advances in laser-based hadron generation, especially with respect to particle energy, as well as reaching the new regime of radiation dominated plasmas and non-linear QED, require laser fields of Petavolts per meter that preferably interact with very high density, overcritical plasmas. To achieve these conditions we are upgrading the Texas Petawatt Laser both respect to on-target laser intensity and laser-contrast, aiming to reach intensities of ~ 5x1022 W/cm2 and pulse contrast parameters allowing the interaction with overcritical, yet ultrathin, sub-micron targets. We will report on the planned experiments aimed at ion acceleration, neutron generation and the first experimental measurement of radiation reactions to motivate the chosen upgrade parameters. We will further report on the technical changes to the laser and present first measurements of the achieved intensity and contrast parameters. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014), the Air Force Office of Scientific Research (FA9550-14-1-0045) and the National Institute of Health SBIR.

  18. System and method for generating 3D images of non-linear properties of rock formation using surface seismic or surface to borehole seismic or both

    SciTech Connect

    Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.; Guyer, Robert A.; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2016-06-07

    A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acoustic waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.

  19. Peculiar velocities into the next generation: cosmological parameters from large surveys without bias from non-linear structure

    NASA Astrophysics Data System (ADS)

    Abate, Alexandra; Bridle, Sarah; Teodoro, Luis F. A.; Warren, Michael S.; Hendry, Martin

    2008-10-01

    We investigate methods to best estimate the normalization of the mass density fluctuation power spectrum (σ8) using peculiar velocity data from a survey like the six-degree Field Galaxy Velocity Survey (6dFGSv). We focus on two potential problems: (i) biases from non-linear growth of structure and (ii) the large number of velocities in the survey. Simulations of ΛCDM-like models are used to test the methods. We calculate the likelihood from a full covariance matrix of velocities averaged in grid cells. This simultaneously reduces the number of data points and smoothes out non-linearities which tend to dominate on small scales. We show how the averaging can be taken into account in the predictions in a practical way, and show the effect of the choice of cell size. We find that a cell size can be chosen that significantly reduces the non-linearities without significantly increasing the error bars on cosmological parameters. We compare our results with those from a principal components analysis following Watkins et al. and Feldman et al. to select a set of optimal moments constructed from linear combinations of the peculiar velocities that are least sensitive to the non-linear scales. We conclude that averaging in grid cells performs equally well. We find that for a survey such as 6dFGSv we can estimate σ8 with less than 3 per cent bias from non-linearities. The expected error on σ8 after marginalizing over Ωm is approximately 16 per cent.

  20. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on

  1. Kinematic Modeling and Function Generation for Non-linear Curves Using 5R Double Arm Parallel Manipulator

    NASA Astrophysics Data System (ADS)

    Keshavkumar Kamaliya, Parth; Patel, Yashavant Kumar Dashrathlal

    2016-01-01

    Double arm configuration using parallel manipulator mimic the human arm motions either for planar or spatial space. These configurations are currently lucrative for researchers as it also replaces human workers without major redesign of work-place in industries. Humans' joint ranges limitation of arms can be resolved by replacement of either revolute or spherical joints in manipulator. Hence, the scope of maximum workspace utilization is prevailed. Planar configuration with five revolute joints (5R) is considered to imitate human arm motions in a plane using Double Arm Manipulator (DAM). Position analysis for tool that can be held in end links of configuration is carried out using Pro/mechanism in Creo® as well as SimMechanics. D-H parameters are formulated and its results derived using developed MATLAB programs are compared with mechanism simulation as well as SimMechanics results. Inverse kinematics model is developed for trajectory planning in order to trace tool trajectory in a continuous and smooth sequence. Polynomial functions are derived for position, velocity and acceleration for linear and non-linear curves in joint space. Analytical results obtained for trajectory planning are validated with simulation results of Creo®.

  2. Understanding uncertainties in non-linear population trajectories: a Bayesian semi-parametric hierarchical approach to large-scale surveys of coral cover.

    PubMed

    Vercelloni, Julie; Caley, M Julian; Kayal, Mohsen; Low-Choy, Samantha; Mengersen, Kerrie

    2014-01-01

    Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.

  3. Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover

    PubMed Central

    Vercelloni, Julie; Caley, M. Julian; Kayal, Mohsen; Low-Choy, Samantha; Mengersen, Kerrie

    2014-01-01

    Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making. PMID:25364915

  4. Non-linear heat and mass transfer in a MHD Homann nanofluid flow through a porous medium with chemical reaction, heat generation and uniform inflow

    NASA Astrophysics Data System (ADS)

    EL-Dabe, N. T.; Attia, H. A.; Essawy, M. A. I.; Ramadan, A. A.; Abdel-Hamid, A. H.

    2016-11-01

    The steady MHD axisymmetric flow of an incompressible viscous electrically conducting nanofluid impinging on a permeable plate is investigated with heat and mass transfer. An external uniform magnetic field as well as a uniform inflow, in the presence of either suction or injection, are applied normal to the plate. The effects of heat (generation/absorption) and chemical reaction have been accentuated. This study indicates the incorporated influence of both the thermophoresis phenomenon and the Brownian behavior. Numerical solutions for the governing non-linear momentum, energy and nanoparticle equations have been obtained. The rates of heat and mass transfer are presented and discussed.

  5. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    NASA Astrophysics Data System (ADS)

    Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.

  6. Non-Linear Effects of Self Generated Alfven Waves in Oblique Shocks and Cosmic Ray Acceleration Efficiency

    NASA Astrophysics Data System (ADS)

    Medina-Tanco, G. A.; Opher, R.

    1990-11-01

    RESUMEN. Se presentan resultados numericos para un modelo hidrodinamico de cuatro componentes (plasma de fondo, particulas energeticas, ondas de Alfven autogeneradas y campo magnetico) para choques oblicuos. ABSTRACT. Numerical results of a four component hydrodynamic model (background plasma, energetic particles, self-generated Alfven waves and magnetic field) for oblique shocks are presented. Keq wo't : COSMIC RAY-GENERAL - PLASMAS - SHOCK WAVES

  7. System and method for generating micro-seismic events and characterizing properties of a medium with non-linear acoustic interactions

    DOEpatents

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2015-12-29

    A method and system includes generating a first coded acoustic signal including pulses each having a modulated signal at a central frequency; and a second coded acoustic signal each pulse of which includes a modulated signal a central frequency of which is a fraction d of the central frequency of the modulated signal for the corresponding pulse in the first plurality of pulses. A receiver detects a third signal generated by a non-linear mixing process in the mixing zone and the signal is processed to extract the third signal to obtain an emulated micro-seismic event signal occurring at the mixing zone; and to characterize properties of the medium or creating a 3D image of the properties of the medium, or both, based on the emulated micro-seismic event signal.

  8. High-order harmonic generation driven by chirped laser pulses induced by linear and non linear phenomena

    NASA Astrophysics Data System (ADS)

    Neyra, Enrique; Videla, Fabian; Pérez-Hernández, Jose Antonio; Ciappina, Marcelo F.; Roso, Luis; Torchia, Gustavo A.

    2016-11-01

    We present a theoretical study of high-order harmonic generation (HHG) driven by ultrashort optical pulses with different kind of chirps. The goal of the present work is to perform a detailed study to clarify the relevant parameters in the chirped pulses to achieve a noticeable cut-off extensions in HHG. These chirped pulses are generated using both linear and nonlinear dispersive media. The description of the physical mechanisms origin responsible for this extension is, however, not usually reported with enough detail in the literature. The study of the behaviour of the harmonic cut-off with this kind of pulses is carried out in the classical context, by the integration of the Newton-Lorentz equation complemented with the quantum approach, based on the integration of the time dependent Schrödinger equation in full dimensions (TDSE-3D).

  9. Cascade frequency generation regime in an optical parametric oscillator

    SciTech Connect

    Kolker, D B; Dmitriev, Aleksandr K; Gorelik, P; Vong, Franko; Zondy, J J

    2009-05-31

    In a parametric oscillator of a special two-sectional design based on a lithium niobate periodic structure, a cascade frequency generation regime was observed in which a signal wave pumped a secondary parametric oscillator, producing secondary signal and idler waves. The secondary parametric oscillator can be tuned in a broad range of {approx}200 nm with respect to a fixed wavelength of the primary idler wave. (nonlinear optical phenomena)

  10. Non Linear Conjugate Gradient

    SciTech Connect

    Newman, Gregory A.; Commer, Michael

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria. The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.

  11. Parametric generation of quadrature squeezing of mirrors in cavity optomechanics

    SciTech Connect

    Liao, Jie-Qiao; Law, C. K.

    2011-03-15

    We propose a method to generate quadrature-squeezed states of a moving mirror in a Fabry-Perot cavity. This is achieved by exploiting the fact that when the cavity is driven by an external field with a large detuning, the moving mirror behaves as a parametric oscillator. We show that parametric resonance can be reached approximately by modulating the driving field amplitude at a frequency matching the frequency shift of the mirror. The parametric resonance leads to an efficient generation of squeezing, which is limited by the thermal noise of the environment.

  12. Imaging of Caenorhabditis elegans samples and sub-cellular localization of new generation photosensitizers for photodynamic therapy, using non-linear microscopy

    NASA Astrophysics Data System (ADS)

    Filippidis, G.; Kouloumentas, C.; Kapsokalyvas, D.; Voglis, G.; Tavernarakis, N.; Papazoglou, T. G.

    2005-08-01

    Two-photon excitation fluorescence (TPEF) and second-harmonic generation (SHG) are relatively new promising tools for the imaging and mapping of biological structures and processes at the microscopic level. The combination of the two image-contrast modes in a single instrument can provide unique and complementary information concerning the structure and the function of tissues and individual cells. The extended application of this novel, innovative technique by the biological community is limited due to the high price of commercial multiphoton microscopes. In this study, a compact, inexpensive and reliable setup utilizing femtosecond pulses for excitation was developed for the TPEF and SHG imaging of biological samples. Specific cell types of the nematode Caenorhabditis elegans were imaged. Detection of the endogenous structural proteins of the worm, which are responsible for observation of SHG signals, was achieved. Additionally, the binding of different photosensitizers in the HL-60 cell line was investigated, using non-linear microscopy. The sub-cellular localization of photosensitizers of a new generation, very promising for photodynamic therapy (PDT), (Hypericum perforatum L. extracts) was achieved. The sub-cellular localization of these novel photosensitizers was linked with their photodynamic action during PDT, and the possible mechanisms for cell killing have been elucidated.

  13. Pattern Generation by Dissipative Parametric Instability

    NASA Astrophysics Data System (ADS)

    Perego, A. M.; Tarasov, N.; Churkin, D. V.; Turitsyn, S. K.; Staliunas, K.

    2016-01-01

    Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems.

  14. Generation of ultra-low-noise optical parametric combs

    NASA Astrophysics Data System (ADS)

    Kuo, Ping P.; Radic, Stojan

    2016-03-01

    Generation of wideband optical frequency combs requires precise balance between nonlinear photon interaction and parasitic effects. While near-octave combs can be generated in both silica and silicon waveguides, it is not always possible to suppress the noise across the operational bandwidth. Principles and challenges of noiseinhibited, tunable frequency comb generation in cavity-free parametric mixers are described and discussed.

  15. Infra-red parametric generation: Phase mismatch condition

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Dubey, Swati; Jain, Kamal

    2015-07-01

    An analytical investigation is made for the Infrared parametric generation in doped semiconductor plasma under phase mismatch condition. Theoretical formulations are undertaken to determine induced polarization and threshold pump field for the onset of parametric generation in semiconductor plasma medium. The origin of this nonlinear interaction lies in the second order optical susceptibility arising due to the induced nonlinear current density in piezoelectric medium. Numerical estimations are made for n- type InSb at 77 K duly irradiated by a pulsed 10.6µm CO2 laser. It is very difficult to attain exact phase matching in experimental frame so we have considered a tolerable small phase mismatch in order to attain a new result. Its effect on the Infrared parametric generation in compound semiconductor is examined through induced polarization. Transmitted intensity is determined to have an idea about conversion efficiency of the said process. Phase mismatch tends to raise the required pump field to stimulate the parametric generation. Transmitted intensity is found to decrease with coherence length lc and increase carrier concentration n0, which is favorable for improved conversion efficiency.

  16. Infra-red parametric generation: Phase mismatch condition

    SciTech Connect

    Ghosh, S.; Dubey, Swati; Jain, Kamal

    2015-07-31

    An analytical investigation is made for the Infrared parametric generation in doped semiconductor plasma under phase mismatch condition. Theoretical formulations are undertaken to determine induced polarization and threshold pump field for the onset of parametric generation in semiconductor plasma medium. The origin of this nonlinear interaction lies in the second order optical susceptibility arising due to the induced nonlinear current density in piezoelectric medium. Numerical estimations are made for n- type InSb at 77 K duly irradiated by a pulsed 10.6µm CO{sub 2} laser. It is very difficult to attain exact phase matching in experimental frame so we have considered a tolerable small phase mismatch in order to attain a new result. Its effect on the Infrared parametric generation in compound semiconductor is examined through induced polarization. Transmitted intensity is determined to have an idea about conversion efficiency of the said process. Phase mismatch tends to raise the required pump field to stimulate the parametric generation. Transmitted intensity is found to decrease with coherence length lc and increase carrier concentration n{sub 0}, which is favorable for improved conversion efficiency.

  17. Possibilities Of Optically Non Linear Thin Films

    NASA Astrophysics Data System (ADS)

    De Micheli, Marc; Zyss, Joseph; Azema, Alain

    1983-11-01

    Efficient integrated frequency doubling devices transparent in the visible and near I.R. are demanded by a number of applications. The optimization of both wave interaction configurations and material intrinsic nonlinear susceptibility are successively discussed within this scope. Basic features such as power confinement, interaction length dependence, phase matching techniques, underlying the second harmonic generation conversion rate in bulk and waveguided structures are compared. Undoped Ga As film epitaxied over n+ doped Ga As substrate and TIPE Lithium Lobate waveguides exemplify the possibilities of non linear thin films. The higher non linear susceptibility of certain organic molecular single crys-tals should help raise the efficiency of doubling devices. We report the definition and bulk performances of two non linear organic crystals, namely POM (3-methyl-4 nitropyridine-1-oxyde) and MAP (methyl-(2,4-dinitropheny1)-aminopropanoate) with a figure of merit up to one order of magnitude above that of Li Nb 03. The combination of organic materials and waveguided configuration should lead to a new generation of non linear devices.

  18. Pharmaceutical applications of non-linear imaging.

    PubMed

    Strachan, Clare J; Windbergs, Maike; Offerhaus, Herman L

    2011-09-30

    Non-linear optics encompasses a range of optical phenomena, including two- and three-photon fluorescence, second harmonic generation (SHG), sum frequency generation (SFG), difference frequency generation (DFG), third harmonic generation (THG), coherent anti-Stokes Raman scattering (CARS), and stimulated Raman scattering (SRS). The combined advantages of using these phenomena for imaging complex pharmaceutical systems include chemical and structural specificities, high optical spatial and temporal resolutions, no requirement for labels, and the ability to image in an aqueous environment. These features make such imaging well suited for a wide range of pharmaceutical and biopharmaceutical investigations, including material and dosage form characterisation, dosage form digestion and drug release, and drug and nanoparticle distribution in tissues and within live cells. In this review, non-linear optical phenomena used in imaging will be introduced, together with their advantages and disadvantages in the pharmaceutical context. Research on pharmaceutical and biopharmaceutical applications is discussed, and potential future applications of the technology are considered.

  19. Microlaser-pumped periodically poled lithium niobate optical parametric generator-optical parametric amplifier.

    PubMed

    Aniolek, K W; Schmitt, R L; Kulp, T J; Richman, B A; Bisson, S E; Powers, P E

    2000-04-15

    For what is believed to be the first time, a single-longitudinal-mode passively Q-switched Nd:YAG microlaser is used to pump a narrow-bandwidth periodically poled lithium niobate (PPLN) optical parametric generator-optical parametric amplifier (OPG-OPA). Before amplification in the OPA, the output of the OPG stage was spectrally filtered with an air-spaced etalon, resulting in spectroscopically useful radiation (bandwidth, ~0.05 cm(-1) FWHM) that was tunable in 15-cm(-1) segments anywhere in the signal range 6820-6220 cm(-1) and the idler range 2580-3180 cm(-1). The ability to pump an OPG-OPA with compact, high-repetition-rate, intrinsically narrow-bandwidth microlasers is made possible by the high gain of PPLN. The result is a tunable light source that is well suited for use in portable spectroscopic gas sensors.

  20. Non-linear imaging and characterization of atherosclerotic arterial tissue using combined two photon fluorescence, second-harmonic generation and CARS microscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Matthäus, Christian; Meyer, Tobias; Lattermann, Annika; Dietzek, Benjamin; Brehm, Bernhard R.; Popp, Jürgen; Pavone, Francesco S.

    2014-02-01

    Atherosclerosis is among the most widespread cardiovascular diseases and one of the leading cause of death in the Western World. Characterization of arterial tissue in atherosclerotic condition is extremely interesting from the diagnostic point of view. Routinely used diagnostic methods, such as histopathological examination, are limited to morphological analysis of the examined tissues, whereas an exhaustive characterization requires a morpho-functional approach. Multimodal non-linear microscopy has the potential to bridge this gap by providing morpho-functional information on the examined tissues in a label-free way. Here we employed multiple non-linear microscopy techniques, including CARS, TPF, and SHG to provide intrinsic optical contrast from various tissue components in both arterial wall and atherosclerotic plaques. CARS and TPF microscopy were used to respectively image lipid depositions within plaques and elastin in the arterial wall. Cholesterol deposition in the lumen and collagen in the arterial wall were selectively imaged by SHG microscopy and distinguished by forward-backward SHG ratio. Image pattern analysis allowed characterizing collagen organization in different tissue regions. Different values of fiber mean size, distribution and anisotropy are calculated for lumen and media prospectively allowing for automated classification of atherosclerotic lesions. The presented method represents a promising diagnostic tool for evaluating atherosclerotic tissue and has the potential to find a stable place in clinical setting as well as to be applied in vivo in the near future.

  1. Validation of two (parametric vs non-parametric) daily weather generators

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Skalak, P.

    2015-12-01

    As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed-like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30-years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series

  2. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2014-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 watt thermal) modules as the thermal building block around which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component and system level trades.

  3. Parametric System Model for a Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  4. Automated, Parametric Geometry Modeling and Grid Generation for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Harrand, Vincent J.; Uchitel, Vadim G.; Whitmire, John B.

    2000-01-01

    The objective of this Phase I project is to develop a highly automated software system for rapid geometry modeling and grid generation for turbomachinery applications. The proposed system features a graphical user interface for interactive control, a direct interface to commercial CAD/PDM systems, support for IGES geometry output, and a scripting capability for obtaining a high level of automation and end-user customization of the tool. The developed system is fully parametric and highly automated, and, therefore, significantly reduces the turnaround time for 3D geometry modeling, grid generation and model setup. This facilitates design environments in which a large number of cases need to be generated, such as for parametric analysis and design optimization of turbomachinery equipment. In Phase I we have successfully demonstrated the feasibility of the approach. The system has been tested on a wide variety of turbomachinery geometries, including several impellers and a multi stage rotor-stator combination. In Phase II, we plan to integrate the developed system with turbomachinery design software and with commercial CAD/PDM software.

  5. Non-linear memristor switching model

    NASA Astrophysics Data System (ADS)

    Chernov, A. A.; Islamov, D. R.; Pik'nik, A. A.

    2016-10-01

    We introduce a thermodynamical model of filament growing when a current pulse via memristor flows. The model is the boundary value problem, which includes nonstationary heat conduction equation with non-linear Joule heat source, Poisson equation, and Shockley- Read-Hall equations taking into account strong electron-phonon interactions in trap ionization and charge transport processes. The charge current, which defines the heating in the model, depends on the rate of the oxygen vacancy generation. The latter depends on the local temperature. The solution of the introduced problem allows one to describe the kinetics of the switch process and the final filament morphology.

  6. Visual discrimination and adaptation using non-linear unsupervised learning

    NASA Astrophysics Data System (ADS)

    Jiménez, Sandra; Laparra, Valero; Malo, Jesus

    2013-03-01

    Understanding human vision not only involves empirical descriptions of how it works, but also organization principles that explain why it does so. Identifying the guiding principles of visual phenomena requires learning algorithms to optimize specific goals. Moreover, these algorithms have to be flexible enough to account for the non-linear and adaptive behavior of the system. For instance, linear redundancy reduction transforms certainly explain a wide range of visual phenomena. However, the generality of this organization principle is still in question:10 it is not only that and additional constraints such as energy cost may be relevant as well, but also, statistical independence may not be the better solution to make optimal inferences in squared error terms. Moreover, linear methods cannot account for the non-uniform discrimination in different regions of the image and color space: linear learning methods necessarily disregard the non-linear nature of the system. Therefore, in order to account for the non-linear behavior, principled approaches commonly apply the trick of using (already non-linear) parametric expressions taken from empirical models. Therefore these approaches are not actually explaining the non-linear behavior, but just fitting it to image statistics. In summary, a proper explanation of the behavior of the system requires flexible unsupervised learning algorithms that (1) are tunable to different, perceptually meaningful, goals; and (2) make no assumption on the non-linearity. Over the last years we have worked on these kind of learning algorithms based on non-linear ICA,18 Gaussianization, 19 and principal curves. In this work we stress the fact that these methods can be tuned to optimize different design strategies, namely statistical independence, error minimization under quantization, and error minimization under truncation. Then, we show (1) how to apply these techniques to explain a number of visual phenomena, and (2) suggest the

  7. NICMOS non-linearity tests

    NASA Astrophysics Data System (ADS)

    de Jong, Roelof

    2005-07-01

    This program incorporates a number of tests to analyse the count rate dependent non-linearity seen in NICMOS spectro-photometric observations. In visit 1 we will observe a few fields with stars of a range in luminosity in NGC1850 with NICMOS in NIC1 in F090M, F110W and F160W and NIC2 F110W, F160W, and F180W. We will repeat the observations with flatfield lamp on, creating artificially high count-rates, allowing tests of NICMOS linearity as function of count rate. To access the effect of charge trapping and persistence, we first take darks {so there is not too much charge already trapped}, than take exposures with the lamp off, exposures with the lamp on, and repeat at the end with lamp off. Finally, we continue with taking darks during occultation. In visit 2 we will observe spectro-photometric standard P041C using the G096 and G141 grisms in NIC3, and repeat the lamp off/on/off test to artificially create a high background. In visits 3&4 we repeat photometry measurements of faint standard stars SNAP-2 and WD1657+343, on which the NICMOS non-linearity was originally discovered using grism observations. These measurements are repeated, because previous photometry was obtained with too short exposure times, hence substantially affected by charge trapping non-linearity. Measurements will be made with NIC1: Visit 5 forms the persistence test of the program. The bright star GL-390 {used in a previous persistence test} will iluminate the 3 NICMOS detectors in turn for a fixed time, saturating the center many times, after which a series of darks will be taken to measure the persistence {i.e. trapped electrons and the decay time of the traps}. To determine the wavelength dependence of the trap chance, exposures of the bright star in different filters will be taken, as well as one in the G096 grism with NIC3. Most exposures will be 128s long, but two exposures in the 3rd orbit will be 3x longer, to seperate the effects of count rate versus total counts of the trap

  8. ARTICLES: Some features of parametric conversion of infrared radiation in a system generating a difference frequency

    NASA Astrophysics Data System (ADS)

    Galaĭchuk, Yu A.; Strizhevskiĭ, V. L.; Yashkir, Yu N.

    1984-11-01

    A fluctuation theory is developed for the parametric conversion of infrared radiation utilizing four-photon difference frequency generation processes. An analysis is made of some features of optical parametric oscillation in this system allowing for sum frequency generation. Parametric "conversion" of quantum fluctuations to the frequency range of the infrared signal is discussed and it is shown that this effect increases the noise level.

  9. Statistical properties of squeezed beams of light generated in parametric interactions

    NASA Technical Reports Server (NTRS)

    Vyas, Reeta

    1992-01-01

    Fluctuation properties of squeezed photon beams generated in three wave mixing processes such as second harmonic generation, degenerate and nondegenerate parametric oscillations, and homodyne detection are studied in terms of photon sequences recorded by a photodetector.

  10. Non-linear sequencing and cognizant failure

    NASA Astrophysics Data System (ADS)

    Gat, Erann

    1999-01-01

    Spacecraft are traditionally commanded using linear sequences of time-based commands. Linear sequences work fairly well, but they are difficult and expensive to generate, and are usually not capable of responding to contingencies. Any anomalous behavior while executing a linear sequence generally results in the spacecraft entering a safe mode. Critical sequences like orbit insertions which must be able to respond to faults without going into safe mode are particularly difficult to design and verify. The effort needed to generate command sequences can be reduced by extending the vocabulary of sequences to include more sophisticated control constructs. The simplest extensions are conditionals and loops. Adding these constructs would make a sequencing language look more or less like a traditional programming language or scripting language, and would come with all the difficulties associated with such a language. In particular, verifying the correctness of a sequence would be tantamount to verifying the correctness of a program, which is undecidable in general. We describe an extended vocabulary for non-linear sequencing based on the architectural notion of cognizant failure. A cognizant failure architecture is divided into components whose contract is to either achieve (or maintain) a certain condition, or report that they have failed to do so. Cognizant failure is an easier condition to verify than correctness, but it can provide high confidence in the safety of the spacecraft. Because cognizant failure inherently implies some kind of representation of the intent of an action, the system can respond to contingencies in more robust and general ways. We will describe an implemented non-linear sequencing system that is being flown on the NASA New Millennium Deep Space 1 Mission as part of the Remote Agent Experiment.

  11. Non-linearity in clinical practice.

    PubMed

    Petros, Peter

    2003-05-01

    The whole spectrum of medicine consists of complex non-linear systems that are balanced and interact with each other. How non-linearity confers stability on a system and explains variation and uncertainty in clinical medicine is discussed. A major theme is that a small alteration in initial conditions may have a major effect on the end result. In the context of non-linearity, it is argued that 'evidence-based medicine' (EBM) as it exists today can only ever be relevant to a small fraction of the domain of medicine, that the 'art of medicine' consists of an intuitive 'tuning in' to these complex systems and as such is not so much an art as an expression of non-linear science. The main cause of iatrogenic disease is interpreted as a failure to understand the complexity of the systems being treated. Case study examples are given and analysed in non-linear terms. It is concluded that good medicine concerns individualized treatment of an individual patient whose body functions are governed by non-linear processes. EBM as it exists today paints with a broad and limited brush, but it does promise a fresh new direction. In this context, we need to expand the spectrum of scientific medicine to include non-linearity, and to look upon the 'art of medicine' as a historical (but unstated) legacy in this domain.

  12. Realization of non-linear coherent states by photonic lattices

    SciTech Connect

    Dehdashti, Shahram Li, Rujiang; Chen, Hongsheng; Liu, Jiarui Yu, Faxin

    2015-06-15

    In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  13. Specifics of short-wavelength generation in a continuous wave fiber optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Zlobina, E. A.; Mishra, V.; Kablukov, S. I.; Singh, S. P.; Varshney, S. K.; Babin, S. A.

    2016-11-01

    We investigate factors limiting short-wavelength generation and therefore tuning range of the continuous wave all-fiber optical parametric oscillator based on birefringent photonic crystal fiber pumped by a tunable linearly polarized ytterbium-doped fiber laser. Influence of the longitudinal dispersion fluctuations in the fiber on the threshold of the fiber optical parametric oscillators is numerically studied. It is shown that even low fluctuations (<0.5 nm) of the zero dispersion wavelength in 18 m-long fiber result in a significant increase of the threshold at large parametric shifts.

  14. Elliptic surface grid generation on minimal and parametrized surfaces

    NASA Technical Reports Server (NTRS)

    Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.

    1995-01-01

    An elliptic grid generation method, which generates boundary conforming grids in a two dimensional physical space, is presented. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the Poisson grid generation system with control functions specified by the algebraic transformation. It is shown that the grid generation on a minimal surface in a three dimensional space is equivalent to the grid generation in a two dimensional domain in physical space. A second elliptic grid generation method, which generates boundary conforming grids on smooth surfaces, is presented. Concerning surface modeling, it is shown that bicubic Hermit interpolation is an excellent method to generate a smooth surface crossing a discrete set of control points.

  15. Non-linear dynamics of viscoelastic liquid trilayers subjected to an electric field

    NASA Astrophysics Data System (ADS)

    Karapetsas, George; Bontozoglou, Vasilis

    2014-11-01

    The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a trilayer of immiscible liquids. We consider the case of a polymer film which is separated from the top electrode by two viscous fluids. We develop a computational model and carry out 2D numerical simulations fully accounting for the flow and electric field in all phases. For the numerical solution of the governing equations we employ the mixed finite element method combined with a quasi-elliptic mesh generation scheme which is capable of following the large deformations of the liquid-liquid interface. We model the viscoelastic behavior using the Phan-Thien and Tanner (PTT) constitutive equation taking fully into account the non-linear elastic effects as well as a varying shear and extensional viscosity. We perform a thorough parametric study and investigate the influence of the electric properties of fluids, applied voltage and various rheological parameters. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.

  16. Gain optimization with non-linear controls

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Kandadai, R. D.

    1984-01-01

    An algorithm has been developed for the analysis and design of controls for non-linear systems. The technical approach is to use statistical linearization to model the non-linear dynamics of a system by a quasi-Gaussian model. A covariance analysis is performed to determine the behavior of the dynamical system and a quadratic cost function. Expressions for the cost function and its derivatives are determined so that numerical optimization techniques can be applied to determine optimal feedback laws. The primary application for this paper is centered about the design of controls for nominally linear systems but where the controls are saturated or limited by fixed constraints. The analysis is general, however, and numerical computation requires only that the specific non-linearity be considered in the analysis.

  17. Non-linear Post Processing Image Enhancement

    NASA Technical Reports Server (NTRS)

    Hunt, Shawn; Lopez, Alex; Torres, Angel

    1997-01-01

    A non-linear filter for image post processing based on the feedforward Neural Network topology is presented. This study was undertaken to investigate the usefulness of "smart" filters in image post processing. The filter has shown to be useful in recovering high frequencies, such as those lost during the JPEG compression-decompression process. The filtered images have a higher signal to noise ratio, and a higher perceived image quality. Simulation studies comparing the proposed filter with the optimum mean square non-linear filter, showing examples of the high frequency recovery, and the statistical properties of the filter are given,

  18. Stability of non-linear integrable accelerator

    SciTech Connect

    Batalov, I.; Valishev, A.; /Fermilab

    2011-09-01

    The stability of non-linear Integrable Optics Test Accelerator (IOTA) model developed in [1] was tested. The area of the stable region in transverse coordinates and the maximum attainable tune spread were found as a function of non-linear lens strength. Particle loss as a function of turn number was analyzed to determine whether a dynamic aperture limitation present in the system. The system was also tested with sextupoles included in the machine for chromaticity compensation. A method of evaluation of the beam size in the linear part of the accelerator was proposed.

  19. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    PubMed

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  20. Non-linear cord-rubber composites

    NASA Technical Reports Server (NTRS)

    Clark, S. K.; Dodge, R. N.

    1989-01-01

    A method is presented for calculating the stress-strain relations in a multi-layer composite made up of materials whose individual stress-strain characteristics are non-linear and possibly different. The method is applied to the case of asymmetric tubes in tension, and comparisons with experimentally measured data are given.

  1. On the rolling noise generation due to wheel/track parametric excitation

    NASA Astrophysics Data System (ADS)

    Wu, T. X.; Thompson, D. J.

    2006-06-01

    As a discretely supported railway track is essentially periodic, when a wheel rolls over the rail, it experiences the varying dynamic stiffness in a sleeper bay of the track, and thus the wheel and rail is periodically excited at the sleeper-passing frequency. The parametric excitation due to the varying track stiffness, in addition to the roughness or discontinuities on the wheel and rail rolling surfaces, also causes vibration and noise emission. A frequency-time domain methodology is applied for simulation of the wheel/rail interaction due to the parametric excitation. The wheel/rail interaction forces are calculated and Track-Wheel Interaction Noise Software (TWINS) is used to predict the noise radiation due to the parametric excitation at various train speeds. The results are compared with those from a moving irregularity model where no parametric excitation is generated. It is found that the components due to the parametric excitation are not significant at lower speeds compared with those due to the roughness excitation. Use of a moving irregularity model without considering the wheel/track parametric excitation may under-estimate the noise emission level at high speeds.

  2. The Linear-Non-Linear Frontier for the Goldstone Higgs

    SciTech Connect

    Gavela, M. B.; Kanshin, K.; Machado, P. A.N.; Saa, S.

    2016-10-25

    The minimal $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $\\sigma$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators.

  3. The linear-non-linear frontier for the Goldstone Higgs

    NASA Astrophysics Data System (ADS)

    Gavela, M. B.; Kanshin, K.; Machado, P. A. N.; Saa, S.

    2016-12-01

    The minimal SO(5) / SO(4) σ -model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators.

  4. New non-linear photovoltaic effect in uniform bipolar semiconductor

    SciTech Connect

    Volovichev, I.

    2014-11-21

    A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.

  5. Experimental investigation of pulse generation with one-pump fiber optical parametric amplification.

    PubMed

    Vedadi, Armand A; Shoaie, Mohammad Amin; Brès, Camille-Sophie

    2012-11-19

    In a recent study, the theory of pulse generation with fiber optical parametric amplification using sinusoidal (clock) intensity modulated pump was revisited. This work showed that the pulses generated through such parametric interaction exhibit a shape which depends on the signal detuning with respect to the pump position (i.e. linear phase mismatch). A near Gaussian shape can only be achieved over a small region of the gain spectrum, close to the maximum gain location. Towards the extremities of the gain spectrum, the generated pulses take a near Sinc shape which can have many potential applications such as for all-optical Nyquist limited transmitters and/or receivers. In this paper we experimentally verify the theory at repetition rates up to 40 GHz. We also discuss the impact of noise, pump saturation and walk-off on the generated pulses.

  6. Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Huang, Shouyuan; Xu, Xianfan

    2016-10-01

    This paper presents a methodology for design optimization of thermoelectric-based waste heat recovery systems called thermoelectric generators (TEGs). The aim is to maximize the power output from thermoelectrics which are used as add-on modules to an existing gas-phase heat exchanger, without negative impacts, e.g., maintaining a minimum heat dissipation rate from the hot side. A numerical model is proposed for TEG coupled heat transfer and electrical power output. This finite-volume-based model simulates different types of heat exchangers, i.e., counter-flow and cross-flow, for TEGs. Multiple-filled skutterudites and bismuth-telluride-based thermoelectric modules (TEMs) are applied, respectively, in higher and lower temperature regions. The response surface methodology is implemented to determine the optimized TEG size along and across the flow direction and the height of thermoelectric couple legs, and to analyze their covariance and relative sensitivity. A genetic algorithm is employed to verify the globality of the optimum. The presented method will be generally useful for optimizing heat-exchanger-based TEG performance.

  7. Role of topological phase-defects in the parametric generation process

    NASA Astrophysics Data System (ADS)

    Picozzi, Antonio; Gorza, Simon-Pierre; Haelterman, Marc

    2008-06-01

    We show that topological phase-defects are spontaneously generated from noise fluctuations in the degenerate configuration of the parametric interaction. These localized coherent structures are shown to affect the coherence properties of the parametrically generated field. It is shown that the emergence of coherence in the fundamental field relies on a previously unrecognized process of mutual annihilation of pairs of neighboring phase-defects. More precisely, the density of phase-defects N, and the time correlation τc of the generated field, are shown to exhibit a power-law behavior with the propagation length, i.e., τc ∝z 1 / 4, N ∝z - 1 / 4 .

  8. Optimisation of high average power optical parametric generation using a photonic crystal fiber.

    PubMed

    Sloanes, Trefor; McEwan, Ken; Lowans, Brian; Michaille, Laurent

    2008-11-24

    In this paper the length of a photonic crystal fiber is optimised to perform high average output power parametric generation with maximum efficiency. It is shown that the fiber length has to be increased up to 150 m, well beyond the walk-off distance between the pump and signal/idler, to optimize the generation efficiency. In this regime, the Raman process can take over from four-wave mixing and lead to supercontinuum generation. It is shown that the parametric wavelength conversion is directional; probably due to small variations in the core dimensions along the fiber length. The fiber exhibits up to 40% conversion efficiency, with the idler (0.9 microm) and the signal (1.3 microm) having a combined output power of over 1.5 W.

  9. Amplitude relations in non-linear sigma model

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Du, Yi-Jian

    2014-01-01

    In this paper, we investigate tree-level scattering amplitude relations in U( N) non-linear sigma model. We use Cayley parametrization. As was shown in the recent works [23,24], both on-shell amplitudes and off-shell currents with odd points have to vanish under Cayley parametrization. We prove the off-shell U(1) identity and fundamental BCJ relation for even-point currents. By taking the on-shell limits of the off-shell relations, we show that the color-ordered tree amplitudes with even points satisfy U(1)-decoupling identity and fundamental BCJ relation, which have the same formations within Yang-Mills theory. We further state that all the on-shell general KK, BCJ relations as well as the minimal-basis expansion are also satisfied by color-ordered tree amplitudes. As a consequence of the relations among color-ordered amplitudes, the total 2 m-point tree amplitudes satisfy DDM form of color decomposition as well as KLT relation.

  10. Non-linear dynamics in parkinsonism.

    PubMed

    Darbin, Olivier; Adams, Elizabeth; Martino, Anthony; Naritoku, Leslie; Dees, Daniel; Naritoku, Dean

    2013-12-25

    Over the last 30 years, the functions (and dysfunctions) of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis." In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively. More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e., parkinsonism, dyskinesia, healthy control) and are responsive to treatments (i.e., l-DOPA, deep brain stimulation). A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series) is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG), muscular activities (EMG), or kinetic of motor symptoms (tremor, gait) of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity, and hypokinesia.

  11. Non-Linear Dynamics of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2015-10-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Results of driven N-body systems by Stuart Robbins: Even unforced rings show large variations; Forcing triggers aggregation; Some limit cycles and phase lags seen, but not always as predicted by predator-prey model. Summary of Halo Results: A predatorprey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw'. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon

  12. Non-Linear Dynamics of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2015-04-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible Results of driven N-body systems by Stuart Robbins: Even unforced rings show large variations; Forcing triggers aggregation; Some limit cycles and phase lags seen, but not always as predicted by predator-prey model. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw'. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon

  13. Thinking about Non-Linear Smoothers.

    DTIC Science & Technology

    1986-05-01

    interesting possibilities for future study . These seem at the moment to fall into 3 categories: 1) Do we need the step that works on ends of abutting swooshes...Unear’smoothers to00 31. Recent work at Stanford 100 32. Coments an ocaly-lnear ttu.ng 101 .’ .. 33. Qevelnd’s i.ow 102 34. smelting 103 APPENDIX C: A...limited degree, with "Benchmarks’. We are, in most subareas, early in our study of non-linear smoothers. As as consequence, we often have to emphasize

  14. Wheel/rail noise generation due to nonlinear effects and parametric excitation.

    PubMed

    Nordborg, Anders

    2002-04-01

    Two models are developed, one in the time domain and another in the frequency domain, to explain when a wheel/rail noise generation model requires the inclusion of discrete supports, parametric excitation, and the nonlinear contact spring. Numerical simulations indicate the inclusion of discrete supports to describe low frequency response, and also at higher frequencies, especially where the rail is very smooth or has a corrugation/wavelength corresponding to the pinned-pinned frequency. With a corrugation, it may become essential to include the nonlinear contact spring, as contact loss occurs at high corrugation amplitudes. As nonlinearity causes force generation over a broad frequency range, some contributions excite wheel resonances, resulting in high radiation levels, that require the inclusion of wheel/rail nonlinear effects and parametric excitation for accurate prediction.

  15. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    NASA Astrophysics Data System (ADS)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  16. Non-linear dynamic compensation system

    NASA Technical Reports Server (NTRS)

    Lin, Yu-Hwan (Inventor); Lurie, Boris J. (Inventor)

    1992-01-01

    A non-linear dynamic compensation subsystem is added in the feedback loop of a high precision optical mirror positioning control system to smoothly alter the control system response bandwidth from a relatively wide response bandwidth optimized for speed of control system response to a bandwidth sufficiently narrow to reduce position errors resulting from the quantization noise inherent in the inductosyn used to measure mirror position. The non-linear dynamic compensation system includes a limiter for limiting the error signal within preselected limits, a compensator for modifying the limiter output to achieve the reduced bandwidth response, and an adder for combining the modified error signal with the difference between the limited and unlimited error signals. The adder output is applied to control system motor so that the system response is optimized for accuracy when the error signal is within the preselected limits, optimized for speed of response when the error signal is substantially beyond the preselected limits and smoothly varied therebetween as the error signal approaches the preselected limits.

  17. A survey on non-linear oscillations

    NASA Astrophysics Data System (ADS)

    Atherton, D. P.; Dorrah, H. T.

    1980-06-01

    This survey paper presents a comprehensive review of work in the field of non-linear oscillations. A brief discussion of second-order systems is followed by a presentation of exact criteria, approximate analytical methods and computational techniques for limit cycles in single variable systems. Multivariable systems are then covered from an analogous viewpoint which allows the reader to clearly identify both how single variable methods have been extended and the possibilities for further research. Particular emphasis is placed on describing function methods since it is believed that, where exact solutions are not possible, the approach may not only give approximate solutions but provides good insight for further computational or simulation studies. The coverage is essentially restricted to continuous lumped parameter systems and includes both free and forced oscillations. Several applications of the theories in various fields of engineering and science are discussed and indicate the broad interest in non-linear oscillatory phenomena. Finally, a detailed bibliography on the subject is provided.

  18. Controllability of non-linear biochemical systems.

    PubMed

    Ervadi-Radhakrishnan, Anandhi; Voit, Eberhard O

    2005-07-01

    Mathematical methods of biochemical pathway analysis are rapidly maturing to a point where it is possible to provide objective rationale for the natural design of metabolic systems and where it is becoming feasible to manipulate these systems based on model predictions, for instance, with the goal of optimizing the yield of a desired microbial product. So far, theory-based metabolic optimization techniques have mostly been applied to steady-state conditions or the minimization of transition time, using either linear stoichiometric models or fully kinetic models within biochemical systems theory (BST). This article addresses the related problem of controllability, where the task is to steer a non-linear biochemical system, within a given time period, from an initial state to some target state, which may or may not be a steady state. For this purpose, BST models in S-system form are transformed into affine non-linear control systems, which are subjected to an exact feedback linearization that permits controllability through independent variables. The method is exemplified with a small glycolytic-glycogenolytic pathway that had been analyzed previously by several other authors in different contexts.

  19. Reduced models and design principles for half-harmonic generation in synchronously pumped optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Hamerly, Ryan; Marandi, Alireza; Jankowski, Marc; Fejer, M. M.; Yamamoto, Yoshihisa; Mabuchi, Hideo

    2016-12-01

    We develop reduced models that describe half-harmonic generation in a synchronously pumped optical parametric oscillator above threshold, where nonlinearity, dispersion, and group-velocity mismatch are all relevant. These models are based on (1) an eigenmode expansion for low pump powers, (2) a simultonlike sech-pulse ansatz for intermediate powers, and (3) dispersionless box-shaped pulses for high powers. Analytic formulas for pulse compression, degenerate vs nondegenerate operation, and stability are derived and compared to numerical and experimental results.

  20. Photon-number entangled states generated in Kerr media with optical parametric pumping

    SciTech Connect

    Kowalewska-Kudlaszyk, A.; Leonski, W.; Perina, Jan Jr.

    2011-05-15

    Two nonlinear Kerr oscillators mutually coupled by parametric pumping are studied as a source of states entangled in photon numbers. Temporal evolution of entanglement quantified by negativity shows the effects of sudden death and birth of entanglement. Entanglement is preserved even in asymptotic states under certain conditions. The role of reservoirs at finite temperature in entanglement evolution is elucidated. Relation between generation of entangled states and violation of Cauchy-Schwartz inequality for oscillator intensities is found.

  1. Parametric generation of radiation in a dynamic cavity with frequency dispersion

    SciTech Connect

    Rosanov, N N; Fedorov, E G; Matskovsky, A A

    2016-01-31

    A numerical simulation of the parametric generation of electromagnetic radiation in a cavity with periodically oscillating mirrors and Lorentz-type frequency dispersion has been performed. It is shown that initially weak seed radiation can be transformed into intense short pulses, the shape of which under steady-state conditions changes periodically when reflecting from mirrors and, depending on the dispersion characteristics, corresponds to uni- or bipolar pulses. (letters)

  2. Generation of high-energy self-phase-stabilized pulses by difference-frequency generation followed by optical parametric amplification.

    PubMed

    Manzoni, C; Vozzi, C; Benedetti, E; Sansone, G; Stagira, S; Svelto, O; De Silvestri, S; Nisoli, M; Cerullo, G

    2006-04-01

    We produce ultrabroadband self-phase-stabilized near-IR pulses by a novel approach where a seed pulse, obtained by difference-frequency generation of a hollow-fiber broadened supercontinuum, is amplified by a two-stage optical parametric amplifier. Energies up to 20 microJ with a pulse spectrum extending from 1.2 to 1.6 microm are demonstrated, and a route for substantial energy scaling is indicated.

  3. Non-Linear Dynamics of Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    2015-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from

  4. Non-linear Flood Risk Assessment

    NASA Astrophysics Data System (ADS)

    Mazzarella, A.

    The genesis of floodings is very complex depending on hydrologic, meteorological and evapo-transpirative factors that are linked among themselves in a non linear way with numerous feedback processes. The Cantor dust and the rank-ordering statistics supply a proper framework for identifying a kind of a non linear order in the time succession of the floodings and so provide a basis for their prediction. When a catalogue is analysed, it is necessary to test its completeness with respect to the size of the recorded events and results obtained from analysis of catalogues that do not take into account such a test are suspect and possibly wrong, or, at least, unreliable. Floodings have no instrumentally determined magnitude scale, like that conventionally used for earthquakes, and this is why they are generally described in qualitative terms. For this reason, a semi-quantitative index, called ASI (Alluvial Strength Index) has been here developed that combines attributes of alluvial triggering mechanisms and effects on the territorial and hydraulic system.The historical succession of alluvial events occurred at high valley of Po river (Northern Italy), mean valley of Calore river (Southern Italy) and at Sarno, near Naples, have been accurately reconstructed on the basis of old documents and classified according to their ASI. The catalogues have been verified to be complete only for events classified at least as moderate and this probably because many of the lowest energetic events, especially in the past, escaped the detection. The identification of scale-invariances in the time clustering of alluvial events, both on short and long time scales, even if indicative of the complexity of their genesis, might be very helpful for the assessment and reduction of the hazard of future disasters. For example, on the basis of the results of the rank-ordering statistics, the most probable occurrence of an alluvial event at Sarno, classified at least as strong, is predicted to occur

  5. Generation of broadband entangled light through cascading nondegenerate optical parametric amplifiers

    SciTech Connect

    He Wenping; Li Fuli

    2007-07-15

    We consider a system consisting of N nondegenerate optical parametric amplifiers (NOPAs) operating below threshold and linked with each other in a cascading way, each taking the output subharmonic fields from the previous one as the input fields. The entanglement properties of the subharmonic fields from these cascading nondegenerate optical parametric amplifiers (CNOPAs) are investigated. We find that, if the input subharmonic fields of the first NOPA in the cascading line are in the vacuum state, the output fields from the later NOPAs exhibit excellent broadband entanglement, and the entanglement frequency band is broadened notably with increased number of cascading NOPAs. We also discuss the application of the entangled light generated from the CNOPAs to broadband teleportation, and find that the maximum width of the fidelity spectrum of teleportation of broadband coherent states can be greatly broadened.

  6. Bright squeezed-light generation by a continuous-wave semimonolithic parametric amplifier.

    PubMed

    Schneider, K; Bruckmeier, R; Hansen, H; Schiller, S; Mlynek, J

    1996-09-01

    Continuous-wave amplitude-squeezed light at 1064 nm has been generated with excellent long-term stability by use of a dual-port type I degenerate optical parametric amplifier pumped by a frequency-doubled Nd:YAG laser. A seed wave at 1064 nm is resonantly injected through the low-transmission cavity port, whereas the parametrically deamplified and squeezed output wave is extracted from the high-transmission port. Amplitude noise reduction of as much as 4.3 dB is observed directly at an output power of 0.15 mW. Stable noise suppression exceeding 3.8 dB is obtained for several hours by phase locking of the pump wave. The longterm stability and simplicity make this device suitable for sub-shot-noise metrology.

  7. Generation of photon pairs through parametric processes in nonlinear waveguides with the account of losses

    NASA Astrophysics Data System (ADS)

    Vavulin, D. N.; Sukhorukov, A. A.

    2016-08-01

    We present an analytical description of the process of spontaneous four-wave mixing in a cubic nonlinear fiber with linear losses. We consider the generation of photon pairs in the fiber when in the input of fiber is fed the pumping wave and single signal photon. The focus of attention is on three cases: when the signal photon propagates in the fiber without generating of biphotons; when the photon pair is generated; and when the photon is lost in the fiber. We also consider the cascade processes, but do not give them an analytical description because of their smallness. Description of the biphotons generation process we provide using the Schrodinger-type equation, and take into account the losses in the fiber through the introduction of the virtual beam splitters. We demonstrate the effectiveness of the generation of photon pairs through parametric processes.

  8. Clustering-Based Linear Least Square Fitting Method for Generation of Parametric Images in Dynamic FDG PET Studies

    PubMed Central

    Huang, Xinrui; Zhou, Yun; Bao, Shangliang; Huang, Sung-Cheng

    2007-01-01

    Parametric images generated from dynamic positron emission tomography (PET) studies are useful for presenting functional/biological information in the 3-dimensional space, but usually suffer from their high sensitivity to image noise. To improve the quality of these images, we proposed in this study a modified linear least square (LLS) fitting method named cLLS that incorporates a clustering-based spatial constraint for generation of parametric images from dynamic PET data of high noise levels. In this method, the combination of K-means and hierarchical cluster analysis was used to classify dynamic PET data. Compared with conventional LLS, cLLS can achieve high statistical reliability in the generated parametric images without incurring a high computational burden. The effectiveness of the method was demonstrated both with computer simulation and with a human brain dynamic FDG PET study. The cLLS method is expected to be useful for generation of parametric images from dynamic FDG PET study. PMID:18273393

  9. Non-linear spacecraft component parameters identification based on experimental results and finite element modelling

    NASA Astrophysics Data System (ADS)

    Vismara, S. O.; Ricci, S.; Bellini, M.; Trittoni, L.

    2016-06-01

    The objective of the present paper is to describe a procedure to identify and model the non-linear behaviour of structural elements. The procedure herein applied can be divided into two main steps: the system identification and the finite element model updating. The application of the restoring force surface method as a strategy to characterize and identify localized non-linearities has been investigated. This method, which works in the time domain, has been chosen because it has `built-in' characterization capabilities, it allows a direct non-parametric identification of non-linear single-degree-of-freedom systems and it can easily deal with sine-sweep excitations. Two different application examples are reported. At first, a numerical test case has been carried out to investigate the modelling techniques in the case of non-linear behaviour based on the presence of a free-play in the model. The second example concerns the flap of the Intermediate eXperimental Vehicle that successfully completed its 100-min mission on 11 February 2015. The flap was developed under the responsibility of Thales Alenia Space Italia, the prime contractor, which provided the experimental data needed to accomplish the investigation. The procedure here presented has been applied to the results of modal testing performed on the article. Once the non-linear parameters were identified, they were used to update the finite element model in order to prove its capability of predicting the flap behaviour for different load levels.

  10. Polycarbonate-Based Blends for Optical Non-linear Applications

    NASA Astrophysics Data System (ADS)

    Stanculescu, F.; Stanculescu, A.

    2016-02-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  11. Image enhancement by non-linear extrapolation in frequency space

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (Inventor); Greenspan, Hayit K. (Inventor)

    1998-01-01

    An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures.

  12. Effect of directional distribution on non-linear energy transfer in wind wave spectrum

    NASA Astrophysics Data System (ADS)

    Lavrenov, I.; Krogstad, H.

    2003-04-01

    Different directional distribution is investigated from the point of view a non-linear energy transfer in wind wave spectrum. In order to produce a numerical simulation of the non-linear interaction in wind wave spectrum a method of numerical integration of the highest accuracy is used. It is shown that the value of non-linear energy transfer is very sensitive to details of frequency-angular approximation of wave spectrum. The non-linear energy transfer is non-zero in wide frequency - angular range, depending on spectrum angular distribution. The calculation results reveal the presence of non-linear energy transfer to spectral components, which propagation is opposite to wind direction for a wide spectrum angular distribution. It should be noted that neither the discrete interaction approximation (DIA) used in the WAM model (Komen et al., 1994), no diffusive approximation of the non-linear transfer (Pushkarev and Zakharov, 1999) are able not to produce this effect. Numerical results show that the bi-model angular distribution, obtained by Hwang et al. (2000) in field experiments, can be generated by the non-linear energy transfer, sending energy in side direction. Present study has been supported by the INTAS-99-666, INTAS-01-25, INTAS-01-234, INTAS-01-2156, RFBR- 01- 05-64846 Grants.

  13. Visible-pulse generation in gain crystal of near-infrared femtosecond optical parametric oscillator.

    PubMed

    Jeong, Tae-Young; Kim, Seung-Hyun; Kim, Geon-Hee; Yee, Ki-Ju

    2015-10-05

    An optical parametric oscillator (OPO) based on magnesium-oxide-doped periodically poled lithium niobate (MgO:PPLN) is demonstrated to deliver visible femtosecond pulses, which were created through the intra-cavity nonlinear interactions within the PPLN itself. The signal from the OPO produces femtosecond pulses in the near-infrared region tunable from 1050 to 1600 nm. Visible femtosecond pulses in the range of 522-800 nm and those of 455-540 nm, respectively, were generated via second-harmonic generation (SHG) of signal photons and through sum-frequency generation (SFG) of pump and signal photons. Maximum output efficiencies of 9.2% at 614 nm and 8.0% at 522 nm for the SHG and SFG are attained, respectively, where the efficient visible pulse generation relies on the quasi-phase matching with the aid of the higher-order grating momentum.

  14. Non-Linear Electrohydrodynamics in Microfluidic Devices

    PubMed Central

    Zeng, Jun

    2011-01-01

    Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS) fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications. PMID:21673912

  15. In situ characterisation of non linear capacitors

    NASA Astrophysics Data System (ADS)

    Laudebat, L.; Bley, V.; Lebey, T.; Schneider, H.; Tounsi, P.

    2001-05-01

    Multilayers ceramic capacitors (MLCC) presenting non linear behaviours of their C(V) characteristics may have interesting applications in power electronics. Most of them have already been described. Nevertheless, the choice of a particular type instead of another one is all the more so difficult since, on one hand the physical mechanisms able to explain this behaviour is far from being understood. On the other hand, C(V) characteristics are in general obtained for low voltage values different from the ones they are going to be involved in. In this paper, direct in situ characterisations of different BaTiO3 based capacitors commercially available are achieved. The role of the capacitors' type (X7R,Z5U), of the temperature and of the voltage waveform (and more particularly its polarity) is demonstrated. Temperature values up to 200 oC are measured during normal operations in a RCD dissipative snubber without any alterations of the C(V) characteristics. All these results are discussed as regards the main physical properties of the constitutive materials in order to reach an optimisation of their use through an appropriate dimensioning.

  16. Optimum Damping in a Non-Linear Base Isolation System

    NASA Astrophysics Data System (ADS)

    Jangid, R. S.

    1996-02-01

    Optimum isolation damping for minimum acceleration of a base-isolated structure subjected to earthquake ground excitation is investigated. The stochastic model of the El-Centro1940 earthquake, which preserves the non-stationary evolution of amplitude and frequency content of ground motion, is used as an earthquake excitation. The base isolated structure consists of a linear flexible shear type multi-storey building supported on a base isolation system. The resilient-friction base isolator (R-FBI) is considered as an isolation system. The non-stationary stochastic response of the system is obtained by the time dependent equivalent linearization technique as the force-deformation of the R-FBI system is non-linear. The optimum damping of the R-FBI system is obtained under important parametric variations; i.e., the coefficient of friction of the R-FBI system, the period and damping of the superstructure; the effective period of base isolation. The criterion selected for optimality is the minimization of the top floor root mean square (r.m.s.) acceleration. It is shown that the above parameters have significant effects on optimum isolation damping.

  17. A stepped-plate bi-frequency source for generating a difference frequency sound with a parametric array.

    PubMed

    Je, Yub; Lee, Haksue; Park, Jongkyu; Moon, Wonkyu

    2010-06-01

    An ultrasonic radiator is developed to generate a difference frequency sound from two frequencies of ultrasound in air with a parametric array. A design method is proposed for an ultrasonic radiator capable of generating highly directive, high-amplitude ultrasonic sound beams at two different frequencies in air based on a modification of the stepped-plate ultrasonic radiator. The stepped-plate ultrasonic radiator was introduced by Gallego-Juarez et al. [Ultrasonics 16, 267-271 (1978)] in their previous study and can effectively generate highly directive, large-amplitude ultrasonic sounds in air, but only at a single frequency. Because parametric array sources must be able to generate sounds at more than one frequency, a design modification is crucial to the application of a stepped-plate ultrasonic radiator as a parametric array source in air. The aforementioned method was employed to design a parametric radiator for use in air. A prototype of this design was constructed and tested to determine whether it could successfully generate a difference frequency sound with a parametric array. The results confirmed that the proposed single small-area transducer was suitable as a parametric radiator in air.

  18. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation and Topological Studies

    NASA Astrophysics Data System (ADS)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-06-01

    A comprehensive numerical model has been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details of the model and results from the analysis of General Motors' prototype TEG were described in part I of the study. In part II of this study, parametric evaluations are considered to assess the influence of heat exchanger, geometry, and thermoelectric module configurations to achieve optimization of the baseline model. The computational tool is also adapted to model other topologies such as transverse and circular configurations (hexagonal and cylindrical) maintaining the same volume as the baseline TEG. Performance analysis of these different topologies and parameters is presented and compared with the baseline design.

  19. Generation of a frequency comb of squeezing in an optical parametric oscillator

    SciTech Connect

    Dunlop, A. E.; Huntington, E. H.; Harb, C. C.; Ralph, T. C.

    2006-01-15

    The multimode operation of an optical parametric oscillator (OPO) operating below threshold is calculated. We predict that squeezing can be generated in a comb that is limited only by the phase matching bandwidth of the OPO. Effects of technical noise on the squeezing spectrum are investigated. It is shown that maximal squeezing can be obtained at high frequency even in the presence of seed laser noise and cavity length fluctuations. Furthermore the spectrum obtained by detuning the laser frequency off OPO cavity resonance is calculated.

  20. Multimode nonclassical light generation through the optical-parametric-oscillator threshold

    SciTech Connect

    Chalopin, B.; Scazza, F.; Fabre, C.; Treps, N.

    2010-06-15

    We show that an optical parametric oscillator which is simultaneously resonant for several modes, either spatial or temporal, generates both below and above threshold a multimode nonclassical state of light consisting of squeezed vacuum states in all the nonoscillating modes. We confirm this prediction by an experiment dealing with the degenerate TEM{sub 01} and TEM{sub 10} modes. We show the conservation of nonclassical properties when the threshold is crossed. The experiment is made possible by the implementation of a new method to lock the relative phase of the pump and the injected beam.

  1. Direct generation of spatial quadripartite continuous variable entanglement in an optical parametric oscillator.

    PubMed

    Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui

    2016-11-15

    Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.

  2. General analysis of group velocity effects in collinear optical parametric amplifiers and generators.

    PubMed

    Arisholm, Gunnar

    2007-05-14

    Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.

  3. Experimental parametric study of jet vortex generators for flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, Gregory

    1991-01-01

    A parametric wind-tunnel study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulence flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed). Dye flow visualization tests in a water tunnel indicated that the most effective jet vortex generator configurations produced streamwise co-rotating vortices.

  4. Generation of Parametric Equivalent-Area Targets for Design of Low-Boom Supersonic Concepts

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood

    2011-01-01

    A tool with an Excel visual interface is developed to generate equivalent-area (A(sub e)) targets that satisfy the volume constraints for a low-boom supersonic configuration. The new parametric Ae target explorer allows users to interactively study the tradeoffs between the aircraft volume constraints and the low-boom characteristics (e.g., loudness) of the ground signature. Moreover, numerical optimization can be used to generate the optimal A(sub e) target for given A(sub e) volume constraints. A case study is used to demonstrate how a generated low-boom Ae target can be matched by a supersonic configuration that includes a fuselage, wing, nacelle, pylon, aft pod, horizontal tail, and vertical tail. The low-boom configuration is verified by sonic-boom analysis with an off-body pressure distribution at three body lengths below the configuration

  5. Multiwavelength terahertz-wave parametric generator for one-pulse spectroscopy

    NASA Astrophysics Data System (ADS)

    Murate, Kosuke; Hayashi, Shin’ichiro; Kawase, Kodo

    2017-03-01

    In this study, the simultaneous generation of multiwavelength terahertz (THz) waves by an injection-seeded THz parametric generator (is-TPG) was achieved for the first time. The output and stability of the multiwavelength THz waves were equivalent to those of the THz waves generated via a single-wavelength is-TPG. Spatial separation of frequencies and high-sensitivity detection were achieved by converting the THz waves to near-infrared detection beams. Furthermore, one-pulse spectroscopy of saccharides was realized, and a dynamic range of more than 60 dB was obtained. The results demonstrated the possibility of using the is-TPG to significantly shorten the measurement times of spectroscopic systems.

  6. Multimode quantum properties of a self-imaging optical parametric oscillator: Squeezed vacuum and Einstein-Podolsky-Rosen-beams generation

    SciTech Connect

    Lopez, L.; Chalopin, B.; Riviere de la Souchere, A.; Fabre, C.; Treps, N.; Maitre, A.

    2009-10-15

    We investigate the spatial quantum properties of the light emitted by a perfectly spatially degenerate optical parametric oscillator (self-imaging optical parametric oscillator). We show that this device produces local squeezing for areas bigger than a coherence area that depends on the crystal length and pump width. Furthermore, it generates local EPR beams in the far field. We show, calculating the eigenmodes of the system, that it is highly multimode for realistic experimental parameters.

  7. Non-linear dynamics of a geared rotor-bearing system with multiple clearances

    NASA Astrophysics Data System (ADS)

    Kahraman, A.; Singh, R.

    1991-02-01

    Non-linear frequency response characteristics of a geared rotor-bearing system are examined in this paper. A three-degree-of-freedom dynamic model is developed which includes non-linearities associated with radial clearances in the radial rolling element bearings and backlash between a spur gear pair; linear time-invariant gear meshing stiffness is assumed. The corresponding linear system problem is also solved, and predicted natural frequencies and modes match with finite element method results. The bearing non-linear stiffness function is approximated for the sake of convenience by a simple model which is identical to that used for the gear mesh. This approximate bearing model has been verified by comparing steady state frequency spectra. Applicability of both analytical and numerical solution techniques to the multi-degree-of-freedom non-linear problem is investigated. Satisfactory agreement has been found between our theory and available experimental data. Several key issues such as non-linear modal interactions and differences between internal static transmission error excitation and external torque excitation are discussed. Additionally, parametric studies are performed to understand the effect of system parameters such as bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and radial bearing preload to mean force ratio on the non-linear dynamic behavior. A criterion used to classify the steady state solutions is presented, and the conditions for chaotic, quasi-periodic and subharmonic steady state solutions are determined. Two typical routes to chaos observed in this geared system are also identified.

  8. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    PubMed

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  9. Non-Linear Dielectrics and Ferrites in ICEPIC

    DTIC Science & Technology

    2012-04-10

    Technical Paper 3. DATES COVERED (From - To) 2010-2011 4. TITLE AND SUBTITLE Non-linear Dielectrics and Ferrites in ICEPIC 5a. CONTRACT...Electromagnetics Government Purpose Rights 14. ABSTRACT Models for non-linear dielectrics and magnetic ferrites are developed and coded into the particle...be longer than an FDTD time step. The ferrite model accounts for the non-linearity of the Landau-Lifshitz-Gibert equation, and the magnetization

  10. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system

    NASA Astrophysics Data System (ADS)

    Kahraman, A.; Singh, R.

    1991-04-01

    Frequency response characteristics of a non-linear geared rotor-bearing system with time-varying mesh stiffness k h( overlinet) are examined in this paper. First, the single-degree-of-freedom spur gear pair model with backlash is extended to include sinusoidal or periodic mesh stiffness k h( overlinet) . Second, a three-degree-of-freedom model with k h( overlinet) and clearance non-lineariries associated with gear backlash and rolling element bearings, as excited by the static transmission error overlinee( overlinet) under a mean torque load, is developed. The governing equations are solved using digital simulation technique and only the primary resonances are studied. Resonances of the corresponding linear time-varying system associated with parametric and external excitations are identified using the method of multiple scales and digital simulation. Interactions between the mesh stiffness variation and clearance non-linearities have been investigated; a strong interaction between time-varying mesh stiffness k h( overlinet) and gear backlash is found, whereas the coupling between k h( overlinet) and bearing non-linearities is weak. Finally, our time-varying non-linear formulations yield reasonably good predictions when compared with the benchmark experimental results available in the literature.

  11. Generating grids directly on CAD database surfaces using a parametric evaluator approach

    NASA Technical Reports Server (NTRS)

    Gatzhe, Timothy D.; Melson, Thomas G.

    1995-01-01

    A very important, but often overlooked step in grid generation is acquiring a suitable geometry definition of the vehicle to be analyzed. In the past, geometry was usually obtained by generating a number of cross-sections of each component. A number of recent efforts have focussed on non-uniform rational B-spline surfaces (NURBS) to provide as single type of analytic surface to deal with inside the grid generator. This approach has required the development of tools to read other types of surfaces and convert them, either exactly or by approximation, into a NURBS surface. This paper describes a more generic parametric evaluator approach, which does not rely on a particular surface type internal to the grid generation system and is less restrictive in the number of surface types that can be represented exactly. This approach has been implemented in the McDonnell Douglas grid generation system, MACGS, and offers direct access to all types of surfaces from a Unigraphics part file.

  12. Raman parametric excitation effect upon the third harmonic generation by a metallic nanoparticle lattice

    SciTech Connect

    Sepehri Javan, N.

    2015-08-21

    This work is a theoretical study on third harmonic generation in the nonlinear propagation of an intense laser pulse through a periodic three-dimensional lattice of nanoparticles. Using a perturbative method, the nonlinear equations that describe the laser–nanoparticle interaction in the weakly relativistic regime are derived. Additionally, the nonlinear dispersion relation and the amplitude of the third harmonic are obtained. Finally, the effects of the nanoparticle radius and separation length, the distribution of the nanoparticle electron density, and the laser frequency upon the third harmonic efficiency are investigated. In addition to the expected resonance that occurs when the third harmonic resonates with the plasmon wave, another resonance appears when the nonlinear interaction of the fundamental mode with the third harmonic excites a longitudinal collective plasmon wave via the parametric Raman mechanism.

  13. Non-Linear Analysis of Mode II Fracture in the end Notched Flexure Beam

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2016-03-01

    Analysis is carried-out of fracture in the End Notched Flex- ure (ENF) beam configuration, taking into account the material nonlin- earity. For this purpose, the J-integral approach is applied. A non-linear model, based on the Classical beam theory is used. The mechanical be- haviour of the ENF configuration is described by the Ramberg-Osgood stress-strain curve. It is assumed that the material possesses the same properties in tension and compression. The influence is evaluated of the material constants in the Ramberg-Osgood stress-strain equation on the fracture behaviour. The effect of the crack length on the J-integral value is investigated, too. The analytical approach, developed in the present paper, is very useful for parametric analyses, since the simple formulae obtained capture the essentials of the non-linear fracture in the ENF con- figuration.

  14. Parametric Geometry, Structured Grid Generation, and Initial Design Study for REST-Class Hypersonic Inlets

    NASA Technical Reports Server (NTRS)

    Ferlemann, Paul G.; Gollan, Rowan J.

    2010-01-01

    Computational design and analysis of three-dimensional hypersonic inlets with shape transition has been a significant challenge due to the complex geometry and grid required for three-dimensional viscous flow calculations. Currently, the design process utilizes an inviscid design tool to produce initial inlet shapes by streamline tracing through an axisymmetric compression field. However, the shape is defined by a large number of points rather than a continuous surface and lacks important features such as blunt leading edges. Therefore, a design system has been developed to parametrically construct true CAD geometry and link the topology of a structured grid to the geometry. The Adaptive Modeling Language (AML) constitutes the underlying framework that is used to build the geometry and grid topology. Parameterization of the CAD geometry allows the inlet shapes produced by the inviscid design tool to be generated, but also allows a great deal of flexibility to modify the shape to account for three-dimensional viscous effects. By linking the grid topology to the parametric geometry, the GridPro grid generation software can be used efficiently to produce a smooth hexahedral multiblock grid. To demonstrate the new capability, a matrix of inlets were designed by varying four geometry parameters in the inviscid design tool. The goals of the initial design study were to explore inviscid design tool geometry variations with a three-dimensional analysis approach, demonstrate a solution rate which would enable the use of high-fidelity viscous three-dimensional CFD in future design efforts, process the results for important performance parameters, and perform a sample optimization.

  15. Discriminant power analyses of non-linear dimension expansion methods

    NASA Astrophysics Data System (ADS)

    Woo, Seongyoun; Lee, Chulhee

    2016-05-01

    Most non-linear classification methods can be viewed as non-linear dimension expansion methods followed by a linear classifier. For example, the support vector machine (SVM) expands the dimensions of the original data using various kernels and classifies the data in the expanded data space using a linear SVM. In case of extreme learning machines or neural networks, the dimensions are expanded by hidden neurons and the final layer represents the linear classification. In this paper, we analyze the discriminant powers of various non-linear classifiers. Some analyses of the discriminating powers of non-linear dimension expansion methods are presented along with a suggestion of how to improve separability in non-linear classifiers.

  16. Employment of CB models for non-linear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  17. Characterization of non-linear Potassium crystals in the Terahertz frequency domain

    NASA Astrophysics Data System (ADS)

    Mounaix, P.; Sarger, L.; Caumes, J. P.; Freysz, E.

    2004-12-01

    Systematic measurements of the dielectric properties of KDP, KNbO3, KTP and KTA non-linear crystals in the Terahertz (THz) spectral range are presented. The index of refraction and the absorption coefficients are measured between 0.1 and 1.5 THz for different crystallographic orientations. The data are deduced from an experimental set-up based on standard Terahertz time domain spectroscopy system at room temperature. These data, key parameters for the optimization of non-linear THz generation by optical rectification as well as electro-optic detection, are analysed in term of non-linear capabilities. We finally review different methods making possible to generate THz wave in these crystals and compare their characteristics.

  18. Non-linear dynamics and instability of a rotating shaft-disk system

    NASA Astrophysics Data System (ADS)

    Chang, C. O.; Cheng, J. W.

    1993-01-01

    The instability and non-linear dynamics of a slender rotating shaft with a rigid disk at the mid-span are analyzed. The shaft is simply supported at both ends and is made of a viscoelastic material. The stability criteria are determined from the linear equations of motion based on the small strain assumption. The bifurcation of the double zero eigenvalue point on the stability boundaries in the parametric space is analyzed by using center manifold theory on the non-linear equations of motion, for which a large transverse displacement of the shaft is assumed. Analytical expressions for the radius of synchronous whirling and the radius and precession rate of non-synchronous whirling near the double zero eigenvalue point are obtained explicitly. The behaviors of the parametric points away from the stability boundaries are analyzed numerically. The general effects on the precession rate for these points are somewhat different from those for the parametric points in the vicinity of the double zero eigenvalue.

  19. Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities

    NASA Astrophysics Data System (ADS)

    Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred

    2012-07-01

    The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in

  20. Efficient cascade quasi-synchronous parametric generation with up-conversion

    SciTech Connect

    Petnikova, V M; Shuvalov, Vladimir V

    2010-06-23

    We report efficient cascade up-conversion generation due to two simultaneous quasi-synchronous processes of parametric decay {omega}{sub 3{yields}{omega}1}+ {omega}{sub 2} of pump quanta at the frequency {omega}{sub 3} and up-conversion of one of the generated waves {omega}{sub 1}+{omega}{sub 3{yields}{omega}4}>{omega}{sub 3} at the frequency {omega}{sub 1} in a medium with a quadratic nonlinearity. It is found that the necessary condition for this generation is the requirement |{gamma}{sub 1}|{sup 2}>({omega}{sub 2}/{omega}{sub 1})|{gamma}{sub 1}|{sup 2}, where {gamma}{sub 1,2} are the averaged constants of the nonlinear coupling for the processes {omega}{sub 1}+{omega}{sub 2,3{yields}{omega}3,4}, respectively. If this requirement is fulfilled, the plane monochromatic pump wave is completely depleted, while the limiting (the noise seed intensity is I{sub 10,20{yields}}0 at the input) efficiency of the energy conversion into radiation at the frequency {omega}{sub 4} is independent of I{sub 10,20} and determined only by the relations between |{gamma}{sub 1,2}|{sup 2} and the frequencies of the interacting waves. (nonlinear optical phenomena)

  1. Solar tower power plant using a particle-heated steam generator: Modeling and parametric study

    NASA Astrophysics Data System (ADS)

    Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan

    2016-05-01

    Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.

  2. MUons from PArametric formulas: A fast GEnerator of atmospheric μ-bundles for neutrino telescopes (MUPAGE)

    NASA Astrophysics Data System (ADS)

    Carminati, G.; Margiotta, A.; Spurio, M.

    2009-04-01

    Atmospheric muons play an important role for neutrino telescopes, because they provide the most abundant source of events for real time monitoring, calibration and tests. On the other side, they also represent the major background source. A fast Monte Carlo generator (called MUPAGE) of atmospheric muon bundles for underwater/ice neutrino telescopes is presented here. MUPAGE is based on parametric formulas [Y. Becherini, A. Margiotta, M. Sioli, M. Spurio, Astrop. Phys. 25 (2006) 1-13; M. Spurio, Nucl. Instr. and Meth. A 567 (2006) 492] obtained from a full Monte Carlo simulation of cosmic ray showers generating muons in bundles, which are propagated down to 5 km w.e. It produces the event kinematics on the surface of a user-defined virtual cylinder, surrounding the detector. The multiplicity of the muons in the bundle, the muon lateral distribution and energy spectrum are simulated according to a specific model of the primary cosmic ray flux, with constraints from measurements of the muon flux obtained in underground experiments. Some examples of application are presented.

  3. Parametric Harmonic Generation as a Probe of Unconstrained Spin Magnetization Precession in the Shallow Barrier Limit.

    PubMed

    Capua, Amir; Rettner, Charles; Parkin, Stuart S P

    2016-01-29

    We study the parametric excitation of high orders of magnetization precession in ultrathin films having perpendicular magnetic anisotropy. We observe that for a given driving field amplitude the harmonic generation can be increased by lowering the barrier with the application of an in-plane magnetic field in the manner of the Smit-Beljers effect. In this effect, the magnetic stiffness is reduced not by lowering the magnitude of the magnetic field upon which the spins precess, but rather by effectively releasing the field's "anchoring" point. This results in a shallow energy barrier where the electrons' spin is locally unconstrained. While the observation is unveiled in the form of nonlinear high harmonic generation, we believe that the physics whereby the barrier is suppressed by an external magnetic field may apply to other phenomena associated with ultrathin films. In these cases, such unconstrained motion may serve as a sensitive probe of the torques associated with proximate spin currents. Moreover, our approach may be used as a model system for the study of phase transitions in the field of nonlinear dynamics.

  4. Computer modeling of batteries from non-linear circuit elements

    NASA Technical Reports Server (NTRS)

    Waaben, S.; Federico, J.; Moskowitz, I.

    1983-01-01

    A simple non-linear circuit model for battery behavior is given. It is based on time-dependent features of the well-known PIN change storage diode, whose behavior is described by equations similar to those associated with electrochemical cells. The circuit simulation computer program ADVICE was used to predict non-linear response from a topological description of the battery analog built from advice components. By a reasonable choice of one set of parameters, the circuit accurately simulates a wide spectrum of measured non-linear battery responses to within a few millivolts.

  5. Second Generation Organometallic Materials for Non-Linear Optical Application

    DTIC Science & Technology

    2009-05-26

    University of Florida I . Project Objectives, Significance and Overview During the past several years in an AFOSR sponsored project our group has...Ar i PR3 rr\\3 PR 3 Pt—=— Ar- PRs n Pt-acetylide oligomer Pt-acetylide polymer Figure 1. Structure of platinum-acetylide materials. Work...Solvent - CH,C1 Energyu»» i /J Figure 9. Top: Structures of TPA-M complexes. Bottom: Nonlinear transmission for 10 and 20 mM, CH2C12 solutions of

  6. High average power scaling of optical parametric amplification through cascaded difference-frequency generators

    DOEpatents

    Jovanovic, Igor; Comaskey, Brian J.

    2004-09-14

    A first pump pulse and a signal pulse are injected into a first optical parametric amplifier. This produces a first amplified signal pulse. At least one additional pump pulse and the first amplified signal pulse are injected into at least one additional optical parametric amplifier producing an increased power coherent optical pulse.

  7. Structuring feature space: a non-parametric method for volumetric transfer function generation.

    PubMed

    Maciejewski, Ross; Woo, Insoo; Chen, Wei; Ebert, David S

    2009-01-01

    The use of multi-dimensional transfer functions for direct volume rendering has been shown to be an effective means of extracting materials and their boundaries for both scalar and multivariate data. The most common multi-dimensional transfer function consists of a two-dimensional (2D) histogram with axes representing a subset of the feature space (e.g., value vs. value gradient magnitude), with each entry in the 2D histogram being the number of voxels at a given feature space pair. Users then assign color and opacity to the voxel distributions within the given feature space through the use of interactive widgets (e.g., box, circular, triangular selection). Unfortunately, such tools lead users through a trial-and-error approach as they assess which data values within the feature space map to a given area of interest within the volumetric space. In this work, we propose the addition of non-parametric clustering within the transfer function feature space in order to extract patterns and guide transfer function generation. We apply a non-parametric kernel density estimation to group voxels of similar features within the 2D histogram. These groups are then binned and colored based on their estimated density, and the user may interactively grow and shrink the binned regions to explore feature boundaries and extract regions of interest. We also extend this scheme to temporal volumetric data in which time steps of 2D histograms are composited into a histogram volume. A three-dimensional (3D) density estimation is then applied, and users can explore regions within the feature space across time without adjusting the transfer function at each time step. Our work enables users to effectively explore the structures found within a feature space of the volume and provide a context in which the user can understand how these structures relate to their volumetric data. We provide tools for enhanced exploration and manipulation of the transfer function, and we show that the initial

  8. Dilatonic non-linear sigma models and Ricci flow extensions

    NASA Astrophysics Data System (ADS)

    Carfora, M.; Marzuoli, A.

    2016-09-01

    We review our recent work describing, in terms of the Wasserstein geometry over the space of probability measures, the embedding of the Ricci flow in the renormalization group flow for dilatonic non-linear sigma models.

  9. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  10. Entanglement, Einstein Podolsky Rosen correlations and Schrodinger cat state generation by quantum-injected optical parametric amplification

    NASA Astrophysics Data System (ADS)

    DeMartini, Francesco; Sciarrino, Fabio

    2007-03-01

    We investigate the multi-photon quantum superposition state generated by the quantum-injected high-gain optical parametric amplification of a single photon. The physical configurations based on the optimal universal and on the phase-covariant quantum cloning have been adopted. The theoretical results are supported by a set of experiments leading to the generation of an average number of clones in excess of 103.

  11. Development of Optical Crystals for High Power and Tunable Visible and Infrared Light Generation

    DTIC Science & Technology

    2015-02-11

    and third order optical nonlinearities which are essential for second harmonic generation, optical parametric oscillation, optical switching, and...essential for second harmonic generation, optical parametric oscillation, optical switching, and wavelength conversion. In spite of being known and...compounds including LiInSe2 have been extensively studied for non-linear optical applications such as second harmonic generation.[1][2][3] We report on

  12. Valuation of financial models with non-linear state spaces

    NASA Astrophysics Data System (ADS)

    Webber, Nick

    2001-02-01

    A common assumption in valuation models for derivative securities is that the underlying state variables take values in a linear state space. We discuss numerical implementation issues in an interest rate model with a simple non-linear state space, formulating and comparing Monte Carlo, finite difference and lattice numerical solution methods. We conclude that, at least in low dimensional spaces, non-linear interest rate models may be viable.

  13. a Frequency Domain Based NUMERIC-ANALYTICAL Method for Non-Linear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Sekar, P.

    1998-04-01

    In this paper a multiharmonic balancing technique is used to develop certain algorithms to determine periodic orbits of non-liner dynamical systems with external, parametric and self excitations. Essentially, in this method the non-linear differential equations are transformed into a set of non-linear algebraic equations in terms of the Fourier coefficients of the periodic solutions which are solved by using the Newton-Raphson technique. The method is developed such that both fast Fourier transform and discrete Fourier transform algorithms can be used. It is capable of treating all types of non-linearities and higher dimensional systems. The stability of periodic orbits is investigated by obtaining the monodromy matrix. A path following algorithm based on the predictor-corrector method is also presented to enable the bifurcation analysis. The prediction is done with a cubic extrapolation technique with an arc length incrementation while the correction is done with the use of the least square minimisation technique. The under determined system of equations is solved by singular value decomposition. The suitability of the method is demonstrated by obtaining the bifurcational behaviour of rolling contact vibrations modelled by Hertz contact law.

  14. Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations

    NASA Astrophysics Data System (ADS)

    Zhang, Ruikun; Hou, Zhongsheng; Ji, Honghai; Yin, Chenkun

    2016-04-01

    In this paper, an adaptive iterative learning control scheme is proposed for a class of non-linearly parameterised systems with unknown time-varying parameters and input saturations. By incorporating a saturation function, a new iterative learning control mechanism is presented which includes a feedback term and a parameter updating term. Through the use of parameter separation technique, the non-linear parameters are separated from the non-linear function and then a saturated difference updating law is designed in iteration domain by combining the unknown parametric term of the local Lipschitz continuous function and the unknown time-varying gain into an unknown time-varying function. The analysis of convergence is based on a time-weighted Lyapunov-Krasovskii-like composite energy function which consists of time-weighted input, state and parameter estimation information. The proposed learning control mechanism warrants a L2[0, T] convergence of the tracking error sequence along the iteration axis. Simulation results are provided to illustrate the effectiveness of the adaptive iterative learning control scheme.

  15. Parametric generation of broadband biphotons in a periodic sequence of thin crystals

    SciTech Connect

    Lariontsev, E G

    2015-02-28

    Collinear parametric scattering of light under type-II phase matching is considered in a periodic sequence of nonlinear cells made of BBO crystals. The possibilities of reducing the duration of the wave packets of biphotons and increasing their intensity under monochromatic pumping are studied. The analysis is based on the account of dispersion of the refractive indices using Sellmeier equations. The obtained results allow one to conclude that at an appropriate choice of the crystal thicknesses and the number of cells, it is possible to significantly increase the flux of broadband biphotons and obtain extremely short quantum packets. It is shown that for sufficiently small thicknesses of individual crystals (layers), this system exhibits a fine structure in the spectrum of biphotons: with an increase in the number of cells (layers) the broadband spectrum is divided into a number of narrow bands and the number of these bands increases. When use is made of a nonlinear BBO crystal, this method allows one to obtain ultrashort packets of biphotons with duration τ{sub 0} ≈ 2 fs. Compared with a different method of generation of broadband biphotons, which is based on the use of quasi-phase-matched periodically poled crystals, the method studied in this paper does not necessitate the need for the phase modulation of a biphoton to be converted into the amplitude modulation. (nonlinear optical phenomena)

  16. Parametric amplification of vortex-antivortex pair generation in a Josephson junction

    NASA Astrophysics Data System (ADS)

    Berdiyorov, G. R.; Milošević, M. V.; Savel'ev, S.; Kusmartsev, F.; Peeters, F. M.

    2014-10-01

    Using advanced three-dimensional simulations, we show that an Abrikosov vortex, trapped inside a cavity perpendicular to an artificial Josephson junction, can serve as a very efficient source for generation of Josephson vortex-antivortex pairs in the presence of the applied electric current. In such a case, the nucleation rate of the pairs can be tuned in a broad range by an out-of-plane ac magnetic field in a broad range of frequencies. This parametrically amplified vortex-antivortex nucleation can be considered as a macroscopic analog of the dynamic Casimir effect, where fluxon pairs mimic the photons and the ac magnetic field plays the role of the oscillating mirrors. The emerging vortex pairs in our system can be detected by the pronounced features in the measured voltage characteristics, or through the emitted electromagnetic radiation, and exhibit resonant dynamics with respect to the frequency of the applied magnetic field. Reported tunability of the Josephson oscillations can be useful for developing high-frequency emission devices.

  17. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    NASA Astrophysics Data System (ADS)

    Cirmi, G.; Lai, C.-J.; Huang, S.-W.; Granados, E.; Sell, A.; Moses, J.; Hong, K.-H.; Keathley, P.; Kärtner, F. X.

    2013-03-01

    We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ-5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  18. Resonant infrared ablation of polystyrene with single picosecond pulses generated by an optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Duering, Malte; Haglund, Richard; Luther-Davies, Barry

    2014-01-01

    We report on resonant infrared laser ablation of polystyrene using single 8 ps pulses at a wavelength of 3.31 μm generated by a MgO:PPLN optical parametric amplifier pumped by a Nd:YLF laser. We determined the single-pulse ablation threshold to be 0.46 J/cm2, about a factor of five smaller than in previous free-electron-laser studies. Time-resolved imaging of the laser-target interaction reveals that the detailed dynamics of the ablation process begin with thermal expansion of a large volume of hot material from which a less dense plume of polymeric material evaporates. This plume disappears on a time scale of 0.75 μs and the hot polymer material recedes back into the crater from which it was expelled. Subsequently, and on a much longer time scale, structural alterations in the ablation crater continue to evolve for at least another millisecond. Our results suggest that single picosecond pulses are effective for the ablation of polymers and exhibit dynamics similar to those observed in studies using a free-electron laser.

  19. Modeling of finite-amplitude sound beams: second order fields generated by a parametric loudspeaker.

    PubMed

    Yang, Jun; Sha, Kan; Gan, Woon-Seng; Tian, Jing

    2005-04-01

    The nonlinear interaction of sound waves in air has been applied to sound reproduction for audio applications. A directional audible sound can be generated by amplitude-modulating the ultrasound carrier with an audio signal, then transmitting it from a parametric loudspeaker. This brings the need of a computationally efficient model to describe the propagation of finite-amplitude sound beams for the system design and optimization. A quasilinear analytical solution capable of fast numerical evaluation is presented for the second-order fields of the sum-, difference-frequency and second harmonic components. It is based on a virtual-complex-source approach, wherein the source field is treated as an aggregation of a set of complex virtual sources located in complex distance, then the corresponding fundamental sound field is reduced to the computation of sums of simple functions by exploiting the integrability of Gaussian functions. By this result, the five-dimensional integral expressions for the second-order sound fields are simplified to one-dimensional integrals. Furthermore, a substantial analytical reduction to sums of single integrals also is derived for an arbitrary source distribution when the basis functions are expressible as a sum of products of trigonometric functions. The validity of the proposed method is confirmed by a comparison of numerical results with experimental data previously published for the rectangular ultrasonic transducer.

  20. Primordial Black Holes in non-linear perturbation theory

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan Carlos

    2009-10-01

    This thesis begins with a study of the origin of cosmological fluctuations with special attention to those cases in which the non-Gaussian correlation functions are large. The analysis shows that perturbations from an almost massless auxiliary field generically produce large values of the non-linear parameter f_NL. The effects of including non-Gaussian correlation functions in the statistics of cosmological structure are explored by constructing a non-Gaussian probability distribution function (PDF). Such PDF is derived for the comoving curvature perturbation from first principles in the context of quantum field theory, with n-point correlation functions as the only input. The non-Gaussian PDF is then used to explore two important problems in the physics of primordial black holes (PBHs): First, to compute non-Gaussian corrections to the number of PBHs generated from the primordial curvature fluctuations. The second application concerns new cosmological observables. The formation of PBHs is known to depend on two main physical characteristics: the strength of the gravitational field produced by the initial curvature inhomogeneity and the pressure gradient at the edge of the curvature configuration. We account for the probability of finding these configurations by using two parameters: The amplitude of the inhomogeneity and its second radial derivative, evaluated at the centre of the configuration. The implications of the derived probability for the fraction of mass in the universe in the form of PBHs are discussed.

  1. Experimental study of a linear/non-linear flux rope

    SciTech Connect

    DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart

    2015-08-15

    Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, r{sub plasma} = 30 cm, n{sub o} = 10{sup 12 }cm{sup −3}, T{sub e} = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowing it to freely move about the anode. At large currents (I > πr{sup 2}B{sub 0}c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.

  2. Ground-based acoustic parametric generator impact on the atmosphere and ionosphere in an active experiment

    NASA Astrophysics Data System (ADS)

    Rapoport, Yuriy G.; Cheremnykh, Oleg K.; Koshovy, Volodymyr V.; Melnik, Mykola O.; Ivantyshyn, Oleh L.; Nogach, Roman T.; Selivanov, Yuriy A.; Grimalsky, Vladimir V.; Mezentsev, Valentyn P.; Karataeva, Larysa M.; Ivchenko, Vasyl. M.; Milinevsky, Gennadi P.; Fedun, Viktor N.; Tkachenko, Eugen N.

    2017-01-01

    We develop theoretical basics of active experiments with two beams of acoustic waves, radiated by a ground-based sound generator. These beams are transformed into atmospheric acoustic gravity waves (AGWs), which have parameters that enable them to penetrate to the altitudes of the ionospheric E and F regions where they influence the electron concentration of the ionosphere. Acoustic waves are generated by the ground-based parametric sound generator (PSG) at the two close frequencies. The main idea of the experiment is to design the output parameters of the PSG to build a cascade scheme of nonlinear wave frequency downshift transformations to provide the necessary conditions for their vertical propagation and to enable penetration to ionospheric altitudes. The PSG generates sound waves (SWs) with frequencies f1 = 600 and f2 = 625 Hz and large amplitudes (100-420 m s-1). Each of these waves is modulated with the frequency of 0.016 Hz. The novelty of the proposed analytical-numerical model is due to simultaneous accounting for nonlinearity, diffraction, losses, and dispersion and inclusion of the two-stage transformation (1) of the initial acoustic waves to the acoustic wave with the difference frequency Δf = f2 - f1 in the altitude ranges 0-0.1 km, in the strongly nonlinear regime, and (2) of the acoustic wave with the difference frequency to atmospheric acoustic gravity waves with the modulational frequency in the altitude ranges 0.1-20 km, which then reach the altitudes of the ionospheric E and F regions, in a practically linear regime. AGWs, nonlinearly transformed from the sound waves, launched by the two-frequency ground-based sound generator can increase the transparency of the ionosphere for the electromagnetic waves in HF (MHz) and VLF (kHz) ranges. The developed theoretical model can be used for interpreting an active experiment that includes the PSG impact on the atmosphere-ionosphere system, measurements of electromagnetic and acoustic fields, study of

  3. Multi-channel 80-GHz RZ pulse train generation based on parametric process in highly-nonlinear fiber

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Hu, Junhao; Yu, Changyuan; Yeo, Yong Kee; Wang, Yixin

    2010-03-01

    It is experimentally shown that six-channel C + L-band 80-GHz short pulse trains are generated based on parametric process in highly-nonlinear fiber (HNLF). By launching a pulsed pump and three-channel continuous wave (CW) lights into 1-km HNLF, three-channel signals are amplified and three-channel idlers are generated. The waveforms of the generated 80-GHz short pulses are measured by an auto-correlator. The bit-error-rate (BER) of each channel is analyzed numerically. In the back-to-back case, the power penalties of the generated channels are less than 1.5-dB.

  4. Trace Gas Measurements on Mars and Earth Using Optical Parametric Generation

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Haris, Riris; Li, Steve; Sun, Xiaoli; Abshire, James Brice

    2010-01-01

    Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. We have developed an active sensing instrument for the remote measurement of trace gases in planetary atmospheres (including Earth). The technique uses widely tunable, seeded optical parametric generation (OPG) to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planets. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but recent observations indicate that methane levels may be on the rise. Increasing methane concentrations may trigger a positive feedback loop and a subsequent runaway greenhouse effect, where increasing temperatures result in increasing methane levels. The NRC Decadal Survey recognized the importance of global observations of greenhouse gases and called for simultaneous CH4, CO, and CO2 measurements but also underlined the technological limitations for these observations. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can identify and localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. It can identify the dynamics of methane generation over time and latitude and identify future lander mission sites

  5. The Theoretical Analysis of Quasi-phase-matching Backward-wave Parametric Oscillation for Teraherz wave generation

    NASA Astrophysics Data System (ADS)

    Tieli, Zhang

    It is recognized that detecting aero materials with Teraherz (THz) wave is one of potential effective methods. The possibility of generation for THz wave in quasi-phase-matching backward-wave parametric oscillation is discussed in this paper. The Quasi-phase-matching (QPM) technique is an important component in nonlinear optical frequency conversion, such as second harmonic generation (SHG), optical parametric oscillation (OPO) and optical parametric generation (OPG). The phase mismatching in QPM OPO could be compensated by the grating vector of periodically poled crystals. It was known that the vectors of the grating and interacting waves were along the same direction to generate near infrared and mid-infrared light in conventional QPM OPO. In this paper, the character of the backward-wave parametric oscillation was analyzed systemically for the application of THz wave generation. The single and double backward-wave parametric oscillators were proposed and the practicability of THz wave generation was discussed. The threshold and linewidth characters in the typical condition were theoretically analyzed. It can be concluded that the single backward-wave parametric oscillators in THz band could be realized in current technique. The idler wavelength tuning from 100µm to 1000µm could be achieved by tuning the period of PPLN from 12.6μm to 131.4μm at 140℃. And other QPM conditions are hardly achieved by the technique nowadays, as the periods of periodically poled crystals are at the level of sub-micron. The calculation shows that the linewidth in single backward-wave OPO is lower than that in forward-wave OPO by one or two orders of magnitude. Especially, the linewidth in single backward-wave OPO doesn’t increase rapidly near degenerate point. The threshold of the pump density in the single backward-wave OPO is about 109 W/cm2 when the length of PPLN is 50mm and the pump wavelength is 1.064μm.

  6. Two-mode correlation of microwave quantum noise generated by parametric down-conversion.

    PubMed

    Bergeal, N; Schackert, F; Frunzio, L; Devoret, M H

    2012-03-23

    In this Letter, we report the observation of the correlation between two modes of microwave radiation resulting from the amplification of quantum noise by the Josephson parametric converter. This process, seen from the pump, can be viewed as parametric down-conversion. The correlation is measured by an interference experiment displaying a contrast better than 99% with a number of photons per mode greater than 250,000. Dispersive measurements of mesoscopic systems and quantum encryption can benefit from this development.

  7. Current-driven non-linear magnetodynamics in exchange-biased spin valves

    SciTech Connect

    Seinige, Heidi; Wang, Cheng; Tsoi, Maxim

    2015-05-07

    This work investigates the excitation of parametric resonance in exchange-biased spin valves (EBSVs). Using a mechanical point contact, high density dc and microwave currents were injected into the EBSV sample. Observing the reflected microwave power and the small rectification voltage that develops across the contact allows detecting the current-driven magnetodynamics not only in the bulk sample but originating exclusively from the small contact region. In addition to ferromagnetic resonance (FMR), parametric resonance at twice the natural FMR frequency was observed. In contrast to FMR, this non-linear resonance was excited only in the vicinity of the point contact where current densities are high. Power-dependent measurements displayed a typical threshold-like behavior of parametric resonance and a broadening of the instability region with increasing power. Parametric resonance showed a linear shift as a function of applied dc bias which is consistent with the field-like spin-transfer torque induced by current on magnetic moments in EBSV.

  8. Epicyclic helical channels for parametric resonance ionization cooling

    SciTech Connect

    Johson, Rolland Paul; Derbenev, Yaroslav

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  9. Non-linear material characterisation using the noncollinear method

    NASA Astrophysics Data System (ADS)

    Croxford, Anthony J.; Wilcox, Paul D.; Drinkwater, Bruce W.

    2010-04-01

    Conventional ultrasonic NDT techniques are limited in their ability to detect small defects by the diffraction limit, that is there is much reduced sensitivity to defects smaller than the wavelength of the interrogating ultrasonic wave. While not a major issue for most inspection, this problem becomes particularly significant for the detection of fatigue damage prior to crack formation. In this regime conventional NDT has proven to be inadequate. For this reason significant effort has been expended on the development of non-linear techniques. These techniques rely on deviations of the material from linear stress strain behaviour which create harmonics in the resulting frequency response. Evidence suggests that changes to a materials condition, such as fatigue damage, change this non-linear response. This paper presents a non-linear inspection method using a non-collinear interaction. This technique has several advantages over other harmonic approaches in that there is spatial separation, modal separation and frequency separation of the non-linear signal. This allows the origin of the non-linear signal and underlying noise levels to be well defined. The capability of the technique is demonstrated using plastically strained material and samples subjected to low cycle fatigue.

  10. Isolating Non-Linear Signatures of Two Colliding Black Holes

    NASA Astrophysics Data System (ADS)

    Garrido, Rita

    2012-03-01

    The early and late stages of the binary-black-hole collision can be approximated by perturbations to a background, solutions to linearization of the Einstein's equations. However, once the two black holes are within several radii of each other, and ultimately collide, the solution is intrinsically non-linear. The main objective is to intuitively understand the non-linear portion of the solution to the Einstein equation by performing simulations of such mergers. I will identify the non-linear regime through a process of elimination. The early stages of the coalescence are well known by post-Newtonian theory. The end state is approximated very well by perturbation theory, the waveforms decay as a damped sinusoidal with a frequency and decay time uniquely determined by the mass and spin of the final black hole in theory. I will isolate the non-linear portion of the waveform by fitting the early stages to the post-Newtonian solution and the late stages to the perturbative solution. What remains is the non-linear region. Once isolated, we will search through the physics parameter space of the binary black holes for bulk features. These features can then be used to fine-tune the search algorithms hunting for these collisions with LIGO.

  11. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    NASA Astrophysics Data System (ADS)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  12. Principal component analysis of the CT density histogram to generate parametric response maps of COPD

    NASA Astrophysics Data System (ADS)

    Zha, N.; Capaldi, D. P. I.; Pike, D.; McCormack, D. G.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Pulmonary x-ray computed tomography (CT) may be used to characterize emphysema and airways disease in patients with chronic obstructive pulmonary disease (COPD). One analysis approach - parametric response mapping (PMR) utilizes registered inspiratory and expiratory CT image volumes and CT-density-histogram thresholds, but there is no consensus regarding the threshold values used, or their clinical meaning. Principal-component-analysis (PCA) of the CT density histogram can be exploited to quantify emphysema using data-driven CT-density-histogram thresholds. Thus, the objective of this proof-of-concept demonstration was to develop a PRM approach using PCA-derived thresholds in COPD patients and ex-smokers without airflow limitation. Methods: Fifteen COPD ex-smokers and 5 normal ex-smokers were evaluated. Thoracic CT images were also acquired at full inspiration and full expiration and these images were non-rigidly co-registered. PCA was performed for the CT density histograms, from which the components with the highest eigenvalues greater than one were summed. Since the values of the principal component curve correlate directly with the variability in the sample, the maximum and minimum points on the curve were used as threshold values for the PCA-adjusted PRM technique. Results: A significant correlation was determined between conventional and PCA-adjusted PRM with 3He MRI apparent diffusion coefficient (p<0.001), with CT RA950 (p<0.0001), as well as with 3He MRI ventilation defect percent, a measurement of both small airways disease (p=0.049 and p=0.06, respectively) and emphysema (p=0.02). Conclusions: PRM generated using PCA thresholds of the CT density histogram showed significant correlations with CT and 3He MRI measurements of emphysema, but not airways disease.

  13. Continuous tuning of a microlaser-pumped optical parametric generator by use of a cylindrical periodically poled lithium niobate crystal.

    PubMed

    Fève, Jean-Philippe; Boulanger, Benoît; Ménaert, Bertrand; Pacaud, Olivier

    2003-06-15

    An optical parametric generator with a cylindrical periodically poled LiNbO3 crystal and a Nd:YAG commercial microchip pump laser yields continuous tuning of the emitted wavelengths over a broad spectral range (1.42-1.7 microm and 2.8-4.2 microm), with large efficiency, a high repetition rate, and low divergence, in a compact and stable device.

  14. A general non-linear multilevel structural equation mixture model

    PubMed Central

    Kelava, Augustin; Brandt, Holger

    2014-01-01

    In the past 2 decades latent variable modeling has become a standard tool in the social sciences. In the same time period, traditional linear structural equation models have been extended to include non-linear interaction and quadratic effects (e.g., Klein and Moosbrugger, 2000), and multilevel modeling (Rabe-Hesketh et al., 2004). We present a general non-linear multilevel structural equation mixture model (GNM-SEMM) that combines recent semiparametric non-linear structural equation models (Kelava and Nagengast, 2012; Kelava et al., 2014) with multilevel structural equation mixture models (Muthén and Asparouhov, 2009) for clustered and non-normally distributed data. The proposed approach allows for semiparametric relationships at the within and at the between levels. We present examples from the educational science to illustrate different submodels from the general framework. PMID:25101022

  15. Non-linear system identification in flow-induced vibration

    SciTech Connect

    Spanos, P.D.; Zeldin, B.A.; Lu, R.

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  16. Non-Linear Vibration Characteristics of Clamped Laminated Shallow Shells

    NASA Astrophysics Data System (ADS)

    ABE, A.; KOBAYASHI, Y.; YAMADA, G.

    2000-07-01

    This paper examines non-linear free vibration characteristics of first and second vibration modes of laminated shallow shells with rigidly clamped edges. Non-linear equations of motion for the shells based on the first order shear deformation and classical shell theories are derived by means of Hamilton's principle. We apply Galerkin's procedure to the equations of motion in which eigenvectors for first and second modes of linear vibration obtained by the Ritz method are employed as trial functions. Then simultaneous non-linear ordinary differential equations are derived in terms of amplitudes of the first and second vibration modes. Backbone curves for the first and second vibration modes are solved numerically by the Gauss-Legendre integration method and the shooting method respectively. The effects of lamination sequences and transverse shear deformation on the behavior are discussed. It is also shown that the motion of the first vibration mode affects the response for the second vibration mode.

  17. Ghost Dark Energy with Non-Linear Interaction Term

    NASA Astrophysics Data System (ADS)

    Ebrahimi, E.

    2016-06-01

    Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.

  18. Pattern formation due to non-linear vortex diffusion

    NASA Astrophysics Data System (ADS)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.

    Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.

  19. Non linear effects in LiNbO3 Waveguides

    NASA Astrophysics Data System (ADS)

    Micheli, M. D.; Papuchon, M.

    1985-09-01

    Waveguides and waveguide resonators are very useful devices for nonlinear interactions. Indeed, they permit having a very high density of energy and quite long interaction lengths, and lead to devices with high conversion efficiency for low pumping power [1, 2] . In the visible and the near infrared, the most convenient material for nonlinear effects is Lithium Niobate in which we are able to realize good waveguides by Titanium Indiffusion (TI). In this paper we shall discuss the new waveguide fabrication process that we developped in Nice : Titanium Indiffusion Proton Exchange (TIPE), and we show by the example of Second Harmonic Generation (SHG) the new possibilities of these waveguides which enables us to design very interesting parametric devices.

  20. Non-linear effects in bunch compressor of TARLA

    NASA Astrophysics Data System (ADS)

    Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin

    2016-03-01

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.

  1. Non-linear analysis of moderately thick sector plates

    NASA Astrophysics Data System (ADS)

    Nath, Y.; Sharda, H. B.; Sharma, Ashish

    2005-10-01

    Non-linear static analysis of moderately thick sector plates under uniformly distributed loading is presented. Using the first-order shear deformation theory and Von Karman type non-linearity, the governing equations of equilibrium are developed and expressed in terms of displacement components. The Chebyshev polynomial is used for spatial discretization of the differential equations. An iterative incremental approach based on Newton-Raphson method is used for the solution. Convergence study is carried out. Effects of annularity, thickness ratio, sector angle and boundary conditions are investigated. Results are compared with those available from the literature.

  2. Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-01-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  3. Photocrosslinkable copolymers for non-linear optical applications

    SciTech Connect

    Kawatsuki, N.; Pakbaz, K.; Schmidt, H.W.

    1993-12-31

    New photocrosslinkable copolymers have been synthesized and applied as non-linear optical materials. The copolymers are based on methyl methacrylate, a photo-excitable benzophenone monomer, a non-linear optical active 4`-[(2-hydroxyethyl)ethylamino]-4-nitro-azobenzene (disperse red 1) side chain monomer and a crosslinkable 2-butenyl monomer. These copolymers can be crosslinked by UV light at 366 nm in the poled state and show a stable alignment of NLO chromophore by monitoring the adsorption spectra. The crosslinked and poled film did not change its alignment after storing 4 weeks at room temperature.

  4. Proceedings of the Non-Linear Aero Prediction Requirements Workshop

    NASA Technical Reports Server (NTRS)

    Logan, Michael J. (Editor)

    1994-01-01

    The purpose of the Non-Linear Aero Prediction Requirements Workshop, held at NASA Langley Research Center on 8-9 Dec. 1993, was to identify and articulate requirements for non-linear aero prediction capabilities during conceptual/preliminary design. The attendees included engineers from industry, government, and academia in a variety of aerospace disciplines, such as advanced design, aerodynamic performance analysis, aero methods development, flight controls, and experimental and theoretical aerodynamics. Presentations by industry and government organizations were followed by panel discussions. This report contains copies of the presentations and the results of the panel discussions.

  5. BEAM-BASED NON-LINEAR OPTICS CORRECTIONS IN COLLIDERS.

    SciTech Connect

    PILAT, R.; LUO, Y.; MALITSKY, N.; PTITSYN, V.

    2005-05-16

    A method has been developed to measure and correct operationally the non-linear effects of the final focusing magnets in colliders, that gives access to the effects of multi-pole errors by applying closed orbit bumps, and analyzing the resulting tune and orbit shifts. This technique has been tested and used during 4 years of RHIC (the Relativistic Heavy Ion Collider at BNL) operations. I will discuss here the theoretical basis of the method, the experimental set-up, the correction results, the present understanding of the machine model, the potential and limitations of the method itself as compared with other non-linear correction techniques.

  6. Gravitational-wave tail effects to quartic non-linear order

    NASA Astrophysics Data System (ADS)

    Marchand, Tanguy; Blanchet, Luc; Faye, Guillaume

    2016-12-01

    Gravitational-wave tails are due to the backscattering of linear waves onto the space-time curvature generated by the total mass of the matter source. The dominant tails correspond to quadratic non-linear interactions and arise at the one-and-a-half post-Newtonian (1.5 PN) order in the gravitational waveform. The ‘tails-of-tails’, which are cubic non-linear effects appearing at the 3 PN order in the waveform, are also known. We derive here higher non-linear tail effects, namely those associated with quartic non-linear interactions or ‘tails-of-tails-of-tails’, which are shown to arise at the 4.5 PN order. As an application, we obtain at that order the complete coefficient in the total gravitational-wave energy flux of compact binary systems moving on circular orbits. Our result perfectly agrees with black-hole perturbation calculations in the limit of extreme mass ratio of the two compact objects.

  7. An update of the generator of atmospheric muons from parametric formulas (MUPAGE)

    NASA Astrophysics Data System (ADS)

    Bazzotti, M.; Carminati, G.; Margiotta, A.; Spurio, M.

    2010-04-01

    We present a new version of the fast generator of atmospheric muons based on parametric formulas (MUPAGE). The parameterization of the deep sea muon flux relies on a primary Cosmic Ray flux and interaction model able to correctly reproduce the flux, the multiplicity distribution, the spatial distance between muons as measured by the underground MACRO experiment [1]. MUPAGE produces the event kinematics of the muon bundle on the surface of a user-defined cylinder, surrounding the virtual detector. The new version improves the possibility to select the total energy of the muons bundle, and the choice of a virtual cylinder of any dimensions. New version program summaryProgram title: MUPAGE Catalogue identifier: AEBT_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBT_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3421 No. of bytes in distributed program, including test data, etc.: 59 308 Distribution format: tar.gz Programming language: C++ Computer: The code has been developed and tested on Pentium M, 2.0 GHz; 2x Intel Xeon Quad Core, 2.33 GHz. Operating system: Scientific Linux 3.x; 4.x; 5.x; Slackware 12.0.0. RAM: 50 MB Supplementary material: The table mentioned in the "Summary of revisions" section, can be obtained here. Classification: 1.1, 11.3 External routines: ROOT ( http://root.cern.ch) Catalogue identifier of previous version: AEBT_v1_0 Journal reference of previous version: Comput. Phys. Comm. 179 (2008) 915 Does the new version supersede the previous version?: Yes Nature of problem: Fast simulation of atmospheric muon bundles for underwater/ice neutrino telescopes. Solution method: Atmospheric muon events are generated according to parametric formulas [2] giving the flux, the multiplicity, the radial distribution and the energy spectrum

  8. Non-linear aeroelastic prediction for aircraft applications

    NASA Astrophysics Data System (ADS)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  9. Non-linear Langmuir waves in a warm quantum plasma

    SciTech Connect

    Dubinov, Alexander E. Kitaev, Ilya N.

    2014-10-15

    A non-linear differential equation describing the Langmuir waves in a warm quantum electron-ion plasma has been derived. Its numerical solutions of the equation show that ordinary electronic oscillations, similar to the classical oscillations, occur along with small-scale quantum Langmuir oscillations induced by the Bohm quantum force.

  10. Tunneling control using classical non-linear oscillator

    SciTech Connect

    Kar, Susmita; Bhattacharyya, S. P.

    2014-04-24

    A quantum particle is placed in symmetric double well potential which is coupled to a classical non-linear oscillator via a coupling function. With different spatial symmetry of the coupling and under various controlling fashions, the tunneling of the quantum particle can be enhanced or suppressed, or totally destroyed.

  11. Characterising dynamic non-linearity in floating wind turbines

    NASA Astrophysics Data System (ADS)

    Lupton, R. C.

    2014-12-01

    Fully coupled aero-hydro-control-elastic codes are being developed to cope with the new modelling challenges presented by floating wind turbines, but there is also a place for more efficient methods of analysis. One option is linearisation and analysis in the frequency domain. For this to be an effective method, the non-linearities in the system must be well understood. The present study focusses on understanding the dynamic response of the rotor to the overall platform motion, as would arise from wave loading, by using a simple model of a floating wind turbine with a rigid tower and flexible rotor (represented by hinged rigid blades). First, an equation of motion of the blade is derived and an approximate solution for the blade response is found using the perturbation method. Secondly, the full non-linear solution is found by time- domain simulation. The response is found to be linear at lower platform pitching frequencies, becoming non-linear at higher frequencies, with the approximate solution giving good results for weakly non-linear behaviour. Higher rotor speeds have a stabilising effect on the response. In the context of typical floating turbine parameters, it is concluded that the blade flapwise response is likely to be linear.

  12. Non-linear dynamic analysis of geared systems, part 2

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.; Kahraman, Ahmet

    1990-01-01

    A good understanding of the steady state dynamic behavior of a geared system is required in order to design reliable and quiet transmissions. This study focuses on a system containing a spur gear pair with backlash and periodically time-varying mesh stiffness, and rolling element bearings with clearance type non-linearities. A dynamic finite element model of the linear time-invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and force vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solution with the finite element model results. Several key system parameters such as mean load and damping ratio are identified and their effects on the non-linear frequency response are evaluated quantitatively. Other fundamental issues such as the dynamic coupling between non-linear modes, dynamic interactions between component non-linearities and time-varying mesh stiffness, and the existence of subharmonic and chaotic solutions including routes to chaos have also been examined in depth.

  13. Evolution equation for non-linear cosmological perturbations

    SciTech Connect

    Brustein, Ram; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch

    2011-11-01

    We present a novel approach, based entirely on the gravitational potential, for studying the evolution of non-linear cosmological matter perturbations. Starting from the perturbed Einstein equations, we integrate out the non-relativistic degrees of freedom of the cosmic fluid and obtain a single closed equation for the gravitational potential. We then verify the validity of the new equation by comparing its approximate solutions to known results in the theory of non-linear cosmological perturbations. First, we show explicitly that the perturbative solution of our equation matches the standard perturbative solutions. Next, using the mean field approximation to the equation, we show that its solution reproduces in a simple way the exponential suppression of the non-linear propagator on small scales due to the velocity dispersion. Our approach can therefore reproduce the main features of the renormalized perturbation theory and (time)-renormalization group approaches to the study of non-linear cosmological perturbations, with some possibly important differences. We conclude by a preliminary discussion of the nature of the full solutions of the equation and their significance.

  14. Using Non-Linear Statistical Methods with Laboratory Kinetic Data

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent

    1997-01-01

    This paper will demonstrate the usefulness of standard non-linear statistical analysis on ICR and SIFT kinetic data. The specific systems used in the demonstration are the isotopic and change transfer reactions in the system of H2O+/D2O, H30+/D2O, and other permutations.

  15. Metal-organic frameworks as competitive materials for non-linear optics.

    PubMed

    Mingabudinova, L R; Vinogradov, V V; Milichko, V A; Hey-Hawkins, E; Vinogradov, A V

    2016-09-26

    The last five years have witnessed a huge breakthrough in the creation and the study of the properties of a new class of compounds - metamaterials. The next stage of this technological revolution will be the development of active, controllable, and non-linear metamaterials, surpassing natural media as platforms for optical data processing and quantum information applications. However, scientists are constantly faced with the need to find new methods that can ensure the formation of quantum and non-linear metamaterials with higher resolution. One such method of producing metamaterials in the future, which will provide scalability and availability, is chemical synthesis. Meanwhile, the chemical synthesis of organized 3D structures with a period of a few nanometers and a size of up to a few millimeters is not an easy task and is yet to be resolved. The most promising avenue seems to be the use of highly porous structures based on metal-organic frameworks that have demonstrated their unique properties in the field of non-linear optics (NLO) over the past three years. Thus, the aim of this review is to examine current progress and the possibilities of using metal-organic frameworks in the field of non-linear optics as chemically obtained metamaterials of the future. The review begins by presenting the theoretical principles of physical phenomena represented by mathematical descriptions for clarity. Major attention is paid to the second harmonic generation (SHG) effect. In this section we compare inorganic single crystals, which are most commonly used to study the effect in question, to organic materials, which also possess the required properties. Based on these data, we present a rationale for the possibility of studying the non-linear optical properties of metal-organic structures as well as describing the use of synthetic approaches and the difficulties associated with them. The second part of the review explicitly acquaints the reader with a new class of materials

  16. Semiclassical Wigner distribution for a two-mode entangled state generated by an optical parametric oscillator

    SciTech Connect

    Dechoum, K.; Hahn, M. D.; Khoury, A. Z.

    2010-04-15

    We derive the steady-state solution of the Fokker-Planck equation that describes the dynamics of the nondegenerate optical parametric oscillator in the truncated Wigner representation of the density operator. We assume that the pump mode is strongly damped, which permits its adiabatic elimination. When the elimination is correctly executed, the resulting stochastic equations contain multiplicative noise terms and do not admit a potential solution. However, we develop a heuristic scheme leading to a satisfactory steady-state solution. This provides a clear view of the intracavity two-mode entangled state valid in all operating regimes of the optical parametric oscillator. A non-Gaussian distribution is obtained for the above threshold solution.

  17. Stress Induced in Periodontal Ligament under Orthodontic Loading (Part II): A Comparison of Linear Versus Non-Linear Fem Study

    PubMed Central

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-01-01

    Background: Simulation of periodontal ligament (PDL) using non-linear finite element method (FEM) analysis gives better insight into understanding of the biology of tooth movement. The stresses in the PDL were evaluated for intrusion and lingual root torque using non-linear properties. Materials and Methods: A three-dimensional (3D) FEM model of the maxillary incisors was generated using Solidworks modeling software. Stresses in the PDL were evaluated for intrusive and lingual root torque movements by 3D FEM using ANSYS software. These stresses were compared with linear and non-linear analyses. Results: For intrusive and lingual root torque movements, distribution of stress over the PDL was within the range of optimal stress value as proposed by Lee, but was exceeding the force system given by Proffit as optimum forces for orthodontic tooth movement with linear properties. When same force load was applied in non-linear analysis, stresses were more compared to linear analysis and were beyond the optimal stress range as proposed by Lee for both intrusive and lingual root torque. To get the same stress as linear analysis, iterations were done using non-linear properties and the force level was reduced. Conclusion: This shows that the force level required for non-linear analysis is lesser than that of linear analysis. PMID:26435629

  18. Non-linear dual-phase-lag model for analyzing heat transfer phenomena in living tissues during thermal ablation.

    PubMed

    Kumar, P; Kumar, Dinesh; Rai, K N

    2016-08-01

    In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method.

  19. Single-photon-state generation from a continuous-wave nondegenerate optical parametric oscillator

    SciTech Connect

    Nielsen, Anne E. B.; Moelmer, Klaus

    2007-02-15

    We present a theoretical treatment of conditional preparation of one-photon states from a continuous-wave nondegenerate optical parametric oscillator. We obtain an analytical expression for the output state Wigner function, and we maximize the one-photon state fidelity by varying the temporal mode function of the output state. We show that a higher production rate of high fidelity Fock states is obtained if we condition the outcome on dark intervals around trigger photo detection events.

  20. Random forests in non-invasive sensorimotor rhythm brain-computer interfaces: a practical and convenient non-linear classifier.

    PubMed

    Steyrl, David; Scherer, Reinhold; Faller, Josef; Müller-Putz, Gernot R

    2016-02-01

    There is general agreement in the brain-computer interface (BCI) community that although non-linear classifiers can provide better results in some cases, linear classifiers are preferable. Particularly, as non-linear classifiers often involve a number of parameters that must be carefully chosen. However, new non-linear classifiers were developed over the last decade. One of them is the random forest (RF) classifier. Although popular in other fields of science, RFs are not common in BCI research. In this work, we address three open questions regarding RFs in sensorimotor rhythm (SMR) BCIs: parametrization, online applicability, and performance compared to regularized linear discriminant analysis (LDA). We found that the performance of RF is constant over a large range of parameter values. We demonstrate - for the first time - that RFs are applicable online in SMR-BCIs. Further, we show in an offline BCI simulation that RFs statistically significantly outperform regularized LDA by about 3%. These results confirm that RFs are practical and convenient non-linear classifiers for SMR-BCIs. Taking into account further properties of RFs, such as independence from feature distributions, maximum margin behavior, multiclass and advanced data mining capabilities, we argue that RFs should be taken into consideration for future BCIs.

  1. Vibration and chaos control of non-linear torsional vibrating systems

    NASA Astrophysics Data System (ADS)

    El-Bassiouny, A. F.

    2006-07-01

    Vibration of a mechanical system is often an undesirable phenomenon, as it may cause damage, disturbance, discomfort and, sometimes, destruction of systems and structures. To reduce vibration, many methods can be used. The most famous method is using dynamic absorbers or dampers. In the present work, a non-linear elastomeric damper or absorber is used to control the torsional vibrations of the crankshaft in internal combustion engines, when subjected to both external and parametric excitation torques. The multiple time scale perturbation method is applied to determine the equations governing the modulation of both amplitudes and phases of the crankshaft and the absorber. These equations are used to determine the steady-state amplitudes and system stability. Numerical integration of the basic equations is applied to investigate the effects of the different parameters on system behavior. A comparison is made with the available published work. Some recommendations are given at the end of the work.

  2. Non-linear Young's double-slit experiment.

    PubMed

    San Roman, Julio; Ruiz, Camilo; Perez, Jose Antonio; Delgado, Diego; Mendez, Cruz; Plaja, Luis; Roso, Luis

    2006-04-03

    The Young's double slit experiment is recreated using intense and short laser pulses. Our experiment evidences the role of the non-linear Kerr effect in the formation of interference patterns. In particular, our results evidence a mixed mechanism in which the zeroth diffraction order of each slit are mainly affected by self-focusing and self-phase modulation, while the higher orders propagate linearly. Despite of the complexity of the general problem of non-linear propagation, we demonstrate that this experiment retains its simplicity and allows for a geometrical interpretation in terms of simple optical paths. In consequence, our results may provide key ideas on experiments on the formation of interference patterns with intense laser fields in Kerr media.

  3. SSNN toolbox for non-linear system identification

    NASA Astrophysics Data System (ADS)

    Luzar, Marcel; Czajkowski, Andrzej

    2015-11-01

    The aim of this paper is to develop and design a State Space Neural Network toolbox for a non-linear system identification with an artificial state-space neural networks, which can be used in a model-based robust fault diagnosis and control. Such toolbox is implemented in the MATLAB environment and it uses some of its predefined functions. It is designed in the way that any non-linear multi-input multi-output system is identified and represented in the classical state-space form. The novelty of the proposed approach is that the final result of the identification process is the state, input and output matrices, not only the neural network parameters. Moreover, the toolbox is equipped with the graphical user interface, which makes it useful for the users not familiar with the neural networks theory.

  4. Non-linear Poisson-Boltzmann theory for swollen clays

    NASA Astrophysics Data System (ADS)

    Leote de Carvalho, R. J. F.; Trizac, E.; Hansen, J.-P.

    1998-08-01

    The non-linear Poisson-Boltzmann (PB) equation for a circular, uniformly char ged platelet, confined together with co- and counter-ions to a cylindrical cell, is solved semi-analytically by transforming it into an integral equation and solving the latter iteratively. This method proves efficient and robust, and can be readily generalized to other problems based on cell models, treated within non-linear Poisson-like theory. The solution to the PB equation is computed over a wide range of physical conditions, and the resulting osmotic equation of state is shown to be in semi-quantitative agreement with recent experimental data for Laponite clay suspensions, in the concentrated gel phase.

  5. Minimax Techniques For Optimizing Non-Linear Image Algebra Transforms

    NASA Astrophysics Data System (ADS)

    Davidson, Jennifer L.

    1989-08-01

    It has been well established that the Air Force Armament Technical Laboratory (AFATL) image algebra is capable of expressing all linear transformations [7]. The embedding of the linear algebra in the image algebra makes this possible. In this paper we show a relation of the image algebra to another algebraic system called the minimax algebra. This system is used extensively in economics and operations research, but until now has not been investigated for applications to image processing. The relationship is exploited to develop new optimization methods for a class of non-linear image processing transforms. In particular, a general decomposition technique for templates in this non-linear domain is presented. Template decomposition techniques are an important tool in mapping algorithms efficiently to both sequential and massively parallel architectures.

  6. Parametric oscillations of a singularly perturbed telegraph equation with a pendulum non-linearity

    SciTech Connect

    Kolesov, Yu S

    1998-04-30

    The solution of the problem in the title is reduced to an analysis of the question of the number of and stability of equilibrium states of the quasi-normal form of the boundary-value problem under consideration. A mechanism is revealed for the origin of its so-called simple equilibrium states. It is shown that as the coefficient of elasticity decreases, the number of such states increases, and that those of them with the most complex spatial structure are stable.

  7. Rb:PPKTP optical parametric oscillator with intracavity difference-frequency generation in AgGaSe2.

    PubMed

    Boyko, Andrey A; Kostyukova, Nadezhda Y; Marchev, Georgi M; Pasiskevicius, Valdas; Kolker, Dmitry B; Zukauskas, Andrius; Petrov, Valentin

    2016-06-15

    A 1.064 μm pumped Rb:PPKTP optical parametric oscillator (OPO) generates mid-IR radiation by intracavity mixing the resonant signal and idler waves in AgGaSe2. The ∼6  ns pulses at ∼7  μm have an energy of 670 μJ at 100 Hz, equivalent to an average power of 67 mW. The overall quantum conversion efficiency from 1.064 μm amounts to 8%, and the power conversion efficiency is 1.2%.

  8. Linear to non linear analysis for positron acceleration in plasma hollow channel wakefields

    NASA Astrophysics Data System (ADS)

    Amorim, Ligia Diana; An, Weiming; Mori, Warren B.; Vieira, Jorge

    2016-10-01

    Plasma wakefield accelerators are promising candidates for future generation compact accelerators. The standard regime of operation, non-linear or blowout regime, is reached when a particle bunch space charge or laser pulse ponderomotive force radially expels plasma electrons forming a bucket of ions that defocus positron bunches, thus preventing their acceleration. To avoid defocusing, hollow plasma channels have been considered. The corresponding wakefields have been examined in the linear and non-linear excitation regimes for electrons. It is therefore important to extend the theory for positron acceleration, particularly in the nonlinear regime where the wakefields strongly differ. In this work we explore the wakefield structure, examine the differences between the electron and positron beam cases, and explore positron acceleration in nonlinear regimes. We support our findings with multi-dimensional particle-in-cell simulations performed with OSIRIS and quasi-3D and QuickPIC.

  9. Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  10. Non-Linear Control Allocation Using Piecewise Linear Functions

    DTIC Science & Technology

    2003-08-01

    A novel method is presented for the solution of the non- linear control allocation problem. Historically, control allocation has been performed by... linear control allocation problem to be cast as a piecewise linear program. The piecewise linear program is ultimately cast as a mixed-integer linear...piecewise linear control allocation method is shown to be markedly improved when compared to the performance of a more traditional control allocation approach that assumes linearity.

  11. Non-linear stochastic growth rates and redshift space distortions

    DOE PAGES

    Jennings, Elise; Jennings, David

    2015-04-09

    The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc-1 to 25 per cent at kmore » ~ 0.45 h Mpc-1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 1012 M⊙ h-1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -fLTδ, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc-1. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of fLT from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.« less

  12. Non-linear stochastic growth rates and redshift space distortions

    SciTech Connect

    Jennings, Elise; Jennings, David

    2015-04-09

    The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc-1 to 25 per cent at k ~ 0.45 h Mpc-1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 1012 M h-1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -fLTδ, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc-1. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of fLT from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.

  13. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS.

    SciTech Connect

    TOMAS,R.FISCHER,W.JAIN,A.LUO,Y.PILAT,F.

    2004-07-05

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability.

  14. Linear Algebraic Method for Non-Linear Map Analysis

    SciTech Connect

    Yu,L.; Nash, B.

    2009-05-04

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  15. Non-linear power spectra in the synchronous gauge

    SciTech Connect

    Hwang, Jai-chan; Noh, Hyerim; Jeong, Donghui; Gong, Jinn-Ouk; Biern, Sang Gyu E-mail: hr@kasi.re.kr E-mail: jinn-ouk.gong@apctp.org

    2015-05-01

    We study the non-linear corrections to the matter and velocity power spectra in the synchronous gauge (SG). For the leading correction to the non-linear power spectra, we consider the perturbations up to third order in a zero-pressure fluid in a flat cosmological background. Although the equations in the SG happen to coincide with those in the comoving gauge (CG) to linear order, they differ from second order. In particular, the second order hydrodynamic equations in the SG are apparently in the Lagrangian form, whereas those in the CG are in the Eulerian form. The non-linear power spectra naively presented in the original SG show rather pathological behavior quite different from the result of the Newtonian theory even on sub-horizon scales. We show that the pathology in the nonlinear power spectra is due to the absence of the convective terms in, thus the Lagrangian nature of, the SG. We show that there are many different ways of introducing the corrective convective terms in the SG equations. However, the convective terms (Eulerian modification) can be introduced only through gauge transformations to other gauges which should be the same as the CG to the second order. In our previous works we have shown that the density and velocity perturbation equations in the CG exactly coincide with the Newtonian equations to the second order, and the pure general relativistic correction terms starting to appear from the third order are substantially suppressed compared with the relativistic/Newtonian terms in the power spectra. As a result, we conclude that the SG per se is an inappropriate coordinate choice in handling the non-linear matter and velocity power spectra of the large-scale structure where observations meet with theories.

  16. Non-linear dynamic analysis of beams with variable stiffness

    NASA Astrophysics Data System (ADS)

    Katsikadelis, J. T.; Tsiatas, G. C.

    2004-03-01

    In this paper the analog equation method (AEM), a BEM-based method, is employed to the non-linear dynamic analysis of a Bernoulli-Euler beam with variable stiffness undergoing large deflections, under general boundary conditions which maybe non-linear. As the cross-sectional properties of the beam vary along its axis, the coefficients of the differential equations governing the dynamic equilibrium of the beam are variable. The formulation is in terms of the displacements. The governing equations are derived in both deformed and undeformed configuration and the deviations of the two approaches are studied. Using the concept of the analog equation, the two coupled non-linear hyperbolic differential equations with variable coefficients are replaced by two uncoupled linear ones pertaining to the axial and transverse deformation of a substitute beam with unit axial and bending stiffness, respectively, under fictitious time-dependent load distributions. A significant advantage of this method is that the time history of the displacements as well as the stress resultants are computed at any cross-section of the beam using the respective integral representations as mathematical formulae. Beams with constant and varying stiffness are analyzed under various boundary conditions and loadings to illustrate the merits of the method as well as its applicability, efficiency and accuracy.

  17. Non-linear characteristics of Rayleigh-Taylor instable perturbations

    NASA Astrophysics Data System (ADS)

    Fan, Zhengfeng; Luo, Jisheng

    2008-04-01

    The direct numerical simulation method is adopted to study the non-linear characteristics of Rayleigh-Taylor instable perturbations at the ablation front of a 200 μm planar CH ablation target. In the simulation, the classical electrical thermal conductivity is included, and NND difference scheme is used. The linear growth rates obtained from the simulation agree with the Takabe formula. The amplitude distribution of the density perturbation at the ablation front is obtained for the linear growth case. The non-linear characteristics of Rayleigh-Taylor instable perturbations are analyzed and the numerical results show that the amplitude distributions of the compulsive harmonics are very different from that of the fundamental perturbation. The characteristics of the amplitude distributions of the harmonics and their fast growth explain why spikes occur at the ablation front. The numerical results also show that non-linear effects have relations with the phase differences of double mode initial perturbations, and different phase differences lead to varied spikes.

  18. Non-linear Oscillations of Compact Stars and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Passamonti, Andrea

    2006-07-01

    This thesis investigates in the time domain a particular class of second order perturbations of a perfect fluid non-rotating compact star: those arising from the coupling between first order radial and non-radial perturbations. This problem has been treated by developing a gauge invariant formalism based on the 2-parameter perturbation theory (Sopuerta, Bruni and Gualtieri, 2004) where the radial and non-radial perturbations have been separately parameterized. The non-linear perturbations obey inhomogeneous partial differential equations, where the structure of the differential operator is given by the previous perturbative orders and the source terms are quadratic in the first order perturbations. In the exterior spacetime the sources vanish, thus the gravitational wave properties are completely described by the second order Zerilli and Regge-Wheeler functions. As main initial configuration we have considered a first order differentially rotating and radially pulsating star. Although at first perturbative order this configuration does not exhibit any gravitational radiation, we have found a new interesting gravitational signal at non-linear order, in which the radial normal modes are precisely mirrored. In addition, a resonance effect is present when the frequencies of the radial pulsations are close to the first axial w-mode. Finally, we have roughly estimated the damping times of the radial pulsations due to the non-linear gravitational emission. The coupling near the resonance results to be a very effective mechanism for extracting energy from the radial oscillations.

  19. Correlation spectroscopy based on non-linear response of silver colloids (including SEHRS)

    NASA Astrophysics Data System (ADS)

    Brehm, G.; Sauer, G.; Fritz, N.; Schneider, S.; Zaitsev, S.

    2005-02-01

    The non-linear response (second harmonic generation, SHG, hyper-Rayleigh scattering, HRS, surface-enhanced hyper-Raman scattering, SEHRS, and continuum generation) of two different types of silver colloids is compared by stationary and correlation spectroscopy. Employing a poly-disperse colloid prepared after the protocol of Lee and Meisel we found that the efficiency of all types of non-linear response is greatly enhanced if the colloid is 'activated' by addition of chloride ions. This activation is also necessary to observe SEHRS with both the Lee-Meisel and the mono-disperse colloid prepared by hydrazine reduction. The correlation curves of both types of colloid show one step (τ1/2∼10 ms) which can be associated with lateral diffusion of the individual particles. Its τ1/2-value is larger for the poly-disperse colloid, which contains larger particles. In addition, we find a second step, its relative amplitude being dependent on experimental parameters, whose τ1/2-value is, however, essentially the same for all samples investigated (τ‧1/2∼50 μs). We assign this correlation time to processes that lead to a restructuring of the surface and the formation and destruction of so-called 'hot spots'. Under optimum condition, the efficiency for all non-linear processes connected with one such 'hot spot' is extremely high. 'Hot particles' contain at least one hot spot and can therefore dominate the non-linear signal without the need of aggregation (field enhancement in the gap between particles).

  20. Non-linearities in Holocene floodplain sediment storage

    NASA Astrophysics Data System (ADS)

    Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten

    2013-04-01

    Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows

  1. Parametric and Generative Design Techniques for Digitalization in Building Industry: the Case Study of Glued- Laminated-Timber Industry

    NASA Astrophysics Data System (ADS)

    Pasetti Monizza, G.; Matt, D. T.; Benedetti, C.

    2016-11-01

    According to Wortmann classification, the Building Industry (BI) can be defined as engineer-to-order (ETO) industry: the engineering-process starts only when an order is acquired. This definition implies that every final product (building) is almost unique’ and processes cannot be easily standardized or automated. Because of this, BI is one of the less efficient industries today’ mostly leaded by craftsmanship. In the last years’ several improvements in process efficiency have been made focusing on manufacturing and installation processes only. In order to improve the efficiency of design and engineering processes as well, the scientific community agrees that the most fruitful strategy should be Front-End Design (FED). Nevertheless, effective techniques and tools are missing. This paper discusses outcomes of a research activity that aims at highlighting whether Parametric and Generative Design techniques allow reducing wastes of resources and improving the overall efficiency of the BI, by pushing the Digitalization of design and engineering processes of products. Focusing on the Glued-Laminated-Timber industry, authors will show how Parametric and Generative Design techniques can be introduced in a standard supply-chain system, highlighting potentials and criticism on the supply-chain system as a whole.

  2. Multi-Scale hierarchical generation of PET parametric maps: application and testing on a [11C]DPN study.

    PubMed

    Rizzo, G; Turkheimer, F E; Keihaninejad, S; Bose, S K; Hammers, A; Bertoldo, A

    2012-02-01

    We propose a general approach to generate parametric maps. It consists in a multi-stage hierarchical scheme where, starting from the kinetic analysis of the whole brain, we then cascade the kinetic information to anatomical systems that are akin in terms of receptor densities, and then down to the voxel level. A-priori classes of voxels are generated either by anatomical atlas segmentation or by functional segmentation using unsupervised clustering. Kinetic properties are transmitted to the voxels in each class using maximum a posteriori (MAP) estimation method. We validate the novel method on a [11C]diprenorphine (DPN) test-retest data-set that represents a challenge to estimation given [11C]DPN's slow equilibration in tissue. The estimated parametric maps of volume of distribution (VT) reflect the opioid receptor distributions known from previous [11C]DPN studies. When priors are derived from the anatomical atlas, there is an excellent agreement and strong correlation among voxel MAP and ROI results and excellent test-retest reliability for all subjects but one. Voxel level results did not change when priors were defined through unsupervised clustering. This new method is fast (i.e. 15 min per subject) and applied to [11C]DPN data achieves accurate quantification of VT as well as high quality VT images. Moreover, the way the priors are defined (i.e. using an anatomical atlas or unsupervised clustering) does not affect the estimates.

  3. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Jiang, Xuefeng; Kasumie, Sho; Zhao, Guangming; Xu, Linhua; Ward, Jonathan M.; Yang, Lan; Chormaic, Síle Nic

    2016-11-01

    Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this work, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO$_2$ laser beam technique. By decreasing the wall thickness of the MBR down to 1.4 $\\mu$m, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical \\textit{Q}-factor of the MBR modes being greater than $10^7$, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.

  4. Entanglement and nonclassicality in four-mode Gaussian states generated via parametric down-conversion and frequency up-conversion

    PubMed Central

    Arkhipov, Ievgen I.; Peřina Jr., Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2016-01-01

    Multipartite entanglement and nonclassicality of four-mode Gaussian states generated in two simultaneous nonlinear processes involving parametric down-conversion and frequency up-conversion are analyzed assuming the vacuum as the initial state. Suitable conditions for the generation of highly entangled states are found. Transfer of the entanglement from the down-converted modes into the up-converted ones is also suggested. The analysis of the whole set of states reveals that sub-shot-noise intensity correlations between the equally-populated down-converted modes, as well as the equally-populated up-converted modes, uniquely identify entangled states. They represent a powerful entanglement identifier also in other cases with arbitrarily populated modes. PMID:27658508

  5. Broadband and tunable optical parametric generator for remote detection of gas molecules in the short and mid-infrared.

    PubMed

    Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François

    2015-04-01

    The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

  6. Parametric studies of a small-scale chemical oxygen-iodine laser/jet generator system: recent achievements

    NASA Astrophysics Data System (ADS)

    Furman, Dov; Barmashenko, Boris D.; Rosenwaks, Salman

    1998-05-01

    Recent results of parametric studies of an efficient supersonic chemical oxygen-iodine laser are presented. The laser is energized by a jet type singlet oxygen generator, operated without primary buffer gas and applies simple nozzle geometry and transonic mixing of iodine and oxygen. Output power of 190 W with chemical efficiency of 18% was obtained in a 5 cm gain length for Cl2 flow rate of 11.8 mmole/s. The power is studied as a function of the distance between the optical axis and the supersonic nozzle exit plane, the molar flow rates of various reagents, the BHP and gas pressures in the generator, the type of the secondary buffer gas (N2 or He) and the stagnation temperature of the gas. It is found that the power under the present operation conditions is almost unaffected by water vapor in the medium. The role of buffer gas under different conditions is discussed.

  7. Global non-linear effect of temperature on economic production

    NASA Astrophysics Data System (ADS)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  8. Non-linear structure in modified action theories of gravity

    NASA Astrophysics Data System (ADS)

    Lima, Marcos V.

    We study the effects and carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the non-linear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. We also investigate the effects of the modified dynamics on halo properties such as their abundance and clustering. We find that the f(R) effects on the halo mass- function and bias depend mostly on the linear power spectrum modifications, but that the chameleon mechanism suppresses the modifications at high-mass halos with deep potential wells. The f(R) modifications also affect the threshold density for collapse, or similarly the overdensity for virialization and therefore can change halo definitions from those of ACDM. As a result, simple scaling relations that take the linear matter power spectrum into a non-linear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications. A quantification of these effects, including modifications on halo profiles, is necessary to accurately describe halo properties and potentially construct a halo model of the non-linear power spectrum.

  9. Global non-linear effect of temperature on economic production.

    PubMed

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  10. Organic-inorganic hybrid glass: non-linear optical properties

    NASA Astrophysics Data System (ADS)

    Domínguez Cruz, R.; Mendez-Perez, A.; Romero Galván, G.; Mendoza-Panduro, M.; Trejo-Duran, M.; Alvarado-Mendez, E.; Estudillo-Ayala, J. M.; Rojas-Laguna, R.; Martínez-Richa, A.; Castano, V. M.

    2008-04-01

    In this paper we report the preliminary results about the optical characterization of a new kind of organic-inorganic hybrid glass named 4-((5-dichloromethylsily1)-penty)oxy-cyanobenzene (DCN) synthesized by sol-gel process. We obtain the sign and magnitude of the sample by the Z-scan technique using a low power He-Ne laser at 632 nm in CW operation. The experimental data show that the DNC glass has a negative Kerr optical non-linearity and is estimated a nonlinear coefficient as Δn˜10-6.

  11. Simulation of magnetisation switching by non-linear resonance

    NASA Astrophysics Data System (ADS)

    Thirion, C.; Wernsdorfer, W.

    2004-05-01

    The sub-nanosecond dynamics have recently been probed via non-linear resonance on single magnetic nanoparticles using the micro-SQUID technique. In the presence of a magnetic field considerably smaller than the switching field, the magnetisation of a nanoparticle can be reversed by the application of a small RF field. The experimental determination of the most effective frequency is a direct probe of the small oscillations of the magnetisation in the metastable energy well. We present here a simulation of this experiment using the Landau-Lifschitz-Gilbert equation.

  12. Non-Linear Dynamics of Saturn’s Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  13. Disorder and Quantum Chromodynamics -- Non-Linear σ Models

    NASA Astrophysics Data System (ADS)

    Guhr, Thomas; Wilke, Thomas

    2001-10-01

    The statistical properties of Quantum Chromodynamics (QCD) show universal features which can be modeled by random matrices. This has been established in detailed analyses of data from lattice gauge calculations. Moreover, systematic deviations were found which link QCD to disordered systems in condensed matter physics. To furnish these empirical findings with analytical arguments, we apply and extend the methods developed in disordered systems to construct a non-linear σ model for the spectral correlations in QCD. Our goal is to derive connections to other low-energy effective theories, such as the Nambu-Jona-Lasinio model, and to chiral perturbation theory.

  14. Disorder and Quantum Chromodynamics - Non-Linear σ Models

    NASA Astrophysics Data System (ADS)

    Guhr, Thomas; Wilke, Thomas

    The statistical properties of Quantum Chromodynamics (QCD) show universal features which can be modeled by random matrices. This has been established in detailed analyses of data from lattice gauge calculations. Moreover, systematic deviations were found which link QCD to disordered systems in condensed matter physics. To furnish these empirical findings with analytical arguments, we apply and extend the methods developed in disordered systems to construct a non-linear σ model for the spectral correlations in QCD. Our goal is to derive connections to other low-energy effective theories, such as the Nambu-Jona-Lasinio model, and to chiral perturbation theory.

  15. Non-linear isocurvature perturbations and non-Gaussianities

    SciTech Connect

    Langlois, David; Vernizzi, Filippo; Wands, David E-mail: filippo.vernizzi@cea.fr

    2008-12-15

    We study non-linear primordial adiabatic and isocurvature perturbations and their non-Gaussianity. After giving a general formulation in the context of an extended {delta}N formalism, we analyse in detail two illustrative examples. The first is a mixed curvaton-inflaton scenario in which fluctuations of both the inflaton and a curvaton (a light isocurvature field during inflation) contribute to the primordial density perturbation. The second example is that of double inflation involving two decoupled massive scalar fields during inflation. In the mixed curvaton-inflaton scenario we find that the bispectrum of primordial isocurvature perturbations may be large and comparable to the bispectrum of adiabatic curvature perturbations.

  16. A non-linear UAV altitude PSO-PD control

    NASA Astrophysics Data System (ADS)

    Orlando, Calogero

    2015-12-01

    In this work, a nonlinear model based approach is presented for the altitude stabilization of a hexarotor unmanned aerial vehicle (UAV). The mathematical model and control of the hexacopter airframe is presented. To stabilize the system along the vertical direction, a Proportional Derivative (PD) control is taken into account. A particle swarm optimization (PSO) approach is used in this paper to select the optimal parameters of the control algorithm taking into account different objective functions. Simulation sets are performed to carry out the results for the non-linear system to show how the PSO tuned PD controller leads to zero the error of the position along Z earth direction.

  17. 8-PSK Signaling over non-linear satellite channels

    NASA Technical Reports Server (NTRS)

    Horan, Sheila B.; Caballero, Ruben B. Eng.

    1996-01-01

    Space agencies are under pressure to utilize better bandwidth-efficient communication methods due to the actual allocated frequency bands becoming more congested. Also budget reductions is another problem that the space agencies must deal with. This budget constraint results in simpler spacecraft carrying less communication capabilities and also the reduction in staff to capture data in the earth stations. It is then imperative that the most bandwidth efficient communication methods be utilized. This thesis presents a study of 8-ary Phase Shift Keying (8PSK) modulation with respect to bandwidth, power efficiency, spurious emissions and interference susceptibility over a non-linear satellite channel.

  18. Non-linear optical titanyl arsenates: Crystal growth and properties

    NASA Astrophysics Data System (ADS)

    Nordborg, Jenni Eva Louise

    Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic

  19. Non-linear identification of a squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Stanway, Roger; Mottershead, John; Firoozian, Riaz

    1987-01-01

    Described is an experimental study to identify the damping laws associated with a squeeze-film vibration damper. This is achieved by using a non-linear filtering algorithm to process displacement responses of the damper ring to synchronous excitation and thus to estimate the parameters in an nth-power velocity model. The experimental facility is described in detail and a representative selection of results is included. The identified models are validated through the prediction of damper-ring orbits and comparison with observed responses.

  20. Multi-disease analysis of maternal antibody decay using non-linear mixed models accounting for censoring.

    PubMed

    Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel

    2015-09-10

    Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs.

  1. Strategies for the generation of parametric images of [11C]PIB with plasma input functions considering discriminations and reproducibility.

    PubMed

    Edison, Paul; Brooks, David J; Turkheimer, Federico E; Archer, Hilary A; Hinz, Rainer

    2009-11-01

    Pittsburgh compound B or [11C]PIB is an amyloid imaging agent which shows a clear differentiation between subjects with Alzheimer's disease (AD) and controls. However the observed signal difference in other forms of dementia such as dementia with Lewy bodies (DLB) is smaller, and mild cognitively impaired (MCI) subjects and some healthy elderly normals may show intermediate levels of [11C]PIB binding. The cerebellum, a commonly used reference region for non-specific tracer uptake in [11C]PIB studies in AD may not be valid in Prion disorders or monogenic forms of AD. The aim of this work was to: 1-compare methods for generating parametric maps of [11C]PIB retention in tissue using a plasma input function in respect of their ability to discriminate between AD subjects and controls and 2-estimate the test-retest reproducibility in AD subjects. 12 AD subjects (5 of which underwent a repeat scan within 6 weeks) and 10 control subjects had 90 minute [11C]PIB dynamic PET scans, and arterial plasma input functions were measured. Parametric maps were generated with graphical analysis of reversible binding (Logan plot), irreversible binding (Patlak plot), and spectral analysis. Between group differentiation was calculated using Student's t-test and comparisons between different methods were made using p values. Reproducibility was assessed by intraclass correlation coefficients (ICC). We found that the 75 min value of the impulse response function showed the best group differentiation and had a higher ICC than volume of distribution maps generated from Logan and spectral analysis. Patlak analysis of [11C]PIB binding was the least reproducible.

  2. Filtering Non-Linear Transfer Functions on Surfaces.

    PubMed

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2013-07-18

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to surface textures, as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. Our framework is also compatible with the case of transfer functions used to warp surface geometry.

  3. Non-linear plasma wake growth of electron holes

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.

    2015-03-01

    An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.

  4. Charged relativistic fluids and non-linear electrodynamics

    NASA Astrophysics Data System (ADS)

    Dereli, T.; Tucker, R. W.

    2010-01-01

    The electromagnetic fields in Maxwell's theory satisfy linear equations in the classical vacuum. This is modified in classical non-linear electrodynamic theories. To date there has been little experimental evidence that any of these modified theories are tenable. However with the advent of high-intensity lasers and powerful laboratory magnetic fields this situation may be changing. We argue that an approach involving the self-consistent relativistic motion of a smooth fluid-like distribution of matter (composed of a large number of charged or neutral particles) in an electromagnetic field offers a viable theoretical framework in which to explore the experimental consequences of non-linear electrodynamics. We construct such a model based on the theory of Born and Infeld and suggest that a simple laboratory experiment involving the propagation of light in a static magnetic field could be used to place bounds on the fundamental coupling in that theory. Such a framework has many applications including a new description of the motion of particles in modern accelerators and plasmas as well as phenomena in astrophysical contexts such as in the environment of magnetars, quasars and gamma-ray bursts.

  5. Effects on non-linearities on aircraft poststall motion

    SciTech Connect

    Rohacs, J.; Thomasson, P.; Mosehilde, E.

    1994-12-31

    The poststall maneuverability controlled by thrust vectoring has become one of the important aspects of new fighter development projects. In simplified case, the motion of aircraft can be described by 6DOF nonlinear system. The lecture deals with the longitudinal motion of poststall maneuverable aircraft. The investigation made about the effects of non-linearities in aerodynamic coefficients having considerable non-linearities and hysteresisis an the poststall motions. There were used some different models of aerodynamic coefficients. The results of investigation have shown that the poststall domain of vectored aircraft can be divided into five different pHs in field of thrust - pitch vector angle, and the chaotic motions of aircraft can be found at the different frequencies of thrust deflection. There were defined an unstable right domain with an unstable oscillation and a field of overpulling at poststall motion. The certain frequency chaotic attractors were got at frequencies of Oxitation between the 0.15 and 0.65 rad/sec. The pitching moment derivatives had the big influence on the chaotic motions, while the lift coefficient derivatives bad the reasonable effects, only.

  6. Left-Right Non-Linear Dynamical Higgs

    NASA Astrophysics Data System (ADS)

    Shu, Jing; Yepes, Juan

    2016-12-01

    All the possible CP-conserving non-linear operators up to the p4-order in the Lagrangian expansion are analysed here for the left-right symmetric model in the non-linear electroweak chiral context coupled to a light dynamical Higgs. The low energy effects will be triggered by an emerging new physics field content in the nature, more specifically, from spin-1 resonances sourced by the straightforward extension of the SM local gauge symmetry to the larger local group SU(2)L × SU(2)R × U(1)B-L. Low energy phenomenology will be altered by integrating out the resonances from the physical spectrum, being manifested through induced corrections onto the left handed operators. Such modifications are weighted by powers of the scales ratio implied by the symmetries of the model and will determine the size of the effective operator basis to be used. The recently observed diboson excess around the invariant mass 1.8 TeV-2 TeV entails a scale suppression that suggests to encode the low energy effects via a much smaller set of effective operators. J. Y. also acknowledges KITPC financial support during the completion of this work

  7. Non-linear plasma wake growth of electron holes

    SciTech Connect

    Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.

    2015-03-15

    An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.

  8. Non-linear leak currents affect mammalian neuron physiology

    PubMed Central

    Huang, Shiwei; Hong, Sungho; De Schutter, Erik

    2015-01-01

    In their seminal works on squid giant axons, Hodgkin, and Huxley approximated the membrane leak current as Ohmic, i.e., linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted) varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents) and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells. PMID:26594148

  9. A parametric study of a gas-generator airturbo ramjet (ATR)

    NASA Technical Reports Server (NTRS)

    Snyder, C. A.

    1986-01-01

    Parametric engine performance calculations were carried out for an airturbo ramjet (ATR). A LOX-LH2 rocket powered turbine powered the compressor. The engine was flown over a typical flight path up to Mach 5 to show the effect of engine off design operation. The compressor design efficiency, compressor pressure ratio, rocket turbine efficiency, rocket turbine inlet temperature, and rocket chamber pressure were varied to show their effect on engine net thrust and specific impulse at Mach 5 cruise. Estimates of engine weights as a fucntion of the ratio of compressor air to rocket propellant flow and rocket champer pressure are also included. In general, the Mach 5 results indicate that increasing the amount of rocket gas produced increased thrust but decreased the specific impulse. The engine performance was fairly sensitive to rocket chamber pressure, especially at higher compressor pressure ratios. At higher compressor pressure ratios, the engine thrust was sensitive to turbine inlet temperature. At all compressor pressure ratios, the engine performance was not sensitive to compressor or turbine efficiency.

  10. A parametric study of a gas-generator airturbo ramjet (ATR)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    1986-01-01

    Parametric engine performance calculations were carried out for an airturbo ramjet (ATR). A LOX-LH2 rocket powered turbine powered the compressor. The engine was flown over a typical flight path up to Mach 5 to show the effect of engine off design operation. The compressor design efficiency, compressor pressure ratio, rocket turbine efficiency, rocket turbine inlet temperature, and rocket chamber pressure were varied to show their effect on engine net thrust and specific impulse at Mach 5 cruise. Estimates of engine weights as a function of the ratio of compressor air to rocket propellant flow and rocket chamber pressure are also included. In general, the Mach 5 results indicate that increasing the amount of rocket gas produced increased thrust but decreased the specific impulse. The engine performance was fairly sensitive to rocket chamber pressure, especially at higher compressor pressure ratios. At higher compressor pressure ratios, the engine thrust was sensitive to turbine inlet temperature. At all compressor pressure ratios, the engine performance was not sensitive to compressor or turbine efficiency.

  11. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip

    PubMed Central

    Reimer, Christian; Kues, Michael; Caspani, Lucia; Wetzel, Benjamin; Roztocki, Piotr; Clerici, Matteo; Jestin, Yoann; Ferrera, Marcello; Peccianti, Marco; Pasquazi, Alessia; Little, Brent E.; Chu, Sai T.; Moss, David J.; Morandotti, Roberto

    2015-01-01

    Nonlinear optical processes are one of the most important tools in modern optics with a broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal processing and quantum optics. For practical and ultimately widespread implementation, on-chip devices compatible with electronic integrated circuit technology offer great advantages in terms of low cost, small footprint, high performance and low energy consumption. While many on-chip key components have been realized, to date polarization has not been fully exploited as a degree of freedom for integrated nonlinear devices. In particular, frequency conversion based on orthogonally polarized beams has not yet been demonstrated on chip. Here we show frequency mixing between orthogonal polarization modes in a compact integrated microring resonator and demonstrate a bi-chromatically pumped optical parametric oscillator. Operating the device above and below threshold, we directly generate orthogonally polarized beams, as well as photon pairs, respectively, that can find applications, for example, in optical communication and quantum optics. PMID:26364999

  12. Scaling effects in a non-linear electromagnetic energy harvester for wearable sensors

    NASA Astrophysics Data System (ADS)

    Geisler, M.; Boisseau, S.; Perez, M.; Ait-Ali, I.; Perraud, S.

    2016-11-01

    In the field of inertial energy harvesters targeting human mechanical energy, the ergonomics of the solutions impose to find the best compromise between dimensions reduction and electrical performance. In this paper, we study the properties of a non-linear electromagnetic generator at different scales, by performing simulations based on an experimentally validated model and real human acceleration recordings. The results display that the output power of the structure is roughly proportional to its scaling factor raised to the power of five, which indicates that this system is more relevant at lengths over a few centimetres.

  13. A computerized implementation of a non-linear equation to predict barrier shielding requirements.

    PubMed

    Chamberlain, A C; Strydom, W J

    1997-04-01

    A non-linear equation to predict barrier shielding thickness from the work function of x- and gamma-ray generators is presented. This equation is incorporated into a model that takes into account primary, scatter, and leakage radiation components to determine the amount of shielding necessary. The case of multiple wall materials is also considered. The equation accurately models the radiation attenuation curves given in NCRP 49 for concrete and lead, thus eliminating the necessity to use graphical or tabular methods to calculate shielding thickness, which can be inaccurate.

  14. Renormalization and non-linear symmetries in quantum field theory

    NASA Astrophysics Data System (ADS)

    Velenich, Andrea

    Most of the phenomena we experience, from the microscopic world to the universe at its largest scales, are out of equilibrium and their comprehensive formalization is one of the open problems in theoretical physics. Fluids of interacting particles cooled down or compressed quickly enough to become amorphous solids are an example of rich out-of-equilibrium systems with very slow relaxation dynamics. Even though the equilibrium phases are ordered, these systems remain trapped in glassy metastable states, with disordered microscopic structures. As a realistic model of this phenomenology, in the first part of this work I focused on a field theory of particles obeying a Brownian dynamics. The field-theoretic action displays a time-reversal symmetry leading to Fluctuation-Dissipation relations. For non-interacting particles I solved the field theory exactly, providing the explicit form of all the correlation functions, with their space and time dependence. As a non-perturbative result, the distribution of the density field has been proven to be Poissonian and not Gaussian. For interacting particles the field theory presents two major challenges: its apparent non-renormalizability and a non-linear implementation of the time-reversal symmetry. Non-linear field redefinitions can be used to make the symmetry linear and might even lead to the solution of the interacting equations of motion. However they also alter the renormalizability properties of a field theory. These challenges inspired the second part of the work, where a more abstract approach was taken. Using algebraic methods I investigated the effect of non-linear field redefinitions both on symmetry and on renormalization by focusing on simple scalar field theories as toy models. In the formal setting of the Hopf algebra of Feynman diagrams, symmetries take the form of Hopf ideals and enforce relations among scattering amplitudes; such relations can drastically reduce the number of independent couplings in a field

  15. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    SciTech Connect

    Amicucci, L. Castaldo, C.; Cesario, R.; Giovannozzi, E.; Tuccillo, A. A.; Ding, B. J.; Li, M. H.

    2015-12-10

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  16. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    NASA Astrophysics Data System (ADS)

    Amicucci, L.; Ding, B. J.; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Li, M. H.; Tuccillo, A. A.

    2015-12-01

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  17. Quantum state engineering of light with continuous-wave optical parametric oscillators.

    PubMed

    Morin, Olivier; Liu, Jianli; Huang, Kun; Barbosa, Felippe; Fabre, Claude; Laurat, Julien

    2014-05-30

    Engineering non-classical states of the electromagnetic field is a central quest for quantum optics(1,2). Beyond their fundamental significance, such states are indeed the resources for implementing various protocols, ranging from enhanced metrology to quantum communication and computing. A variety of devices can be used to generate non-classical states, such as single emitters, light-matter interfaces or non-linear systems(3). We focus here on the use of a continuous-wave optical parametric oscillator(3,4). This system is based on a non-linear χ(2) crystal inserted inside an optical cavity and it is now well-known as a very efficient source of non-classical light, such as single-mode or two-mode squeezed vacuum depending on the crystal phase matching. Squeezed vacuum is a Gaussian state as its quadrature distributions follow a Gaussian statistics. However, it has been shown that number of protocols require non-Gaussian states(5). Generating directly such states is a difficult task and would require strong χ(3) non-linearities. Another procedure, probabilistic but heralded, consists in using a measurement-induced non-linearity via a conditional preparation technique operated on Gaussian states. Here, we detail this generation protocol for two non-Gaussian states, the single-photon state and a superposition of coherent states, using two differently phase-matched parametric oscillators as primary resources. This technique enables achievement of a high fidelity with the targeted state and generation of the state in a well-controlled spatiotemporal mode.

  18. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  19. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  20. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, Ralph

    1994-01-11

    A non-linear optical crystal vibration sensing device (10) including a photorefractive crystal (26) and a laser (12). The laser (12 ) produces a coherent light beam (14) which is split by a beam splitter (18) into a first laser beam (20) and a second laser beam (22). After passing through the crystal (26) the first laser beam (20) is counter-propagated back upon itself by a retro-mirror (32), creating a third laser beam (30). The laser beams (20, 22, 30) are modulated, due to the mixing effect within the crystal (26) by vibration of the crystal (30). In the third laser beam (30), modulation is stable and such modulation is converted by a photodetector (34) into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal (26).

  1. Predictability of extremes in non-linear hierarchically organized systems

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.; Soloviev, A.

    2011-12-01

    Understanding the complexity of non-linear dynamics of hierarchically organized systems progresses to new approaches in assessing hazard and risk of the extreme catastrophic events. In particular, a series of interrelated step-by-step studies of seismic process along with its non-stationary though self-organized behaviors, has led already to reproducible intermediate-term middle-range earthquake forecast/prediction technique that has passed control in forward real-time applications during the last two decades. The observed seismic dynamics prior to and after many mega, great, major, and strong earthquakes demonstrate common features of predictability and diverse behavior in course durable phase transitions in complex hierarchical non-linear system of blocks-and-faults of the Earth lithosphere. The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable analytical models, which leads to widespread practice of their deceptive application. The consequences of underestimation of seismic hazard propagate non-linearly into inflicted underestimation of risk and, eventually, into unexpected societal losses due to earthquakes and associated phenomena (i.e., collapse of buildings, landslides, tsunamis, liquefaction, etc.). The studies aimed at forecast/prediction of extreme events (interpreted as critical transitions) in geophysical and socio-economical systems include: (i) large earthquakes in geophysical systems of the lithosphere blocks-and-faults, (ii) starts and ends of economic recessions, (iii) episodes of a sharp increase in the unemployment rate, (iv) surge of the homicides in socio-economic systems. These studies are based on a heuristic search of phenomena preceding critical transitions and application of methodologies of pattern recognition of infrequent events. Any study of rare

  2. Method and system for non-linear motion estimation

    NASA Technical Reports Server (NTRS)

    Lu, Ligang (Inventor)

    2011-01-01

    A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.

  3. The mathematics of non-linear metrics for nested networks

    NASA Astrophysics Data System (ADS)

    Wu, Rui-Jie; Shi, Gui-Yuan; Zhang, Yi-Cheng; Mariani, Manuel Sebastian

    2016-10-01

    Numerical analysis of data from international trade and ecological networks has shown that the non-linear fitness-complexity metric is the best candidate to rank nodes by importance in bipartite networks that exhibit a nested structure. Despite its relevance for real networks, the mathematical properties of the metric and its variants remain largely unexplored. Here, we perform an analytic and numeric study of the fitness-complexity metric and a new variant, called minimal extremal metric. We rigorously derive exact expressions for node scores for perfectly nested networks and show that these expressions explain the non-trivial convergence properties of the metrics. A comparison between the fitness-complexity metric and the minimal extremal metric on real data reveals that the latter can produce improved rankings if the input data are reliable.

  4. Black hole hair removal: non-linear analysis

    NASA Astrophysics Data System (ADS)

    Jatkar, Dileep P.; Sen, Ashoke; Srivastava, Yogesh K.

    2010-02-01

    BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, — degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.

  5. Detector noise statistics in the non-linear regime

    NASA Technical Reports Server (NTRS)

    Shopbell, P. L.; Bland-Hawthorn, J.

    1992-01-01

    The statistical behavior of an idealized linear detector in the presence of threshold and saturation levels is examined. It is assumed that the noise is governed by the statistical fluctuations in the number of photons emitted by the source during an exposure. Since physical detectors cannot have infinite dynamic range, our model illustrates that all devices have non-linear regimes, particularly at high count rates. The primary effect is a decrease in the statistical variance about the mean signal due to a portion of the expected noise distribution being removed via clipping. Higher order statistical moments are also examined, in particular, skewness and kurtosis. In principle, the expected distortion in the detector noise characteristics can be calibrated using flatfield observations with count rates matched to the observations. For this purpose, some basic statistical methods that utilize Fourier analysis techniques are described.

  6. Model of intermodulation distortion in non-linear multicarrier systems

    NASA Astrophysics Data System (ADS)

    Frigo, Nicholas J.

    1994-02-01

    A heuristic model is proposed which allows calculation of the individual spectral components of the intermodulation distortion present in a non-linear system with a multicarrier input. Noting that any given intermodulation product (IMP) can only be created by a subset of the input carriers, we partition them into 'signal' carriers (which create the IMP) and 'noise' carriers, modeled as a Gaussian process. The relationship between an input signal and the statistical average of its output (averaged over the Gaussian noise) is considered to be an effective transfer function. By summing all possible combinations of signal carriers which create power at the IMP frequencies, the distortion power can be calculated exactly as a function of frequency. An analysis of clipping in lightwave CATV links for AM-VSB signals is used to introduce the model, and is compared to a series of experiments.

  7. Computational models of signalling networks for non-linear control.

    PubMed

    Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M

    2013-05-01

    Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.

  8. Non-linear radial spinwave modes in thin magnetic disks

    SciTech Connect

    Helsen, M. De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Weigand, M.

    2015-01-19

    We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point.

  9. Attractor reconstruction for non-linear systems: a methodological note

    USGS Publications Warehouse

    Nichols, J.M.; Nichols, J.D.

    2001-01-01

    Attractor reconstruction is an important step in the process of making predictions for non-linear time-series and in the computation of certain invariant quantities used to characterize the dynamics of such series. The utility of computed predictions and invariant quantities is dependent on the accuracy of attractor reconstruction, which in turn is determined by the methods used in the reconstruction process. This paper suggests methods by which the delay and embedding dimension may be selected for a typical delay coordinate reconstruction. A comparison is drawn between the use of the autocorrelation function and mutual information in quantifying the delay. In addition, a false nearest neighbor (FNN) approach is used in minimizing the number of delay vectors needed. Results highlight the need for an accurate reconstruction in the computation of the Lyapunov spectrum and in prediction algorithms.

  10. DYNAMIC NON LINEAR IMPACT ANALYSIS OF FUEL CASK CONTAINMENT VESSELS

    SciTech Connect

    Leduc, D

    2008-06-10

    Large fuel casks present challenges when evaluating their performance in the accident sequence specified in 10CFR 71. Testing is often limited because of cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing using simplified analytical methods. This paper details the use of dynamic non-linear analysis of large fuel casks using advanced computational techniques. Results from the dynamic analysis of two casks, the T-3 Spent Fuel Cask and the Hanford Un-irradiated Fuel Package are examined in detail. These analyses are used to fully evaluate containment vessel stresses and strains resulting from complex loads experienced by cask components during impacts. Importantly, these advanced analytical analyses are capable of examining stresses in key regions of the cask including the cask closure. This paper compares these advanced analytical results with the results of simplified cask analyses like those detailed in NUREG 3966.

  11. Non-linear hydrodynamical simulations of delta Scuti star pulsations

    NASA Astrophysics Data System (ADS)

    Templeton, M. R.; Guzik, J. A.; McNamara, B. J.

    1998-12-01

    We present the initial results of non-linear hydrodynamic simulations of the pulsation modes of delta Scuti stars. These models use the Ostlie and Cox (1993) Lagrangian hydrodynamic code, adapted to use the most recent OPAL (1996) opacities, the Stellingwerf (1974) periodic relaxation method of obtaining stable limit cycle pulsations, and time-dependent convection. Initial tests of first- and second-overtone pulsation models are consistent with the models of Bono, et al (1997) showing asymmetric lightcurves for first overtone rather than fundamental pulsations. Future modeling work will test several stellar models with varying masses, ages, metal and helium abundances and envelope abundance gradients. Ultimately, we hope to determine the role that abundances and, more specifically, helium abundance gradients in delta Scuti envelopes play in light curve shape. This work will be applied to a test sample of known radially-pulsating delta Scuti field stars and the newly-discovered delta Scuti/SX Phoenicis variables in the Galactic Bulge.

  12. Neural networks: What non-linearity to choose

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik YA.; Quintana, Chris

    1991-01-01

    Neural networks are now one of the most successful learning formalisms. Neurons transform inputs (x(sub 1),...,x(sub n)) into an output f(w(sub 1)x(sub 1) + ... + w(sub n)x(sub n)), where f is a non-linear function and w, are adjustable weights. What f to choose? Usually the logistic function is chosen, but sometimes the use of different functions improves the practical efficiency of the network. The problem of choosing f as a mathematical optimization problem is formulated and solved under different optimality criteria. As a result, a list of functions f that are optimal under these criteria are determined. This list includes both the functions that were empirically proved to be the best for some problems, and some new functions that may be worth trying.

  13. Ferrite core non-linearity in coils for magnetic neurostimulation.

    PubMed

    RamRakhyani, Anil Kumar; Lazzi, Gianluca

    2014-10-01

    The need to correctly predict the voltage across terminals of mm-sized coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system is the motivation for this work. In such applications, which rely on a capacitive discharge on the coil to realise a transient voltage curve of duration and strength suitable for neural stimulation, the correct modelling of the non-linearity of the ferrite core is critical. A demonstration of how a finite-difference model of the considered coils, which include a model of the current-controlled inductance in the coil, can be used to correctly predict the time-domain voltage waveforms across the terminals of a test coil is presented. Five coils of different dimensions, loaded with ferrite cores, have been fabricated and tested: the measured magnitude and width of the induced pulse are within 10% of simulated values.

  14. NOLB : Non-linear rigid block normal mode analysis method.

    PubMed

    Hoffmann, Alexandre; Grudinin, Sergei

    2017-04-05

    We present a new conceptually simple and computationally efficient method for non-linear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a non-linear extrapolation of motion out of these velocities. The key observation of our method is that the angular velocity of a rigid block can be interpreted as the result of an implicit force, such that the motion of the rigid block can be considered as a pure rotation about a certain center. We demonstrate the motions produced with the NOLB method on three different molecular systems and show that some of the lowest frequency normal modes correspond to the biologically relevant motions. For example, NOLB detects the spiral sliding motion of the TALE protein, which is capable of rapid diffusion along its target DNA. Overall, our method produces better structures compared to the standard approach, especially at large deformation amplitudes, as we demonstrate by visual inspection, energy and topology analyses, and also by the MolProbity service validation. Finally, our method is scalable and can be applied to very large molecular systems, such as ribosomes. Standalone executables of the NOLB normal mode analysis method are available at https://team.inria.fr/nano-d/software/nolb-normal-modes. A graphical user interfaces created for the SAMSON software platform will be made available at https: //www.samson-connect.net.

  15. Non-linearities in Theory-of-Mind Development.

    PubMed

    Blijd-Hoogewys, Els M A; van Geert, Paul L C

    2016-01-01

    Research on Theory-of-Mind (ToM) has mainly focused on ages of core ToM development. This article follows a quantitative approach focusing on the level of ToM understanding on a measurement scale, the ToM Storybooks, in 324 typically developing children between 3 and 11 years of age. It deals with the eventual occurrence of developmental non-linearities in ToM functioning, using smoothing techniques, dynamic growth model building and additional indicators, namely moving skewness, moving growth rate changes and moving variability. The ToM sum-scores showed an overall developmental trend that leveled off toward the age of 10 years. Within this overall trend two non-linearities in the group-based change pattern were found: a plateau at the age of around 56 months and a dip at the age of 72-78 months. These temporary regressions in ToM sum-score were accompanied by a decrease in growth rate and variability, and a change in skewness of the ToM data, all suggesting a developmental shift in ToM understanding. The temporary decreases also occurred in the different ToM sub-scores and most clearly so in the core ToM component of beliefs. It was also found that girls had an earlier growth spurt than boys and that the underlying developmental path was more salient in girls than in boys. The consequences of these findings are discussed from various theoretical points of view, with an emphasis on a dynamic systems interpretation of the underlying developmental paths.

  16. Non-linear dynamics of a spur gear pair

    NASA Astrophysics Data System (ADS)

    Kahraman, A.; Singh, R.

    1990-10-01

    Non-linear frequency response characteristics of a spur gear pair with backlash are examined in this paper for both external and internal excitations. The internal excitation is of importance from the high frequency noise and vibration control viewpoint and it represents the overall kinematic or static transmission error. Such problems may be significantly different from the rattle problems associated with external, low frequency torque excitation. Two solution methods, namely the digital simulation technique and the method of harmonic balance, have been used to develop the steady state solutions for the internal sinusoidal excitation. Difficulties associated with the determination of the multiple solutions at a given frequency in the digital simulation technique have been resolved, as one must search the entire initial conditions map. Such solutions and the transition frequencies for various impact situations are easily found by the method of harmonic balance. Further, the principle of superposition can be employed to analyze the periodic transmission error excitation and/or combined excitation problems provided that the excitation frequencies are sufficiently apart from each other. Our analytical predictions match satisfactorily with the limited experimental data available in the literature. Using the digital simulation, we have also observed that the chaotic and subharmonic resonances may exist in a gear pair depending upon the mean or design load, mean to alternating force ratio, damping and backlash. Specifically, the mean load determines the conditions for no impacts, single-sided impacts and double-sided impacts. Our results are different from the frequency response characteristics of the conventional, single-degree-of-freedom, clearance type non-linear system. Our formulation should form the basis of further analytical and experimental work in the geared rotor dynamics area.

  17. Non-linear diffusion and pattern formation in vortex matter

    NASA Astrophysics Data System (ADS)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Griessen, R.; Einfeld, J.; Woerdenweber, R.

    2000-03-01

    Penetration of magnetic flux in YBa_2Cu_3O7 superconducting thin films and crystals in externally applied magnetic fields is visualized with a magneto-optical technique. A variety of flux patterns due to non-linear vortex behavior is observed: 1. Roughening of the flux front^1 with scaling exponents identical to those observed in burning paper^2. Two regimes are found where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. 2. Roughening of the flux profile similar to the Oslo model for rice-piles. 3. Fractal penetration of flux^3 with Hausdorff dimension depending on the critical current anisotropy. 4. Penetration as 'flux-rivers'. 5. The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori^4. By comparison with numerical simulations, it is shown that most of the observed behavior can be explained in terms of non-linear diffusion of vortices. ^1R. Surdeanu, R.J. Wijngaarden, E. Visser, J.M. Huijbregtse, J.H. Rector, B. Dam and R. Griessen, Phys.Rev. Lett. 83 (1999) 2054 ^2J. Maunuksela, M. Myllys, O.-P. Kähkönen, J. Timonen, N. Provatas, M.J. Alava, T. Ala-Nissila, Phys. Rev. Lett. 79, 1515 (1997) ^3R. Surdeanu, R.J. Wijngaarden, B. Dam, J. Rector, R. Griessen, C. Rossel, Z.F. Ren and J.H. Wang, Phys Rev B 58 (1998) 12467 ^4C. Reichhardt, C.J. Olson and F. Nori, Phys. Rev. B 58, 6534 (1998)

  18. Non-linearities in Theory-of-Mind Development

    PubMed Central

    Blijd-Hoogewys, Els M. A.; van Geert, Paul L. C.

    2017-01-01

    Research on Theory-of-Mind (ToM) has mainly focused on ages of core ToM development. This article follows a quantitative approach focusing on the level of ToM understanding on a measurement scale, the ToM Storybooks, in 324 typically developing children between 3 and 11 years of age. It deals with the eventual occurrence of developmental non-linearities in ToM functioning, using smoothing techniques, dynamic growth model building and additional indicators, namely moving skewness, moving growth rate changes and moving variability. The ToM sum-scores showed an overall developmental trend that leveled off toward the age of 10 years. Within this overall trend two non-linearities in the group-based change pattern were found: a plateau at the age of around 56 months and a dip at the age of 72–78 months. These temporary regressions in ToM sum-score were accompanied by a decrease in growth rate and variability, and a change in skewness of the ToM data, all suggesting a developmental shift in ToM understanding. The temporary decreases also occurred in the different ToM sub-scores and most clearly so in the core ToM component of beliefs. It was also found that girls had an earlier growth spurt than boys and that the underlying developmental path was more salient in girls than in boys. The consequences of these findings are discussed from various theoretical points of view, with an emphasis on a dynamic systems interpretation of the underlying developmental paths. PMID:28101065

  19. Spectral properties of three-photon entangled states generated via three-photon parametric down-conversion in a {chi}{sup (3)} medium

    SciTech Connect

    Chekhova, M.V.; Ivanova, O.A.; Berardi, V.; Garuccio, A.

    2005-08-15

    We consider the quantum state of light produced via direct parametric decay of pump photons into photon triples in a medium with cubic nonlinearity. For this state generated in the near-collinear frequency-degenerate regime, the third- and second-order Glauber's correlation functions are calculated and the intensity distribution over frequency and wave vector is found. It is shown that the number of photons generated into a single mode via the three-photon down-conversion is proportional to the width of the frequency-angular intensity distribution for the corresponding two-photon phase matching (spontaneous parametric down-conversion). The intensity of three-photon parametric down-conversion is shown to have an extremely broad frequency spectrum, even for a fixed angle of scattering.

  20. Injection-seeded optical parametric oscillator and system

    SciTech Connect

    Lucht, Robert P.; Kulatilaka, Waruna D.; Anderson, Thomas N.; Bougher, Thomas L.

    2007-10-09

    Optical parametric oscillators (OPO) and systems are provided. The OPO has a non-linear optical material located between two optical elements where the product of the reflection coefficients of the optical elements are higher at the output wavelength than at either the pump or idler wavelength. The OPO output may be amplified using an additional optical parametric amplifier (OPA) stage.

  1. The theory of non-linear transresonant wave phenomena and an examination of Charles Darwin's earthquake reports

    NASA Astrophysics Data System (ADS)

    Galiev, Sh. U.

    2003-08-01

    A non-linear theory of transresonant wave phenomena based on consideration of perturbed wave equations is presented. In particular, the waves in a surface layer of a porous compressible viscoelastoplastic material are considered. For such layers the 3-D equations of deformable media are reduced to 1-D or 2-D perturbed wave equations. A set of approximate, closed-form, general solutions of these equations are presented, which take into account non-linear, dissipative, dispersive, topographic and boundary effects. Then resonant, site and liquefaction effects are analysed. Resonance is considered as a global parameter. Transresonant evolution of the equations is studied. Within the resonant band, utt~a20∇2u and the perturbed wave equations transform into non-linear diffusion equations, either to a basic highly non-linear ordinary differential equation or to the basic algebraic equation for travelling waves. Resonances can destroy predictability and wave reversibility. Surface topography (valleys, islands, etc.) is considered as a series of earthquake-induced resonators. A non-linear transresonant evolution of smooth seismic waves into shock-, jet- and mushroom-like waves and vortices is studied. The amplitude of the resonant waves may be of the order of the square or cube root of the exciting amplitude. Therefore, seismic waves with a moderate amplitude can be amplified very strongly in natural resonators, whereas strong seismic waves can be attenuated. Reports of the 1835 February 20 Chilean earthquake given by Charles Darwin are qualitatively examined using the non-linear theory. The theory qualitatively describes the `shivering' of islands and ridges, volcano spouts and generation of tsunami-like waves and supports Darwin's opinion that these events were part of a single phenomenon. Same-day earthquake/eruption events and catastrophic amplification of seismic waves near the edge of sediment layers are discussed. At the same time the theory can account for recent

  2. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    DOEpatents

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  3. Non-linear Dynamics in ETG Mode Saturation and Beam-Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Tokluoglu, Erinc K.

    Non-linear mechanisms arise frequently in plasmas and beam-plasma systems resulting in dynamics not predicted by linear theory. The non-linear mechanisms can influence the time evolution of plasma instabilities and can be used to describe their saturation. Furthermore time and space averaged non-linear fields generated by instabilities can lead to collisionless transport and plasma heating. In the case of beam-plasma systems counter-intuitive beam defocusing and scaling behavior which are interesting areas of study for both Low-Temperature and High Energy Density physics. The non-linear mode interactions in form of phase coupling can describe energy transfer to other modes and can be used to describe the saturation of plasma instabilities. In the first part of this thesis, a theoretical model was formulated to explain the saturation mechanism of Slab Electron Temperature Gradient (ETG) mode observed in the Columbia Linear Machine (CLM), based on experimental time-series data collected through probe diagnostics [1]. ETG modes are considered to be a major player in the unexplained high levels of electron transport observed in tokamak fusion experiments and the saturation mechanism of these modes is still an active area of investigation. The data in the frequency space indicated phase coupling between 3 modes, through a higher order spectral correlation coefficient known as bicoherence. The resulting model is similar to [2], which was a treatment for ITG modes observed in the CLM and correctly predicts the observed saturation level of the ETG turbulence. The scenario is further supported by the fact that the observed mode frequencies are in close alignment with those predicted theoretical dispersion relations. Non-linear effects arise frequently in beam-plasma systems and can be important for both low temperature plasma devices commonly used for material processing as well as High Energy Density applications relevant to inertial fusion. The non-linear time averaged

  4. State-variable analysis of non-linear circuits with a desk computer

    NASA Technical Reports Server (NTRS)

    Cohen, E.

    1981-01-01

    State variable analysis was used to analyze the transient performance of non-linear circuits on a desk top computer. The non-linearities considered were not restricted to any circuit element. All that is required for analysis is the relationship defining each non-linearity be known in terms of points on a curve.

  5. Discriminating Non-Linearity from Linearity: Its Cognitive Foundations in Five-Year-Olds

    ERIC Educational Resources Information Center

    Ebersbach, Mirjam; Van Dooren, Wim; Goudriaan, Margje N.; Verschaffel, Lieven

    2010-01-01

    People often have difficulties in understanding situations that involve non-linear processes. Also, the topic of non-linear functions is introduced relatively late in the curriculum. Previous research has nevertheless shown that already children aged 6 years and older are able to discriminate non-linear from linear processes. Within the present…

  6. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    NASA Astrophysics Data System (ADS)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  7. Stochastic Estimation and Non-Linear Wall-Pressure Sources in a Separating/Reattaching Flow

    NASA Technical Reports Server (NTRS)

    Naguib, A.; Hudy, L.; Humphreys, W. M., Jr.

    2002-01-01

    Simultaneous wall-pressure and PIV measurements are used to study the conditional flow field associated with surface-pressure generation in a separating/reattaching flow established over a fence-with-splitter-plate geometry. The conditional flow field is captured using linear and quadratic stochastic estimation based on the occurrence of positive and negative pressure events in the vicinity of the mean reattachment location. The results shed light on the dominant flow structures associated with significant wall-pressure generation. Furthermore, analysis based on the individual terms in the stochastic estimation expansion shows that both the linear and non-linear flow sources of the coherent (conditional) velocity field are equally important contributors to the generation of the conditional surface pressure.

  8. Rapid Non-Linear Uncertainty Propagation via Analytical Techniques

    NASA Astrophysics Data System (ADS)

    Fujimoto, K.; Scheeres, D. J.

    2012-09-01

    Space situational awareness (SSA) is known to be a data starved problem compared to traditional estimation problems in that observation gaps per object may span over days if not weeks. Therefore, consistent characterization of the uncertainty associated with these objects including non-linear effects is crucial in maintaining an accurate catalog of objects in Earth orbit. Simultaneously, the motion of satellites in Earth orbit is well-modeled in that it is particularly amenable to having their solution and their uncertainty described through analytic or semi-analytic techniques. Even when stronger non-gravitational perturbations such as solar radiation pressure and atmospheric drag are encountered, these perturbations generally have deterministic components that are substantially larger than their time-varying stochastic components. Analytic techniques are powerful because time propagation is only a matter of changing the time parameter, allowing for rapid computational turnaround. These two ideas are combined in this paper: a method of analytically propagating non-linear orbit uncertainties is discussed. In particular, the uncertainty is expressed as an analytic probability density function (pdf) for all time. For a deterministic system model, such pdfs may be obtained if the initial pdf and the system states for all time are also given analytically. Even when closed-form solutions are not available, approximate solutions exist in the form of Edgeworth series for pdfs and Taylor series for the states. The coefficients of the latter expansion are referred to as state transition tensors (STTs), which are a generalization of state transition matrices to arbitrary order. Analytically expressed pdfs can be incorporated in many practical tasks in SSA. One can compute the mean and covariance of the uncertainty, for example, with the moments of the initial pdf as inputs. This process does not involve any sampling and its accuracy can be determined a priori. Analytical

  9. Optical parametric generation by a simultaneously Q-switched mode-locked single-oscillator thulium-doped fiber laser in orientation-patterned gallium arsenide.

    PubMed

    Donelan, Brenda; Kneis, Christian; Scurria, Giuseppe; Cadier, Benoît; Robin, Thierry; Lallier, Eric; Grisard, Arnaud; Gérard, Bruno; Eichhorn, Marc; Kieleck, Christelle

    2016-11-01

    Optical parametric generation is demonstrated in orientation-patterned gallium arsenide, pumped by a novel single-oscillator simultaneously Q-switched and mode-locked thulium-doped fiber laser, downconverting the pump radiation into the mid-infrared wavelength regime. The maximum output energy reached is greater than 2.0 μJ per pump pulse.

  10. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator.

    PubMed

    Yang, Yong; Jiang, Xuefeng; Kasumie, Sho; Zhao, Guangming; Xu, Linhua; Ward, Jonathan M; Yang, Lan; Chormaic, Síle Nic

    2016-11-15

    Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this Letter, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO2 laser beam technique. By decreasing the wall thickness of the MBR to 1.4 μm, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical Q-factor of the MBR modes being greater than 107, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.

  11. Filtering Non-Linear Transfer Functions on Surfaces.

    PubMed

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

  12. Non-linear evolution of the cosmic neutrino background

    SciTech Connect

    Villaescusa-Navarro, Francisco; Viel, Matteo; Peña-Garay, Carlos E-mail: spb@ias.edu E-mail: viel@oats.inaf.it

    2013-03-01

    We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with

  13. Parametric numerical investigaion of natural convection in a heat-generating fluid with phase transitions

    SciTech Connect

    Aksenova, A.E.; Chudanov, V.V.; Strizhov, V.F.; Vabishchevich, P.N.

    1995-09-01

    Unsteady natural convection of a heat-generating fluid with phase transitions in the enclosures of a square section with isothermal rigid walls is investigated numerically for a wide range of dimensionless parameters. The quasisteady state solutions of conjugate heat and mass transfer problem are compared with available experimental results. Correlation relations for heat flux distributions at the domain boundaries depending on Rayleigh and Ostrogradskii numbers are obtained. It is shown that generally heat transfer is governed both by natural circulation and crust formation phenomena. Results of this paper may be used for analysis of experiments with prototypic core materials.

  14. Tidal propagation and its non-linear characteristics in the Head Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Rose, Linta; Bhaskaran, Prasad K.

    2017-03-01

    The Head Bay of Bengal is highly vulnerable to flooding events caused due to monsoons, cyclones and sea-level rise, owing to its funnel-like shape, high tidal range, presence of numerous river drainage systems, low-lying topography, and shallow bathymetry. Tides dominate the hydrodynamic behaviour and coastal processes in this region and its propagation is quite distinct. The present study uses ADCIRC hydrodynamic model customized for the Head Bay of Bengal, discretized using unstructured finite elements and validated against limited available observations in this data sparse region. The water-level elevations derived from ADCIRC simulation was used to understand the pattern of non-linear tidal propagation with respect to complex coastal geomorphology prevalent in this region. The study finds a marginal amplification of diurnal tide, nearly double amplification of semi-diurnal components, and existence of a degenerate amphidromic point near Meghna delta consistent with previous studies. The spatial and temporal variability of tidal spectral components were examined by applying the techniques of wavelet, harmonic, and time-series analysis at various locations. Maximum amplification of tides occurs at the head of the bay, along a zone enclosing the mouth of tidal inlets; and for regions northward, the tides decay with progressively increasing phase lags. The study signifies dominance of a forced fortnightly tide and tidal asymmetry leading to flood-dominance in the rivers Hooghly, Meghna, and Tetulia. The non-linear properties of tides have been elucidated, and their origin and spatio-temporal variability in these riverine systems were further investigated. Shallow depth and sharp depth gradients were discerned to be the important conditions for the origin of non-linear components. It has been deduced that non-linear tides are generated in regions where propagating tides are accumulated, and amplified in regions where they are funneled. A study of tidal energetics

  15. CMB hemispherical asymmetry from non-linear isocurvature perturbations

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: firouz@mail.ipm.ir E-mail: david.wands@port.ac.uk

    2015-04-01

    We investigate whether non-adiabatic perturbations from inflation could produce an asymmetric distribution of temperature anisotropies on large angular scales in the cosmic microwave background (CMB). We use a generalised non-linear δ N formalism to calculate the non-Gaussianity of the primordial density and isocurvature perturbations due to the presence of non-adiabatic, but approximately scale-invariant field fluctuations during multi-field inflation. This local-type non-Gaussianity leads to a correlation between very long wavelength inhomogeneities, larger than our observable horizon, and smaller scale fluctuations in the radiation and matter density. Matter isocurvature perturbations contribute primarily to low CMB multipoles and hence can lead to a hemispherical asymmetry on large angular scales, with negligible asymmetry on smaller scales. In curvaton models, where the matter isocurvature perturbation is partly correlated with the primordial density perturbation, we are unable to obtain a significant asymmetry on large angular scales while respecting current observational constraints on the observed quadrupole. However in the axion model, where the matter isocurvature and primordial density perturbations are uncorrelated, we find it may be possible to obtain a significant asymmetry due to isocurvature modes on large angular scales. Such an isocurvature origin for the hemispherical asymmetry would naturally give rise to a distinctive asymmetry in the CMB polarisation on large scales.

  16. Searching for Non-linearities in Natural Language

    NASA Astrophysics Data System (ADS)

    Ribarov, Kiril; Smrz, Otakar

    2003-08-01

    Inspired by wide range of applicability of what is commonly referred to as chaos theories, we explore the nature of energy series of a signal of human speech in the light of nonlinear dynamics. Using the TISEAN software package, analyses on various recordings of the language energy series were carried out (single speaker — different speeches; single speech - different speakers; dialogues; talkshows). Also correlated to other tenths of experiments conveyed on different linguistic inputs as written and morphologically analyzed texts, the presented experiment outputs (up to our knowledge, similar experiments have not been performed yet) reveal the complex and tricky nature of the language and are in favor of certain linguistic hypotheses. However, without further research, they do not encourage us to make explicit claims about the language signal such as dimension estimations (although probably possible) or attractor reconstruction. Our main considerations include: (a) a look into the stochastic nature of the language aiming towards reduction of the currently very large number of parameters present in language models based on Hidden Markov Models on language n-grams; (b) visualization of the behavior of the language and revelation of what could possibly be behind the `noisy' stream of sounds/letters/word-classes observed in our experiments; and last but not least (c) presentation of a new type of signal to the community exploring natural non-linear phenomena.

  17. Tailored Excitation using Non-Linear B0-Shims

    PubMed Central

    Duan, Qi; van Gelderen, Peter; Duyn, Jeff

    2011-01-01

    In high field MRI, RF flip angle inhomogeneity due to wavelength effects can lead to spatial variations in contrast and sensitivity. Improved flip angle homogeneity can be achieved through multi-dimensional excitation, but long RF pulse durations limit practical application. A recent approach to reduce RF pulse duration is based on parallel excitation through multiple RF channels. Here, an alternative approach to shorten multi-dimensional excitation is proposed that makes use of non-linear spatial variations in the stationary (B0) magnetic field during a B0-sensitive excitation pulse. As initial demonstration, the method was applied to 2D gradient echo (GE) MRI of human brain at 7T. Using B0 shims with up to second order spatial dependence, it is demonstrated that root-mean-squared flip angle variation can be reduced from 20% to 11% with RF pulse lengths that are practical for general GE imaging applications without requiring parallel excitation. The method is expected to improve contrast and sensitivity in GE MRI of human brain at high field. PMID:22222623

  18. Non-linear optical measurements using a scanned, Bessel beam

    NASA Astrophysics Data System (ADS)

    Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.

    2015-03-01

    Oftentimes cells are removed from the body for disease diagnosis or cellular research. This typically requires fluorescent labeling followed by sorting with a flow cytometer; however, possible disruption of cellular function or even cell death due to the presence of the label can occur. This may be acceptable for ex vivo applications, but as cells are more frequently moving from the lab to the body, label-free methods of cell sorting are needed to eliminate these issues. This is especially true of the growing field of stem cell research where specialized cells are needed for treatments. Because differentiation processes are not completely efficient, cells must be sorted to eliminate any unwanted cells (i.e. un-differentiated or differentiated into an unwanted cell type). In order to perform label-free measurements, non-linear optics (NLO) have been increasingly utilized for single cell analysis because of their ability to not disrupt cellular function. An optical system was developed for the measurement of NLO in a microfluidic channel similar to a flow cytometer. In order to improve the excitation efficiency of NLO, a scanned Bessel beam was utilized to create a light-sheet across the channel. The system was tested by monitoring twophoton fluorescence from polystyrene microbeads of different sizes. Fluorescence intensity obtained from light-sheet measurements were significantly greater than measurements made using a static Gaussian beam. In addition, the increase in intensity from larger sized beads was more evident for the light-sheet system.

  19. Channel Capacity of Non-Linear Transmission Systems

    NASA Astrophysics Data System (ADS)

    Ellis, Andrew D.; Zhao, Jian

    Since their introduction in the late 1970s, the capacity of optical communication links has grown exponentially, fuelled by a series of key innovations including movement between the three telecommunication windows of 850 nm, 1,310 nm and 1,550 nm, distributed feedback laser, erbium-doped fibre amplifiers (EDFAs), dispersion-shifted and dispersion-managed fibre links, external modulation, wavelength division multiplexing, optical switching, forward error correction (FEC), Raman amplification, and most recently, coherent detection, electronic signal processing and optical orthogonal frequency division multiplexing (OFDM). Throughout this evolution, one constant factor has been the use of single-mode optical fibre, whose fundamental principles dated back to the 1800s, when Irish scientist, John Tyndall demonstrated in a lecture to the Royal Society in London that light could be guided through a curved stream of water [1]. Following many developments, including the proposal for waveguides by J.J. Thompson [2], the presentation of detailed calculations for dielectric waveguides by Snitzer [3], the proposal [4] and fabrication [5] of ultra low loss fibres, single-mode fibres were first adopted for non-experimental use in Dorset, UK in 1975, and are still in use today, despite the evolving designs to control chromatic dispersion and non-linearity.

  20. A non linear analytical model of switched reluctance machines

    NASA Astrophysics Data System (ADS)

    Sofiane, Y.; Tounzi, A.; Piriou, F.

    2002-06-01

    Nowadays, the switched reluctance machine are widely used. To determine their performances and to elaborate control strategy, we generally use the linear analytical model. Unhappily, this last is not very accurate. To yield accurate modelling results, we use then numerical models based on either 2D or 3D Finite Element Method. However, this approach is very expensive in terms of computation time and remains suitable to study the behaviour of eventually a whole device. However, it is not, a priori, adapted to elaborate control strategy for electrical machines. This paper deals with a non linear analytical model in terms of variable inductances. The theoretical development of the proposed model is introduced. Then, the model is applied to study the behaviour of a whole controlled switched reluctance machine. The parameters of the structure are identified from a 2D numerical model. They can also be determined from an experimental bench. Then, the results given by the proposed model are compared to those issue from the 2D-FEM approach and from the classical linear analytical model.

  1. Non-linear modulation of short wavelength compressional Alfven eigenmodes

    SciTech Connect

    Fredrickson, E. D.; Gorelenkov, N. N.; Podesta, M.; Gerhardt, S. P.; Bell, R. E.; Diallo, A.; LeBlanc, B.; Bortolon, A.; Crocker, N. A.; Levinton, F. M.; Yuh, H.

    2013-04-15

    Most Alfvenic activity in the frequency range between toroidal Alfven eigenmodes and roughly one half of the ion cyclotron frequency on National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)], that is, approximately 0.3 MHz up to Almost-Equal-To 1.2 MHz, are modes propagating counter to the neutral beam ions. These have been modeled as Compressional and Global Alfven Eigenmodes (CAE and GAE) and are excited through a Doppler-shifted cyclotron resonance with the beam ions. There is also a class of co-propagating modes at higher frequency than the counter-propagating CAE and GAE. These modes have been identified as CAE, and are seen mostly in the company of a low frequency, n = 1 kink-like mode. In this paper, we present measurements of the spectrum of these high frequency CAE (hfCAE) and their mode structure. We compare those measurements to a simple model of CAE and present a predator-prey type model of the curious non-linear coupling of the hfCAE and the low frequency kink-like mode.

  2. Passive dynamic controllers for non-linear mechanical systems

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Wu, Shih-Chin; Phan, Minh; Longman, Richard W.

    1991-01-01

    A methodology for model-independent controller design for controlling large angular motion of multi-body dynamic systems is outlined.The controlled system may consist of rigid and flexible components that undergo large rigid body motion and small elastic deformations. Control forces/torques are applied to drive the system, and at the same time suppress the vibrations due to flexibility of the components. The proposed controller consists of passive second-order systems which may be designed with little knowledge of the system parameters, even if the controlled system is non-linear. Under rather general assumptions, the passive design assures that the closed loop system has guaranteed stability properties. Unlike positive real controller design, stabilization can be accomplished without direct velocity feedback. In addition, the second-order passive design allows dynamic feedback controllers with considerable freedom to tune for desired system response, and to avoid actuator saturation. After developing the basic mathematical formulation of the design methodology, simulation results are presented to illustrate the proposed approach applied to a flexible six-degree-of-freedom manipulator.

  3. Organic non-linear optics and opto-electronics

    NASA Astrophysics Data System (ADS)

    Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.

    2010-12-01

    π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.

  4. Multigrid approaches to non-linear diffusion problems on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.

  5. Localized parallel parametric generation of spin waves in a Ni{sub 81}Fe{sub 19} waveguide by spatial variation of the pumping field

    SciTech Connect

    Brächer, T.; Pirro, P.; Heussner, F.; Serga, A. A.; Hillebrands, B.

    2014-03-03

    We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. This provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.

  6. Parametric investigation of boundary layer control using triangular micro vortex generators

    NASA Astrophysics Data System (ADS)

    Bagheri, Milad; Muslmani, Motassem Al; Masood, Asad; Khosravi, Mahmood; Atef Mahmoud, Mohamed; Cardoz, Aniket; Akkuwari, Abdulrahman; Alanezi, Yusuf; Kim, Young

    2014-03-01

    Improving the aerodynamic performance of an airfoil is one of the primary interests of the Aerodynamicists. Such performance improvement can be achieved using passive or active flow control devices. One of such passive devices having a compact size along with an effective performance is the Micro Vortex Generators (MVGs). A special type of MVGs, which has been recently introduced in the aerospace industry, is "Triangular Shape" MVGs and its impact on aerodynamic characteristics is the main interest of this study. This study will compare the effects of various configurations through which delay of the flow separation using boundary layer control will be analysed by experimental and theoretical approach. The experimental investigations have been conducted using subsonic wind tunnel and the theoretical analysis using ANSYS® 13.0 FLUENT of which the final results are compared with each other.

  7. Concept of annular vector beam generation at terahertz wavelengths via a nonlinear parametric process.

    PubMed

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2015-04-01

    In this paper, we describe our theoretical investigation and calculations for a terahertz (THz)-wave profile generated by difference frequency mixing (DFM) of focused, cylindrically symmetric, and polarized optical vector beams. Using vector diffraction theory, the second-order nonlinear polarization was estimated from the electric field components of the optical pump beams penetrating uniaxial, birefringent nonlinear optics (NLO) crystals, GaSe and CdSe. The approximate beam patterns of the THz waves were simulated using DFM formulation. The intensity patterns of the THz waves for GaSe and CdSe showed sixfold symmetry and cylindrical symmetry, respectively, based on the nonlinear susceptibility tensor of the crystals. As the phase-matching angle θ(PM) was constant with respect to the c axis of the NLO crystals, an annular vector beam with a narrow width was expected.

  8. Generation of squeezed light with a monolithic optical parametric oscillator: simultaneous achievement of phase matching and cavity resonance by temperature control.

    PubMed

    Yonezawa, Hidehiro; Nagashima, Koyo; Furusawa, Akira

    2010-09-13

    We generate squeezed state of light at 860 nm with a monolithic optical parametric oscillator. The optical parametric oscillator consists of a periodically poled KTiOPO(4) crystal, both ends of which are spherically polished and mirror-coated. We achieve both phase matching and cavity resonance by controlling only the temperature of the crystal. We observe up to -8.0±0.2 dB of squeezing with the bandwidth of 142 MHz. Our technique makes it possible to drive many monolithic cavities simultaneously by a single laser. Hence our monolithic optical parametric oscillator is quite suitable to continuous-variable quantum information experiments where we need a large number of highly squeezed light beams.

  9. Inference of dense spectral reflectance images from sparse reflectance measurement using non-linear regression modeling

    NASA Astrophysics Data System (ADS)

    Deglint, Jason; Kazemzadeh, Farnoud; Wong, Alexander; Clausi, David A.

    2015-09-01

    One method to acquire multispectral images is to sequentially capture a series of images where each image contains information from a different bandwidth of light. Another method is to use a series of beamsplitters and dichroic filters to guide different bandwidths of light onto different cameras. However, these methods are very time consuming and expensive and perform poorly in dynamic scenes or when observing transient phenomena. An alternative strategy to capturing multispectral data is to infer this data using sparse spectral reflectance measurements captured using an imaging device with overlapping bandpass filters, such as a consumer digital camera using a Bayer filter pattern. Currently the only method of inferring dense reflectance spectra is the Wiener adaptive filter, which makes Gaussian assumptions about the data. However, these assumptions may not always hold true for all data. We propose a new technique to infer dense reflectance spectra from sparse spectral measurements through the use of a non-linear regression model. The non-linear regression model used in this technique is the random forest model, which is an ensemble of decision trees and trained via the spectral characterization of the optical imaging system and spectral data pair generation. This model is then evaluated by spectrally characterizing different patches on the Macbeth color chart, as well as by reconstructing inferred multispectral images. Results show that the proposed technique can produce inferred dense reflectance spectra that correlate well with the true dense reflectance spectra, which illustrates the merits of the technique.

  10. High Intensity Focused Ultrasound for Cancer Therapy--harnessing its non-linearity

    SciTech Connect

    Haar, Gail ter

    2008-06-24

    In medicine in general, and for cancer treatments in particular, there is a drive to find effective non-invasive therapies. High Intensity Focused Ultrasound (HIFU) represents one such technique. In principle, it is simple--a high energy ultrasound beam is brought to a tight focus within a target which may lie several centimetres below the skin surface (for example, in a tumour of the liver), and is used to destroy a selected tissue volume. The main mechanism for cell killing in a HIFU beam is heat. Ultrasound energy absorption is frequency dependent, the higher frequencies being absorbed most strongly. Significant thermal advantage may therefore be gained from non-linear propagation, which generates higher harmonics, in tissue. Acoustic cavitation and thermal exsolution of gas (boiling) also contribute to tissue damage. This activity leads to the local mechanical disruption of cells. In addition, the non-linear oscillation of these bubbles leads to enhanced energy deposition. The acoustic emissions from such bubbles are characteristic of their behaviour and may be correlated to some extent with the appearance of the disruption produced. The more widespread clinical acceptance of HIFU is awaiting faster, and more efficient, energy delivery and treatment monitoring. A better understanding of the nonlinear aspects of HIFU propagation in tissue is thus important if this technique is to benefit more patients.

  11. Study of non-linear deformation of vocal folds in simulations of human phonation

    NASA Astrophysics Data System (ADS)

    Saurabh, Shakti; Bodony, Daniel

    2014-11-01

    Direct numerical simulation is performed on a two-dimensional compressible, viscous fluid interacting with a non-linear, viscoelastic solid as a model for the generation of the human voice. The vocal fold (VF) tissues are modeled as multi-layered with varying stiffness in each layer and using a finite-strain Standard Linear Solid (SLS) constitutive model implemented in a quadratic finite element code and coupled to a high-order compressible Navier-Stokes solver through a boundary-fitted fluid-solid interface. The large non-linear mesh deformation is handled using an elliptic/poisson smoothening technique. Supra-glottal flow shows asymmetry in the flow, which in turn has a coupling effect on the motion of the VF. The fully compressible simulations gives direct insight into the sound produced as pressure distributions and the vocal fold deformation helps study the unsteady vortical flow resulting from the fluid-structure interaction along the full phonation cycle. Supported by the National Science Foundation (CAREER Award Number 1150439).

  12. Wave Driven Non-linear Flow Oscillator for the 22-Year Solar Cycle

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Wolff, Charles L.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    In the Earth's atmosphere, a zonal flow oscillation is observed with periods between 20 and 32 months, the Quasi Biennial Oscillation. This oscillation does not require external time dependent forcing but is maintained by non-linear wave momentum deposition. It is proposed that such a mechanism also drives long-period oscillations in planetary and stellar interiors. We apply this mechanism to generate a flow oscillation for the 22-year solar cycle. The oscillation would occur just below the convective envelope where waves can propagate. Using scale analysis, we present results from a simplified model that incorporates Hines' gravity wave parameterization. Wave amplitudes less than 10 m/s can produce reversing zonal flows of 25 m/s that should be sufficient to generate a corresponding oscillation in the poloidal magnetic field. Low buoyancy frequency and the associated increase in turbulence help to produce the desired oscillation period of the flow.

  13. Ultrafast Rotation of Light Fields Applied to Highly Non-Linear Optics

    NASA Astrophysics Data System (ADS)

    Quéré, Fabien

    2014-05-01

    Femtosecond laser beams can exhibit spatio-temporal couplings (STC), i.e. a temporal dependence of their spatial properties, or vice versa. Although these couplings have long been considered as detrimental for high-intensity and ultrafast experiments, moderate and controlled STC provide a powerful means of controlling high-intensity laser-matter interactions. This talk will first explain the basics of a particular STC, where the propagation direction of laser light rotates in time on the femtosecond time scale. Laser pulses with such ultrafast wavefront rotation can be used to generate attosecond pulses of light through non-linear optical processes. We show that these pulses, periodically generated in each laser cycle, can then be emitted in spatially separated beamlets. This effects provides a new type of light sources called attosecond lighthouses, and can be exploited for ultrafast measurements with femtosecond resolution, in a scheme called photonic streaking.

  14. Highly non-linear solid core photonic crystal fiber with one nano hole

    NASA Astrophysics Data System (ADS)

    Gangwar, Rahul Kumar; Bhardwaj, Vanita; Singh, Vinod Kumar

    2015-08-01

    The numerical study of newly designed solid core photonic crystal fiber (SCPCF) having three hexagonal air hole rings in cladding region and one small nano hole at the center are presented. By using full vectorial finite element method (FV-FEM), we analyses the optical properties like effective area, nonlinearity and confinement loss of the proposed PCF. Results show that the change in core diameter controls the effective area, nonlinearity and confinement loss. A low effective area (3.34 µm2), high nonlinearity (36.34 W-1km-1) and low confinement loss (0.00106 dB/km) are achieved at the communication wavelength 1.55 µm for the SCPCF having core air hole diameter 0.10 µm, cladding air holes diameter 1.00 µm and pitch 2.50 µm. This type of PCF is very useful in non-linear applications such as supercontinuum generation, four wave mixing, second harmonic generation etc.

  15. Parametric Analysis of a Hover Test Vehicle using Advanced Test Generation and Data Analysis

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Schumann, Johann; Menzies, Tim; Barrett, Tony

    2009-01-01

    Large complex aerospace systems are generally validated in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. This is due to the large parameter space, and complex, highly coupled nonlinear nature of the different systems that contribute to the performance of the aerospace system. We have addressed the factors deterring such an analysis by applying a combination of technologies to the area of flight envelop assessment. We utilize n-factor (2,3) combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and supervised learning of critical parameter ranges using the machine-learning tool TAR3, a treatment learner. Covariance analysis with scatter plots and likelihood contours are used to visualize correlations between simulation parameters and simulation results, a task that requires tool support, especially for large and complex models. We present results of simulation experiments for a cold-gas-powered hover test vehicle.

  16. Demonstration of optical parametric gain generation in the 1 μm regime based on a photonic crystal fiber pumped by a picosecond mode-locked ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yang, Si-Gang; Wang, Xiao-Jian; Gou, Dou-Dou; Chen, Hong-Wei; Chen, Ming-Hua; Xie, Shi-Zhong

    2014-01-01

    We report the experimental demonstration of the optical parametric gain generation in the 1 μm regime based on a photonic crystal fiber (PCF) with a zero group velocity dispersion (GVD) wavelength of 1062 nm pumped by a homemade tunable picosecond mode-locked ytterbium-doped fiber laser. A broad parametric gain band is obtained by pumping the PCF in the anomalous GVD regime with a relatively low power. Two separated narrow parametric gain bands are observed by pumping the PCF in the normal GVD regime. The peak of the parametric gain profile can be tuned from 927 to 1038 nm and from 1099 to 1228 nm. This widely tunable parametric gain band can be used for a broad band optical parametric amplifier, large span wavelength conversion or a tunable optical parametric oscillator.

  17. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    SciTech Connect

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-15

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.

  18. Cut-off scaling of high-harmonic generation driven by a femtosecond visible optical parametric amplifier

    NASA Astrophysics Data System (ADS)

    Cirmi, Giovanni; Lai, Chien-Jen; Granados, Eduardo; Huang, Shu-Wei; Sell, Alexander; Hong, Kyung-Han; Moses, Jeffrey; Keathley, Phillip; Kärtner, Franz X.

    2012-10-01

    We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 µJ energy at the 1 kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping other parameters (energy, duration and beam size) constant, we experimentally studied the scaling law of cut-off energy with the driver wavelength in helium. Our measurements show a λ1.7 + 0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source, the high-order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ˜25 and ˜100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  19. Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal

    NASA Astrophysics Data System (ADS)

    Huo, Meiru; Qin, Jiliang; Yan, Zhihui; Jia, Xiaojun; Peng, Kunchi

    2016-11-01

    As important members of nonclassical states of light, squeezed states and entangled states are basic resources for realizing quantum measurements and constructing quantum information networks. We experimentally demonstrate that the two types of nonclassical optical states can be generated from an optical parametric oscillator (OPO) involving a periodically poled KTiOPO4 crystal with a domain-inversion period of 51.7 μm, by changing the polarization of the pump laser. When a vertically polarized 671 nm laser is used to pump the OPO, the intra-cavity frequency-down-conversion with type-0 quasi-phase matching is realized and the output optical beam is a quadrature amplitude squeezed state of light at the wavelength of 1342 nm with the fluctuation of quadrature component of 3.17 dB below the quantum noise limit (QNL). If the pump laser is horizontally polarized, the condition of the type-II quasi-phase matching is satisfied and the output optical beam becomes Einstein-Podolsky-Rosen entangled state of light with correlation variances of both quadrature amplitude-sum and quadrature phase-difference of 2.2 dB below the corresponding QNL.

  20. Optoacoustic detection of different doping substances commonly used by athletes with an optical parametric generation laser source

    NASA Astrophysics Data System (ADS)

    Fischer, Cornelia; Bartlome, Richard; Sigrist, Markus W.

    2005-04-01

    In this paper, we present first results of a spectral characterisation of doping substances using a resonant optoacoustic cell and a Nd:YAG laser pumped optical parametric generation (OPG) laser source in the mid-infrared wavelength range between 3.0 and 4.0 μm with periodically poled LiNbO3 as nonlinear medium for the frequency conversion. Single spectra covering a wavelength range of about 220 nm can be conducted within less than 2 hours (3s averaging time, 7s between consecutive data points, about 0.3nm step-width). Despite the large linewidth of the OPG source of 240 GHz (8 cm-1), the laser spectrometer is well suited for the spectral analysis of these large organic molecules as they exhibit structured continuum absorption over a wide spectral range rather than isolated absorption peaks. We present measured spectra of ephedrine, alprenolol, ethacrynic acid, etc. and discuss the potential of laser-based detection of doping substances both as a supplement to existing methods and in view of a fast in situ screening technique at sporting events.

  1. Non-Linear Pattern Formation in Bone Growth and Architecture

    PubMed Central

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here – chaotic non-linear pattern formation (NPF) – which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of “group intelligence” exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called “particle swarm optimization” (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating “socially” in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or “feedback” between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the

  2. Non-linear pattern formation in bone growth and architecture.

    PubMed

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent

  3. Linear and non-linear bias: predictions versus measurements

    NASA Astrophysics Data System (ADS)

    Hoffmann, K.; Bel, J.; Gaztañaga, E.

    2017-02-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ∼5 per cent with respect to results from two-point correlations for different halo samples with masses between ∼1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.

  4. The non-linear initiation of diapirs and plume heads

    NASA Astrophysics Data System (ADS)

    Bercovici, David; Kelly, Amanda

    1997-04-01

    A simple theory is devised to describe the non-linear feedback mechanisms involved in the initial growth of a single diapir or plume head from a low viscosity channel overlain by a much more viscous layer. Such feedbacks arise primarily from the relation between the growth of a proto-diapir (i.e. an undulation on the upper boundary of the low viscosity channel) and the draining of the low viscosity channel. In the period of time between its initial exponential growth (characterized by linear stability analysis) and its separation from the low viscosity channel as a fully formed diapir, the proto-diapir can undergo a significant cessation in its development due to deflation of the low viscosity channel; i.e. the proto-diapir's growth can essentially stall for a long period of time before it separates and begins its ascent through the overlying medium. The theory is used to determine a criterion for separation of the diapir from the low viscosity channel that is in terms of the geometrical and mechanical properties of the channel, instead of the ad hoc volume flux widely used in many models of mantle plumes and plume heads (e.g. Whitehead and Luther, 1975; Richards et al., 1989; Olson, 1990; Sleep, 1990; Bercovici and Mahoney, 1994). From this separation criterion, self-consistent scaling laws can be formulated to relate the size of the fully developed diapir and its trailing conduit to the properties of the initial channel, instead of to the ad hoc volume flux. Basic laboratory experiments involving highly viscous fluids are presented and demonstrate that the so-called 'stalling' period between initial growth and separation does indeed occur. These results suggest that nascent mantle plume heads may stall for extended periods at the base of the mantle and thereby contribute to variations in thickness of the D″ layer.

  5. Advanced Non-Linear Control Algorithms Applied to Design Highly Maneuverable Autonomous Underwater Vehicles (AUVs)

    DTIC Science & Technology

    2007-08-01

    Advanced non- linear control algorithms applied to design highly maneuverable Autonomous Underwater Vehicles (AUVs) Vladimir Djapic, Jay A. Farrell...hierarchical such that an ”inner loop” non- linear controller (outputs the appropriate thrust values) is the same for all mission scenarios while a...library of ”outer-loop” non- linear controllers are available to implement specific maneuvering scenarios. On top of the outer-loop is the mission planner

  6. Synthesis of monodispersed palladium nanoparticles using tannic acid and its optical non-linearity

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Aromal, S. Aswathy; Philip, Daizy

    2013-02-01

    Palladium nanoparticles with average size 11.3 nm have been synthesized via a one-step reduction and capping method. This colloidal route using tannic acid does not require any other surfactant or capping agent to direct the growth of palladium nanoparticles. The effect of temperature on the conversion of Pd2+ ion to Pd0 is investigated. The growth process of nanoparticles is monitored using UV-visible spectra. The morphology and phase transformation have been confirmed by transmission electron microscopy and X-ray diffraction. An attempt to reveal the capping mechanism of tannic acid is done through FTIR analysis. The optical non-linearity of the samples was studied using open aperture Z-scan technique. The significance of this protocol for the generation of environmentally benign palladium nanoparticles lies mainly in its simplicity and cost effectiveness.

  7. Following the course of pre-implantation embryo patterning by non-linear microscopy.

    PubMed

    Kyvelidou, Christiana; Tserevelakis, George J; Filippidis, George; Ranella, Anthi; Kleovoulou, Anastasia; Fotakis, Costas; Athanassakis, Irene

    2011-12-01

    Embryo patterning is subject to intense investigation. So far only large, microscopically obvious structures like polar body, cleavage furrow, pro-nucleus shape can be evaluated in the intact embryo. Using non-linear microscopic techniques, the present work describes new methodologies to evaluate pre-implantation mouse embryo patterning. Third Harmonic Generation (THG) imaging, by detecting mitochondrial/lipid body structures, could provide valuable and complementary information as to the energetic status of pre-implantation embryos, time evolution of different developmental stages, embryo polarization prior to mitotic division and blastomere equivalence. Quantification of THG imaging detected highest signalling in the 2-cell stage embryos, while evaluating a 12-18% difference between blastomeres at the 8-cell stage embryos. Such a methodology provides novel, non-intrusive imaging assays to follow up intracellular structural patterning associated with the energetic status of a developing embryo, which could be successfully used for embryo selection during the in vitro fertilization process.

  8. Non-linear optical flow cytometry using a scanned, Bessel beam light-sheet.

    PubMed

    Collier, Bradley B; Awasthi, Samir; Lieu, Deborah K; Chan, James W

    2015-05-29

    Modern flow cytometry instruments have become vital tools for high-throughput analysis of single cells. However, as issues with the cellular labeling techniques often used in flow cytometry have become more of a concern, the development of label-free modalities for cellular analysis is increasingly desired. Non-linear optical phenomena (NLO) are of growing interest for label-free analysis because of the ability to measure the intrinsic optical response of biomolecules found in cells. We demonstrate that a light-sheet consisting of a scanned Bessel beam is an optimal excitation geometry for efficiently generating NLO signals in a microfluidic environment. The balance of photon density and cross-sectional area provided by the light-sheet allowed significantly larger two-photon fluorescence intensities to be measured in a model polystyrene microparticle system compared to measurements made using other excitation focal geometries, including a relaxed Gaussian excitation beam often used in conventional flow cytometers.

  9. Methods for accurate analysis of galaxy clustering on non-linear scales

    NASA Astrophysics Data System (ADS)

    Vakili, Mohammadjavad

    2017-01-01

    Measurements of galaxy clustering with the low-redshift galaxy surveys provide sensitive probe of cosmology and growth of structure. Parameter inference with galaxy clustering relies on computation of likelihood functions which requires estimation of the covariance matrix of the observables used in our analyses. Therefore, accurate estimation of the covariance matrices serves as one of the key ingredients in precise cosmological parameter inference. This requires generation of a large number of independent galaxy mock catalogs that accurately describe the statistical distribution of galaxies in a wide range of physical scales. We present a fast method based on low-resolution N-body simulations and approximate galaxy biasing technique for generating mock catalogs. Using a reference catalog that was created using the high resolution Big-MultiDark N-body simulation, we show that our method is able to produce catalogs that describe galaxy clustering at a percentage-level accuracy down to highly non-linear scales in both real-space and redshift-space.In most large-scale structure analyses, modeling of galaxy bias on non-linear scales is performed assuming a halo model. Clustering of dark matter halos has been shown to depend on halo properties beyond mass such as halo concentration, a phenomenon referred to as assembly bias. Standard large-scale structure studies assume that halo mass alone is sufficient in characterizing the connection between galaxies and halos. However, modeling of galaxy bias can face systematic effects if the number of galaxies are correlated with other halo properties. Using the Small MultiDark-Planck high resolution N-body simulation and the clustering measurements of Sloan Digital Sky Survey DR7 main galaxy sample, we investigate the extent to which the dependence of galaxy bias on halo concentration can improve our modeling of galaxy clustering.

  10. Milliwatt-level mid-infrared (10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator.

    PubMed

    Hegenbarth, Robin; Steinmann, Andy; Sarkisov, Sergey; Giessen, Harald

    2012-09-01

    We demonstrate the generation of mid-infrared radiation using a femtosecond dual-signal-wavelength optical parametric oscillator and difference frequency generation in an extracavity gallium selenide or silver gallium diselenide crystal. This system generates up to 4.3 mW of average mid-infrared power. Its spectra can be tuned to between 10.5 μm and 16.5 μm wavelength (952  cm(-1)-606  cm(-1)) with more than 50  cm(-1) spectral bandwidth. We demonstrate that the power and spectra of this system are temporally very stable.

  11. The puzzle of apparent linear lattice artifacts in the 2d non-linear σ-model and Symanzik's solution

    NASA Astrophysics Data System (ADS)

    Balog, Janos; Niedermayer, Ferenc; Weisz, Peter

    2010-01-01

    Lattice artifacts in the 2d O( n) non-linear σ-model are expected to be of the form O(a), and hence it was (when first observed) disturbing that some quantities in the O(3) model with various actions show parametrically stronger cutoff dependence, apparently O(a), up to very large correlation lengths. In a previous letter Balog et al. (2009) [1] we described the solution to this puzzle. Based on the conventional framework of Symanzik's effective action, we showed that there are logarithmic corrections to the O(a) artifacts which are especially large ( lna) for n=3 and that such artifacts are consistent with the data. In this paper we supply the technical details of this computation. Results of Monte Carlo simulations using various lattice actions for O(3) and O(4) are also presented.

  12. Non-linear dynamics of viscous bilayers subjected to an electric field: 3D phase field simulations

    NASA Astrophysics Data System (ADS)

    Dritselis, Christos; Karapetsas, George; Bontozoglou, Vasilis

    2014-11-01

    The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a bilayer of immiscible liquids. We consider the case of two viscous films which is separated from the top electrode by air. We assume that the liquids are perfect dielectrics and consider the case of both flat and patterned electrodes. We develop a computational model using the diffuse interface method and carry out 3D numerical simulations fully accounting for the flow and electric field in all phases. We perform a parametric study and investigate the influence of the electric properties of fluids, applied voltage and various geometrical characteristics of the mask. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.

  13. FIFTH SEMINAR IN MEMORY OF D.N. KLYSHKO: Generation of triphotons upon spontaneous parametric down-conversion in a resonator

    NASA Astrophysics Data System (ADS)

    Kalachev, A. A.; Fattakhova, Yu Z.

    2007-12-01

    The possibility of generating correlated three-photon states of light (triphotons) during spontaneous parametric down-conversion of light in a cubic medium in a resonator is analysed. It is shown that the number of photons per mode of the three-photon field is proportional to the square of the resonator finesse and the number of longitudinal resonator modes satisfying the triple resonance condition.

  14. The collagen structure of equine articular cartilage characterized using polarization-sensitive optical coherence tomography and non-linear microscopy

    NASA Astrophysics Data System (ADS)

    Mansfield, Jessica C.; Ugryumova, Nadya; Knapp, Karen M.; Matcher, Stephen J.

    2006-09-01

    Equine articular cartilage has been imaged using both polarization-sensitive optical coherence tomography (PS-OCT) and non-linear microscopy. PS-OCT has been used to spatially map the birefringence in the cartilage and we have found that in the vicinity of the lesion the images display a characteristic disruption in the regular birefringence bands shown by normal cartilage. We also note that significant (e.g. x2) variations in the apparent birefringence of samples taken from young (18 month) animals that otherwise appear visually homogeneous are found over spatial scales of a few millimeters. We have also imaged the cartilage using non-linear microscopy and compare the scans taken with second harmonic generation (SHG) light and the two photon fluorescence (TPF) light. SHG images collected using 800 nm excitation reveals the spatial distribution of collagen fibers, whilst TPF images clearly shows the distribution of intracellular and pericellular fluorophores.

  15. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    NASA Astrophysics Data System (ADS)

    Gao, Q. D.; Budny, R. V.

    2015-03-01

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  16. Non-linear primary-multiple separation with directional curvelet frames

    NASA Astrophysics Data System (ADS)

    Herrmann, Felix J.; Böniger, Urs; Verschuur, Dirk Jacob (Eric)

    2007-08-01

    Predictive multiple suppression methods consist of two main steps: a prediction step, during which multiples are predicted from seismic data, and a primary-multiple separation step, during which the predicted multiples are `matched' with the true multiples in the data and subsequently removed. This second separation step, which we will call the estimation step, is crucial in practice: an incorrect separation will cause residual multiple energy in the result or may lead to a distortion of the primaries, or both. To reduce these adverse effects, a new transformed-domain method is proposed where primaries and multiples are separated rather than matched. This separation is carried out on the basis of differences in the multiscale and multidirectional characteristics of these two signal components. Our method uses the curvelet transform, which maps multidimensional data volumes into almost orthogonal localized multidimensional prototype waveforms that vary in directional and spatio-temporal content. Primaries-only and multiples-only signal components are recovered from the total data volume by a non-linear optimization scheme that is stable under noisy input data. During the optimization, the two signal components are separated by enhancing sparseness (through weighted l1-norms) in the transformed domain subject to fitting the observed data as the sum of the separated components to within a user-defined tolerance level. Whenever, during the optimization, the estimates for the primaries in the transformed domain correlate with the predictions for the multiples, the recovery of the coefficients for the estimated primaries will be suppressed while for regions where the correlation is small the method seeks the sparsest set of coefficients that represent the estimation for the primaries. Our algorithm does not seek a matched filter and as such it differs fundamentally from traditional adaptive subtraction methods. The method derives its stability from the sparseness

  17. Structural, optical and dielectric studies of novel non-linear Bisglycine Lithium Nitrate piezoelectric single crystal

    NASA Astrophysics Data System (ADS)

    Dalal, Jyoti; Sinha, Nidhi; Kumar, Binay

    2014-11-01

    The novel non-linear semiorganic Bisglycine Lithium Nitrate (BGLiN) single crystals were grown by slow evaporation technique. The structural analysis revealed that it belongs to non-centrosymmetric orthorhombic structure. The presence of various functional groups in the grown crystal was confirmed by FTIR and Raman analysis. Surface morphology of the grown crystal was studied by scanning electron microscopy. The optical studies show that crystal has good transmittance (more than 80%) in the entire visible region and a wide band gap (5.17 eV). The optical constants such as extinction coefficient (K), the reflectance (R) and refractive index (n) as a function of photon energy were calculated from the optical measurements. With the help of these optical constants the electric susceptibility (χc) and both the real (εr) and imaginary (εi) parts of the dielectric constants were also calculated which are required to develop optoelectronic devices. In photoluminescence studies, a broad emission band centered at 404 nm was found in addition to a small band at 352 nm. A broad transition (from 29 to 33 °C) was observed with low dielectric constant value. A high piezoelectric charge coefficient (d33) of 14 pC/N was measured at room temperature which implies its usefulness for various sensor applications. The second harmonic generation efficiency of crystal was found to be 1.5 times to that of KDP. From thermo gravimetric analysis and differential thermal analysis, thermal stability and melting point (246 °C) were investigated. The dielectric behavior, optical characterization, piezoelectric behavior and the non-linear optical properties of the Bisglycine Lithium Nitrate single crystals were reported for the first time which established the usefulness of these crystals for various piezo- and opto-electronics applications.

  18. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    PubMed

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  19. Biomagnetic activity and non linear analysis in obstetrics and gynecology in a Greek population.

    PubMed

    Anninos, P; Anastasiadis, P; Adamopoulos, A; Kotini, A

    2016-01-01

    This article reports the application of non-linear analysis to biomagnetic signals recorded from fetal growth restriction, fetal brain activity, ovarian lesions, breast lesions, umbilical arteries, uterine myomas, and uterine arteries in a Greek population. The results were correlated with clinical findings. The biomagnetic measurements and the application of non-linear analysis are promising procedures in Obstetrics and Gynecology.

  20. Non-Linear Dose-Response Relationships in Biology, Toxicology and Medicine

    DTIC Science & Technology

    2007-11-02

    The purpose of the conference was to attract researchers from diverse backgrounds who are working in the common area of non-linear dose - response relationships...This unique interdisciplinary conference represents an important step in furthering the understanding of the occurrence, origin, mechanisms, significance and practical applications of non-linear dose - response relationships.

  1. Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser.

    PubMed

    Smirnov, Sergey V; Kobtsev, Sergey M; Kukarin, Sergey V

    2014-01-13

    For the first time we report the results of both numerical simulation and experimental observation of second-harmonic generation as an example of non-linear frequency conversion of pulses generated by passively mode-locked fiber master oscillator in different regimes including conventional (stable) and double-scale (partially coherent and noise-like) ones. We show that non-linear frequency conversion efficiency of double-scale pulses is slightly higher than that of conventional picosecond laser pulses with the same energy and duration despite strong phase fluctuations of double-scale pulses.

  2. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    PubMed

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  3. Single-photon non-linear optics with a quantum dot in a waveguide.

    PubMed

    Javadi, A; Söllner, I; Arcari, M; Hansen, S Lindskov; Midolo, L; Mahmoodian, S; Kiršanskė, G; Pregnolato, T; Lee, E H; Song, J D; Stobbe, S; Lodahl, P

    2015-10-23

    Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.

  4. Single-photon non-linear optics with a quantum dot in a waveguide

    PubMed Central

    Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.

    2015-01-01

    Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon–photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures. PMID:26492951

  5. Travelling and standing envelope solitons in discrete non-linear cyclic structures

    NASA Astrophysics Data System (ADS)

    Grolet, Aurelien; Hoffmann, Norbert; Thouverez, Fabrice; Schwingshackl, Christoph

    2016-12-01

    Envelope solitons are demonstrated to exist in non-linear discrete structures with cyclic symmetry. The analysis is based on the Non-Linear Schrodinger Equation for the weakly non-linear limit, and on numerical simulation of the fully non-linear equations for larger amplitudes. Envelope solitons exist for parameters in which the wave equation is focussing and they have the form of shape-conserving wave packages propagating roughly with group velocity. For the limit of maximum wave number, where the group velocity vanishes, standing wave packages result and can be linked via a bifurcation to the non-localised non-linear normal modes. Numerical applications are carried out on a simple discrete system with cyclic symmetry which can be seen as a reduced model of a bladed disk as found in turbo-machinery.

  6. Investigation of non-linear imaging in high-resolution transmission electron microscopy.

    PubMed

    Chang, Yunjie; Wang, Yumei; Cui, Yanxiang; Ge, Binghui

    2016-12-01

    Transmission cross-coefficient theory and pseudo-weak-phase object approximation theory were combined to investigate the non-linear imaging in high-resolution transmission electron microscopy (HRTEM). The analytical expressions of linear and non-linear imaging components in diffractogram were obtained and changes of linear and non-linear components over sample thickness were analyzed. Moreover, the linear and non-linear components are found to be an odd and even-function of the defocus and Cs, respectively. Based on this, a method for separating the linear and non-linear contrasts in Cs-corrected (non-zero Cs conditions included) HRTEM images was proposed, and its effectiveness was confirmed by image simulations with AlN as an example.

  7. Modeling Non-Linear Pulsed Power Component Behaviors

    DTIC Science & Technology

    1991-06-01

    The other current is specially synthesized to generate a representation of the desired resistance with the proper dependance on the variable a... dependance of the variable a. Polynomials Most versions of Spice allow the value of dependent sources to be represented by polynomials. The general form of

  8. Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging

    NASA Astrophysics Data System (ADS)

    Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F.; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen

    2016-07-01

    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit.

  9. Bayesian inference of cosmic density fields from non-linear, scale-dependent, and stochastic biased tracers

    NASA Astrophysics Data System (ADS)

    Ata, Metin; Kitaura, Francisco-Shu; Müller, Volker

    2015-02-01

    We present a Bayesian reconstruction algorithm to generate unbiased samples of the underlying dark matter field from halo catalogues. Our new contribution consists of implementing a non-Poisson likelihood including a deterministic non-linear and scale-dependent bias. In particular we present the Hamiltonian equations of motions for the negative binomial (NB) probability distribution function. This permits us to efficiently sample the posterior distribution function of density fields given a sample of galaxies using the Hamiltonian Monte Carlo technique implemented in the ARGO code. We have tested our algorithm with the Bolshoi N-body simulation at redshift z = 0, inferring the underlying dark matter density field from subsamples of the halo catalogue with biases smaller and larger than one. Our method shows that we can draw closely unbiased samples (compatible within 1-σ) from the posterior distribution up to scales of about k ˜ 1 h Mpc-1 in terms of power-spectra and cell-to-cell correlations. We find that a Poisson likelihood including a scale-dependent non-linear deterministic bias can yield reconstructions with power spectra deviating more than 10 per cent at k = 0.2 h Mpc-1. Our reconstruction algorithm is especially suited for emission line galaxy data for which a complex non-linear stochastic biasing treatment beyond Poissonity becomes indispensable.

  10. Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging

    PubMed Central

    Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F.; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen

    2016-01-01

    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit. PMID:27406831

  11. Higher-order sinusoidal input describing functions for the analysis of non-linear systems with harmonic responses

    NASA Astrophysics Data System (ADS)

    Nuij, P. W. J. M.; Bosgra, O. H.; Steinbuch, M.

    2006-11-01

    For high-precision motion systems, modelling and control design specifically oriented at friction effects is instrumental. The sinusoidal input describing function theory represents an approximative mathematical framework for analysing non-linear system behaviour. This theory, however, limits the description of the non-linear system behaviour to a quasi-linear amplitude-dependent relation between sinusoidal excitation and sinusoidal response. In this paper, an extension to higher-order describing functions is realised by introducing the concept of the harmonics generator. The resulting higher-order sinusoidal input describing functions (HOSIDFs) relate the magnitude and phase of the higher harmonics of the periodic response of the system to the magnitude and phase of a sinusoidal excitation. Based on this extension two techniques to measure HOSIDFs are presented. The first technique is FFT based. The second technique is based on IQ (in-phase/quadrature-phase) demodulation. In a simulation, the measurement techniques have been tested by comparing the simulation results to analytically derived results from a known (backlash) non-linearity. In a subsequent practical case study both techniques are used to measure the changes in dynamic behaviour as a function of drive level due to friction in an electric motor. Both methods prove successful for measuring HOSIDFs.

  12. A non-linear 3D printed electromagnetic vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Constantinou, P.; Roy, S.

    2015-12-01

    This paper describes a novel electromagnetic energy harvester that exploits the low flexural modulus of ABS and comprises of a nonlinear mechanism to enhance the generated power and bandwidth. The device is printed using desktop additive manufacturing techniques (3D printing) that use thermoplastics. It has a ‘V’ spring topology and exhibits a softening spring non-linearity introduced through the magnetic arrangement, which introduces a monostable potential well. A model is presented and measurements correspond favourably. The produced prototype generates a peak power of approximately 2.5mW at a frame acceleration of 1g and has a power bandwidth of approximately 1.2→1.5Hz and 3.5→3.9Hz during up and down sweeps respectively. The device has a power density of 0.4mW/cm3 at a frame acceleration of 1g and a density of 0.04mW/cm3 from a generated power of 25μW at 0.1g.

  13. Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations

    SciTech Connect

    Orain, F.; Bécoulet, M.; Dif-Pradalier, G.; Nardon, E.; Passeron, C.; Latu, G.; Grandgirard, V.; Fil, A.; Ratnani, A.; Huijsmans, G.; Pamela, S.; Chapman, I.; Kirk, A.; Thornton, A.; Cahyna, P.

    2013-10-15

    The interaction of static Resonant Magnetic Perturbations (RMPs) with the plasma flows is modeled in toroidal geometry, using the non-linear resistive MHD code JOREK, which includes the X-point and the scrape-off-layer. Two-fluid diamagnetic effects, the neoclassical poloidal friction and a source of toroidal rotation are introduced in the model to describe realistic plasma flows. RMP penetration is studied taking self-consistently into account the effects of these flows and the radial electric field evolution. JET-like, MAST, and ITER parameters are used in modeling. For JET-like parameters, three regimes of plasma response are found depending on the plasma resistivity and the diamagnetic rotation: at high resistivity and slow rotation, the islands generated by the RMPs at the edge resonant surfaces rotate in the ion diamagnetic direction and their size oscillates. At faster rotation, the generated islands are static and are more screened by the plasma. An intermediate regime with static islands which slightly oscillate is found at lower resistivity. In ITER simulations, the RMPs generate static islands, which forms an ergodic layer at the very edge (ψ≥0.96) characterized by lobe structures near the X-point and results in a small strike point splitting on the divertor targets. In MAST Double Null Divertor geometry, lobes are also found near the X-point and the 3D-deformation of the density and temperature profiles is observed.

  14. Pulse-driven non-linear Alfvén waves and their role in the spectral line broadening

    NASA Astrophysics Data System (ADS)

    Chmielewski, P.; Srivastava, A. K.; Murawski, K.; Musielak, Z. E.

    2013-01-01

    We study the impulsively generated non-linear Alfvén waves in the solar atmosphere and describe their most likely role in the observed non-thermal broadening of some spectral lines in solar coronal holes. We solve numerically the time-dependent magnetohydrodynamic equations to find temporal signatures of large-amplitude Alfvén waves in the solar atmosphere model of open and expanding magnetic field configuration, with a realistic temperature distribution. We calculate the temporally and spatially averaged, instantaneous transversal velocity of non-linear Alfvén waves at different heights of the model atmosphere and estimate its contribution to the unresolved non-thermal motions caused by the waves. We find that the pulse-driven non-linear Alfvén waves with the amplitude Av = 50 km s- 1 are the most likely candidates for the non-thermal broadening of Si viii λ1445.75 Å line profiles in the polar coronal hole as reported by Banerjee et al. We also demonstrate that the Alfvén waves driven by comparatively smaller velocity pulse with amplitude Av = 25 km s- 1 may contribute to the spectral line width of the same line at various heights in coronal hole broadening. We conclude that the non-linear Alfvén waves excited impulsively in the lower solar atmosphere may be responsible for the observed spectral line broadening in polar coronal holes. This is an important result as it allows us to conclude that such large amplitude and pulse-driven Alfvén waves may indeed exist in solar coronal holes. The existence of these waves may impart the required momentum to accelerate the solar wind.

  15. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation

    NASA Astrophysics Data System (ADS)

    Forget, G.; Campin, J.-M.; Heimbach, P.; Hill, C. N.; Ponte, R. M.; Wunsch, C.

    2015-10-01

    This paper presents the ECCO v4 non-linear inverse modeling framework and its baseline solution for the evolving ocean state over the period 1992-2011. Both components are publicly available and subjected to regular, automated regression tests. The modeling framework includes sets of global conformal grids, a global model setup, implementations of data constraints and control parameters, an interface to algorithmic differentiation, as well as a grid-independent, fully capable Matlab toolbox. The baseline ECCO v4 solution is a dynamically consistent ocean state estimate without unidentified sources of heat and buoyancy, which any interested user will be able to reproduce accurately. The solution is an acceptable fit to most data and has been found to be physically plausible in many respects, as documented here and in related publications. Users are being provided with capabilities to assess model-data misfits for themselves. The synergy between modeling and data synthesis is asserted through the joint presentation of the modeling framework and the state estimate. In particular, the inverse estimate of parameterized physics was instrumental in improving the fit to the observed hydrography, and becomes an integral part of the ocean model setup available for general use. More generally, a first assessment of the relative importance of external, parametric and structural model errors is presented. Parametric and external model uncertainties appear to be of comparable importance and dominate over structural model uncertainty. The results generally underline the importance of including turbulent transport parameters in the inverse problem.

  16. Accelerating Monte Carlo power studies through parametric power estimation.

    PubMed

    Ueckert, Sebastian; Karlsson, Mats O; Hooker, Andrew C

    2016-04-01

    Estimating the power for a non-linear mixed-effects model-based analysis is challenging due to the lack of a closed form analytic expression. Often, computationally intensive Monte Carlo studies need to be employed to evaluate the power of a planned experiment. This is especially time consuming if full power versus sample size curves are to be obtained. A novel parametric power estimation (PPE) algorithm utilizing the theoretical distribution of the alternative hypothesis is presented in this work. The PPE algorithm estimates the unknown non-centrality parameter in the theoretical distribution from a limited number of Monte Carlo simulation and estimations. The estimated parameter linearly scales with study size allowing a quick generation of the full power versus study size curve. A comparison of the PPE with the classical, purely Monte Carlo-based power estimation (MCPE) algorithm for five diverse pharmacometric models showed an excellent agreement between both algorithms, with a low bias of less than 1.2 % and higher precision for the PPE. The power extrapolated from a specific study size was in a very good agreement with power curves obtained with the MCPE algorithm. PPE represents a promising approach to accelerate the power calculation for non-linear mixed effect models.

  17. A New Multi-tanh-Based Non-linear Function Synthesiser

    NASA Astrophysics Data System (ADS)

    Taher Abuelma'atti, Muhammad; Radhi Al-Abbas, Saad

    2016-11-01

    A new complementary metal-oxide-semiconductor transadmittance-mode with input voltage and output current, analogue non-linear odd-function synthesiser is presented. The proposed circuit is based on the assumption that a non-linear odd- function can be approximated by the summation of hyperbolic tangent (tanh) functions with different arguments. Each term of the tanh function expansion is realised by exploiting to advantage the inherent non-linearity of a current-controlled current-conveyor (CCCCII) (or an operational transconductance amplifier (OTA)) with a different bias current. The output currents of these CCCCIIs (OTAs) are weighted using the gains of current amplifiers. These weighted currents are algebraically added to form the required non-linear function. The proposed circuit is suitable for integration, can be easily extended to include higher order terms of the tanh-odd-function expansion and can be programmed to realise arbitrary hard non-linear odd-functions that cannot be easily realised using already existing techniques, based on the Taylor-series expansion, for synthesising non-linear functions. PSPICE simulation results, obtained from CCCCII-based realisations of selected hard non-linearities, demonstrating the functionality of the proposed circuit are included.

  18. Testing non-linearity and directedness of interactions between neural groups in the macaque inferotemporal cortex.

    PubMed

    Freiwald, W A; Valdes, P; Bosch, J; Biscay, R; Jimenez, J C; Rodriguez, L M; Rodriguez, V; Kreiter, A K; Singer, W

    1999-12-15

    Information processing in the visual cortex depends on complex and context sensitive patterns of interactions between neuronal groups in many different cortical areas. Methods used to date for disentangling this functional connectivity presuppose either linearity or instantaneous interactions, assumptions that are not necessarily valid. In this paper a general framework that encompasses both linear and non-linear modelling of neurophysiological time series data by means of Local Linear Non-linear Autoregressive models (LLNAR) is described. Within this framework a new test for non-linearity of time series and for non-linearity of directedness of neural interactions based on LLNAR is presented. These tests assess the relative goodness of fit of linear versus non-linear models via the bootstrap technique. Additionally, a generalised definition of Granger causality is presented based on LLNAR that is valid for both linear and non-linear systems. Finally, the use of LLNAR for measuring non-linearity and directional influences is illustrated using artificial data, reference data as well as local field potentials (LFPs) from macaque area TE. LFP data is well described by the linear variant of LLNAR. Models of this sort, including lagged values of the preceding 25 to 60 ms, revealed the existence of both uni- and bi-directional influences between recording sites.

  19. Non-linear modelling and optimal control of a hydraulically actuated seismic isolator test rig

    NASA Astrophysics Data System (ADS)

    Pagano, Stefano; Russo, Riccardo; Strano, Salvatore; Terzo, Mario

    2013-02-01

    This paper investigates the modelling, parameter identification and control of an unidirectional hydraulically actuated seismic isolator test rig. The plant is characterized by non-linearities such as the valve dead zone and frictions. A non-linear model is derived and then employed for parameter identification. The results concerning the model validation are illustrated and they fully confirm the effectiveness of the proposed model. The testing procedure of the isolation systems is based on the definition of a target displacement time history of the sliding table and, consequently, the precision of the table positioning is of primary importance. In order to minimize the test rig tracking error, a suitable control system has to be adopted. The system non-linearities highly limit the performances of the classical linear control and a non-linear one is therefore adopted. The test rig mathematical model is employed for a non-linear control design that minimizes the error between the target table position and the current one. The controller synthesis is made by taking no specimen into account. The proposed approach consists of a non-linear optimal control based on the state-dependent Riccati equation (SDRE). Numerical simulations have been performed in order to evaluate the soundness of the designed control with and without the specimen under test. The results confirm that the performances of the proposed non-linear controller are not invalidated because of the presence of the specimen.

  20. Optimization of Passive and Active Non-Linear Vibration Mounting Systems Based on Vibratory Power Transmission

    NASA Astrophysics Data System (ADS)

    Royston, T. J.; Singh, R.

    1996-07-01

    While significant non-linear behavior has been observed in many vibration mounting applications, most design studies are typically based on the concept of linear system theory in terms of force or motion transmissibility. In this paper, an improved analytical strategy is presented for the design optimization of complex, active of passive, non-linear mounting systems. This strategy is built upon the computational Galerkin method of weighted residuals, and incorporates order reduction and numerical continuation in an iterative optimization scheme. The overall dynamic characteristics of the mounting system are considered and vibratory power transmission is minimized via adjustment of mount parameters by using both passive and active means. The method is first applied through a computational example case to the optimization of basic passive and active, non-linear isolation configurations. It is found that either active control or intentionally introduced non-linearity can improve the mount's performance; but a combination of both produces the greatest benefit. Next, a novel experimental, active, non-linear isolation system is studied. The effect of non-linearity on vibratory power transmission and active control are assessed via experimental measurements and the enhanced Galerkin method. Results show how harmonic excitation can result in multiharmonic vibratory power transmission. The proposed optimization strategy offers designers some flexibility in utilizing both passive and active means in combination with linear and non-linear components for improved vibration mounts.

  1. The effect of non-linear propagation in jet noise

    NASA Technical Reports Server (NTRS)

    Gallagher, J. A.

    1982-01-01

    An experimental investigation of the nonlinear propagation effects which occur in the noise radiated from low and moderate Reynolds number supersonic jets has been performed. An array of three condenser microphones was used to measure the waveforms propagated by axisymmetric, cold model jets of Mach numbers 2.1 and 2.5. Relatively low Reynolds numbers were obtained by exhausting the jets into a low pressure anechoic test chamber. The results show that phenomena normally associated with nonlinear acoustic propagation, such as wave steepening, harmonic generation and wave merging, are measurable in the high speed model jets.

  2. Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers

    NASA Astrophysics Data System (ADS)

    Schell, Andreas W.; Tran, Toan Trong; Takashima, Hideaki; Takeuchi, Shigeki; Aharonovich, Igor

    2016-12-01

    Two-photon absorption is an important non-linear process employed for high resolution bio-imaging and non-linear optics. In this work, we realize two-photon excitation of a quantum emitter embedded in a two-dimensional (2D) material. We examine defects in hexagonal boron nitride (hBN) and show that the emitters exhibit similar spectral and quantum properties under one-photon and two-photon excitation. Furthermore, our findings are important to deploy two-dimensional hexagonal boron nitride for quantum non-linear photonic applications.

  3. Neural Network Associative Memory Using Non-Linear Holographic Storage Media

    DTIC Science & Technology

    1989-12-01

    T’,?T Cýy’ ( AFIT/GEO/ENG/89D-3 AD-A214 340 L NEURAL NETWORK ASSOCIATIVE MEMORY USING NON-LINEAR HOLOGRAPHIC STORAGE MEDIA I THESIS I Presented to...order approximations of the required gain were provided. - - -In= unazn A FIT/GEO/ENG/89D-3 NEURAL NETWORK ASSOCIATIVE MEMORY USING NON-LINEAR...approxi- mations of the required gain were provided. vi NEURAL NETWORK ASSOCIATIVE MEMORY USING NON-LINEAR HOLOGRAPHIC STORAGE MEDIA I. Introduction The

  4. Uncertainty due to non-linearity in radiation thermometers calibrated by multiple fixed points

    SciTech Connect

    Yamaguchi, Y.; Yamada, Y.

    2013-09-11

    A new method to estimate the uncertainty due to non-linearity is described on the n= 3 scheme basis. The expression of uncertainty is mathematically derived applying the random walk method. The expression is simple and requires only the temperatures of the fixed points and a relative uncertainty value for each flux-doubling derived from the non-linearity measurement. We also present an example of the method, in which the uncertainty of temperature measurement by a radiation thermometer is calculated on the basis of non-linearity measurement.

  5. Destruction of large-scale magnetic field in non-linear simulations of the shear dynamo

    NASA Astrophysics Data System (ADS)

    Teed, Robert J.; Proctor, Michael R. E.

    2016-05-01

    The Sun's magnetic field exhibits coherence in space and time on much larger scales than the turbulent convection that ultimately powers the dynamo. In the past the α-effect (mean-field) concept has been used to model the solar cycle, but recent work has cast doubt on the validity of the mean-field ansatz under solar conditions. This indicates that one should seek an alternative mechanism for generating large-scale structure. One possibility is the recently proposed `shear dynamo' mechanism where large-scale magnetic fields are generated in the presence of a simple shear. Further investigation of this proposition is required, however, because work has been focused on the linear regime with a uniform shear profile thus far. In this paper we report results of the extension of the original shear dynamo model into the non-linear regime. We find that whilst large-scale structure can initially persist into the saturated regime, in several of our simulations it is destroyed via large increase in kinetic energy. This result casts doubt on the ability of the simple uniform shear dynamo mechanism to act as an alternative to the α-effect in solar conditions.

  6. Highly non-linear solid core photonic crystal fiber with one nano hole

    SciTech Connect

    Gangwar, Rahul Kumar Bhardwaj, Vanita Singh, Vinod Kumar

    2015-08-28

    The numerical study of newly designed solid core photonic crystal fiber (SCPCF) having three hexagonal air hole rings in cladding region and one small nano hole at the center are presented. By using full vectorial finite element method (FV-FEM), we analyses the optical properties like effective area, nonlinearity and confinement loss of the proposed PCF. Results show that the change in core diameter controls the effective area, nonlinearity and confinement loss. A low effective area (3.34 µm{sup 2}), high nonlinearity (36.34 W{sup −1}km{sup −1}) and low confinement loss (0.00106 dB/km) are achieved at the communication wavelength 1.55 µm for the SCPCF having core air hole diameter 0.10 µm, cladding air holes diameter 1.00 µm and pitch 2.50 µm. This type of PCF is very useful in non-linear applications such as supercontinuum generation, four wave mixing, second harmonic generation etc.

  7. Fuzzy Lyapunov Reinforcement Learning for Non Linear Systems.

    PubMed

    Kumar, Abhishek; Sharma, Rajneesh

    2017-03-01

    We propose a fuzzy reinforcement learning (RL) based controller that generates a stable control action by lyapunov constraining fuzzy linguistic rules. In particular, we attempt at lyapunov constraining the consequent part of fuzzy rules in a fuzzy RL setup. Ours is a first attempt at designing a linguistic RL controller with lyapunov constrained fuzzy consequents to progressively learn a stable optimal policy. The proposed controller does not need system model or desired response and can effectively handle disturbances in continuous state-action space problems. Proposed controller has been employed on the benchmark Inverted Pendulum (IP) and Rotational/Translational Proof-Mass Actuator (RTAC) control problems (with and without disturbances). Simulation results and comparison against a) baseline fuzzy Q learning, b) Lyapunov theory based Actor-Critic, and c) Lyapunov theory based Markov game controller, elucidate stability and viability of the proposed control scheme.

  8. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    SciTech Connect

    Zhu, Xiangdong.

    1989-08-01

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs.

  9. Non-linear dynamics of operant behavior: a new approach via the extended return map.

    PubMed

    Li, Jay-Shake; Huston, Joseph P

    2002-01-01

    Previous efforts to apply non-linear dynamic tools to the analysis of operant behavior revealed some promise for this kind of approach, but also some doubts, since the complexity of animal behavior seemed to be beyond the analyzing ability of the available tools. We here outline a series of studies based on a novel approach. We modified the so-called 'return map' and developed a new method, the 'extended return map' (ERM) to extract information from the highly irregular time series data, the inter-response time (IRT) generated by Skinner-box experiments. We applied the ERM to operant lever pressing data from rats using the four fundamental reinforcement schedules: fixed interval (FI), fixed ratio (FR), variable interval (VI) and variable ratio (VR). Our results revealed interesting patterns in all experiment groups. In particular, the FI and VI groups exhibited well-organized clusters of data points. We calculated the fractal dimension out of these patterns and compared experimental data with surrogate data sets, that were generated by randomly shuffling the sequential order of original IRTs. This comparison supported the finding that patterns in ERM reflect the dynamics of the operant behaviors under study. We then built two models to simulate the functional mechanisms of the FI schedule. Both models can produce similar distributions of IRTs and the stereotypical 'scalloped' curve characteristic of FI responding. However, they differ in one important feature in their formulation: while one model uses a continuous function to describe the probability of occurrence of an operant behavior, the other one employs an abrupt switch of behavioral state. Comparison of ERMs showed that only the latter was able to produce patterns similar to the experimental results, indicative of the operation of an abrupt switch from one behavioral state to another over the course of the inter-reinforcement period. This example demonstrated the ERM to be a useful tool for the analysis of

  10. Toward a sub-terawatt mid-IR (4-5 μm) femtosecond hybrid laser system based on parametric seed pulse generation and amplification in Fe2+:ZnSe

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Bravy, B. G.; Kozlovsky, V. I.; Korostelin, Yu V.; Migal, E. A.; Podmar'kov, Yu P.; Podshivalov, A. A.; Platonenko, V. T.; Firsov, V. V.; Frolov, M. P.; Gordienko, V. M.

    2016-01-01

    For the first time, an experimentally measured seed pulse gain of about 2 cm-1 allows possibilities in the scaling power of such a femtosecond laser system in terawatts. The concept of a subterawatt power level hybrid femtosecond mid-IR (4-5 μm) laser system, based on a weak pulse from an optical parametric mid-IR seeder that is amplified in chalcogenide monocrystalline Fe2+:ZnSe, to gain medium has been proposed and designed. The method and approach for optimizing the choice of nonlinear medium, its length, and the required light intensity for the efficient non-linear self-compression of an ultrashort pulse has also been proposed and considered.

  11. Evolution of Channels Draining Mount St. Helens: Linking Non-Linear and Rapid, Threshold Responses

    NASA Astrophysics Data System (ADS)

    Simon, A.

    2010-12-01

    The catastrophic eruption of Mount St. Helens buried the valley of the North Fork Toutle River (NFT) to a depth of up to 140 m. Initial integration of a new drainage network took place episodically by the “filling and spilling” (from precipitation and seepage) of depressions formed during emplacement of the debris avalanche deposit. Channel incision to depths of 20-30 m occurred in the debris avalanche and extensive pyroclastic flow deposits, and headward migration of the channel network followed, with complete integration taking place within 2.5 years. Downstream reaches were converted from gravel-cobble streams with step-pool sequences to smoothed, infilled channels dominated by sand-sized materials. Subsequent channel evolution was dominated by channel widening with the ratio of changes in channel width to changes in channel depth ranging from about 60 to 100. Widening resulted in significant adjustment of hydraulic variables that control sediment-transport rates. For a given discharge over time, flow depths were reduced, relative roughness increased and flow velocity and boundary shear stress decreased non-linearly. These changes, in combination with coarsening of the channel bed with time resulted in systematically reduced rates of degradation (in upstream reaches), aggradation (in downstream reaches) and sediment-transport rates through much of the 1990s. Vertical adjustments were, therefore, easy to characterize with non-linear decay functions with bed-elevation attenuating with time. An empirical model of bed-level response was then created by plotting the total dimensionless change in elevation against river kilometer for both initial and secondary vertical adjustments. High magnitude events generated from the generated from upper part of the mountain, however, can cause rapid (threshold) morphologic changes. For example, a rain-on-snow event in November 2006 caused up to 9 m of incision along a 6.5 km reach of Loowit Creek and the upper NFT. The event

  12. Fiber-feedback optical parametric oscillator for half-harmonic generation of sub-100-fs frequency combs around 2 μm.

    PubMed

    Ingold, Kirk A; Marandi, Alireza; Digonnet, Michel J F; Byer, Robert L

    2015-09-15

    We demonstrate a femtosecond fiber-feedback optical parametric oscillator (OPO) at degeneracy. The OPO cavity comprises an 80-cm-long fiber composed of a combination of normal and anomalous dispersion sections that provide a net intracavity group delay dispersion close to zero. By using a mode-locked, Yb-doped fiber laser as the pump, we achieved half-harmonic generation of 250-MHz, 1.2-nJ nearly transform-limited 97-fs pulses centered at 2090 nm with a total conversion efficiency of 36%.

  13. Application of Optical Parametric Generator for Lidar Sensing of Minor Gas Components of the Atmosphere in 3-4 μm Spectral Range

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Sadovnikov, S. A.; Kharchenko, O. V.; Shumskii, V. K.; Yakovlev, S. V.

    2016-07-01

    Possibility of application of a laser system with parametric light generation based on a nonlinear KTA crystal for lidar sensing of the atmosphere in the 3-4 μm spectral range is investigated. A technique for lidar measurements of gas components in the atmosphere with the use of differential absorption lidar (DIAL) and differential optical absorption spectroscopy (DOAS) method is developed. The DIAL-DOAS technique is tested for estimating the possibility of laser sensing of minor gas components in the atmosphere.

  14. A Nested Genetic Algorithm for the Numerical Solution of Non-Linear Coupled Equations in Water Quality Modeling

    NASA Astrophysics Data System (ADS)

    García, Hermes A.; Guerrero-Bolaño, Francisco J.; Obregón-Neira, Nelson

    2010-05-01

    Due to both mathematical tractability and efficiency on computational resources, it is very common to find in the realm of numerical modeling in hydro-engineering that regular linearization techniques have been applied to nonlinear partial differential equations properly obtained in environmental flow studies. Sometimes this simplification is also made along with omission of nonlinear terms involved in such equations which in turn diminishes the performance of any implemented approach. This is the case for example, for contaminant transport modeling in streams. Nowadays, a traditional and one of the most common used water quality model such as QUAL2k, preserves its original algorithm, which omits nonlinear terms through linearization techniques, in spite of the continuous algorithmic development and computer power enhancement. For that reason, the main objective of this research was to generate a flexible tool for non-linear water quality modeling. The solution implemented here was based on two genetic algorithms, used in a nested way in order to find two different types of solutions sets: the first set is composed by the concentrations of the physical-chemical variables used in the modeling approach (16 variables), which satisfies the non-linear equation system. The second set, is the typical solution of the inverse problem, the parameters and constants values for the model when it is applied to a particular stream. From a total of sixteen (16) variables, thirteen (13) was modeled by using non-linear coupled equation systems and three (3) was modeled in an independent way. The model used here had a requirement of fifty (50) parameters. The nested genetic algorithm used for the numerical solution of a non-linear equation system proved to serve as a flexible tool to handle with the intrinsic non-linearity that emerges from the interactions occurring between multiple variables involved in water quality studies. However because there is a strong data limitation in

  15. Enhanced studies on a composite time integration scheme in linear and non-linear dynamics

    NASA Astrophysics Data System (ADS)

    Klarmann, S.; Wagner, W.

    2015-03-01

    In Bathe and Baig (Comput Struct 83:2513-2524, 2005), Bathe (Comput Struct 85:437-445, 2007), Bathe and Noh (Comput Struct 98-99:1-6, 2012) Bathe et al. have proposed a composite implicit time integration scheme for non-linear dynamic problems. This paper is aimed at the further investigation of the scheme's behaviour for use in case of linear and non-linear problems. Therefore, the examination of the amplification matrix of the scheme will be extended in order to get in addition the properties for linear calculations. Besides, it will be demonstrated that the integration scheme also has an impact on some of these properties when used for non-linear calculations. In conclusion, a recommendation for the only selectable parameter of the scheme will be given for application in case of geometrically non-linear calculations.

  16. Non-linear analysis of EEG signals at various sleep stages.

    PubMed

    Acharya U, Rajendra; Faust, Oliver; Kannathal, N; Chua, TjiLeng; Laxminarayan, Swamy

    2005-10-01

    Application of non-linear dynamics methods to the physiological sciences demonstrated that non-linear models are useful for understanding complex physiological phenomena such as abrupt transitions and chaotic behavior. Sleep stages and sustained fluctuations of autonomic functions such as temperature, blood pressure, electroencephalogram (EEG), etc., can be described as a chaotic process. The EEG signals are highly subjective and the information about the various states may appear at random in the time scale. Therefore, EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. The sleep data analysis is carried out using non-linear parameters: correlation dimension, fractal dimension, largest Lyapunov entropy, approximate entropy, Hurst exponent, phase space plot and recurrence plots. These non-linear parameters quantify the cortical function at different sleep stages and the results are tabulated.

  17. Non-Linear Noise Contributions in Highly Dispersive Optical Transmission Systems

    NASA Astrophysics Data System (ADS)

    Matera, Francesco

    2016-01-01

    This article reports an analytical investigation, confirmed by numerical simulations, about the non-linear noise contribution in single-channel systems adopting generic modulation-detection formats in long links with both managed and unmanaged dispersion compensation and its impact in system performance. This noise contribution is expressed in terms of a pulse non-linear interaction length and permits a simple calculation of the Q-factor. Results point out the dependence of this non-linear noise on the number of amplifiers spans, N, according to the adopted chromatic dispersion compensation scheme, the modulation-detection format, and the signal baud rate. It is also shown how the effects of polarization multiplexing can be taken into account and how this single-channel non-linear noise contribution can be used in a wavelength-division multiplexing (WDM) environment.

  18. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    ERIC Educational Resources Information Center

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  19. Finite-time H∞ filtering for non-linear stochastic systems

    NASA Astrophysics Data System (ADS)

    Hou, Mingzhe; Deng, Zongquan; Duan, Guangren

    2016-09-01

    This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.

  20. Absolute measurement of ultrasonic non-linearity parameter at contact interface

    NASA Astrophysics Data System (ADS)

    Yuan, Maodan; Lee, Taekgyu; Kang, To; Zhang, Jianhai; Song, Sung-Jin; Kim, Hak-Joon

    2015-10-01

    Non-linear interaction of waves with contact interfaces has been widely applied in non-destructive evaluation fields such as bonding quality evaluation, and the detection of closed microcracks and composite delamination. This paper proposes an absolute measurement of the ultrasonic non-linearity parameter using a piezoelectric detection method for two aluminum alloy blocks of different lengths. The results of a two-dimensional finite element method model verified by models for hard and soft contact interfaces, depending on the interface property, were compared with the measured non-linearity parameter. The measured values show good agreement with the modelled results, indicating good potential for measuring the non-linearity parameter at interfaces experimentally and numerically.

  1. RSFQ logic devices; non-linear properties and experimental investigations

    NASA Astrophysics Data System (ADS)

    Mygind, Jesper

    1998-05-01

    Rapid Single Flux Quantum (RSFQ) logic has a great potential as fast digital and high frequency analog electronics. Several Logic/Memory base elements and integrated sub-systems in the RSFQ family have been devised and tested since the pioneering work in the mid 1980s by K. K. Likharev's group at Moscow State University [1,2]. It is argumented why the RSFQ digital circuits are superior to the voltage state family circuits, which were utilised in the first development of Josephson logic. Also the parameter space for operation of the 1-D RSFQ transmission line is discussed. Presently most RSFQ circuits are made with low-Tc superconductors using the now mature whole-wafer NbAlOxNb technology, which allows for large and densely packed integrated circuits. Recently, a few operational high-Tc RSFQ circuits have been reported. An important development within the last two years is the advent of general-purpose on-chip bit-by-bit verification test systems. Timing of RSFQ circuits and a few recent RSFQ "highlights" are briefly mentioned. Basically the RSFQ technology appears "ready" for widespread industrial use. One of the key components is the RSFQ transmission line, which can both generate and transmit SFQ pulses. In order to demonstrate the importance of the fluxon dynamics we discuss a new phenomenon observed in a parallel array of identical junctions. Steps with extremely low differential resistance in the I-V characteristic are found to be due to the self-induced magnetic field produced by the edge current fed to the array. The underlying mechanism is that the nonuniform field divides the moving fluxon into "domains" covering several (unit) cells. The experimental/numerical results illustrate practical and may be more fundamental limits to RSFQ electronics.

  2. Generation of two-color polarization-entangled optical beams with a self-phase-locked two-crystal optical parametric oscillator

    SciTech Connect

    Laurat, Julien; Keller, Gaeelle; Fabre, Claude; Coudreau, Thomas

    2006-01-15

    A device to generate polarization-entangled light in the continuous-variable regime is introduced. It consists of an optical parametric oscillator with two type-II phase-matched nonlinear crystals orthogonally oriented, associated with birefringent elements for adjustable linear coupling. We give in this paper a theoretical study of its classical and quantum properties. It is shown that two optical beams with adjustable frequencies and well-defined polarization can be emitted. The Stokes parameters of the two beams are entangled. The principal advantage of this setup is the possibility to directly generate polarization-entangled light without the need of mixing four modes on beamsplitters as required in current experimental setups. This device opens up different directions for the study of light-matter interfaces and a generation of multimode nonclassical light and higher dimensional phase space.

  3. Incremental harmonic balance method for predicting amplitudes of a multi-d.o.f. non-linear wheel shimmy system with combined Coulomb and quadratic damping

    NASA Astrophysics Data System (ADS)

    Zhou, J. X.; Zhang, L.

    2005-01-01

    Incremental harmonic balance (IHB) formulations are derived for general multiple degrees of freedom (d.o.f.) non-linear autonomous systems. These formulations are developed for a concerned four-d.o.f. aircraft wheel shimmy system with combined Coulomb and velocity-squared damping. A multi-harmonic analysis is performed and amplitudes of limit cycles are predicted. Within a large range of parametric variations with respect to aircraft taxi velocity, the IHB method can, at a much cheaper cost, give results with high accuracy as compared with numerical results given by a parametric continuation method. In particular, the IHB method avoids the stiff problems emanating from numerical treatment of aircraft wheel shimmy system equations. The development is applicable to other vibration control systems that include commonly used dry friction devices or velocity-squared hydraulic dampers.

  4. Theoretical prediction of electrocaloric effect based on non-linear behaviors of dielectric permittivity under temperature and electric fields

    NASA Astrophysics Data System (ADS)

    Liu, Hongbo; Yang, Xue

    2015-11-01

    The electrocaloric (EC) effect has been paid great attentions recently for applications on cooling or electricity generation. However, the directly commercial measurement equipment for the effect is still unavailable. Here we report a novel method to predict EC effect by non-linear behaviors of dielectric permittivity under temperature and electric fields. According to the method, the analytical equations of EC temperature change ΔT are directly given for normal ferroelectrics and relaxor. The calculations have been performed on several materials and it is shown that the method is suitable for both inorganic and organic ferroelectrics, and relaxor.

  5. Construction of the wave operator for non-linear dispersive equations

    NASA Astrophysics Data System (ADS)

    Tsuruta, Kai Erik

    In this thesis, we will study non-linear dispersive equations. The primary focus will be on the construction of the positive-time wave operator for such equations. The positive-time wave operator problem arises in the study of the asymptotics of a partial differential equation. It is a map from a space of initial data X into itself, and is loosely defined as follows: Suppose that for a solution ψlin to the dispersive equation with no non-linearity and initial data ψ +, there exists a unique solution ψ to the non-linear equation with initial data ψ0 such that ψ behaves as ψ lin as t → infinity. Then the wave operator is the map W+ that takes ψ + to ψ0. By its definition, W+ is injective. An important additional question is whether or not the map is also surjective. If so, then every non-linear solution emanating from X behaves, in some sense, linearly as it evolves (this is known as asymptotic completeness). Thus, there is some justification for treating these solutions as their much simpler linear counterparts. The main results presented in this thesis revolve around the construction of the wave operator(s) at critical non-linearities. We will study the "semi-relativistic" Schrodinger equation as well as the Klein-Gordon-Schrodinger system on R2 . In both cases, we will impose fairly general quadratic non-linearities for which conservation laws cannot be relied upon. These non-linearities fall below the scaling required to employ such tools as the Strichartz estimates. We instead adapt the "first iteration method" of Jang, Li, and Zhang to our setting which depends crucially on the critical decay of the non-linear interaction of the linear evolution. To see the critical decay in our problem, careful analysis is needed to treat the regime where one has spatial and/or time resonance.

  6. Optimal control of a satellite-robot system using direct collocation with non-linear programming

    NASA Astrophysics Data System (ADS)

    Coverstone-Carroll, V. L.; Wilkey, N. M.

    1995-08-01

    The non-holonomic behavior of a satellite-robot system is used to develop the system's equations of motion. The resulting non-linear differential equations are transformed into a non-linear programming problem using direct collocation. The link rates of the robot are minimized along optimal reorientations. Optimal solutions to several maneuvers are obtained and the results are interpreted to gain an understanding of the satellite-robot dynamics.

  7. How does non-linear dynamics affect the baryon acoustic oscillation?

    SciTech Connect

    Sugiyama, Naonori S.; Spergel, David N. E-mail: dns@astro.princeton.edu

    2014-02-01

    We study the non-linear behavior of the baryon acoustic oscillation in the power spectrum and the correlation function by decomposing the dark matter perturbations into the short- and long-wavelength modes. The evolution of the dark matter fluctuations can be described as a global coordinate transformation caused by the long-wavelength displacement vector acting on short-wavelength matter perturbation undergoing non-linear growth. Using this feature, we investigate the well known cancellation of the high-k solutions in the standard perturbation theory. While the standard perturbation theory naturally satisfies the cancellation of the high-k solutions, some of the recently proposed improved perturbation theories do not guarantee the cancellation. We show that this cancellation clarifies the success of the standard perturbation theory at the 2-loop order in describing the amplitude of the non-linear power spectrum even at high-k regions. We propose an extension of the standard 2-loop level perturbation theory model of the non-linear power spectrum that more accurately models the non-linear evolution of the baryon acoustic oscillation than the standard perturbation theory. The model consists of simple and intuitive parts: the non-linear evolution of the smoothed power spectrum without the baryon acoustic oscillations and the non-linear evolution of the baryon acoustic oscillations due to the large-scale velocity of dark matter and due to the gravitational attraction between dark matter particles. Our extended model predicts the smoothing parameter of the baryon acoustic oscillation peak at z = 0.35 as ∼ 7.7Mpc/h and describes the small non-linear shift in the peak position due to the galaxy random motions.

  8. Characterization of Non-Linearized Spacecraft Relative Motion using Nonlinear Normal Modes

    DTIC Science & Technology

    2016-04-20

    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0182 TR-2015-0182 CHARACTERIZATION OF NON-LINEARIZED SPACECRAFT RELATIVE MOTION USING NONLINEAR NORMAL MODES Eric...Non-Linearized Spacecraft Relative Motion using Nonlinear Normal Modes 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F...public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Characterize the nonlinear dynamics for large amplitude relative motion

  9. Linear and non-linear fluorescence imaging of neuronal activity

    NASA Astrophysics Data System (ADS)

    Fisher, Jonathan A. N.

    Optical imaging of neuronal activity offers new possibilities for understanding brain physiology. The predominant methods in neuroscience for measuring electrical activity require electrodes inserted into the tissue. Such methods, however, provide limited spatial information and are invasive. Optical methods are less physically invasive and offer the possibility for simultaneously imaging the activity of many neurons. In this thesis one- and two-photon fluorescence microscopy techniques were applied to several in vivo and in vitro mammalian preparations. Using one-photon absorption fluorescence microscopy and gradient index (GRIN) lens optics, cortical electrical activity in response to electric stimulation was resolved in three-dimensions at high-speed in the primary somatosensory cortex of the mouse in vivo using voltage-sensitive dyes. Imaging at depths up to 150 mum below the cortex surface, it was possible to resolve depth-dependent patterns of neuronal activity in response to cortical and thalamic electric stimulation. The patterns of activity were consistent with known cortical cellular architecture. In a qualitatively different set of experiments, one-photon fluorescence microscopy via voltage-sensitive dyes was successfully employed to image an in vitro preparation of the perfused rat brainstem during the process of respiratory rhythmogenesis. Imaging results yielded insights into the spatial organization of the central respiratory rhythm generation region in the ventrolateral medulla. A multifocal two-photon scanning microscope was constructed, and design and operation principles are described. Utilizing the novel device, anatomical and functional two-photon imaging via potentiometric dyes and calcium dyes is described, and the results of in vivo versus in vitro imaging are compared. Anatomical imaging results used either functional probe background fluorescence or green fluorescent protein (GFP) expression. Spectroscopic experiments measuring the two

  10. Fault-tolerant control for a class of non-linear systems with dead-zone

    NASA Astrophysics Data System (ADS)

    Chen, Mou; Jiang, Bin; Guo, William W.

    2016-05-01

    In this paper, a fault-tolerant control scheme is proposed for a class of single-input and single-output non-linear systems with the unknown time-varying system fault and the dead-zone. The non-linear state observer is designed for the non-linear system using differential mean value theorem, and the non-linear fault estimator that estimates the unknown time-varying system fault is developed. On the basis of the designed fault estimator, the observer-based fault-tolerant tracking control is then developed using the backstepping technique for non-linear systems with the dead-zone. The stability of the whole closed-loop system is rigorously proved via Lyapunov analysis and the satisfactory tracking control performance is guaranteed in the presence of the unknown time-varying system fault and the dead-zone. Numerical simulation results are presented to illustrate the effectiveness of the proposed backstepping fault-tolerant control scheme for non-linear systems.

  11. A Bayesian approach for estimating under-reported dengue incidence with a focus on non-linear associations between climate and dengue in Dhaka, Bangladesh.

    PubMed

    Sharmin, Sifat; Glass, Kathryn; Viennet, Elvina; Harley, David

    2016-05-13

    Determining the relation between climate and dengue incidence is challenging due to under-reporting of disease and consequent biased incidence estimates. Non-linear associations between climate and incidence compound this. Here, we introduce a modelling framework to estimate dengue incidence from passive surveillance data while incorporating non-linear climate effects. We estimated the true number of cases per month using a Bayesian generalised linear model, developed in stages to adjust for under-reporting. A semi-parametric thin-plate spline approach was used to quantify non-linear climate effects. The approach was applied to data collected from the national dengue surveillance system of Bangladesh. The model estimated that only 2.8% (95% credible interval 2.7-2.8) of all cases in the capital Dhaka were reported through passive case reporting. The optimal mean monthly temperature for dengue transmission is 29℃ and average monthly rainfall above 15 mm decreases transmission. Our approach provides an estimate of true incidence and an understanding of the effects of temperature and rainfall on dengue transmission in Dhaka, Bangladesh.

  12. Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates based on the modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Askari, Amir R.; Tahani, Masoud

    2017-02-01

    This paper focuses on the size-dependent dynamic pull-in instability in rectangular micro-plates actuated by step-input DC voltage. The present model accounts for the effects of in-plane displacements and their non-classical higher-order boundary conditions, von Kármán geometric non-linearity, non-classical couple stress components and the inherent non-linearity of distributed electrostatic pressure on the micro-plate motion. The governing equations of motion, which are clearly derived using Hamilton's principle, are solved through a novel computationally very efficient Galerkin-based reduced order model (ROM) in which all higher-order non-classical boundary conditions are completely satisfied. The present findings are compared and successfully validated by available results in the literature as well as those obtained by three-dimensional finite element simulations carried out using COMSOL Multyphysics. A detailed parametric study is also conducted to illustrate the effects of in-plane displacements, plate aspect ratio, couple stress components and geometric non-linearity on the dynamic instability threshold of the system.

  13. The Non-linear Health Consequences of Living in Larger Cities.

    PubMed

    Rocha, Luis E C; Thorson, Anna E; Lambiotte, Renaud

    2015-10-01

    Urbanization promotes economy, mobility, access, and availability of resources, but on the other hand, generates higher levels of pollution, violence, crime, and mental distress. The health consequences of the agglomeration of people living close together are not fully understood. Particularly, it remains unclear how variations in the population size across cities impact the health of the population. We analyze the deviations from linearity of the scaling of several health-related quantities, such as the incidence and mortality of diseases, external causes of death, wellbeing, and health care availability, in respect to the population size of cities in Brazil, Sweden, and the USA. We find that deaths by non-communicable diseases tend to be relatively less common in larger cities, whereas the per capita incidence of infectious diseases is relatively larger for increasing population size. Healthier lifestyle and availability of medical support are disproportionally higher in larger cities. The results are connected with the optimization of human and physical resources and with the non-linear effects of social networks in larger populations. An urban advantage in terms of health is not evident, and using rates as indicators to compare cities with different population sizes may be insufficient.

  14. A NON-LINEAR STRUCTURE-PROPERTY MODEL FOR OCTANOL-WATER PARTITION COEFFICIENT.

    PubMed

    Yerramsetty, Krishna M; Neely, Brian J; Gasem, Khaled A M

    2012-10-25

    Octanol-water partition coefficient (K(ow)) is an important thermodynamic property used to characterize the partitioning of solutes between an aqueous and organic phase and has importance in such areas as pharmacology, pharmacokinetics, pharmacodynamics, chemical production and environmental toxicology. We present a non-linear quantitative structure-property relationship model for determining K(ow) values of new molecules in silico. A total of 823 descriptors were generated for 11,308 molecules whose K(ow) values are reported in the PhysProp dataset by Syracuse Research. Optimum network architecture and its associated inputs were identified using a wrapper-based feature selection algorithm that combines differential evolution and artificial neural networks. A network architecture of 50-33-35-1 resulted in the least root-mean squared error (RMSE) in the training set. Further, to improve on single-network predictions, a neural network ensemble was developed by combining five networks that have the same architecture and inputs but differ in layer weights. The ensemble predicted the K(ow) values with RMSE of 0.28 and 0.38 for the training set and internal validation set, respectively. The ensemble performed reasonably well on an external dataset when compared with other popular K(ow) models in the literature.

  15. Non-Linear Harmonic flow simulations of a High-Head Francis Turbine test case

    NASA Astrophysics Data System (ADS)

    Lestriez, R.; Amet, E.; Tartinville, B.; Hirsch, C.

    2016-11-01

    This work investigates the use of the non-linear harmonic (NLH) method for a high- head Francis turbine, the Francis99 workshop test case. The NLH method relies on a Fourier decomposition of the unsteady flow components in harmonics of Blade Passing Frequencies (BPF), which are the fundamentals of the periodic disturbances generated by the adjacent blade rows. The unsteady flow solution is obtained by marching in pseudo-time to a steady-state solution of the transport equations associated with the time-mean, the BPFs and their harmonics. Thanks to this transposition into frequency domain, meshing only one blade channel is sufficient, like for a steady flow simulation. Notable benefits in terms of computing costs and engineering time can therefore be obtained compared to classical time marching approach using sliding grid techniques. The method has been applied for three operating points of the Francis99 workshop high-head Francis turbine. Steady and NLH flow simulations have been carried out for these configurations. Impact of the grid size and near-wall refinement is analysed on all operating points for steady simulations and for Best Efficiency Point (BEP) for NLH simulations. Then, NLH results for a selected grid size are compared for the three different operating points, reproducing the tendencies observed in the experiment.

  16. Non-Linear Optical Response Simulations for Strongly Corellated Hybrid Carbon Nanotube Systems

    NASA Astrophysics Data System (ADS)

    Meliksetyan, Areg; Bondarev, Igor; Gelin, Maxim

    2013-03-01

    Hybrid carbon nanotube systems, nanotubes containing extrinsic atomic type species (dopants) such as semiconductor quantum dots, extrinsic atoms, or ions, are promising candidates for the development of the new generation of tunable nanooptoelectronic devices - both application oriented, e.g., photovoltaic devices of improved light-harvesting efficiency, and devices for use in fundamental research. Here, we simulate non-linear optical response signals for a pair of spatially separated two-level dipole emitters (to model the dopants above) in the regime where they are coupled strongly to a low-energy surface plasmon resonance of a metallic carbon nanotube. Such a coupling makes them entangled, and we show that the cross-peaks in 2D photon-echo spectra are indicative of the bipartite entanglement being present in the system. We simulate various experimental conditions and formulate practical recommendations for the reliable experimental observation of this unique quantum phenomenon of relevance to the solid-state quantum information science. ARO-W911NF-11-1-0189 (AM), DOE-DE-SC0007117 (IB), DFG-MAP (MG)

  17. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    SciTech Connect

    Xu, S. F.; Zhong, X. X.

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  18. System and Method for Determining Gas Optical Density Changes in a Non-Linear Measurement Regime

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Rana, Mauro (Inventor)

    2007-01-01

    Each of two sensors, positioned to simultaneously detect electromagnetic radiation absorption along a path, is calibrated to define a unique response curve associated therewith that relates a change in voltage output for each sensor to a change in optical density. A ratio-of-responses curve is defined by a ratio of the response curve associated with the first sensor to the response curve associated with the second sensor. A ratio of sensor output changes is generated using outputs from the sensors. An operating point on the ratio-of-responses curve is established using the ratio of sensor output changes. The established operating point is indicative of an optical density. When the operating point is in the non-linear response region of at least one of the sensors, the operating point and optical density corresponding thereto can be used to establish an actual response of at least one of the sensors whereby the actual sensor output can be used in determining changes in the optical density.

  19. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    NASA Astrophysics Data System (ADS)

    Xu, S. F.; Zhong, X. X.

    2015-10-01

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  20. A high repetition rate experimental setup for quantum non-linear optics with cold Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Busche, Hannes; Ball, Simon W.; Huillery, Paul

    2016-12-01

    Using electromagnetically induced transparency and photon storage, the strong dipolar interactions between Rydberg atoms and the resulting dipole blockade can be mapped onto light fields to realise optical non-linearities and interactions at the single photon level. We report on the realisation of an experimental apparatus designed to study interactions between single photons stored as Rydberg excitations in optically trapped microscopic ensembles of ultracold 87Rb atoms. A pair of in-vacuum high numerical aperture lenses focus excitation and trapping beams down to 1 μm, well below the Rydberg blockade. Thanks to efficient magneto-optical trap (MOT) loading from an atomic beam generated by a 2D MOT and the ability to recycle the microscopic ensembles more than 20000 times without significant atom loss, we achieve effective repetition rates exceeding 110 kHz to obtain good photon counting statistics on reasonable time scales. To demonstrate the functionality of the setup, we present evidence of strong photon interactions including saturation of photon storage and the retrieval of non-classical light. Using in-vacuum antennae operating at up to 40 GHz, we perform microwave spectroscopy on photons stored as Rydberg excitations and observe an interaction induced change in lineshape depending on the number of stored photons.

  1. Non-linear finite element simulations of injuries with free boundaries: application to surgical wounds

    PubMed Central

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.

    2015-01-01

    SUMMARY Wound healing is a process driven by biochemical and mechanical variables in which new tissue is synthesised to recover original tissue functionality. Wound morphology plays a crucial role in this process, as the skin behaviour is not uniform along different directions. In this work we simulate the contraction of surgical wounds, which can be characterised as elongated and deep wounds. Due to the regularity of this morphology, we approximate the evolution of the wound through its cross-section, adopting a plane strain hypothesis. This simplification reduces the complexity of the computational problem while maintaining allows for a thorough analysis of the role of wound depth in the healing process, an aspect of medical and computational relevance that has not yet been addressed. To reproduce wound contraction we consider the role of fibroblasts, myofibroblasts, collagen and a generic growth factor. The contraction phenomenon is driven by cell-generated forces. We postulate that these forces are adjusted to the mechanical environment of the tissue where cells are embedded through a mechanosensing and mechanotransduction mechanism. To solve the non-linear problem we use the Finite Element Method and an updated Lagrangian approach to represent the change in the geometry. To elucidate the role of wound depth and width on the contraction pattern and evolution of the involved species, we analyse different wound geometries with the same wound area. We find that deeper wounds contract less and reach a maximum contraction rate earlier than superficial wounds. PMID:24443355

  2. More accurate Talairach coordinates for neuroimaging using non-linear registration.

    PubMed

    Lacadie, Cheryl M; Fulbright, Robert K; Rajeevan, Nallakkandi; Constable, R Todd; Papademetris, Xenophon

    2008-08-15

    While the Talairach atlas remains the most commonly used system for reporting coordinates in neuroimaging studies, the absence of an actual 3-D image of the original brain used in its construction has severely limited the ability of researchers to automatically map locations from 3-D anatomical MRI images to the atlas. Previous work in this area attempted to circumvent this problem by constructing approximate linear and piecewise-linear mappings between standard brain templates (e.g. the MNI template) and Talairach space. These methods are limited in that they can only account for differences in overall brain size and orientation but cannot correct for the actual shape differences between the MNI template and the Talairach brain. In this paper we describe our work to digitize the Talairach atlas and generate a non-linear mapping between the Talairach atlas and the MNI template that attempts to compensate for the actual differences in shape between the two, resulting in more accurate coordinate transformations. We present examples in this paper and note that the method is available freely online as a Java applet.

  3. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light.

    PubMed

    Wade, A R; Mansell, G L; McRae, T G; Chua, S S Y; Yap, M J; Ward, R L; Slagmolen, B J J; Shaddock, D A; McClelland, D E

    2016-06-01

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

  4. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    SciTech Connect

    Gao, Q. D.; Budny, R. V.

    2015-03-15

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  5. Progress in optical parametric oscillators

    NASA Technical Reports Server (NTRS)

    Fan, Y. X.; Byer, R. L.

    1984-01-01

    It is pointed out that tunable coherent sources are very useful for many applications, including spectroscopy, chemistry, combustion diagnostics, and remote sensing. Compared with other tunable sources, optical parametric oscillators (OPO) offer the potential advantage of a wide wavelength operating range, which extends from 0.2 micron to 25 microns. The current status of OPO is examined, taking into account mainly advances made during the last decade. Attention is given to early LiNbO3 parametric oscillators, problems which have prevented wide use of parametric oscillators, the demonstration of OPO's using urea and AgGaS2, progress related to picosecond OPO's, a breakthrough in nanosecond parametric oscillators, the first demonstration of a waveguide and fiber parametric amplification and generation, the importance of chalcopyrite crystals, and theoretical work performed with the aim to understand the factors affecting the parametric oscillator performance.

  6. Non-linear dynamic analysis of a multi-mesh gear train using multi-term harmonic balance method: sub-harmonic motions

    NASA Astrophysics Data System (ADS)

    Al-shyyab, A.; Kahraman, A.

    2005-01-01

    In this study, a non-linear time-varying dynamic model is used to investigate sub-harmonic and chaotic motions exhibited by a typical multi-mesh gear train. The purely torsional system is formed by three rigid shafts connected to each other by two spur gear pairs. The lumped parameter dynamic model includes both gear backlash clearances and parametric gear mesh stiffness fluctuations. Steady state period-one motions of the same system were studied in another by using a multi-term harmonic balance method in conjunction with discrete Fourier transforms. This study expands the same solution technique for an investigation of sub-harmonic resonances of the forced response. The accuracy of the predictions is demonstrated by comparing them to the direct numerical integration results. Effect of several system parameters such as alternating mesh stiffness amplitudes, gear mesh damping and static torque transmitted on sub-harmonic motions are described. It is shown that stable sub-harmonic motions mostly in the form of softening type resonances dictate the frequency ranges in which the period-one motions are unstable due to parametric excitations. Other non-linear phenomena including long sub-harmonic motions and period-doubling bifurcations leading to chaotic behavior are also predicted.

  7. Design and Initial In-Water Testing of Advanced Non-Linear Control Algorithms onto an Unmanned Underwater Vehicle (UUV)

    DTIC Science & Technology

    2007-10-01

    Design and initial in-water testing of advanced non- linear control algorithms onto an Unmanned Underwater Vehicle (UUV) Vladimir Djapic Unmanned...attitude or translating in a direction different from that of the surface. Non- linear controller that compensates for non-linear forces (such as drag...loop” non- linear controller (outputs the appropriate thrust values) is the same for all mission scenarios while an appropriate ”outer-loop” non

  8. Multiple Frequency Parametric Sonar

    DTIC Science & Technology

    2015-09-28

    300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...beams. However, the multiple nonlinear interactions are not taken advantage of in order to generate additional efficiencies, bandwidth, and SNR...array. [0050] It will be understood that many additional changes in details, materials , steps, and arrangements of parts which have been described

  9. Non-linear switching based on dual-core non-linear optical fiber couplers with XPM and Raman intrapulse applied to femtosecond pulse propagation

    NASA Astrophysics Data System (ADS)

    Gonçalves Correia, Dayse; Viana Ávila, Kilvia Maria; Cavalcante, Daniel do Nascimento e. Sá; Ferreira Pinto, Paulo Victor; Tadeu de Carvalho Belchior Magalhães, Francisco; Pinheiro de Moura, Lucas; da Conceição Ferreira, Alisson; Mendonça Menezes, Jose Wally; de Freitas Guimarães, Glendo

    2016-03-01

    In this work, we investigated the optical switching process for three shapes of femtosecond pulses (soliton, Gaussian and super-Gaussian) propagating inside a symmetrical dual-core non-linear directional coupler by simulating their propagation via the coupled non-linear Schrödinger equations. In all simulations, we considered the dispersive effects of second and third order, besides the self-phase modulation and self-steepening non-linear effects. We studied three scenarios for each of the three pulse shapes under investigation. In the first scenario, we added only cross-phase modulation (XPM); in the second approach, we added only Raman scattering; in the third one, we combined both. The study was performed for distinct polarization modes and for different values of the Raman factor, with power range varying from 1 to 300 W. We noted that the XPM non-linear effect results in a decrease in the critical power threshold, whereas the Raman scattering causes an increase. For the first scenario (only XPM effect), the critical power threshold reduced from 113.72 to 104.69 W for the soliton pulse, from 111.49 to 100.77 W for the Gaussian and from 92.79 to 80.47 W for the Super-Gaussian pulse shape. For the second scenario (only Raman scattering), the critical power increased for a Raman factor varying from 1 to 10 fs, and the three pulse shapes reached thresholds above 150 W from a 5 fs factor, reaching more than 200 W for the super-Gaussian pulse as the Raman factor increased. For the third scenario (with both effects combined), we highlight that for a fixed XPM factor of 2, the critical power remained unchanged with the variation of the Raman factor. Hence, we observed that the Super-Gaussian pulse reached lower values for critical power when compared to the other pulse shapes.

  10. Telecom-band two-photon Michelson interferometer using frequency entangled photon pairs generated by spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Akio; Fukuda, Daiji; Tsuchida, Hidemi

    2014-02-01

    We demonstrate a telecom-band fiber-optic two-photon Michelson interferometer using near-degenerate and collinear photon pairs with frequency entanglement. For spontaneous parametric down-conversion (SPDC), a continuous-wave laser diode pumps a periodically poled lithium niobate waveguide. Two threshold single-photon detectors record coincidence counts to observe two-photon interference and evaluate the correlation function. Multi-pair emission events are inevitable in SPDC and photon pairs without frequency entanglement are unintentionally registered as coincidence counts. In the demonstrated experiment, a mixture of photon pairs with and without frequency entanglement is present. The effects of such a mixed state on the correlation function are experimentally investigated. Two-photon interference of photon pairs without frequency entanglement is also measured for comparison.

  11. Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2016-05-01

    An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels.

  12. Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.

    2016-02-01

    Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ˜ 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20-30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.

  13. Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models

    USGS Publications Warehouse

    Geist, Eric L.

    2016-01-01

    Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ∼ 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20–30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.

  14. Visualization of mouse neuronal ganglia infected by Herpes Simplex Virus 1 (HSV-1) using multimodal non-linear optical microscopy.

    PubMed

    Rochette, Pierre-Alexandre; Laliberté, Mathieu; Bertrand-Grenier, Antony; Houle, Marie-Andrée; Blache, Marie-Claire; Légaré, François; Pearson, Angela

    2014-01-01

    Herpes simplex virus 1 (HSV-1) is a neurotropic virus that causes skin lesions and goes on to enter a latent state in neurons of the trigeminal ganglia. Following stress, the virus may reactivate from latency leading to recurrent lesions. The in situ study of neuronal infections by HSV-1 is critical to understanding the mechanisms involved in the biology of this virus and how it causes disease; however, this normally requires fixation and sectioning of the target tissues followed by treatment with contrast agents to visualize key structures, which can lead to artifacts. To further our ability to study HSV-1 neuropathogenesis, we have generated a recombinant virus expressing a second generation red fluorescent protein (mCherry), which behaves like the parental virus in vivo. By optimizing the application of a multimodal non-linear optical microscopy platform, we have successfully visualized in unsectioned trigeminal ganglia of mice both infected cells by two-photon fluorescence microscopy, and myelinated axons of uninfected surrounding cells by coherent anti-Stokes Raman scattering (CARS) microscopy. These results represent the first report of CARS microscopy being combined with 2-photon fluorescence microscopy to visualize virus-infected cells deep within unsectioned explanted tissue, and demonstrate the application of multimodal non-linear optical microscopy for high spatial resolution biological imaging of tissues without the use of stains or fixatives.

  15. Visualization of Mouse Neuronal Ganglia Infected by Herpes Simplex Virus 1 (HSV-1) Using Multimodal Non-Linear Optical Microscopy

    PubMed Central

    Rochette, Pierre-Alexandre; Laliberté, Mathieu; Bertrand-Grenier, Antony; Houle, Marie-Andrée; Blache, Marie-Claire; Légaré, François; Pearson, Angela

    2014-01-01

    Herpes simplex virus 1 (HSV-1) is a neurotropic virus that causes skin lesions and goes on to enter a latent state in neurons of the trigeminal ganglia. Following stress, the virus may reactivate from latency leading to recurrent lesions. The in situ study of neuronal infections by HSV-1 is critical to understanding the mechanisms involved in the biology of this virus and how it causes disease; however, this normally requires fixation and sectioning of the target tissues followed by treatment with contrast agents to visualize key structures, which can lead to artifacts. To further our ability to study HSV-1 neuropathogenesis, we have generated a recombinant virus expressing a second generation red fluorescent protein (mCherry), which behaves like the parental virus in vivo. By optimizing the application of a multimodal non-linear optical microscopy platform, we have successfully visualized in unsectioned trigeminal ganglia of mice both infected cells by two-photon fluorescence microscopy, and myelinated axons of uninfected surrounding cells by coherent anti-Stokes Raman scattering (CARS) microscopy. These results represent the first report of CARS microscopy being combined with 2-photon fluorescence microscopy to visualize virus-infected cells deep within unsectioned explanted tissue, and demonstrate the application of multimodal non-linear optical microscopy for high spatial resolution biological imaging of tissues without the use of stains or fixatives. PMID:25133579

  16. Non-Linear Dynamical Classification of Short Time Series of the Rössler System in High Noise Regimes

    PubMed Central

    Lainscsek, Claudia; Weyhenmeyer, Jonathan; Hernandez, Manuel E.; Poizner, Howard; Sejnowski, Terrence J.

    2013-01-01

    Time series analysis with delay differential equations (DDEs) reveals non-linear properties of the underlying dynamical system and can serve as a non-linear time-domain classification tool. Here global DDE models were used to analyze short segments of simulated time series from a known dynamical system, the Rössler system, in high noise regimes. In a companion paper, we apply the DDE model developed here to classify short segments of encephalographic (EEG) data recorded from patients with Parkinson’s disease and healthy subjects. Nine simulated subjects in each of two distinct classes were generated by varying the bifurcation parameter b and keeping the other two parameters (a and c) of the Rössler system fixed. All choices of b were in the chaotic parameter range. We diluted the simulated data using white noise ranging from 10 to −30 dB signal-to-noise ratios (SNR). Structure selection was supervised by selecting the number of terms, delays, and order of non-linearity of the model DDE model that best linearly separated the two classes of data. The distances d from the linear dividing hyperplane was then used to assess the classification performance by computing the area A′ under the ROC curve. The selected model was tested on untrained data using repeated random sub-sampling validation. DDEs were able to accurately distinguish the two dynamical conditions, and moreover, to quantify the changes in the dynamics. There was a significant correlation between the dynamical bifurcation parameter b of the simulated data and the classification parameter d from our analysis. This correlation still held for new simulated subjects with new dynamical parameters selected from each of the two dynamical regimes. Furthermore, the correlation was robust to added noise, being significant even when the noise was greater than the signal. We conclude that DDE models may be used as a generalizable and reliable classification tool for even small segments of noisy data. PMID

  17. The effect of non-linear human visual system components on linear model observers

    NASA Astrophysics Data System (ADS)

    Zhang, Yani; Pham, Binh T.; Eckstein, Miguel P.

    2004-05-01

    Linear model observers have been used successfully to predict human performance in clinically relevant visual tasks for a variety of backgrounds. On the other hand, there has been another family of models used to predict human visual detection of signals superimposed on one of two identical backgrounds (masks). These masking models usually include a number of non-linear components in the channels that reflect properties of the firing of cells in the primary visual cortex (V1). The relationship between these two traditions of models has not been extensively investigated in the context of detection in noise. In this paper, we evaluated the effect of including some of these non-linear components into a linear channelized Hotelling observer (CHO), and the associated practical implications for medical image quality evaluation. In particular, we evaluate whether the rank order evaluation of two compression algorithms (JPEG vs. JPEG 2000) is changed by inclusion of the non-linear components. The results show: a) First that the simpler linear CHO model observer outperforms CHO model with the nonlinear components investigated. b) The rank order of model observer performance for the compression algorithms did not vary when the non-linear components were included. For the present task, the results suggest that the addition of the physiologically based channel non-linearities to a channelized Hotelling might add complexity to the model observers without great impact on medical image quality evaluation.

  18. ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation

    NASA Astrophysics Data System (ADS)

    Forget, G.; Campin, J.-M.; Heimbach, P.; Hill, C. N.; Ponte, R. M.; Wunsch, C.

    2015-05-01

    This paper presents the ECCO v4 non-linear inverse modeling framework and its baseline solution for the evolving ocean state over the period 1992-2011. Both components are publicly available and highly integrated with the MITgcm. They are both subjected to regular, automated regression tests. The modeling framework includes sets of global conformal grids, a global model setup, implementations of model-data constraints and adjustable control parameters, an interface to algorithmic differentiation, as well as a grid-independent, fully capable Matlab toolbox. The reference ECCO v4 solution is a dynamically consistent ocean state estimate (ECCO-Production, release 1) without un-identified sources of heat and buoyancy, which any interested user will be able to reproduce accurately. The solution is an acceptable fit to most data and has been found physically plausible in many respects, as documented here and in related publications. Users are being provided with capabilities to assess model-data misfits for themselves. The synergy between modeling and data synthesis is asserted through the joint presentation of the modeling framework and the state estimate. In particular, the inverse estimate of parameterized physics was instrumental in improving the fit to the observed hydrography, and becomes an integral part of the ocean model setup available for general use. More generally, a first assessment of the relative importance of external, parametric and structural model errors is presented. Parametric and external model uncertainties appear to be of comparable importance and dominate over structural model uncertainty. The results generally underline the importance of including turbulent transport parameters in the inverse problem.

  19. On incremental non-linearity in granular media: phenomenological and multi-scale views

    NASA Astrophysics Data System (ADS)

    Darve, Félix; Nicot, François

    2005-12-01

    On the basis of fundamental constitutive laws such as elasticity, perfect plasticity, and pure viscosity, many elasto-viscoplastic constitutive relations have been developed since the 1970s through phenomenological approaches. In addition, a few more recent micro-mechanical models based on multi-scale approaches are now able to describe the main macroscopic features of the mechanical behaviour of granular media. The purpose of this paper is to compare a phenomenological constitutive relation and a micro-mechanical model with respect to a basic issue regularly raised about granular assemblies: the incrementally non-linear character of their behaviour. It is shown that both phenomenological and micro-mechanical models exhibit an incremental non-linearity. In addition, the multi-scale approach reveals that the macroscopic incremental non-linearity could stem from the change in the regime of local contacts between particles (from plastic regime to elastic regime) in terms of the incremental macroscopic loading direction. Copyright

  20. Real-Time Monitoring of Non-linear Suicidal Dynamics: Methodology and a Demonstrative Case Report

    PubMed Central

    Fartacek, Clemens; Schiepek, Günter; Kunrath, Sabine; Fartacek, Reinhold; Plöderl, Martin

    2016-01-01

    In recent years, a number of different authors have stressed the usefulness of non-linear dynamic systems approach in suicide research and suicide prevention. This approach applies specific methods of time series analysis and, consequently, it requires a continuous and fine-meshed assessment of the processes under consideration. The technical means for this kind of process assessment and process analysis are now available. This paper outlines how suicidal dynamics can be monitored in high-risk patients by an Internet-based application for continuous self-assessment with integrated tools of non-linear time series analysis: the Synergetic Navigation System. This procedure is illustrated by data from a patient who attempted suicide at the end of a 90-day monitoring period. Additionally, future research topics and clinical applications of a non-linear dynamic systems approach in suicidology are discussed. PMID:26913016

  1. A Signal Transmission Technique for Stability Analysis of Multivariable Non-Linear Control Systems

    NASA Technical Reports Server (NTRS)

    Jackson, Mark; Zimpfer, Doug; Adams, Neil; Lindsey, K. L. (Technical Monitor)

    2000-01-01

    Among the difficulties associated with multivariable, non-linear control systems is the problem of assessing closed-loop stability. Of particular interest is the class of non-linear systems controlled with on/off actuators, such as spacecraft thrusters or electrical relays. With such systems, standard describing function techniques are typically too conservative, and time-domain simulation analysis is prohibitively extensive, This paper presents an open-loop analysis technique for this class of non-linear systems. The technique is centered around an innovative use of multivariable signal transmission theory to quantify the plant response to worst case control commands. The technique has been applied to assess stability of thruster controlled flexible space structures. Examples are provided for Space Shuttle attitude control with attached flexible payloads.

  2. Non-linear effects of soda taxes on consumption and weight outcomes.

    PubMed

    Fletcher, Jason M; Frisvold, David E; Tefft, Nathan

    2015-05-01

    The potential health impacts of imposing large taxes on soda to improve population health have been of interest for over a decade. As estimates of the effects of existing soda taxes with low rates suggest little health improvements, recent proposals suggest that large taxes may be effective in reducing weight because of non-linear consumption responses or threshold effects. This paper tests this hypothesis in two ways. First, we estimate non-linear effects of taxes using the range of current rates. Second, we leverage the sudden, relatively large soda tax increase in two states during the early 1990s combined with new synthetic control methods useful for comparative case studies. Our findings suggest virtually no evidence of non-linear or threshold effects.

  3. Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School

    SciTech Connect

    Russell, Steven J.; Carlsten, Bruce E.

    2012-06-26

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

  4. Non-Linear Dynamics Tools for the Motion Analysis and Condition Monitoring of Robot Joints

    NASA Astrophysics Data System (ADS)

    Trendafilova, I.; van Brussel, H.

    2001-11-01

    Time series from non-damaged and three types of damaged robot joints are considered and analysed from the viewpoint of non-linear dynamics. The embedding spaces for the four types of signals are recovered. The application of surrogate data tests is used to prove the presence of non-linearities in the joints. The results suggest a rise in unstable behaviour due to the introduction of backlash in robot joints. The chaotic behaviour gets stronger with the increase of the backlash extent. This is confirmed by the increase of the embedding dimension as well as by the increase of the Lyapunov exponents and the correlation dimension with the backlash increase. A straightforward method for condition monitoring using non-linear dynamics characteristics, based on a classification procedure, is suggested.

  5. Exact Adjustment of Dynamic Forces in Presence of Non-Linear Feedback and SINGULARITY—THEORY and Algorithm

    NASA Astrophysics Data System (ADS)

    Bucher, I.

    1998-11-01

    This paper describes the theory and algorithm allowing one to tune a multi-exciter system in order to obtain specified temporal and spatial structural response properties. Considerable effort is being put upon the desire to overcome practical difficulties and limitations as found in real-world systems. The main application that was envisaged for this algorithm is the creation of travelling vibration waves in structures. Such waves may be useful in testing and diagnostic applications or in ultrasonic motors for generating motion. The proposed method adaptively modifies a set of perturbations applied to the model so that an increasing amount of information is extracted from the system. The algorithm strives to overcome the following difficulties: (a) singular model inversion, (b) poor signal to noise ratio, (c) feedback, and (d) certain types of non-linear behaviour. High response levels, exciter-structure coupling and the inherent feedback existing in electro-mechanical systems are demonstrated to cause singularity, poor signal to noise levels and, to some extent, non linear behaviour. These phenomena pose some difficulties under operating conditions commonly encountered during dynamic testing of structures. The tuning of the multi-shaker system is approached in this work, as a non-linear optimisation problem where insight into the physical behaviour is emphasised in choosing the algorithmic strategy. The system's unknown model is inverted in an implicit manner using an automatic orthogonal and adaptive search direction. This adaptation uses the measured responses and forces at each step in order to determine the direction of progression during the tuning process. The non-linear behaviour of the exciters is compensated, in this work, by identification of the high-order (Volterra-like) transfer functions. This high-order model is than inverted allowing one to create a signal that cancels the unwanted harmonics. The proposed approach is analytically shown to converge

  6. The non-linear power spectrum of the Lyman alpha forest

    SciTech Connect

    Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue E-mail: miralda@icc.ub.edu E-mail: cen@astro.princeton.edu

    2015-12-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.

  7. Analysis of linear and non-linear genotype × environment interaction.

    PubMed

    Yang, Rong-Cai

    2014-01-01

    The usual analysis of genotype × environment interaction (G × E) is based on the linear regression of genotypic performance on environmental changes (e.g., classic stability analysis). This linear model may often lead to lumping together of the non-linear responses to the whole range of environmental changes from suboptimal and super optimal conditions, thereby lowering the power of detecting G × E variation. On the other hand, the G × E is present when the magnitude of the genetic effect differs across the range of environmental conditions regardless of whether the response to environmental changes is linear or non-linear. The objectives of this study are: (i) explore the use of four commonly used non-linear functions (logistic, parabola, normal and Cauchy functions) for modeling non-linear genotypic responses to environmental changes and (ii) to investigate the difference in the magnitude of estimated genetic effects under different environmental conditions. The use of non-linear functions was illustrated through the analysis of one data set taken from barley cultivar trials in Alberta, Canada (Data A) and the examination of change in effect sizes is through the analysis another data set taken from the North America Barley Genome Mapping Project (Data B). The analysis of Data A showed that the Cauchy function captured an average of >40% of total G × E variation whereas the logistic function captured less G × E variation than the linear function. The analysis of Data B showed that genotypic responses were largely linear and that strong QTL × environment interaction existed as the positions, sizes and directions of QTL detected differed in poor vs. good environments. We conclude that (i) the non-linear functions should be considered when analyzing multi-environmental trials with a wide range of environmental variation and (ii) QTL × environment interaction can arise from the difference in effect sizes across environments.

  8. Analysis of linear and non-linear genotype × environment interaction

    PubMed Central

    Yang, Rong-Cai

    2014-01-01

    The usual analysis of genotype × environment interaction (G × E) is based on the linear regression of genotypic performance on environmental changes (e.g., classic stability analysis). This linear model may often lead to lumping together of the non-linear responses to the whole range of environmental changes from suboptimal and super optimal conditions, thereby lowering the power of detecting G × E variation. On the other hand, the G × E is present when the magnitude of the genetic effect differs across the range of environmental conditions regardless of whether the response to environmental changes is linear or non-linear. The objectives of this study are: (i) explore the use of four commonly used non-linear functions (logistic, parabola, normal and Cauchy functions) for modeling non-linear genotypic responses to environmental changes and (ii) to investigate the difference in the magnitude of estimated genetic effects under different environmental conditions. The use of non-linear functions was illustrated through the analysis of one data set taken from barley cultivar trials in Alberta, Canada (Data A) and the examination of change in effect sizes is through the analysis another data set taken from the North America Barley Genome Mapping Project (Data B). The analysis of Data A showed that the Cauchy function captured an average of >40% of total G × E variation whereas the logistic function captured less G × E variation than the linear function. The analysis of Data B showed that genotypic responses were largely linear and that strong QTL × environment interaction existed as the positions, sizes and directions of QTL detected differed in poor vs. good environments. We conclude that (i) the non-linear functions should be considered when analyzing multi-environmental trials with a wide range of environmental variation and (ii) QTL × environment interaction can arise from the difference in effect sizes across environments. PMID:25101112

  9. The non-linear power spectrum of the Lyman alpha forest

    NASA Astrophysics Data System (ADS)

    Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue

    2015-12-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z~ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.

  10. Error-rate estimation in discriminant analysis of non-linear longitudinal data: A comparison of resampling methods.

    PubMed

    de la Cruz, Rolando; Fuentes, Claudio; Meza, Cristian; Núñez-Antón, Vicente

    2016-07-08

    Consider longitudinal observations across different subjects such that the underlying distribution is determined by a non-linear mixed-effects model. In this context, we look at the misclassification error rate for allocating future subjects using cross-validation, bootstrap algorithms (parametric bootstrap, leave-one-out, .632 and [Formula: see text]), and bootstrap cross-validation (which combines the first two approaches), and conduct a numerical study to compare the performance of the different methods. The simulation and comparisons in this study are motivated by real observations from a pregnancy study in which one of the main objectives is to predict normal versus abnormal pregnancy outcomes based on information gathered at early stages. Since in this type of studies it is not uncommon to have insufficient data to simultaneously solve the classification problem and estimate the misclassification error rate, we put special attention to situations when only a small sample size is available. We discuss how the misclassification error rate estimates may be affected by the sample size in terms of variability and bias, and examine conditions under which the misclassification error rate estimates perform reasonably well.

  11. Non-linear performance of a three-bearing rotor incorporating a squeeze-film damper

    NASA Technical Reports Server (NTRS)

    Holmes, R.; Dede, M.

    1987-01-01

    This paper is concerned with the non-linear vibration performance of a rigid rotor supported on three bearings, one being surrounded by a squeeze-film damper. This damper relies on the pressure built up in the squeeze film to help counter-act external forces arising from unbalance and other effects. As a result a vibration orbit of a certain magnetude results. Such vibration orbits illustrate features found in other non-linear systems, in particular sub-harmonic resonances and jump phenomena. Comparisons between theoretical prediction and experimental observations of these phenomena are made.

  12. [Non-linear rectification of sensor based on immune genetic algorithm].

    PubMed

    Lu, Lirong; Zhou, Jinyang; Niu, Xiaodong

    2014-08-01

    A non-linear rectification based on immune genetic algorithm (IGA) is proposed in this paper, for the shortcoming of the non-linearity rectification. This algorithm introducing the biologic immune mechanism into the genetic algorithm can restrain the disadvantages that the poor precision, slow convergence speed and early maturity of the genetic algorithm. Computer simulations indicated that the algorithm not only keeps population diversity, but also increases the convergent speed, precision and the stability greatly. The results have shown the correctness and effectiveness of the method.

  13. Free Convective Nonaligned Non-Newtonian Flow with Non-linear Thermal Radiation

    NASA Astrophysics Data System (ADS)

    Rana, S.; Mehmood, R.; Narayana, PV S.; Akbar, N. S.

    2016-12-01

    The present study explores the free convective oblique Casson fluid over a stretching surface with non-linear thermal radiation effects. The governing physical problem is modelled and transformed into a set of coupled non-linear ordinary differential equations by suitable similarity transformation, which are solved numerically with the help of shooting method keeping the convergence control of 10-5 in computations. Influence of pertinent physical parameters on normal, tangential velocity profiles and temperature are expressed through graphs. Physical quantities of interest such as skin friction coefficients and local heat flux are investigated numerically.

  14. Optimal design of linear and non-linear dynamic vibration absorbers

    NASA Astrophysics Data System (ADS)

    Jordanov, I. N.; Cheshankov, B. I.

    1988-05-01

    An efficient numerical method is applied to obtain optimal parameters for both linear and non-linear damped dynamic vibration absorbers. The minimization of the vibration response has been carried out for damped as well as undamped force excited primary systems with linear and non-linear spring characteristics. Comparison is made with the optimum absorber parameters that are determined by using Den Hartog's classical results in the linear case. Six optimization criteria by which the response is minimized over narrow and broad frequency bands are examined. Pareto optimal solutions of the multi-objective decision making problem are obtained.

  15. The Creative Chaos: Speculations on the Connection Between Non-Linear Dynamics and the Creative Process

    NASA Astrophysics Data System (ADS)

    Zausner, Tobi

    Chaos theory may provide models for creativity and for the personality of the artist. A collection of speculative hypotheses examines the connection between art and such fundamentals of non-linear dynamics as iteration, dissipative processes, open systems, entropy, sensitivity to stimuli, autocatalysis, subsystems, bifurcations, randomness, unpredictability, irreversibility, increasing levels of organization, far-from-equilibrium conditions, strange attractors, period doubling, intermittency and self-similar fractal organization. Non-linear dynamics may also explain why certain individuals suffer mental disorders while others remain intact during a lifetime of sustained creative output.

  16. Solution algorithms for non-linear singularly perturbed optimal control problems

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1983-01-01

    The applicability and usefulness of several classical and other methods for solving the two-point boundary-value problem which arises in non-linear singularly perturbed optimal control are assessed. Specific algorithms of the Picard, Newton and averaging types are formally developed for this class of problem. The computational requirements associated with each algorithm are analysed and compared with the computational requirement of the method of matched asymptotic expansions. Approximate solutions to a linear and a non-linear problem are obtained by each method and compared.

  17. Airframe structural damage detection: a non-linear structural surface intensity based technique.

    PubMed

    Semperlotti, Fabio; Conlon, Stephen C; Barnard, Andrew R

    2011-04-01

    The non-linear structural surface intensity (NSSI) based damage detection technique is extended to airframe applications. The selected test structure is an upper cabin airframe section from a UH-60 Blackhawk helicopter (Sikorsky Aircraft, Stratford, CT). Structural damage is simulated through an impact resonator device, designed to simulate the induced vibration effects typical of non-linear behaving damage. An experimental study is conducted to prove the applicability of NSSI on complex mechanical systems as well as to evaluate the minimum sensor and actuator requirements. The NSSI technique is shown to have high damage detection sensitivity, covering an extended substructure with a single sensing location.

  18. Non-perturbative aspects of particle acceleration in non-linear electrodynamics

    SciTech Connect

    Burton, David A.; Flood, Stephen P.; Wen, Haibao

    2015-04-15

    We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can “surf” a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.

  19. Influence of shear in the non-linear analysis of RC members

    SciTech Connect

    Diotallevi, Pier Paolo; Landi, Luca; Cardinetti, Filippo

    2008-07-08

    The purpose of this study is to develop an analytical model characterized by a beam-column finite element which is able to reproduce the non-linear flexural-shear behavior of RC structures. The paper shows a brief description of the finite element formulation, the theory used for modeling the constitutive relationship and the scheme of the algorithm, transformed in a computer program, which was developed for implementing the theoretical model. Finally it illustrates a comparison with available experimental results for the calibration and validation of the model and a study on the influence of the non-linear shear response.

  20. On the non-linear attachment characteristics of blood to bacterial cellulose/kaolin biomaterials.

    PubMed

    Véliz, Diosángeles Soto; Alam, Catharina; Toivola, Diana M; Toivakka, Martti; Alam, Parvez

    2014-04-01

    In this communication, we report a non-linear variation in the strength of blood attachment to bacterial cellulose/kaolin biomaterials as the fractions of bacterial cellulose to kaolin are increased. The changes observed for attachment strength are elucidated following both experimental and numerical investigations on both the biomaterial and the blood-biomaterial interface. Our research reveals that the non-linear strength of attachment of blood is related to topographical characteristics on the surface of the biomaterial, the maleability of the biomaterial and the intermolecular strength of attraction between clotted blood proteins (fibrinogen) with the cellulose/kaolin components of the biomaterial.

  1. Non-linear diffusion of cosmic rays escaping from supernova remnants - I. The effect of neutrals

    NASA Astrophysics Data System (ADS)

    Nava, L.; Gabici, S.; Marcowith, A.; Morlino, G.; Ptuskin, V. S.

    2016-10-01

    Supernova remnants are believed to be the main sources of galactic cosmic rays (CR). Within this framework, particles are accelerated at supernova remnant shocks and then released in the interstellar medium. The mechanism through which CRs are released and the way in which they propagate still remain open issues. The main difficulty is the high non-linearity of the problem: CRs themselves excite the magnetic turbulence that confines them close to their sources. We solve numerically the coupled differential equations describing the evolution in space and time of the escaping particles and of the waves generated through the CR streaming instability. The warm ionized and warm neutral phases of the interstellar medium are considered. These phases occupy the largest fraction of the disc volume, where most supernovae explode, and are characterized by the significant presence of neutral particles. The friction between those neutrals and ions results in a very effective wave damping mechanism. It is found that streaming instability affects the propagation of CRs even in the presence of ion-neutral friction. The diffusion coefficient can be suppressed by more than a factor of ˜2 over a region of few tens of pc around the remnant. The suppression increases for smaller distances. The propagation of ≈10 GeV particles is affected for several tens of kiloyears after escape, while ≈1 TeV particles are affected for few kiloyears. This might have a great impact on the interpretation of gamma-ray observations of molecular clouds located in the vicinity of supernova remnants.

  2. Development of experimental verification techniques for non-linear deformation and fracture.

    SciTech Connect

    Moody, Neville Reid; Bahr, David F.

    2003-12-01

    This project covers three distinct features of thin film fracture and deformation in which the current experimental technique of nanoindentation demonstrates limitations. The first feature is film fracture, which can be generated either by nanoindentation or bulge testing thin films. Examples of both tests will be shown, in particular oxide films on metallic or semiconductor substrates. Nanoindentations were made into oxide films on aluminum and titanium substrates for two cases; one where the metal was a bulk (effectively single crystal) material and the other where the metal was a 1 pm thick film grown on a silica or silicon substrate. In both cases indentation was used to produce discontinuous loading curves, which indicate film fracture after plastic deformation of the metal. The oxides on bulk metals fractures occurred at reproducible loads, and the tensile stress in the films at fracture were approximately 10 and 15 GPa for the aluminum and titanium oxides respectively. Similarly, bulge tests of piezoelectric oxide films have been carried out and demonstrate film fracture at stresses of only 100's of MPa, suggesting the importance of defects and film thickness in evaluating film strength. The second feature of concern is film adhesion. Several qualitative and quantitative tests exist today that measure the adhesion properties of thin films. A relatively new technique that uses stressed overlayers to measure adhesion has been proposed and extensively studied. Delamination of thin films manifests itself in the form of either telephone cord or straight buckles. The buckles are used to calculate the interfacial fracture toughness of the film-substrate system. Nanoindentation can be utilized if more energy is needed to initiate buckling of the film system. Finally, deformation in metallic systems can lead to non-linear deformation due to 'bursts' of dislocation activity during nanoindentation. An experimental study to examine the structure of dislocations around

  3. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  4. Damage, Weakening and Non-Linear Processes in a Pressurized Volcanic Edifice.

    NASA Astrophysics Data System (ADS)

    Carrier, A.; Peltier, A.; Jean Luc, G.; Ferrazzini, V.; Staudacher, T.; Kowalski, P.; Boissier, P.

    2014-12-01

    When an eruption occurs in a large basaltic volcano as Piton de la Fournaise volcano (La Reunion, France), accelerations of surface displacements and seismicity rate are recorded before magma reaches the surface, with a hour to week time scale. These eruptions are understood as ruptures of pressurized magma reservoirs. When elastic models are used to account for surface deformation, such accelerations are modelled by an accelerating increase of the reservoir pressure. It is reached for magma flow or pressure conditions at the base of the magma feeding system that may be not realistic at this time scale. An alternative solution to explain such accelerations is the weakening of the volcanic edifice under the effect of magma pressure in the reservoir. In this study we have modelled such a weakening by the progressive damage of an initially elastic edifice. We used an incremental damage model, with seismicity as a damage variable with daily increments. Elastic moduli decrease linearly for each damage increment. When this damage model is used in an initially elastic edifice with a simple constant pressure condition at the base of the system (which leads to an equilibrium in a purely elastic model), surface displacement accelerations are well reproduced when damage is sufficient. We link the damage parameter to the crack density and show that process dynamics is controlled by the ratio between the incremental rupture surface and the surface to be ruptured, this later being directly dependent on reservoir depth. In that case the edifice strength decreases relative to the elastic strength, and magma reservoir pressure decreases with elastic moduli. This later characteristics may eventually cause gaz exsolution, which may generate non-linear instabilities during the eruptive process.

  5. Non-linear imaging techniques visualize the lipid profile of C. elegans

    NASA Astrophysics Data System (ADS)

    Mari, Meropi; Petanidou, Barbara; Palikaras, Konstantinos; Fotakis, Costas; Tavernarakis, Nektarios; Filippidis, George

    2015-07-01

    The non-linear techniques Second and Third Harmonic Generation (SHG, THG) have been employed simultaneously to record three dimensional (3D) imaging and localize the lipid content of the muscular areas (ectopic fat) of Caenorhabditis elegans (C. elegans). Simultaneously, Two-Photon Fluorescence (TPEF) was used initially to localize the stained lipids with Nile Red, but also to confirm the THG potential to image lipids successfully. In addition, GFP labelling of the somatic muscles, proves the initial suggestion of the existence of ectopic fat on the muscles and provides complementary information to the SHG imaging of the pharynx. The ectopic fat may be related to a complex of pathological conditions including type-2 diabetes, hypertension and cardiovascular diseases. The elucidation of the molecular path leading to the development of metabolic syndrome is a vital issue with high biological significance and necessitates accurate methods competent of monitoring lipid storage distribution and dynamics in vivo. THG microscopy was employed as a quantitative tool to monitor the lipid accumulation in non-adipose tissues in the pharyngeal muscles of 12 unstained specimens while the SHG imaging revealed the anatomical structure of the muscles. The ectopic fat accumulation on the pharyngeal muscles increases in wild type (N2) C. elegans between 1 and 9 days of adulthood. This suggests a correlation of the ectopic fat accumulation with the aging. Our results can provide new evidence relating the deposition of ectopic fat with aging, but also validate SHG and THG microscopy modalities as new, non-invasive tools capable of localizing and quantifying selectively lipid accumulation and distribution.

  6. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  7. Localization of non-linear neutralizing B cell epitopes on ricin toxin's enzymatic subunit (RTA).

    PubMed

    O'Hara, Joanne M; Kasten-Jolly, Jane C; Reynolds, Claire E; Mantis, Nicholas J

    2014-01-01

    Efforts to develop a vaccine for ricin toxin are focused on identifying highly immunogenic, safe, and thermostable recombinant derivatives of ricin's enzymatic A subunit (RTA). As a means to guide vaccine design, we have embarked on an effort to generate a comprehensive neutralizing and non-neutralizing B cell epitope map of RTA. In a series of previous studies, we identified three spatially distinct linear (continuous), neutralizing epitopes on RTA, as defined by monoclonal antibodies (mAbs) PB10 (and R70), SyH7, and GD12. In this report we now describe a new collection of 19 toxin-neutralizing mAbs that bind non-linear epitopes on RTA. The most potent toxin-neutralizing mAbs in this new collection, namely WECB2, TB12, PA1, PH12 and IB2 each had nanamolar (or sub-nanomolar) affinities for ricin and were each capable of passively protecting mice against a 5-10xLD50 toxin challenge. Competitive binding assays by surface plasmon resonance revealed that WECB2 binds an epitope that overlaps with PB10 and R70; TB12, PA1, PH12 recognize epitope(s) close to or overlapping with SyH7's epitope; and GD12 and IB2 recognize epitopes that are spatially distinct from all other toxin-neutralizing mAbs. We estimate that we have now accounted for ∼75% of the predicted epitopes on the surface of RTA and that toxin-neutralizing mAbs are directed against a very limited number of these epitopes. Having this information provides a framework for further refinement of RTA mutagenesis and vaccine design.

  8. Observation of beat oscillation generation by coupled waves associated with parametric decay during radio frequency wave heating of a spherical tokamak plasma.

    PubMed

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  9. First results on applying a non-linear effect formalism to alliances between political parties and buy and sell dynamics

    NASA Astrophysics Data System (ADS)

    Bagarello, F.; Haven, E.

    2016-02-01

    We discuss a non linear extension of a model of alliances in politics, recently proposed by one of us. The model is constructed in terms of operators, describing the interest of three parties to form, or not, some political alliance with the other parties. The time evolution of what we call the decision functions is deduced by introducing a suitable Hamiltonian, which describes the main effects of the interactions of the parties amongst themselves and with their environments, which are generated by their electors and by people who still have no clear idea for which party to vote (or even if to vote). The Hamiltonian contains some non-linear effects, which takes into account the role of a party in the decision process of the other two parties. Moreover, we show how the same Hamiltonian can also be used to construct a formal structure which can describe the dynamics of buying and selling financial assets (without however implying a specific price setting mechanism).

  10. Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging

    NASA Astrophysics Data System (ADS)

    Cicchi, R.; Sacconi, L.; Jasaitis, A.; O'Connor, R. P.; Massi, D.; Sestini, S.; de Giorgi, V.; Lotti, T.; Pavone, F. S.

    2008-09-01

    We have built a custom-made multidimensional non-linear microscope equipped with a combination of several non-linear laser imaging techniques involving fluorescence lifetime, multispectral two-photon and second-harmonic generation imaging. The optical system was mounted on a vertical honeycomb breadboard in an upright configuration, using two galvo-mirrors relayed by two spherical mirrors as scanners. A double detection system working in non-descanning mode has allowed both photon counting and a proportional regime. This experimental setup offering high spatial (micrometric) and temporal (sub-nanosecond) resolution has been used to image both ex-vivo and in-vivo biological samples, including cells, tissues, and living animals. Multidimensional imaging was used to spectroscopically characterize human skin lesions, as malignant melanoma and naevi. Moreover, two-color detection of two photon excited fluorescence was applied to in-vivo imaging of living mice intact neocortex, as well as to induce neuronal microlesions by femtosecond laser burning. The presented applications demonstrate the capability of the instrument to be used in a wide range of biological and biomedical studies.

  11. High-efficiency intra-cavity sum-frequency-generation in a self-seeded image-rotating nanosecond optical parametric oscillator.

    SciTech Connect

    Armstrong, Darrell Jewell; Smith, Arlee Virgil

    2005-02-01

    We have built and tested a highly efficient source of pulsed 320 nm light based on intra-cavity sum-frequency-generation in a self-injection-seeded image-rotating nanosecond optical parametric oscillator. The four-mirror nonplanar ring optical cavity uses the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. The cavity contains a type-II xz-cut KTP crystal pumped by the 532 nm second harmonic of Nd:YAG to generate an 803{approx}nm signal and 1576 nm idler, and a type-II BBO crystal to sum-frequency mix the 532 nm pump and cavity-resonant 803 nm signal to generate 320 nm light. The cavity is configured so pump light passes first through the BBO crystal and then through the KTP crystal with the 320 nm light exiting through the output coupler following the BBO sum-frequency crystal. The cavity output coupler is designed to be a high reflector at 532 nm, have high transmission at 320 nm, and reflect approximately 85% at 803 nm. With this configuration we've obtained 1064 nm to 320 nm optical-to-optical conversion efficiency of 24% and generated single-frequency {lambda} = 320 nm pulses with energies up to 140 mJ.

  12. High efficiency intra-cavity sum-frequency-generation in a self-seeded image-rotating nanosecond optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Armstrong, Darrell J.; Smith, Arlee V.

    2005-03-01

    We have built and tested a highly efficient source of pulsed 320 nm light based on intra-cavity sum-frequency-generation in a self-injection-seeded image-rotating nanosecond optical parametric oscillator. The four-mirror nonplanar ring optical cavity uses the RISTRA geometry, denoting rotated-image singly-resonant twisted rectangle. The cavity contains a type-II xz-cut KTP crystal pumped by the 532 nm second harmonic of Nd:YAG to generate an 803~nm signal and 1576 nm idler, and a type-II BBO crystal to sum-frequency mix the 532 nm pump and cavity-resonant 803 nm signal to generate 320 nm light. The cavity is configured so pump light passes first through the BBO crystal and then through the KTP crystal with the 320 nm light exiting through the output coupler following the BBO sum-frequency crystal. The cavity output coupler is designed to be a high reflector at 532 nm, have high transmission at 320 nm, and reflect approximately 85% at 803 nm. With this configuration we've obtained 1064 nm to 320 nm optical-to-optical conversion efficiency of 24% and generated single-frequency λ = 320 nm pulses with energies up to 140 mJ.

  13. Experimental investigation of non-linear wave to plasma interaction in a quasi-flat magnetostatic field

    NASA Astrophysics Data System (ADS)

    Castro, G.; Mascali, D.; Agnello, R.; Celona, L.; Leonardi, O.; Neri, L.; Nicolosi, D.; Torrisi, G.; Gammino, S.

    2016-02-01

    A characterization of wave-to-plasma interaction in a quasi-flat magnetostatic field at 3.75 GHz has been carried out by using a small-wire movable RF antenna, connected to a spectrum analyzer. The coupling between electromagnetic and electrostatic waves leads to a characteristic spectral emission in low frequency range and around the pumping wave frequency. The most relevant results consist in the broadening of the pumping wave spectrum above critical RF power thresholds and in the generation of sidebands of the pumping frequency, with corresponding components in low frequency domain. The non-linearities are accompanied by the generation of overdense plasmas and intense fluxes of X-rays.

  14. Azo-derivatives thin films grown by matrix-assisted pulsed laser evaporation for non-linear optical applications

    NASA Astrophysics Data System (ADS)

    Constantinescu, C.; Matei, A.; Ionita, I.; Ion, V.; Marascu, V.; Dinescu, M.; Vasiliu, C.; Emandi, A.

    2014-05-01

    Azo-dye compounds, in bulk or as thin films, are extensively studied due to their particular optical properties. These properties include non-linear interaction, e.g. two-photon absorption, optical limiting and all-optical poling, with potential applications in optoelectronics and sensors development. Herein, we report on the deposition of pyrazolone derivatives, namely 1-phenyl-3-methyl-4-(1‧-azo-2‧-sodium carboxylate)-pyrazole-5-one thin films, for applications in second harmonic generation. Matrix-assisted pulsed laser evaporation was employed for layers growth, using a Nd:YAG device operating at 266 nm (4ω). The structure and surface morphology of the deposited films were examined by Fourier transform infrared spectroscopy, atomic force microscopy, and scanning electron microscopy. Spectroscopic-ellipsometry was employed to investigate thin film optical properties. Significant second harmonic generation capabilities of the compound were pointed out by using a femtosecond Ti:sapphire laser.

  15. Generation of High Purity Photon-Pair in a Short Highly Non-Linear Fiber

    DTIC Science & Technology

    2013-01-01

    HNLF) has yielded relatively little success [9]. In addition, it is claimed that the higher Raman noise photons due to the Germanium oxide doping...in HNLF deteriorate its performance compared to DSF and HNMSF [10]. Nonetheless, it is also shown that Raman noise photons can be reduced by...pump pulse at 1554.1 nm with the pulse duration ≈ 5 ps and repetition rate of 46.5 MHz is spectrally carved out from a mode-locked femtosecond fiber

  16. Possible origin of the non-linear long-term autocorrelations within the Gaussian regime

    NASA Astrophysics Data System (ADS)

    Kutner, Ryszard; Świtała, Filip

    2003-12-01

    time series), which are collected with a discrete time step, we used in the continuous-time series produced by the model a discretization procedure. We observed that such a procedure generates, in general, long-range non-linear autocorrelations even in the Gaussian regime, which appear to be similar to those observed, e.g., in the financial time series (Phys. A 287 (2000) 396; Phys. A 299 (2001) 1; Phys. A 299 (2001) 16; Phys. A 299 (2001) 16), although single steps of the walker within continuous time are, by definition, uncorrelated. This suggests a suprising origin of long-range non-linear autocorrelations alternative to the one proposed very recently (cf. Mosaliver et al. (Phys. Rev. E 67 (2003) 021112) and refs. therein) although both approaches involve related variants of the well-known continuous-time random walk formalism applied yet in many different branches of knowledge (Phys. Rep. 158 (1987) 263; Phys. Rep. 195 (1990) 127; in: A. Bunde, S. Havlin (Eds.), Fractals in Science, Springer, Berlin, 1995, p. 1).

  17. Linear and non-linear evolution of the vertical shear instability in accretion discs

    NASA Astrophysics Data System (ADS)

    Nelson, Richard P.; Gressel, Oliver; Umurhan, Orkan M.

    2013-11-01

    of the non-linear saturated state, leading to strong vertical oscillation of the disc mid-plane. In a viscous disc with aspect ratio H/r = 0.05, instability is found to operate when the viscosity parameter α < 4 × 10-4. In three dimensions the instability generates a quasi-turbulent flow, and the associated Reynolds stress produces a fluctuating effective viscosity coefficient whose mean value reaches α ˜ 10-3 by the end of the simulation. The evolution and saturation of the vertical shear instability in astrophysical disc models which include realistic treatments of the thermal physics has yet to be examined. Should it occur on either global or local scales, however, our results suggest that it will have significant consequences for their internal dynamics, transport properties and observational appearance.

  18. Introduction to the Treatment of Non-Linear Effects Using a Gravitational Pendulum

    ERIC Educational Resources Information Center

    Weltner, Klaus; Esperidiao, Antonio Sergio C.; Miranda, Paulo

    2004-01-01

    We show that the treatment of pendulum movement, other than the linear approximation,may be an instructive experimentally based introduction to the physics of non-linear effects. Firstly the natural frequency of a gravitational pendulum is measured as function of its amplitude. Secondly forced oscillations of a gravitational pendulum are…

  19. Non-Gaussian inference from non-linear and non-Poisson biased distributed data

    NASA Astrophysics Data System (ADS)

    Ata, Metin; Kitaura, Francisco-Shu; Müller, Volker

    2014-05-01

    We study the statistical inference of the cosmological dark matter density field from non-Gaussian, non-linear and non-Poisson biased distributed tracers. We have implemented a Bayesian posterior sampling computer-code solving this problem and tested it with mock data based on N-body simulations.

  20. Phase Structure of the Non-Linear σ-MODEL with Oscillator Representation Method

    NASA Astrophysics Data System (ADS)

    Mishchenko, Yuriy; Ji, Chueng-R.

    2004-03-01

    Non-Linear σ-model plays an important role in many areas of theoretical physics. Been initially uintended as a simple model for chiral symmetry breaking, this model exhibits such nontrivial effects as spontaneous symmetry breaking, asymptotic freedom and sometimes is considered as an effective field theory for QCD. Besides, non-linear σ-model can be related to the strong-coupling limit of O(N) ϕ4-theory, continuous limit of N-dim. system of quantum spins, fermion gas and many others and takes important place in undertanding of how symmetries are realized in quantum field theories. Because of this variety of connections, theoretical study of the critical properties of σ-model is interesting and important. Oscillator representation method is a theoretical tool for studying the phase structure of simple QFT models. It is formulated in the framework of the canonical quantization and is based on the view of the unitary non-equivalent representations as possible phases of a QFT model. Successfull application of the ORM to ϕ4 and ϕ6 theories in 1+1 and 2+1 dimensions motivates its study in more complicated models such as non-linear σ-model. In our talk we introduce ORM, establish its connections with variational approach in QFT. We then present results of ORM in non-linear σ-model and try to interprete them from the variational point of view. Finally, we point out possible directions for further research in this area.

  1. Non-Linear EMG Parameters for Differential and Early Diagnostics of Parkinson's Disease.

    PubMed

    Meigal, Alexander Y; Rissanen, Saara M; Tarvainen, Mika P; Airaksinen, Olavi; Kankaanpää, Markku; Karjalainen, Pasi A

    2013-01-01

    The pre-clinical diagnostics is essential for management of Parkinson's disease (PD). Although PD has been studied intensively in the last decades, the pre-clinical indicators of that motor disorder have yet to be established. Several approaches were proposed but the definitive method is still lacking. Here we report on the non-linear characteristics of surface electromyogram (sEMG) and tremor acceleration as a possible diagnostic tool, and, in prospective, as a predictor for PD. Following this approach we calculated such non-linear parameters of sEMG and accelerometer signal as correlation dimension, entropy, and determinism. We found that the non-linear parameters allowed discriminating some 85% of healthy controls from PD patients. Thus, this approach offers considerable potential for developing sEMG-based method for pre-clinical diagnostics of PD. However, non-linear parameters proved to be more reliable for the shaking form of PD, while diagnostics of the rigid form of PD using EMG remains an open question.

  2. The Poincaré-Bendixson Theorem and the non-linear Cauchy-Riemann equations

    NASA Astrophysics Data System (ADS)

    van den Berg, J. B.; Munaò, S.; Vandervorst, R. C. A. M.

    2016-11-01

    Fiedler and Mallet-Paret (1989) prove a version of the classical Poincaré-Bendixson Theorem for scalar parabolic equations. We prove that a similar result holds for bounded solutions of the non-linear Cauchy-Riemann equations. The latter is an application of an abstract theorem for flows with a(n) (unbounded) discrete Lyapunov function.

  3. Re-Mediating Classroom Activity with a Non-Linear, Multi-Display Presentation Tool

    ERIC Educational Resources Information Center

    Bligh, Brett; Coyle, Do

    2013-01-01

    This paper uses an Activity Theory framework to evaluate the use of a novel, multi-screen, non-linear presentation tool. The Thunder tool allows presenters to manipulate and annotate multiple digital slides and to concurrently display a selection of juxtaposed resources across a wall-sized projection area. Conventional, single screen presentation…

  4. Non-linear controls influence functions in an aircraft dynamics simulator

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.

    2006-03-01

    In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft's control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland's continuing study of active wing load control.

  5. Non-Linear Stability of an Electrified Plane Interface in Porous Media

    NASA Astrophysics Data System (ADS)

    El-Dib, Yusry O.; Moatimid, Galal M.

    2004-03-01

    The non-linear electrohydrodynamic stability of capillary-gravity waves on the interface between two semi-infinite dielectric fluids is investigated. The system is stressed by a vertical electric field in the presence of surface charges. The work examines a few representative porous media configurations. The analysis includes Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The boundary - value problem leads to a non-linear equation governing the surface evolution. Taylor theory is adopted to expand this equation, in the light of multiple scales, in order to obtain a non-linear Schr¨odinger equation describing the behavior of the perturbed interface. The latter equation, representing the amplitude of the quasi-monochromatic traveling wave, is used to describe the stability criteria. These criteria are discussed both analytically and numerically. In order to identifiy regions of stability and instability, the electric field intensity is plotted versus the wave number. Through a linear stability approach it is found that Darcy's coefficients have a destabilizing influence, while in the non-linear scope these coefficients as well as the electric field intensity play a dual role on the stability.

  6. Towards a non-linear theory for induced seismicity in shales

    NASA Astrophysics Data System (ADS)

    Salusti, Ettore; Droghei, Riccardo

    2014-05-01

    We here analyze the pore transmission of fluid pressure pand solute density ρ in porous rocks, within the framework of the Biot theory of poroelasticity extended to include physico-chemical interactions. In more details we here analyze the effect of a strong external stress on the non-linear evolution of p and ρ in a porous rock. We here focus on the consequent deformation of the rock pores, relative to a non-linear Hooke equation among strain, linear/quadratic pressure and osmosis in 1-D. We in particular analyze cases with a large pressure, but minor than the 'rupture point'. All this gives relations similar to those discussed by Shapiro et al. (2013), which assume a pressure dependent permeability. Thus we analyze the external stress necessary to originate quick non-linear transients of combined fluid pressure and solute density in a porous matrix, which perturb in a mild (i.e. a linear diffusive phenomenon) or a more dramatic non-linear way (Burgers solitons) the rock structure. All this gives a novel, more realistic insight about the rock evolution, fracturing and micro-earthquakes under a large external stress.

  7. The Non-Linear Nature of Information and its Implications for Advanced Technology Forces

    DTIC Science & Technology

    1998-05-18

    anticipated tremendous benefits from the growth of information based technology. It is now axiomatic that the ability to achieve information dominance against...the commercial world are mix. To achieve the information dominance anticipated through advances in technology, military decision makers must understand and accommodate the non-linear nature of the information systems they employ.

  8. Spherically symmetric analysis on open FLRW solution in non-linear massive gravity

    SciTech Connect

    Chiang, Chien-I; Izumi, Keisuke; Chen, Pisin E-mail: izumi@phys.ntu.edu.tw

    2012-12-01

    We study non-linear massive gravity in the spherically symmetric context. Our main motivation is to investigate the effect of helicity-0 mode which remains elusive after analysis of cosmological perturbation around an open Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. The non-linear form of the effective energy-momentum tensor stemming from the mass term is derived for the spherically symmetric case. Only in the special case where the area of the two sphere is not deviated away from the FLRW universe, the effective energy momentum tensor becomes completely the same as that of cosmological constant. This opens a window for discriminating the non-linear massive gravity from general relativity (GR). Indeed, by further solving these spherically symmetric gravitational equations of motion in vacuum to the linear order, we obtain a solution which has an arbitrary time-dependent parameter. In GR, this parameter is a constant and corresponds to the mass of a star. Our result means that Birkhoff's theorem no longer holds in the non-linear massive gravity and suggests that energy can probably be emitted superluminously (with infinite speed) on the self-accelerating background by the helicity-0 mode, which could be a potential plague of this theory.

  9. Comments on "arithmetic coding as a non-linear dynamical system"

    NASA Astrophysics Data System (ADS)

    Pande, Amit; Zambreno, Joseph; Mohapatra, Prasant

    2012-12-01

    Nagaraj et al. [1,2] present a skewed-non-linear generalized Luroth Series (s-nGLS) framework. S-nGLS uses non-linear maps for GLS to introduce a security parameter a which is used to build a keyspace for image or data encryption. The map introduces non-linearity to the system to add an "encryption key parameter". The skew is added to achieve optimal compression efficiency. s-nGLS used as such for joint encryption and compression is a weak candidate, as explained in this communication. First, we show how the framework is vulnerable to known plaintext based attacks and that a key of size 256 bits can be broken within 1000 trials. Next, we demonstrate that the proposed non-linearity exponentially increases the hardware complexity of design. We also discover that s-nGlS cannot be implemented as such for large bitstreams. Finally, we demonstrate how correlation of key parameter with compression performance leads to further key vulnerabilities.

  10. Non-Linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid. Part i: Stability

    NASA Astrophysics Data System (ADS)

    AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.

    1999-08-01

    The study presented is an investigation of the non-linear dynamics and stability of simply supported, circular cylindrical shells containing inviscid incompressible fluid flow. Non-linearities due to large-amplitude shell motion are considered by using the non-linear Donnell's shallow shell theory, with account taken of the effect of viscous structural damping. Linear potential flow theory is applied to describe the fluid-structure interaction. The system is discretiszd by Galerkin's method, and is investigated by using a model involving seven degrees of freedom, allowing for travelling wave response of the shell and shell axisymmetric contraction. Two different boundary conditions are applied to the fluid flow beyond the shell, corresponding to: (i) infinite baffles (rigid extensions of the shell), and (ii) connection with a flexible wall of infinite extent in the longitudinal direction, permitting solution by separation of variables; they give two different kinds of dynamical behaviour of the system, as a consequence of the fact that axisymmetric contraction, responsible for the softening non-linear dynamical behaviour of shells, is not allowed if the fluid flow beyond the shell is constrained by rigid baffles. Results show that the system loses stability by divergence.

  11. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    NASA Technical Reports Server (NTRS)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  12. A Quantitative and Combinatorial Approach to Non-Linear Meanings of Multiplication

    ERIC Educational Resources Information Center

    Tillema, Erik; Gatza, Andrew

    2016-01-01

    We provide a conceptual analysis of how combinatorics problems have the potential to support students to establish non-linear meanings of multiplication (NLMM). The problems we analyze we have used in a series of studies with 6th, 8th, and 10th grade students. We situate the analysis in prior work on students' quantitative and multiplicative…

  13. An Assessment of Linear Versus Non-linear Multigrid Methods for Unstructured Mesh Solvers

    DTIC Science & Technology

    2001-05-01

    problems is investigated. The first case consists of a transient radiation-diffusion problem for which an exact linearization is available, while the...to the Jacobian of a second-order accurate discretization. When an exact linearization is employed, the linear and non-linear multigrid methods

  14. CONSEQUENCES OF NON-LINEAR DENSITY EFFECTS ON BUOYANCY AND PLUME BEHAVIOR

    EPA Science Inventory

    Aquatic plumes, as turbulent streams, grow by entraining ambient water. Buoyant plumes rise and dense ones sink, but, non-linear kinetic effects can reverse the buoyant force in mid-phenomenon. The class of nascent-density plumes begin as buoyant, upwardly accelerating plumes tha...

  15. Fitting and forecasting coupled dark energy in the non-linear regime

    SciTech Connect

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco E-mail: l.amendola@thphys.uni-heidelberg.de E-mail: v.pettorino@thphys.uni-heidelberg.de

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.

  16. Testing procedures for non-stationarity and non-linearity in physiological signals.

    PubMed

    Popivanov, D; Mineva, A

    1999-03-15

    Most of the physiological signals (EEG, ECG, blood flow, human gait, etc.) characterize by complex dynamics including both non-stationarities and non-linearities. These time series resemble red noise with long-range correlation and 1/(f beta) power spectrum. A question arises as to how to distinguish the characteristics of the process underlying the signal dynamics from the properties of the observed time series. The classical methods to determine possible non-linear (chaotic) dynamics (e.g. correlation dimension) often fail in such signals because of relatively short data records containing stochastic components and non-stationarities. We report an application of several approaches, aimed at (1) determining of the non-stationarities in the signals and (2) testing whether non-linear dynamics exists. Assessment of the intrinsic correlation properties of the dynamic process and distinguishing the same from external trends was performed using singular spectra and detrended fluctuation analysis. The existence of non-linear dynamics was tested by correlation dimension (modified algorithm of re-embedding) and by correlation integrals of real and surrogate data. The correlation integrals of real signal and surrogate data sets were statistically compared using Kolmogorov-Smirnov (K-S) test. The procedures were tested on EEG and laser-Doppler (LD) blood flow. Our suggestion is that no one approach taken alone is the best for our aims. Instead, a battery of methods should be used.

  17. Non-linear homogenized and heterogeneous FE models for FRCM reinforced masonry walls in diagonal compression

    NASA Astrophysics Data System (ADS)

    Bertolesi, Elisa; Milani, Gabriele; Poggi, Carlo

    2016-12-01

    Two FE modeling techniques are presented and critically discussed for the non-linear analysis of tuff masonry panels reinforced with FRCM and subjected to standard diagonal compression tests. The specimens, tested at the University of Naples (Italy), are unreinforced and FRCM retrofitted walls. The extensive characterization of the constituent materials allowed adopting here very sophisticated numerical modeling techniques. In particular, here the results obtained by means of a micro-modeling strategy and homogenization approach are compared. The first modeling technique is a tridimensional heterogeneous micro-modeling where constituent materials (bricks, joints, reinforcing mortar and reinforcing grid) are modeled separately. The second approach is based on a two-step homogenization procedure, previously developed by the authors, where the elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. The non-linear structural analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM). All the simulations here presented are performed using the commercial software Abaqus. Pros and cons of the two approaches are herein discussed with reference to their reliability in reproducing global force-displacement curves and crack patterns, as well as to the rather different computational effort required by the two strategies.

  18. Design curves for non-linear analysis of simply-supported, uniformly-loaded rectangular plates

    NASA Technical Reports Server (NTRS)

    Moore, D.

    1979-01-01

    Design curves for the non-linear analysis of simply-supported rectangular plates subjected to uniform normal pressure loads have been developed. These curves yield the center deflection, center stress and corner stress in non-dimensionalized form plotted against a dimensionless parameter describing the load intensity. The results presented are based on extensive non-linear finite element analysis employing the ARGUS structural analysis program. Plates with length to width ratios of 1, 1.5, 2, 3 and 4 are included. The load range considered extends to 1000 times the load at which the behavior of the plate becomes significantly non-linear. Over the load range considered, the analysis shows that the ratio of center deflection to plate thickness for a square plate is less than 16 to 1, whereas linear theory would predict a center deflection 400 times the plate thickness. Likewise, the stress is markedly lower than would be predicted by linear theory. The present results are shown to be in excellent agreement with the classical linear theory up to a central deflection to plate thickness ratio of about one-half. In the non-linear regime the present results for deflection and stress are in very good agreement with the analytical and experimental work of other investigators.

  19. Non-linear Elasticity and Monitoring of Stress in the Focus of an Earthquake

    NASA Astrophysics Data System (ADS)

    Bakulin, V.; Bakulin, A.

    2001-05-01

    Non-linear elasticity proved to give comprehensive framework for relating seismic velocities in rocks to stress. This powerful theory allows attacking the problem of estimating stress state at the focus of earthquakes. Such idea has been proposed long time ago [Kostrov and Nikitin, 1968] however its implementation requires a-priori knowledge of non-linear rock properties. Three non-linear constants needed to describe variation of any velocity with stress are typically estimated from core measurements [Bakulin et al., 2000]. More reliable estimates can be obtained from multi-mode inversions of borehole acoustic data [Sinha, 1996]. Nevertheless database of non-linear formation constants is still very limited. More measurements are required to estimate non-linear rock properties on larger scale and with independent stress constraints. Such measurements can be done in mines [Bakulin and Bakulin, 1999] or in hydrocarbon reservoirs where time-dependent pressure measurements are available. Without knowledge of non-linear rock properties seismic waves can still bring information about directions of tectonic stresses. In particular, shear wave polarizations can deliver directions of principal stresses in the focus of an earthquake, provided the overburden effects were removed. If rock non-linear properties are independently derived then estimation of stress magnitudes becomes feasible. Such techniques were applied in mining environment [Bakulin and Bakulin, 1999]. They may become routine for monitoring stress state in the focus of earthquakes and therefore can be used for forecasting the seismic activity. Bakulin, A. V., Troyan, V. N., and Bakulin, V. N., 2000, Acoustoelasticity of rocks, St. Petersburg (in Russian). Bakulin, V. and Bakulin, A., 1999, Acoustopolarizational method of measuring stress in rock mass and determination of Murnaghan constants: 69th Annual Internat. Mtg., Soc. Expl. Geophys., 1971-1974. Kostrov, B.V., and Nikitin, L.V., 1968, Influence of initial

  20. Non-linear modal analysis of structural components subjected to unilateral constraints

    NASA Astrophysics Data System (ADS)

    Attar, M.; Karrech, A.; Regenauer-Lieb, K.

    2017-02-01

    In this paper, we present a detailed numerical study of the non-linear dynamics in structural components under unilateral contact constraints. Here, the unilateral term characterises the constitutive law of the restoring force in the constraints as they only sustain elastic reactions in one direction, either compressive or tensile. Thus, the non-differentiability of the contact law at the discontinuity point is the only source of non-linearity. In our approach, the discrete lattice method (DLM) is used to treat the continuous system as a piecewise linear model. Thus, the trajectory of each node in the discrete model would be a sequence of smooth solutions with the switching times between them. The application of the one-step integration scheme allows us to detect the occurrence of contact (i.e. the instants that the lattice nodes cross the discontinuity boundary) and consequently update the active constraints. We also consider embedding the bisection algorithm into the time integration procedure to localise the instants at which the nodes cross the boundary and minimise the accumulative error. Subsequently, the resulting unconditionally stable integration scheme is utilised as the modelling tool in combination with the shooting technique to perform a novel non-smooth modal analysis. In analogy with the smooth non-linear systems, the evolution of non-smooth periodic motions is presented in the frequency-stiffness plots. We apply our method to obtain non-linear normal modes (NNMs) for a number of representative problems, including a bar-obstacle system, a beam-substrate system and a granular chain with tensionless interactions. These numerical examples demonstrate the efficiency of the solution procedure to trace the family of energy-independent non-linear modes across the range of contact stiffnesses. Moreover, the stability analysis of the modes on the plot backbone reveal that they may become unstable due to the interaction with the higher modes or bifurcation of

  1. To Apply Microdosing or Not? Recommendations to Single Out Compounds with Non-Linear Pharmacokinetics.

    PubMed

    Bosgra, Sieto; Vlaming, Maria L H; Vaes, Wouter H J

    2016-01-01

    Microdosing studies allow clinical investigation of pharmacokinetics earlier in drug development, before all high-dose safety concerns have been sorted out. Furthermore, microdosing allows inclusion of target groups that are inadmissible in high-dose phase I trials. A potential concern when considering a microdosing study is that a particular drug candidate may display non-linear pharmacokinetics. Saturation of, for example, membrane transport or metabolism at exposure levels between the microdose and therapeutic dose may limit the predictivity of high-dose pharmacokinetics from microdose observations. Guidance on the likelihood of appreciable non-linear pharmacokinetics based on preclinical information can be helpful in staging the clinical phase and the place of microdosing in it. We present a decision tree that evaluates concerns about non-linearities raised in the preclinical phase and their potential impact on the proportionality between microdose and intended therapeutic dose as predicted from preclinical information. The expected maximum concentrations at relevant sites are estimated by non-compartmental methods. These are compared with dissolution, Michaelis constants for active or enzymatic processes, and binding protein concentrations to assess the potential saturation of the processes below therapeutic doses. The decision tree was applied to ten published cases comparing microdose and therapeutic dose pharmacokinetics, for which concerns about non-linear pharmacokinetics were raised a priori. The decision tree was able to discriminate cases showing substantial non-linearities from cases displaying dose-proportional pharmacokinetics. The recommendations described in this paper may be useful in deciding whether a microdosing study is a sensible option to gain early insight in clinical pharmacokinetics of drug candidates.

  2. Cremophor EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patients.

    PubMed

    van Tellingen, O; Huizing, M T; Panday, V R; Schellens, J H; Nooijen, W J; Beijnen, J H

    1999-09-01

    The non-linear plasma pharmacokinetics of paclitaxel in patients has been well established, however, the exact underlying mechanism remains to be elucidated. We have previously shown that the non-linear plasma pharmacokinetics of paclitaxel in mice results from Cremophor EL. To investigate whether Cremophor EL also plays a role in the non-linear pharmacokinetics of paclitaxel in patients, we have established its pharmacokinetics in patients receiving paclitaxel by 3-, 24- or 96-h intravenous infusion. The pharmacokinetics of Cremophor EL itself was non-linear as the clearance (Cl) in the 3-h schedules was significantly lower than when using the longer 24- or 96-h infusions (Cl175-3 h = 42.8+/-24.9 ml h(-1) m(-2); CI175-24 h = 79.7+/-24.3; P = 0.035 and Cl135-3 h = 44.1+/-21.8 ml h(-1) m(-1); Cl140-96 h = 211.8+/-32.0; P < 0.001). Consequently, the maximum plasma levels were much higher (0.62%) in the 3-h infusions than when using longer infusion durations. By using an in vitro equilibrium assay and determination in plasma ultrafiltrate we have established that the fraction of unbound paclitaxel in plasma is inversely related with the Cremophor EL level. Despite its relatively low molecular weight, no Cremophor EL was found in the ultrafiltrate fraction. Our results strongly suggest that entrapment of paclitaxel in plasma by Cremophor EL, probably by inclusion in micelles, is the cause of the apparent nonlinear plasma pharmacokinetics of paclitaxel. This mechanism of a (pseudo-)non-linearity contrasts previous postulations about saturable distribution and elimination kinetics and means that we must re-evaluate previous assumptions on pharmacokinetics-pharmacodynamics relationships.

  3. Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.

    PubMed

    Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J

    2016-10-03

    Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods.

  4. Trim angle of attack of flexible wings using non-linear aerodynamics

    NASA Astrophysics Data System (ADS)

    Cohen, David Erik

    Multidisciplinary interactions are expected to play a significant role in the design of future high-performance aircraft (Blended-Wing Body, Truss-Braced wing; High Speed Civil transport, High-Altitude Long Endurance aircraft and future military aircraft). Also, the availability of supercomputers has made it now possible to employ high-fidelity models (Computational Fluid Dynamics for fluids and detailed finite element models for structures) at the preliminary design stage. A necessary step at that stage is to calculate the wing angle-of-attack at which the wing will generate the desired lift for the specific flight maneuver. Determination of this angle, a simple affair when the wing is rigid and the flow regime linear, becomes difficult when the wing is flexible and the flow regime non-linear. To solve this inherently nonlinear problem, a Newton's method type algorithm is developed to simultaneously calculate the deflection and the angle of attack. The developed algorithm is tested for a wing, used for in-house aeroelasticity research at Boeing (previously McDonnell Douglas) Long Beach. The trim angle of attack is calculated for a range of desired lift values. In addition to the Newton's method algorithm, a non derivative method (NDM) based on fixed point iteration, typical of fixed angle of attack calculations in aeroelasticity, is employed. The NDM, which has been extended to be able to calculate trim angle of attack, is used for one of the cases. The Newton's method calculation converges in fewer iterations, but requires more CPU time than the NDM method. The NDM, however, results in a slightly different value of the trim angle of attack. It should be noted that NDM will converge in a larger number of iterations as the dynamic pressure increases. For one value of the desired lift, both viscous and inviscid results were generated. The use of the inviscid flow model while not resulting in a markedly different value for the trim angle of attack, does result in a

  5. Parametric resonance in the early Universe—a fitting analysis

    NASA Astrophysics Data System (ADS)

    Figueroa, Daniel G.; Torrentí, Francisco

    2017-02-01

    Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanning over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.

  6. Quantum state engineering of pulsed light in non-linear waveguides

    NASA Astrophysics Data System (ADS)

    Silberhorn, Christine; Eckstein, Andreas; Christ, Andreas

    2011-10-01

    The standard approach for introducing the quantization of optical light is based on monochromatic light fields, however this description is not sufficient for the definition of quantum light pulses. Their finite time duration necessarily requires that polychromatic wave packets with a broad spectral distribution are considered. Pulsed multi-photon states of light typically carry an implicit spectral broadband mode structure, which is imprinted by the spectral correlations originating from the generation process. Recent developments have enabled us to control the spectral properties of such multi-mode pulsed states, which opens a new route for quantum information applications.We have implenented a pulsed parametric downconversion source in a waveguide, which can be tuned from genuine single mode to multi-mode characteristics by modifiying the bandwidth of the ultrafast pump pulses. Our generated signal and idler beams of the PDC output twin beams lie in the telecommunication regime, and the source features an exceptional brightness with 2.5 photons per pulse utilizing a single pass configuration. We verify the broadband single mode versus multi-mode structure by analysing the marginal g(2) -Glauber correlation function of the signal and idler beams while modifing the their spectral inter correlations.

  7. Non-invasive characterization of structure and morphology of silk fibroin biomaterials using non-linear microscopy

    PubMed Central

    Rice, William L.; Firdous, Shamaraz; Gupta, Sharad; Hunter, Martin; Foo, Cheryl Wong Po; Wang, Yongzhong; Kim, Hyeon Joo; Kaplan, David L.; Georgakoudi, Irene

    2009-01-01

    Designing biomaterial scaffolds remains a major challenge in tissue engineering. Key to this challenge is improved understanding of the relationships between the scaffold properties and its degradation kinetics, as well as the cell interactions and the promotion of new matrix deposition. Here we present the use of non-linear spectroscopic imaging as a non-invasive method to characterize not only morphological, but also structural aspects of silkworm silk fibroin-based biomaterials, relying entirely on endogenous optical contrast. We demonstrate that two photon excited fluorescence and second harmonic generation are sensitive to the hydration, overall β sheet content and molecular orientation of the sample. Thus, the functional content and high resolution afforded by these non-invasive approaches offer promise for identifying important connections between biomaterial design and functional engineered tissue development. The strategies described also have broader implications for understanding and tracking the remodeling of degradable biomaterials under dynamic conditions both in vitro and in vivo. PMID:18291520

  8. Molecular structural, non-linear optical, second order perturbation and Fukui studies of Indole-3-Aldehyde using density functional calculations.

    PubMed

    Muthu, S; Maheswari, J Uma; Sundius, Tom

    2013-04-01

    Indole-3-Aldehyde is a new organic non-linear material having good second harmonic generation. The optimized molecular geometry, harmonic vibrational frequencies, infrared intensities of Indole-3-Aldehyde (I3A, C9H7NO) in the ground state were carried out by using density functional theory (B3LYP) method with 6-31G(d,p) basis set. A detailed interpretation of the infrared spectrum of Indole-3-Aldehyde is reported. The vibrational frequencies are calculated and compared with experimental FT-IR spectra. The theoretical spectrograms of FT-IR of the title compound have been constructed in addition, theoretical information like ONIOM, potential energy surface, NBO, and Fukui function are also calculated. Unambiguous vibrational assignment of all the fundamentals was made using the potential energy distribution.

  9. Non-linear optical processes involving excited subbands in laser-dressed quantum wires with triangular cross-section

    NASA Astrophysics Data System (ADS)

    Radu, A.; Duque, C. A.

    2015-08-01

    The conduction subband structure of a triangular cross-section GaAs/AlGaAs quantum well wire under intense laser field is theoretically investigated by taking into account a finite confining potential. The calculation of the subband energy levels is based on a two-dimensional finite element method within the effective mass approximation. It is shown that a transversally polarized laser field non-uniformly shifts the subband energy levels and could be used for tuning the intersubband transitions and altering the related optical susceptibilities. We found that the non-resonant laser field allows the magnification and the red- or blueshift of the third-order non-linear susceptibility peaks for particular polarizations of the pump light and proper laser parameter values. The effects of the laser dressing field on the intersubband third harmonic generation and quadratic electro-optical process are discussed.

  10. A fiber laser pumped dual-wavelength mid-infrared laser based on optical parametric oscillation and intracavity difference frequency generation

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Shang, Yaping; Li, Xiao; Shen, Meili; Xu, Xiaojun

    2017-02-01

    We report a dual-wavelength mid-infrared laser based on intracavity difference frequency generation (DFG) in an MgO-doped periodically poled LiNbO3, which was pumped by a dual-wavelength fiber MOPA consisting of two parts: a dual-wavelength seed and a power amplifier. The maximum pump power was 74.1 W and the wavelengths were 1060 nm and 1090 nm. The wavelengths of the mid-infrared output were 3.1 µm and 3.4 µm under maximum pump power with a total idler power of 6.57 W. The corresponding pump-to-idler slope efficiency reached 12%. The contrast for the peak intensity of the emissions for the two idlers was 0.6. A power preamplifier was added in a further experiment to enhance the contrast. The idler output reached 4.45 W under the maximum pump power of 70 W, which was lower than before. However, the contrast for the idler emission peak intensity was increased to 1.18. The signal wave generated in the experiment only had a single wavelength around 1.6 µm, indicating that two kinds of nonlinear processes occurred in the experiment, namely optical parametric oscillation and intracavity DFG.

  11. Single-step sub-200  fs mid-infrared generation from an optical parametric oscillator synchronously pumped by an erbium fiber laser.

    PubMed

    Metzger, Bernd; Pollard, Benjamin; Rimke, Ingo; Büttner, Edlef; Raschke, Markus B

    2016-09-15

    We demonstrate the single-step generation of mid-infrared femtosecond laser pulses in a AgGaSe2 optical parametric oscillator that is synchronously pumped by a 100 MHz repetition rate sub-90 fs erbium fiber laser. The tuning range of the idler beam in principle covers ∼3.5 to 17 μm, only dependent on the choice of cavity and mirror design. As an example, we experimentally demonstrate idler pulse generation from 4.8 to 6.0 μm optimized for selective vibrational resonant molecular spectroscopy. We find an oscillation threshold as low as 150 mW of pump power. At 300 mW pump power and a central wavelength of ∼5.0  μm, we achieve an average infrared power of up to 17.5 mW, with a photon conversion efficiency of ∼18%. A pulse duration of ∼180  fs is determined from a nonlinear cross-correlation with residual pump light. The single-step nonlinear conversion leads to a high power stability with <1% average power drift at <0.5%  rms noise over 1 h.

  12. Linear and non-linear effects of gradient artifact filtering methods in simultaneous EEG-FMRI - biomed 2010.

    PubMed

    Cusenza, Monica; Accardo, Agostino; Monti, Fabrizio; Bramanti, Placido

    2010-01-01

    Simultaneous EEG-fMRI is a powerful emerging tool in functional neuroimaging that exploits the relationship between neuronal electrophysiological activity and its hemodynamic response. It has found application in the study of both spontaneous and evoked brain activity. Combining the complementary advantages of the two techniques it provides a measurement with high temporal and spatial resolution, allowing a reliable localization of event generators. However, EEG data recorded inside MRI scanner are heavily corrupted by different types of artifacts due to the interactions between the patient, EEG electrodes wires and the magnetic fields inside the scanner. In particular, gradient switching and RF pulses, necessary to acquire fMRI data, generate large artifacts that can completely obscure EEG signals. Many methods have been proposed to eliminate or at least reduce gradient artifact. In this paper both a qualitative and a quantitative evaluation of two different algorithms used for gradient artifact removal are presented. Linear and non-linear characteristics of EEG, such as power spectra, fractal dimension and beta scaling exponent, are evaluated for EEGs recorded outside and inside the scanner, in MR static and dynamic conditions. The study highlights how residual artifacts after correction and artifacts induced by correction itself could still considerably affect EEG signals. The results suggest that the quality of both these gradient artifact filtering methods is not yet sufficient to preserve EEG characteristics and thus it must be further improved. The aim of this study is to make neurophysiologists aware of the filtering effects that can compromise linear and non-linear analysis of EEG recorded during functional MRI.

  13. Modeling Wave Driven Non-linear Flow Oscillations: The Terrestrial QBO and a Solar Analog

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Quasi Biennial Oscillation (QBO) of the zonal circulation observed in the terrestrial atmosphere at low latitudes is driven by wave mean flow interaction as was demonstrated first by Lindzen and Holton (1968), shown in a laboratory experiment by Plumb and McEwan (1978), and modeled by others (e.g., Plumb, Dunkerton). Although influenced by the seasonal cycle of solar forcing, the QBO, in principle, represents a nonlinear flow oscillation that can be maintained by a steady source of upward propagating waves. The wave driven non-linearity is of third or odd order in the flow velocity, which regenerates the fundamental harmonic itself to keep the oscillation going - the fluid dynamical analog of the displacement mechanism in the mechanical clock. Applying Hines' Doppler Spread Parameterization (DSP) for gravity waves (GW), we discuss with a global-scale spectral model numerical experiments that elucidate some properties of the QBO and its possible effects on the climatology of the atmosphere. Depending on the period of the QBO, wave filtering can cause interaction with the seasonal variations to produce pronounced oscillations with beat periods around 10 years. Since the seasonal cycle and its variability influence the period of the QBO, it may also be a potent conduit of solar activity variations to lower altitudes. Analogous to the terrestrial QBO, we propose that a flow oscillation may account for the 22-year periodicity of the solar magnetic cycle, potentially answering Dicke (1978) who asked, "Is there a chronometer hidden deep inside the Sun?" The oscillation would occur below the convection region, where gravity waves can propagate. Employing a simplified, analytic model, Hines' DSP is applied to estimate the flow oscillation. Depending on the adopted horizontal wavelengths of GW's, wave amplitudes less than 10 m/s can be made to produce oscillating zonal flows of about 20 m/s that should be large enough to generate a significant oscillation in the magnetic

  14. Developments in non-linear Kalman Ensemble and Particle Filtering techniques for hydrological data assimilation

    NASA Astrophysics Data System (ADS)

    Khaki, Mehdi; Forootan, Ehsan; Kuhn, Michael; Awange, Joseph; Pattiaratchi, Charitha

    2016-04-01

    Quantifying large-scale (basin/global) water storage changes is essential to understand the Earth's hydrological water cycle. Hydrological models have usually been used to simulate variations in storage compartments resulting from changes in water fluxes (i.e., precipitation, evapotranspiration and runoff) considering physical or conceptual frameworks. Models however represent limited skills in accurately simulating the storage compartments that could be the result of e.g., the uncertainty of forcing parameters, model structure, etc. In this regards, data assimilation provides a great chance to combine observational data with a prior forecast state to improve both the accuracy of model parameters and to improve the estimation of model states at the same time. Various methods exist that can be used to perform data assimilation into hydrological models. The one more frequently used particle-based algorithms suitable for non-linear systems high-dimensional systems is the Ensemble Kalman Filtering (EnKF). Despite efficiency and simplicity (especially in EnKF), this method indicate some drawbacks. To implement EnKF, one should use the sample covariance of observations and model state variables to update a priori estimates of the state variables. The sample covariance can be suboptimal as a result of small ensemble size, model errors, model nonlinearity, and other factors. Small ensemble can also lead to the development of correlations between state components that are at a significant distance from one another where there is no physical relation. To investigate the under-sampling issue raise by EnKF, covariance inflation technique in conjunction with localization was implemented. In this study, a comparison between latest methods used in the data assimilation framework, to overcome the mentioned problem, is performed. For this, in addition to implementing EnKF, we introduce and apply the Local Ensemble Kalman Filter (LEnKF) utilizing covariance localization to remove

  15. Parametric study of the potential for BWR ECCS strainer blockage due to LOCA generated debris. Final report

    SciTech Connect

    Zigler, G.; Brideau, J.; Rao, D.V.; Shaffer, C.; Souto, F.; Thomas, W.

    1995-10-01

    This report documents a plant-specific study for a BWR/4 with a Mark I containment that evaluated the potential for LOCA generated debris and the probability of losing long term recirculation capability due ECCS pump suction strainer blockage. The major elements of this study were: (1) acquisition of detailed piping layouts and installed insulation details for a reference BWR; (2) analysis of plant specific piping weld failure probabilities to estimate the LOCA frequency; (3) development of an insulation and other debris generation and drywell transport models for the reference BWR; (4) modeling of debris transport in the suppression pool; (5) development of strainer blockage head loss models for estimating loss of NPSH margin; (6) estimation of core damage frequency attributable to loss of ECCS recirculation capability following a LOCA. Elements 2 through 5 were combined into a computer code, BLOCKAGE 2.3. A point estimate of overall DEGB pipe break frequency (per Rx-year) of 1.59E-04 was calculated for the reference plant, with a corresponding overall ECCS loss of NPSH frequency (per Rx-year) of 1.58E-04. The calculated point estimate of core damage frequency (per Rx-year) due to blockage related accident sequences for the reference BWR ranged from 4.2E-06 to 2.5E-05. The results of this study show that unacceptable strainer blockage and loss of NPSH margin can occur within the first few minutes after ECCS pumps achieve maximum flows when the ECCS strainers are exposed to LOCA generated fibrous debris in the presence of particulates (sludge, paint chips, concrete dust). Generic or unconditional extrapolation of these reference plant calculated results should not be undertaken.

  16. Generation of high-power femtosecond supercontinua in the near-IR spectral range using broadband parametric frequency conversion in LBO and DCDA crystals pumped at λ = 620 nm

    SciTech Connect

    Podshivalov, A A; Sidorov-Biryukov, D A; Potemkin, F V

    2014-09-30

    The pump wavelength of parametric amplifiers based on CLBO, DCDA and LBO crystals and pumped by the second harmonic of a femtosecond Cr : forsterite laser (620 nm) is close to optimal for broadband amplification because of the proximity of group velocities of interacting pulses. Injection of a broadband continuum into the range of the signal-wave gain in LBO and DCDA parametric amplifiers, pumped at λ = 620 nm, leads to generation of broadband femtosecond pulses with a spectrum ranging from 1050 to 1600 nm and peak powers up to 20 MW. (nonlinear optical phenomena)

  17. The algebra of physical observables in non-linearly realized gauge theories

    NASA Astrophysics Data System (ADS)

    Quadri, Andrea

    2010-11-01

    We classify the physical observables in spontaneously broken non-linearly realized gauge theories in the recently proposed loopwise expansion governed by the Weak Power-Counting (WPC) and the Local Functional Equation. The latter controls the non-trivial quantum deformation of the classical non-linearly realized gauge symmetry, to all orders in the loop expansion. The Batalin-Vilkovisky (BV) formalism is used. We show that the dependence of the vertex functional on the Goldstone fields is obtained via a canonical transformation w.r.t. the BV bracket associated with the BRST symmetry of the model. We also compare the WPC with strict power-counting renormalizability in linearly realized gauge theories. In the case of the electroweak group we find that the tree-level Weinberg relation still holds if power-counting renormalizability is weakened to the WPC condition.

  18. Non-linear modeling using fuzzy principal component regression for Vidyaranyapuram sewage treatment plant, Mysore - India.

    PubMed

    Sulthana, Ayesha; Latha, K C; Imran, Mohammad; Rathan, Ramya; Sridhar, R; Balasubramanian, S

    2014-01-01

    Fuzzy principal component regression (FPCR) is proposed to model the non-linear process of sewage treatment plant (STP) data matrix. The dimension reduction of voluminous data was done by principal component analysis (PCA). The PCA score values were partitioned by fuzzy-c-means (FCM) clustering, and a Takagi-Sugeno-Kang (TSK) fuzzy model was built based on the FCM functions. The FPCR approach was used to predict the reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD) of treated wastewater of Vidyaranyapuram STP with respect to the relations modeled between fuzzy partitioned PCA scores and target output. The designed FPCR model showed the ability to capture the behavior of non-linear processes of STP. The predicted values of reduction in COD and BOD were analyzed by performing the linear regression analysis. The predicted values for COD and BOD reduction showed positive correlation with the observed data.

  19. GPU linear and non-linear Poisson–Boltzmann solver module for DelPhi

    PubMed Central

    Colmenares, José; Ortiz, Jesús; Rocchia, Walter

    2014-01-01

    Summary: In this work, we present a CUDA-based GPU implementation of a Poisson–Boltzmann equation solver, in both the linear and non-linear versions, using double precision. A finite difference scheme is adopted and made suitable for the GPU architecture. The resulting code was interfaced with the electrostatics software for biomolecules DelPhi, which is widely used in the computational biology community. The algorithm has been implemented using CUDA and tested over a few representative cases of biological interest. Details of the implementation and performance test results are illustrated. A speedup of ∼10 times was achieved both in the linear and non-linear cases. Availability and implementation: The module is open-source and available at http://www.electrostaticszone.eu/index.php/downloads. Contact: walter.rocchia@iit.it Supplementary information: Supplementary data are available at Bioinformatics online PMID:24292939

  20. Global search of non-linear systems periodic solutions: A rotordynamics application

    NASA Astrophysics Data System (ADS)

    Sarrouy, E.; Thouverez, F.

    2010-08-01

    Introducing non-linearities into models contributes towards a better reality description but leads to systems having multiple solutions. It is then legitimate to look for all the solutions of such systems, that is to have a global analysis approach. However no effective method can be found in literature for systems described by more than two or three degrees of freedom. We propose in this paper a way to find all T-periodic solutions—where T is known—of a non-linear dynamical system. This method is compared to three other approaches and is shown to be the most efficient on a Duffing oscillator. As a more complex example, a rotor model including a squeeze-film damper is studied and a second branch of solutions is exhibited.

  1. Characterization of memory load in an arithmetic task using non-linear analysis of EEG signals.

    PubMed

    Zarjam, Pega; Epps, Julien; Lovell, Nigel H; Chen, Fang

    2012-01-01

    In this paper, we investigate non-linear analysis of electroencephalogram (EEG) signals to examine changes in working memory load during the performance of a cognitive task with varying difficulty levels. EEG signals were recorded during an arithmetic task while the induced load was varying in seven levels from very easy to extremely difficult. The EEG signals were analyzed using three different non-linear/dynamic measures; namely: correlation dimension, Hurst exponent and approximate entropy. Experimental results show that the values of the measures extracted from the delta frequency band of signals acquired from the frontal and occipital lobes of the brain vary in accordance with the task difficulty level induced. The values of the correlation dimension increased as the task difficulty increased, showing a rise in complexity of the EEG signals, while the values of the Hurst exponent and approximate entropy decreased as task difficulty increased, indicating more regularity and predictability in the signals.

  2. Model Order and Identifiability of Non-Linear Biological Systems in Stable Oscillation.

    PubMed

    Wigren, Torbjörn

    2015-01-01

    The paper presents a theoretical result that clarifies when it is at all possible to determine the nonlinear dynamic equations of a biological system in stable oscillation, from measured data. As it turns out the minimal order needed for this is dependent on the minimal dimension in which the stable orbit of the system does not intersect itself. This is illustrated with a simulated fourth order Hodgkin-Huxley spiking neuron model, which is identified using a non-linear second order differential equation model. The simulated result illustrates that the underlying higher order model of the spiking neuron cannot be uniquely determined given only the periodic measured data. The result of the paper is of general validity when the dynamics of biological systems in stable oscillation is identified, and illustrates the need to carefully address non-linear identifiability aspects when validating models based on periodic data.

  3. Solving deterministic non-linear programming problem using Hopfield artificial neural network and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Vasant, P.; Ganesan, T.; Elamvazuthi, I.

    2012-11-01

    A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.

  4. Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier

    2017-01-01

    A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.

  5. Estimation of non-linear growth models by linearization: a simulation study using a Gompertz function.

    PubMed

    Vuori, Kaarina; Strandén, Ismo; Sevón-Aimonen, Marja-Liisa; Mäntysaari, Esa A

    2006-01-01

    A method based on Taylor series expansion for estimation of location parameters and variance components of non-linear mixed effects models was considered. An attractive property of the method is the opportunity for an easily implemented algorithm. Estimation of non-linear mixed effects models can be done by common methods for linear mixed effects models, and thus existing programs can be used after small modifications. The applicability of this algorithm in animal breeding was studied with simulation using a Gompertz function growth model in pigs. Two growth data sets were analyzed: a full set containing observations from the entire growing period, and a truncated time trajectory set containing animals slaughtered prematurely, which is common in pig breeding. The results from the 50 simulation replicates with full data set indicate that the linearization approach was capable of estimating the original parameters satisfactorily. However, estimation of the parameters related to adult weight becomes unstable in the case of a truncated data set.

  6. A comparative study of new non-linear uncertainty propagation methods for space surveillance

    NASA Astrophysics Data System (ADS)

    Horwood, Joshua T.; Aristoff, Jeffrey M.; Singh, Navraj; Poore, Aubrey B.

    2014-06-01

    We propose a unified testing framework for assessing uncertainty realism during non-linear uncertainty propagation under the perturbed two-body problem of celestial mechanics, with an accompanying suite of metrics and benchmark test cases on which to validate different methods. We subsequently apply the testing framework to different combinations of uncertainty propagation techniques and coordinate systems for representing the uncertainty. In particular, we recommend the use of a newly-derived system of orbital element coordinates that mitigate the non-linearities in uncertainty propagation and the recently-developed Gauss von Mises filter which, when used in tandem, provide uncertainty realism over much longer periods of time compared to Gaussian representations of uncertainty in Cartesian spaces, at roughly the same computational cost.

  7. Manganite-based memristive heterojunction with tunable non-linear I-V characteristics.

    PubMed

    Lee, Hong-Sub; Park, Hyung-Ho; Rozenberg, M J

    2015-04-21

    A resistive random access memory (ReRAM) based on the memristive effect allows high-density integration through a cross-point array (CPA) structure. However, a significant common drawback of the CPA configuration is the crosstalk between cells. Here, we introduce a solution based on a novel heterojunction stack solely made of members of the perovskite manganite family Pr(1-x)Ca(x)MnO3 (PCMO) and CaMnO(3-δ) (CMO) which show electroforming-free bipolar resistive switching. The heterojunction consists of rectifying interfaces and shows a symmetrical and tunable non-linear current-voltage curve. The spectromicroscopic measurements support the scenario of specialized roles, with the memristive effect taking place at the active Al-PCMO interface via a redox mechanism, while non-linearity was achieved by adopting a rectifying double interface PCMO-CMO-PCMO.

  8. Learning from observation, feedback, and intervention in linear and non-linear task environments.

    PubMed

    Henriksson, Maria P; Enkvist, Tommy

    2016-12-12

    This multiple-cue judgment study investigates whether we can manipulate the judgment strategy and increase accuracy in linear and non-linear cue-criterion environments just by changing the training mode. Three experiments show that accuracy in simple linear additive task environments are improved with feedback training and intervention training, while accuracy in complex multiplicative tasks are improved with observational training. The observed interaction effect suggests that the training mode invites different strategies that are adjusted as a function of experience to the demands from the underlying cue-criterion structure. Thus, feedback and the intervention training modes invite cue abstraction, an effortful but successful strategy in combination with simple linear task structures, and observational training invites exemplar memory processes, a simple but successful strategy in combination with complex non-linear task structures. The study discusses adaptive cognition and the implication of the different training modes across a life span and for clinical populations.

  9. A new line-of-sight approach to the non-linear Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Fidler, Christian; Koyama, Kazuya; Pettinari, Guido W.

    2015-04-01

    We develop the transport operator formalism, a new line-of-sight integration framework to calculate the anisotropies of the Cosmic Microwave Background (CMB) at the linear and non-linear level. This formalism utilises a transformation operator that removes all inhomogeneous propagation effects acting on the photon distribution function, thus achieving a split between perturbative collisional effects at recombination and non-perturbative line-of-sight effects at later times. The former can be computed in the framework of standard cosmological perturbation theory with a second-order Boltzmann code such as SONG, while the latter can be treated within a separate perturbative scheme allowing the use of non-linear Newtonian potentials. We thus provide a consistent framework to compute all physical effects contained in the Boltzmann equation and to combine the standard remapping approach with Boltzmann codes at any order in perturbation theory, without assuming that all sources are localised at recombination.

  10. Local instabilities and the transition to chaos of non-linear waves

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The object of this research contract was to study the singularities of non-linear structures through numerical simulations. The waiting times involved in the use of a Cray II prompted the lab to replace it with an HP 720 work station, which they found to be irreplaceable for the fine analysis of convection, despite the huge amount of calculations involved. The team simulated a fairly large number of two-dimensional phenomenological models, with satisfactory results. Examples described in this report include convection, dislocations in rolled structures, dislocation nucleation using the Landau-Ginzburg equation, the Pesch-Kramer equation (large-scale flows), non-linear wave defects, the optical model, and others.

  11. Theoretically informed entangled polymer simulations: linear and non-linear rheology of melts.

    SciTech Connect

    Ramirez-Hernandez, Abelardo; Miller, Marcus; De Pablo, Juan J.

    2013-01-02

    In recent years, there has been a resurgence in developing models and theories for the non-equilibrium behavior of polymeric liquids. The so-called “tube” models, gradually refined over decades of research, can now provide a description of the linear and non-linear rheology of entangled polymers that is qualitatively consistent with experiments. Such approaches, however, have been limited to homopolymers. Here we present a general formalism that relies on the concept of slip links to describe the dynamics of high polymers. In this work, it is shown to be capable of describing quantitatively the linear response of pure homopolymers and blends, the non-linear rheology of highly entangled systems, and the dynamics of diblock copolymers.

  12. Iterated non-linear model predictive control based on tubes and contractive constraints.

    PubMed

    Murillo, M; Sánchez, G; Giovanini, L

    2016-05-01

    This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle.

  13. The quadratically damped oscillator: A case study of a non-linear equation of motion

    NASA Astrophysics Data System (ADS)

    Smith, B. R.

    2012-09-01

    The equation of motion for a quadratically damped oscillator, where the damping is proportional to the square of the velocity, is a non-linear second-order differential equation. Non-linear equations of motion such as this are seldom addressed in intermediate instruction in classical dynamics; this one is problematic because it cannot be solved in terms of elementary functions. Like all second-order ordinary differential equations, it has a corresponding first-order partial differential equation, whose independent solutions constitute the constants of the motion. These constants readily provide an approximate solution correct to first order in the damping constant. They also reveal that the quadratically damped oscillator is never critically damped or overdamped, and that to first order in the damping constant the oscillation frequency is identical to the natural frequency. The technique described has close ties to standard tools such as integral curves in phase space and phase portraits.

  14. Simulation of non-linear rf losses derived from characteristic Nb topography

    SciTech Connect

    Reece, Charles E.; Xu, Chen; Kelley, Michael

    2013-09-01

    A simplified model has been developed to simulate non-linear RF losses on Nb surfaces exclusively due to topographical enhancement of surface magnetic fields. If local sharp edges are small enough, at locations where local surface fields exceed Hc, small volumes of material may become normal conducting without thermal leading to quench. These small volumes of normal material yield increases in the effective surface resistance of the Nb. Using topographic data from typical BCP?d and EP?d fine grain niobium surfaces, we have simulated field-dependent losses and found that when extrapolated to resulting cavity performance, these losses correspond well to characteristic BCP/EP high field Q0 performance differences for fine grain Nb. We describe the structure of the model, its limitations, and the effects of this type of non-linear loss contribution on SRF cavities.

  15. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    PubMed

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.

  16. Characterization of absorption and non-linear effects in infrasound propagation using an augmented Burgers' equation

    NASA Astrophysics Data System (ADS)

    Sabatini, R.; Bailly, C.; Marsden, O.; Gainville, O.

    2016-12-01

    The long-range atmospheric propagation of explosion-like waves of frequency in the infrasound range is investigated using non-linear ray theory. Simulations are performed for sources of increasing amplitude on rays up to the lower thermosphere and for distances of hundreds of kilometres. A study of the attenuation of the waveforms observed at ground level induced by both the classical mechanisms and the vibrational relaxation of the molecules comprising the atmospheric gas is carried out. The relative importance of classical absorption and vibrational relaxation along the typical atmospheric propagation trajectories is assessed. Non-linear effects are highlighted as well and particular emphasis is placed on their strong interaction with absorption phenomena. A detailed description of the propagation model and of the numerical algorithm used in this work is first reported. Results are then discussed and the importance of the different mechanisms is clarified.

  17. Fully non-linear cosmological perturbations of multicomponent fluid and field systems

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Noh, Hyerim; Park, Chan-Gyung

    2016-09-01

    We present fully non-linear and exact cosmological perturbation equations in the presence of multiple components of fluids and minimally coupled scalar fields. We ignore the tensor-type perturbation. The equations are presented without taking the temporal gauge condition in the Friedmann background with general curvature and the cosmological constant. We include the anisotropic stress. Even in the absence of anisotropic stress of individual component, the multiple component nature introduces the anisotropic stress in the collective fluid quantities. We prove the Newtonian limit of multiple fluids in the zero-shear gauge and the uniform-expansion gauge conditions, present the Newtonian hydrodynamic equations in the presence of general relativistic pressure in the zero-shear gauge, and present the fully non-linear equations and the third-order perturbation equations of the non-relativistic pressure fluids in the CDM-comoving gauge.

  18. On robustness of constrained non-linear H ∞ predictive controllers with disturbances

    NASA Astrophysics Data System (ADS)

    He, De-Feng; Ji, Hai-Bo; Zheng, Tao

    2010-02-01

    This article considers the robustness problem of H ∞ model predictive controllers for constrained non-linear discrete-time systems subject to disturbances, which are dependent on the system state and input. The notions of input-to-state stability and finite L 2-gain of non-linear systems are introduced and exploited to investigate the robustness properties of this predictive controller under the state and input constraints and the disturbance. Moreover, this robustness of the controller is extended to the case of suboptimality of the solution. With its feasibility at initial time, the feasibility of the online optimisation problem is guaranteed for all times in the presence of disturbances and constraints. Finally, an example is employed to illustrate the proposed results.

  19. FDATMOS16 non-linear partitioning and organic volatility distributions in urban aerosols

    SciTech Connect

    Madronich, Sasha; Kleinman, Larry; Conley, Andrew; Lee-Taylor, Julie; Hodzic, A.; Aumont, Bernard

    2015-12-17

    Gas-to-particle partitioning of organic aerosols (OA) is represented in most models by Raoult’s law, and depends on the existing mass of particles into which organic gases can dissolve. This raises the possibility of non-linear response of particle-phase OA to the emissions of precursor volatile organic compounds (VOCs) that contribute to this partitioning mass. Implications for air quality management are evident: A strong non-linear dependence would suggest that reductions in VOC emission would have a more-than-proportionate benefit in lowering ambient OA concentrations. Chamber measurements on simple VOC mixtures generally confirm the non-linear scaling between OA and VOCs, usually stated as a mass-dependence of the measured OA yields. However, for realistic ambient conditions including urban settings, no single component dominates the composition of the organic particles, and deviations from linearity are presumed to be small. Here we re-examine the linearity question using volatility spectra from several sources: (1) chamber studies of selected aerosols, (2) volatility inferred for aerosols sampled in two megacities, Mexico City and Paris, and (3) an explicit chemistry model (GECKO-A). These few available volatility distributions suggest that urban OA may be only slightly super-linear, with most values of the sensitivity exponent in the range 1.1-1.3, also substantially lower than seen in chambers for some specific aerosols. Furthermore, the rather low values suggest that OA concentrations in megacities are not an inevitable convergence of non-linear effects, but can be addressed (much like in smaller urban areas) by proportionate reductions in emissions.

  20. Improving Non-Linear Approaches to Anomaly Detection, Class Separation, and Visualization

    DTIC Science & Technology

    2014-12-26

    CLASS SEPARATION, AND VISUALIZATION DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of...Date 4 Dec 2014 Date 4 Dec 2014 Date Accepted: Adedeji B. Badiru , Ph.D. Dean, Graduate School of Engineering and Management Date AFIT-ENS-DS-14-D-15...existing non-linear techniques are investigated for the purposes of providing better, timely class separation and improved anomaly detection on various