Pupils' over-reliance on linearity: a scholastic effect?
Van Dooren, Wim; De Bock, Dirk; Janssens, Dirk; Verschaffel, Lieven
2007-06-01
From upper elementary education on, children develop a tendency to over-use linearity. Particularly, it is found that many pupils assume that if a figure enlarges k times, the area enlarges k times too. However, most research was conducted with traditional, school-like word problems. This study examines whether pupils also over-use linearity if non-linear problems are embedded in meaningful, authentic performance tasks instead of traditional, school-like word problems, and whether this experience influences later behaviour. Ninety-three sixth graders from two primary schools in Flanders, Belgium. Pupils received a pre-test with traditional word problems. Those who made a linear error on the non-linear area problem were subjected to individual interviews. They received one new non-linear problem, in the S-condition (again a traditional, scholastic word problem), D-condition (the same word problem with a drawing) or P-condition (a meaningful performance-based task). Shortly afterwards, pupils received a post-test, containing again a non-linear word problem. Most pupils from the S-condition displayed linear reasoning during the interview. Offering drawings (D-condition) had a positive effect, but presenting the problem as a performance task (P-condition) was more beneficial. Linear reasoning was nearly absent in the P-condition. Remarkably, at the post-test, most pupils from all three groups again applied linear strategies. Pupils' over-reliance on linearity seems partly elicited by the school-like word problem format of test items. Pupils perform much better if non-linear problems are offered as performance tasks. However, a single experience does not change performances on a comparable word problem test afterwards.
NASA Astrophysics Data System (ADS)
Pipkins, Daniel Scott
Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.
Multigrid approaches to non-linear diffusion problems on unstructured meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The efficiency of three multigrid methods for solving highly non-linear diffusion problems on two-dimensional unstructured meshes is examined. The three multigrid methods differ mainly in the manner in which the nonlinearities of the governing equations are handled. These comprise a non-linear full approximation storage (FAS) multigrid method which is used to solve the non-linear equations directly, a linear multigrid method which is used to solve the linear system arising from a Newton linearization of the non-linear system, and a hybrid scheme which is based on a non-linear FAS multigrid scheme, but employs a linear solver on each level as a smoother. Results indicate that all methods are equally effective at converging the non-linear residual in a given number of grid sweeps, but that the linear solver is more efficient in cpu time due to the lower cost of linear versus non-linear grid sweeps.
Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)
NASA Astrophysics Data System (ADS)
Dubinskii, Yu A.; Osipenko, A. S.
2000-02-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.
NASA Astrophysics Data System (ADS)
Ikelle, Luc T.; Osen, Are; Amundsen, Lasse; Shen, Yunqing
2004-12-01
The classical linear solutions to the problem of multiple attenuation, like predictive deconvolution, τ-p filtering, or F-K filtering, are generally fast, stable, and robust compared to non-linear solutions, which are generally either iterative or in the form of a series with an infinite number of terms. These qualities have made the linear solutions more attractive to seismic data-processing practitioners. However, most linear solutions, including predictive deconvolution or F-K filtering, contain severe assumptions about the model of the subsurface and the class of free-surface multiples they can attenuate. These assumptions limit their usefulness. In a recent paper, we described an exception to this assertion for OBS data. We showed in that paper that a linear and non-iterative solution to the problem of attenuating free-surface multiples which is as accurate as iterative non-linear solutions can be constructed for OBS data. We here present a similar linear and non-iterative solution for attenuating free-surface multiples in towed-streamer data. For most practical purposes, this linear solution is as accurate as the non-linear ones.
Assessing non-uniqueness: An algebraic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, Don W.
Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.
Iterative algorithms for a non-linear inverse problem in atmospheric lidar
NASA Astrophysics Data System (ADS)
Denevi, Giulia; Garbarino, Sara; Sorrentino, Alberto
2017-08-01
We consider the inverse problem of retrieving aerosol extinction coefficients from Raman lidar measurements. In this problem the unknown and the data are related through the exponential of a linear operator, the unknown is non-negative and the data follow the Poisson distribution. Standard methods work on the log-transformed data and solve the resulting linear inverse problem, but neglect to take into account the noise statistics. In this study we show that proper modelling of the noise distribution can improve substantially the quality of the reconstructed extinction profiles. To achieve this goal, we consider the non-linear inverse problem with non-negativity constraint, and propose two iterative algorithms derived using the Karush-Kuhn-Tucker conditions. We validate the algorithms with synthetic and experimental data. As expected, the proposed algorithms out-perform standard methods in terms of sensitivity to noise and reliability of the estimated profile.
NASA Astrophysics Data System (ADS)
Fukuda, Jun'ichi; Johnson, Kaj M.
2010-06-01
We present a unified theoretical framework and solution method for probabilistic, Bayesian inversions of crustal deformation data. The inversions involve multiple data sets with unknown relative weights, model parameters that are related linearly or non-linearly through theoretic models to observations, prior information on model parameters and regularization priors to stabilize underdetermined problems. To efficiently handle non-linear inversions in which some of the model parameters are linearly related to the observations, this method combines both analytical least-squares solutions and a Monte Carlo sampling technique. In this method, model parameters that are linearly and non-linearly related to observations, relative weights of multiple data sets and relative weights of prior information and regularization priors are determined in a unified Bayesian framework. In this paper, we define the mixed linear-non-linear inverse problem, outline the theoretical basis for the method, provide a step-by-step algorithm for the inversion, validate the inversion method using synthetic data and apply the method to two real data sets. We apply the method to inversions of multiple geodetic data sets with unknown relative data weights for interseismic fault slip and locking depth. We also apply the method to the problem of estimating the spatial distribution of coseismic slip on faults with unknown fault geometry, relative data weights and smoothing regularization weight.
NASA Astrophysics Data System (ADS)
Fukahata, Y.; Wright, T. J.
2006-12-01
We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.
Finite Element Based Structural Damage Detection Using Artificial Boundary Conditions
2007-09-01
C. (2005). Elementary Linear Algebra . New York: John Wiley and Sons. Avitable, Peter (2001, January) Experimental Modal Analysis, A Simple Non...variables under consideration. 3 Frequency sensitivities are the basis for a linear approximation to compute the change in the natural frequencies of a...THEORY The general problem statement for a non- linear constrained optimization problem is: To minimize ( )f x Objective Function Subject to
Kim, Jongrae; Bates, Declan G; Postlethwaite, Ian; Heslop-Harrison, Pat; Cho, Kwang-Hyun
2008-05-15
Inherent non-linearities in biomolecular interactions make the identification of network interactions difficult. One of the principal problems is that all methods based on the use of linear time-invariant models will have fundamental limitations in their capability to infer certain non-linear network interactions. Another difficulty is the multiplicity of possible solutions, since, for a given dataset, there may be many different possible networks which generate the same time-series expression profiles. A novel algorithm for the inference of biomolecular interaction networks from temporal expression data is presented. Linear time-varying models, which can represent a much wider class of time-series data than linear time-invariant models, are employed in the algorithm. From time-series expression profiles, the model parameters are identified by solving a non-linear optimization problem. In order to systematically reduce the set of possible solutions for the optimization problem, a filtering process is performed using a phase-portrait analysis with random numerical perturbations. The proposed approach has the advantages of not requiring the system to be in a stable steady state, of using time-series profiles which have been generated by a single experiment, and of allowing non-linear network interactions to be identified. The ability of the proposed algorithm to correctly infer network interactions is illustrated by its application to three examples: a non-linear model for cAMP oscillations in Dictyostelium discoideum, the cell-cycle data for Saccharomyces cerevisiae and a large-scale non-linear model of a group of synchronized Dictyostelium cells. The software used in this article is available from http://sbie.kaist.ac.kr/software
Probabilistic dual heuristic programming-based adaptive critic
NASA Astrophysics Data System (ADS)
Herzallah, Randa
2010-02-01
Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.
An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems
NASA Astrophysics Data System (ADS)
Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri
2018-01-01
The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.
NASA Astrophysics Data System (ADS)
Courdurier, M.; Monard, F.; Osses, A.; Romero, F.
2015-09-01
In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton-Raphson algorithm.
Single-machine common/slack due window assignment problems with linear decreasing processing times
NASA Astrophysics Data System (ADS)
Zhang, Xingong; Lin, Win-Chin; Wu, Wen-Hsiang; Wu, Chin-Chia
2017-08-01
This paper studies linear non-increasing processing times and the common/slack due window assignment problems on a single machine, where the actual processing time of a job is a linear non-increasing function of its starting time. The aim is to minimize the sum of the earliness cost, tardiness cost, due window location and due window size. Some optimality results are discussed for the common/slack due window assignment problems and two O(n log n) time algorithms are presented to solve the two problems. Finally, two examples are provided to illustrate the correctness of the corresponding algorithms.
Non-linear vibrations of sandwich viscoelastic shells
NASA Astrophysics Data System (ADS)
Benchouaf, Lahcen; Boutyour, El Hassan; Daya, El Mostafa; Potier-Ferry, Michel
2018-04-01
This paper deals with the non-linear vibration of sandwich viscoelastic shell structures. Coupling a harmonic balance method with the Galerkin's procedure, one obtains an amplitude equation depending on two complex coefficients. The latter are determined by solving a classical eigenvalue problem and two linear ones. This permits to get the non-linear frequency and the non-linear loss factor as functions of the displacement amplitude. To validate our approach, these relationships are illustrated in the case of a circular sandwich ring.
Deformed Palmprint Matching Based on Stable Regions.
Wu, Xiangqian; Zhao, Qiushi
2015-12-01
Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Rosenberg, D. E.; Alafifi, A.
2016-12-01
Water resources systems analysis often focuses on finding optimal solutions. Yet an optimal solution is optimal only for the modelled issues and managers often seek near-optimal alternatives that address un-modelled objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as the region comprising the original problem constraints plus a new constraint that allowed performance within a specified tolerance of the optimal objective function value. MGA identified a few maximally-different alternatives from the near-optimal region. Subsequent work applied Markov Chain Monte Carlo (MCMC) sampling to generate a larger number of alternatives that span the near-optimal region of linear problems or select portions for non-linear problems. We extend the MCMC Hit-And-Run method to generate alternatives that span the full extent of the near-optimal region for non-linear, non-convex problems. First, start at a feasible hit point within the near-optimal region, then run a random distance in a random direction to a new hit point. Next, repeat until generating the desired number of alternatives. The key step at each iterate is to run a random distance along the line in the specified direction to a new hit point. If linear equity constraints exist, we construct an orthogonal basis and use a null space transformation to confine hits and runs to a lower-dimensional space. Linear inequity constraints define the convex bounds on the line that runs through the current hit point in the specified direction. We then use slice sampling to identify a new hit point along the line within bounds defined by the non-linear inequity constraints. This technique is computationally efficient compared to prior near-optimal alternative generation techniques such MGA, MCMC Metropolis-Hastings, evolutionary, or firefly algorithms because search at each iteration is confined to the hit line, the algorithm can move in one step to any point in the near-optimal region, and each iterate generates a new, feasible alternative. We use the method to generate alternatives that span the near-optimal regions of simple and more complicated water management problems and may be preferred to optimal solutions. We also discuss extensions to handle non-linear equity constraints.
Solving Fuzzy Optimization Problem Using Hybrid Ls-Sa Method
NASA Astrophysics Data System (ADS)
Vasant, Pandian
2011-06-01
Fuzzy optimization problem has been one of the most and prominent topics inside the broad area of computational intelligent. It's especially relevant in the filed of fuzzy non-linear programming. It's application as well as practical realization can been seen in all the real world problems. In this paper a large scale non-linear fuzzy programming problem has been solved by hybrid optimization techniques of Line Search (LS), Simulated Annealing (SA) and Pattern Search (PS). As industrial production planning problem with cubic objective function, 8 decision variables and 29 constraints has been solved successfully using LS-SA-PS hybrid optimization techniques. The computational results for the objective function respect to vagueness factor and level of satisfaction has been provided in the form of 2D and 3D plots. The outcome is very promising and strongly suggests that the hybrid LS-SA-PS algorithm is very efficient and productive in solving the large scale non-linear fuzzy programming problem.
Enriched Imperialist Competitive Algorithm for system identification of magneto-rheological dampers
NASA Astrophysics Data System (ADS)
Talatahari, Siamak; Rahbari, Nima Mohajer
2015-10-01
In the current research, the imperialist competitive algorithm is dramatically enhanced and a new optimization method dubbed as Enriched Imperialist Competitive Algorithm (EICA) is effectively introduced to deal with high non-linear optimization problems. To conduct a close examination of its functionality and efficacy, the proposed metaheuristic optimization approach is actively employed to sort out the parameter identification of two different types of hysteretic Bouc-Wen models which are simulating the non-linear behavior of MR dampers. Two types of experimental data are used for the optimization problems to minutely examine the robustness of the proposed EICA. The obtained results self-evidently demonstrate the high adaptability of EICA to suitably get to the bottom of such non-linear and hysteretic problems.
NASA Astrophysics Data System (ADS)
Vasant, Pandian; Barsoum, Nader
2008-10-01
Many engineering, science, information technology and management optimization problems can be considered as non linear programming real world problems where the all or some of the parameters and variables involved are uncertain in nature. These can only be quantified using intelligent computational techniques such as evolutionary computation and fuzzy logic. The main objective of this research paper is to solve non linear fuzzy optimization problem where the technological coefficient in the constraints involved are fuzzy numbers which was represented by logistic membership functions by using hybrid evolutionary optimization approach. To explore the applicability of the present study a numerical example is considered to determine the production planning for the decision variables and profit of the company.
NASA Astrophysics Data System (ADS)
Fackerell, E. D.; Hartley, D.; Tucker, R. W.
We examine in detail the Cauchy problem for a class of non-linear hyperbolic equations in two independent variables. This class is motivated by the analysis of the dynamics of a line of non-linearly coupled particles by Fermi, Pasta, and Ulam and extends the recent investigation of this problem by Gardner and Kamran. We find conditions for the existence of a 1-stable Cartan characteristic of a Pfaffian exterior differential system whose integral curves provide a solution to the Cauchy problem. The same obstruction to involution is exposed in Darboux's method of integration and the two approaches are compared. A class of particular solutions to the obstruction is constructed.
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1993-01-01
The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation (SV) indicated by models of the observed geomagnetic field is examined in the source-free mantle/frozen-flux core (SFI/VFFC) approximation. This inverse problem is non-linear because solutions of the forward problem are deterministically chaotic. The SFM/FFC approximation is inexact, and neither the models nor the observations they represent are either complete or perfect. A method is developed for solving the non-linear inverse motional induction problem posed by the hypothesis of (piecewise, statistically) steady core surface flow and the supposition of a complete initial geomagnetic condition. The method features iterative solution of the weighted, linearized least-squares problem and admits optional biases favoring surficially geostrophic flow and/or spatially simple flow. Two types of weights are advanced radial field weights for fitting the evolution of the broad-scale portion of the radial field component near Earth's surface implied by the models, and generalized weights for fitting the evolution of the broad-scale portion of the scalar potential specified by the models.
THE SUCCESSIVE LINEAR ESTIMATOR: A REVISIT. (R827114)
This paper examines the theoretical basis of the successive linear estimator (SLE) that has been developed for the inverse problem in subsurface hydrology. We show that the SLE algorithm is a non-linear iterative estimator to the inverse problem. The weights used in the SLE al...
A Quantitative and Combinatorial Approach to Non-Linear Meanings of Multiplication
ERIC Educational Resources Information Center
Tillema, Erik; Gatza, Andrew
2016-01-01
We provide a conceptual analysis of how combinatorics problems have the potential to support students to establish non-linear meanings of multiplication (NLMM). The problems we analyze we have used in a series of studies with 6th, 8th, and 10th grade students. We situate the analysis in prior work on students' quantitative and multiplicative…
Asymptotic Stability of Interconnected Passive Non-Linear Systems
NASA Technical Reports Server (NTRS)
Isidori, A.; Joshi, S. M.; Kelkar, A. G.
1999-01-01
This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.
1982-02-01
of them are pre- sented in this paper. As an application, important practical problems similar to the one posed by Gnanadesikan (1977), p. 77 can be... Gnanadesikan and Wilk (1969) to search for a non-linear combination, giving rise to non-linear first principal component. So, a p-dinensional vector can...distribution, Gnanadesikan and Gupta (1970) and earlier Eaton (1967) have considered the problem of ranking the r underlying populations according to the
Computer Power. Part 2: Electrical Power Problems and Their Amelioration.
ERIC Educational Resources Information Center
Price, Bennett J.
1989-01-01
Describes electrical power problems that affect computer users, including spikes, sags, outages, noise, frequency variations, and static electricity. Ways in which these problems may be diagnosed and cured are discussed. Sidebars consider transformers; power distribution units; surge currents/linear and non-linear loads; and sizing the power…
Linear Programming and Its Application to Pattern Recognition Problems
NASA Technical Reports Server (NTRS)
Omalley, M. J.
1973-01-01
Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.
Xia, Youshen; Sun, Changyin; Zheng, Wei Xing
2012-05-01
There is growing interest in solving linear L1 estimation problems for sparsity of the solution and robustness against non-Gaussian noise. This paper proposes a discrete-time neural network which can calculate large linear L1 estimation problems fast. The proposed neural network has a fixed computational step length and is proved to be globally convergent to an optimal solution. Then, the proposed neural network is efficiently applied to image restoration. Numerical results show that the proposed neural network is not only efficient in solving degenerate problems resulting from the nonunique solutions of the linear L1 estimation problems but also needs much less computational time than the related algorithms in solving both linear L1 estimation and image restoration problems.
NASA Astrophysics Data System (ADS)
Vasant, P.; Ganesan, T.; Elamvazuthi, I.
2012-11-01
A fairly reasonable result was obtained for non-linear engineering problems using the optimization techniques such as neural network, genetic algorithms, and fuzzy logic independently in the past. Increasingly, hybrid techniques are being used to solve the non-linear problems to obtain better output. This paper discusses the use of neuro-genetic hybrid technique to optimize the geological structure mapping which is known as seismic survey. It involves the minimization of objective function subject to the requirement of geophysical and operational constraints. In this work, the optimization was initially performed using genetic programming, and followed by hybrid neuro-genetic programming approaches. Comparative studies and analysis were then carried out on the optimized results. The results indicate that the hybrid neuro-genetic hybrid technique produced better results compared to the stand-alone genetic programming method.
Comparisons of linear and nonlinear pyramid schemes for signal and image processing
NASA Astrophysics Data System (ADS)
Morales, Aldo W.; Ko, Sung-Jea
1997-04-01
Linear filters banks are being used extensively in image and video applications. New research results in wavelet applications for compression and de-noising are constantly appearing in the technical literature. On the other hand, non-linear filter banks are also being used regularly in image pyramid algorithms. There are some inherent advantages in using non-linear filters instead of linear filters when non-Gaussian processes are present in images. However, a consistent way of comparing performance criteria between these two schemes has not been fully developed yet. In this paper a recently discovered tool, sample selection probabilities, is used to compare the behavior of linear and non-linear filters. In the conversion from weights of order statistics (OS) filters to coefficients of the impulse response is obtained through these probabilities. However, the reverse problem: the conversion from coefficients of the impulse response to the weights of OS filters is not yet fully understood. One of the reasons for this difficulty is the highly non-linear nature of the partitions and generating function used. In the present paper the problem is posed as an optimization of integer linear programming subject to constraints directly obtained from the coefficients of the impulse response. Although the technique to be presented in not completely refined, it certainly appears to be promising. Some results will be shown.
NASA Astrophysics Data System (ADS)
Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki
2016-12-01
In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.
Asymptotic Linear Spectral Statistics for Spiked Hermitian Random Matrices
NASA Astrophysics Data System (ADS)
Passemier, Damien; McKay, Matthew R.; Chen, Yang
2015-07-01
Using the Coulomb Fluid method, this paper derives central limit theorems (CLTs) for linear spectral statistics of three "spiked" Hermitian random matrix ensembles. These include Johnstone's spiked model (i.e., central Wishart with spiked correlation), non-central Wishart with rank-one non-centrality, and a related class of non-central matrices. For a generic linear statistic, we derive simple and explicit CLT expressions as the matrix dimensions grow large. For all three ensembles under consideration, we find that the primary effect of the spike is to introduce an correction term to the asymptotic mean of the linear spectral statistic, which we characterize with simple formulas. The utility of our proposed framework is demonstrated through application to three different linear statistics problems: the classical likelihood ratio test for a population covariance, the capacity analysis of multi-antenna wireless communication systems with a line-of-sight transmission path, and a classical multiple sample significance testing problem.
An analysis of hypercritical states in elastic and inelastic systems
NASA Astrophysics Data System (ADS)
Kowalczk, Maciej
The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
ERIC Educational Resources Information Center
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
A problem in non-linear Diophantine approximation
NASA Astrophysics Data System (ADS)
Harrap, Stephen; Hussain, Mumtaz; Kristensen, Simon
2018-05-01
In this paper we obtain the Lebesgue and Hausdorff measure results for the set of vectors satisfying infinitely many fully non-linear Diophantine inequalities. The set is associated with a class of linear inhomogeneous partial differential equations whose solubility depends on a certain Diophantine condition. The failure of the Diophantine condition guarantees the existence of a smooth solution.
Performance and limitations of p-version finite element method for problems containing singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.K.; Surana, K.S.
1996-10-01
In this paper, the authors investigate the performance of p-version Least Squares Finite Element Formulation (LSFEF) for a hyperbolic system of equations describing a one-dimensional radial flow of an upper-convected Maxwell fluid. This problem has r{sup 2} singularity in stress and r{sup {minus}1} singularity in velocity at r = 0. By carefully controlling the inner radius r{sub j}, Deborah number DE and Reynolds number Re, this problem can be used to simulate the following four classes of problems: (a) smooth linear problems, (b) smooth non-linear problems, (c) singular linear problems and (d) singular non-linear problems. They demonstrate that in casesmore » (a) and (b) the p-version method, in particular p-version LSFEF is meritorious. However, for cases (c) and (d) p-version LSFEF, even with extreme mesh refinement and very high p-levels, either produces wrong solutions, or results in the failure of the iterative solution procedure. Even though in the numerical studies they have considered p-version LSFEF for the radial flow of the upper-convected Maxwell fluid, the findings and conclusions are equally valid for other smooth and singular problems as well, regardless of the formulation strategy chosen and element approximation functions employed.« less
Employment of CB models for non-linear dynamic analysis
NASA Technical Reports Server (NTRS)
Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.
1990-01-01
The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Hosseini, Kamyar; Samadani, Farzan; Raza, Nauman
2018-07-01
A wide range of problems in different fields of the applied sciences especially non-linear optics is described by non-linear Schrödinger's equations (NLSEs). In the present paper, a specific type of NLSEs known as the cubic-quintic non-linear Schrödinger's equation including an anti-cubic term has been studied. The generalized Kudryashov method along with symbolic computation package has been exerted to carry out this objective. As a consequence, a series of optical soliton solutions have formally been retrieved. It is corroborated that the generalized form of Kudryashov method is a direct, effectual, and reliable technique to deal with various types of non-linear Schrödinger's equations.
Is 3D true non linear traveltime tomography reasonable ?
NASA Astrophysics Data System (ADS)
Herrero, A.; Virieux, J.
2003-04-01
The data sets requiring 3D analysis tools in the context of seismic exploration (both onshore and offshore experiments) or natural seismicity (micro seismicity surveys or post event measurements) are more and more numerous. Classical linearized tomographies and also earthquake localisation codes need an accurate 3D background velocity model. However, if the medium is complex and a priori information not available, a 1D analysis is not able to provide an adequate background velocity image. Moreover, the design of the acquisition layouts is often intrinsically 3D and renders difficult even 2D approaches, especially in natural seismicity cases. Thus, the solution relies on the use of a 3D true non linear approach, which allows to explore the model space and to identify an optimal velocity image. The problem becomes then practical and its feasibility depends on the available computing resources (memory and time). In this presentation, we show that facing a 3D traveltime tomography problem with an extensive non-linear approach combining fast travel time estimators based on level set methods and optimisation techniques such as multiscale strategy is feasible. Moreover, because management of inhomogeneous inversion parameters is more friendly in a non linear approach, we describe how to perform a jointly non-linear inversion for the seismic velocities and the sources locations.
Explicit methods in extended phase space for inseparable Hamiltonian problems
NASA Astrophysics Data System (ADS)
Pihajoki, Pauli
2015-03-01
We present a method for explicit leapfrog integration of inseparable Hamiltonian systems by means of an extended phase space. A suitably defined new Hamiltonian on the extended phase space leads to equations of motion that can be numerically integrated by standard symplectic leapfrog (splitting) methods. When the leapfrog is combined with coordinate mixing transformations, the resulting algorithm shows good long term stability and error behaviour. We extend the method to non-Hamiltonian problems as well, and investigate optimal methods of projecting the extended phase space back to original dimension. Finally, we apply the methods to a Hamiltonian problem of geodesics in a curved space, and a non-Hamiltonian problem of a forced non-linear oscillator. We compare the performance of the methods to a general purpose differential equation solver LSODE, and the implicit midpoint method, a symplectic one-step method. We find the extended phase space methods to compare favorably to both for the Hamiltonian problem, and to the implicit midpoint method in the case of the non-linear oscillator.
NASA Astrophysics Data System (ADS)
Parekh, Ankit
Sparsity has become the basis of some important signal processing methods over the last ten years. Many signal processing problems (e.g., denoising, deconvolution, non-linear component analysis) can be expressed as inverse problems. Sparsity is invoked through the formulation of an inverse problem with suitably designed regularization terms. The regularization terms alone encode sparsity into the problem formulation. Often, the ℓ1 norm is used to induce sparsity, so much so that ℓ1 regularization is considered to be `modern least-squares'. The use of ℓ1 norm, as a sparsity-inducing regularizer, leads to a convex optimization problem, which has several benefits: the absence of extraneous local minima, well developed theory of globally convergent algorithms, even for large-scale problems. Convex regularization via the ℓ1 norm, however, tends to under-estimate the non-zero values of sparse signals. In order to estimate the non-zero values more accurately, non-convex regularization is often favored over convex regularization. However, non-convex regularization generally leads to non-convex optimization, which suffers from numerous issues: convergence may be guaranteed to only a stationary point, problem specific parameters may be difficult to set, and the solution is sensitive to the initialization of the algorithm. The first part of this thesis is aimed toward combining the benefits of non-convex regularization and convex optimization to estimate sparse signals more effectively. To this end, we propose to use parameterized non-convex regularizers with designated non-convexity and provide a range for the non-convex parameter so as to ensure that the objective function is strictly convex. By ensuring convexity of the objective function (sum of data-fidelity and non-convex regularizer), we can make use of a wide variety of convex optimization algorithms to obtain the unique global minimum reliably. The second part of this thesis proposes a non-linear signal decomposition technique for an important biomedical signal processing problem: the detection of sleep spindles and K-complexes in human sleep electroencephalography (EEG). We propose a non-linear model for the EEG consisting of three components: (1) a transient (sparse piecewise constant) component, (2) a low-frequency component, and (3) an oscillatory component. The oscillatory component admits a sparse time-frequency representation. Using a convex objective function, we propose a fast non-linear optimization algorithm to estimate the three components in the proposed signal model. The low-frequency and oscillatory components are then used to estimate the K-complexes and sleep spindles respectively. The proposed detection method is shown to outperform several state-of-the-art automated sleep spindles detection methods.
Fleet Assignment Using Collective Intelligence
NASA Technical Reports Server (NTRS)
Antoine, Nicolas E.; Bieniawski, Stefan R.; Kroo, Ilan M.; Wolpert, David H.
2004-01-01
Product distribution theory is a new collective intelligence-based framework for analyzing and controlling distributed systems. Its usefulness in distributed stochastic optimization is illustrated here through an airline fleet assignment problem. This problem involves the allocation of aircraft to a set of flights legs in order to meet passenger demand, while satisfying a variety of linear and non-linear constraints. Over the course of the day, the routing of each aircraft is determined in order to minimize the number of required flights for a given fleet. The associated flow continuity and aircraft count constraints have led researchers to focus on obtaining quasi-optimal solutions, especially at larger scales. In this paper, the authors propose the application of this new stochastic optimization algorithm to a non-linear objective cold start fleet assignment problem. Results show that the optimizer can successfully solve such highly-constrained problems (130 variables, 184 constraints).
Linear complementarity formulation for 3D frictional sliding problems
Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.; Mutlu, Ovunc
2012-01-01
Frictional sliding on quasi-statically deforming faults and fractures can be modeled efficiently using a linear complementarity formulation. We review the formulation in two dimensions and expand the formulation to three-dimensional problems including problems of orthotropic friction. This formulation accurately reproduces analytical solutions to static Coulomb friction sliding problems. The formulation accounts for opening displacements that can occur near regions of non-planarity even under large confining pressures. Such problems are difficult to solve owing to the coupling of relative displacements and tractions; thus, many geomechanical problems tend to neglect these effects. Simple test cases highlight the importance of including friction and allowing for opening when solving quasi-static fault mechanics models. These results also underscore the importance of considering the effects of non-planarity in modeling processes associated with crustal faulting.
Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data
Zhao, Xin; Cheung, Leo Wang-Kit
2007-01-01
Background Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and applied to the area of microarray gene expression data analysis, the majority of them are based on linear models, which however are not necessarily appropriate for the underlying connection between the target disease and its associated explanatory genes. Linear model based methods usually also bring in false positive significant features more easily. Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that is possibly singular when the number of potentially important genes is relatively large. This leads to problems of numerical instability. To overcome these limitations, a few non-linear methods have recently been introduced to the area. Many of the existing non-linear methods have a couple of critical problems, the model selection problem and the model parameter tuning problem, that remain unsolved or even untouched. In general, a unified framework that allows model parameters of both linear and non-linear models to be easily tuned is always preferred in real-world applications. Kernel-induced learning methods form a class of approaches that show promising potentials to achieve this goal. Results A hierarchical statistical model named kernel-imbedded Gaussian process (KIGP) is developed under a unified Bayesian framework for binary disease classification problems using microarray gene expression data. In particular, based on a probit regression setting, an adaptive algorithm with a cascading structure is designed to find the appropriate kernel, to discover the potentially significant genes, and to make the optimal class prediction accordingly. A Gibbs sampler is built as the core of the algorithm to make Bayesian inferences. Simulation studies showed that, even without any knowledge of the underlying generative model, the KIGP performed very close to the theoretical Bayesian bound not only in the case with a linear Bayesian classifier but also in the case with a very non-linear Bayesian classifier. This sheds light on its broader usability to microarray data analysis problems, especially to those that linear methods work awkwardly. The KIGP was also applied to four published microarray datasets, and the results showed that the KIGP performed better than or at least as well as any of the referred state-of-the-art methods did in all of these cases. Conclusion Mathematically built on the kernel-induced feature space concept under a Bayesian framework, the KIGP method presented in this paper provides a unified machine learning approach to explore both the linear and the possibly non-linear underlying relationship between the target features of a given binary disease classification problem and the related explanatory gene expression data. More importantly, it incorporates the model parameter tuning into the framework. The model selection problem is addressed in the form of selecting a proper kernel type. The KIGP method also gives Bayesian probabilistic predictions for disease classification. These properties and features are beneficial to most real-world applications. The algorithm is naturally robust in numerical computation. The simulation studies and the published data studies demonstrated that the proposed KIGP performs satisfactorily and consistently. PMID:17328811
NASA Astrophysics Data System (ADS)
See, J. J.; Jamaian, S. S.; Salleh, R. M.; Nor, M. E.; Aman, F.
2018-04-01
This research aims to estimate the parameters of Monod model of microalgae Botryococcus Braunii sp growth by the Least-Squares method. Monod equation is a non-linear equation which can be transformed into a linear equation form and it is solved by implementing the Least-Squares linear regression method. Meanwhile, Gauss-Newton method is an alternative method to solve the non-linear Least-Squares problem with the aim to obtain the parameters value of Monod model by minimizing the sum of square error ( SSE). As the result, the parameters of the Monod model for microalgae Botryococcus Braunii sp can be estimated by the Least-Squares method. However, the estimated parameters value obtained by the non-linear Least-Squares method are more accurate compared to the linear Least-Squares method since the SSE of the non-linear Least-Squares method is less than the linear Least-Squares method.
NASA Astrophysics Data System (ADS)
Sun, Jingliang; Liu, Chunsheng
2018-01-01
In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.
Computation of non-monotonic Lyapunov functions for continuous-time systems
NASA Astrophysics Data System (ADS)
Li, Huijuan; Liu, AnPing
2017-09-01
In this paper, we propose two methods to compute non-monotonic Lyapunov functions for continuous-time systems which are asymptotically stable. The first method is to solve a linear optimization problem on a compact and bounded set. The proposed linear programming based algorithm delivers a CPA1
Non-linear aeroelastic prediction for aircraft applications
NASA Astrophysics Data System (ADS)
de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.
2007-05-01
Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research in this domain. This is set within the context of a generic industrial process and the requirements of UK and US aeroelastic qualification. A range of test cases, from simple small DOF cases to full aircraft, have been used to evaluate and validate the non-linear methods developed and to make comparison with the linear methods in everyday use. These have focused mainly on aerodynamic non-linearity, although some results for structural non-linearity are also presented. The challenges associated with time domain (coupled computational fluid dynamics-computational structural model (CFD-CSM)) methods have been addressed through the development of grid movement, fluid-structure coupling, and control surface movement technologies. Conclusions regarding the accuracy and computational cost of these are presented. The computational cost of time-domain methods, despite substantial improvements in efficiency, remains high. However, significant advances have been made in reduced order methods, that allow non-linear behaviour to be modelled, but at a cost comparable with that of the regular linear methods. Of particular note is a method based on Hopf bifurcation that has reached an appropriate maturity for deployment on real aircraft configurations, though only limited results are presented herein. Results are also presented for dynamically linearised CFD approaches that hold out the possibility of non-linear results at a fraction of the cost of time coupled CFD-CSM methods. Local linearisation approaches (higher order harmonic balance and continuation method) are also presented; these have the advantage that no prior assumption of the nature of the aeroelastic instability is required, but currently these methods are limited to low DOF problems and it is thought that these will not reach a level of maturity appropriate to real aircraft problems for some years to come. Nevertheless, guidance on the most likely approaches has been derived and this forms the basis for ongoing research. It is important to recognise that the aeroelastic design and qualification requires a variety of methods applicable at different stages of the process. The methods reported herein are mapped to the process, so that their applicability and complementarity may be understood. Overall, the programme has provided a suite of methods that allow realistic consideration of non-linearity in the aeroelastic design and qualification of aircraft. Deployment of these methods is underway in the industrial environment, but full realisation of the benefit of these approaches will require appropriate engagement with the standards community so that safety standards may take proper account of the inclusion of non-linearity.
Adaptive learning in complex reproducing kernel Hilbert spaces employing Wirtinger's subgradients.
Bouboulis, Pantelis; Slavakis, Konstantinos; Theodoridis, Sergios
2012-03-01
This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.
Analysis of Slope Limiters on Irregular Grids
NASA Technical Reports Server (NTRS)
Berger, Marsha; Aftosmis, Michael J.
2005-01-01
This paper examines the behavior of flux and slope limiters on non-uniform grids in multiple dimensions. Many slope limiters in standard use do not preserve linear solutions on irregular grids impacting both accuracy and convergence. We rewrite some well-known limiters to highlight their underlying symmetry, and use this form to examine the proper - ties of both traditional and novel limiter formulations on non-uniform meshes. A consistent method of handling stretched meshes is developed which is both linearity preserving for arbitrary mesh stretchings and reduces to common limiters on uniform meshes. In multiple dimensions we analyze the monotonicity region of the gradient vector and show that the multidimensional limiting problem may be cast as the solution of a linear programming problem. For some special cases we present a new directional limiting formulation that preserves linear solutions in multiple dimensions on irregular grids. Computational results using model problems and complex three-dimensional examples are presented, demonstrating accuracy, monotonicity and robustness.
NASA Astrophysics Data System (ADS)
Milani, G.; Bertolesi, E.
2017-07-01
A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.
Stiffness optimization of non-linear elastic structures
Wallin, Mathias; Ivarsson, Niklas; Tortorelli, Daniel
2017-11-13
Our paper revisits stiffness optimization of non-linear elastic structures. Due to the non-linearity, several possible stiffness measures can be identified and in this work conventional compliance, i.e. secant stiffness designs are compared to tangent stiffness designs. The optimization problem is solved by the method of moving asymptotes and the sensitivities are calculated using the adjoint method. And for the tangent cost function it is shown that although the objective involves the third derivative of the strain energy an efficient formulation for calculating the sensitivity can be obtained. Loss of convergence due to large deformations in void regions is addressed bymore » using a fictitious strain energy such that small strain linear elasticity is approached in the void regions. We formulate a well-posed topology optimization problem by using restriction which is achieved via a Helmholtz type filter. The numerical examples provided show that for low load levels, the designs obtained from the different stiffness measures coincide whereas for large deformations significant differences are observed.« less
Stiffness optimization of non-linear elastic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallin, Mathias; Ivarsson, Niklas; Tortorelli, Daniel
Our paper revisits stiffness optimization of non-linear elastic structures. Due to the non-linearity, several possible stiffness measures can be identified and in this work conventional compliance, i.e. secant stiffness designs are compared to tangent stiffness designs. The optimization problem is solved by the method of moving asymptotes and the sensitivities are calculated using the adjoint method. And for the tangent cost function it is shown that although the objective involves the third derivative of the strain energy an efficient formulation for calculating the sensitivity can be obtained. Loss of convergence due to large deformations in void regions is addressed bymore » using a fictitious strain energy such that small strain linear elasticity is approached in the void regions. We formulate a well-posed topology optimization problem by using restriction which is achieved via a Helmholtz type filter. The numerical examples provided show that for low load levels, the designs obtained from the different stiffness measures coincide whereas for large deformations significant differences are observed.« less
Non-linear molecular pattern classification using molecular beacons with multiple targets.
Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak
2013-12-01
In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
An Extended Microcomputer-Based Network Optimization Package.
1982-10-01
Analysis, Laxenberq, Austria, 1981, pp. 781-808. 9. Anton , H., Elementary Linear Algebra , John Wiley & Sons, New York, 1977. 10. Koopmans, T. C...fCaRUlue do leVee. aide It 001100"M OW eedea9f’ OF Nooke~e Network, generalized network, microcomputer, optimization, network with gains, linear ...Oboe &111111041 network problem, in turn, can be viewed as a specialization of a linear programuing problem having at most two non-zero entries in each
Axial calibration methods of piezoelectric load sharing dynamometer
NASA Astrophysics Data System (ADS)
Zhang, Jun; Chang, Qingbing; Ren, Zongjin; Shao, Jun; Wang, Xinlei; Tian, Yu
2018-06-01
The relationship between input and output of load sharing dynamometer is seriously non-linear in different loading points of a plane, so it's significant for accutately measuring force to precisely calibrate the non-linear relationship. In this paper, firstly, based on piezoelectric load sharing dynamometer, calibration experiments of different loading points are performed in a plane. And then load sharing testing system is respectively calibrated based on BP algorithm and ELM (Extreme Learning Machine) algorithm. Finally, the results show that the calibration result of ELM is better than BP for calibrating the non-linear relationship between input and output of loading sharing dynamometer in the different loading points of a plane, which verifies that ELM algorithm is feasible in solving force non-linear measurement problem.
Using directed information for influence discovery in interconnected dynamical systems
NASA Astrophysics Data System (ADS)
Rao, Arvind; Hero, Alfred O.; States, David J.; Engel, James Douglas
2008-08-01
Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in various applications such as computational neuroscience, econometrics, and biological network discovery. Each of these systems have multiple interacting variables and the key problem is the inference of the underlying structure of the systems (which variables are connected to which others) based on the output observations (such as multiple time trajectories of the variables). Since such applications demand the inference of directed relationships among variables in these non-linear systems, current methods that have a linear assumption on structure or yield undirected variable dependencies are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.
The Effects of Individual Differences on Learner's Navigation in a Courseware
ERIC Educational Resources Information Center
Somyürek, Sibel; Güyer, Tolga; Atasoy, Bilal
2008-01-01
One of the major features of a computer based instruction (CBI) is its non-linear structure allowing learners the opportunity of flexible navigation to accommodate their own needs. However, this non-linear structure may cause problems such as inefficient navigation, being lost or cognitive overhead for some learners. The aim of this study is to…
Analysis of periodically excited non-linear systems by a parametric continuation technique
NASA Astrophysics Data System (ADS)
Padmanabhan, C.; Singh, R.
1995-07-01
The dynamic behavior and frequency response of harmonically excited piecewise linear and/or non-linear systems has been the subject of several recent investigations. Most of the prior studies employed harmonic balance or Galerkin schemes, piecewise linear techniques, analog simulation and/or direct numerical integration (digital simulation). Such techniques are somewhat limited in their ability to predict all of the dynamic characteristics, including bifurcations leading to the occurrence of unstable, subharmonic, quasi-periodic and/or chaotic solutions. To overcome this problem, a parametric continuation scheme, based on the shooting method, is applied specifically to a periodically excited piecewise linear/non-linear system, in order to improve understanding as well as to obtain the complete dynamic response. Parameter regions exhibiting bifurcations to harmonic, subharmonic or quasi-periodic solutions are obtained quite efficiently and systematically. Unlike other techniques, the proposed scheme can follow period-doubling bifurcations, and with some modifications obtain stable quasi-periodic solutions and their bifurcations. This knowledge is essential in establishing conditions for the occurrence of chaotic oscillations in any non-linear system. The method is first validated through the Duffing oscillator example, the solutions to which are also obtained by conventional one-term harmonic balance and perturbation methods. The second example deals with a clearance non-linearity problem for both harmonic and periodic excitations. Predictions from the proposed scheme match well with available analog simulation data as well as with multi-term harmonic balance results. Potential savings in computational time over direct numerical integration is demonstrated for some of the example cases. Also, this work has filled in some of the solution regimes for an impact pair, which were missed previously in the literature. Finally, one main limitation associated with the proposed procedure is discussed.
NASA Technical Reports Server (NTRS)
Young, Katherine C.; Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
This project has two objectives. The first is to determine whether linear programming techniques can improve performance when handling design optimization problems with a large number of design variables and constraints relative to the feasible directions algorithm. The second purpose is to determine whether using the Kreisselmeier-Steinhauser (KS) function to replace the constraints with one constraint will reduce the cost of total optimization. Comparisons are made using solutions obtained with linear and non-linear methods. The results indicate that there is no cost saving using the linear method or in using the KS function to replace constraints.
2011-01-01
Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task. PMID:21867520
NASA Technical Reports Server (NTRS)
Jewell, Jeffrey B.; Raymond, C.; Smrekar, S.; Millbury, C.
2004-01-01
This viewgraph presentation reviews a Bayesian approach to the inversion of gravity and magnetic data with specific application to the Ismenius Area of Mars. Many inverse problems encountered in geophysics and planetary science are well known to be non-unique (i.e. inversion of gravity the density structure of a body). In hopes of reducing the non-uniqueness of solutions, there has been interest in the joint analysis of data. An example is the joint inversion of gravity and magnetic data, with the assumption that the same physical anomalies generate both the observed magnetic and gravitational anomalies. In this talk, we formulate the joint analysis of different types of data in a Bayesian framework and apply the formalism to the inference of the density and remanent magnetization structure for a local region in the Ismenius area of Mars. The Bayesian approach allows prior information or constraints in the solutions to be incorporated in the inversion, with the "best" solutions those whose forward predictions most closely match the data while remaining consistent with assumed constraints. The application of this framework to the inversion of gravity and magnetic data on Mars reveals two typical challenges - the forward predictions of the data have a linear dependence on some of the quantities of interest, and non-linear dependence on others (termed the "linear" and "non-linear" variables, respectively). For observations with Gaussian noise, a Bayesian approach to inversion for "linear" variables reduces to a linear filtering problem, with an explicitly computable "error" matrix. However, for models whose forward predictions have non-linear dependencies, inference is no longer given by such a simple linear problem, and moreover, the uncertainty in the solution is no longer completely specified by a computable "error matrix". It is therefore important to develop methods for sampling from the full Bayesian posterior to provide a complete and statistically consistent picture of model uncertainty, and what has been learned from observations. We will discuss advanced numerical techniques, including Monte Carlo Markov
NASA Astrophysics Data System (ADS)
Kumar, Devendra; Singh, Jagdev; Baleanu, Dumitru
2018-02-01
The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.
Kreula, J. M.; Clark, S. R.; Jaksch, D.
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
Duality in non-linear programming
NASA Astrophysics Data System (ADS)
Jeyalakshmi, K.
2018-04-01
In this paper we consider duality and converse duality for a programming problem involving convex objective and constraint functions with finite dimensional range. We do not assume any constraint qualification. The dual is presented by reducing the problem to a standard Lagrange multiplier problem.
Kumar, P; Kumar, Dinesh; Rai, K N
2016-08-01
In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method. Copyright © 2016 Elsevier Ltd. All rights reserved.
Human Performance on Hard Non-Euclidean Graph Problems: Vertex Cover
ERIC Educational Resources Information Center
Carruthers, Sarah; Masson, Michael E. J.; Stege, Ulrike
2012-01-01
Recent studies on a computationally hard visual optimization problem, the Traveling Salesperson Problem (TSP), indicate that humans are capable of finding close to optimal solutions in near-linear time. The current study is a preliminary step in investigating human performance on another hard problem, the Minimum Vertex Cover Problem, in which…
NASA Astrophysics Data System (ADS)
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
NASA Astrophysics Data System (ADS)
BOERTJENS, G. J.; VAN HORSSEN, W. T.
2000-08-01
In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.
NASA Astrophysics Data System (ADS)
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2018-04-01
This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.
NASA Astrophysics Data System (ADS)
Dattoli, G.; Migliorati, M.; Schiavi, A.
2007-05-01
The coherent synchrotron radiation (CSR) is one of the main problems limiting the performance of high-intensity electron accelerators. The complexity of the physical mechanisms underlying the onset of instabilities due to CSR demands for accurate descriptions, capable of including the large number of features of an actual accelerating device. A code devoted to the analysis of these types of problems should be fast and reliable, conditions that are usually hardly achieved at the same time. In the past, codes based on Lie algebraic techniques have been very efficient to treat transport problems in accelerators. The extension of these methods to the non-linear case is ideally suited to treat CSR instability problems. We report on the development of a numerical code, based on the solution of the Vlasov equation, with the inclusion of non-linear contribution due to wake field effects. The proposed solution method exploits an algebraic technique that uses the exponential operators. We show that the integration procedure is capable of reproducing the onset of instability and the effects associated with bunching mechanisms leading to the growth of the instability itself. In addition, considerations on the threshold of the instability are also developed.
Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2015-01-01
Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.
Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction
NASA Astrophysics Data System (ADS)
Xiong, Jun; Li, Junmin
2017-07-01
In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.
Multidimensional radiative transfer with multilevel atoms. II. The non-linear multigrid method.
NASA Astrophysics Data System (ADS)
Fabiani Bendicho, P.; Trujillo Bueno, J.; Auer, L.
1997-08-01
A new iterative method for solving non-LTE multilevel radiative transfer (RT) problems in 1D, 2D or 3D geometries is presented. The scheme obtains the self-consistent solution of the kinetic and RT equations at the cost of only a few (<10) formal solutions of the RT equation. It combines, for the first time, non-linear multigrid iteration (Brandt, 1977, Math. Comp. 31, 333; Hackbush, 1985, Multi-Grid Methods and Applications, springer-Verlag, Berlin), an efficient multilevel RT scheme based on Gauss-Seidel iterations (cf. Trujillo Bueno & Fabiani Bendicho, 1995ApJ...455..646T), and accurate short-characteristics formal solution techniques. By combining a valid stopping criterion with a nested-grid strategy a converged solution with the desired true error is automatically guaranteed. Contrary to the current operator splitting methods the very high convergence speed of the new RT method does not deteriorate when the grid spatial resolution is increased. With this non-linear multigrid method non-LTE problems discretized on N grid points are solved in O(N) operations. The nested multigrid RT method presented here is, thus, particularly attractive in complicated multilevel transfer problems where small grid-sizes are required. The properties of the method are analyzed both analytically and with illustrative multilevel calculations for Ca II in 1D and 2D schematic model atmospheres.
LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models
NASA Astrophysics Data System (ADS)
Gueuvoghlanian, E. P.
2001-08-01
A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.
NASA Astrophysics Data System (ADS)
Hasanov, Alemdar; Erdem, Arzu
2008-08-01
The inverse problem of determining the unknown coefficient of the non-linear differential equation of torsional creep is studied. The unknown coefficient g = g({xi}2) depends on the gradient{xi} : = |{nabla}u| of the solution u(x), x [isin] {Omega} [sub] Rn, of the direct problem. It is proved that this gradient is bounded in C-norm. This permits one to choose the natural class of admissible coefficients for the considered inverse problem. The continuity in the norm of the Sobolev space H1({Omega}) of the solution u(x;g) of the direct problem with respect to the unknown coefficient g = g({xi}2) is obtained in the following sense: ||u(x;g) - u(x;gm)||1 [->] 0 when gm({eta}) [->] g({eta}) point-wise as m [->] {infty}. Based on these results, the existence of a quasi-solution of the inverse problem in the considered class of admissible coefficients is obtained. Numerical examples related to determination of the unknown coefficient are presented.
NASA Technical Reports Server (NTRS)
Muravyov, Alexander A.
1999-01-01
In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.
NASA Astrophysics Data System (ADS)
RóŻyło, Patryk; Debski, Hubert; Kral, Jan
2018-01-01
The subject of the research was a short thin-walled top-hat cross-section composite profile. The tested structure was subjected to axial compression. As part of the critical state research, critical load and the corresponding buckling mode was determined. Later in the study laminate damage areas were determined throughout numerical analysis. It was assumed that the profile is simply supported on the cross sections ends. Experimental tests were carried out on a universal testing machine Zwick Z100 and the results were compared with the results of numerical calculations. The eigenvalue problem and a non-linear problem of stability of thin-walled structures were carried out by the use of commercial software ABAQUS®. In the presented cases, it was assumed that the material is linear-elastic and non-linearity of the model results from the large displacements. Solution to the geometrically nonlinear problem was conducted by the use of the incremental-iterative Newton-Raphson method.
A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.
Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa
2018-02-01
Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.
NASA Technical Reports Server (NTRS)
Stern, Boris E.; Svensson, Roland; Begelman, Mitchell C.; Sikora, Marek
1995-01-01
High-energy radiation processes in compact cosmic objects are often expected to have a strongly non-linear behavior. Such behavior is shown, for example, by electron-positron pair cascades and the time evolution of relativistic proton distributions in dense radiation fields. Three independent techniques have been developed to simulate these non-linear problems: the kinetic equation approach; the phase-space density (PSD) Monte Carlo method; and the large-particle (LP) Monte Carlo method. In this paper, we present the latest version of the LP method and compare it with the other methods. The efficiency of the method in treating geometrically complex problems is illustrated by showing results of simulations of 1D, 2D and 3D systems. The method is shown to be powerful enough to treat non-spherical geometries, including such effects as bulk motion of the background plasma, reflection of radiation from cold matter, and anisotropic distributions of radiating particles. It can therefore be applied to simulate high-energy processes in such astrophysical systems as accretion discs with coronae, relativistic jets, pulsar magnetospheres and gamma-ray bursts.
Neural networks: What non-linearity to choose
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.; Quintana, Chris
1991-01-01
Neural networks are now one of the most successful learning formalisms. Neurons transform inputs (x(sub 1),...,x(sub n)) into an output f(w(sub 1)x(sub 1) + ... + w(sub n)x(sub n)), where f is a non-linear function and w, are adjustable weights. What f to choose? Usually the logistic function is chosen, but sometimes the use of different functions improves the practical efficiency of the network. The problem of choosing f as a mathematical optimization problem is formulated and solved under different optimality criteria. As a result, a list of functions f that are optimal under these criteria are determined. This list includes both the functions that were empirically proved to be the best for some problems, and some new functions that may be worth trying.
Learning Petri net models of non-linear gene interactions.
Mayo, Michael
2005-10-01
Understanding how an individual's genetic make-up influences their risk of disease is a problem of paramount importance. Although machine-learning techniques are able to uncover the relationships between genotype and disease, the problem of automatically building the best biochemical model or "explanation" of the relationship has received less attention. In this paper, I describe a method based on random hill climbing that automatically builds Petri net models of non-linear (or multi-factorial) disease-causing gene-gene interactions. Petri nets are a suitable formalism for this problem, because they are used to model concurrent, dynamic processes analogous to biochemical reaction networks. I show that this method is routinely able to identify perfect Petri net models for three disease-causing gene-gene interactions recently reported in the literature.
On the Feasibility of a Generalized Linear Program
1989-03-01
generealized linear program by applying the same algorithm to a "phase-one" problem without requiring that the initial basic feasible solution to the latter be non-degenerate. secUrMTY C.AMlIS CAYI S OP ?- PAeES( UII -W & ,
NASA Astrophysics Data System (ADS)
Baronian, Vahan; Bourgeois, Laurent; Chapuis, Bastien; Recoquillay, Arnaud
2018-07-01
This paper presents an application of the linear sampling method to ultrasonic non destructive testing of an elastic waveguide. In particular, the NDT context implies that both the solicitations and the measurements are located on the surface of the waveguide and are given in the time domain. Our strategy consists in using a modal formulation of the linear sampling method at multiple frequencies, such modal formulation being justified theoretically in Bourgeois et al (2011 Inverse Problems 27 055001) for rigid obstacles and in Bourgeois and Lunéville (2013 Inverse Problems 29 025017) for cracks. Our strategy requires the inversion of some emission and reception matrices which deserve some special attention due to potential ill-conditioning. The feasibility of our method is proved with the help of artificial data as well as real data.
Semilinear programming: applications and implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohan, S.
Semilinear programming is a method of solving optimization problems with linear constraints where the non-negativity restrictions on the variables are dropped and the objective function coefficients can take on different values depending on whether the variable is positive or negative. The simplex method for linear programming is modified in this thesis to solve general semilinear and piecewise linear programs efficiently without having to transform them into equivalent standard linear programs. Several models in widely different areas of optimization such as production smoothing, facility locations, goal programming and L/sub 1/ estimation are presented first to demonstrate the compact formulation that arisesmore » when such problems are formulated as semilinear programs. A code SLP is constructed using the semilinear programming techniques. Problems in aggregate planning and L/sub 1/ estimation are solved using SLP and equivalent linear programs using a linear programming simplex code. Comparisons of CPU times and number iterations indicate SLP to be far superior. The semilinear programming techniques are extended to piecewise linear programming in the implementation of the code PLP. Piecewise linear models in aggregate planning are solved using PLP and equivalent standard linear programs using a simple upper bounded linear programming code SUBLP.« less
Dynamical theory of stability for elastic rods with nonlinear curvature and twist
NASA Technical Reports Server (NTRS)
Wauer, J.
1977-01-01
Considering non-linear terms in the curvature as well as in the twist, the governing boundary value problem for lateral bending of elastic, transverse loaded rods is formulated by means of Hamilton's principle. Using the method of small vibrations, the associated linearized equations of stability are derived, which complete the currently accepted relations. The example of the simplest lateral bending problem illustrates the improved effect of the proposed equations.
Seismic waveform inversion using neural networks
NASA Astrophysics Data System (ADS)
De Wit, R. W.; Trampert, J.
2012-12-01
Full waveform tomography aims to extract all available information on Earth structure and seismic sources from seismograms. The strongly non-linear nature of this inverse problem is often addressed through simplifying assumptions for the physical theory or data selection, thus potentially neglecting valuable information. Furthermore, the assessment of the quality of the inferred model is often lacking. This calls for the development of methods that fully appreciate the non-linear nature of the inverse problem, whilst providing a quantification of the uncertainties in the final model. We propose to invert seismic waveforms in a fully non-linear way by using artificial neural networks. Neural networks can be viewed as powerful and flexible non-linear filters. They are very common in speech, handwriting and pattern recognition. Mixture Density Networks (MDN) allow us to obtain marginal posterior probability density functions (pdfs) of all model parameters, conditioned on the data. An MDN can approximate an arbitrary conditional pdf as a linear combination of Gaussian kernels. Seismograms serve as input, Earth structure parameters are the so-called targets and network training aims to learn the relationship between input and targets. The network is trained on a large synthetic data set, which we construct by drawing many random Earth models from a prior model pdf and solving the forward problem for each of these models, thus generating synthetic seismograms. As a first step, we aim to construct a 1D Earth model. Training sets are constructed using the Mineos package, which computes synthetic seismograms in a spherically symmetric non-rotating Earth by summing normal modes. We train a network on the body waveforms present in these seismograms. Once the network has been trained, it can be presented with new unseen input data, in our case the body waves in real seismograms. We thus obtain the posterior pdf which represents our final state of knowledge given the information in the training set and the real data.
Singular optimal control and the identically non-regular problem in the calculus of variations
NASA Technical Reports Server (NTRS)
Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.
1985-01-01
A small but interesting class of optimal control problems featuring a scalar control appearing linearly is equivalent to the class of identically nonregular problems in the Calculus of Variations. It is shown that a condition due to Mancill (1950) is equivalent to the generalized Legendre-Clebsch condition for this narrow class of problems.
Heat Transfer Search Algorithm for Non-convex Economic Dispatch Problems
NASA Astrophysics Data System (ADS)
Hazra, Abhik; Das, Saborni; Basu, Mousumi
2018-06-01
This paper presents Heat Transfer Search (HTS) algorithm for the non-linear economic dispatch problem. HTS algorithm is based on the law of thermodynamics and heat transfer. The proficiency of the suggested technique has been disclosed on three dissimilar complicated economic dispatch problems with valve point effect; prohibited operating zone; and multiple fuels with valve point effect. Test results acquired from the suggested technique for the economic dispatch problem have been fitted to that acquired from other stated evolutionary techniques. It has been observed that the suggested HTS carry out superior solutions.
Heat Transfer Search Algorithm for Non-convex Economic Dispatch Problems
NASA Astrophysics Data System (ADS)
Hazra, Abhik; Das, Saborni; Basu, Mousumi
2018-03-01
This paper presents Heat Transfer Search (HTS) algorithm for the non-linear economic dispatch problem. HTS algorithm is based on the law of thermodynamics and heat transfer. The proficiency of the suggested technique has been disclosed on three dissimilar complicated economic dispatch problems with valve point effect; prohibited operating zone; and multiple fuels with valve point effect. Test results acquired from the suggested technique for the economic dispatch problem have been fitted to that acquired from other stated evolutionary techniques. It has been observed that the suggested HTS carry out superior solutions.
Analysis of friction and instability by the centre manifold theory for a non-linear sprag-slip model
NASA Astrophysics Data System (ADS)
Sinou, J.-J.; Thouverez, F.; Jezequel, L.
2003-08-01
This paper presents the research devoted to the study of instability phenomena in non-linear model with a constant brake friction coefficient. Indeed, the impact of unstable oscillations can be catastrophic. It can cause vehicle control problems and component degradation. Accordingly, complex stability analysis is required. This paper outlines stability analysis and centre manifold approach for studying instability problems. To put it more precisely, one considers brake vibrations and more specifically heavy trucks judder where the dynamic characteristics of the whole front axle assembly is concerned, even if the source of judder is located in the brake system. The modelling introduces the sprag-slip mechanism based on dynamic coupling due to buttressing. The non-linearity is expressed as a polynomial with quadratic and cubic terms. This model does not require the use of brake negative coefficient, in order to predict the instability phenomena. Finally, the centre manifold approach is used to obtain equations for the limit cycle amplitudes. The centre manifold theory allows the reduction of the number of equations of the original system in order to obtain a simplified system, without loosing the dynamics of the original system as well as the contributions of non-linear terms. The goal is the study of the stability analysis and the validation of the centre manifold approach for a complex non-linear model by comparing results obtained by solving the full system and by using the centre manifold approach. The brake friction coefficient is used as an unfolding parameter of the fundamental Hopf bifurcation point.
Sparse signals recovered by non-convex penalty in quasi-linear systems.
Cui, Angang; Li, Haiyang; Wen, Meng; Peng, Jigen
2018-01-01
The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonlinear compressed sensing is much more difficult, in fact also NP-hard, combinatorial problem, because of the discrete and discontinuous nature of the [Formula: see text]-norm and the nonlinearity. In order to get a convenience for sparse signal recovery, we set the nonlinear models have a smooth quasi-linear nature in this paper, and study a non-convex fraction function [Formula: see text] in this quasi-linear compressed sensing. We propose an iterative fraction thresholding algorithm to solve the regularization problem [Formula: see text] for all [Formula: see text]. With the change of parameter [Formula: see text], our algorithm could get a promising result, which is one of the advantages for our algorithm compared with some state-of-art algorithms. Numerical experiments show that our method performs much better than some state-of-the-art methods.
Non-linear eigensolver-based alternative to traditional SCF methods
NASA Astrophysics Data System (ADS)
Gavin, B.; Polizzi, E.
2013-05-01
The self-consistent procedure in electronic structure calculations is revisited using a highly efficient and robust algorithm for solving the non-linear eigenvector problem, i.e., H({ψ})ψ = Eψ. This new scheme is derived from a generalization of the FEAST eigenvalue algorithm to account for the non-linearity of the Hamiltonian with the occupied eigenvectors. Using a series of numerical examples and the density functional theory-Kohn/Sham model, it will be shown that our approach can outperform the traditional SCF mixing-scheme techniques by providing a higher converge rate, convergence to the correct solution regardless of the choice of the initial guess, and a significant reduction of the eigenvalue solve time in simulations.
NASA Technical Reports Server (NTRS)
Haviland, J. K.
1974-01-01
The results are reported of two unrelated studies. The first was an investigation of the formulation of the equations for non-uniform unsteady flows, by perturbation of an irrotational flow to obtain the linear Green's equation. The resulting integral equation was found to contain a kernel which could be expressed as the solution of the adjoint flow equation, a linear equation for small perturbations, but with non-constant coefficients determined by the steady flow conditions. It is believed that the non-uniform flow effects may prove important in transonic flutter, and that in such cases, the use of doublet type solutions of the wave equation would then prove to be erroneous. The second task covered an initial investigation into the use of the Monte Carlo method for solution of acoustical field problems. Computed results are given for a rectangular room problem, and for a problem involving a circular duct with a source located at the closed end.
Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.
Kumar, Dinesh; Kumar, P; Rai, K N
2017-11-01
This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.
Substrate mass transfer: analytical approach for immobilized enzyme reactions
NASA Astrophysics Data System (ADS)
Senthamarai, R.; Saibavani, T. N.
2018-04-01
In this paper, the boundary value problem in immobilized enzyme reactions is formulated and approximate expression for substrate concentration without external mass transfer resistance is presented. He’s variational iteration method is used to give approximate and analytical solutions of non-linear differential equation containing a non linear term related to enzymatic reaction. The relevant analytical solution for the dimensionless substrate concentration profile is discussed in terms of dimensionless reaction parameters α and β.
On mathematical modelling of aeroelastic problems with finite element method
NASA Astrophysics Data System (ADS)
Sváček, Petr
2018-06-01
This paper is interested in solution of two-dimensional aeroelastic problems. Two mathematical models are compared for a benchmark problem. First, the classical approach of linearized aerodynamical forces is described to determine the aeroelastic instability and the aeroelastic response in terms of frequency and damping coefficient. This approach is compared to the coupled fluid-structure model solved with the aid of finite element method used for approximation of the incompressible Navier-Stokes equations. The finite element approximations are coupled to the non-linear motion equations of a flexibly supported airfoil. Both methods are first compared for the case of small displacement, where the linearized approach can be well adopted. The influence of nonlinearities for the case of post-critical regime is discussed.
PHYSICS REQUIRES A SIMPLE LOW MACH NUMBER FLOW TO BE COMPRESSIBLE
Radial, laminar, plane, low velocity flow represents the simplest, non-linear fluid dynamics problem. Ostensibly this apparently trivial flow could be solved using the incompressible Navier-Stokes equations, universally believed to be adequate for such problems. Most researchers ...
NASA Technical Reports Server (NTRS)
Ustino, Eugene A.
2006-01-01
This slide presentation reviews the observable radiances as functions of atmospheric parameters and of surface parameters; the mathematics of atmospheric weighting functions (WFs) and surface partial derivatives (PDs) are presented; and the equation of the forward radiative transfer (RT) problem is presented. For non-scattering atmospheres this can be done analytically, and all WFs and PDs can be computed analytically using the direct linearization approach. For scattering atmospheres, in general case, the solution of the forward RT problem can be obtained only numerically, but we need only two numerical solutions: one of the forward RT problem and one of the adjoint RT problem to compute all WFs and PDs we can think of. In this presentation we discuss applications of both the linearization and adjoint approaches
Size effects in non-linear heat conduction with flux-limited behaviors
NASA Astrophysics Data System (ADS)
Li, Shu-Nan; Cao, Bing-Yang
2017-11-01
Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.
Modelling Problem-Solving Situations into Number Theory Tasks: The Route towards Generalisation
ERIC Educational Resources Information Center
Papadopoulos, Ioannis; Iatridou, Maria
2010-01-01
This paper examines the way two 10th graders cope with a non-standard generalisation problem that involves elementary concepts of number theory (more specifically linear Diophantine equations) in the geometrical context of a rectangle's area. Emphasis is given on how the students' past experience of problem solving (expressed through interplay…
Yu, Jimin; Yang, Chenchen; Tang, Xiaoming; Wang, Ping
2018-03-01
This paper investigates the H ∞ control problems for uncertain linear system over networks with random communication data dropout and actuator saturation. The random data dropout process is modeled by a Bernoulli distributed white sequence with a known conditional probability distribution and the actuator saturation is confined in a convex hull by introducing a group of auxiliary matrices. By constructing a quadratic Lyapunov function, effective conditions for the state feedback-based H ∞ controller and the observer-based H ∞ controller are proposed in the form of non-convex matrix inequalities to take the random data dropout and actuator saturation into consideration simultaneously, and the problem of non-convex feasibility is solved by applying cone complementarity linearization (CCL) procedure. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed new design techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rozylo, Patryk; Teter, Andrzej; Debski, Hubert; Wysmulski, Pawel; Falkowicz, Katarzyna
2017-10-01
The object of the research are short, thin-walled columns with an open top-hat cross section made of multilayer laminate. The walls of the investigated profiles are made of plate elements. The entire columns are subjected to uniform compression. A detailed analysis allowed us to determine critical forces and post-critical equilibrium paths. It is assumed that the columns are articulately supported on the edges forming their ends. The numerical investigation is performed by the finite element method. The study involves solving the problem of eigenvalue and the non-linear problem of stability of the structure. The numerical analysis is performed by the commercial simulation software ABAQUS®. The numerical results are then validated experimentally. In the discussed cases, it is assumed that the material operates within a linearly-elastic range, and the non-linearity of the FEM model is due to large displacements.
Robust synthetic biology design: stochastic game theory approach.
Chen, Bor-Sen; Chang, Chia-Hung; Lee, Hsiao-Ching
2009-07-15
Synthetic biology is to engineer artificial biological systems to investigate natural biological phenomena and for a variety of applications. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to uncertain initial conditions and disturbances of extra-cellular environments on the host cell. At present, how to design a robust synthetic gene network to work properly under these uncertain factors is the most important topic of synthetic biology. A robust regulation design is proposed for a stochastic synthetic gene network to achieve the prescribed steady states under these uncertain factors from the minimax regulation perspective. This minimax regulation design problem can be transformed to an equivalent stochastic game problem. Since it is not easy to solve the robust regulation design problem of synthetic gene networks by non-linear stochastic game method directly, the Takagi-Sugeno (T-S) fuzzy model is proposed to approximate the non-linear synthetic gene network via the linear matrix inequality (LMI) technique through the Robust Control Toolbox in Matlab. Finally, an in silico example is given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed robust gene design method. http://www.ee.nthu.edu.tw/bschen/SyntheticBioDesign_supplement.pdf.
Optimizing Requirements Decisions with KEYS
NASA Technical Reports Server (NTRS)
Jalali, Omid; Menzies, Tim; Feather, Martin
2008-01-01
Recent work with NASA's Jet Propulsion Laboratory has allowed for external access to five of JPL's real-world requirements models, anonymized to conceal proprietary information, but retaining their computational nature. Experimentation with these models, reported herein, demonstrates a dramatic speedup in the computations performed on them. These models have a well defined goal: select mitigations that retire risks which, in turn, increases the number of attainable requirements. Such a non-linear optimization is a well-studied problem. However identification of not only (a) the optimal solution(s) but also (b) the key factors leading to them is less well studied. Our technique, called KEYS, shows a rapid way of simultaneously identifying the solutions and their key factors. KEYS improves on prior work by several orders of magnitude. Prior experiments with simulated annealing or treatment learning took tens of minutes to hours to terminate. KEYS runs much faster than that; e.g for one model, KEYS ran 13,000 times faster than treatment learning (40 minutes versus 0.18 seconds). Processing these JPL models is a non-linear optimization problem: the fewest mitigations must be selected while achieving the most requirements. Non-linear optimization is a well studied problem. With this paper, we challenge other members of the PROMISE community to improve on our results with other techniques.
Profiling a Mind Map User: A Descriptive Appraisal
ERIC Educational Resources Information Center
Tucker, Joanne M.; Armstrong, Gary R.; Massad, Victor J.
2010-01-01
Whether manually or through the use of software, a non-linear information organization framework known as mind mapping offers an alternative method for capturing thoughts, ideas and information to linear thinking modes such as outlining. Mind mapping is brainstorming, organizing, and problem solving. This paper examines mind mapping techniques,…
Teaching Linear Algebra: Proceeding More Efficiently by Staying Comfortably within Z
ERIC Educational Resources Information Center
Beaver, Scott
2015-01-01
For efficiency in a linear algebra course the instructor may wish to avoid the undue arithmetical distractions of rational arithmetic. In this paper we explore how to write fraction-free problems of various types including elimination, matrix inverses, orthogonality, and the (non-normalizing) Gram-Schmidt process.
Frequency-domain full-waveform inversion with non-linear descent directions
NASA Astrophysics Data System (ADS)
Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.
2018-05-01
Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a benchmark FWI approach involving the standard gradient.
NASA Astrophysics Data System (ADS)
McCaskill, John
There can be large spatial and temporal separation of cause and effect in policy making. Determining the correct linkage between policy inputs and outcomes can be highly impractical in the complex environments faced by policy makers. In attempting to see and plan for the probable outcomes, standard linear models often overlook, ignore, or are unable to predict catastrophic events that only seem improbable due to the issue of multiple feedback loops. There are several issues with the makeup and behaviors of complex systems that explain the difficulty many mathematical models (factor analysis/structural equation modeling) have in dealing with non-linear effects in complex systems. This chapter highlights those problem issues and offers insights to the usefulness of ABM in dealing with non-linear effects in complex policy making environments.
NASA Astrophysics Data System (ADS)
Giaccu, Gian Felice
2018-05-01
Pre-tensioned cable braces are widely used as bracing systems in various structural typologies. This technology is fundamentally utilized for stiffening purposes in the case of steel and timber structures. The pre-stressing force imparted to the braces provides to the system a remarkable increment of stiffness. On the other hand, the pre-tensioning force in the braces must be properly calibrated in order to satisfactorily meet both serviceability and ultimate limit states. Dynamic properties of these systems are however affected by non-linear behavior due to potential slackening of the pre-tensioned brace. In the recent years the author has been working on a similar problem regarding the non-linear response of cables in cable-stayed bridges and braced structures. In the present paper a displacement-based approach is used to examine the non-linear behavior of a building system. The methodology operates through linearization and allows obtaining an equivalent linearized frequency to approximately characterize, mode by mode, the dynamic behavior of the system. The equivalent frequency depends on both the mechanical characteristics of the system, the pre-tensioning level assigned to the braces and a characteristic vibration amplitude. The proposed approach can be used as a simplified technique, capable of linearizing the response of structural systems, characterized by non-linearity induced by the slackening of pre-tensioned braces.
A Duality Theory for Non-convex Problems in the Calculus of Variations
NASA Astrophysics Data System (ADS)
Bouchitté, Guy; Fragalà, Ilaria
2018-07-01
We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).
A Duality Theory for Non-convex Problems in the Calculus of Variations
NASA Astrophysics Data System (ADS)
Bouchitté, Guy; Fragalà, Ilaria
2018-02-01
We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).
Remarks on Hierarchic Control for a Linearized Micropolar Fluids System in Moving Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesus, Isaías Pereira de, E-mail: isaias@ufpi.edu.br
We study a Stackelberg strategy subject to the evolutionary linearized micropolar fluids equations in domains with moving boundaries, considering a Nash multi-objective equilibrium (non necessarily cooperative) for the “follower players” (as is called in the economy field) and an optimal problem for the leader player with approximate controllability objective. We will obtain the following main results: the existence and uniqueness of Nash equilibrium and its characterization, the approximate controllability of the linearized micropolar system with respect to the leader control and the existence and uniqueness of the Stackelberg–Nash problem, where the optimality system for the leader is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sastry, S. S.; Desoer, C. A.
1980-01-01
Fixed point methods from nonlinear anaysis are used to establish conditions under which the uniform complete controllability of linear time-varying systems is preserved under non-linear perturbations in the state dynamics and the zero-input uniform complete observability of linear time-varying systems is preserved under non-linear perturbation in the state dynamics and output read out map. Algorithms for computing the specific input to steer the perturbed systems from a given initial state to a given final state are also presented. As an application, a very specific emergency control of an interconnected power system is formulated as a steering problem and it ismore » shown that this emergency control is indeed possible in finite time.« less
Parameter and Structure Inference for Nonlinear Dynamical Systems
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark
2006-01-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.
NASA Astrophysics Data System (ADS)
Gardner, Robin P.; Xu, Libai
2009-10-01
The Center for Engineering Applications of Radioisotopes (CEAR) has been working for over a decade on the Monte Carlo library least-squares (MCLLS) approach for treating non-linear radiation analyzer problems including: (1) prompt gamma-ray neutron activation analysis (PGNAA) for bulk analysis, (2) energy-dispersive X-ray fluorescence (EDXRF) analyzers, and (3) carbon/oxygen tool analysis in oil well logging. This approach essentially consists of using Monte Carlo simulation to generate the libraries of all the elements to be analyzed plus any other required background libraries. These libraries are then used in the linear library least-squares (LLS) approach with unknown sample spectra to analyze for all elements in the sample. Iterations of this are used until the LLS values agree with the composition used to generate the libraries. The current status of the methods (and topics) necessary to implement the MCLLS approach is reported. This includes: (1) the Monte Carlo codes such as CEARXRF, CEARCPG, and CEARCO for forward generation of the necessary elemental library spectra for the LLS calculation for X-ray fluorescence, neutron capture prompt gamma-ray analyzers, and carbon/oxygen tools; (2) the correction of spectral pulse pile-up (PPU) distortion by Monte Carlo simulation with the code CEARIPPU; (3) generation of detector response functions (DRF) for detectors with linear and non-linear responses for Monte Carlo simulation of pulse-height spectra; and (4) the use of the differential operator (DO) technique to make the necessary iterations for non-linear responses practical. In addition to commonly analyzed single spectra, coincidence spectra or even two-dimensional (2-D) coincidence spectra can also be used in the MCLLS approach and may provide more accurate results.
NASA Astrophysics Data System (ADS)
Kashiwabara, Takahito
Strong solutions of the non-stationary Navier-Stokes equations under non-linearized slip or leak boundary conditions are investigated. We show that the problems are formulated by a variational inequality of parabolic type, to which uniqueness is established. Using Galerkin's method and deriving a priori estimates, we prove global and local existence for 2D and 3D slip problems respectively. For leak problems, under no-leak assumption at t=0 we prove local existence in 2D and 3D cases. Compatibility conditions for initial states play a significant role in the estimates.
Riemann–Hilbert problem approach for two-dimensional flow inverse scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agaltsov, A. D., E-mail: agalets@gmail.com; Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr; IEPT RAS, 117997 Moscow
2014-10-15
We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.
Trading strategies for distribution company with stochastic distributed energy resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chunyu; Wang, Qi; Wang, Jianhui
2016-09-01
This paper proposes a methodology to address the trading strategies of a proactive distribution company (PDISCO) engaged in the transmission-level (TL) markets. A one-leader multi-follower bilevel model is presented to formulate the gaming framework between the PDISCO and markets. The lower-level (LL) problems include the TL day-ahead market and scenario-based real-time markets, respectively with the objectives of maximizing social welfare and minimizing operation cost. The upper-level (UL) problem is to maximize the PDISCO’s profit across these markets. The PDISCO’s strategic offers/bids interactively influence the outcomes of each market. Since the LL problems are linear and convex, while the UL problemmore » is non-linear and non-convex, an equivalent primal–dual approach is used to reformulate this bilevel model to a solvable mathematical program with equilibrium constraints (MPEC). The effectiveness of the proposed model is verified by case studies.« less
On the classification of the spectrally stable standing waves of the Hartree problem
NASA Astrophysics Data System (ADS)
Georgiev, Vladimir; Stefanov, Atanas
2018-05-01
We consider the fractional Hartree model, with general power non-linearity and arbitrary spatial dimension. We construct variationally the "normalized" solutions for the corresponding Choquard-Pekar model-in particular a number of key properties, like smoothness and bell-shapedness are established. As a consequence of the construction, we show that these solitons are spectrally stable as solutions to the time-dependent Hartree model. In addition, we analyze the spectral stability of the Moroz-Van Schaftingen solitons of the classical Hartree problem, in any dimensions and power non-linearity. A full classification is obtained, the main conclusion of which is that only and exactly the "normalized" solutions (which exist only in a portion of the range) are spectrally stable.
Does chaos theory have major implications for philosophy of medicine?
Holm, S
2002-12-01
In the literature it is sometimes claimed that chaos theory, non-linear dynamics, and the theory of fractals have major implications for philosophy of medicine, especially for our analysis of the concept of disease and the concept of causation. This paper gives a brief introduction to the concepts underlying chaos theory and non-linear dynamics. It is then shown that chaos theory has only very minimal implications for the analysis of the concept of disease and the concept of causation, mainly because the mathematics of chaotic processes entail that these processes are fully deterministic. The practical unpredictability of chaotic processes, caused by their extreme sensitivity to initial conditions, may raise practical problems in diagnosis, prognosis, and treatment, but it raises no major theoretical problems. The relation between chaos theory and the problem of free will is discussed, and it is shown that chaos theory may remove the problem of predictability of decisions, but does not solve the problem of free will. Chaos theory may thus be very important for our understanding of physiological processes, and specific disease entities, without having any major implications for philosophy of medicine.
A morphological perceptron with gradient-based learning for Brazilian stock market forecasting.
Araújo, Ricardo de A
2012-04-01
Several linear and non-linear techniques have been proposed to solve the stock market forecasting problem. However, a limitation arises from all these techniques and is known as the random walk dilemma (RWD). In this scenario, forecasts generated by arbitrary models have a characteristic one step ahead delay with respect to the time series values, so that, there is a time phase distortion in stock market phenomena reconstruction. In this paper, we propose a suitable model inspired by concepts in mathematical morphology (MM) and lattice theory (LT). This model is generically called the increasing morphological perceptron (IMP). Also, we present a gradient steepest descent method to design the proposed IMP based on ideas from the back-propagation (BP) algorithm and using a systematic approach to overcome the problem of non-differentiability of morphological operations. Into the learning process we have included a procedure to overcome the RWD, which is an automatic correction step that is geared toward eliminating time phase distortions that occur in stock market phenomena. Furthermore, an experimental analysis is conducted with the IMP using four complex non-linear problems of time series forecasting from the Brazilian stock market. Additionally, two natural phenomena time series are used to assess forecasting performance of the proposed IMP with other non financial time series. At the end, the obtained results are discussed and compared to results found using models recently proposed in the literature. Copyright © 2011 Elsevier Ltd. All rights reserved.
Scilab software as an alternative low-cost computing in solving the linear equations problem
NASA Astrophysics Data System (ADS)
Agus, Fahrul; Haviluddin
2017-02-01
Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.
Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems
NASA Astrophysics Data System (ADS)
Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.
2010-12-01
Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.
''Math in a Can'': Teaching Mathematics and Engineering Design
ERIC Educational Resources Information Center
Narode, Ronald B.
2011-01-01
Using an apparently simple problem, ''Design a cylindrical can that will hold a liter of milk,'' this paper demonstrates how engineering design may facilitate the teaching of the following ideas to secondary students: linear and non-linear relationships; basic geometry of circles, rectangles, and cylinders; unit measures of area and volume;…
Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN
NASA Technical Reports Server (NTRS)
Sheerer, T. J.
1986-01-01
The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.
Kinjo, Ken; Uchibe, Eiji; Doya, Kenji
2013-01-01
Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in which the Bellman's equation can be converted into a linear equation by an exponential transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal value function and the corresponding control policy are obtained by solving an eigenvalue problem in a discrete state space or an eigenfunction problem in a continuous state using the knowledge of the system dynamics and the action, state, and terminal cost functions. In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in which the dynamics of the body and the environment have to be learned from experience. We first perform a simulation study of a pole swing-up task to evaluate the effect of the accuracy of the learned dynamics model on the derived the action policy. The result shows that a crude linear approximation of the non-linear dynamics can still allow solution of the task, despite with a higher total cost. We then perform real robot experiments of a battery-catching task using our Spring Dog mobile robot platform. The state is given by the position and the size of a battery in its camera view and two neck joint angles. The action is the velocities of two wheels, while the neck joints were controlled by a visual servo controller. We test linear and bilinear dynamic models in tasks with quadratic and Guassian state cost functions. In the quadratic cost task, the LMDP controller derived from a learned linear dynamics model performed equivalently with the optimal linear quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear dynamics model showed the best performance. The results demonstrate the usefulness of the LMDP framework in real robot control even when simple linear models are used for dynamics learning.
Multiple imputation of rainfall missing data in the Iberian Mediterranean context
NASA Astrophysics Data System (ADS)
Miró, Juan Javier; Caselles, Vicente; Estrela, María José
2017-11-01
Given the increasing need for complete rainfall data networks, in recent years have been proposed diverse methods for filling gaps in observed precipitation series, progressively more advanced that traditional approaches to overcome the problem. The present study has consisted in validate 10 methods (6 linear, 2 non-linear and 2 hybrid) that allow multiple imputation, i.e., fill at the same time missing data of multiple incomplete series in a dense network of neighboring stations. These were applied for daily and monthly rainfall in two sectors in the Júcar River Basin Authority (east Iberian Peninsula), which is characterized by a high spatial irregularity and difficulty of rainfall estimation. A classification of precipitation according to their genetic origin was applied as pre-processing, and a quantile-mapping adjusting as post-processing technique. The results showed in general a better performance for the non-linear and hybrid methods, highlighting that the non-linear PCA (NLPCA) method outperforms considerably the Self Organizing Maps (SOM) method within non-linear approaches. On linear methods, the Regularized Expectation Maximization method (RegEM) was the best, but far from NLPCA. Applying EOF filtering as post-processing of NLPCA (hybrid approach) yielded the best results.
Ghost Dark Energy with Non-Linear Interaction Term
NASA Astrophysics Data System (ADS)
Ebrahimi, E.
2016-06-01
Here we investigate ghost dark energy (GDE) in the presence of a non-linear interaction term between dark matter and dark energy. To this end we take into account a general form for the interaction term. Then we discuss about different features of three choices of the non-linear interacting GDE. In all cases we obtain equation of state parameter, w D = p/ ρ, the deceleration parameter and evolution equation of the dark energy density parameter (Ω D ). We find that in one case, w D cross the phantom line ( w D < -1). However in two other classes w D can not cross the phantom divide. The coincidence problem can be solved in these models completely and there exist good agreement between the models and observational values of w D , q. We study squared sound speed {vs2}, and find that for one case of non-linear interaction term {vs2} can achieves positive values at late time of evolution.
Non-modal analysis of the diocotron instability for cylindrical geometry with conducting boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V.; Seok Kim, Jin; Jo, Younghyun
2014-05-15
The temporal evolution of the linear diocotron instability of a cylindrical annular plasma column surrounded by a conducting boundary has been investigated by using the methodology of the cylindrical shearing modes. The linear solution of the initial and boundary-value problems is obtained which is valid for any time at which linear effects dominate. The solution reveals that the initial perturbations of the electron density pass through the stage of the non-modal evolution when the perturbation experiences spatio-temporal distortion pertinent to the considered geometry of the electron column. The result is confirmed by a two-dimensional cylindrical particle-in-cell simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laboure, Vincent M., E-mail: vincent.laboure@tamu.edu; McClarren, Ryan G., E-mail: rgm@tamu.edu; Hauck, Cory D., E-mail: hauckc@ornl.gov
2016-09-15
In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FP{sub N}) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.
Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations
NASA Astrophysics Data System (ADS)
Wyszkowska, Patrycja
2017-12-01
The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula) are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.
2018-01-01
Mathematical models simulating different and representative engineering problem, atomic dry friction, the moving front problems and elastic and solid mechanics are presented in the form of a set of non-linear, coupled or not coupled differential equations. For different parameters values that influence the solution, the problem is numerically solved by the network method, which provides all the variables of the problems. Although the model is extremely sensitive to the above parameters, no assumptions are considered as regards the linearization of the variables. The design of the models, which are run on standard electrical circuit simulation software, is explained in detail. The network model results are compared with common numerical methods or experimental data, published in the scientific literature, to show the reliability of the model. PMID:29518121
Sánchez-Pérez, J F; Marín, F; Morales, J L; Cánovas, M; Alhama, F
2018-01-01
Mathematical models simulating different and representative engineering problem, atomic dry friction, the moving front problems and elastic and solid mechanics are presented in the form of a set of non-linear, coupled or not coupled differential equations. For different parameters values that influence the solution, the problem is numerically solved by the network method, which provides all the variables of the problems. Although the model is extremely sensitive to the above parameters, no assumptions are considered as regards the linearization of the variables. The design of the models, which are run on standard electrical circuit simulation software, is explained in detail. The network model results are compared with common numerical methods or experimental data, published in the scientific literature, to show the reliability of the model.
Solving Large Problems with a Small Working Memory
ERIC Educational Resources Information Center
Pizlo, Zygmunt; Stefanov, Emil
2013-01-01
We describe an important elaboration of our multiscale/multiresolution model for solving the Traveling Salesman Problem (TSP). Our previous model emulated the non-uniform distribution of receptors on the human retina and the shifts of visual attention. This model produced near-optimal solutions of TSP in linear time by performing hierarchical…
NASA Astrophysics Data System (ADS)
Baregheh, Mandana; Mezentsev, Vladimir; Schmitz, Holger
2011-06-01
We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor.
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Johnson, Wayne R.
2009-01-01
This paper has two objectives. The first objective is to formulate a 3-dimensional Finite Element Model for the dynamic analysis of helicopter rotor blades. The second objective is to implement and analyze a dual-primal iterative substructuring based Krylov solver, that is parallel and scalable, for the solution of the 3-D FEM analysis. The numerical and parallel scalability of the solver is studied using two prototype problems - one for ideal hover (symmetric) and one for a transient forward flight (non-symmetric) - both carried out on up to 48 processors. In both hover and forward flight conditions, a perfect linear speed-up is observed, for a given problem size, up to the point of substructure optimality. Substructure optimality and the linear parallel speed-up range are both shown to depend on the problem size as well as on the selection of the coarse problem. With a larger problem size, linear speed-up is restored up to the new substructure optimality. The solver also scales with problem size - even though this conclusion is premature given the small prototype grids considered in this study.
Grossi, E
2006-01-01
Summary The relationship between the different symptoms of gastro-oesophageal reflux disease remain markedly obscure due to the high underlying non-linearity and the lack of studies focusing on the problem. Aim of this study was to evaluate the hidden relationships between the triad of symptoms related to gastro-oesophageal reflux disease using advanced mathematical techniques, borrowed from the artificial intelligence field, in a cohort of patients with oesophagitis. A total of 388 patients (from 60 centres) with endoscopic evidence of oesophagitis were recruited. The severity of oesophagitis was scored by means of the Savary-Miller classification. PST algorithm was employed. This study shows that laryngo-pharyngeal symptoms related to gastro-oesophageal reflux disease are correlated even if in a non-linear way. PMID:17345935
Grossi, E
2006-10-01
The relationship between the different symptoms of gastro-oesophageal reflux disease remain markedly obscure due to the high underlying non-linearity and the lack of studies focusing on the problem. Aim of this study was to evaluate the hidden relationships between the triad of symptoms related to gastro-oesophageal reflux disease using advanced mathematical techniques, borrowed from the artificial intelligence field, in a cohort of patients with oesophagitis. A total of 388 patients (from 60 centres) with endoscopic evidence of oesophagitis were recruited. The severity of oesophagitis was scored by means of the Savary-Miller classification. PST algorithm was employed. This study shows that laryngo-pharyngeal symptoms related to gastro-oesophageal reflux disease are correlated even if in a non-linear way.
NASA Astrophysics Data System (ADS)
Tahani, Masoud; Askari, Amir R.
2014-09-01
In spite of the fact that pull-in instability of electrically actuated nano/micro-beams has been investigated by many researchers to date, no explicit formula has been presented yet which can predict pull-in voltage based on a geometrically non-linear and distributed parameter model. The objective of present paper is to introduce a simple and accurate formula to predict this value for a fully clamped electrostatically actuated nano/micro-beam. To this end, a non-linear Euler-Bernoulli beam model is employed, which accounts for the axial residual stress, geometric non-linearity of mid-plane stretching, distributed electrostatic force and the van der Waals (vdW) attraction. The non-linear boundary value governing equation of equilibrium is non-dimensionalized and solved iteratively through single-term Galerkin based reduced order model (ROM). The solutions are validated thorough direct comparison with experimental and other existing results reported in previous studies. Pull-in instability under electrical and vdW loads are also investigated using universal graphs. Based on the results of these graphs, non-dimensional pull-in and vdW parameters, which are defined in the text, vary linearly versus the other dimensionless parameters of the problem. Using this fact, some linear equations are presented to predict pull-in voltage, the maximum allowable length, the so-called detachment length, and the minimum allowable gap for a nano/micro-system. These linear equations are also reduced to a couple of universal pull-in formulas for systems with small initial gap. The accuracy of the universal pull-in formulas are also validated by comparing its results with available experimental and some previous geometric linear and closed-form findings published in the literature.
Macrocell path loss prediction using artificial intelligence techniques
NASA Astrophysics Data System (ADS)
Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.
2014-04-01
The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.
Boundary layer flow of air over water on a flat plate
NASA Technical Reports Server (NTRS)
Nelson, John; Alving, Amy E.; Joseph, Daniel D.
1993-01-01
A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.
Application of Linear and Non-Linear Harmonic Methods for Unsteady Transonic Flow
NASA Astrophysics Data System (ADS)
Gundevia, Rayomand
This thesis explores linear and non-linear computational methods for solving unsteady flow. The eventual goal is to apply these methods to two-dimensional and three-dimensional flutter predictions. In this study the quasi-one-dimensional nozzle is used as a framework for understanding these methods and their limitations. Subsonic and transonic cases are explored as the back-pressure is forced to oscillate with known amplitude and frequency. A steady harmonic approach is used to solve this unsteady problem for which perturbations are said to be small in comparison to the mean flow. The use of a linearized Euler equations (LEE) scheme is good at capturing the flow characteristics but is limited by accuracy to relatively small amplitude perturbations. The introduction of time-averaged second-order terms in the Non-Linear Harmonic (NLH) method means that a better approximation of the mean-valued solution, upon which the linearization is based, can be made. The nonlinear time-accurate Euler solutions are used for comparison and to establish the regimes of unsteadiness for which these schemes fails. The usefulness of the LEE and NLH methods lie in the gains in computational efficiency over the full equations.
NASA Astrophysics Data System (ADS)
Güleçyüz, M. Ç.; Şenyiğit, M.; Ersoy, A.
2018-01-01
The Milne problem is studied in one speed neutron transport theory using the linearly anisotropic scattering kernel which combines forward and backward scatterings (extremely anisotropic scattering) for a non-absorbing medium with specular and diffuse reflection boundary conditions. In order to calculate the extrapolated endpoint for the Milne problem, Legendre polynomial approximation (PN method) is applied and numerical results are tabulated for selected cases as a function of different degrees of anisotropic scattering. Finally, some results are discussed and compared with the existing results in literature.
Generalizations of Tikhonov's regularized method of least squares to non-Euclidean vector norms
NASA Astrophysics Data System (ADS)
Volkov, V. V.; Erokhin, V. I.; Kakaev, V. V.; Onufrei, A. Yu.
2017-09-01
Tikhonov's regularized method of least squares and its generalizations to non-Euclidean norms, including polyhedral, are considered. The regularized method of least squares is reduced to mathematical programming problems obtained by "instrumental" generalizations of the Tikhonov lemma on the minimal (in a certain norm) solution of a system of linear algebraic equations with respect to an unknown matrix. Further studies are needed for problems concerning the development of methods and algorithms for solving reduced mathematical programming problems in which the objective functions and admissible domains are constructed using polyhedral vector norms.
ERIC Educational Resources Information Center
Foley, Greg
2014-01-01
A problem that illustrates two ways of computing the break-even radius of insulation is outlined. The problem is suitable for students who are taking an introductory module in heat transfer or transport phenomena and who have some previous knowledge of the numerical solution of non- linear algebraic equations. The potential for computer algebra,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.K.; Surana, K.S.
1996-10-01
This paper presents a new and general procedure for designing hierarchical and non-hierarchical special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is unknown. The {lambda} element formulations presented here permit correct numerical simulation of linear as well as non-linear singular problems without a priori knowledge of the strength of the singularity. A procedure is also presented for determining the exact strength of the singularity using the converged solution. It is shown that in special instances, the general formulation of {lambda} elements can also be made hierarchical. The {lambda} elements presented here aremore » of type C{sup 0} and provide C{sup 0} inter-element continuity with p-version elements. One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Since in this case {lambda}{sub i} are known, this problem provides a good example for investigating the performance of the formulation proposed here. Least squares approach (or Least Squares Finite Element Formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical studies are presented for radially inward flow of an upper convected Maxwell fluid with inner radius r{sub i} = .1 and .01 etc. and Deborah number De = 2.« less
A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Leonov, Arkady I.
2002-01-01
The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.
Parametric resonance in the early Universe—a fitting analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, Daniel G.; Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es
Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanningmore » over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balajewicz, Maciej; Tezaur, Irina; Dowell, Earl
For a projection-based reduced order model (ROM) of a fluid flow to be stable and accurate, the dynamics of the truncated subspace must be taken into account. This paper proposes an approach for stabilizing and enhancing projection-based fluid ROMs in which truncated modes are accounted for a priori via a minimal rotation of the projection subspace. Attention is focused on the full non-linear compressible Navier–Stokes equations in specific volume form as a step toward a more general formulation for problems with generic non-linearities. Unlike traditional approaches, no empirical turbulence modeling terms are required, and consistency between the ROM and themore » Navier–Stokes equation from which the ROM is derived is maintained. Mathematically, the approach is formulated as a trace minimization problem on the Stiefel manifold. As a result, the reproductive as well as predictive capabilities of the method are evaluated on several compressible flow problems, including a problem involving laminar flow over an airfoil with a high angle of attack, and a channel-driven cavity flow problem.« less
Balajewicz, Maciej; Tezaur, Irina; Dowell, Earl
2016-05-25
For a projection-based reduced order model (ROM) of a fluid flow to be stable and accurate, the dynamics of the truncated subspace must be taken into account. This paper proposes an approach for stabilizing and enhancing projection-based fluid ROMs in which truncated modes are accounted for a priori via a minimal rotation of the projection subspace. Attention is focused on the full non-linear compressible Navier–Stokes equations in specific volume form as a step toward a more general formulation for problems with generic non-linearities. Unlike traditional approaches, no empirical turbulence modeling terms are required, and consistency between the ROM and themore » Navier–Stokes equation from which the ROM is derived is maintained. Mathematically, the approach is formulated as a trace minimization problem on the Stiefel manifold. As a result, the reproductive as well as predictive capabilities of the method are evaluated on several compressible flow problems, including a problem involving laminar flow over an airfoil with a high angle of attack, and a channel-driven cavity flow problem.« less
Expendable launch vehicle studies
NASA Technical Reports Server (NTRS)
Bainum, Peter M.; Reiss, Robert
1995-01-01
Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to Maxwell and Kelvin models. The third class of problems consists of linear eigenvalue problems in which the elements of the mass and stiffness matrices are stochastic. dynamic structural response for which the parameters are given by probabilistic distribution functions, rather than deterministic values, can be cast in this form. Solutions for several problems in each class will be presented.
Assessment of Efficiency and Performance in Tsunami Numerical Modeling with GPU
NASA Astrophysics Data System (ADS)
Yalciner, Bora; Zaytsev, Andrey
2017-04-01
Non-linear shallow water equations (NSWE) are used to solve the propagation and coastal amplification of long waves and tsunamis. Leap Frog scheme of finite difference technique is one of the satisfactory numerical methods which is widely used in these problems. Tsunami numerical models are necessary for not only academic but also operational purposes which need faster and accurate solutions. Recent developments in information technology provide considerably faster numerical solutions in this respect and are becoming one of the crucial requirements. Tsunami numerical code NAMI DANCE uses finite difference numerical method to solve linear and non-linear forms of shallow water equations for long wave problems, specifically for tsunamis. In this study, the new code is structured for Graphical Processing Unit (GPU) using CUDA API. The new code is applied to different (analytical, experimental and field) benchmark problems of tsunamis for tests. One of those applications is 2011 Great East Japan tsunami which was instrumentally recorded on various types of gauges including tide and wave gauges and offshore GPS buoys cabled Ocean Bottom Pressure (OBP) gauges and DART buoys. The accuracy of the results are compared with the measurements and fairly well agreements are obtained. The efficiency and performance of the code is also compared with the version using multi-core Central Processing Unit (CPU). Dependence of simulation speed with GPU on linear or non-linear solutions is also investigated. One of the results is that the simulation speed is increased up to 75 times comparing to the process time in the computer using single 4/8 thread multi-core CPU. The results are presented with comparisons and discussions. Furthermore how multi-dimensional finite difference problems fits towards GPU architecture is also discussed. The research leading to this study has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No: 603839 (Project ASTARTE-Assessment, Strategy and Risk Reduction for Tsunamis in Europe). PARI, Japan and NOAA, USA are acknowledged for the data of the measurements. Prof. Ahmet C. Yalciner is also acknowledged for his long term and sustained support to the authors.
A simple method for identifying parameter correlations in partially observed linear dynamic models.
Li, Pu; Vu, Quoc Dong
2015-12-14
Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a software packet.
Group invariant solution for a pre-existing fluid-driven fracture in impermeable rock
NASA Astrophysics Data System (ADS)
Fitt, A. D.; Mason, D. P.; Moss, E. A.
2007-11-01
The propagation of a two-dimensional fluid-driven fracture in impermeable rock is considered. The fluid flow in the fracture is laminar. By applying lubrication theory a partial differential equation relating the half-width of the fracture to the fluid pressure is derived. To close the model the PKN formulation is adopted in which the fluid pressure is proportional to the half-width of the fracture. By considering a linear combination of the Lie point symmetries of the resulting non-linear diffusion equation the boundary value problem is expressed in a form appropriate for a similarity solution. The boundary value problem is reformulated as two initial value problems which are readily solved numerically. The similarity solution describes a preexisting fracture since both the total volume and length of the fracture are initially finite and non-zero. Applications in which the rate of fluid injection into the fracture and the pressure at the fracture entry are independent of time are considered.
An automatic multigrid method for the solution of sparse linear systems
NASA Technical Reports Server (NTRS)
Shapira, Yair; Israeli, Moshe; Sidi, Avram
1993-01-01
An automatic version of the multigrid method for the solution of linear systems arising from the discretization of elliptic PDE's is presented. This version is based on the structure of the algebraic system solely, and does not use the original partial differential operator. Numerical experiments show that for the Poisson equation the rate of convergence of our method is equal to that of classical multigrid methods. Moreover, the method is robust in the sense that its high rate of convergence is conserved for other classes of problems: non-symmetric, hyperbolic (even with closed characteristics) and problems on non-uniform grids. No double discretization or special treatment of sub-domains (e.g. boundaries) is needed. When supplemented with a vector extrapolation method, high rates of convergence are achieved also for anisotropic and discontinuous problems and also for indefinite Helmholtz equations. A new double discretization strategy is proposed for finite and spectral element schemes and is found better than known strategies.
New Representation of Bearings in LS-DYNA
NASA Technical Reports Server (NTRS)
Carney, Kelly S.; Howard, Samuel A.; Miller, Brad A.; Benson, David J.
2014-01-01
Non-linear, dynamic, finite element analysis is used in various engineering disciplines to evaluate high-speed, dynamic impact and vibration events. Some of these applications require connecting rotating to stationary components. For example, bird impacts on rotating aircraft engine fan blades are a common analysis performed using this type of analysis tool. Traditionally, rotating machines utilize some type of bearing to allow rotation in one degree of freedom while offering constraints in the other degrees of freedom. Most times, bearings are modeled simply as linear springs with rotation. This is a simplification that is not necessarily accurate under the conditions of high-velocity, high-energy, dynamic events such as impact problems. For this reason, it is desirable to utilize a more realistic non-linear force-deflection characteristic of real bearings to model the interaction between rotating and non-rotating components during dynamic events. The present work describes a rolling element bearing model developed for use in non-linear, dynamic finite element analysis. This rolling element bearing model has been implemented in LS-DYNA as a new element, *ELEMENT_BEARING.
NASA Technical Reports Server (NTRS)
Rybicki, G. B.; Hummer, D. G.
1991-01-01
A method is presented for solving multilevel transfer problems when nonoverlapping lines and background continuum are present and active continuum transfer is absent. An approximate lambda operator is employed to derive linear, 'preconditioned', statistical-equilibrium equations. A method is described for finding the diagonal elements of the 'true' numerical lambda operator, and therefore for obtaining the coefficients of the equations. Iterations of the preconditioned equations, in conjunction with the transfer equation's formal solution, are used to solve linear equations. Some multilevel problems are considered, including an eleven-level neutral helium atom. Diagonal and tridiagonal approximate lambda operators are utilized in the problems to examine the convergence properties of the method, and it is found to be effective for the line transfer problems.
NASA Astrophysics Data System (ADS)
Linde, N.; Vrugt, J. A.
2009-04-01
Geophysical models are increasingly used in hydrological simulations and inversions, where they are typically treated as an artificial data source with known uncorrelated "data errors". The model appraisal problem in classical deterministic linear and non-linear inversion approaches based on linearization is often addressed by calculating model resolution and model covariance matrices. These measures offer only a limited potential to assign a more appropriate "data covariance matrix" for future hydrological applications, simply because the regularization operators used to construct a stable inverse solution bear a strong imprint on such estimates and because the non-linearity of the geophysical inverse problem is not explored. We present a parallelized Markov Chain Monte Carlo (MCMC) scheme to efficiently derive the posterior spatially distributed radar slowness and water content between boreholes given first-arrival traveltimes. This method is called DiffeRential Evolution Adaptive Metropolis (DREAM_ZS) with snooker updater and sampling from past states. Our inverse scheme does not impose any smoothness on the final solution, and uses uniform prior ranges of the parameters. The posterior distribution of radar slowness is converted into spatially distributed soil moisture values using a petrophysical relationship. To benchmark the performance of DREAM_ZS, we first apply our inverse method to a synthetic two-dimensional infiltration experiment using 9421 traveltimes contaminated with Gaussian errors and 80 different model parameters, corresponding to a model discretization of 0.3 m × 0.3 m. After this, the method is applied to field data acquired in the vadose zone during snowmelt. This work demonstrates that fully non-linear stochastic inversion can be applied with few limiting assumptions to a range of common two-dimensional tomographic geophysical problems. The main advantage of DREAM_ZS is that it provides a full view of the posterior distribution of spatially distributed soil moisture, which is key to appropriately treat geophysical parameter uncertainty and infer hydrologic models.
Adaptive Importance Sampling for Control and Inference
NASA Astrophysics Data System (ADS)
Kappen, H. J.; Ruiz, H. C.
2016-03-01
Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feynman-Kac PI and can be estimated using Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. We review the most commonly used methods in robotics and control. Within the PI theory, the question of how to compute becomes the question of importance sampling. Efficient importance samplers are state feedback controllers and the use of these requires an efficient representation. Learning and representing effective state-feedback controllers for non-linear stochastic control problems is a very challenging, and largely unsolved, problem. We show how to learn and represent such controllers using ideas from the cross entropy method. We derive a gradient descent method that allows to learn feed-back controllers using an arbitrary parametrisation. We refer to this method as the path integral cross entropy method or PICE. We illustrate this method for some simple examples. The PI control methods can be used to estimate the posterior distribution in latent state models. In neuroscience these problems arise when estimating connectivity from neural recording data using EM. We demonstrate the PI control method as an accurate alternative to particle filtering.
A diffusion model of protected population on bilocal habitat with generalized resource
NASA Astrophysics Data System (ADS)
Vasilyev, Maxim D.; Trofimtsev, Yuri I.; Vasilyeva, Natalya V.
2017-11-01
A model of population distribution in a two-dimensional area divided by an ecological barrier, i.e. the boundaries of natural reserve, is considered. Distribution of the population is defined by diffusion, directed migrations and areal resource. The exchange of specimens occurs between two parts of the habitat. The mathematical model is presented in the form of a boundary value problem for a system of non-linear parabolic equations with variable parameters of diffusion and growth function. The splitting space variables, sweep method and simple iteration methods were used for the numerical solution of a system. A set of programs was coded in Python. Numerical simulation results for the two-dimensional unsteady non-linear problem are analyzed in detail. The influence of migration flow coefficients and functions of natural birth/death ratio on the distributions of population densities is investigated. The results of the research would allow to describe the conditions of the stable and sustainable existence of populations in bilocal habitat containing the protected and non-protected zones.
Aerodynamic preliminary analysis system. Part 1: Theory. [linearized potential theory
NASA Technical Reports Server (NTRS)
Bonner, E.; Clever, W.; Dunn, K.
1978-01-01
A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple non-planar surfaces of arbitrary planform and open or closed slender bodies of non-circular contour may be analyzed. Longitudinal and lateral-directional static and rotary derivative solutions may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.
NASA Astrophysics Data System (ADS)
Gontis, V.; Kononovicius, A.
2017-10-01
We address the problem of long-range memory in the financial markets. There are two conceptually different ways to reproduce power-law decay of auto-correlation function: using fractional Brownian motion as well as non-linear stochastic differential equations. In this contribution we address this problem by analyzing empirical return and trading activity time series from the Forex. From the empirical time series we obtain probability density functions of burst and inter-burst duration. Our analysis reveals that the power-law exponents of the obtained probability density functions are close to 3 / 2, which is a characteristic feature of the one-dimensional stochastic processes. This is in a good agreement with earlier proposed model of absolute return based on the non-linear stochastic differential equations derived from the agent-based herding model.
Turrini, Enrico; Carnevale, Claudio; Finzi, Giovanna; Volta, Marialuisa
2018-04-15
This paper introduces the MAQ (Multi-dimensional Air Quality) model aimed at defining cost-effective air quality plans at different scales (urban to national) and assessing the co-benefits for GHG emissions. The model implements and solves a non-linear multi-objective, multi-pollutant decision problem where the decision variables are the application levels of emission abatement measures allowing the reduction of energy consumption, end-of pipe technologies and fuel switch options. The objectives of the decision problem are the minimization of tropospheric secondary pollution exposure and of internal costs. The model assesses CO 2 equivalent emissions in order to support decision makers in the selection of win-win policies. The methodology is tested on Lombardy region, a heavily polluted area in northern Italy. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Yuan; Ma, Jiayi; Yuille, Alan L.
2017-05-01
This paper addresses the problem of face recognition when there is only few, or even only a single, labeled examples of the face that we wish to recognize. Moreover, these examples are typically corrupted by nuisance variables, both linear (i.e., additive nuisance variables such as bad lighting, wearing of glasses) and non-linear (i.e., non-additive pixel-wise nuisance variables such as expression changes). The small number of labeled examples means that it is hard to remove these nuisance variables between the training and testing faces to obtain good recognition performance. To address the problem we propose a method called Semi-Supervised Sparse Representation based Classification (S$^3$RC). This is based on recent work on sparsity where faces are represented in terms of two dictionaries: a gallery dictionary consisting of one or more examples of each person, and a variation dictionary representing linear nuisance variables (e.g., different lighting conditions, different glasses). The main idea is that (i) we use the variation dictionary to characterize the linear nuisance variables via the sparsity framework, then (ii) prototype face images are estimated as a gallery dictionary via a Gaussian Mixture Model (GMM), with mixed labeled and unlabeled samples in a semi-supervised manner, to deal with the non-linear nuisance variations between labeled and unlabeled samples. We have done experiments with insufficient labeled samples, even when there is only a single labeled sample per person. Our results on the AR, Multi-PIE, CAS-PEAL, and LFW databases demonstrate that the proposed method is able to deliver significantly improved performance over existing methods.
NASA Astrophysics Data System (ADS)
Krysko, V. A.; Awrejcewicz, J.; Krylova, E. Yu; Papkova, I. V.; Krysko, A. V.
2018-06-01
Parametric non-linear vibrations of flexible cylindrical panels subjected to additive white noise are studied. The governing Marguerre equations are investigated using the finite difference method (FDM) of the second-order accuracy and the Runge-Kutta method. The considered mechanical structural member is treated as a system of many/infinite number of degrees of freedom (DoF). The dependence of chaotic vibrations on the number of DoFs is investigated. Reliability of results is guaranteed by comparing the results obtained using two qualitatively different methods to reduce the problem of PDEs (partial differential equations) to ODEs (ordinary differential equations), i.e. the Faedo-Galerkin method in higher approximations and the 4th and 6th order FDM. The Cauchy problem obtained by the FDM is eventually solved using the 4th-order Runge-Kutta methods. The numerical experiment yielded, for a certain set of parameters, the non-symmetric vibration modes/forms with and without white noise. In particular, it has been illustrated and discussed that action of white noise on chaotic vibrations implies quasi-periodicity, whereas the previously non-symmetric vibration modes are closer to symmetric ones.
Lie-algebraic Approach to Dynamics of Closed Quantum Systems and Quantum-to-Classical Correspondence
NASA Astrophysics Data System (ADS)
Galitski, Victor
2012-02-01
I will briefly review our recent work on a Lie-algebraic approach to various non-equilibrium quantum-mechanical problems, which has been motivated by continuous experimental advances in the field of cold atoms. First, I will discuss non-equilibrium driven dynamics of a generic closed quantum system. It will be emphasized that mathematically a non-equilibrium Hamiltonian represents a trajectory in a Lie algebra, while the evolution operator is a trajectory in a Lie group generated by the underlying algebra via exponentiation. This turns out to be a constructive statement that establishes, in particular, the fact that classical and quantum unitary evolutions are two sides of the same coin determined uniquely by the same dynamic generators in the group. An equation for these generators - dubbed dual Schr"odinger-Bloch equation - will be derived and analyzed for a few of specific examples. This non-linear equation allows one to construct new exact non-linear solutions to quantum-dynamical systems. An experimentally-relevant example of a family of exact solutions to the many-body Landau-Zener problem will be presented. One practical application of the latter result includes dynamical means to optimize molecular production rate following a quench across the Feshbach resonance.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Integrated Sensing Processor, Phase 2
2005-12-01
performance analysis for several baseline classifiers including neural nets, linear classifiers, and kNN classifiers. Use of CCDR as a preprocessing step...below the level of the benchmark non-linear classifier for this problem ( kNN ). Furthermore, the CCDR preconditioned kNN achieved a 10% improvement over...the benchmark kNN without CCDR. Finally, we found an important connection between intrinsic dimension estimation via entropic graphs and the optimal
2017-01-01
Objective Electrical Impedance Tomography (EIT) is a powerful non-invasive technique for imaging applications. The goal is to estimate the electrical properties of living tissues by measuring the potential at the boundary of the domain. Being safe with respect to patient health, non-invasive, and having no known hazards, EIT is an attractive and promising technology. However, it suffers from a particular technical difficulty, which consists of solving a nonlinear inverse problem in real time. Several nonlinear approaches have been proposed as a replacement for the linear solver, but in practice very few are capable of stable, high-quality, and real-time EIT imaging because of their very low robustness to errors and inaccurate modeling, or because they require considerable computational effort. Methods In this paper, a post-processing technique based on an artificial neural network (ANN) is proposed to obtain a nonlinear solution to the inverse problem, starting from a linear solution. While common reconstruction methods based on ANNs estimate the solution directly from the measured data, the method proposed here enhances the solution obtained from a linear solver. Conclusion Applying a linear reconstruction algorithm before applying an ANN reduces the effects of noise and modeling errors. Hence, this approach significantly reduces the error associated with solving 2D inverse problems using machine-learning-based algorithms. Significance This work presents radical enhancements in the stability of nonlinear methods for biomedical EIT applications. PMID:29206856
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Norrie, D. H.; De Vries, G.
1979-01-01
Abel's integral equation is the governing equation for certain problems in physics and engineering, such as radiation from distributed sources. The finite element method for the solution of this non-linear equation is presented for problems with cylindrical symmetry and the extension to more general integral equations is indicated. The technique was applied to an axisymmetric glow discharge problem and the results show excellent agreement with previously obtained solutions
An efficient method for model refinement in diffuse optical tomography
NASA Astrophysics Data System (ADS)
Zirak, A. R.; Khademi, M.
2007-11-01
Diffuse optical tomography (DOT) is a non-linear, ill-posed, boundary value and optimization problem which necessitates regularization. Also, Bayesian methods are suitable owing to measurements data are sparse and correlated. In such problems which are solved with iterative methods, for stabilization and better convergence, the solution space must be small. These constraints subject to extensive and overdetermined system of equations which model retrieving criteria specially total least squares (TLS) must to refine model error. Using TLS is limited to linear systems which is not achievable when applying traditional Bayesian methods. This paper presents an efficient method for model refinement using regularized total least squares (RTLS) for treating on linearized DOT problem, having maximum a posteriori (MAP) estimator and Tikhonov regulator. This is done with combination Bayesian and regularization tools as preconditioner matrices, applying them to equations and then using RTLS to the resulting linear equations. The preconditioning matrixes are guided by patient specific information as well as a priori knowledge gained from the training set. Simulation results illustrate that proposed method improves the image reconstruction performance and localize the abnormally well.
NASA Technical Reports Server (NTRS)
McGowan, David M.; Anderson, Melvin S.
1998-01-01
The analytical formulation of curved-plate non-linear equilibrium equations that include transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Using several simplifying assumptions, linearized, stability equations are derived that describe the response of the plate just after bifurcation buckling occurs. These equations are then modified to allow the plate reference surface to be located a distance z(c), from the centroid surface which is convenient for modeling stiffened-plate assemblies. The implementation of the new theory into the VICONOPT buckling and vibration analysis and optimum design program code is described. Either classical plate theory (CPT) or first-order shear-deformation plate theory (SDPT) may be selected in VICONOPT. Comparisons of numerical results for several example problems with different loading states are made. Results from the new curved-plate analysis compare well with closed-form solution results and with results from known example problems in the literature. Finally, a design-optimization study of two different cylindrical shells subject to uniform axial compression is presented.
Advanced Numerical Methods for Computing Statistical Quantities of Interest from Solutions of SPDES
2012-01-19
and related optimization problems; developing numerical methods for option pricing problems in the presence of random arbitrage return. 1. Novel...equations (BSDEs) are connected to nonlinear partial differen- tial equations and non-linear semigroups, to the theory of hedging and pricing of contingent...the presence of random arbitrage return [3] We consider option pricing problems when we relax the condition of no arbitrage in the Black- Scholes
Quasi-Static Analysis of Round LaRC THUNDER Actuators
NASA Technical Reports Server (NTRS)
Campbell, Joel F.
2007-01-01
An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of round LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.
Quasi-Static Analysis of LaRC THUNDER Actuators
NASA Technical Reports Server (NTRS)
Campbell, Joel F.
2007-01-01
An analytic approach is developed to predict the shape and displacement with voltage in the quasi-static limit of LaRC Thunder Actuators. The problem is treated with classical lamination theory and Von Karman non-linear analysis. In the case of classical lamination theory exact analytic solutions are found. It is shown that classical lamination theory is insufficient to describe the physical situation for large actuators but is sufficient for very small actuators. Numerical results are presented for the non-linear analysis and compared with experimental measurements. Snap-through behavior, bifurcation, and stability are presented and discussed.
Graph-based normalization and whitening for non-linear data analysis.
Aaron, Catherine
2006-01-01
In this paper we construct a graph-based normalization algorithm for non-linear data analysis. The principle of this algorithm is to get a spherical average neighborhood with unit radius. First we present a class of global dispersion measures used for "global normalization"; we then adapt these measures using a weighted graph to build a local normalization called "graph-based" normalization. Then we give details of the graph-based normalization algorithm and illustrate some results. In the second part we present a graph-based whitening algorithm built by analogy between the "global" and the "local" problem.
8-PSK Signaling over non-linear satellite channels
NASA Technical Reports Server (NTRS)
Horan, Sheila B.; Caballero, Ruben B. Eng.
1996-01-01
Space agencies are under pressure to utilize better bandwidth-efficient communication methods due to the actual allocated frequency bands becoming more congested. Also budget reductions is another problem that the space agencies must deal with. This budget constraint results in simpler spacecraft carrying less communication capabilities and also the reduction in staff to capture data in the earth stations. It is then imperative that the most bandwidth efficient communication methods be utilized. This thesis presents a study of 8-ary Phase Shift Keying (8PSK) modulation with respect to bandwidth, power efficiency, spurious emissions and interference susceptibility over a non-linear satellite channel.
Mathematical and computational aspects of nonuniform frictional slip modeling
NASA Astrophysics Data System (ADS)
Gorbatikh, Larissa
2004-07-01
A mechanics-based model of non-uniform frictional sliding is studied from the mathematical/computational analysis point of view. This problem is of a key importance for a number of applications (particularly geomechanical ones), where materials interfaces undergo partial frictional sliding under compression and shear. We show that the problem is reduced to Dirichlet's problem for monotonic loading and to Riemman's problem for cyclic loading. The problem may look like a traditional crack interaction problem, however, it is confounded by the fact that locations of n sliding intervals are not known. They are to be determined from the condition for the stress intensity factors: KII=0 at the ends of the sliding zones. Computationally, it reduces to solving a system of 2n coupled non-linear algebraic equations involving singular integrals with unknown limits of integration.
A non-invasive implementation of a mixed domain decomposition method for frictional contact problems
NASA Astrophysics Data System (ADS)
Oumaziz, Paul; Gosselet, Pierre; Boucard, Pierre-Alain; Guinard, Stéphane
2017-11-01
A non-invasive implementation of the Latin domain decomposition method for frictional contact problems is described. The formulation implies to deal with mixed (Robin) conditions on the faces of the subdomains, which is not a classical feature of commercial software. Therefore we propose a new implementation of the linear stage of the Latin method with a non-local search direction built as the stiffness of a layer of elements on the interfaces. This choice enables us to implement the method within the open source software Code_Aster, and to derive 2D and 3D examples with similar performance as the standard Latin method.
Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor
NASA Astrophysics Data System (ADS)
Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.
2018-01-01
Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.
NASA Astrophysics Data System (ADS)
Hansen, T. M.; Cordua, K. S.
2017-12-01
Probabilistically formulated inverse problems can be solved using Monte Carlo-based sampling methods. In principle, both advanced prior information, based on for example, complex geostatistical models and non-linear forward models can be considered using such methods. However, Monte Carlo methods may be associated with huge computational costs that, in practice, limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical forward response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival traveltime inversion of crosshole ground penetrating radar data. An accurate forward model, based on 2-D full-waveform modeling followed by automatic traveltime picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the accurate and computationally expensive forward model, and also considerably faster and more accurate (i.e. with better resolution), than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of non-linear and non-Gaussian inverse problems that have to be solved using Monte Carlo sampling techniques.
Symmetry and Circularization in the Damped Kepler Problem
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hamilton, Brian
2007-05-01
Generically, a Hamiltonian system to which damping (non-Hamiltonian) forces are added loses its symmetry. It is a non-trivial fact that the eccentricity vector of lightly damped Kepler orbits is a constant for linear damping only. We describe the group theoretic background necessary to understand this fact and to relate it to that analogue of the Landau criterion for superfluidity associated with the general problem of orbit circularization. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.OSS07.C2.4
NASA Technical Reports Server (NTRS)
Samba, A. S.
1985-01-01
The problem of solving banded linear systems by direct (non-iterative) techniques on the Vector Processor System (VPS) 32 supercomputer is considered. Two efficient direct methods for solving banded linear systems on the VPS 32 are described. The vector cyclic reduction (VCR) algorithm is discussed in detail. The performance of the VCR on a three parameter model problem is also illustrated. The VCR is an adaptation of the conventional point cyclic reduction algorithm. The second direct method is the Customized Reduction of Augmented Triangles' (CRAT). CRAT has the dominant characteristics of an efficient VPS 32 algorithm. CRAT is tailored to the pipeline architecture of the VPS 32 and as a consequence the algorithm is implicitly vectorizable.
Well-posedness of the free boundary problem in compressible elastodynamics
NASA Astrophysics Data System (ADS)
Trakhinin, Yuri
2018-02-01
We study the free boundary problem for the flow of a compressible isentropic inviscid elastic fluid. At the free boundary moving with the velocity of the fluid particles the columns of the deformation gradient are tangent to the boundary and the pressure vanishes outside the flow domain. We prove the local-in-time existence of a unique smooth solution of the free boundary problem provided that among three columns of the deformation gradient there are two which are non-collinear vectors at each point of the initial free boundary. If this non-collinearity condition fails, the local-in-time existence is proved under the classical Rayleigh-Taylor sign condition satisfied at the first moment. By constructing an Hadamard-type ill-posedness example for the frozen coefficients linearized problem we show that the simultaneous failure of the non-collinearity condition and the Rayleigh-Taylor sign condition leads to Rayleigh-Taylor instability.
Guidance of Nonlinear Nonminimum-Phase Dynamic Systems
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1996-01-01
The research work has advanced the inversion-based guidance theory for: systems with non-hyperbolic internal dynamics; systems with parameter jumps; and systems where a redesign of the output trajectory is desired. A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics was developed. This approach integrated stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying stable inversion techniques and (b) to reduce large preactuation times needed to apply stable inversion for near non-hyperbolic cases. The method was applied to an example helicopter hover control problem with near non-hyperbolic internal dynamics for illustrating the trade-off between exact tracking and reduction of preactuation time. Future work will extend these results to guidance of nonlinear non-hyperbolic systems. The exact output tracking problem for systems with parameter jumps was considered. Necessary and sufficient conditions were derived for the elimination of switching-introduced output transient. While previous works had studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches), such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is also applicable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions. In addition, for the case when the reference trajectories are generated by an exosystem, we developed an exact-tracking controller which could be written in a feedback form. As in standard regulator theory, we also obtained a linear map from the states of the exosystem to the desired system state, which was defined via a matrix differential equation.
NASA Astrophysics Data System (ADS)
Khan, Junaid Ahmad; Mustafa, M.
2018-03-01
Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail.
Integrated model for pricing, delivery time setting, and scheduling in make-to-order environments
NASA Astrophysics Data System (ADS)
Garmdare, Hamid Sattari; Lotfi, M. M.; Honarvar, Mahboobeh
2018-03-01
Usually, in make-to-order environments which work only in response to the customer's orders, manufacturers for maximizing the profits should offer the best price and delivery time for an order considering the existing capacity and the customer's sensitivity to both the factors. In this paper, an integrated approach for pricing, delivery time setting and scheduling of new arrival orders are proposed based on the existing capacity and accepted orders in system. In the problem, the acquired market demands dependent on the price and delivery time of both the manufacturer and its competitors. A mixed-integer non-linear programming model is presented for the problem. After converting to a pure non-linear model, it is validated through a case study. The efficiency of proposed model is confirmed by comparing it to both the literature and the current practice. Finally, sensitivity analysis for the key parameters is carried out.
ITOUGH2(UNIX). Inverse Modeling for TOUGH2 Family of Multiphase Flow Simulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finsterle, S.
1999-03-01
ITOUGH2 provides inverse modeling capabilities for the TOUGH2 family of numerical simulators for non-isothermal multiphase flows in fractured-porous media. The ITOUGH2 can be used for estimating parameters by automatic modeling calibration, for sensitivity analyses, and for uncertainity propagation analyses (linear and Monte Carlo simulations). Any input parameter to the TOUGH2 simulator can be estimated based on any type of observation for which a corresponding TOUGH2 output is calculated. ITOUGH2 solves a non-linear least-squares problem using direct or gradient-based minimization algorithms. A detailed residual and error analysis is performed, which includes the evaluation of model identification criteria. ITOUGH2 can also bemore » run in forward mode, solving subsurface flow problems related to nuclear waste isolation, oil, gas, and geothermal resevoir engineering, and vadose zone hydrology.« less
NASA Astrophysics Data System (ADS)
Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad
2017-05-01
The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.
Constraints to solve parallelogram grid problems in 2D non separable linear canonical transform
NASA Astrophysics Data System (ADS)
Zhao, Liang; Healy, John J.; Muniraj, Inbarasan; Cui, Xiao-Guang; Malallah, Ra'ed; Ryle, James P.; Sheridan, John T.
2017-05-01
The 2D non-separable linear canonical transform (2D-NS-LCT) can model a range of various paraxial optical systems. Digital algorithms to evaluate the 2D-NS-LCTs are important in modeling the light field propagations and also of interest in many digital signal processing applications. In [Zhao 14] we have reported that a given 2D input image with rectangular shape/boundary, in general, results in a parallelogram output sampling grid (generally in an affine coordinates rather than in a Cartesian coordinates) thus limiting the further calculations, e.g. inverse transform. One possible solution is to use the interpolation techniques; however, it reduces the speed and accuracy of the numerical approximations. To alleviate this problem, in this paper, some constraints are derived under which the output samples are located in the Cartesian coordinates. Therefore, no interpolation operation is required and thus the calculation error can be significantly eliminated.
NASA Astrophysics Data System (ADS)
Cartarius, Holger; Musslimani, Ziad H.; Schwarz, Lukas; Wunner, Günter
2018-03-01
The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrödinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to compute ground and excited states (and their respective eigenvalues) of linear and nonlinear eigenvalue problems. The implementation of the algorithm follows four simple steps: (i) reformulate the underlying eigenvalue problem as a fixed-point equation, (ii) introduce a renormalization factor that controls the convergence properties of the iteration, (iii) perform a Gram-Schmidt orthogonalization process in order to prevent the iteration from converging to an unwanted mode, and (iv) compute the solution sought using a fixed-point iteration. The advantages of the OSR scheme over other known methods (such as Newton's and self-consistency) are (i) it allows the flexibility to choose large varieties of initial guesses without diverging, (ii) it is easy to implement especially at higher dimensions, and (iii) it can easily handle problems with complex and random potentials. The OSR method is implemented on benchmark Hermitian linear and nonlinear eigenvalue problems as well as linear and nonlinear non-Hermitian PT -symmetric models.
Non-linear eigensolver-based alternative to traditional SCF methods
NASA Astrophysics Data System (ADS)
Gavin, Brendan; Polizzi, Eric
2013-03-01
The self-consistent iterative procedure in Density Functional Theory calculations is revisited using a new, highly efficient and robust algorithm for solving the non-linear eigenvector problem (i.e. H(X)X = EX;) of the Kohn-Sham equations. This new scheme is derived from a generalization of the FEAST eigenvalue algorithm, and provides a fundamental and practical numerical solution for addressing the non-linearity of the Hamiltonian with the occupied eigenvectors. In contrast to SCF techniques, the traditional outer iterations are replaced by subspace iterations that are intrinsic to the FEAST algorithm, while the non-linearity is handled at the level of a projected reduced system which is orders of magnitude smaller than the original one. Using a series of numerical examples, it will be shown that our approach can outperform the traditional SCF mixing techniques such as Pulay-DIIS by providing a high converge rate and by converging to the correct solution regardless of the choice of the initial guess. We also discuss a practical implementation of the technique that can be achieved effectively using the FEAST solver package. This research is supported by NSF under Grant #ECCS-0846457 and Intel Corporation.
Burgués, Javier; Jiménez-Soto, Juan Manuel; Marco, Santiago
2018-07-12
The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity. Copyright © 2018 Elsevier B.V. All rights reserved.
Variationally consistent discretization schemes and numerical algorithms for contact problems
NASA Astrophysics Data System (ADS)
Wohlmuth, Barbara
We consider variationally consistent discretization schemes for mechanical contact problems. Most of the results can also be applied to other variational inequalities, such as those for phase transition problems in porous media, for plasticity or for option pricing applications from finance. The starting point is to weakly incorporate the constraint into the setting and to reformulate the inequality in the displacement in terms of a saddle-point problem. Here, the Lagrange multiplier represents the surface forces, and the constraints are restricted to the boundary of the simulation domain. Having a uniform inf-sup bound, one can then establish optimal low-order a priori convergence rates for the discretization error in the primal and dual variables. In addition to the abstract framework of linear saddle-point theory, complementarity terms have to be taken into account. The resulting inequality system is solved by rewriting it equivalently by means of the non-linear complementarity function as a system of equations. Although it is not differentiable in the classical sense, semi-smooth Newton methods, yielding super-linear convergence rates, can be applied and easily implemented in terms of a primal-dual active set strategy. Quite often the solution of contact problems has a low regularity, and the efficiency of the approach can be improved by using adaptive refinement techniques. Different standard types, such as residual- and equilibrated-based a posteriori error estimators, can be designed based on the interpretation of the dual variable as Neumann boundary condition. For the fully dynamic setting it is of interest to apply energy-preserving time-integration schemes. However, the differential algebraic character of the system can result in high oscillations if standard methods are applied. A possible remedy is to modify the fully discretized system by a local redistribution of the mass. Numerical results in two and three dimensions illustrate the wide range of possible applications and show the performance of the space discretization scheme, non-linear solver, adaptive refinement process and time integration.
Numerical methods for coupled fracture problems
NASA Astrophysics Data System (ADS)
Viesca, Robert C.; Garagash, Dmitry I.
2018-04-01
We consider numerical solutions in which the linear elastic response to an opening- or sliding-mode fracture couples with one or more processes. Classic examples of such problems include traction-free cracks leading to stress singularities or cracks with cohesive-zone strength requirements leading to non-singular stress distributions. These classical problems have characteristic square-root asymptotic behavior for stress, relative displacement, or their derivatives. Prior work has shown that such asymptotics lead to a natural quadrature of the singular integrals at roots of Chebyhsev polynomials of the first, second, third, or fourth kind. We show that such quadratures lead to convenient techniques for interpolation, differentiation, and integration, with the potential for spectral accuracy. We further show that these techniques, with slight amendment, may continue to be used for non-classical problems which lack the classical asymptotic behavior. We consider solutions to example problems of both the classical and non-classical variety (e.g., fluid-driven opening-mode fracture and fault shear rupture driven by thermal weakening), with comparisons to analytical solutions or asymptotes, where available.
A simple smoothness indicator for the WENO scheme with adaptive order
NASA Astrophysics Data System (ADS)
Huang, Cong; Chen, Li Li
2018-01-01
The fifth order WENO scheme with adaptive order is competent for solving hyperbolic conservation laws, its reconstruction is a convex combination of a fifth order linear reconstruction and three third order linear reconstructions. Note that, on uniform mesh, the computational cost of smoothness indicator for fifth order linear reconstruction is comparable with the sum of ones for three third order linear reconstructions, thus it is too heavy; on non-uniform mesh, the explicit form of smoothness indicator for fifth order linear reconstruction is difficult to be obtained, and its computational cost is much heavier than the one on uniform mesh. In order to overcome these problems, a simple smoothness indicator for fifth order linear reconstruction is proposed in this paper.
Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy
2017-07-10
We use a variational method to assimilate multiple data streams into the terrestrial ecosystem carbon cycle model DALECv2 (Data Assimilation Linked Ecosystem Carbon). Ecological and dynamical constraints have recently been introduced to constrain unresolved components of this otherwise ill-posed problem. We recast these constraints as a multivariate Gaussian distribution to incorporate them into the variational framework and we demonstrate their advantage through a linear analysis. By using an adjoint method we study a linear approximation of the inverse problem: firstly we perform a sensitivity analysis of the different outputs under consideration, and secondly we use the concept of resolution matricesmore » to diagnose the nature of the ill-posedness and evaluate regularisation strategies. We then study the non-linear problem with an application to real data. Finally, we propose a modification to the model: introducing a spin-up period provides us with a built-in formulation of some ecological constraints which facilitates the variational approach.« less
Vortex Escape from Columnar Defect in a Current-Loaded Superconductor
NASA Astrophysics Data System (ADS)
Fedirko, V. A.; Kasatkin, A. L.; Polyakov, S. V.
2018-06-01
The problem of Abrikosov vortices depinning from extended linear (columnar) defect in 3D-anisotropic superconductor film under non-uniformly distributed Lorentz force is studied for the case of low temperatures, disregarding thermal activation processes. We treat it as a problem of mechanical behavior of an elastic vortex string settled in a potential well of a linear defect and exerted to Lorentz force action within the screening layer about the London penetration depth near the specimen surface. The stability problem for the vortex pinning state is investigated by means of numerical modeling, and conditions for the instability threshold are obtained as well as the critical current density j_c and its dependence on the film thickness and magnetic field orientation. The instability leading to vortex depinning from extended linear defect first emerges near the surface and then propagates inside the superconductor. This scenario of vortex depinning mechanism at low temperatures is strongly supported by some recent experiments on high-Tc superconductors and other novel superconducting materials, containing columnar defects of various nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy
We use a variational method to assimilate multiple data streams into the terrestrial ecosystem carbon cycle model DALECv2 (Data Assimilation Linked Ecosystem Carbon). Ecological and dynamical constraints have recently been introduced to constrain unresolved components of this otherwise ill-posed problem. We recast these constraints as a multivariate Gaussian distribution to incorporate them into the variational framework and we demonstrate their advantage through a linear analysis. By using an adjoint method we study a linear approximation of the inverse problem: firstly we perform a sensitivity analysis of the different outputs under consideration, and secondly we use the concept of resolution matricesmore » to diagnose the nature of the ill-posedness and evaluate regularisation strategies. We then study the non-linear problem with an application to real data. Finally, we propose a modification to the model: introducing a spin-up period provides us with a built-in formulation of some ecological constraints which facilitates the variational approach.« less
Roberts, Steven; Martin, Michael A
2007-06-01
The majority of studies that have investigated the relationship between particulate matter (PM) air pollution and mortality have assumed a linear dose-response relationship and have used either a single-day's PM or a 2- or 3-day moving average of PM as the measure of PM exposure. Both of these modeling choices have come under scrutiny in the literature, the linear assumption because it does not allow for non-linearities in the dose-response relationship, and the use of the single- or multi-day moving average PM measure because it does not allow for differential PM-mortality effects spread over time. These two problems have been dealt with on a piecemeal basis with non-linear dose-response models used in some studies and distributed lag models (DLMs) used in others. In this paper, we propose a method for investigating the shape of the PM-mortality dose-response relationship that combines a non-linear dose-response model with a DLM. This combined model will be shown to produce satisfactory estimates of the PM-mortality dose-response relationship in situations where non-linear dose response models and DLMs alone do not; that is, the combined model did not systemically underestimate or overestimate the effect of PM on mortality. The combined model is applied to ten cities in the US and a pooled dose-response model formed. When fitted with a change-point value of 60 microg/m(3), the pooled model provides evidence for a positive association between PM and mortality. The combined model produced larger estimates for the effect of PM on mortality than when using a non-linear dose-response model or a DLM in isolation. For the combined model, the estimated percentage increase in mortality for PM concentrations of 25 and 75 microg/m(3) were 3.3% and 5.4%, respectively. In contrast, the corresponding values from a DLM used in isolation were 1.2% and 3.5%, respectively.
Conceptual problems in detecting the evolution of dark energy when using distance measurements
NASA Astrophysics Data System (ADS)
Bolejko, K.
2011-01-01
Context. Dark energy is now one of the most important and topical problems in cosmology. The first step to reveal its nature is to detect the evolution of dark energy or to prove beyond doubt that the cosmological constant is indeed constant. However, in the standard approach to cosmology, the Universe is described by the homogeneous and isotropic Friedmann models. Aims: We aim to show that in the perturbed universe (even if perturbations vanish if averaged over sufficiently large scales) the distance-redshift relation is not the same as in the unperturbed universe. This has a serious consequence when studying the nature of dark energy and, as shown here, can impair the analysis and studies of dark energy. Methods: The analysis is based on two methods: the linear lensing approximation and the non-linear Szekeres Swiss-Cheese model. The inhomogeneity scale is ~50 Mpc, and both models have the same density fluctuations along the line of sight. Results: The comparison between linear and non-linear methods shows that non-linear corrections are not negligible. When inhomogeneities are present the distance changes by several percent. To show how this change influences the measurements of dark energy, ten future observations with 2% uncertainties are generated. It is shown the using the standard methods (i.e. under the assumption of homogeneity) the systematics due to inhomogeneities can distort our analysis, and may lead to a conclusion that dark energy evolves when in fact it is constant (or vice versa). Conclusions: Therefore, if future observations are analysed only within the homogeneous framework then the impact of inhomogeneities (such as voids and superclusters) can be mistaken for evolving dark energy. Since the robust distinction between the evolution and non-evolution of dark energy is the first step to understanding the nature of dark energy a proper handling of inhomogeneities is essential.
Using Microcomputers to Teach Non-Linear Equations at Sixth Form Level.
ERIC Educational Resources Information Center
Cheung, Y. L.
1984-01-01
Promotes the use of the microcomputer in mathematics instruction, reviewing approaches to teaching nonlinear equations. Examples of computer diagrams are illustrated and compared to textbook samples. An example of a problem-solving program is included. (ML)
Three-dimensional Probabilistic Earthquake Location Applied to 2002-2003 Mt. Etna Eruption
NASA Astrophysics Data System (ADS)
Mostaccio, A.; Tuve', T.; Zuccarello, L.; Patane', D.; Saccorotti, G.; D'Agostino, M.
2005-12-01
Recorded seismicity for the Mt. Etna volcano, occurred during the 2002-2003 eruption, has been relocated using a probabilistic, non-linear, earthquake location approach. We used the software package NonLinLoc (Lomax et al., 2000) adopting the 3D velocity model obtained by Cocina et al., 2005. We applied our data through different algorithms: (1) via a grid-search; (2) via a Metropolis-Gibbs; and (3) via an Oct-tree. The Oct-Tree algorithm gives efficient, faster and accurate mapping of the PDF (Probability Density Function) of the earthquake location problem. More than 300 seismic events were analyzed in order to compare non-linear location results with the ones obtained by using traditional, linearized earthquake location algorithm such as Hypoellipse, and a 3D linearized inversion (Thurber, 1983). Moreover, we compare 38 focal mechanisms, chosen following stricta criteria selection, with the ones obtained by the 3D and 1D results. Although the presented approach is more of a traditional relocation application, probabilistic earthquake location could be used in routinely survey.
Conjugate gradient based projection - A new explicit methodology for frictional contact
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Li, Maocheng; Sha, Desong
1993-01-01
With special attention towards the applicability to parallel computation or vectorization, a new and effective explicit approach for linear complementary formulations involving a conjugate gradient based projection methodology is proposed in this study for contact problems with Coulomb friction. The overall objectives are focussed towards providing an explicit methodology of computation for the complete contact problem with friction. In this regard, the primary idea for solving the linear complementary formulations stems from an established search direction which is projected to a feasible region determined by the non-negative constraint condition; this direction is then applied to the Fletcher-Reeves conjugate gradient method resulting in a powerful explicit methodology which possesses high accuracy, excellent convergence characteristics, fast computational speed and is relatively simple to implement for contact problems involving Coulomb friction.
The solution of non-linear hyperbolic equation systems by the finite element method
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.; Zienkiewicz, O. C.
1984-01-01
A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.
Mitigating PQ Problems in Legacy Data Centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilinets, Boris; /SLAC
2011-06-01
The conclusions of this presentation are: (1) Problems with PQ in legacy data centers still exist and need to be mitigated; (2) Harmonics generated by non-linear IT load can be lowered by passive, active and hybrid cancellation methods; (3) Harmonic study is necessary to find the best way to treat PQ problems; (4) AHF's and harmonic cancellation transformers proved to be very efficient in mitigating PQ problems; and (5) It is important that IT leaders partner with electrical engineering to appropriate ROI statements, justifying many of these expenditures.
POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in
2016-12-10
For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-componentmore » supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.« less
Non-Evolutionarity of a Reconnecting Current Sheet as a Cause of Its Splitting into MHD Shocks
NASA Astrophysics Data System (ADS)
Markovsky, S. A.; Somov, B. V.
1995-04-01
Numerical simulations of the magnetic reconnection process in a current sheet show that, in some cases, MHD shocks appear to be attached to edges of the sheet. The appearance of the shocks may be considered to be a result of splitting of the sheet. In the present paper we suppose that this splitting takes place in consequence of non-evolutionarity of the reconnecting current sheet as a discontinuity. The problem of time evolution of small perturbations does not have a unique solution for a non-evolutionary discontinuity, and it splits into other (evolutionary) discontinuities. Such an approach allows us to determine conditions under which the splitting of the-sheet occurs. The main difficulty of this approach is that a current sheet is not reduced to a classified 1D discontinuity, because inhomogeneity of flow velocity inside the sheet is two-dimensional. To formulate the non-evolutionarity problem, we solve the linear MHD equations inside and outside the sheet and deduce linearized 1D boundary conditions at its surface. We show that for large enough conductivity, small perturbations exist which interact with the sheet as with a discontinuity. Then we obtain a non-evolutionarity criterion, with respect to these perturbations, in the form of a restriction on the flow velocity across the surface of the sheet.
Anomaly General Circulation Models.
NASA Astrophysics Data System (ADS)
Navarra, Antonio
The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the dominant response. The most sensitive areas are identified; they correspond to north Japan, the Pole and Greenland regions. A limited set of higher resolution (R15) experiments indicate that this situation is still present and enhanced at higher resolution. The linear anomaly model is also applied to a realistic case. (Abstract shortened with permission of author.).
An inclusive SUSY approach to position dependent mass systems
NASA Astrophysics Data System (ADS)
Karthiga, S.; Chithiika Ruby, V.; Senthilvelan, M.
2018-06-01
The supersymmetry (SUSY) formalism for a position dependent mass problem with a more general ordering is yet to be formulated. In this paper, we present an unified SUSY approach for PDM problems of any ordering. Highlighting all non-Hermitian Hamiltonians of PDM problems are of quasi-Hermitian nature, the SUSY operators of these problems are constructed using similarity transformation. The methodology that we propose here is applicable for even more general cases where the kinetic energy term is represented by linear combination of infinite number of possible orderings. We illustrate the method with an example, namely Mathews-Lakshmanan (ML) oscillator. Our results show that the latter system is shape invariant for all possible orderings. We derive eigenvalues and eigenvectors of this nonlinear oscillator for all possible orderings including Hermitian and non-Hermitian ones.
NASA Astrophysics Data System (ADS)
Wu, Dongjun
Network industries have technologies characterized by a spatial hierarchy, the "network," with capital-intensive interconnections and time-dependent, capacity-limited flows of products and services through the network to customers. This dissertation studies service pricing, investment and business operating strategies for the electric power network. First-best solutions for a variety of pricing and investment problems have been studied. The evaluation of genetic algorithms (GA, which are methods based on the idea of natural evolution) as a primary means of solving complicated network problems, both w.r.t. pricing: as well as w.r.t. investment and other operating decisions, has been conducted. New constraint-handling techniques in GAs have been studied and tested. The actual application of such constraint-handling techniques in solving practical non-linear optimization problems has been tested on several complex network design problems with encouraging initial results. Genetic algorithms provide solutions that are feasible and close to optimal when the optimal solution is know; in some instances, the near-optimal solutions for small problems by the proposed GA approach can only be tested by pushing the limits of currently available non-linear optimization software. The performance is far better than several commercially available GA programs, which are generally inadequate in solving any of the problems studied in this dissertation, primarily because of their poor handling of constraints. Genetic algorithms, if carefully designed, seem very promising in solving difficult problems which are intractable by traditional analytic methods.
Corominas, Albert; Fossas, Enric
2015-01-01
We assume a monopolistic market for a non-durable non-renewable resource such as crude oil, phosphates or fossil water. Stating the problem of obtaining optimal policies on extraction and pricing of the resource as a non-linear program allows general conclusions to be drawn under diverse assumptions about the demand curve, discount rates and length of the planning horizon. We compare the results with some common beliefs about the pace of exhaustion of this kind of resources.
NASA Astrophysics Data System (ADS)
Madsen, Line Meldgaard; Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest
2017-12-01
The application of time-domain induced polarization (TDIP) is increasing with advances in acquisition techniques, data processing and spectral inversion schemes. An inversion of TDIP data for the spectral Cole-Cole parameters is a non-linear problem, but by applying a 1-D Markov Chain Monte Carlo (MCMC) inversion algorithm, a full non-linear uncertainty analysis of the parameters and the parameter correlations can be accessed. This is essential to understand to what degree the spectral Cole-Cole parameters can be resolved from TDIP data. MCMC inversions of synthetic TDIP data, which show bell-shaped probability distributions with a single maximum, show that the Cole-Cole parameters can be resolved from TDIP data if an acquisition range above two decades in time is applied. Linear correlations between the Cole-Cole parameters are observed and by decreasing the acquisitions ranges, the correlations increase and become non-linear. It is further investigated how waveform and parameter values influence the resolution of the Cole-Cole parameters. A limiting factor is the value of the frequency exponent, C. As C decreases, the resolution of all the Cole-Cole parameters decreases and the results become increasingly non-linear. While the values of the time constant, τ, must be in the acquisition range to resolve the parameters well, the choice between a 50 per cent and a 100 per cent duty cycle for the current injection does not have an influence on the parameter resolution. The limits of resolution and linearity are also studied in a comparison between the MCMC and a linearized gradient-based inversion approach. The two methods are consistent for resolved models, but the linearized approach tends to underestimate the uncertainties for poorly resolved parameters due to the corresponding non-linear features. Finally, an MCMC inversion of 1-D field data verifies that spectral Cole-Cole parameters can also be resolved from TD field measurements.
Linearity-Preserving Limiters on Irregular Grids
NASA Technical Reports Server (NTRS)
Berger, Marsha; Aftosmis, Michael; Murman, Scott
2004-01-01
This paper examines the behavior of flux and slope limiters on non-uniform grids in multiple dimensions. We note that on non-uniform grids the scalar formulation in standard use today sacrifices k-exactness, even for linear solutions, impacting both accuracy and convergence. We rewrite some well-known limiters in a n way to highlight their underlying symmetry, and use this to examine both traditional and novel limiter formulations. A consistent method of handling stretched meshes is developed, as is a new directional formulation in multiple dimensions for irregular grids. Results are presented demonstrating improved accuracy and convergence using a combination of model problems and complex three-dimensional examples.
NASA Astrophysics Data System (ADS)
Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.
2018-04-01
The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.
ERIC Educational Resources Information Center
Borcherds, P. H.
1986-01-01
Describes an optional course in "computational physics" offered at the University of Birmingham. Includes an introduction to numerical methods and presents exercises involving fast-Fourier transforms, non-linear least-squares, Monte Carlo methods, and the three-body problem. Recommends adding laboratory work into the course in the…
NASA Astrophysics Data System (ADS)
Kassa, Semu Mitiku; Tsegay, Teklay Hailay
2017-08-01
Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of problems. In this paper, we investigate a tri-level programming problem with quadratic fractional objective functions at each of the three levels. A solution algorithm has been proposed by applying fuzzy goal programming approach and by reformulating the fractional constraints to equivalent but non-fractional non-linear constraints. Based on the transformed formulation, an iterative procedure is developed that can yield a satisfactory solution to the tri-level problem. The numerical results on various illustrative examples demonstrated that the proposed algorithm is very much promising and it can also be used to solve larger-sized as well as n-level problems of similar structure.
Development of Interactive Videodisc Instruction for Problem Solving and Armor Skills
1986-05-01
skills in both tactical and non-tactical environments. The main body of the lesson is approximately 30 minutes long (linear play time), and is divided...because the test takes a long time and the task is not a problem for most students. The basis on which the above tasks were selected for diagnostic...selection he could given the time available. This is a short-term solution to the task selection problem, but in the long -term a more comprehensive and
A study of pressure-based methodology for resonant flows in non-linear combustion instabilities
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Pindera, M. Z.; Przekwas, A. J.; Tucker, K.
1992-01-01
This paper presents a systematic assessment of a large variety of spatial and temporal differencing schemes on nonstaggered grids by the pressure-based methods for the problems of fast transient flows. The observation from the present study is that for steady state flow problems, pressure-based methods can be very competitive with the density-based methods. For transient flow problems, pressure-based methods utilizing the same differencing scheme are less accurate, even though the wave speeds are correctly predicted.
The averaging method in applied problems
NASA Astrophysics Data System (ADS)
Grebenikov, E. A.
1986-04-01
The totality of methods, allowing to research complicated non-linear oscillating systems, named in the literature "averaging method" has been given. THe author is describing the constructive part of this method, or a concrete form and corresponding algorithms, on mathematical models, sufficiently general , but built on concrete problems. The style of the book is that the reader interested in the Technics and algorithms of the asymptotic theory of the ordinary differential equations, could solve individually such problems. For specialists in the area of applied mathematics and mechanics.
NASA Astrophysics Data System (ADS)
Longhurst, G. R.
1991-04-01
Gas evolution from spherical solids or liquids where no convective processes are active is analyzed. Three problem classes are considered: (1) constant concentration boundary, (2) Henry's law (first order) boundary, and (3) Sieverts' law (second order) boundary. General expressions are derived for dimensionless times and transport parameters appropriate to each of the classes considered. However, in the second order case, the non-linearities of the problem require the presence of explicit dimensional variables in the solution. Sample problems are solved to illustrate the method.
Convergence and Applications of a Gossip-Based Gauss-Newton Algorithm
NASA Astrophysics Data System (ADS)
Li, Xiao; Scaglione, Anna
2013-11-01
The Gauss-Newton algorithm is a popular and efficient centralized method for solving non-linear least squares problems. In this paper, we propose a multi-agent distributed version of this algorithm, named Gossip-based Gauss-Newton (GGN) algorithm, which can be applied in general problems with non-convex objectives. Furthermore, we analyze and present sufficient conditions for its convergence and show numerically that the GGN algorithm achieves performance comparable to the centralized algorithm, with graceful degradation in case of network failures. More importantly, the GGN algorithm provides significant performance gains compared to other distributed first order methods.
Diffusive Public Goods and Coexistence of Cooperators and Cheaters on a 1D Lattice
Scheuring, István
2014-01-01
Many populations of cells cooperate through the production of extracellular materials. These materials (enzymes, siderophores) spread by diffusion and can be applied by both the cooperator and cheater (non-producer) cells. In this paper the problem of coexistence of cooperator and cheater cells is studied on a 1D lattice where cooperator cells produce a diffusive material which is beneficial to the individuals according to the local concentration of this public good. The reproduction success of a cell increases linearly with the benefit in the first model version and increases non-linearly (saturates) in the second version. Two types of update rules are considered; either the cooperative cell stops producing material before death (death-production-birth, DpB) or it produces the common material before it is selected to die (production-death-birth, pDB). The empty space is occupied by its neighbors according to their replication rates. By using analytical and numerical methods I have shown that coexistence of the cooperator and cheater cells is possible although atypical in the linear version of this 1D model if either DpB or pDB update rule is assumed. While coexistence is impossible in the non-linear model with pDB update rule, it is one of the typical behaviors in case of the non-linear model with DpB update rule. PMID:25025985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Debojyoti; Baeder, James D.
2014-01-21
A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678–A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order compact scheme for smooth solutions and a non-oscillatory compact scheme near discontinuities. The new schemes result in lower absolute errors, and improved resolution of discontinuities and smaller length scales, compared to the weighted essentially non-oscillatory (WENO) scheme of the same order of convergence. Several improvements to the smoothness-dependent weights, proposed inmore » the literature in the context of the WENO schemes, address the drawbacks of the original formulation. This paper explores these improvements in the context of the CRWENO schemes and compares the different formulations of the non-linear weights for flow problems with small length scales as well as discontinuities. Simplified one- and two-dimensional inviscid flow problems are solved to demonstrate the numerical properties of the CRWENO schemes and its different formulations. Canonical turbulent flow problems—the decay of isotropic turbulence and the shock-turbulence interaction—are solved to assess the performance of the schemes for the direct numerical simulation of compressible, turbulent flows« less
A Higher Harmonic Optimal Controller to Optimise Rotorcraft Aeromechanical Behaviour
NASA Technical Reports Server (NTRS)
Leyland, Jane Anne
1996-01-01
Three methods to optimize rotorcraft aeromechanical behavior for those cases where the rotorcraft plant can be adequately represented by a linear model system matrix were identified and implemented in a stand-alone code. These methods determine the optimal control vector which minimizes the vibration metric subject to constraints at discrete time points, and differ from the commonly used non-optimal constraint penalty methods such as those employed by conventional controllers in that the constraints are handled as actual constraints to an optimization problem rather than as just additional terms in the performance index. The first method is to use a Non-linear Programming algorithm to solve the problem directly. The second method is to solve the full set of non-linear equations which define the necessary conditions for optimality. The third method is to solve each of the possible reduced sets of equations defining the necessary conditions for optimality when the constraints are pre-selected to be either active or inactive, and then to simply select the best solution. The effects of maneuvers and aeroelasticity on the systems matrix are modelled by using a pseudo-random pseudo-row-dependency scheme to define the systems matrix. Cases run to date indicate that the first method of solution is reliable, robust, and easiest to use, and that it was superior to the conventional controllers which were considered.
NASA Astrophysics Data System (ADS)
de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia
Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.
Non-Born-Oppenheimer Spectroscopy of Cyclic Triatomics
2011-10-11
n nmnm mn m nm nm nm nm ss n IV E 2/ if,2/1 2/ if, ])2/1()/[( )2/1()/( 2 1 12 22 222 22 2/,,4 23 )3( Here ZPE ...integer values of m . The perturbation theory expression gives us seven parameters for a non-linear fitting problem: ZPE , 0I , 1I , 2I , 3V , 6V and
NASA Astrophysics Data System (ADS)
Greenough, J. A.; Rider, W. J.
2004-05-01
A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the "peak" shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are equal for both numerical methods, then PLMDE uniformly produces lower errors than WENO for the fixed computation cost on the test problems considered here.
A python framework for environmental model uncertainty analysis
White, Jeremy; Fienen, Michael N.; Doherty, John E.
2016-01-01
We have developed pyEMU, a python framework for Environmental Modeling Uncertainty analyses, open-source tool that is non-intrusive, easy-to-use, computationally efficient, and scalable to highly-parameterized inverse problems. The framework implements several types of linear (first-order, second-moment (FOSM)) and non-linear uncertainty analyses. The FOSM-based analyses can also be completed prior to parameter estimation to help inform important modeling decisions, such as parameterization and objective function formulation. Complete workflows for several types of FOSM-based and non-linear analyses are documented in example notebooks implemented using Jupyter that are available in the online pyEMU repository. Example workflows include basic parameter and forecast analyses, data worth analyses, and error-variance analyses, as well as usage of parameter ensemble generation and management capabilities. These workflows document the necessary steps and provides insights into the results, with the goal of educating users not only in how to apply pyEMU, but also in the underlying theory of applied uncertainty quantification.
The Integration of Social-Ecological Resilience and Law
Growing recognition of the inherent uncertainty associated with the dynamics of ecological systems and their often non-linear and surprising behavior, however, presents a set of problems outside the scope of classic environmental law, and has lead to a fundamental understanding a...
History of Physical Terms: "Pressure"
ERIC Educational Resources Information Center
Frontali, Clara
2013-01-01
Scientific terms drawn from common language are often charged with suggestions that may even be inconsistent with their restricted scientific meaning, thus posing didactic problems. The (non-linear) historical journey of the word "pressure" is illustrated here through original quotations from Stevinus, Torricelli, Pascal, Boyle,…
NASA Astrophysics Data System (ADS)
Shariati, M.; Talon, L.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C.
2004-11-01
We consider miscible displacement between parallel plates in the absence of diffusion, with a concentration-dependent viscosity. By selecting a piecewise viscosity function, this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming symmetry across the gap and based on the lubrication (‘equilibrium’) approximation, a description in terms of two quasi-linear hyperbolic equations is obtained. We find that the system is hyperbolic and can be solved analytically, when the mobility profile is monotonic, or when the mobility of the middle phase is smaller than its neighbours. When the mobility of the middle phase is larger, a change of type is displayed, an elliptic region developing in the composition space. Numerical solutions of Riemann problems of the hyperbolic system spanning the elliptic region, with small diffusion added, show good agreement with the analytical outside, but an unstable behaviour inside the elliptic region. In these problems, the elliptic region arises precisely at the displacement front. Crossing the elliptic region requires the solution of essentially an eigenvalue problem of the full higher-dimensional model, obtained here using lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to describe the problem uniformly. The obtained solution is analogous to non-classical shocks recently suggested in problems with change of type.
Non-linear Parameter Estimates from Non-stationary MEG Data
Martínez-Vargas, Juan D.; López, Jose D.; Baker, Adam; Castellanos-Dominguez, German; Woolrich, Mark W.; Barnes, Gareth
2016-01-01
We demonstrate a method to estimate key electrophysiological parameters from resting state data. In this paper, we focus on the estimation of head-position parameters. The recovery of these parameters is especially challenging as they are non-linearly related to the measured field. In order to do this we use an empirical Bayesian scheme to estimate the cortical current distribution due to a range of laterally shifted head-models. We compare different methods of approaching this problem from the division of M/EEG data into stationary sections and performing separate source inversions, to explaining all of the M/EEG data with a single inversion. We demonstrate this through estimation of head position in both simulated and empirical resting state MEG data collected using a head-cast. PMID:27597815
Lin, Weilu; Wang, Zejian; Huang, Mingzhi; Zhuang, Yingping; Zhang, Siliang
2018-06-01
The isotopically non-stationary 13C labelling experiments, as an emerging experimental technique, can estimate the intracellular fluxes of the cell culture under an isotopic transient period. However, to the best of our knowledge, the issue of the structural identifiability analysis of non-stationary isotope experiments is not well addressed in the literature. In this work, the local structural identifiability analysis for non-stationary cumomer balance equations is conducted based on the Taylor series approach. The numerical rank of the Jacobian matrices of the finite extended time derivatives of the measured fractions with respect to the free parameters is taken as the criterion. It turns out that only one single time point is necessary to achieve the structural identifiability analysis of the cascaded linear dynamic system of non-stationary isotope experiments. The equivalence between the local structural identifiability of the cascaded linear dynamic systems and the local optimum condition of the nonlinear least squares problem is elucidated in the work. Optimal measurements sets can then be determined for the metabolic network. Two simulated metabolic networks are adopted to demonstrate the utility of the proposed method. Copyright © 2018 Elsevier Inc. All rights reserved.
Nonreciprocal Signal Routing in an Active Quantum Network
NASA Astrophysics Data System (ADS)
Tureci, Hakan E.; Metelmann, Anja
As superconductor quantum technologies are moving towards large-scale integrated circuits, a robust and flexible approach to routing photons at the quantum level becomes a critical problem. Active circuits, which contain driven linear or non-linear elements judiciously embedded in the circuit offer a viable solution. We present a general strategy for routing non-reciprocally quantum signals between two sites of a given lattice of resonators, implementable with existing superconducting circuit components. Our approach makes use of a dual lattice of superconducting non-linear elements on the links connecting the nodes of the main lattice. Solutions for spatially selective driving of the link-elements can be found, which optimally balance coherent and dissipative hopping of microwave photons to non-reciprocally route signals between two given nodes. In certain lattices these optimal solutions are obtained at the exceptional point of the scattering matrix of the network. The presented strategy provides a design space that is governed by a dynamically tunable non-Hermitian generator that can be used to minimize the added quantum noise as well. This work was supported by the U.S. Army Research Office (ARO) under Grant No. W911NF-15-1-0299.
Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology
Brinkworth, Russell S. A.; O'Carroll, David C.
2009-01-01
The extraction of accurate self-motion information from the visual world is a difficult problem that has been solved very efficiently by biological organisms utilizing non-linear processing. Previous bio-inspired models for motion detection based on a correlation mechanism have been dogged by issues that arise from their sensitivity to undesired properties of the image, such as contrast, which vary widely between images. Here we present a model with multiple levels of non-linear dynamic adaptive components based directly on the known or suspected responses of neurons within the visual motion pathway of the fly brain. By testing the model under realistic high-dynamic range conditions we show that the addition of these elements makes the motion detection model robust across a large variety of images, velocities and accelerations. Furthermore the performance of the entire system is more than the incremental improvements offered by the individual components, indicating beneficial non-linear interactions between processing stages. The algorithms underlying the model can be implemented in either digital or analog hardware, including neuromorphic analog VLSI, but defy an analytical solution due to their dynamic non-linear operation. The successful application of this algorithm has applications in the development of miniature autonomous systems in defense and civilian roles, including robotics, miniature unmanned aerial vehicles and collision avoidance sensors. PMID:19893631
NASA Astrophysics Data System (ADS)
Agapiou, Sergios; Burger, Martin; Dashti, Masoumeh; Helin, Tapio
2018-04-01
We consider the inverse problem of recovering an unknown functional parameter u in a separable Banach space, from a noisy observation vector y of its image through a known possibly non-linear map {{\\mathcal G}} . We adopt a Bayesian approach to the problem and consider Besov space priors (see Lassas et al (2009 Inverse Problems Imaging 3 87-122)), which are well-known for their edge-preserving and sparsity-promoting properties and have recently attracted wide attention especially in the medical imaging community. Our key result is to show that in this non-parametric setup the maximum a posteriori (MAP) estimates are characterized by the minimizers of a generalized Onsager-Machlup functional of the posterior. This is done independently for the so-called weak and strong MAP estimates, which as we show coincide in our context. In addition, we prove a form of weak consistency for the MAP estimators in the infinitely informative data limit. Our results are remarkable for two reasons: first, the prior distribution is non-Gaussian and does not meet the smoothness conditions required in previous research on non-parametric MAP estimates. Second, the result analytically justifies existing uses of the MAP estimate in finite but high dimensional discretizations of Bayesian inverse problems with the considered Besov priors.
Eshelby's problem of non-elliptical inclusions
NASA Astrophysics Data System (ADS)
Zou, Wennan; He, Qichang; Huang, Mojia; Zheng, Quanshui
2010-03-01
The Eshelby problem consists in determining the strain field of an infinite linearly elastic homogeneous medium due to a uniform eigenstrain prescribed over a subdomain, called inclusion, of the medium. The salient feature of Eshelby's solution for an ellipsoidal inclusion is that the strain tensor field inside the latter is uniform. This uniformity has the important consequence that the solution to the fundamental problem of determination of the strain field in an infinite linearly elastic homogeneous medium containing an embedded ellipsoidal inhomogeneity and subjected to remote uniform loading can be readily deduced from Eshelby's solution for an ellipsoidal inclusion upon imposing appropriate uniform eigenstrains. Based on this result, most of the existing micromechanics schemes dedicated to estimating the effective properties of inhomogeneous materials have been nevertheless applied to a number of materials of practical interest where inhomogeneities are in reality non-ellipsoidal. Aiming to examine the validity of the ellipsoidal approximation of inhomogeneities underlying various micromechanics schemes, we first derive a new boundary integral expression for calculating Eshelby's tensor field (ETF) in the context of two-dimensional isotropic elasticity. The simple and compact structure of the new boundary integral expression leads us to obtain the explicit expressions of ETF and its average for a wide variety of non-elliptical inclusions including arbitrary polygonal ones and those characterized by the finite Laurent series. In light of these new analytical results, we show that: (i) the elliptical approximation to the average of ETF is valid for a convex non-elliptical inclusion but becomes inacceptable for a non-convex non-elliptical inclusion; (ii) in general, the Eshelby tensor field inside a non-elliptical inclusion is quite non-uniform and cannot be replaced by its average; (iii) the substitution of the generalized Eshelby tensor involved in various micromechanics schemes by the average Eshelby tensor for non-elliptical inhomogeneities is in general inadmissible.
Sampling schemes and parameter estimation for nonlinear Bernoulli-Gaussian sparse models
NASA Astrophysics Data System (ADS)
Boudineau, Mégane; Carfantan, Hervé; Bourguignon, Sébastien; Bazot, Michael
2016-06-01
We address the sparse approximation problem in the case where the data are approximated by the linear combination of a small number of elementary signals, each of these signals depending non-linearly on additional parameters. Sparsity is explicitly expressed through a Bernoulli-Gaussian hierarchical model in a Bayesian framework. Posterior mean estimates are computed using Markov Chain Monte-Carlo algorithms. We generalize the partially marginalized Gibbs sampler proposed in the linear case in [1], and build an hybrid Hastings-within-Gibbs algorithm in order to account for the nonlinear parameters. All model parameters are then estimated in an unsupervised procedure. The resulting method is evaluated on a sparse spectral analysis problem. It is shown to converge more efficiently than the classical joint estimation procedure, with only a slight increase of the computational cost per iteration, consequently reducing the global cost of the estimation procedure.
Preconditioned alternating direction method of multipliers for inverse problems with constraints
NASA Astrophysics Data System (ADS)
Jiao, Yuling; Jin, Qinian; Lu, Xiliang; Wang, Weijie
2017-02-01
We propose a preconditioned alternating direction method of multipliers (ADMM) to solve linear inverse problems in Hilbert spaces with constraints, where the feature of the sought solution under a linear transformation is captured by a possibly non-smooth convex function. During each iteration step, our method avoids solving large linear systems by choosing a suitable preconditioning operator. In case the data is given exactly, we prove the convergence of our preconditioned ADMM without assuming the existence of a Lagrange multiplier. In case the data is corrupted by noise, we propose a stopping rule using information on noise level and show that our preconditioned ADMM is a regularization method; we also propose a heuristic rule when the information on noise level is unavailable or unreliable and give its detailed analysis. Numerical examples are presented to test the performance of the proposed method.
NASA Astrophysics Data System (ADS)
Kuznetsov, N.; Maz'ya, V.; Vainberg, B.
2002-08-01
This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'
Nanoprobe diffusion in entangled polymer solutions: Linear vs. unconcatenated ring chains
NASA Astrophysics Data System (ADS)
Nahali, Negar; Rosa, Angelo
2018-05-01
We employ large-scale molecular dynamics computer simulations to study the problem of nanoprobe diffusion in entangled solutions of linear polymers and unknotted and unconcatenated circular (ring) polymers. By tuning both the diameter of the nanoprobe and the density of the solution, we show that nanoprobes of diameter smaller than the entanglement distance (tube diameter) of the solution display the same (Rouse-like) behavior in solutions of both polymer architectures. Instead, nanoprobes with larger diameters appear to diffuse markedly faster in solutions of rings than in solutions of linear chains. Finally, by analysing the distribution functions of spatial displacements, we find that nanoprobe motion in rings' solutions shows both Gaussian and ergodic behaviors, in all regimes considered, while, in solutions of linear chains, nanoprobes exceeding the size of the tube diameter show a transition to non-Gaussian and non-ergodic motion. Our results emphasize the role of chain architecture in the motion of nanoprobes dispersed in polymer solutions.
Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles
NASA Astrophysics Data System (ADS)
Hawkins, Rhys; Brodie, Ross C.; Sambridge, Malcolm
2018-02-01
This paper presents the application of a novel trans-dimensional sampling approach to a time domain airborne electromagnetic (AEM) inverse problem to solve for plausible conductivities of the subsurface. Geophysical inverse field problems, such as time domain AEM, are well known to have a large degree of non-uniqueness. Common least-squares optimisation approaches fail to take this into account and provide a single solution with linearised estimates of uncertainty that can result in overly optimistic appraisal of the conductivity of the subsurface. In this new non-linear approach, the spatial complexity of a 2D profile is controlled directly by the data. By examining an ensemble of proposed conductivity profiles it accommodates non-uniqueness and provides more robust estimates of uncertainties.
IGA-ADS: Isogeometric analysis FEM using ADS solver
NASA Astrophysics Data System (ADS)
Łoś, Marcin M.; Woźniak, Maciej; Paszyński, Maciej; Lenharth, Andrew; Hassaan, Muhamm Amber; Pingali, Keshav
2017-08-01
In this paper we present a fast explicit solver for solution of non-stationary problems using L2 projections with isogeometric finite element method. The solver has been implemented within GALOIS framework. It enables parallel multi-core simulations of different time-dependent problems, in 1D, 2D, or 3D. We have prepared the solver framework in a way that enables direct implementation of the selected PDE and corresponding boundary conditions. In this paper we describe the installation, implementation of exemplary three PDEs, and execution of the simulations on multi-core Linux cluster nodes. We consider three case studies, including heat transfer, linear elasticity, as well as non-linear flow in heterogeneous media. The presented package generates output suitable for interfacing with Gnuplot and ParaView visualization software. The exemplary simulations show near perfect scalability on Gilbert shared-memory node with four Intel® Xeon® CPU E7-4860 processors, each possessing 10 physical cores (for a total of 40 cores).
Stability analysis of an equilibrium position in the photogravitational Sitnikov problem
NASA Astrophysics Data System (ADS)
Bardin, B. S.; Avdushkin, A. N.
2018-05-01
We deal with the so-called photogravitational Sitnikov problem, that is we consider rectilinear motion of a body of infinitesimal mass in a field of two graviting and radiating primaries, which have equal masses and act on the body with equal repulsive forces of radiation pressure. The body has equilibrium position in the barycenter of the system. In this paper the stability of the equilibrium position is investigated in detail. In particular, by the study of the linearized system we have found in the plane of parameter values the regions of instability. It appears that the instability regions alternate with stability regions and become very narrower when the eccentricity of the primaries orbits approaches to 1. Outside the instability regions we have performed non-linear stability analysis and shown that the stability of the equilibrium position in the sense of Lyapunov takes place both in resonant and non-resonant cases. The results of the study are represented in a form of stability diagram.
Non-Linear Steady State Vibrations of Beams Excited by Vortex Shedding
NASA Astrophysics Data System (ADS)
LEWANDOWSKI, R.
2002-05-01
In this paper the non-linear vibrations of beams excited by vortex-shedding are considered. In particular, the steady state responses of beams near the synchronization region are taken into account. The main aerodynamic properties of wind are described by using the semi-empirical model proposed by Hartlen and Currie. The finite element method and the strip method are used to formulate the equation of motion of the system treated. The harmonic balance method is adopted to derive the amplitude equations. These equations are solved with the help of the continuation method which is very convenient to perform the parametric studies of the problem and to determine the response curve in the synchronization region. Moreover, the equations of motion are also integrated using the Newmark method. The results of calculations of several example problems are also shown to confirm the efficiency and accuracy of the presented method. The results obtained by the harmonic balance method and by the Newmark methods are in good agreement with each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, C.G.
Starting with the initial understanding that pulsation in variable stars is caused by the heat engine of Hydrogen and Helium ionization in their atmospheres (A.S. Eddington in Cox 1980) it was soon realized that non-linear effects were responsible for the detailed features on their light and velocity curves. With the advent of the computer we were able to solve the coupled set of hydrodynamics and radiation diffusion equations to model these non-linear features. This paper describes some recent model results for long period (LP) Cepheids in an attempt to get another handle on Cepheid masses. Section II discusses these resultsmore » and Section III considers the implications of these model results on the problem of the Cepheid mass discrepancy.« less
An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part 2
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Nachtigal, Noel M.
1990-01-01
It is shown how the look-ahead Lanczos process (combined with a quasi-minimal residual QMR) approach) can be used to develop a robust black box solver for large sparse non-Hermitian linear systems. Details of an implementation of the resulting QMR algorithm are presented. It is demonstrated that the QMR method is closely related to the biconjugate gradient (BCG) algorithm; however, unlike BCG, the QMR algorithm has smooth convergence curves and good numerical properties. We report numerical experiments with our implementation of the look-ahead Lanczos algorithm, both for eigenvalue problem and linear systems. Also, program listings of FORTRAN implementations of the look-ahead algorithm and the QMR method are included.
QMR: A Quasi-Minimal Residual method for non-Hermitian linear systems
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Nachtigal, Noel M.
1990-01-01
The biconjugate gradient (BCG) method is the natural generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. A novel BCG like approach is presented called the quasi-minimal residual (QMR) method, which overcomes the problems of BCG. An implementation of QMR based on a look-ahead version of the nonsymmetric Lanczos algorithm is proposed. It is shown how BCG iterates can be recovered stably from the QMR process. Some further properties of the QMR approach are given and an error bound is presented. Finally, numerical experiments are reported.
TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science
NASA Astrophysics Data System (ADS)
Wilson, C. R.; Spiegelman, M.; van Keken, P.
2012-12-01
Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are generated from this file but share an infrastructure for services common to all models, e.g. diagnostics, checkpointing and global non-linear convergence monitoring. This maximizes code reusability, reliability and longevity ensuring that scientific results and the methods used to acquire them are transparent and reproducible. TerraFERMA has been tested against many published geodynamic benchmarks including 2D/3D thermal convection problems, the subduction zone benchmarks and benchmarks for magmatic solitary waves. It is currently being used in the investigation of reactive cracking phenomena with applications to carbon sequestration, but we will principally discuss its use in modeling the migration of fluids in subduction zones. Subduction zones require an understanding of the highly nonlinear interactions of fluids with solids and thus provide an excellent scientific driver for the development of multi-physics software.
Quantum teleportation via quantum channels with non-maximal Schmidt rank
NASA Astrophysics Data System (ADS)
Solís-Prosser, M. A.; Jiménez, O.; Neves, L.; Delgado, A.
2013-03-01
We study the problem of teleporting unknown pure states of a single qudit via a pure quantum channel with non-maximal Schmidt rank. We relate this process to the discrimination of linearly dependent symmetric states with the help of the maximum-confidence discrimination strategy. We show that with a certain probability, it is possible to teleport with a fidelity larger than the fidelity optimal deterministic teleportation.
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul; Don, Wai-Sun
1993-01-01
The conventional method of imposing time dependent boundary conditions for Runge-Kutta (RK) time advancement reduces the formal accuracy of the space-time method to first order locally, and second order globally, independently of the spatial operator. This counter intuitive result is analyzed in this paper. Two methods of eliminating this problem are proposed for the linear constant coefficient case: (1) impose the exact boundary condition only at the end of the complete RK cycle, (2) impose consistent intermediate boundary conditions derived from the physical boundary condition and its derivatives. The first method, while retaining the RK accuracy in all cases, results in a scheme with much reduced CFL condition, rendering the RK scheme less attractive. The second method retains the same allowable time step as the periodic problem. However it is a general remedy only for the linear case. For non-linear hyperbolic equations the second method is effective only for for RK schemes of third order accuracy or less. Numerical studies are presented to verify the efficacy of each approach.
Linear and nonlinear trending and prediction for AVHRR time series data
NASA Technical Reports Server (NTRS)
Smid, J.; Volf, P.; Slama, M.; Palus, M.
1995-01-01
The variability of AVHRR calibration coefficient in time was analyzed using algorithms of linear and non-linear time series analysis. Specifically we have used the spline trend modeling, autoregressive process analysis, incremental neural network learning algorithm and redundancy functional testing. The analysis performed on available AVHRR data sets revealed that (1) the calibration data have nonlinear dependencies, (2) the calibration data depend strongly on the target temperature, (3) both calibration coefficients and the temperature time series can be modeled, in the first approximation, as autonomous dynamical systems, (4) the high frequency residuals of the analyzed data sets can be best modeled as an autoregressive process of the 10th degree. We have dealt with a nonlinear identification problem and the problem of noise filtering (data smoothing). The system identification and filtering are significant problems for AVHRR data sets. The algorithms outlined in this study can be used for the future EOS missions. Prediction and smoothing algorithms for time series of calibration data provide a functional characterization of the data. Those algorithms can be particularly useful when calibration data are incomplete or sparse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jan Hesthaven
2012-02-06
Final report for DOE Contract DE-FG02-98ER25346 entitled Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences. Principal Investigator Jan S. Hesthaven Division of Applied Mathematics Brown University, Box F Providence, RI 02912 Jan.Hesthaven@Brown.edu February 6, 2012 Note: This grant was originally awarded to Professor David Gottlieb and the majority of the work envisioned reflects his original ideas. However, when Prof Gottlieb passed away in December 2008, Professor Hesthaven took over as PI to ensure proper mentoring of students and postdoctoral researchers already involved in the project. This unusual circumstance has naturally impacted themore » project and its timeline. However, as the report reflects, the planned work has been accomplished and some activities beyond the original scope have been pursued with success. Project overview and main results The effort in this project focuses on the development of high order accurate computational methods for the solution of hyperbolic equations with application to problems with strong shocks. While the methods are general, emphasis is on applications to gas dynamics with strong shocks.« less
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments.
Fisicaro, G; Genovese, L; Andreussi, O; Marzari, N; Goedecker, S
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.
A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisicaro, G., E-mail: giuseppe.fisicaro@unibas.ch; Goedecker, S.; Genovese, L.
2016-01-07
The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence, the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equations for neutral and ionic solutions, respectively. In the present work, solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented for the solution of the generalized Poisson equation and themore » linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of the ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency and allow for the treatment of periodic, free, and slab boundary conditions. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes.« less
Lasing eigenvalue problems: the electromagnetic modelling of microlasers
NASA Astrophysics Data System (ADS)
Benson, Trevor; Nosich, Alexander; Smotrova, Elena; Balaban, Mikhail; Sewell, Phillip
2007-02-01
Comprehensive microcavity laser models should account for several physical mechanisms, e.g. carrier transport, heating and optical confinement, coupled by non-linear effects. Nevertheless, considerable useful information can still be obtained if all non-electromagnetic effects are neglected, often within an additional effective-index reduction to an equivalent 2D problem, and the optical modes viewed as solutions of Maxwell's equations. Integral equation (IE) formulations have many advantages over numerical techniques such as FDTD for the study of such microcavity laser problems. The most notable advantages of an IE approach are computational efficiency, the correct description of cavity boundaries without stair-step errors, and the direct solution of an eigenvalue problem rather than the spectral analysis of a transient signal. Boundary IE (BIE) formulations are more economic that volume IE (VIE) ones, because of their lower dimensionality, but they are only applicable to the constant cavity refractive index case. The Muller BIE, being free of 'defect' frequencies and having smooth or integrable kernels, provides a reliable tool for the modal analysis of microcavities. Whilst such an approach can readily identify complex-valued natural frequencies and Q-factors, the lasing condition is not addressed directly. We have thus suggested using a Muller BIE approach to solve a lasing eigenvalue problem (LEP), i.e. a linear eigenvalue solution in the form of two real-valued numbers (lasing wavelength and threshold information) when macroscopic gain is introduced into the cavity material within an active region. Such an approach yields clear insight into the lasing thresholds of individual cavities with uniform and non-uniform gain, cavities coupled as photonic molecules and cavities equipped with one or more quantum dots.
Non-Static error tracking control for near space airship loading platform
NASA Astrophysics Data System (ADS)
Ni, Ming; Tao, Fei; Yang, Jiandong
2018-01-01
A control scheme based on internal model with non-static error is presented against the uncertainty of the near space airship loading platform system. The uncertainty in the tracking table is represented as interval variations in stability and control derivatives. By formulating the tracking problem of the uncertainty system as a robust state feedback stabilization problem of an augmented system, sufficient condition for the existence of robust tracking controller is derived in the form of linear matrix inequality (LMI). Finally, simulation results show that the new method not only has better anti-jamming performance, but also improves the dynamic performance of the high-order systems.
Mixed problems for the Korteweg-de Vries equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faminskii, A V
1999-06-30
Results are established concerning the non-local solubility and wellposedness in various function spaces of the mixed problem for the Korteweg-de Vries equation u{sub t}+u{sub xxx}+au{sub x}+uu{sub x}=f(t,x) in the half-strip (0,T)x(-{infinity},0). Some a priori estimates of the solutions are obtained using a special solution J(t,x) of the linearized KdV equation of boundary potential type. Properties of J are studied which differ essentially as x{yields}+{infinity} or x{yields}-{infinity}. Application of this boundary potential enables us in particular to prove the existence of generalized solutions with non-regular boundary values.
NASA Technical Reports Server (NTRS)
Fadel, G. M.
1991-01-01
The point exponential approximation method was introduced by Fadel et al. (Fadel, 1990), and tested on structural optimization problems with stress and displacement constraints. The reports in earlier papers were promising, and the method, which consists of correcting Taylor series approximations using previous design history, is tested in this paper on optimization problems with frequency constraints. The aim of the research is to verify the robustness and speed of convergence of the two point exponential approximation method when highly non-linear constraints are used.
On a comparison of two schemes in sequential data assimilation
NASA Astrophysics Data System (ADS)
Grishina, Anastasiia A.; Penenko, Alexey V.
2017-11-01
This paper is focused on variational data assimilation as an approach to mathematical modeling. Realization of the approach requires a sequence of connected inverse problems with different sets of observational data to be solved. Two variational data assimilation schemes, "implicit" and "explicit", are considered in the article. Their equivalence is shown and the numerical results are given on a basis of non-linear Robertson system. To avoid the "inverse problem crime" different schemes were used to produce synthetic measurement and to solve the data assimilation problem.
Efficient hybrid-symbolic methods for quantum mechanical calculations
NASA Astrophysics Data System (ADS)
Scott, T. C.; Zhang, Wenxing
2015-06-01
We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.
NASA Astrophysics Data System (ADS)
Jordan, Jared Williams; Dvorak, Steven L.; Sternberg, Ben K.
2010-10-01
In this paper, we develop a technique for designing high-power, non-linear, transmitting rod-core antennas by using simple modified scale factors rather than running labor-intensive numerical models. By using modified scale factors, a designer can predict changes in magnetic moment, inductance, core series loss resistance, etc. We define modified scale factors as the case when all physical dimensions of the rod antenna are scaled by p, except for the cross-sectional area of the individual wires or strips that are used to construct the core. This allows one to make measurements on a scaled-down version of the rod antenna using the same core material that will be used in the final antenna design. The modified scale factors were derived from prolate spheroidal analytical expressions for a finite-length rod antenna and were verified with experimental results. The modified scaling factors can only be used if the magnetic flux densities within the two scaled cores are the same. With the magnetic flux density constant, the two scaled cores will operate with the same complex permeability, thus changing the non-linear problem to a quasi-linear problem. We also demonstrate that by holding the number of turns times the drive current constant, while changing the number of turns, the inductance and core series loss resistance change by the number of turns squared. Experimental measurements were made on rod cores made from varying diameters of black oxide, low carbon steel wires and different widths of Metglas foil. Furthermore, we demonstrate that the modified scale factors work even in the presence of eddy currents within the core material.
The problems of urbanization and stormwater management, as they pertain to monitoring the condition of water and environmental resources, are grounded in issues of scale, connectivity, temporal and non-linear change. Given our current understanding of these issues, the challenge ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadat Hayatshahi, Sayyed Hamed; Abdolmaleki, Parviz; Safarian, Shahrokh
2005-12-16
Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k {sub i} values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, themore » previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%.« less
An ensemble of dissimilarity based classifiers for Mackerel gender determination
NASA Astrophysics Data System (ADS)
Blanco, A.; Rodriguez, R.; Martinez-Maranon, I.
2014-03-01
Mackerel is an infravalored fish captured by European fishing vessels. A manner to add value to this specie can be achieved by trying to classify it attending to its sex. Colour measurements were performed on Mackerel females and males (fresh and defrozen) extracted gonads to obtain differences between sexes. Several linear and non linear classifiers such as Support Vector Machines (SVM), k Nearest Neighbors (k-NN) or Diagonal Linear Discriminant Analysis (DLDA) can been applied to this problem. However, theyare usually based on Euclidean distances that fail to reflect accurately the sample proximities. Classifiers based on non-Euclidean dissimilarities misclassify a different set of patterns. We combine different kind of dissimilarity based classifiers. The diversity is induced considering a set of complementary dissimilarities for each model. The experimental results suggest that our algorithm helps to improve classifiers based on a single dissimilarity.
Metaheuristic optimisation methods for approximate solving of singular boundary value problems
NASA Astrophysics Data System (ADS)
Sadollah, Ali; Yadav, Neha; Gao, Kaizhou; Su, Rong
2017-07-01
This paper presents a novel approximation technique based on metaheuristics and weighted residual function (WRF) for tackling singular boundary value problems (BVPs) arising in engineering and science. With the aid of certain fundamental concepts of mathematics, Fourier series expansion, and metaheuristic optimisation algorithms, singular BVPs can be approximated as an optimisation problem with boundary conditions as constraints. The target is to minimise the WRF (i.e. error function) constructed in approximation of BVPs. The scheme involves generational distance metric for quality evaluation of the approximate solutions against exact solutions (i.e. error evaluator metric). Four test problems including two linear and two non-linear singular BVPs are considered in this paper to check the efficiency and accuracy of the proposed algorithm. The optimisation task is performed using three different optimisers including the particle swarm optimisation, the water cycle algorithm, and the harmony search algorithm. Optimisation results obtained show that the suggested technique can be successfully applied for approximate solving of singular BVPs.
Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation
NASA Astrophysics Data System (ADS)
Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar
Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.
NASA Astrophysics Data System (ADS)
Levin, Alan R.; Zhang, Deyin; Polizzi, Eric
2012-11-01
In a recent article Polizzi (2009) [15], the FEAST algorithm has been presented as a general purpose eigenvalue solver which is ideally suited for addressing the numerical challenges in electronic structure calculations. Here, FEAST is presented beyond the “black-box” solver as a fundamental modeling framework which can naturally address the original numerical complexity of the electronic structure problem as formulated by Slater in 1937 [3]. The non-linear eigenvalue problem arising from the muffin-tin decomposition of the real-space domain is first derived and then reformulated to be solved exactly within the FEAST framework. This new framework is presented as a fundamental and practical solution for performing both accurate and scalable electronic structure calculations, bypassing the various issues of using traditional approaches such as linearization and pseudopotential techniques. A finite element implementation of this FEAST framework along with simulation results for various molecular systems is also presented and discussed.
A validated non-linear Kelvin-Helmholtz benchmark for numerical hydrodynamics
NASA Astrophysics Data System (ADS)
Lecoanet, D.; McCourt, M.; Quataert, E.; Burns, K. J.; Vasil, G. M.; Oishi, J. S.; Brown, B. P.; Stone, J. M.; O'Leary, R. M.
2016-02-01
The non-linear evolution of the Kelvin-Helmholtz instability is a popular test for code verification. To date, most Kelvin-Helmholtz problems discussed in the literature are ill-posed: they do not converge to any single solution with increasing resolution. This precludes comparisons among different codes and severely limits the utility of the Kelvin-Helmholtz instability as a test problem. The lack of a reference solution has led various authors to assert the accuracy of their simulations based on ad hoc proxies, e.g. the existence of small-scale structures. This paper proposes well-posed two-dimensional Kelvin-Helmholtz problems with smooth initial conditions and explicit diffusion. We show that in many cases numerical errors/noise can seed spurious small-scale structure in Kelvin-Helmholtz problems. We demonstrate convergence to a reference solution using both ATHENA, a Godunov code, and DEDALUS, a pseudo-spectral code. Problems with constant initial density throughout the domain are relatively straightforward for both codes. However, problems with an initial density jump (which are the norm in astrophysical systems) exhibit rich behaviour and are more computationally challenging. In the latter case, ATHENA simulations are prone to an instability of the inner rolled-up vortex; this instability is seeded by grid-scale errors introduced by the algorithm, and disappears as resolution increases. Both ATHENA and DEDALUS exhibit late-time chaos. Inviscid simulations are riddled with extremely vigorous secondary instabilities which induce more mixing than simulations with explicit diffusion. Our results highlight the importance of running well-posed test problems with demonstrated convergence to a reference solution. To facilitate future comparisons, we include as supplementary material the resolved, converged solutions to the Kelvin-Helmholtz problems in this paper in machine-readable form.
CSOLNP: Numerical Optimization Engine for Solving Non-linearly Constrained Problems.
Zahery, Mahsa; Maes, Hermine H; Neale, Michael C
2017-08-01
We introduce the optimizer CSOLNP, which is a C++ implementation of the R package RSOLNP (Ghalanos & Theussl, 2012, Rsolnp: General non-linear optimization using augmented Lagrange multiplier method. R package version, 1) alongside some improvements. CSOLNP solves non-linearly constrained optimization problems using a Sequential Quadratic Programming (SQP) algorithm. CSOLNP, NPSOL (a very popular implementation of SQP method in FORTRAN (Gill et al., 1986, User's guide for NPSOL (version 4.0): A Fortran package for nonlinear programming (No. SOL-86-2). Stanford, CA: Stanford University Systems Optimization Laboratory), and SLSQP (another SQP implementation available as part of the NLOPT collection (Johnson, 2014, The NLopt nonlinear-optimization package. Retrieved from http://ab-initio.mit.edu/nlopt)) are three optimizers available in OpenMx package. These optimizers are compared in terms of runtimes, final objective values, and memory consumption. A Monte Carlo analysis of the performance of the optimizers was performed on ordinal and continuous models with five variables and one or two factors. While the relative difference between the objective values is less than 0.5%, CSOLNP is in general faster than NPSOL and SLSQP for ordinal analysis. As for continuous data, none of the optimizers performs consistently faster than the others. In terms of memory usage, we used Valgrind's heap profiler tool, called Massif, on one-factor threshold models. CSOLNP and NPSOL consume the same amount of memory, while SLSQP uses 71 MB more memory than the other two optimizers.
NASA Astrophysics Data System (ADS)
Nieto, P. J. García; del Coz Díaz, J. J.; Vilán, J. A. Vilán; Placer, C. Casqueiro
2009-08-01
In this paper, an evaluation of distribution of the air pressure is determined throughout the laterally closed industrial buildings with curved metallic roofs due to the wind effect by the finite element method (FEM). The non-linearity is due to Reynolds-averaged Navier-Stokes (RANS) equations that govern the turbulent flow. The Navier-Stokes equations are non-linear partial differential equations and this non-linearity makes most problems difficult to solve and is part of the cause of turbulence. The RANS equations are time-averaged equations of motion for fluid flow. They are primarily used while dealing with turbulent flows. Turbulence is a highly complex physical phenomenon that is pervasive in flow problems of scientific and engineering concern like this one. In order to solve the RANS equations a two-equation model is used: the standard k-ɛ model. The calculation has been carried out keeping in mind the following assumptions: turbulent flow, an exponential-like wind speed profile with a maximum velocity of 40 m/s at 10 m reference height, and different heights of the building ranging from 6 to 10 meters. Finally, the forces and moments are determined on the cover, as well as the distribution of pressures on the same one, comparing the numerical results obtained with the Spanish CTE DB SE-AE, Spanish NBE AE-88 and European standard rules, giving place to the conclusions that are exposed in the study.
Time-periodic solutions of the Benjamin-Ono equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose , D.M.; Wilkening, Jon
2008-04-01
We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one ofmore » the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.« less
Chu, Dezhang; Lawson, Gareth L; Wiebe, Peter H
2016-05-01
The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant inversion kernel and ignores the uncertainties associated with the shape and behavior of the scattering targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear inversion method is presented that takes into account the nonlinearity of the inverse problem and is able to estimate simultaneously animal abundance and the parameters associated with the scattering model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance, and second, the relevant shape and behavioral parameters of the target organisms. Numerical simulations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals (fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acoustic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion results can be mitigated by examining the singular values for linear inverse problems and employing a non-linear inversion involving a scattering model-based kernel.
Genetics-based control of a mimo boiler-turbine plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimeo, R.M.; Lee, K.Y.
1994-12-31
A genetic algorithm is used to develop an optimal controller for a non-linear, multi-input/multi-output boiler-turbine plant. The algorithm is used to train a control system for the plant over a wide operating range in an effort to obtain better performance. The results of the genetic algorithm`s controller designed from the linearized plant model at a nominal operating point. Because the genetic algorithm is well-suited to solving traditionally difficult optimization problems it is found that the algorithm is capable of developing the controller based on input/output information only. This controller achieves a performance comparable to the standard linear quadratic regulator.
NASA Astrophysics Data System (ADS)
Gosses, Moritz; Nowak, Wolfgang; Wöhling, Thomas
2017-04-01
Physically-based modeling is a wide-spread tool in understanding and management of natural systems. With the high complexity of many such models and the huge amount of model runs necessary for parameter estimation and uncertainty analysis, overall run times can be prohibitively long even on modern computer systems. An encouraging strategy to tackle this problem are model reduction methods. In this contribution, we compare different proper orthogonal decomposition (POD, Siade et al. (2010)) methods and their potential applications to groundwater models. The POD method performs a singular value decomposition on system states as simulated by the complex (e.g., PDE-based) groundwater model taken at several time-steps, so-called snapshots. The singular vectors with the highest information content resulting from this decomposition are then used as a basis for projection of the system of model equations onto a subspace of much lower dimensionality than the original complex model, thereby greatly reducing complexity and accelerating run times. In its original form, this method is only applicable to linear problems. Many real-world groundwater models are non-linear, tough. These non-linearities are introduced either through model structure (unconfined aquifers) or boundary conditions (certain Cauchy boundaries, like rivers with variable connection to the groundwater table). To date, applications of POD focused on groundwater models simulating pumping tests in confined aquifers with constant head boundaries. In contrast, POD model reduction either greatly looses accuracy or does not significantly reduce model run time if the above-mentioned non-linearities are introduced. We have also found that variable Dirichlet boundaries are problematic for POD model reduction. An extension to the POD method, called POD-DEIM, has been developed for non-linear groundwater models by Stanko et al. (2016). This method uses spatial interpolation points to build the equation system in the reduced model space, thereby allowing the recalculation of system matrices at every time-step necessary for non-linear models while retaining the speed of the reduced model. This makes POD-DEIM applicable for groundwater models simulating unconfined aquifers. However, in our analysis, the method struggled to reproduce variable river boundaries accurately and gave no advantage for variable Dirichlet boundaries compared to the original POD method. We have developed another extension for POD that targets to address these remaining problems by performing a second POD operation on the model matrix on the left-hand side of the equation. The method aims to at least reproduce the accuracy of the other methods where they are applicable while outperforming them for setups with changing river boundaries or variable Dirichlet boundaries. We compared the new extension with original POD and POD-DEIM for different combinations of model structures and boundary conditions. The new method shows the potential of POD extensions for applications to non-linear groundwater systems and complex boundary conditions that go beyond the current, relatively limited range of applications. References: Siade, A. J., Putti, M., and Yeh, W. W.-G. (2010). Snapshot selection for groundwater model reduction using proper orthogonal decomposition. Water Resour. Res., 46(8):W08539. Stanko, Z. P., Boyce, S. E., and Yeh, W. W.-G. (2016). Nonlinear model reduction of unconfined groundwater flow using pod and deim. Advances in Water Resources, 97:130 - 143.
Entropy Analysis in Mixed Convection MHD flow of Nanofluid over a Non-linear Stretching Sheet
NASA Astrophysics Data System (ADS)
Matin, Meisam Habibi; Nobari, Mohammad Reza Heirani; Jahangiri, Pouyan
This article deals with a numerical study of entropy analysis in mixed convection MHD flow of nanofluid over a non-linear stretching sheet taking into account the effects of viscous dissipation and variable magnetic field. The nanofluid is made of such nano particles as SiO2 with pure water as a base fluid. To analyze the problem, at first the boundary layer equations are transformed into non-linear ordinary equations using a similarity transformation. The resultant equations are then solved numerically using the Keller-Box scheme based on the implicit finite-difference method. The effects of different non-dimensional governing parameters such as magnetic parameter, nanoparticles volume fraction, Nusselt, Richardson, Eckert, Hartman, Brinkman, Reynolds and entropy generation numbers are investigated in details. The results indicate that increasing the nano particles to the base fluids causes the reduction in shear forces and a decrease in stretching sheet heat transfer coefficient. Also, decreasing the magnetic parameter and increasing the Eckert number result in improves heat transfer rate. Furthermore, the surface acts as a strong source of irreversibility due to the higher entropy generation number near the surface.
Aeroelasticity of morphing wings using neural networks
NASA Astrophysics Data System (ADS)
Natarajan, Anand
In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to represent the aerodynamic loading over the bump. A second neural network is trained for calculating the actuator loads, bump displacement and lift, drag forces over the airfoil using the finite element solver, ANSYS and the previously trained neural network. This non-linear aeroelastic model of the deforming bump on an airfoil surface using neural networks can serve as a fore-runner for other non-linear aeroelastic problems.
Cross hole GPR traveltime inversion using a fast and accurate neural network as a forward model
NASA Astrophysics Data System (ADS)
Mejer Hansen, Thomas
2017-04-01
Probabilistic formulated inverse problems can be solved using Monte Carlo based sampling methods. In principle both advanced prior information, such as based on geostatistics, and complex non-linear forward physical models can be considered. However, in practice these methods can be associated with huge computational costs that in practice limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error, that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival travel time inversion of cross hole ground-penetrating radar (GPR) data. An accurate forward model, based on 2D full-waveform modeling followed by automatic travel time picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the full forward model, and considerably faster, and more accurate, than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of the types of inverse problems that can be solved using non-linear Monte Carlo sampling techniques.
Angular-Rate Estimation Using Delayed Quaternion Measurements
NASA Technical Reports Server (NTRS)
Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.
1999-01-01
This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.
NASA Astrophysics Data System (ADS)
Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.
2017-11-01
This study is dedicated to continuum-scale material modeling of isotropic permanent magnets. An affine-linear extension to the commonly used ideal hard model for permanent magnets is proposed, motivated, and detailed. In order to demonstrate the differences between these models, bar and horseshoe magnets are considered. The structure of the boundary value problem for the magnetic field and related solution techniques are discussed. For the ideal model, closed-form analytical solutions were obtained for both geometries. Magnetic fields of the boundary value problems for both models and differently shaped magnets were computed numerically by using the boundary element method. The results show that the character of the magnetic field is strongly influenced by the model that is used. Furthermore, it can be observed that the shape of an affine-linear magnet influences the near-field significantly. Qualitative comparisons with experiments suggest that both the ideal and the affine-linear models are relevant in practice, depending on the magnetic material employed. Mathematically speaking, the ideal magnetic model is a special case of the affine-linear one. Therefore, in applications where knowledge of the near-field is important, the affine-linear model can yield more accurate results—depending on the magnetic material.
NASA Astrophysics Data System (ADS)
Mathias, Simon A.; Wen, Zhang
2015-05-01
This article presents a numerical study to investigate the combined role of partial well penetration (PWP) and non-Darcy effects concerning the performance of groundwater production wells. A finite difference model is developed in MATLAB to solve the two-dimensional mixed-type boundary value problem associated with flow to a partially penetrating well within a cylindrical confined aquifer. Non-Darcy effects are incorporated using the Forchheimer equation. The model is verified by comparison to results from existing semi-analytical solutions concerning the same problem but assuming Darcy's law. A sensitivity analysis is presented to explore the problem of concern. For constant pressure production, Non-Darcy effects lead to a reduction in production rate, as compared to an equivalent problem solved using Darcy's law. For fully penetrating wells, this reduction in production rate becomes less significant with time. However, for partially penetrating wells, the reduction in production rate persists for much larger times. For constant production rate scenarios, the combined effect of PWP and non-Darcy flow takes the form of a constant additional drawdown term. An approximate solution for this loss term is obtained by performing linear regression on the modeling results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzmina, L.K.
The research deals with different aspects of mathematical modelling and the analysis of complex dynamic non-linear systems as a consequence of applied problems in mechanics (in particular those for gyrosystems, for stabilization and orientation systems, control systems of movable objects, including the aviation and aerospace systems) Non-linearity, multi-connectedness and high dimensionness of dynamical problems, that occur at the initial full statement lead to the need of the problem narrowing, and of the decomposition of the full model, but with safe-keeping of main properties and of qualitative equivalence. The elaboration of regular methods for modelling problems in dynamics, the generalization ofmore » reduction principle are the main aims of the investigations. Here, uniform methodology, based on Lyapunov`s methods, founded by N.G.Ohetayev, is developed. The objects of the investigations are considered with exclusive positions, as systems of singularly perturbed class, treated as ones with singular parametrical perturbations. It is the natural extension of the statements of N.G.Chetayev and P.A.Kuzmin for parametrical stability. In paper the systematical procedures for construction of correct simplified models (comparison ones) are developed, the validity conditions of the transition are determined the appraisals are received, the regular algorithms of engineering level are obtained. Applicabilitelly to the stabilization and orientation systems with the gyroscopic controlling subsystems, these methods enable to build the hierarchical sequence of admissible simplified models; to determine the conditions of their correctness.« less
NASA Astrophysics Data System (ADS)
Khan, M. Ijaz; Zia, Q. M. Zaigham; Alsaedi, A.; Hayat, T.
2018-03-01
This attempt explores stagnation point flow of second grade material towards an impermeable stretched cylinder. Non-Fourier heat flux and thermal stratification are considered. Thermal conductivity dependents upon temperature. Governing non-linear differential system is solved using homotopic procedure. Interval of convergence for the obtained series solutions is explicitly determined. Physical quantities of interest have been examined for the influential variables entering into the problems. It is examined that curvature parameter leads to an enhancement in velocity and temperature. Further temperature for non-Fourier heat flux model is less than Fourier's heat conduction law.
NASA Astrophysics Data System (ADS)
Lovejoy, McKenna R.; Wickert, Mark A.
2017-05-01
A known problem with infrared imaging devices is their non-uniformity. This non-uniformity is the result of dark current, amplifier mismatch as well as the individual photo response of the detectors. To improve performance, non-uniformity correction (NUC) techniques are applied. Standard calibration techniques use linear, or piecewise linear models to approximate the non-uniform gain and off set characteristics as well as the nonlinear response. Piecewise linear models perform better than the one and two-point models, but in many cases require storing an unmanageable number of correction coefficients. Most nonlinear NUC algorithms use a second order polynomial to improve performance and allow for a minimal number of stored coefficients. However, advances in technology now make higher order polynomial NUC algorithms feasible. This study comprehensively tests higher order polynomial NUC algorithms targeted at short wave infrared (SWIR) imagers. Using data collected from actual SWIR cameras, the nonlinear techniques and corresponding performance metrics are compared with current linear methods including the standard one and two-point algorithms. Machine learning, including principal component analysis, is explored for identifying and replacing bad pixels. The data sets are analyzed and the impact of hardware implementation is discussed. Average floating point results show 30% less non-uniformity, in post-corrected data, when using a third order polynomial correction algorithm rather than a second order algorithm. To maximize overall performance, a trade off analysis on polynomial order and coefficient precision is performed. Comprehensive testing, across multiple data sets, provides next generation model validation and performance benchmarks for higher order polynomial NUC methods.
Siemonsma, Petra C; Stuvie, Ilse; Roorda, Leo D; Vollebregt, Joke A; Lankhorst, Gustaaf J; Lettinga, Ant T
2011-04-01
The aim of this study was to identify treatment-specific predictors of the effectiveness of a method of evidence-based treatment: cognitive treatment of illness perceptions. This study focuses on what treatment works for whom, whereas most prognostic studies focusing on chronic non-specific low back pain rehabilitation aim to reduce the heterogeneity of the population of patients who are suitable for rehabilitation treatment in general. Three treatment-specific predictors were studied in patients with chronic non-specific low back pain receiving cognitive treatment of illness perceptions: a rational approach to problem-solving, discussion skills and verbal skills. Hierarchical linear regression analysis was used to assess their predictive value. Short-term changes in physical activity, measured with the Patient-Specific Functioning List, were the outcome measure for cognitive treatment of illness perceptions effect. A total of 156 patients with chronic non-specific low back pain participated in the study. Rational problem-solving was found to be a significant predictor for the change in physical activity. Discussion skills and verbal skills were non-significant. Rational problem-solving explained 3.9% of the total variance. The rational problem-solving scale results are encouraging, because chronic non-specific low back pain problems are complex by nature and can be influenced by a variety of factors. A minimum score of 44 points on the rational problem-solving scale may assist clinicians in selecting the most appropriate candidates for cognitive treatment of illness perceptions.
Calibration of Lévy Processes with American Options
NASA Astrophysics Data System (ADS)
Achdou, Yves
We study options on financial assets whose discounted prices are exponential of Lévy processes. The price of an American vanilla option as a function of the maturity and the strike satisfies a linear complementarity problem involving a non-local partial integro-differential operator. It leads to a variational inequality in a suitable weighted Sobolev space. Calibrating the Lévy process may be done by solving an inverse least square problem where the state variable satisfies the previously mentioned variational inequality. We first assume that the volatility is positive: after carefully studying the direct problem, we propose necessary optimality conditions for the least square inverse problem. We also consider the direct problem when the volatility is zero.
NASA Astrophysics Data System (ADS)
Nirmala, P. H.; Saila Kumari, A.; Raju, C. S. K.
2018-04-01
In the present article, we studied the magnetohydro dynamic flow induced heat transfer from vertical surface embedded in a saturated porous medium in the presence of viscous dissipation. Appropriate similarity transformations are used to transmute the non-linear governing partial differential equations to non-linear ODE. To solve these ordinary differential equations (ODE) we used the well-known integral method of Von Karman type. A comparison has been done and originates to be in suitable agreement with the previous published results. The tabulated and graphical results are given to consider the physical nature of the problem. From this results we found that the magnetic field parameter depreciate the velocity profiles and improves the heat transfer rate of the flow.
A diffuse-interface method for two-phase flows with soluble surfactants
Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel
2010-01-01
A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier–Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125
Benchmark solution of the dynamic response of a spherical shell at finite strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Versino, Daniele; Brock, Jerry S.
2016-09-28
Our paper describes the development of high fidelity solutions for the study of homogeneous (elastic and inelastic) spherical shells subject to dynamic loading and undergoing finite deformations. The goal of the activity is to provide high accuracy results that can be used as benchmark solutions for the verification of computational physics codes. Furthermore, the equilibrium equations for the geometrically non-linear problem are solved through mode expansion of the displacement field and the boundary conditions are enforced in a strong form. Time integration is performed through high-order implicit Runge–Kutta schemes. Finally, we evaluate accuracy and convergence of the proposed method bymore » means of numerical examples with finite deformations and material non-linearities and inelasticity.« less
Machining Chatter Analysis for High Speed Milling Operations
NASA Astrophysics Data System (ADS)
Sekar, M.; Kantharaj, I.; Amit Siddhappa, Savale
2017-10-01
Chatter in high speed milling is characterized by time delay differential equations (DDE). Since closed form solution exists only for simple cases, the governing non-linear DDEs of chatter problems are solved by various numerical methods. Custom codes to solve DDEs are tedious to build, implement and not error free and robust. On the other hand, software packages provide solution to DDEs, however they are not straight forward to implement. In this paper an easy way to solve DDE of chatter in milling is proposed and implemented with MATLAB. Time domain solution permits the study and model of non-linear effects of chatter vibration with ease. Time domain results are presented for various stable and unstable conditions of cut and compared with stability lobe diagrams.
Research on allocation efficiency of the daisy chain allocation algorithm
NASA Astrophysics Data System (ADS)
Shi, Jingping; Zhang, Weiguo
2013-03-01
With the improvement of the aircraft performance in reliability, maneuverability and survivability, the number of the control effectors increases a lot. How to distribute the three-axis moments into the control surfaces reasonably becomes an important problem. Daisy chain method is simple and easy to be carried out in the design of the allocation system. But it can not solve the allocation problem for entire attainable moment subset. For the lateral-directional allocation problem, the allocation efficiency of the daisy chain can be directly measured by the area of its subset of attainable moments. Because of the non-linear allocation characteristic, the subset of attainable moments of daisy-chain method is a complex non-convex polygon, and it is difficult to solve directly. By analyzing the two-dimensional allocation problems with a "micro-element" idea, a numerical calculation algorithm is proposed to compute the area of the non-convex polygon. In order to improve the allocation efficiency of the algorithm, a genetic algorithm with the allocation efficiency chosen as the fitness function is proposed to find the best pseudo-inverse matrix.
FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.
Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu
2017-07-18
Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
An electron beam linear scanning mode for industrial limited-angle nano-computed tomography
NASA Astrophysics Data System (ADS)
Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng
2018-01-01
Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.
NASA Astrophysics Data System (ADS)
Barra, Adriano; Contucci, Pierluigi; Sandell, Rickard; Vernia, Cecilia
2014-02-01
How does immigrant integration in a country change with immigration density? Guided by a statistical mechanics perspective we propose a novel approach to this problem. The analysis focuses on classical integration quantifiers such as the percentage of jobs (temporary and permanent) given to immigrants, mixed marriages, and newborns with parents of mixed origin. We find that the average values of different quantifiers may exhibit either linear or non-linear growth on immigrant density and we suggest that social action, a concept identified by Max Weber, causes the observed non-linearity. Using the statistical mechanics notion of interaction to quantitatively emulate social action, a unified mathematical model for integration is proposed and it is shown to explain both growth behaviors observed. The linear theory instead, ignoring the possibility of interaction effects would underestimate the quantifiers up to 30% when immigrant densities are low, and overestimate them as much when densities are high. The capacity to quantitatively isolate different types of integration mechanisms makes our framework a suitable tool in the quest for more efficient integration policies.
NASA Astrophysics Data System (ADS)
Hu, Xiaoxiang; Wu, Ligang; Hu, Changhua; Wang, Zhaoqiang; Gao, Huijun
2014-08-01
By utilising Takagi-Sugeno (T-S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics' enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T-S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T-S fuzzy dynamic output feedback control method is demonstrated by numerical simulations.
Hashim; Khan, Masood; Saleh Alshomrani, Ali
2017-01-01
This article provides a comprehensive analysis of the energy transportation by virtue of the melting process of high-temperature phase change materials. We have developed a two-dimensional model for the boundary layer flow of non-Newtonian Carreau fluid. It is assumed that flow is caused by stretching of a cylinder in the axial direction by means of a linear velocity. Adequate local similarity transformations are employed to determine a set of non-linear ordinary differential equations which govern the flow problem. Numerical solutions to the resultant non-dimensional boundary value problem are computed via the fifth-order Runge-Kutta Fehlberg integration scheme. The solutions are captured for both zero and non-zero curvature parameters, i.e., for flow over a flat plate or flow over a cylinder. The flow and heat transfer attributes are witnessed to be prompted in an intricate manner by the melting parameter, the curvature parameter, the Weissenberg number, the power law index and the Prandtl number. We determined that one of the possible ways to boost the fluid velocity is to increase the melting parameter. Additionally, both the velocity of the fluid and the momentum boundary layer thickness are higher in the case of flow over a stretching cylinder. As expected, the magnitude of the skin friction and the rate of heat transfer decrease by raising the values of the melting parameter and the Weissenberg number.
NASA Astrophysics Data System (ADS)
Rerikh, K. V.
A smooth reversible dynamical system (SRDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions (the Chew-Low equations for p- wave πN- scattering) are considered. This SRDS is splitted into 1- and 2-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous 3-point functional equation. Non-algebraic integrability of SRDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a non-resonant fixed point. The proof is based on the classical Feldman-Baker theorem on linear forms of logarithms of algebraic numbers, which, in turn, relies upon solving the 7th Hilbert problem by A.I. Gel'fond and T. Schneider and new powerful methods of A. Baker in the theory of transcendental numbers. The general theorem, following from the Feldman-Baker theorem, on applicability of the Siegel theorem to the set of the eigenvalues λ ɛ Cn of a mapping at a non-resonant fixed point which belong to the algebraic number field A is formulated and proved. The main results are presented in Theorems 1-3, 5, 7, 8 and Remarks 3, 7.
Selection of software for mechanical engineering undergraduates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheah, C. T.; Yin, C. S.; Halim, T.
A major problem with the undergraduate mechanical course is the limited exposure of students to software packages coupled with the long learning curve on the existing software packages. This work proposes the use of appropriate software packages for the entire mechanical engineering curriculum to ensure students get sufficient exposure real life design problems. A variety of software packages are highlighted as being suitable for undergraduate work in mechanical engineering, e.g. simultaneous non-linear equations; uncertainty analysis; 3-D modeling software with the FEA; analysis tools for the solution of problems in thermodynamics, fluid mechanics, mechanical system design, and solid mechanics.
Causal Inference and Explaining Away in a Spiking Network
Moreno-Bote, Rubén; Drugowitsch, Jan
2015-01-01
While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification. PMID:26621426
Causal Inference and Explaining Away in a Spiking Network.
Moreno-Bote, Rubén; Drugowitsch, Jan
2015-12-01
While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification.
Wang, Qi; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi
2012-11-01
Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Acoustic Analysis of a Sandwich Non Metallic Panel for Roofs by FEM and Experimental Validation
NASA Astrophysics Data System (ADS)
Nieto, P. J. García; del Coz Díaz, J. J.; Vilán, J. A. Vilán; Rabanal, F. P. Alvarez
2007-12-01
In this paper we have studied the acoustic behavior of a sandwich non metallic panel for roofs by the finite element method (FEM). This new field of analysis is the fully coupled solution of fluid flows with structural interactions, commonly referred to as fluid-structure interaction (FSI). It is the natural next step to take in the simulation of mechanical systems. The finite element analysis of acoustic-fluid/structure interactions using potential-based or displacement-based Lagrangian formulations is now well established. The non-linearity is due to the `fluid-structure interaction' (FSI) that governs the problem. In a very considerable range of problems the fluid displacement remains small while interaction is substantial. In this category falls our problem, in which the structural motion influence and react with the generation of pressures in two reverberation rooms. The characteristic of acoustic insulation of the panel is calculated basing on the pressures for different frequencies and points in the transmission rooms. Finally the conclusions reached are shown.
Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles
NASA Astrophysics Data System (ADS)
Tzirtzilakis, E. E.
2015-06-01
In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.
Non-local sub-characteristic zones of influence in unsteady interactive boundary-layers
NASA Technical Reports Server (NTRS)
Rothmayer, A. P.
1992-01-01
The properties of incompressible, unsteady, interactive, boundary layers are examined for a model hypersonic boundary layer and internal flow past humps or, equivalently, external flow past short-scaled humps. Using a linear high frequency analysis, it is shown that the domains of dependence within the viscous sublayer may be a strong function of position within the sublayer and may be strongly influenced by the pressure displacement interaction, or the prescribed displacement condition. Detailed calculations are presented for the hypersonic boundary layer. This effect is found to carry over directly to the fully viscous problem as well as the nonlinear problem. In the fully viscous problem, the non-local character of the domains of dependence manifests itself in the sub-characteristics. Potential implications of the domain of dependence structure on finite difference computations of unsteady boundary layers are briefly discussed.
Fitting a Point Cloud to a 3d Polyhedral Surface
NASA Astrophysics Data System (ADS)
Popov, E. V.; Rotkov, S. I.
2017-05-01
The ability to measure parameters of large-scale objects in a contactless fashion has a tremendous potential in a number of industrial applications. However, this problem is usually associated with an ambiguous task to compare two data sets specified in two different co-ordinate systems. This paper deals with the study of fitting a set of unorganized points to a polyhedral surface. The developed approach uses Principal Component Analysis (PCA) and Stretched grid method (SGM) to substitute a non-linear problem solution with several linear steps. The squared distance (SD) is a general criterion to control the process of convergence of a set of points to a target surface. The described numerical experiment concerns the remote measurement of a large-scale aerial in the form of a frame with a parabolic shape. The experiment shows that the fitting process of a point cloud to a target surface converges in several linear steps. The method is applicable to the geometry remote measurement of large-scale objects in a contactless fashion.
A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
An, Na; Yu, Xijun; Chen, Huanzhen; Huang, Chaobao; Liu, Zhongyan
2017-01-01
The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matrix. The standard linear Crouzeix-Raviart type finite element space is used on non-interface elements and the piecewise linear Crouzeix-Raviart type immersed finite element (IFE) space is constructed on interface elements. The piecewise linear functions satisfying the interface jump conditions are uniquely determined by the integral averages on the edges as degrees of freedom. The PIFE scheme is given based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. The solvability of the method is proved and the optimal error estimates in the energy norm are obtained. Numerical experiments are presented to confirm our theoretical analysis and show that the newly developed PIFE method has optimal-order convergence in the [Formula: see text] norm as well. In addition, numerical examples also indicate that this method is valid for both the isotropic and the anisotropic elliptic interface problems.
Non linear predictive control of a LEGO mobile robot
NASA Astrophysics Data System (ADS)
Merabti, H.; Bouchemal, B.; Belarbi, K.; Boucherma, D.; Amouri, A.
2014-10-01
Metaheuristics are general purpose heuristics which have shown a great potential for the solution of difficult optimization problems. In this work, we apply the meta heuristic, namely particle swarm optimization, PSO, for the solution of the optimization problem arising in NLMPC. This algorithm is easy to code and may be considered as alternatives for the more classical solution procedures. The PSO- NLMPC is applied to control a mobile robot for the tracking trajectory and obstacles avoidance. Experimental results show the strength of this approach.
Some design guidelines for discrete-time adaptive controllers
NASA Technical Reports Server (NTRS)
Rohrs, C. E.; Athans, M.; Valavani, L.; Stein, G.
1985-01-01
There have been many algorithms proposed for adaptive control which will provide globally asymptotically stable controllers if some stringent conditions on the plant are met. The conditions on the plant cannot be met in practice as all plants will contain high frequency unmolded dynamics therefore, blind implementation of the published algorithms can lead to disastrous results. This paper uses a linearization analysis of a non-linear adaptive controller to demonstrate analytically design guidelines which aleviate some of the problems associated with adaptive control in the presence of unmodeled dynamics.
Kernel PLS-SVC for Linear and Nonlinear Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Matthews, Bryan
2003-01-01
A new methodology for discrimination is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by support vector machines for classification. Close connection of orthonormalized PLS and Fisher's approach to linear discrimination or equivalently with canonical correlation analysis is described. This gives preference to use orthonormalized PLS over principal component analysis. Good behavior of the proposed method is demonstrated on 13 different benchmark data sets and on the real world problem of the classification finger movement periods versus non-movement periods based on electroencephalogram.
Optimization of a bundle divertor for FED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hively, L.M.; Rothe, K.E.; Minkoff, M.
1982-01-01
Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations.
Knowledge to Manage the Knowledge Society
ERIC Educational Resources Information Center
Minati, Gianfranco
2012-01-01
Purpose: The purpose of this research is to make evident the inadequateness of concepts and language based on industrial knowledge still used in current practices by managers to cope with problems of the post-industrial societies characterised by non-linear process of emergence and acquisition of properties. The purpose is to allow management to…
An analytical study of the endoreversible Curzon-Ahlborn cycle for a non-linear heat transfer law
NASA Astrophysics Data System (ADS)
Páez-Hernández, Ricardo T.; Portillo-Díaz, Pedro; Ladino-Luna, Delfino; Ramírez-Rojas, Alejandro; Pacheco-Paez, Juan C.
2016-01-01
In the present article, an endoreversible Curzon-Ahlborn engine is studied by considering a non-linear heat transfer law, particularly the Dulong-Petit heat transfer law, using the `componendo and dividendo' rule as well as a simple differentiation to obtain the Curzon-Ahlborn efficiency as proposed by Agrawal in 2009. This rule is actually a change of variable that simplifies a two-variable problem to a one-variable problem. From elemental calculus, we obtain an analytical expression of efficiency and the power output. The efficiency is given only in terms of the temperatures of the reservoirs, such as both Carnot and Curzon-Ahlborn cycles. We make a comparison between efficiencies measured in real power plants and theoretical values from analytical expressions obtained in this article and others found in literature from several other authors. This comparison shows that the theoretical values of efficiency are close to real efficiency, and in some cases, they are exactly the same. Therefore, we can say that the Agrawal method is good in calculating thermal engine efficiencies approximately.
Multidimensional FEM-FCT schemes for arbitrary time stepping
NASA Astrophysics Data System (ADS)
Kuzmin, D.; Möller, M.; Turek, S.
2003-05-01
The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.
NASA Astrophysics Data System (ADS)
Haddout, Soufiane
2016-06-01
In Newtonian mechanics, the non-inertial reference frames is a generalization of Newton's laws to any reference frames. While this approach simplifies some problems, there is often little physical insight into the motion, in particular into the effects of the Coriolis force. The fictitious Coriolis force can be used by anyone in that frame of reference to explain why objects follow curved paths. In this paper, a mathematical solution based on differential equations in non-inertial reference is used to study different types of motion in rotating system. In addition, the experimental data measured on a turntable device, using a video camera in a mechanics laboratory was conducted to compare with mathematical solution in case of parabolically curved, solving non-linear least-squares problems, based on Levenberg-Marquardt's and Gauss-Newton algorithms.
NASA Technical Reports Server (NTRS)
Lisano, Michael E.
2007-01-01
Recent literature in applied estimation theory reflects growing interest in the sigma-point (also called unscented ) formulation for optimal sequential state estimation, often describing performance comparisons with extended Kalman filters as applied to specific dynamical problems [c.f. 1, 2, 3]. Favorable attributes of sigma-point filters are described as including a lower expected error for nonlinear even non-differentiable dynamical systems, and a straightforward formulation not requiring derivation or implementation of any partial derivative Jacobian matrices. These attributes are particularly attractive, e.g. in terms of enabling simplified code architecture and streamlined testing, in the formulation of estimators for nonlinear spaceflight mechanics systems, such as filter software onboard deep-space robotic spacecraft. As presented in [4], the Sigma-Point Consider Filter (SPCF) algorithm extends the sigma-point filter algorithm to the problem of consider covariance analysis. Considering parameters in a dynamical system, while estimating its state, provides an upper bound on the estimated state covariance, which is viewed as a conservative approach to designing estimators for problems of general guidance, navigation and control. This is because, whether a parameter in the system model is observable or not, error in the knowledge of the value of a non-estimated parameter will increase the actual uncertainty of the estimated state of the system beyond the level formally indicated by the covariance of an estimator that neglects errors or uncertainty in that parameter. The equations for SPCF covariance evolution are obtained in a fashion similar to the derivation approach taken with standard (i.e. linearized or extended) consider parameterized Kalman filters (c.f. [5]). While in [4] the SPCF and linear-theory consider filter (LTCF) were applied to an illustrative linear dynamics/linear measurement problem, in the present work examines the SPCF as applied to nonlinear sequential consider covariance analysis, i.e. in the presence of nonlinear dynamics and nonlinear measurements. A simple SPCF for orbit determination, exemplifying an algorithm hosted in the guidance, navigation and control (GN&C) computer processor of a hypothetical robotic spacecraft, was implemented, and compared with an identically-parameterized (standard) extended, consider-parameterized Kalman filter. The onboard filtering scenario examined is a hypothetical spacecraft orbit about a small natural body with imperfectly-known mass. The formulations, relative complexities, and performances of the filters are compared and discussed.
An efficient direct solver for rarefied gas flows with arbitrary statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Manuel A., E-mail: f99543083@ntu.edu.tw; Yang, Jaw-Yen, E-mail: yangjy@iam.ntu.edu.tw; Center of Advanced Study in Theoretical Science, National Taiwan University, Taipei 10167, Taiwan
2016-01-15
A new numerical methodology associated with a unified treatment is presented to solve the Boltzmann–BGK equation of gas dynamics for the classical and quantum gases described by the Bose–Einstein and Fermi–Dirac statistics. Utilizing a class of globally-stiffly-accurate implicit–explicit Runge–Kutta scheme for the temporal evolution, associated with the discrete ordinate method for the quadratures in the momentum space and the weighted essentially non-oscillatory method for the spatial discretization, the proposed scheme is asymptotic-preserving and imposes no non-linear solver or requires the knowledge of fugacity and temperature to capture the flow structures in the hydrodynamic (Euler) limit. The proposed treatment overcomes themore » limitations found in the work by Yang and Muljadi (2011) [33] due to the non-linear nature of quantum relations, and can be applied in studying the dynamics of a gas with internal degrees of freedom with correct values of the ratio of specific heat for the flow regimes for all Knudsen numbers and energy wave lengths. The present methodology is numerically validated with the unified treatment by the one-dimensional shock tube problem and the two-dimensional Riemann problems for gases of arbitrary statistics. Descriptions of ideal quantum gases including rotational degrees of freedom have been successfully achieved under the proposed methodology.« less
NASA Astrophysics Data System (ADS)
Mapakshi, N. K.; Chang, J.; Nakshatrala, K. B.
2018-04-01
Mathematical models for flow through porous media typically enjoy the so-called maximum principles, which place bounds on the pressure field. It is highly desirable to preserve these bounds on the pressure field in predictive numerical simulations, that is, one needs to satisfy discrete maximum principles (DMP). Unfortunately, many of the existing formulations for flow through porous media models do not satisfy DMP. This paper presents a robust, scalable numerical formulation based on variational inequalities (VI), to model non-linear flows through heterogeneous, anisotropic porous media without violating DMP. VI is an optimization technique that places bounds on the numerical solutions of partial differential equations. To crystallize the ideas, a modification to Darcy equations by taking into account pressure-dependent viscosity will be discretized using the lowest-order Raviart-Thomas (RT0) and Variational Multi-scale (VMS) finite element formulations. It will be shown that these formulations violate DMP, and, in fact, these violations increase with an increase in anisotropy. It will be shown that the proposed VI-based formulation provides a viable route to enforce DMP. Moreover, it will be shown that the proposed formulation is scalable, and can work with any numerical discretization and weak form. A series of numerical benchmark problems are solved to demonstrate the effects of heterogeneity, anisotropy and non-linearity on DMP violations under the two chosen formulations (RT0 and VMS), and that of non-linearity on solver convergence for the proposed VI-based formulation. Parallel scalability on modern computational platforms will be illustrated through strong-scaling studies, which will prove the efficiency of the proposed formulation in a parallel setting. Algorithmic scalability as the problem size is scaled up will be demonstrated through novel static-scaling studies. The performed static-scaling studies can serve as a guide for users to be able to select an appropriate discretization for a given problem size.
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few lines of shader code (provided in supplemental material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TVCG.2013.102), is high performance, and has a negligible memory footprint.
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1996-01-01
A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.
Synthesis and analysis of discriminators under influence of broadband non-Gaussian noise
NASA Astrophysics Data System (ADS)
Artyushenko, V. M.; Volovach, V. I.
2018-01-01
We considered the problems of the synthesis and analysis of discriminators, when the useful signal is exposed to non-Gaussian additive broadband noise. It is shown that in this case, the discriminator of the tracking meter should contain the nonlinear transformation unit, the characteristics of which are determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian broadband noise and mismatch errors. The parameters of the discriminatory and phase characteristics of the discriminators working under the above conditions are obtained. It is shown that the efficiency of non-linear processing depends on the ratio of power of FM noise to the power of Gaussian noise. The analysis of the information loss of signal transformation caused by the linear section of discriminatory characteristics of the unit of nonlinear transformations of the discriminator is carried out. It is shown that the average slope of the nonlinear transformation characteristic is determined by the Fisher information relative to the probability density function of the mixture of non-Gaussian noise and mismatch errors.
Song, Yong-Ze; Yang, Hong-Lei; Peng, Jun-Huan; Song, Yi-Rong; Sun, Qian; Li, Yuan
2015-01-01
Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi’an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5. PMID:26540446
Fast reconstruction of optical properties for complex segmentations in near infrared imaging
NASA Astrophysics Data System (ADS)
Jiang, Jingjing; Wolf, Martin; Sánchez Majos, Salvador
2017-04-01
The intrinsic ill-posed nature of the inverse problem in near infrared imaging makes the reconstruction of fine details of objects deeply embedded in turbid media challenging even for the large amounts of data provided by time-resolved cameras. In addition, most reconstruction algorithms for this type of measurements are only suitable for highly symmetric geometries and rely on a linear approximation to the diffusion equation since a numerical solution of the fully non-linear problem is computationally too expensive. In this paper, we will show that a problem of practical interest can be successfully addressed making efficient use of the totality of the information supplied by time-resolved cameras. We set aside the goal of achieving high spatial resolution for deep structures and focus on the reconstruction of complex arrangements of large regions. We show numerical results based on a combined approach of wavelength-normalized data and prior geometrical information, defining a fully parallelizable problem in arbitrary geometries for time-resolved measurements. Fast reconstructions are obtained using a diffusion approximation and Monte-Carlo simulations, parallelized in a multicore computer and a GPU respectively.
Hessian Schatten-norm regularization for linear inverse problems.
Lefkimmiatis, Stamatios; Ward, John Paul; Unser, Michael
2013-05-01
We introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. They can be viewed as second-order extensions of the popular total-variation (TV) semi-norm since they satisfy the same invariance properties. Meanwhile, by taking advantage of second-order derivatives, they avoid the staircase effect, a common artifact of TV-based reconstructions, and perform well for a wide range of applications. To solve the corresponding optimization problems, we propose an algorithm that is based on a primal-dual formulation. A fundamental ingredient of this algorithm is the projection of matrices onto Schatten norm balls of arbitrary radius. This operation is performed efficiently based on a direct link we provide between vector projections onto lq norm balls and matrix projections onto Schatten norm balls. Finally, we demonstrate the effectiveness of the proposed methods through experimental results on several inverse imaging problems with real and simulated data.
Solving ill-posed inverse problems using iterative deep neural networks
NASA Astrophysics Data System (ADS)
Adler, Jonas; Öktem, Ozan
2017-12-01
We propose a partially learned approach for the solution of ill-posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularisation theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularising functional. The method results in a gradient-like iterative scheme, where the ‘gradient’ component is learned using a convolutional network that includes the gradients of the data discrepancy and regulariser as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against filtered backprojection and total variation reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the total variation reconstruction while being significantly faster, giving reconstructions of 512 × 512 pixel images in about 0.4 s using a single graphics processing unit (GPU).
NASA Astrophysics Data System (ADS)
Setiawan, E. P.; Rosadi, D.
2017-01-01
Portfolio selection problems conventionally means ‘minimizing the risk, given the certain level of returns’ from some financial assets. This problem is frequently solved with quadratic or linear programming methods, depending on the risk measure that used in the objective function. However, the solutions obtained by these method are in real numbers, which may give some problem in real application because each asset usually has its minimum transaction lots. In the classical approach considering minimum transaction lots were developed based on linear Mean Absolute Deviation (MAD), variance (like Markowitz’s model), and semi-variance as risk measure. In this paper we investigated the portfolio selection methods with minimum transaction lots with conditional value at risk (CVaR) as risk measure. The mean-CVaR methodology only involves the part of the tail of the distribution that contributed to high losses. This approach looks better when we work with non-symmetric return probability distribution. Solution of this method can be found with Genetic Algorithm (GA) methods. We provide real examples using stocks from Indonesia stocks market.
Direct Multiple Shooting Optimization with Variable Problem Parameters
NASA Technical Reports Server (NTRS)
Whitley, Ryan J.; Ocampo, Cesar A.
2009-01-01
Taking advantage of a novel approach to the design of the orbital transfer optimization problem and advanced non-linear programming algorithms, several optimal transfer trajectories are found for problems with and without known analytic solutions. This method treats the fixed known gravitational constants as optimization variables in order to reduce the need for an advanced initial guess. Complex periodic orbits are targeted with very simple guesses and the ability to find optimal transfers in spite of these bad guesses is successfully demonstrated. Impulsive transfers are considered for orbits in both the 2-body frame as well as the circular restricted three-body problem (CRTBP). The results with this new approach demonstrate the potential for increasing robustness for all types of orbit transfer problems.
Fast Optimization for Aircraft Descent and Approach Trajectory
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Schuet, Stefan; Brenton, J.; Timucin, Dogan; Smith, David; Kaneshige, John
2017-01-01
We address problem of on-line scheduling of the aircraft descent and approach trajectory. We formulate a general multiphase optimal control problem for optimization of the descent trajectory and review available methods of its solution. We develop a fast algorithm for solution of this problem using two key components: (i) fast inference of the dynamical and control variables of the descending trajectory from the low dimensional flight profile data and (ii) efficient local search for the resulting reduced dimensionality non-linear optimization problem. We compare the performance of the proposed algorithm with numerical solution obtained using optimal control toolbox General Pseudospectral Optimal Control Software. We present results of the solution of the scheduling problem for aircraft descent using novel fast algorithm and discuss its future applications.
A Thermodynamic Theory of Solid Viscoelasticity. Part II:; Nonlinear Thermo-viscoelasticity
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Leonov, Arkady I.; Gray, Hugh R. (Technical Monitor)
2002-01-01
This paper, second in the series of three papers, develops a general, nonlinear, non-isothermal, compressible theory for finite rubber viscoelasticity and specifies it in a form convenient for solving problems important to the rubber, tire, automobile, and air-space industries, among others. Based on the quasi-linear approach of non-equilibrium thermodynamics, a general nonlinear theory of differential type has been developed for arbitrary non-isothermal deformations of viscoelastic solids. In this theory, the constitutive equations were presented as the sum of a rubber elastic (equilibrium) and a liquid type viscoelastic (non-equilibrium) terms. These equations have then been simplified using several modeling and simplicity arguments.
Schorr, Melissa; Carlson, Linda E; Lau, Harold Y; Zhong, Lihong; Bultz, Barry D; Waller, Amy; Groff, Shannon L; Hao, Desiree
2017-10-01
Human papillomavirus (HPV)-related cancers have been associated with different demographic profiles and disease characteristics than HPV-unrelated cancers in head and neck patients, but distress and other symptoms have not been compared. The aim of this study was to assess whether distress levels, fatigue, pain, anxiety, depression, and common psychological and practical problems differ between head and neck cancer patients with HPV-related vs. HPV-unrelated carcinomas (using oropharyngeal carcinoma (OPC) and non-OPC cancers as surrogates for HPV status). Distress, depression, anxiety, fatigue, pain, and common problems were examined in 56 OPC and 90 non-OPC patients at 4 timepoints during the first year following diagnosis. Two-level hierarchical linear modeling was used to examine effects. The HPV-related OPC group was more likely to be younger (p = 0.05), Caucasian (p = 0.001), non-smokers (p = 0.01), earn more (p = 0.04), and present with more advanced stage (p < 0.0001). At baseline, OPC patients reported only higher pain scores (p = 0.01) than non-OPC patients. Total problems decreased more in the OPC group (p = 0.08) than the non-OPC group from baseline to 12-month follow-up. In both groups, scores on distress, depression, psychosocial problems, and practical problems decreased similarly over time. Despite a difference in the clinico-demographic characteristics of HPV-related vs. HPV-unrelated patients, only baseline pain levels and total problems over time differed between the two groups.
Emergence, reductionism and landscape response to climate change
NASA Astrophysics Data System (ADS)
Harrison, Stephan; Mighall, Tim
2010-05-01
Predicting landscape response to external forcing is hampered by the non-linear, stochastic and contingent (ie dominated by historical accidents) forcings inherent in landscape evolution. Using examples from research carried out in southwest Ireland we suggest that non-linearity in landform evolution is likely to be a strong control making regional predictions of landscape response to climate change very difficult. While uncertainties in GCM projections have been widely explored in climate science much less attention has been directed by geomorphologists to the uncertainties in landform evolution under conditions of climate change and this problem may be viewed within the context of philosophical approaches to reductionsim and emergence. Understanding the present and future trajectory of landform change may also guide us to provide an enhanced appreciation of how landforms evolved in the past.
NASA Astrophysics Data System (ADS)
Oberlack, Martin; Nold, Andreas; Sanjon, Cedric Wilfried; Wang, Yongqi; Hau, Jan
2016-11-01
Classical hydrodynamic stability theory for laminar shear flows, no matter if considering long-term stability or transient growth, is based on the normal-mode ansatz, or, in other words, on an exponential function in space (stream-wise direction) and time. Recently, it became clear that the normal mode ansatz and the resulting Orr-Sommerfeld equation is based on essentially three fundamental symmetries of the linearized Euler and Navier-Stokes equations: translation in space and time and scaling of the dependent variable. Further, Kelvin-mode of linear shear flows seemed to be an exception in this context as it admits a fourth symmetry resulting in the classical Kelvin mode which is rather different from normal-mode. However, very recently it was discovered that most of the classical canonical shear flows such as linear shear, Couette, plane and round Poiseuille, Taylor-Couette, Lamb-Ossen vortex or asymptotic suction boundary layer admit more symmetries. This, in turn, led to new problem specific non-modal ansatz functions. In contrast to the exponential growth rate in time of the modal-ansatz, the new non-modal ansatz functions usually lead to an algebraic growth or decay rate, while for the asymptotic suction boundary layer a double-exponential growth or decay is observed.
Approximation of a Brittle Fracture Energy with a Constraint of Non-interpenetration
NASA Astrophysics Data System (ADS)
Chambolle, Antonin; Conti, Sergio; Francfort, Gilles A.
2018-06-01
Linear fracture mechanics (or at least the initiation part of that theory) can be framed in a variational context as a minimization problem over an SBD type space. The corresponding functional can in turn be approximated in the sense of {Γ}-convergence by a sequence of functionals involving a phase field as well as the displacement field. We show that a similar approximation persists if additionally imposing a non-interpenetration constraint in the minimization, namely that only nonnegative normal jumps should be permissible.
Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel
Sakin, Sayef Azad; Alamri, Atif; Tran, Nguyen H.
2017-01-01
Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies. PMID:29215591
Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel.
Sakin, Sayef Azad; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Alamri, Atif; Tran, Nguyen H; Fortino, Giancarlo
2017-12-07
Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies.
Azimuthal anisotropy distributions in high-energy collisions
NASA Astrophysics Data System (ADS)
Yan, Li; Ollitrault, Jean-Yves; Poskanzer, Arthur M.
2015-03-01
Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the spatial anisotropy of the initial density profile. A long-standing problem in the interpretation of flow data is that uncertainties in the initial anisotropy are mingled with uncertainties in the response. We argue that the non-Gaussianity of flow fluctuations in small systems with large fluctuations can be used to disentangle the initial state from the response. We apply this method to recent measurements of anisotropic flow in Pb+Pb and p+Pb collisions at the LHC, assuming linear response to the initial anisotropy. The response coefficient is found to decrease as the system becomes smaller and is consistent with a low value of the ratio of viscosity over entropy of η / s ≃ 0.19. Deviations from linear response are studied. While they significantly change the value of the response coefficient they do not change the rate of decrease with centrality. Thus, we argue that the estimate of η / s is robust against non-linear effects.
Stochastic search, optimization and regression with energy applications
NASA Astrophysics Data System (ADS)
Hannah, Lauren A.
Designing clean energy systems will be an important task over the next few decades. One of the major roadblocks is a lack of mathematical tools to economically evaluate those energy systems. However, solutions to these mathematical problems are also of interest to the operations research and statistical communities in general. This thesis studies three problems that are of interest to the energy community itself or provide support for solution methods: R&D portfolio optimization, nonparametric regression and stochastic search with an observable state variable. First, we consider the one stage R&D portfolio optimization problem to avoid the sequential decision process associated with the multi-stage. The one stage problem is still difficult because of a non-convex, combinatorial decision space and a non-convex objective function. We propose a heuristic solution method that uses marginal project values---which depend on the selected portfolio---to create a linear objective function. In conjunction with the 0-1 decision space, this new problem can be solved as a knapsack linear program. This method scales well to large decision spaces. We also propose an alternate, provably convergent algorithm that does not exploit problem structure. These methods are compared on a solid oxide fuel cell R&D portfolio problem. Next, we propose Dirichlet Process mixtures of Generalized Linear Models (DPGLM), a new method of nonparametric regression that accommodates continuous and categorical inputs, and responses that can be modeled by a generalized linear model. We prove conditions for the asymptotic unbiasedness of the DP-GLM regression mean function estimate. We also give examples for when those conditions hold, including models for compactly supported continuous distributions and a model with continuous covariates and categorical response. We empirically analyze the properties of the DP-GLM and why it provides better results than existing Dirichlet process mixture regression models. We evaluate DP-GLM on several data sets, comparing it to modern methods of nonparametric regression like CART, Bayesian trees and Gaussian processes. Compared to existing techniques, the DP-GLM provides a single model (and corresponding inference algorithms) that performs well in many regression settings. Finally, we study convex stochastic search problems where a noisy objective function value is observed after a decision is made. There are many stochastic search problems whose behavior depends on an exogenous state variable which affects the shape of the objective function. Currently, there is no general purpose algorithm to solve this class of problems. We use nonparametric density estimation to take observations from the joint state-outcome distribution and use them to infer the optimal decision for a given query state. We propose two solution methods that depend on the problem characteristics: function-based and gradient-based optimization. We examine two weighting schemes, kernel-based weights and Dirichlet process-based weights, for use with the solution methods. The weights and solution methods are tested on a synthetic multi-product newsvendor problem and the hour-ahead wind commitment problem. Our results show that in some cases Dirichlet process weights offer substantial benefits over kernel based weights and more generally that nonparametric estimation methods provide good solutions to otherwise intractable problems.
DOUAR: A new three-dimensional creeping flow numerical model for the solution of geological problems
NASA Astrophysics Data System (ADS)
Braun, Jean; Thieulot, Cédric; Fullsack, Philippe; DeKool, Marthijn; Beaumont, Christopher; Huismans, Ritske
2008-12-01
We present a new finite element code for the solution of the Stokes and energy (or heat transport) equations that has been purposely designed to address crustal-scale to mantle-scale flow problems in three dimensions. Although it is based on an Eulerian description of deformation and flow, the code, which we named DOUAR ('Earth' in Breton language), has the ability to track interfaces and, in particular, the free surface, by using a dual representation based on a set of particles placed on the interface and the computation of a level set function on the nodes of the finite element grid, thus ensuring accuracy and efficiency. The code also makes use of a new method to compute the dynamic Delaunay triangulation connecting the particles based on non-Euclidian, curvilinear measure of distance, ensuring that the density of particles remains uniform and/or dynamically adapted to the curvature of the interface. The finite element discretization is based on a non-uniform, yet regular octree division of space within a unit cube that allows efficient adaptation of the finite element discretization, i.e. in regions of strong velocity gradient or high interface curvature. The finite elements are cubes (the leaves of the octree) in which a q1- p0 interpolation scheme is used. Nodal incompatibilities across faces separating elements of differing size are dealt with by introducing linear constraints among nodal degrees of freedom. Discontinuities in material properties across the interfaces are accommodated by the use of a novel method (which we called divFEM) to integrate the finite element equations in which the elemental volume is divided by a local octree to an appropriate depth (resolution). A variety of rheologies have been implemented including linear, non-linear and thermally activated creep and brittle (or plastic) frictional deformation. A simple smoothing operator has been defined to avoid checkerboard oscillations in pressure that tend to develop when using a highly irregular octree discretization and the tri-linear (or q1- p0) finite element. A three-dimensional cloud of particles is used to track material properties that depend on the integrated history of deformation (the integrated strain, for example); its density is variable and dynamically adapted to the computed flow. The large system of algebraic equations that results from the finite element discretization and linearization of the basic partial differential equations is solved using a multi-frontal massively parallel direct solver that can efficiently factorize poorly conditioned systems resulting from the highly non-linear rheology and the presence of the free surface. The code is almost entirely parallelized. We present example results including the onset of a Rayleigh-Taylor instability, the indentation of a rigid-plastic material and the formation of a fold beneath a free eroding surface, that demonstrate the accuracy, efficiency and appropriateness of the new code to solve complex geodynamical problems in three dimensions.
IETI – Isogeometric Tearing and Interconnecting
Kleiss, Stefan K.; Pechstein, Clemens; Jüttler, Bert; Tomar, Satyendra
2012-01-01
Finite Element Tearing and Interconnecting (FETI) methods are a powerful approach to designing solvers for large-scale problems in computational mechanics. The numerical simulation problem is subdivided into a number of independent sub-problems, which are then coupled in appropriate ways. NURBS- (Non-Uniform Rational B-spline) based isogeometric analysis (IGA) applied to complex geometries requires to represent the computational domain as a collection of several NURBS geometries. Since there is a natural decomposition of the computational domain into several subdomains, NURBS-based IGA is particularly well suited for using FETI methods. This paper proposes the new IsogEometric Tearing and Interconnecting (IETI) method, which combines the advanced solver design of FETI with the exact geometry representation of IGA. We describe the IETI framework for two classes of simple model problems (Poisson and linearized elasticity) and discuss the coupling of the subdomains along interfaces (both for matching interfaces and for interfaces with T-joints, i.e. hanging nodes). Special attention is paid to the construction of a suitable preconditioner for the iterative linear solver used for the interface problem. We report several computational experiments to demonstrate the performance of the proposed IETI method. PMID:24511167
ANNIT - An Efficient Inversion Algorithm based on Prediction Principles
NASA Astrophysics Data System (ADS)
Růžek, B.; Kolář, P.
2009-04-01
Solution of inverse problems represents meaningful job in geophysics. The amount of data is continuously increasing, methods of modeling are being improved and the computer facilities are also advancing great technical progress. Therefore the development of new and efficient algorithms and computer codes for both forward and inverse modeling is still up to date. ANNIT is contributing to this stream since it is a tool for efficient solution of a set of non-linear equations. Typical geophysical problems are based on parametric approach. The system is characterized by a vector of parameters p, the response of the system is characterized by a vector of data d. The forward problem is usually represented by unique mapping F(p)=d. The inverse problem is much more complex and the inverse mapping p=G(d) is available in an analytical or closed form only exceptionally and generally it may not exist at all. Technically, both forward and inverse mapping F and G are sets of non-linear equations. ANNIT solves such situation as follows: (i) joint subspaces {pD, pM} of original data and model spaces D, M, resp. are searched for, within which the forward mapping F is sufficiently smooth that the inverse mapping G does exist, (ii) numerical approximation of G in subspaces {pD, pM} is found, (iii) candidate solution is predicted by using this numerical approximation. ANNIT is working in an iterative way in cycles. The subspaces {pD, pM} are searched for by generating suitable populations of individuals (models) covering data and model spaces. The approximation of the inverse mapping is made by using three methods: (a) linear regression, (b) Radial Basis Function Network technique, (c) linear prediction (also known as "Kriging"). The ANNIT algorithm has built in also an archive of already evaluated models. Archive models are re-used in a suitable way and thus the number of forward evaluations is minimized. ANNIT is now implemented both in MATLAB and SCILAB. Numerical tests show good performance of the algorithm. Both versions and documentation are available on Internet and anybody can download them. The goal of this presentation is to offer the algorithm and computer codes for anybody interested in the solution to inverse problems.
A note on convergence of solutions of total variation regularized linear inverse problems
NASA Astrophysics Data System (ADS)
Iglesias, José A.; Mercier, Gwenael; Scherzer, Otmar
2018-05-01
In a recent paper by Chambolle et al (2017 Inverse Problems 33 015002) it was proven that if the subgradient of the total variation at the noise free data is not empty, the level-sets of the total variation denoised solutions converge to the level-sets of the noise free data with respect to the Hausdorff distance. The condition on the subgradient corresponds to the source condition introduced by Burger and Osher (2007 Multiscale Model. Simul. 6 365–95), who proved convergence rates results with respect to the Bregman distance under this condition. We generalize the result of Chambolle et al to total variation regularization of general linear inverse problems under such a source condition. As particular applications we present denoising in bounded and unbounded, convex and non convex domains, deblurring and inversion of the circular Radon transform. In all these examples the convergence result applies. Moreover, we illustrate the convergence behavior through numerical examples.
Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis
NASA Astrophysics Data System (ADS)
Rahman, M. A.; Ahmed, U.; Uddin, M. S.
2013-08-01
A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement
DataView: a computational visualisation system for multidisciplinary design and analysis
NASA Astrophysics Data System (ADS)
Wang, Chengen
2016-01-01
Rapidly processing raw data and effectively extracting underlining information from huge volumes of multivariate data become essential to all decision-making processes in sectors like finance, government, medical care, climate analysis, industries, science, etc. Remarkably, visualisation is recognised as a fundamental technology that props up human comprehension, cognition and utilisation of burgeoning amounts of heterogeneous data. This paper presents a computational visualisation system, named DataView, which has been developed for graphically displaying and capturing outcomes of multiphysics problem-solvers widely used in engineering fields. The DataView is functionally composed of techniques for table/diagram representation, and graphical illustration of scalar, vector and tensor fields. The field visualisation techniques are implemented on the basis of a range of linear and non-linear meshes, which flexibly adapts to disparate data representation schemas adopted by a variety of disciplinary problem-solvers. The visualisation system has been successfully applied to a number of engineering problems, of which some illustrations are presented to demonstrate effectiveness of the visualisation techniques.
Interpolation problem for the solutions of linear elasticity equations based on monogenic functions
NASA Astrophysics Data System (ADS)
Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii
2017-11-01
Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.
Feasibility of Decentralized Linear-Quadratic-Gaussian Control of Autonomous Distributed Spacecraft
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell
1999-01-01
A distributed satellite formation, modeled as an arbitrary number of fully connected nodes in a network, could be controlled using a decentralized controller framework that distributes operations in parallel over the network. For such problems, a solution that minimizes data transmission requirements, in the context of linear-quadratic-Gaussian (LQG) control theory, was given by Speyer. This approach is advantageous because it is non-hierarchical, detected failures gracefully degrade system performance, fewer local computations are required than for a centralized controller, and it is optimal with respect to the standard LQG cost function. Disadvantages of the approach are the need for a fully connected communications network, the total operations performed over all the nodes are greater than for a centralized controller, and the approach is formulated for linear time-invariant systems. To investigate the feasibility of the decentralized approach to satellite formation flying, a simple centralized LQG design for a spacecraft orbit control problem is adapted to the decentralized framework. The simple design uses a fixed reference trajectory (an equatorial, Keplerian, circular orbit), and by appropriate choice of coordinates and measurements is formulated as a linear time-invariant system.
Transient reaction of an elastic half-plane on a source of a concentrated boundary disturbance
NASA Astrophysics Data System (ADS)
Okonechnikov, A. S.; Tarlakovski, D. V.; Ul'yashina, A. N.; Fedotenkov, G. V.
2016-11-01
One of the key problems in studying the non-stationary processes of solid mechanics is obtaining of influence functions. These functions serve as solutions for the problems of effect of sudden concentrated loads on a body with linear elastic properties. Knowledge of the influence functions allows us to obtain the solutions for the problems with non-mixed boundary and initial conditions in the form of quadrature formulae with the help of superposition principle, as well as get the integral governing equations for the problems with mixed boundary and initial conditions. This paper offers explicit derivations for all nonstationary surface influence functions of an elastic half-plane in a plane strain condition. It is achieved with the help of combined inverse transform of a Fourier-Laplace integral transformation. The external disturbance is both dynamic and kinematic. The derived functions in xτ-domain are studied to find and describe singularities and are supplemented with graphs.
The problem of natural funnel asymmetries: a simulation analysis of meta-analysis in macroeconomics.
Callot, Laurent; Paldam, Martin
2011-06-01
Effect sizes in macroeconomic are estimated by regressions on data published by statistical agencies. Funnel plots are a representation of the distribution of the resulting regression coefficients. They are normally much wider than predicted by the t-ratio of the coefficients and often asymmetric. The standard method of meta-analysts in economics assumes that the asymmetries are because of publication bias causing censoring and adjusts the average accordingly. The paper shows that some funnel asymmetries may be 'natural' so that they occur without censoring. We investigate such asymmetries by simulating funnels by pairs of data generating processes (DGPs) and estimating models (EMs), in which the EM has the problem that it disregards a property of the DGP. The problems are data dependency, structural breaks, non-normal residuals, non-linearity, and omitted variables. We show that some of these problems generate funnel asymmetries. When they do, the standard method often fails. Copyright © 2011 John Wiley & Sons, Ltd. Copyright © 2011 John Wiley & Sons, Ltd.
Individual Differences: Implications for Web-Based Learning Design
ERIC Educational Resources Information Center
Alomyan, Hesham
2004-01-01
In the past ten years the Web has attracted many educators for purposes of teaching and learning. The main advantage of the Web lies in its non-linear interaction. That is, students can have more control over their learning paths. However, this freedom of control may cause problems for some students, such as disorientation, cognitive overload and…
ERIC Educational Resources Information Center
Foley, Greg
2011-01-01
Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…
Heat kernel for the elliptic system of linear elasticity with boundary conditions
NASA Astrophysics Data System (ADS)
Taylor, Justin; Kim, Seick; Brown, Russell
2014-10-01
We consider the elliptic system of linear elasticity with bounded measurable coefficients in a domain where the second Korn inequality holds. We construct heat kernel of the system subject to Dirichlet, Neumann, or mixed boundary condition under the assumption that weak solutions of the elliptic system are Hölder continuous in the interior. Moreover, we show that if weak solutions of the mixed problem are Hölder continuous up to the boundary, then the corresponding heat kernel has a Gaussian bound. In particular, if the domain is a two dimensional Lipschitz domain satisfying a corkscrew or non-tangential accessibility condition on the set where we specify Dirichlet boundary condition, then we show that the heat kernel has a Gaussian bound. As an application, we construct Green's function for elliptic mixed problem in such a domain.
Kasten, Florian H; Negahbani, Ehsan; Fröhlich, Flavio; Herrmann, Christoph S
2018-05-31
Amplitude modulated transcranial alternating current stimulation (AM-tACS) has been recently proposed as a possible solution to overcome the pronounced stimulation artifact encountered when recording brain activity during tACS. In theory, AM-tACS does not entail power at its modulating frequency, thus avoiding the problem of spectral overlap between brain signal of interest and stimulation artifact. However, the current study demonstrates how weak non-linear transfer characteristics inherent to stimulation and recording hardware can reintroduce spurious artifacts at the modulation frequency. The input-output transfer functions (TFs) of different stimulation setups were measured. Setups included recordings of signal-generator and stimulator outputs and M/EEG phantom measurements. 6 th -degree polynomial regression models were fitted to model the input-output TFs of each setup. The resulting TF models were applied to digitally generated AM-tACS signals to predict the frequency of spurious artifacts in the spectrum. All four setups measured for the study exhibited low-frequency artifacts at the modulation frequency and its harmonics when recording AM-tACS. Fitted TF models showed non-linear contributions significantly different from zero (all p < .05) and successfully predicted the frequency of artifacts observed in AM-signal recordings. Results suggest that even weak non-linearities of stimulation and recording hardware can lead to spurious artifacts at the modulation frequency and its harmonics. These artifacts were substantially larger than alpha-oscillations of a human subject in the MEG. Findings emphasize the need for more linear stimulation devices for AM-tACS and careful analysis procedures, taking into account low-frequency artifacts to avoid confusion with effects of AM-tACS on the brain. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanan, P.; Schnepp, S. M.; May, D.; Schenk, O.
2014-12-01
Geophysical applications require efficient forward models for non-linear Stokes flow on high resolution spatio-temporal domains. The bottleneck in applying the forward model is solving the linearized, discretized Stokes problem which takes the form of a large, indefinite (saddle point) linear system. Due to the heterogeniety of the effective viscosity in the elliptic operator, devising effective preconditioners for saddle point problems has proven challenging and highly problem-dependent. Nevertheless, at least three approaches show promise for preconditioning these difficult systems in an algorithmically scalable way using multigrid and/or domain decomposition techniques. The first is to work with a hierarchy of coarser or smaller saddle point problems. The second is to use the Schur complement method to decouple and sequentially solve for the pressure and velocity. The third is to use the Schur decomposition to devise preconditioners for the full operator. These involve sub-solves resembling inexact versions of the sequential solve. The choice of approach and sub-methods depends crucially on the motivating physics, the discretization, and available computational resources. Here we examine the performance trade-offs for preconditioning strategies applied to idealized models of mantle convection and lithospheric dynamics, characterized by large viscosity gradients. Due to the arbitrary topological structure of the viscosity field in geodynamical simulations, we utilize low order, inf-sup stable mixed finite element spatial discretizations which are suitable when sharp viscosity variations occur in element interiors. Particular attention is paid to possibilities within the decoupled and approximate Schur complement factorization-based monolithic approaches to leverage recently-developed flexible, communication-avoiding, and communication-hiding Krylov subspace methods in combination with `heavy' smoothers, which require solutions of large per-node sub-problems, well-suited to solution on hybrid computational clusters. To manage the combinatorial explosion of solver options (which include hybridizations of all the approaches mentioned above), we leverage the modularity of the PETSc library.
NASA Technical Reports Server (NTRS)
Kutepov, A. A.; Feofilov, A. G.; Manuilova, R. O.; Yankovsky, V. A.; Rezac, L.; Pesnell, W. D.; Goldberg, R. A.
2008-01-01
The Accelerated Lambda Iteration (ALI) technique was developed in stellar astrophysics at the beginning of 1990s for solving the non-LTE radiative transfer problem in atomic lines and multiplets in stellar atmospheres. It was later successfully applied to modeling the non-LTE emissions and radiative cooling/heating in the vibrational-rotational bands of molecules in planetary atmospheres. Similar to the standard lambda iterations ALI operates with the matrices of minimal dimension. However, it provides higher convergence rate and stability due to removing from the iterating process the photons trapped in the optically thick line cores. In the current ALI-ARMS (ALI for Atmospheric Radiation and Molecular Spectra) code version additional acceleration of calculations is provided by utilizing the opacity distribution function (ODF) approach and "decoupling". The former allows replacing the band branches by single lines of special shape, whereas the latter treats non-linearity caused by strong near-resonant vibration-vibrational level coupling without additional linearizing the statistical equilibrium equations. Latest code application for the non-LTE diagnostics of the molecular band emissions of Earth's and Martian atmospheres as well as for the non-LTE IR cooling/heating calculations are discussed.
A boundary-value problem for a first-order hyperbolic system in a two-dimensional domain
NASA Astrophysics Data System (ADS)
Zhura, N. A.; Soldatov, A. P.
2017-06-01
We consider a strictly hyperbolic first-order system of three equations with constant coefficients in a bounded piecewise-smooth domain. The boundary of the domain is assumed to consist of six smooth non-characteristic arcs. A boundary-value problem in this domain is posed by alternately prescribing one or two linear combinations of the components of the solution on these arcs. We show that this problem has a unique solution under certain additional conditions on the coefficients of these combinations, the boundary of the domain and the behaviour of the solution near the characteristics passing through the corner points of the domain.
Computational approach to Thornley's problem by bivariate operational calculus
NASA Astrophysics Data System (ADS)
Bazhlekova, E.; Dimovski, I.
2012-10-01
Thornley's problem is an initial-boundary value problem with a nonlocal boundary condition for linear onedimensional reaction-diffusion equation, used as a mathematical model of spiral phyllotaxis in botany. Applying a bivariate operational calculus we find explicit representation of the solution, containing two convolution products of special solutions and the arbitrary initial and boundary functions. We use a non-classical convolution with respect to the space variable, extending in this way the classical Duhamel principle. The special solutions involved are represented in the form of fast convergent series. Numerical examples are considered to show the application of the present technique and to analyze the character of the solution.
Mechanically fastened composite laminates subjected to combined bearing-bypass and shear loading
NASA Technical Reports Server (NTRS)
Madenci, Erdogan
1993-01-01
Bolts and rivets provide a means of load transfer in the construction of aircraft. However, they give rise to stress concentrations and are often the source and location of static and fatigue failures. Furthermore, fastener holes are prone to cracks during take-off and landing. These cracks present the most common origin of structural failures in aircraft. Therefore, accurate determination of the contact stresses associated with such loaded holes in mechanically fastened joints is essential to reliable strength evaluation and failure prediction. As the laminate is subjected to loading, the contact region, whose extent is not known, develops between the fastener and the hole boundary through this contact region, which consists of slip and no-slip zones due to friction. The presence of the unknown contact stress distribution over the contact region between the pin and the composite laminate, material anisotropy, friction between the pin and the laminate, pin-hole clearance, combined bearing-bypass and shear loading, and finite geometry of the laminate result in a complex non-linear problem. In the case of bearing-bypass loading in compression, this non-linear problem is further complicated by the presence of dual contact regions. Previous research concerning the analysis of mechanical joints subjected to combined bearing-bypass and shear loading is non-existent. In the case of bearing-bypass loading only, except for the study conducted by Naik and Crews (1991), others employed the concept of superposition which is not valid for this non-linear problem. Naik and Crews applied a linear finite element analysis with conditions along the pin-hole contact region specified as displacement constraint equations. The major shortcoming of this method is that the variation of the contract region as a function of the applied load should be known a priori. Also, their analysis is limited to symmetric geometry and material systems, and frictionless boundary conditions. Since the contact stress distribution and the contact region are not known a priori, they did not directly impose the boundary conditions appropriate for modelling the contact and on-contact regions between the fastener and the hole. Furthermore, finite element analysis is not suitable for iterative design calculations for optimizing laminate construction in the presence of fasteners under complex loading conditions. In this study, the solution method developed by Madenci and Ileri (1992a,b) has been extended to determine the contact stresses in mechanical joints under combined bearing-bypass and shear loading, and bearing-bypass loading in compression resulting in dual contact regions.
Reduced-order model based feedback control of the modified Hasegawa-Wakatani model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goumiri, I. R.; Rowley, C. W.; Ma, Z.
2013-04-15
In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modified Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in flow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then, a model-based feedback controller is designed for the reduced order model using linear quadratic regulators. Finally, a linear quadratic Gaussian controller which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHW equations to stabilizemore » the equilibrium and suppress the transition to drift-wave induced turbulence.« less
Reduced-Order Model Based Feedback Control For Modified Hasegawa-Wakatani Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goumiri, I. R.; Rowley, C. W.; Ma, Z.
2013-01-28
In this work, the development of model-based feedback control that stabilizes an unstable equilibrium is obtained for the Modi ed Hasegawa-Wakatani (MHW) equations, a classic model in plasma turbulence. First, a balanced truncation (a model reduction technique that has proven successful in ow control design problems) is applied to obtain a low dimensional model of the linearized MHW equation. Then a modelbased feedback controller is designed for the reduced order model using linear quadratic regulators (LQR). Finally, a linear quadratic gaussian (LQG) controller, which is more resistant to disturbances is deduced. The controller is applied on the non-reduced, nonlinear MHWmore » equations to stabilize the equilibrium and suppress the transition to drift-wave induced turbulence.« less
NASA Astrophysics Data System (ADS)
Ibrahim, Wubshet
2018-03-01
This article numerically examines three dimensional boundary layer flow of a rotating Powell-Eyring nanofluid. In modeling heat transfer processes, non-Fourier heat flux theory and for mass transfer non-Fick's mass flux theory are employed. This theory is recently re-initiated and it becomes the active research area to resolves some drawback associated with the famous Fourier heat flux and mass flux theory. The mathematical model of the flow problem is a system of non-linear partial differential equations which are obtained using the boundary layer analysis. The non-linear partial differential equations have been transformed into non-linear high order ordinary differential equations using similarity transformation. Employing bvp4c algorithm from matlab software routine, the numerical solution of the transformed ordinary differential equations is obtained. The governing equations are constrained by parameters such as rotation parameter λ , the non-Newtonian parameter N, dimensionless thermal relaxation and concentration relaxation parameters δt and δc . The impacts of these parameters have been discussed thoroughly and illustrated using graphs and tables. The findings show that thermal relaxation time δt reduces the thermal and concentration boundary layer thickness. Further, the results reveal that the rotational parameter λ has the effect of decreasing the velocity boundary layer thickness in both x and y directions. Further examination pinpoints that the skin friction coefficient along x-axis is an increasing and skin friction coefficient along y-axis is a decreasing function of rotation parameter λ . Furthermore, the non-Newtonian fluid parameter N has the characteristic of reducing the amount of local Nusselt numbers -f″ (0) and -g″ (0) both in x and y -directions.
Bias correction for rainrate retrievals from satellite passive microwave sensors
NASA Technical Reports Server (NTRS)
Short, David A.
1990-01-01
Rainrates retrieved from past and present satellite-borne microwave sensors are affected by a fundamental remote sensing problem. Sensor fields-of-view are typically large enough to encompass substantial rainrate variability, whereas the retrieval algorithms, based on radiative transfer calculations, show a non-linear relationship between rainrate and microwave brightness temperature. Retrieved rainrates are systematically too low. A statistical model of the bias problem shows that bias correction factors depend on the probability distribution of instantaneous rainrate and on the average thickness of the rain layer.
NASA Technical Reports Server (NTRS)
Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian
2011-01-01
We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.
Operational method of solution of linear non-integer ordinary and partial differential equations.
Zhukovsky, K V
2016-01-01
We propose operational method with recourse to generalized forms of orthogonal polynomials for solution of a variety of differential equations of mathematical physics. Operational definitions of generalized families of orthogonal polynomials are used in this context. Integral transforms and the operational exponent together with some special functions are also employed in the solutions. The examples of solution of physical problems, related to such problems as the heat propagation in various models, evolutional processes, Black-Scholes-like equations etc. are demonstrated by the operational technique.
Comparison of lossless compression techniques for prepress color images
NASA Astrophysics Data System (ADS)
Van Assche, Steven; Denecker, Koen N.; Philips, Wilfried R.; Lemahieu, Ignace L.
1998-12-01
In the pre-press industry color images have both a high spatial and a high color resolution. Such images require a considerable amount of storage space and impose long transmission times. Data compression is desired to reduce these storage and transmission problems. Because of the high quality requirements in the pre-press industry only lossless compression is acceptable. Most existing lossless compression schemes operate on gray-scale images. In this case the color components of color images must be compressed independently. However, higher compression ratios can be achieved by exploiting inter-color redundancies. In this paper we present a comparison of three state-of-the-art lossless compression techniques which exploit such color redundancies: IEP (Inter- color Error Prediction) and a KLT-based technique, which are both linear color decorrelation techniques, and Interframe CALIC, which uses a non-linear approach to color decorrelation. It is shown that these techniques are able to exploit color redundancies and that color decorrelation can be done effectively and efficiently. The linear color decorrelators provide a considerable coding gain (about 2 bpp) on some typical prepress images. The non-linear interframe CALIC predictor does not yield better results, but the full interframe CALIC technique does.
NASA Astrophysics Data System (ADS)
Zhang, Xingong; Yin, Yunqiang; Wu, Chin-Chia
2017-01-01
There is a situation found in many manufacturing systems, such as steel rolling mills, fire fighting or single-server cycle-queues, where a job that is processed later consumes more time than that same job when processed earlier. The research finds that machine maintenance can improve the worsening of processing conditions. After maintenance activity, the machine will be restored. The maintenance duration is a positive and non-decreasing differentiable convex function of the total processing times of the jobs between maintenance activities. Motivated by this observation, the makespan and the total completion time minimization problems in the scheduling of jobs with non-decreasing rates of job processing time on a single machine are considered in this article. It is shown that both the makespan and the total completion time minimization problems are NP-hard in the strong sense when the number of maintenance activities is arbitrary, while the makespan minimization problem is NP-hard in the ordinary sense when the number of maintenance activities is fixed. If the deterioration rates of the jobs are identical and the maintenance duration is a linear function of the total processing times of the jobs between maintenance activities, then this article shows that the group balance principle is satisfied for the makespan minimization problem. Furthermore, two polynomial-time algorithms are presented for solving the makespan problem and the total completion time problem under identical deterioration rates, respectively.
Cooperative path following control of multiple nonholonomic mobile robots.
Cao, Ke-Cai; Jiang, Bin; Yue, Dong
2017-11-01
Cooperative path following control problem of multiple nonholonomic mobile robots has been considered in this paper. Based on the framework of decomposition, the cooperative path following problem has been transformed into path following problem and cooperative control problem; Then cascaded theory of non-autonomous system has been employed in the design of controllers without resorting to feedback linearization. One time-varying coordinate transformation based on dilation has been introduced to solve the uncontrollable problem of nonholonomic robots when the whole group's reference converges to stationary point. Cooperative path following controllers for nonholonomic robots have been proposed under persistent reference or reference target that converges to stationary point respectively. Simulation results using Matlab have illustrated the effectiveness of the obtained theoretical results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Menu-Driven Solver Of Linear-Programming Problems
NASA Technical Reports Server (NTRS)
Viterna, L. A.; Ferencz, D.
1992-01-01
Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).
NASA Astrophysics Data System (ADS)
Cloninger, Alexander; Czaja, Wojciech; Doster, Timothy
2017-07-01
As the popularity of non-linear manifold learning techniques such as kernel PCA and Laplacian Eigenmaps grows, vast improvements have been seen in many areas of data processing, including heterogeneous data fusion and integration. One problem with the non-linear techniques, however, is the lack of an easily calculable pre-image. Existence of such pre-image would allow visualization of the fused data not only in the embedded space, but also in the original data space. The ability to make such comparisons can be crucial for data analysts and other subject matter experts who are the end users of novel mathematical algorithms. In this paper, we propose a pre-image algorithm for Laplacian Eigenmaps. Our method offers major improvements over existing techniques, which allow us to address the problem of noisy inputs and the issue of how to calculate the pre-image of a point outside the convex hull of training samples; both of which have been overlooked in previous studies in this field. We conclude by showing that our pre-image algorithm, combined with feature space rotations, allows us to recover occluded pixels of an imaging modality based off knowledge of that image measured by heterogeneous modalities. We demonstrate this data recovery on heterogeneous hyperspectral (HS) cameras, as well as by recovering LIDAR measurements from HS data.
Non-Singular Dislocation Elastic Fields and Linear Elastic Fracture Mechanics
NASA Astrophysics Data System (ADS)
Korsunsky, Alexander M.
2010-03-01
One of the hallmarks of the traditional linear elastic fracture mechanics (LEFM) is the presence of an (integrable) inverse square root singularity of strains and stresses in the vicinity of the crack tip. It is the presence of this singularity that necessitates the introduction of the concepts of stress intensity factor (and its critical value, the fracture toughness) and the energy release rate (and material toughness). This gives rise to the Griffith theory of strength that includes, apart from applied stresses, the considerations of defect size and geometry. A highly successful framework for the solution of crack problems, particularly in the two-dimensional case, due to Muskhelishvili (1953), Bilby and Eshelby (1968) and others, relies on the mathematical concept of dislocation. Special analytical and numerical methods of dealing with the characteristic 1/r (Cauchy) singularity occupy a prominent place within this theory. Recently, in a different context of dislocation dynamics simulations, Cai et al. (2006) proposed a novel means of removing the singularity associated with the dislocation core, by introducing a blunting radius parameter a into the expressions for elastic fields. Here, using the example of two-dimensional elasticity, we demonstrate how the adoption of the similar mathematically expedient tool leads naturally to a non-singular formulation of fracture mechanics problems. This opens an efficient means of treating a variety of crack problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capela, Fabio; Ramazanov, Sabir, E-mail: fc403@cam.ac.uk, E-mail: Sabir.Ramazanov@ulb.ac.be
At large scales and for sufficiently early times, dark matter is described as a pressureless perfect fluid—dust— non-interacting with Standard Model fields. These features are captured by a simple model with two scalars: a Lagrange multiplier and another playing the role of the velocity potential. That model arises naturally in some gravitational frameworks, e.g., the mimetic dark matter scenario. We consider an extension of the model by means of higher derivative terms, such that the dust solutions are preserved at the background level, but there is a non-zero sound speed at the linear level. We associate this Modified Dust withmore » dark matter, and study the linear evolution of cosmological perturbations in that picture. The most prominent effect is the suppression of their power spectrum for sufficiently large cosmological momenta. This can be relevant in view of the problems that cold dark matter faces at sub-galactic scales, e.g., the missing satellites problem. At even shorter scales, however, perturbations of Modified Dust are enhanced compared to the predictions of more common particle dark matter scenarios. This is a peculiarity of their evolution in radiation dominated background. We also briefly discuss clustering of Modified Dust. We write the system of equations in the Newtonian limit, and sketch the possible mechanism which could prevent the appearance of caustic singularities. The same mechanism may be relevant in light of the core-cusp problem.« less
NASA Astrophysics Data System (ADS)
Albert, Carlo; Ulzega, Simone; Stoop, Ruedi
2016-04-01
Measured time-series of both precipitation and runoff are known to exhibit highly non-trivial statistical properties. For making reliable probabilistic predictions in hydrology, it is therefore desirable to have stochastic models with output distributions that share these properties. When parameters of such models have to be inferred from data, we also need to quantify the associated parametric uncertainty. For non-trivial stochastic models, however, this latter step is typically very demanding, both conceptually and numerically, and always never done in hydrology. Here, we demonstrate that methods developed in statistical physics make a large class of stochastic differential equation (SDE) models amenable to a full-fledged Bayesian parameter inference. For concreteness we demonstrate these methods by means of a simple yet non-trivial toy SDE model. We consider a natural catchment that can be described by a linear reservoir, at the scale of observation. All the neglected processes are assumed to happen at much shorter time-scales and are therefore modeled with a Gaussian white noise term, the standard deviation of which is assumed to scale linearly with the system state (water volume in the catchment). Even for constant input, the outputs of this simple non-linear SDE model show a wealth of desirable statistical properties, such as fat-tailed distributions and long-range correlations. Standard algorithms for Bayesian inference fail, for models of this kind, because their likelihood functions are extremely high-dimensional intractable integrals over all possible model realizations. The use of Kalman filters is illegitimate due to the non-linearity of the model. Particle filters could be used but become increasingly inefficient with growing number of data points. Hamiltonian Monte Carlo algorithms allow us to translate this inference problem to the problem of simulating the dynamics of a statistical mechanics system and give us access to most sophisticated methods that have been developed in the statistical physics community over the last few decades. We demonstrate that such methods, along with automated differentiation algorithms, allow us to perform a full-fledged Bayesian inference, for a large class of SDE models, in a highly efficient and largely automatized manner. Furthermore, our algorithm is highly parallelizable. For our toy model, discretized with a few hundred points, a full Bayesian inference can be performed in a matter of seconds on a standard PC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooij, E.
Application of simple adaptive control (SAC) theory to the design of guidance and control systems for winged re-entry vehicles has been proven successful. To apply SAC to these non-linear and non-stationary systems, it needs to be Almost Strictly Passive (ASP), which is an extension of the Almost Strictly Positive Real (ASPR) condition for linear, time-invariant systems. To fulfill the ASP condition, the controlled, non-linear system has to be minimum-phase (i.e., the zero dynamics is stable), and there is a specific condition for the product of output and input matrix. Earlier studies indicate that even the linearised system is not ASPR.more » The two problems at hand are: 1) the system is non-minimum phase when flying with zero bank angle, and 2) whenever there is hybrid control, e.g., yaw control is established by combined reaction and aerodynamic control for the major part of flight, the second ASPR condition cannot be met. In this paper we look at both issues, the former related to the guidance system and the latter to the attitude-control system. It is concluded that whenever the nominal bank angle is zero, the passivity conditions can never be met, and guidance should be based on nominal commands and a redefinition of those whenever the error becomes too large. For the remaining part of the trajectory, the passivity conditions are marginally met, but it is proposed to add feedforward compensators to alleviate these conditions. The issue of hybrid control is avoided by redefining the controls with total control moments and adding a so-called control allocator. Deriving the passivity conditions for rotational motion, and evaluating these conditions along the trajectory shows that the (non-linear) winged entry vehicle is ASP. The sufficient conditions to apply SAC for attitude control are thus met.« less
Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles
Meyer, Arne F.; Diepenbrock, Jan-Philipp; Happel, Max F. K.; Ohl, Frank W.; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design. PMID:24699631
Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Happel, Max F K; Ohl, Frank W; Anemüller, Jörn
2014-01-01
Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and in settings where rapid adaptation is induced by experimental design.
Dyslexia and reasoning: the importance of visual processes.
Bacon, Alison M; Handley, Simon J
2010-08-01
Recent research has suggested that individuals with dyslexia rely on explicit visuospatial representations for syllogistic reasoning while most non-dyslexics opt for an abstract verbal strategy. This paper investigates the role of visual processes in relational reasoning amongst dyslexic reasoners. Expt 1 presents written and verbal protocol evidence to suggest that reasoners with dyslexia generate detailed representations of relational properties and use these to make a visual comparison of objects. Non-dyslexics use a linear array of objects to make a simple transitive inference. Expt 2 examined evidence for the visual-impedance effect which suggests that visual information detracts from reasoning leading to longer latencies and reduced accuracy. While non-dyslexics showed the impedance effects predicted, dyslexics showed only reduced accuracy on problems designed specifically to elicit imagery. Expt 3 presented problems with less semantically and visually rich content. The non-dyslexic group again showed impedance effects, but dyslexics did not. Furthermore, in both studies, visual memory predicted reasoning accuracy for dyslexic participants, but not for non-dyslexics, particularly on problems with highly visual content. The findings are discussed in terms of the importance of visual and semantic processes in reasoning for individuals with dyslexia, and we argue that these processes play a compensatory role, offsetting phonological and verbal memory deficits.
Water resources planning and management : A stochastic dual dynamic programming approach
NASA Astrophysics Data System (ADS)
Goor, Q.; Pinte, D.; Tilmant, A.
2008-12-01
Allocating water between different users and uses, including the environment, is one of the most challenging task facing water resources managers and has always been at the heart of Integrated Water Resources Management (IWRM). As water scarcity is expected to increase over time, allocation decisions among the different uses will have to be found taking into account the complex interactions between water and the economy. Hydro-economic optimization models can capture those interactions while prescribing efficient allocation policies. Many hydro-economic models found in the literature are formulated as large-scale non linear optimization problems (NLP), seeking to maximize net benefits from the system operation while meeting operational and/or institutional constraints, and describing the main hydrological processes. However, those models rarely incorporate the uncertainty inherent to the availability of water, essentially because of the computational difficulties associated stochastic formulations. The purpose of this presentation is to present a stochastic programming model that can identify economically efficient allocation policies in large-scale multipurpose multireservoir systems. The model is based on stochastic dual dynamic programming (SDDP), an extension of traditional SDP that is not affected by the curse of dimensionality. SDDP identify efficient allocation policies while considering the hydrologic uncertainty. The objective function includes the net benefits from the hydropower and irrigation sectors, as well as penalties for not meeting operational and/or institutional constraints. To be able to implement the efficient decomposition scheme that remove the computational burden, the one-stage SDDP problem has to be a linear program. Recent developments improve the representation of the non-linear and mildly non- convex hydropower function through a convex hull approximation of the true hydropower function. This model is illustrated on a cascade of 14 reservoirs on the Nile river basin.
NASA Astrophysics Data System (ADS)
Spiegelman, M.; Wilson, C. R.
2011-12-01
A quantitative theory of magma production and transport is essential for understanding the dynamics of magmatic plate boundaries, intra-plate volcanism and the geochemical evolution of the planet. It also provides one of the most challenging computational problems in solid Earth science, as it requires consistent coupling of fluid and solid mechanics together with the thermodynamics of melting and reactive flows. Considerable work on these problems over the past two decades shows that small changes in assumptions of coupling (e.g. the relationship between melt fraction and solid rheology), can have profound changes on the behavior of these systems which in turn affects critical computational choices such as discretizations, solvers and preconditioners. To make progress in exploring and understanding this physically rich system requires a computational framework that allows more flexible, high-level description of multi-physics problems as well as increased flexibility in composing efficient algorithms for solution of the full non-linear coupled system. Fortunately, recent advances in available computational libraries and algorithms provide a platform for implementing such a framework. We present results from a new model building system that leverages functionality from both the FEniCS project (www.fenicsproject.org) and PETSc libraries (www.mcs.anl.gov/petsc) along with a model independent options system and gui, Spud (amcg.ese.ic.ac.uk/Spud). Key features from FEniCS include fully unstructured FEM with a wide range of elements; a high-level language (ufl) and code generation compiler (FFC) for describing the weak forms of residuals and automatic differentiation for calculation of exact and approximate jacobians. The overall strategy is to monitor/calculate residuals and jacobians for the entire non-linear system of equations within a global non-linear solve based on PETSc's SNES routines. PETSc already provides a wide range of solvers and preconditioners, from parallel sparse direct to algebraic multigrid, that can be chosen at runtime. In particular, we make extensive use of PETSc's FieldSplit block preconditioners that allow us to use optimal solvers for subproblems (such as Stokes, or advection/diffusion of temperature) as preconditioners for the full problem. Thus these routines let us reuse effective solving recipes/splittings from previous experience while monitoring the convergence of the global problem. These techniques often yield quadratic (Newton like) convergence for the work of standard Picard schemes. We will illustrate this new framework with examples from the Magma Dynamic Demonstration suite (MADDs) of well understood magma dynamics benchmark problems including stokes flow in ridge geometries, magmatic solitary waves and shear-driven melt bands. While development of this system has been driven by magma dynamics, this framework is much more general and can be used for a wide range of PDE based multi-physics models.
Sparse distributed memory: understanding the speed and robustness of expert memory
Brogliato, Marcelo S.; Chada, Daniel M.; Linhares, Alexandre
2014-01-01
How can experts, sometimes in exacting detail, almost immediately and very precisely recall memory items from a vast repertoire? The problem in which we will be interested concerns models of theoretical neuroscience that could explain the speed and robustness of an expert's recollection. The approach is based on Sparse Distributed Memory, which has been shown to be plausible, both in a neuroscientific and in a psychological manner, in a number of ways. A crucial characteristic concerns the limits of human recollection, the “tip-of-tongue” memory event—which is found at a non-linearity in the model. We expand the theoretical framework, deriving an optimization formula to solve this non-linearity. Numerical results demonstrate how the higher frequency of rehearsal, through work or study, immediately increases the robustness and speed associated with expert memory. PMID:24808842
Fasmer, Ole Bernt; Mjeldheim, Kristin; Førland, Wenche; Hansen, Anita L; Syrstad, Vigdis Elin Giæver; Oedegaard, Ketil J; Berle, Jan Øystein
2016-08-11
Attention Deficit Hyperactivity Disorder (ADHD) is a heterogeneous disorder. Therefore it is important to look for factors that can contribute to better diagnosis and classification of these patients. The aims of the study were to characterize adult psychiatric out-patients with a mixture of mood, anxiety and attentional problems using an objective neuropsychological test of attention combined with an assessment of mood instability. Newly referred patients (n = 99; aged 18-65 years) requiring diagnostic evaluation of ADHD, mood or anxiety disorders were recruited, and were given a comprehensive diagnostic evaluation including the self-report form of the cyclothymic temperament scale and Conner's Continuous Performance Test II (CPT-II). In addition to the traditional measures from this test we have extracted raw data and analysed time series using linear and non-linear mathematical methods. Fifty patients fulfilled criteria for ADHD, while 49 did not, and were given other psychiatric diagnoses (clinical controls). When compared to the clinical controls the ADHD patients had more omission and commission errors, and higher reaction time variability. Analyses of response times showed higher values for skewness in the ADHD patients, and lower values for sample entropy and symbolic dynamics. Among the ADHD patients 59 % fulfilled criteria for a cyclothymic temperament, and this group had higher reaction time variability and lower scores on complexity than the group without this temperament. The CPT-II is a useful instrument in the assessment of ADHD in adult patients. Additional information from this test was obtained by analyzing response times using linear and non-linear methods, and this showed that ADHD patients with a cyclothymic temperament were different from those without this temperament.
Statistical mechanics of competitive resource allocation using agent-based models
NASA Astrophysics Data System (ADS)
Chakraborti, Anirban; Challet, Damien; Chatterjee, Arnab; Marsili, Matteo; Zhang, Yi-Cheng; Chakrabarti, Bikas K.
2015-01-01
Demand outstrips available resources in most situations, which gives rise to competition, interaction and learning. In this article, we review a broad spectrum of multi-agent models of competition (El Farol Bar problem, Minority Game, Kolkata Paise Restaurant problem, Stable marriage problem, Parking space problem and others) and the methods used to understand them analytically. We emphasize the power of concepts and tools from statistical mechanics to understand and explain fully collective phenomena such as phase transitions and long memory, and the mapping between agent heterogeneity and physical disorder. As these methods can be applied to any large-scale model of competitive resource allocation made up of heterogeneous adaptive agent with non-linear interaction, they provide a prospective unifying paradigm for many scientific disciplines.
NASA Astrophysics Data System (ADS)
Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.
2018-01-01
The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.
NASA Astrophysics Data System (ADS)
van Berkel, M.; Kobayashi, T.; Igami, H.; Vandersteen, G.; Hogeweij, G. M. D.; Tanaka, K.; Tamura, N.; Zwart, H. J.; Kubo, S.; Ito, S.; Tsuchiya, H.; de Baar, M. R.; LHD Experiment Group
2017-12-01
A new methodology to analyze non-linear components in perturbative transport experiments is introduced. The methodology has been experimentally validated in the Large Helical Device for the electron heat transport channel. Electron cyclotron resonance heating with different modulation frequencies by two gyrotrons has been used to directly quantify the amplitude of the non-linear component at the inter-modulation frequencies. The measurements show significant quadratic non-linear contributions and also the absence of cubic and higher order components. The non-linear component is analyzed using the Volterra series, which is the non-linear generalization of transfer functions. This allows us to study the radial distribution of the non-linearity of the plasma and to reconstruct linear profiles where the measurements were not distorted by non-linearities. The reconstructed linear profiles are significantly different from the measured profiles, demonstrating the significant impact that non-linearity can have.
Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde
2015-11-01
The problem of coexistence and dynamical behaviors of multiple equilibrium points is addressed for a class of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. By virtue of the fixed point theorem, nonsmooth analysis theory and other analytical tools, some sufficient conditions are established to guarantee that such n-dimensional memristive Cohen-Grossberg neural networks can have 5(n) equilibrium points, among which 3(n) equilibrium points are locally exponentially stable. It is shown that greater storage capacity can be achieved by neural networks with the non-monotonic activation functions introduced herein than the ones with Mexican-hat-type activation function. In addition, unlike most existing multistability results of neural networks with monotonic activation functions, those obtained 3(n) locally stable equilibrium points are located both in saturated regions and unsaturated regions. The theoretical findings are verified by an illustrative example with computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Compatible diagonal-norm staggered and upwind SBP operators
NASA Astrophysics Data System (ADS)
Mattsson, Ken; O'Reilly, Ossian
2018-01-01
The main motivation with the present study is to achieve a provably stable high-order accurate finite difference discretisation of linear first-order hyperbolic problems on a staggered grid. The use of a staggered grid makes it non-trivial to discretise advective terms. To overcome this difficulty we discretise the advective terms using upwind Summation-By-Parts (SBP) operators, while the remaining terms are discretised using staggered SBP operators. The upwind and staggered SBP operators (for each order of accuracy) are compatible, here meaning that they are based on the same diagonal norms, allowing for energy estimates to be formulated. The boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP-SAT approximations lead to fully explicit ODE systems. The accuracy and stability properties are demonstrated for linear hyperbolic problems in 1D, and for the 2D linearised Euler equations with constant background flow. The newly derived upwind and staggered SBP operators lead to significantly more accurate numerical approximations, compared with the exclusive usage of (previously derived) central-difference first derivative SBP operators.
The intelligence of dual simplex method to solve linear fractional fuzzy transportation problem.
Narayanamoorthy, S; Kalyani, S
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example.
L1-Based Approximations of PDEs and Applications
2012-09-05
the analysis of the Navier-Stokes equations. The early versions of artificial vis- cosities being overly dissipative, the interest for these technique ...Guermond, and B. Popov. Stability analysis of explicit en- tropy viscosity methods for non-linear scalar conservation equations. Math. Comp., 2012... methods for solv- ing mathematical models of nonlinear phenomena such as nonlinear conservation laws, surface/image/data reconstruction problems
Machine Learning Control For Highly Reconfigurable High-Order Systems
2015-01-02
develop and flight test a Reinforcement Learning based approach for autonomous tracking of ground targets using a fixed wing Unmanned...Reinforcement Learning - based algorithms are developed for learning agents’ time dependent dynamics while also learning to control them. Three algorithms...to a wide range of engineering- based problems . Implementation of these solutions, however, is often complicated by the hysteretic, non-linear,
Applications of information theory, genetic algorithms, and neural models to predict oil flow
NASA Astrophysics Data System (ADS)
Ludwig, Oswaldo; Nunes, Urbano; Araújo, Rui; Schnitman, Leizer; Lepikson, Herman Augusto
2009-07-01
This work introduces a new information-theoretic methodology for choosing variables and their time lags in a prediction setting, particularly when neural networks are used in non-linear modeling. The first contribution of this work is the Cross Entropy Function (XEF) proposed to select input variables and their lags in order to compose the input vector of black-box prediction models. The proposed XEF method is more appropriate than the usually applied Cross Correlation Function (XCF) when the relationship among the input and output signals comes from a non-linear dynamic system. The second contribution is a method that minimizes the Joint Conditional Entropy (JCE) between the input and output variables by means of a Genetic Algorithm (GA). The aim is to take into account the dependence among the input variables when selecting the most appropriate set of inputs for a prediction problem. In short, theses methods can be used to assist the selection of input training data that have the necessary information to predict the target data. The proposed methods are applied to a petroleum engineering problem; predicting oil production. Experimental results obtained with a real-world dataset are presented demonstrating the feasibility and effectiveness of the method.
On non-autonomous dynamical systems
NASA Astrophysics Data System (ADS)
Anzaldo-Meneses, A.
2015-04-01
In usual realistic classical dynamical systems, the Hamiltonian depends explicitly on time. In this work, a class of classical systems with time dependent nonlinear Hamiltonians is analyzed. This type of problems allows to find invariants by a family of Veronese maps. The motivation to develop this method results from the observation that the Poisson-Lie algebra of monomials in the coordinates and momenta is clearly defined in terms of its brackets and leads naturally to an infinite linear set of differential equations, under certain circumstances. To perform explicit analytic and numerical calculations, two examples are presented to estimate the trajectories, the first given by a nonlinear problem and the second by a quadratic Hamiltonian with three time dependent parameters. In the nonlinear problem, the Veronese approach using jets is shown to be equivalent to a direct procedure using elliptic functions identities, and linear invariants are constructed. For the second example, linear and quadratic invariants as well as stability conditions are given. Explicit solutions are also obtained for stepwise constant forces. For the quadratic Hamiltonian, an appropriated set of coordinates relates the geometric setting to that of the three dimensional manifold of central conic sections. It is shown further that the quantum mechanical problem of scattering in a superlattice leads to mathematically equivalent equations for the wave function, if the classical time is replaced by the space coordinate along a superlattice. The mathematical method used to compute the trajectories for stepwise constant parameters can be applied to both problems. It is the standard method in quantum scattering calculations, as known for locally periodic systems including a space dependent effective mass.
Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment
NASA Astrophysics Data System (ADS)
Manurung, Jonson; Mawengkang, Herman; Zamzami, Elviawaty
2017-12-01
Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are non-linearly separable, SVM uses kernel tricks to transform the data into a linearly separable data on a higher dimension feature space. The kernel trick using various kinds of kernel functions, such as : linear kernel, polynomial, radial base function (RBF) and sigmoid. Each function has parameters which affect the accuracy of SVM classification. To solve the problem genetic algorithms are proposed to be applied as the optimal parameter value search algorithm thus increasing the best classification accuracy on SVM. Data taken from UCI repository of machine learning database: Australian Credit Approval. The results show that the combination of SVM and genetic algorithms is effective in improving classification accuracy. Genetic algorithms has been shown to be effective in systematically finding optimal kernel parameters for SVM, instead of randomly selected kernel parameters. The best accuracy for data has been upgraded from kernel Linear: 85.12%, polynomial: 81.76%, RBF: 77.22% Sigmoid: 78.70%. However, for bigger data sizes, this method is not practical because it takes a lot of time.
A sequential solution for anisotropic total variation image denoising with interval constraints
NASA Astrophysics Data System (ADS)
Xu, Jingyan; Noo, Frédéric
2017-09-01
We show that two problems involving the anisotropic total variation (TV) and interval constraints on the unknown variables admit, under some conditions, a simple sequential solution. Problem 1 is a constrained TV penalized image denoising problem; problem 2 is a constrained fused lasso signal approximator. The sequential solution entails finding first the solution to the unconstrained problem, and then applying a thresholding to satisfy the constraints. If the interval constraints are uniform, this sequential solution solves problem 1. If the interval constraints furthermore contain zero, the sequential solution solves problem 2. Here uniform interval constraints refer to all unknowns being constrained to the same interval. A typical example of application is image denoising in x-ray CT, where the image intensities are non-negative as they physically represent linear attenuation coefficient in the patient body. Our results are simple yet seem unknown; we establish them using the Karush-Kuhn-Tucker conditions for constrained convex optimization.
Chaos and Robustness in a Single Family of Genetic Oscillatory Networks
Fu, Daniel; Tan, Patrick; Kuznetsov, Alexey; Molkov, Yaroslav I.
2014-01-01
Genetic oscillatory networks can be mathematically modeled with delay differential equations (DDEs). Interpreting genetic networks with DDEs gives a more intuitive understanding from a biological standpoint. However, it presents a problem mathematically, for DDEs are by construction infinitely-dimensional and thus cannot be analyzed using methods common for systems of ordinary differential equations (ODEs). In our study, we address this problem by developing a method for reducing infinitely-dimensional DDEs to two- and three-dimensional systems of ODEs. We find that the three-dimensional reductions provide qualitative improvements over the two-dimensional reductions. We find that the reducibility of a DDE corresponds to its robustness. For non-robust DDEs that exhibit high-dimensional dynamics, we calculate analytic dimension lines to predict the dependence of the DDEs’ correlation dimension on parameters. From these lines, we deduce that the correlation dimension of non-robust DDEs grows linearly with the delay. On the other hand, for robust DDEs, we find that the period of oscillation grows linearly with delay. We find that DDEs with exclusively negative feedback are robust, whereas DDEs with feedback that changes its sign are not robust. We find that non-saturable degradation damps oscillations and narrows the range of parameter values for which oscillations exist. Finally, we deduce that natural genetic oscillators with highly-regular periods likely have solely negative feedback. PMID:24667178
NASA Technical Reports Server (NTRS)
Weston, R. P.; Green, L. L.; Salas, A. O.; Samareh, J. A.; Townsend, J. C.; Walsh, J. L.
1999-01-01
An objective of the HPCC Program at NASA Langley has been to promote the use of advanced computing techniques to more rapidly solve the problem of multidisciplinary optimization of a supersonic transport configuration. As a result, a software system has been designed and is being implemented to integrate a set of existing discipline analysis codes, some of them CPU-intensive, into a distributed computational framework for the design of a High Speed Civil Transport (HSCT) configuration. The proposed paper will describe the engineering aspects of integrating these analysis codes and additional interface codes into an automated design system. The objective of the design problem is to optimize the aircraft weight for given mission conditions, range, and payload requirements, subject to aerodynamic, structural, and performance constraints. The design variables include both thicknesses of structural elements and geometric parameters that define the external aircraft shape. An optimization model has been adopted that uses the multidisciplinary analysis results and the derivatives of the solution with respect to the design variables to formulate a linearized model that provides input to the CONMIN optimization code, which outputs new values for the design variables. The analysis process begins by deriving the updated geometries and grids from the baseline geometries and grids using the new values for the design variables. This free-form deformation approach provides internal FEM (finite element method) grids that are consistent with aerodynamic surface grids. The next step involves using the derived FEM and section properties in a weights process to calculate detailed weights and the center of gravity location for specified flight conditions. The weights process computes the as-built weight, weight distribution, and weight sensitivities for given aircraft configurations at various mass cases. Currently, two mass cases are considered: cruise and gross take-off weight (GTOW). Weights information is obtained from correlations of data from three sources: 1) as-built initial structural and non-structural weights from an existing database, 2) theoretical FEM structural weights and sensitivities from Genesis, and 3) empirical as-built weight increments, non-structural weights, and weight sensitivities from FLOPS. For the aeroelastic analysis, a variable-fidelity aerodynamic analysis has been adopted. This approach uses infrequent CPU-intensive non-linear CFD to calculate a non-linear correction relative to a linear aero calculation for the same aerodynamic surface at an angle of attack that results in the same configuration lift. For efficiency, this nonlinear correction is applied after each subsequent linear aero solution during the iterations between the aerodynamic and structural analyses. Convergence is achieved when the vehicle shape being used for the aerodynamic calculations is consistent with the structural deformations caused by the aerodynamic loads. To make the structural analyses more efficient, a linearized structural deformation model has been adopted, in which a single stiffness matrix can be used to solve for the deformations under all the load conditions. Using the converged aerodynamic loads, a final set of structural analyses are performed to determine the stress distributions and the buckling conditions for constraint calculation. Performance constraints are obtained by running FLOPS using drag polars that are computed using results from non-linear corrections to the linear aero code plus several codes to provide drag increments due to skin friction, wave drag, and other miscellaneous drag contributions. The status of the integration effort will be presented in the proposed paper, and results will be provided that illustrate the degree of accuracy in the linearizations that have been employed.
Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondic, L.; Shelley, M.J.; Palffy-Muhoray, P.
We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid in a radial Hele-Shaw cell. Using Darcy{close_quote}s law generalized for non-Newtonian fluids, we perform simulations of the full dynamical problem. The simulations show that shear thinning significantly influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable agreement with a general linear stability analysis. {copyright} {ital 1998} {ital The American Physical Society}
Interacting charges and the classical electron radius
NASA Astrophysics Data System (ADS)
De Luca, Roberto; Di Mauro, Marco; Faella, Orazio; Naddeo, Adele
2018-03-01
The equation of the motion of a point charge q repelled by a fixed point-like charge Q is derived and studied. In solving this problem useful concepts in classical and relativistic kinematics, in Newtonian mechanics and in non-linear ordinary differential equations are revised. The validity of the approximations is discussed from the physical point of view. In particular the classical electron radius emerges naturally from the requirement that the initial distance is large enough for the non-relativistic approximation to be valid. The relevance of this topic for undergraduate physics teaching is pointed out.
The Intelligence of Dual Simplex Method to Solve Linear Fractional Fuzzy Transportation Problem
Narayanamoorthy, S.; Kalyani, S.
2015-01-01
An approach is presented to solve a fuzzy transportation problem with linear fractional fuzzy objective function. In this proposed approach the fractional fuzzy transportation problem is decomposed into two linear fuzzy transportation problems. The optimal solution of the two linear fuzzy transportations is solved by dual simplex method and the optimal solution of the fractional fuzzy transportation problem is obtained. The proposed method is explained in detail with an example. PMID:25810713
Nanni, Loris; Lumini, Alessandra
2009-01-01
The focuses of this work are: to propose a novel method for building an ensemble of classifiers for peptide classification based on substitution matrices; to show the importance to select a proper set of the parameters of the classifiers that build the ensemble of learning systems. The HIV-1 protease cleavage site prediction problem is here studied. The results obtained by a blind testing protocol are reported, the comparison with other state-of-the-art approaches, based on ensemble of classifiers, allows to quantify the performance improvement obtained by the systems proposed in this paper. The simulation based on experimentally determined protease cleavage data has demonstrated the success of these new ensemble algorithms. Particularly interesting it is to note that also if the HIV-1 protease cleavage site prediction problem is considered linearly separable we obtain the best performance using an ensemble of non-linear classifiers.
Designing pinhole vacancies in graphene towards functionalization: Effects on critical buckling load
NASA Astrophysics Data System (ADS)
Georgantzinos, S. K.; Markolefas, S.; Giannopoulos, G. I.; Katsareas, D. E.; Anifantis, N. K.
2017-03-01
The effect of size and placement of pinhole-type atom vacancies on Euler's critical load on free-standing, monolayer graphene, is investigated. The graphene is modeled by a structural spring-based finite element approach, in which every interatomic interaction is approached as a linear spring. The geometry of graphene and the pinhole size lead to the assembly of the stiffness matrix of the nanostructure. Definition of the boundary conditions of the problem leads to the solution of the eigenvalue problem and consequently to the critical buckling load. Comparison to results found in the literature illustrates the validity and accuracy of the proposed method. Parametric analysis regarding the placement and size of the pinhole-type vacancy, as well as the graphene geometry, depicts the effects on critical buckling load. Non-linear regression analysis leads to empirical-analytical equations for predicting the buckling behavior of graphene, with engineered pinhole-type atom vacancies.
Polar versus Cartesian velocity models for maneuvering target tracking with IMM
NASA Astrophysics Data System (ADS)
Laneuville, Dann
This paper compares various model sets in different IMM filters for the maneuvering target tracking problem. The aim is to see whether we can improve the tracking performance of what is certainly the most widely used model set in the literature for the maneuvering target tracking problem: a Nearly Constant Velocity model and a Nearly Coordinated Turn model. Our new challenger set consists of a mixed Cartesian position and polar velocity state vector to describe the uniform motion segments and is augmented with the turn rate to obtain the second model for the maneuvering segments. This paper also gives a general procedure to discretize up to second order any non-linear continuous time model with linear diffusion. Comparative simulations on an air defence scenario with a 2D radar, show that this new approach improves significantly the tracking performance in this case.
Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior
NASA Astrophysics Data System (ADS)
Girardin, Léo
2018-01-01
This paper is concerned with non-cooperative parabolic reaction-diffusion systems which share structural similarities with the scalar Fisher-KPP equation. These similarities make it possible to prove, among other results, an extinction and persistence dichotomy and, when persistence occurs, the existence of a positive steady state, the existence of traveling waves with a half-line of possible speeds and a positive minimal speed and the equality between this minimal speed and the spreading speed for the Cauchy problem. Non-cooperative KPP systems can model various phenomena where the following three mechanisms occur: local diffusion in space, linear cooperation and superlinear competition.
Non-fragile multivariable PID controller design via system augmentation
NASA Astrophysics Data System (ADS)
Liu, Jinrong; Lam, James; Shen, Mouquan; Shu, Zhan
2017-07-01
In this paper, the issue of designing non-fragile H∞ multivariable proportional-integral-derivative (PID) controllers with derivative filters is investigated. In order to obtain the controller gains, the original system is associated with an extended system such that the PID controller design can be formulated as a static output-feedback control problem. By taking the system augmentation approach, the conditions with slack matrices for solving the non-fragile H∞ multivariable PID controller gains are established. Based on the results, linear matrix inequality -based iterative algorithms are provided to compute the controller gains. Simulations are conducted to verify the effectiveness of the proposed approaches.
Agra, R; Trizac, E; Bocquet, L
2004-12-01
The electrostatic potential of a highly charged disc (clay platelet) in an electrolyte is investigated in detail. The corresponding non-linear Poisson-Boltzmann (PB) equation is solved numerically, and we show that the far-field behaviour (relevant for colloidal interactions in dilute suspensions) is exactly that obtained within linearized PB theory, with the surface boundary condition of a uniform potential. The latter linear problem is solved by a new semi-analytical procedure and both the potential amplitude (quantified by an effective charge) and potential anisotropy coincide closely within PB and linearized PB, provided the disc bare charge is high enough. This anisotropy remains at all scales; it is encoded in a function that may vary over several orders of magnitude depending on the azimuthal angle under which the disc is seen. The results allow to construct a pair potential for discs interaction, that is strongly orientation dependent.
NASA Astrophysics Data System (ADS)
Schaa, R.; Gross, L.; du Plessis, J.
2016-04-01
We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.
Can hydro-economic river basin models simulate water shadow prices under asymmetric access?
Kuhn, A; Britz, W
2012-01-01
Hydro-economic river basin models (HERBM) based on mathematical programming are conventionally formulated as explicit 'aggregate optimization' problems with a single, aggregate objective function. Often unintended, this format implicitly assumes that decisions on water allocation are made via central planning or functioning markets such as to maximize social welfare. In the absence of perfect water markets, however, individually optimal decisions by water users will differ from the social optimum. Classical aggregate HERBMs cannot simulate that situation and thus might be unable to describe existing institutions governing access to water and might produce biased results for alternative ones. We propose a new solution format for HERBMs, based on the format of the mixed complementarity problem (MCP), where modified shadow price relations express spatial externalities resulting from asymmetric access to water use. This new problem format, as opposed to commonly used linear (LP) or non-linear programming (NLP) approaches, enables the simultaneous simulation of numerous 'independent optimization' decisions by multiple water users while maintaining physical interdependences based on water use and flow in the river basin. We show that the alternative problem format allows the formulation HERBMs that yield more realistic results when comparing different water management institutions.
Advanced Computational Methods for Security Constrained Financial Transmission Rights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalsi, Karanjit; Elbert, Stephen T.; Vlachopoulou, Maria
Financial Transmission Rights (FTRs) are financial insurance tools to help power market participants reduce price risks associated with transmission congestion. FTRs are issued based on a process of solving a constrained optimization problem with the objective to maximize the FTR social welfare under power flow security constraints. Security constraints for different FTR categories (monthly, seasonal or annual) are usually coupled and the number of constraints increases exponentially with the number of categories. Commercial software for FTR calculation can only provide limited categories of FTRs due to the inherent computational challenges mentioned above. In this paper, first an innovative mathematical reformulationmore » of the FTR problem is presented which dramatically improves the computational efficiency of optimization problem. After having re-formulated the problem, a novel non-linear dynamic system (NDS) approach is proposed to solve the optimization problem. The new formulation and performance of the NDS solver is benchmarked against widely used linear programming (LP) solvers like CPLEX™ and tested on both standard IEEE test systems and large-scale systems using data from the Western Electricity Coordinating Council (WECC). The performance of the NDS is demonstrated to be comparable and in some cases is shown to outperform the widely used CPLEX algorithms. The proposed formulation and NDS based solver is also easily parallelizable enabling further computational improvement.« less
Design of Linear Quadratic Regulators and Kalman Filters
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L.
1986-01-01
AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.
ML 3.0 smoothed aggregation user's guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen
2004-05-01
ML is a multigrid preconditioning package intended to solve linear systems of equations Az = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the AZTEC 2.1 and AZTECOO iterative package [15]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and non-symmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less
Multilayer neural networks for reduced-rank approximation.
Diamantaras, K I; Kung, S Y
1994-01-01
This paper is developed in two parts. First, the authors formulate the solution to the general reduced-rank linear approximation problem relaxing the invertibility assumption of the input autocorrelation matrix used by previous authors. The authors' treatment unifies linear regression, Wiener filtering, full rank approximation, auto-association networks, SVD and principal component analysis (PCA) as special cases. The authors' analysis also shows that two-layer linear neural networks with reduced number of hidden units, trained with the least-squares error criterion, produce weights that correspond to the generalized singular value decomposition of the input-teacher cross-correlation matrix and the input data matrix. As a corollary the linear two-layer backpropagation model with reduced hidden layer extracts an arbitrary linear combination of the generalized singular vector components. Second, the authors investigate artificial neural network models for the solution of the related generalized eigenvalue problem. By introducing and utilizing the extended concept of deflation (originally proposed for the standard eigenvalue problem) the authors are able to find that a sequential version of linear BP can extract the exact generalized eigenvector components. The advantage of this approach is that it's easier to update the model structure by adding one more unit or pruning one or more units when the application requires it. An alternative approach for extracting the exact components is to use a set of lateral connections among the hidden units trained in such a way as to enforce orthogonality among the upper- and lower-layer weights. The authors call this the lateral orthogonalization network (LON) and show via theoretical analysis-and verify via simulation-that the network extracts the desired components. The advantage of the LON-based model is that it can be applied in a parallel fashion so that the components are extracted concurrently. Finally, the authors show the application of their results to the solution of the identification problem of systems whose excitation has a non-invertible autocorrelation matrix. Previous identification methods usually rely on the invertibility assumption of the input autocorrelation, therefore they can not be applied to this case.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-03-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.
Tan, Ziwen; Qin, Guoyou; Zhou, Haibo
2016-01-01
Outcome-dependent sampling (ODS) designs have been well recognized as a cost-effective way to enhance study efficiency in both statistical literature and biomedical and epidemiologic studies. A partially linear additive model (PLAM) is widely applied in real problems because it allows for a flexible specification of the dependence of the response on some covariates in a linear fashion and other covariates in a nonlinear non-parametric fashion. Motivated by an epidemiological study investigating the effect of prenatal polychlorinated biphenyls exposure on children's intelligence quotient (IQ) at age 7 years, we propose a PLAM in this article to investigate a more flexible non-parametric inference on the relationships among the response and covariates under the ODS scheme. We propose the estimation method and establish the asymptotic properties of the proposed estimator. Simulation studies are conducted to show the improved efficiency of the proposed ODS estimator for PLAM compared with that from a traditional simple random sampling design with the same sample size. The data of the above-mentioned study is analyzed to illustrate the proposed method. PMID:27006375
Neutron star dynamics under time dependent external torques
NASA Astrophysics Data System (ADS)
Alpar, M. A.; Gügercinoğlu, E.
2017-12-01
The two component model of neutron star dynamics describing the behaviour of the observed crust coupled to the superfluid interior has so far been applied to radio pulsars for which the external torques are constant on dynamical timescales. We recently solved this problem under arbitrary time dependent external torques. Our solutions pertain to internal torques that are linear in the rotation rates, as well as to the extremely non-linear internal torques of the vortex creep model. Two-component models with linear or nonlinear internal torques can now be applied to magnetars and to neutron stars in binary systems, with strong variability and timing noise. Time dependent external torques can be obtained from the observed spin-down (or spin-up) time series, \\dot Ω ≤ft( t \\right).
Population response to climate change: linear vs. non-linear modeling approaches.
Ellis, Alicia M; Post, Eric
2004-03-31
Research on the ecological consequences of global climate change has elicited a growing interest in the use of time series analysis to investigate population dynamics in a changing climate. Here, we compare linear and non-linear models describing the contribution of climate to the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999. The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due to differences in the strength and nature of density dependence, relatively small and large populations may be differentially affected by future changes in climate. Both linear and non-linear models predict a decrease in the population of wolves with predicted changes in climate. Because specific predictions differed between linear and non-linear models, our study highlights the importance of using non-linear methods that allow the detection of non-linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach to modelling population response to climate change, either exclusively or in addition to linear approaches, may compromise efforts to quantify ecological consequences of future warming.
NASA Astrophysics Data System (ADS)
Sengupta, Tapan K.; Sharma, Nidhi; Sengupta, Aditi
2018-05-01
An enstrophy-based non-linear instability analysis of the Navier-Stokes equation for two-dimensional (2D) flows is presented here, using the Taylor-Green vortex (TGV) problem as an example. This problem admits a time-dependent analytical solution as the base flow, whose instability is traced here. The numerical study of the evolution of the Taylor-Green vortices shows that the flow becomes turbulent, but an explanation for this transition has not been advanced so far. The deviation of the numerical solution from the analytical solution is studied here using a high accuracy compact scheme on a non-uniform grid (NUC6), with the fourth-order Runge-Kutta method. The stream function-vorticity (ψ, ω) formulation of the governing equations is solved here in a periodic square domain with four vortices at t = 0. Simulations performed at different Reynolds numbers reveal that numerical errors in computations induce a breakdown of symmetry and simultaneous fragmentation of vortices. It is shown that the actual physical instability is triggered by the growth of disturbances and is explained by the evolution of disturbance mechanical energy and enstrophy. The disturbance evolution equations have been traced by looking at (a) disturbance mechanical energy of the Navier-Stokes equation, as described in the work of Sengupta et al., "Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003), and (b) the creation of rotationality via the enstrophy transport equation in the work of Sengupta et al., "Diffusion in inhomogeneous flows: Unique equilibrium state in an internal flow," Comput. Fluids 88, 440-451 (2013).
NASA Astrophysics Data System (ADS)
Bukhari, Hassan J.
2017-12-01
In this paper a framework for robust optimization of mechanical design problems and process systems that have parametric uncertainty is presented using three different approaches. Robust optimization problems are formulated so that the optimal solution is robust which means it is minimally sensitive to any perturbations in parameters. The first method uses the price of robustness approach which assumes the uncertain parameters to be symmetric and bounded. The robustness for the design can be controlled by limiting the parameters that can perturb.The second method uses the robust least squares method to determine the optimal parameters when data itself is subjected to perturbations instead of the parameters. The last method manages uncertainty by restricting the perturbation on parameters to improve sensitivity similar to Tikhonov regularization. The methods are implemented on two sets of problems; one linear and the other non-linear. This methodology will be compared with a prior method using multiple Monte Carlo simulation runs which shows that the approach being presented in this paper results in better performance.
A fully implicit finite element method for bidomain models of cardiac electromechanics
Dal, Hüsnü; Göktepe, Serdar; Kaliske, Michael; Kuhl, Ellen
2012-01-01
We propose a novel, monolithic, and unconditionally stable finite element algorithm for the bidomain-based approach to cardiac electromechanics. We introduce the transmembrane potential, the extracellular potential, and the displacement field as independent variables, and extend the common two-field bidomain formulation of electrophysiology to a three-field formulation of electromechanics. The intrinsic coupling arises from both excitation-induced contraction of cardiac cells and the deformation-induced generation of intra-cellular currents. The coupled reaction-diffusion equations of the electrical problem and the momentum balance of the mechanical problem are recast into their weak forms through a conventional isoparametric Galerkin approach. As a novel aspect, we propose a monolithic approach to solve the governing equations of excitation-contraction coupling in a fully coupled, implicit sense. We demonstrate the consistent linearization of the resulting set of non-linear residual equations. To assess the algorithmic performance, we illustrate characteristic features by means of representative three-dimensional initial-boundary value problems. The proposed algorithm may open new avenues to patient specific therapy design by circumventing stability and convergence issues inherent to conventional staggered solution schemes. PMID:23175588
NASA Astrophysics Data System (ADS)
Ebrahimi Zade, Amir; Sadegheih, Ahmad; Lotfi, Mohammad Mehdi
2014-07-01
Hubs are centers for collection, rearrangement, and redistribution of commodities in transportation networks. In this paper, non-linear multi-objective formulations for single and multiple allocation hub maximal covering problems as well as the linearized versions are proposed. The formulations substantially mitigate complexity of the existing models due to the fewer number of constraints and variables. Also, uncertain shipments are studied in the context of hub maximal covering problems. In many real-world applications, any link on the path from origin to destination may fail to work due to disruption. Therefore, in the proposed bi-objective model, maximizing safety of the weakest path in the network is considered as the second objective together with the traditional maximum coverage goal. Furthermore, to solve the bi-objective model, a modified version of NSGA-II with a new dynamic immigration operator is developed in which the accurate number of immigrants depends on the results of the other two common NSGA-II operators, i.e. mutation and crossover. Besides validating proposed models, computational results confirm a better performance of modified NSGA-II versus traditional one.
Numerical Simulation of a Seaway with Breaking
NASA Astrophysics Data System (ADS)
Dommermuth, Douglas; O'Shea, Thomas; Brucker, Kyle; Wyatt, Donald
2012-11-01
The focus of this presentation is to describe the recent efforts to simulate a fully non-linear seaway with breaking by using a high-order spectral (HOS) solution of the free-surface boundary value problem to drive a three-dimensional Volume of Fluid (VOF) solution. Historically, the two main types of simulations to simulate free-surface flows are the boundary integral equations method (BIEM) and high-order spectral (HOS) methods. BIEM calculations fail at the point at which the surface impacts upon itself, if not sooner, and HOS methods can only simulate a single valued free-surface. Both also employ a single-phase approximation in which the effects of the air on the water are neglected. Due to these limitations they are unable to simulate breaking waves and air entrainment. The Volume of Fluid (VOF) method on the other hand is suitable for modeling breaking waves and air entrainment. However it is computationally intractable to generate a realistic non-linear sea-state. Here, we use the HOS solution to quickly drive, or nudge, the VOF solution into a non-linear state. The computational strategies, mathematical formulation, and numerical implementation will be discussed. The results of the VOF simulation of a seaway with breaking will also be presented, and compared to the single phase, single valued HOS results.
Non-Uniformity Correction Using Nonlinear Characteristic Performance Curves for Calibration
NASA Astrophysics Data System (ADS)
Lovejoy, McKenna Roberts
Infrared imaging is an expansive field with many applications. Advances in infrared technology have lead to a greater demand from both commercial and military sectors. However, a known problem with infrared imaging is its non-uniformity. This non-uniformity stems from the fact that each pixel in an infrared focal plane array has its own photoresponse. Many factors such as exposure time, temperature, and amplifier choice affect how the pixels respond to incoming illumination and thus impact image uniformity. To improve performance non-uniformity correction (NUC) techniques are applied. Standard calibration based techniques commonly use a linear model to approximate the nonlinear response. This often leaves unacceptable levels of residual non-uniformity. Calibration techniques often have to be repeated during use to continually correct the image. In this dissertation alternates to linear NUC algorithms are investigated. The goal of this dissertation is to determine and compare nonlinear non-uniformity correction algorithms. Ideally the results will provide better NUC performance resulting in less residual non-uniformity as well as reduce the need for recalibration. This dissertation will consider new approaches to nonlinear NUC such as higher order polynomials and exponentials. More specifically, a new gain equalization algorithm has been developed. The various nonlinear non-uniformity correction algorithms will be compared with common linear non-uniformity correction algorithms. Performance will be compared based on RMS errors, residual non-uniformity, and the impact quantization has on correction. Performance will be improved by identifying and replacing bad pixels prior to correction. Two bad pixel identification and replacement techniques will be investigated and compared. Performance will be presented in the form of simulation results as well as before and after images taken with short wave infrared cameras. The initial results show, using a third order polynomial with 16-bit precision, significant improvement over the one and two-point correction algorithms. All algorithm have been implemented in software with satisfactory results and the third order gain equalization non-uniformity correction algorithm has been implemented in hardware.
Time-frequency filtering and synthesis from convex projections
NASA Astrophysics Data System (ADS)
White, Langford B.
1990-11-01
This paper describes the application of the theory of projections onto convex sets to time-frequency filtering and synthesis problems. We show that the class of Wigner-Ville Distributions (WVD) of L2 signals form the boundary of a closed convex subset of L2(R2). This result is obtained by considering the convex set of states on the Heisenberg group of which the ambiguity functions form the extreme points. The form of the projection onto the set of WVDs is deduced. Various linear and non-linear filtering operations are incorporated by formulation as convex projections. An example algorithm for simultaneous time-frequency filtering and synthesis is suggested.
Uplink Packet-Data Scheduling in DS-CDMA Systems
NASA Astrophysics Data System (ADS)
Choi, Young Woo; Kim, Seong-Lyun
In this letter, we consider the uplink packet scheduling for non-real-time data users in a DS-CDMA system. As an effort to jointly optimize throughput and fairness, we formulate a time-span minimization problem incorporating the time-multiplexing of different simultaneous transmission schemes. Based on simple rules, we propose efficient scheduling algorithms and compare them with the optimal solution obtained by linear programming.
Gas-Solid Dynamics at Disordered and Adsorbate Covered Surfaces
1992-09-02
interesting physical problems in which non-linear reactions occur at localized defects. The Lotka - Volterra system is considered, in which the source, sink...designing external optical fields for manipulating molecular scale events. A general formulation of the theory was developed, for treating rotational...interrelated avenues of study were pursued. The goals of the research were achieved, thereby producing a general theoretical framework for both optimal
Batch-mode Reinforcement Learning for improved hydro-environmental systems management
NASA Astrophysics Data System (ADS)
Castelletti, A.; Galelli, S.; Restelli, M.; Soncini-Sessa, R.
2010-12-01
Despite the great progresses made in the last decades, the optimal management of hydro-environmental systems still remains a very active and challenging research area. The combination of multiple, often conflicting interests, high non-linearities of the physical processes and the management objectives, strong uncertainties in the inputs, and high dimensional state makes the problem challenging and intriguing. Stochastic Dynamic Programming (SDP) is one of the most suitable methods for designing (Pareto) optimal management policies preserving the original problem complexity. However, it suffers from a dual curse, which, de facto, prevents its practical application to even reasonably complex water systems. (i) Computational requirement grows exponentially with state and control dimension (Bellman's curse of dimensionality), so that SDP can not be used with water systems where the state vector includes more than few (2-3) units. (ii) An explicit model of each system's component is required (curse of modelling) to anticipate the effects of the system transitions, i.e. any information included into the SDP framework can only be either a state variable described by a dynamic model or a stochastic disturbance, independent in time, with the associated pdf. Any exogenous information that could effectively improve the system operation cannot be explicitly considered in taking the management decision, unless a dynamic model is identified for each additional information, thus adding to the problem complexity through the curse of dimensionality (additional state variables). To mitigate this dual curse, the combined use of batch-mode Reinforcement Learning (bRL) and Dynamic Model Reduction (DMR) techniques is explored in this study. bRL overcomes the curse of modelling by replacing explicit modelling with an external simulator and/or historical observations. The curse of dimensionality is averted using a functional approximation of the SDP value function based on proper non-linear regressors. DMR reduces the complexity and the associated computational requirements of non-linear distributed process based models, making them suitable for being included into optimization schemes. Results from real world applications of the approach are also presented, including reservoir operation with both quality and quantity targets.
NASA Astrophysics Data System (ADS)
Nasir, Nor Ain Azeany Mohd; Ishak, Anuar; Pop, Ioan
2018-04-01
In this paper, the heat and mass transfer of an axisymmetric Powell-Eyring fluid flow over a stretching sheet with a convective boundary condition and suction effects are investigated. An appropriate similarity transformation is used to reduce the highly non-linear partial differential equation into second and third order non-linear ordinary differential equations. Numerical solutions of the reduced governing equations are computed numerically by utilizing the MATLAB's built-in boundary value problem solver, bvp4c. The physical significance of various parameters such as Biot number, fluid parameters and Prandtl number on the velocity and temperature evolution profiles are illustrated graphically. The effects of these governing parameters on the skin friction coefficient and the local Nusselt number are also displayed graphically. It is noticed that the Powell-Eyring fluid parameter gives significant influence on the rates of heat and mass transfer of the fluid.
A comparative study of minimum norm inverse methods for MEG imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leahy, R.M.; Mosher, J.C.; Phillips, J.W.
1996-07-01
The majority of MEG imaging techniques currently in use fall into the general class of (weighted) minimum norm methods. The minimization of a norm is used as the basis for choosing one from a generally infinite set of solutions that provide an equally good fit to the data. This ambiguity in the solution arises from the inherent non- uniqueness of the continuous inverse problem and is compounded by the imbalance between the relatively small number of measurements and the large number of source voxels. Here we present a unified view of the minimum norm methods and describe how we canmore » use Tikhonov regularization to avoid instabilities in the solutions due to noise. We then compare the performance of regularized versions of three well known linear minimum norm methods with the non-linear iteratively reweighted minimum norm method and a Bayesian approach.« less
Linear-algebraic bath transformation for simulating complex open quantum systems
Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; ...
2014-12-02
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallelmore » chains. Furthermore, the transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.« less
Non-linear multi-objective model for planning water-energy modes of Novosibirsk Hydro Power Plant
NASA Astrophysics Data System (ADS)
Alsova, O. K.; Artamonova, A. V.
2018-05-01
This paper presents a non-linear multi-objective model for planning and optimizing of water-energy modes for the Novosibirsk Hydro Power Plant (HPP) operation. There is a very important problem of developing a strategy to improve the scheme of water-power modes and ensure the effective operation of hydropower plants. It is necessary to determine the methods and criteria for the optimal distribution of water resources, to develop a set of models and to apply them to the software implementation of a DSS (decision-support system) for managing Novosibirsk HPP modes. One of the possible versions of the model is presented and investigated in this paper. Experimental study of the model has been carried out with 2017 data and the task of ten-day period planning from April to July (only 12 ten-day periods) was solved.
NASA Astrophysics Data System (ADS)
Zhou, J. X.; Zhang, L.
2005-01-01
Incremental harmonic balance (IHB) formulations are derived for general multiple degrees of freedom (d.o.f.) non-linear autonomous systems. These formulations are developed for a concerned four-d.o.f. aircraft wheel shimmy system with combined Coulomb and velocity-squared damping. A multi-harmonic analysis is performed and amplitudes of limit cycles are predicted. Within a large range of parametric variations with respect to aircraft taxi velocity, the IHB method can, at a much cheaper cost, give results with high accuracy as compared with numerical results given by a parametric continuation method. In particular, the IHB method avoids the stiff problems emanating from numerical treatment of aircraft wheel shimmy system equations. The development is applicable to other vibration control systems that include commonly used dry friction devices or velocity-squared hydraulic dampers.
The consentaneous model of the financial markets exhibiting spurious nature of long-range memory
NASA Astrophysics Data System (ADS)
Gontis, V.; Kononovicius, A.
2018-09-01
It is widely accepted that there is strong persistence in the volatility of financial time series. The origin of the observed persistence, or long-range memory, is still an open problem as the observed phenomenon could be a spurious effect. Earlier we have proposed the consentaneous model of the financial markets based on the non-linear stochastic differential equations. The consentaneous model successfully reproduces empirical probability and power spectral densities of volatility. This approach is qualitatively different from models built using fractional Brownian motion. In this contribution we investigate burst and inter-burst duration statistics of volatility in the financial markets employing the consentaneous model. Our analysis provides an evidence that empirical statistical properties of burst and inter-burst duration can be explained by non-linear stochastic differential equations driving the volatility in the financial markets. This serves as an strong argument that long-range memory in finance can have spurious nature.
Ray, J.; Lee, J.; Yadav, V.; ...
2014-08-20
We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less
Numerical methods of solving a system of multi-dimensional nonlinear equations of the diffusion type
NASA Technical Reports Server (NTRS)
Agapov, A. V.; Kolosov, B. I.
1979-01-01
The principles of conservation and stability of difference schemes achieved using the iteration control method were examined. For the schemes obtained of the predictor-corrector type, the conversion was proved for the control sequences of approximate solutions to the precise solutions in the Sobolev metrics. Algorithms were developed for reducing the differential problem to integral relationships, whose solution methods are known, were designed. The algorithms for the problem solution are classified depending on the non-linearity of the diffusion coefficients, and practical recommendations for their effective use are given.
On Convergence Acceleration Techniques for Unstructured Meshes
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1998-01-01
A discussion of convergence acceleration techniques as they relate to computational fluid dynamics problems on unstructured meshes is given. Rather than providing a detailed description of particular methods, the various different building blocks of current solution techniques are discussed and examples of solution strategies using one or several of these ideas are given. Issues relating to unstructured grid CFD problems are given additional consideration, including suitability of algorithms to current hardware trends, memory and cpu tradeoffs, treatment of non-linearities, and the development of efficient strategies for handling anisotropy-induced stiffness. The outlook for future potential improvements is also discussed.
A review of developments in the theory of elasto-plastic flow
NASA Technical Reports Server (NTRS)
Swedlow, J. L.
1973-01-01
The theory of elasto-plastic flow is developed so that it may accommodate features such as work-hardening, anisotropy, plastic compressibility, non-continuous loading including local or global unloading, and others. A complete theory is given in quasi-linear form; as a result, many useful attributes are accessible. Several integral theorems may be written, finite deformations may be incorporated, and efficient methods for solving problems may be developed; these and other aspects are described in some detail. The theory is reduced to special forms for 2-space, and extensive experience in solving such problems is cited.
Zhao, Yingfeng; Liu, Sanyang
2016-01-01
We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.
Laser Linewidth Requirements for Optical Bpsk and Qpsk Heterodyne Lightwave Systems.
NASA Astrophysics Data System (ADS)
Boukli-Hacene, Mokhtar
In this dissertation, optical Binary Phase-Shift Keying (BPSK) and Quadrature Phase-Shift Keying (QPSK) heterodyne communication receivers are investigated. The main objective of this research work is to analyze the performance of these receivers in the presence of laser phase noise and shot noise. The heterodyne optical BPSK is based on the square law carrier recovery (SLCR) scheme for phase detection. The BPSK heterodyne receiver is analyzed assuming a second order linear phase-locked loop (PLL) subsystem and a small phase error. The noise properties are analyzed and the problem of minimizing the effect of noise is addressed. The performance of the receiver is evaluated in terms of the bit error rate (BER), which leads to the analysis of the BER versus the laser linewidth and the number of photons/bit to achieve good performance. Since we cannot track the pure carrier component in the presence of noise, a non-linear model is used to solve the problem of recovery of the carrier. The non -linear system is analyzed in the presence of a low signal -to-noise ratio (SNR). The non-Gaussian noise model represented by its probability density function (PDF) is used to analyze the performance of the receiver, especially the phase error. In addition the effect of the PLL is analyzed by studying the cycle slippage (cs). Finally, the research effort is expanded from BPSK to QPSK systems. The heterodyne optical QPSK based on the fourth power multiplier scheme (FPMS) in conjunction with linear and non-linear PLL model is investigated. Optimum loop and higher power penalty in the presence of phase noise and shot noise are analyzed. It is shown that the QPSK system yields a high speed and high sensitivity coherent means for transmission of information accompanied by a small degradation in the laser linewidth. Comparative analysis of BPSK and QPSK systems leads us to conclude that in terms of laser linewidth, bit rate, phase error and power penalty, the QPSK system is more sensitive than the BPSK system and suffers less from higher power penalty. The BPSK and QPSK heterodyne receivers used in the uncoded scheme demand a realistic laser linewidth. Since the laser linewidth is the critical measure of the performance of a receiver, a convolutional code applied to QPSK of the system is used to improve the sensitivity of the system. The effect of coding is particularly important as means of relaxing the laser linewidth requirement. The validity and usefulness of the analysis presented in the dissertation is supported by computer simulations.
A Solution to Separation and Multicollinearity in Multiple Logistic Regression
Shen, Jianzhao; Gao, Sujuan
2010-01-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286
A Solution to Separation and Multicollinearity in Multiple Logistic Regression.
Shen, Jianzhao; Gao, Sujuan
2008-10-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.
SYNTHESIS OF NOVEL ALL-DIELECTRIC GRATING FILTERS USING GENETIC ALGORITHMS
NASA Technical Reports Server (NTRS)
Zuffada, Cinzia; Cwik, Tom; Ditchman, Christopher
1997-01-01
We are concerned with the design of inhomogeneous, all dielectric (lossless) periodic structures which act as filters. Dielectric filters made as stacks of inhomogeneous gratings and layers of materials are being used in optical technology, but are not common at microwave frequencies. The problem is then finding the periodic cell's geometric configuration and permittivity values which correspond to a specified reflectivity/transmittivity response as a function of frequency/illumination angle. This type of design can be thought of as an inverse-source problem, since it entails finding a distribution of sources which produce fields (or quantities derived from them) of given characteristics. Electromagnetic sources (electric and magnetic current densities) in a volume are related to the outside fields by a well known linear integral equation. Additionally, the sources are related to the fields inside the volume by a constitutive equation, involving the material properties. Then, the relationship linking the fields outside the source region to those inside is non-linear, in terms of material properties such as permittivity, permeability and conductivity. The solution of the non-linear inverse problem is cast here as a combination of two linear steps, by explicitly introducing the electromagnetic sources in the computational volume as a set of unknowns in addition to the material unknowns. This allows to solve for material parameters and related electric fields in the source volume which are consistent with Maxwell's equations. Solutions are obtained iteratively by decoupling the two steps. First, we invert for the permittivity only in the minimization of a cost function and second, given the materials, we find the corresponding electric fields through direct solution of the integral equation in the source volume. The sources thus computed are used to generate the far fields and the synthesized triter response. The cost function is obtained by calculating the deviation between the synthesized value of reflectivity/transmittivity and the desired one. Solution geometries for the periodic cell are sought as gratings (ensembles of columns of different heights and widths), or combinations of homogeneous layers of different dielectric materials and gratings. Hence the explicit unknowns of the inversion step are the material permittivities and the relative boundaries separating homogeneous parcels of the periodic cell.
NASA Astrophysics Data System (ADS)
Proskurov, S.; Darbyshire, O. R.; Karabasov, S. A.
2017-12-01
The present work discusses modifications to the stochastic Fast Random Particle Mesh (FRPM) method featuring both tonal and broadband noise sources. The technique relies on the combination of incorporated vortex-shedding resolved flow available from Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulation with the fine-scale turbulence FRPM solution generated via the stochastic velocity fluctuations in the context of vortex sound theory. In contrast to the existing literature, our method encompasses a unified treatment for broadband and tonal acoustic noise sources at the source level, thus, accounting for linear source interference as well as possible non-linear source interaction effects. When sound sources are determined, for the sound propagation, Acoustic Perturbation Equations (APE-4) are solved in the time-domain. Results of the method's application for two aerofoil benchmark cases, with both sharp and blunt trailing edges are presented. In each case, the importance of individual linear and non-linear noise sources was investigated. Several new key features related to the unsteady implementation of the method were tested and brought into the equation. Encouraging results have been obtained for benchmark test cases using the new technique which is believed to be potentially applicable to other airframe noise problems where both tonal and broadband parts are important.
Robust gaze-steering of an active vision system against errors in the estimated parameters
NASA Astrophysics Data System (ADS)
Han, Youngmo
2015-01-01
Gaze-steering is often used to broaden the viewing range of an active vision system. Gaze-steering procedures are usually based on estimated parameters such as image position, image velocity, depth and camera calibration parameters. However, there may be uncertainties in these estimated parameters because of measurement noise and estimation errors. In this case, robust gaze-steering cannot be guaranteed. To compensate for such problems, this paper proposes a gaze-steering method based on a linear matrix inequality (LMI). In this method, we first propose a proportional derivative (PD) control scheme on the unit sphere that does not use depth parameters. This proposed PD control scheme can avoid uncertainties in the estimated depth and camera calibration parameters, as well as inconveniences in their estimation process, including the use of auxiliary feature points and highly non-linear computation. Furthermore, the control gain of the proposed PD control scheme on the unit sphere is designed using LMI such that the designed control is robust in the presence of uncertainties in the other estimated parameters, such as image position and velocity. Simulation results demonstrate that the proposed method provides a better compensation for uncertainties in the estimated parameters than the contemporary linear method and steers the gaze of the camera more steadily over time than the contemporary non-linear method.
NASA Astrophysics Data System (ADS)
Teter, Andrzej; Kolakowski, Zbigniew
2018-01-01
The numerical modelling of a plate structure was performed with the finite element method and a one-mode approach based on Koiter's method. The first order approximation of Koiter's method enables one to solve the eigenvalue problem. The second order approximation describes post-buckling equilibrium paths. In the finite element analysis, the Lanczos method was used to solve the linear problem of buckling. Simulations of the non-linear problem were performed with the Newton-Raphson method. Detailed calculations were carried out for a short Z-column made of general laminates. Configurations of laminated layers were non-symmetric. Due to possibilities of its application, the general laminate is very interesting. The length of the samples was chosen to obtain the lowest value of local buckling load. The amplitude of initial imperfections was 10% of the wall thickness. Thin-walled structures were simply supported on both ends. The numerical results were verified in experimental tests. A strain-gauge technique was applied. A static compression test was performed on a universal testing machine and a special grip, which consisted of two rigid steel plates and clamping sleeves, was used. Specimens were obtained with an autoclave technique. Tests were performed at a constant velocity of the cross-bar equal to 2 mm/min. The compressive load was less than 150% of the bifurcation load. Additionally, soft and thin pads were used to reduce inaccuracy of the sample ends.
A new hybrid code (CHIEF) implementing the inertial electron fluid equation without approximation
NASA Astrophysics Data System (ADS)
Muñoz, P. A.; Jain, N.; Kilian, P.; Büchner, J.
2018-03-01
We present a new hybrid algorithm implemented in the code CHIEF (Code Hybrid with Inertial Electron Fluid) for simulations of electron-ion plasmas. The algorithm treats the ions kinetically, modeled by the Particle-in-Cell (PiC) method, and electrons as an inertial fluid, modeled by electron fluid equations without any of the approximations used in most of the other hybrid codes with an inertial electron fluid. This kind of code is appropriate to model a large variety of quasineutral plasma phenomena where the electron inertia and/or ion kinetic effects are relevant. We present here the governing equations of the model, how these are discretized and implemented numerically, as well as six test problems to validate our numerical approach. Our chosen test problems, where the electron inertia and ion kinetic effects play the essential role, are: 0) Excitation of parallel eigenmodes to check numerical convergence and stability, 1) parallel (to a background magnetic field) propagating electromagnetic waves, 2) perpendicular propagating electrostatic waves (ion Bernstein modes), 3) ion beam right-hand instability (resonant and non-resonant), 4) ion Landau damping, 5) ion firehose instability, and 6) 2D oblique ion firehose instability. Our results reproduce successfully the predictions of linear and non-linear theory for all these problems, validating our code. All properties of this hybrid code make it ideal to study multi-scale phenomena between electron and ion scales such as collisionless shocks, magnetic reconnection and kinetic plasma turbulence in the dissipation range above the electron scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adcock, T. A. A.; Taylor, P. H.
2016-01-15
The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest whichmore » leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.« less
Can Linear Superiorization Be Useful for Linear Optimization Problems?
Censor, Yair
2017-01-01
Linear superiorization considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are (i) Does linear superiorization provide a feasible point whose linear target function value is lower than that obtained by running the same feasibility-seeking algorithm without superiorization under identical conditions? and (ii) How does linear superiorization fare in comparison with the Simplex method for solving linear programming problems? Based on our computational experiments presented here, the answers to these two questions are: “yes” and “very well”, respectively. PMID:29335660
NASA Technical Reports Server (NTRS)
Nachtigal, Noel M.
1991-01-01
The Lanczos algorithm can be used both for eigenvalue problems and to solve linear systems. However, when applied to non-Hermitian matrices, the classical Lanczos algorithm is susceptible to breakdowns and potential instabilities. In addition, the biconjugate gradient (BCG) algorithm, which is the natural generalization of the conjugate gradient algorithm to non-Hermitian linear systems, has a second source of breakdowns, independent of the Lanczos breakdowns. Here, we present two new results. We propose an implementation of a look-ahead variant of the Lanczos algorithm which overcomes the breakdowns by skipping over those steps where a breakdown or a near-breakdown would occur. The new algorithm can handle look-ahead steps of any length and requires the same number of matrix-vector products and inner products per step as the classical Lanczos algorithm without look-ahead. Based on the proposed look-ahead Lanczos algorithm, we then present a novel BCG-like approach, the quasi-minimal residual (QMR) method, which avoids the second source of breakdowns in the BCG algorithm. We present details of the new method and discuss some of its properties. In particular, we discuss the relationship between QMR and BCG, showing how one can recover the BCG iterates, when they exist, from the QMR iterates. We also present convergence results for QMR, showing the connection between QMR and the generalized minimal residual (GMRES) algorithm, the optimal method in this class of methods. Finally, we give some numerical examples, both for eigenvalue computations and for non-Hermitian linear systems.
Kargar, Soudabeh; Borisch, Eric A; Froemming, Adam T; Kawashima, Akira; Mynderse, Lance A; Stinson, Eric G; Trzasko, Joshua D; Riederer, Stephen J
2018-05-01
To describe an efficient numerical optimization technique using non-linear least squares to estimate perfusion parameters for the Tofts and extended Tofts models from dynamic contrast enhanced (DCE) MRI data and apply the technique to prostate cancer. Parameters were estimated by fitting the two Tofts-based perfusion models to the acquired data via non-linear least squares. We apply Variable Projection (VP) to convert the fitting problem from a multi-dimensional to a one-dimensional line search to improve computational efficiency and robustness. Using simulation and DCE-MRI studies in twenty patients with suspected prostate cancer, the VP-based solver was compared against the traditional Levenberg-Marquardt (LM) strategy for accuracy, noise amplification, robustness to converge, and computation time. The simulation demonstrated that VP and LM were both accurate in that the medians closely matched assumed values across typical signal to noise ratio (SNR) levels for both Tofts models. VP and LM showed similar noise sensitivity. Studies using the patient data showed that the VP method reliably converged and matched results from LM with approximate 3× and 2× reductions in computation time for the standard (two-parameter) and extended (three-parameter) Tofts models. While LM failed to converge in 14% of the patient data, VP converged in the ideal 100%. The VP-based method for non-linear least squares estimation of perfusion parameters for prostate MRI is equivalent in accuracy and robustness to noise, while being more reliably (100%) convergent and computationally about 3× (TM) and 2× (ETM) faster than the LM-based method. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Jennifer
2012-10-15
This scientific meeting focused on the legacy of Cathleen S. Morawetz and the impact that her scientific work on transonic flow and the non-linear wave equation has had in recent progress on different aspects of analysis for non-linear wave, kinetic and quantum transport problems associated to mathematical physics. These are areas where the elements of continuum, statistical and stochastic mechanics, and their interplay, have counterparts in the theory of existence, uniqueness and stability of the associated systems of equations and geometric constraints. It was a central event for the applied and computational analysis community focusing on Partial Differential Equations. Themore » goal of the proposal was to honor Cathleen Morawetz, a highly successful woman in mathematics, while encouraging beginning researchers. The conference was successful in show casing the work of successful women, enhancing the visibility of women in the profession and providing role models for those just beginning their careers. The two-day conference included seven 45-minute lectures and one day of six 45-minute lectures, and a poster session for junior participants. The conference program included 19 distinguished speakers, 10 poster presentations, about 70 junior and senior participants and, of course, the participation of Cathleen Synge Morawetz. The conference celebrated Morawetz's paramount contributions to the theory of non-linear equations in gas dynamics and their impact in the current trends of nonlinear phenomena in mathematical physics, but also served as an awareness session of current women's contribution to mathematics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.
A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less
Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.
2017-01-13
A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less
Estimation of suspended-sediment rating curves and mean suspended-sediment loads
Crawford, Charles G.
1991-01-01
A simulation study was done to evaluate: (1) the accuracy and precision of parameter estimates for the bias-corrected, transformed-linear and non-linear models obtained by the method of least squares; (2) the accuracy of mean suspended-sediment loads calculated by the flow-duration, rating-curve method using model parameters obtained by the alternative methods. Parameter estimates obtained by least squares for the bias-corrected, transformed-linear model were considerably more precise than those obtained for the non-linear or weighted non-linear model. The accuracy of parameter estimates obtained for the biascorrected, transformed-linear and weighted non-linear model was similar and was much greater than the accuracy obtained by non-linear least squares. The improved parameter estimates obtained by the biascorrected, transformed-linear or weighted non-linear model yield estimates of mean suspended-sediment load calculated by the flow-duration, rating-curve method that are more accurate and precise than those obtained for the non-linear model.
[Study on the correlation between adolescents' emotional and behavioral problems and life events].
Huang, Xue-zhu; Guo, Lan-ting; Tang, Guang-zheng
2006-03-01
To study the life events which are correlated with adolescent's emotion and behavior problems, and to provide evidence for clinicians and school staff to develop intervention for those problems. Youth's Self Report (YSR) and Adolescent Self-Rating Life Events Check List (ASLEC) were used to assess adolescent's emotional and behavioral problems and life events by 'spot' study. The referred group consisted of 585 patients from 11 to 18 years old in a Mental Health Centre of West China Hospital of Sichuan University from July in 2002 to March in 2004. Level of IQ was above 5th grade of primary school among the study subjects who were willing to fill in the YSR and ASLEC. The non-referred group was selected in a 1280 students cluster-sample from the schools of Chengdu city, whose sex, age and father's career were matched with the referred group. Variance inflation factor (VIF) was used to verify that there was no collinearity to each other in the 6 factors of ASLEC: interpersonal relationship, learning pressure, being punished, losing good adaptation and other. Linear stepwise regression was adopted. The YSR scores in referred group were higher than those in non-referred group, and the referred group had more emotional and behavioral problems than the non-referred one. Partial correlations ranged from 0.124 to 0.418 in referred group, and from 0.104 to 0.388 in non-referred group. Unsatisfied interpersonal relationship, heavy learning pressure, having been punished and poor adaptation were likely to increase the risk of youth's emotional and behavioral problems. More attention should be paid to help adolescents in the following areas: solving intrapersonal affairs, relieving pressure from learning, avoiding punishment, and improving ability to fit themselves to their surroundings.
MUSTA fluxes for systems of conservation laws
NASA Astrophysics Data System (ADS)
Toro, E. F.; Titarev, V. A.
2006-08-01
This paper is about numerical fluxes for hyperbolic systems and we first present a numerical flux, called GFORCE, that is a weighted average of the Lax-Friedrichs and Lax-Wendroff fluxes. For the linear advection equation with constant coefficient, the new flux reduces identically to that of the Godunov first-order upwind method. Then we incorporate GFORCE in the framework of the MUSTA approach [E.F. Toro, Multi-Stage Predictor-Corrector Fluxes for Hyperbolic Equations. Technical Report NI03037-NPA, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK, 17th June, 2003], resulting in a version that we call GMUSTA. For non-linear systems this gives results that are comparable to those of the Godunov method in conjunction with the exact Riemann solver or complete approximate Riemann solvers, noting however that in our approach, the solution of the Riemann problem in the conventional sense is avoided. Both the GFORCE and GMUSTA fluxes are extended to multi-dimensional non-linear systems in a straightforward unsplit manner, resulting in linearly stable schemes that have the same stability regions as the straightforward multi-dimensional extension of Godunov's method. The methods are applicable to general meshes. The schemes of this paper share with the family of centred methods the common properties of being simple and applicable to a large class of hyperbolic systems, but the schemes of this paper are distinctly more accurate. Finally, we proceed to the practical implementation of our numerical fluxes in the framework of high-order finite volume WENO methods for multi-dimensional non-linear hyperbolic systems. Numerical results are presented for the Euler equations and for the equations of magnetohydrodynamics.
Christman, Stephen D; Weaver, Ryan
2008-05-01
The nature of temporal variability during speeded finger tapping was examined using linear (standard deviation) and non-linear (Lyapunov exponent) measures. Experiment 1 found that right hand tapping was characterised by lower amounts of both linear and non-linear measures of variability than left hand tapping, and that linear and non-linear measures of variability were often negatively correlated with one another. Experiment 2 found that increased non-linear variability was associated with relatively enhanced performance on a closed-loop motor task (mirror tracing) and relatively impaired performance on an open-loop motor task (pointing in a dark room), especially for left hand performance. The potential uses and significance of measures of non-linear variability are discussed.
Linear System of Equations, Matrix Inversion, and Linear Programming Using MS Excel
ERIC Educational Resources Information Center
El-Gebeily, M.; Yushau, B.
2008-01-01
In this note, we demonstrate with illustrations two different ways that MS Excel can be used to solve Linear Systems of Equation, Linear Programming Problems, and Matrix Inversion Problems. The advantage of using MS Excel is its availability and transparency (the user is responsible for most of the details of how a problem is solved). Further, we…
A Relaxation Method for Nonlocal and Non-Hermitian Operators
NASA Astrophysics Data System (ADS)
Lagaris, I. E.; Papageorgiou, D. G.; Braun, M.; Sofianos, S. A.
1996-06-01
We present a grid method to solve the time dependent Schrödinger equation (TDSE). It uses the Crank-Nicholson scheme to propagate the wavefunction forward in time and finite differences to approximate the derivative operators. The resulting sparse linear system is solved by the symmetric successive overrelaxation iterative technique. The method handles local and nonlocal interactions and Hamiltonians that correspond to either Hermitian or to non-Hermitian matrices with real eigenvalues. We test the method by solving the TDSE in the imaginary time domain, thus converting the time propagation to asymptotic relaxation. Benchmark problems solved are both in one and two dimensions, with local, nonlocal, Hermitian and non-Hermitian Hamiltonians.
An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices
NASA Technical Reports Server (NTRS)
Freund, Roland W.; Gutknecht, Martin H.; Nachtigal, Noel M.
1991-01-01
The nonsymmetric Lanczos method can be used to compute eigenvalues of large sparse non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However, the original Lanczos algorithm is susceptible to possible breakdowns and potential instabilities. An implementation is presented of a look-ahead version of the Lanczos algorithm that, except for the very special situation of an incurable breakdown, overcomes these problems by skipping over those steps in which a breakdown or near-breakdown would occur in the standard process. The proposed algorithm can handle look-ahead steps of any length and requires the same number of matrix-vector products and inner products as the standard Lanczos process without look-ahead.
Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method
Shen, Qiuyang; Wu, Xuqing; Chen, Jiefu; ...
2017-11-20
The inverse problems arise in almost all fields of science where the real-world parameters are extracted from a set of measured data. The geosteering inversion plays an essential role in the accurate prediction of oncoming strata as well as a reliable guidance to adjust the borehole position on the fly to reach one or more geological targets. This mathematical treatment is not easy to solve, which requires finding an optimum solution among a large solution space, especially when the problem is non-linear and non-convex. Nowadays, a new generation of logging-while-drilling (LWD) tools has emerged on the market. The so-called azimuthalmore » resistivity LWD tools have azimuthal sensitivity and a large depth of investigation. Hence, the associated inverse problems become much more difficult since the earth model to be inverted will have more detailed structures. The conventional deterministic methods are incapable to solve such a complicated inverse problem, where they suffer from the local minimum trap. Alternatively, stochastic optimizations are in general better at finding global optimal solutions and handling uncertainty quantification. In this article, we investigate the Hybrid Monte Carlo (HMC) based statistical inversion approach and suggest that HMC based inference is more efficient in dealing with the increased complexity and uncertainty faced by the geosteering problems.« less
Relaxation of the single-slip condition in strain-gradient plasticity
Anguige, Keith; Dondl, Patrick W.
2014-01-01
We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales. PMID:25197243
Identification of the structure parameters using short-time non-stationary stochastic excitation
NASA Astrophysics Data System (ADS)
Jarczewska, Kamila; Koszela, Piotr; Śniady, PaweŁ; Korzec, Aleksandra
2011-07-01
In this paper, we propose an approach to the flexural stiffness or eigenvalue frequency identification of a linear structure using a non-stationary stochastic excitation process. The idea of the proposed approach lies within time domain input-output methods. The proposed method is based on transforming the dynamical problem into a static one by integrating the input and the output signals. The output signal is the structure reaction, i.e. structure displacements due to the short-time, irregular load of random type. The systems with single and multiple degrees of freedom, as well as continuous systems are considered.
Relaxation of the single-slip condition in strain-gradient plasticity.
Anguige, Keith; Dondl, Patrick W
2014-09-08
We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales.
Techniques for Single System Integration of Elastic Simulation Features
NASA Astrophysics Data System (ADS)
Mitchell, Nathan M.
Techniques for simulating the behavior of elastic objects have matured considerably over the last several decades, tackling diverse problems from non-linear models for incompressibility to accurate self-collisions. Alongside these contributions, advances in parallel hardware design and algorithms have made simulation more efficient and affordable than ever before. However, prior research often has had to commit to design choices that compromise certain simulation features to better optimize others, resulting in a fragmented landscape of solutions. For complex, real-world tasks, such as virtual surgery, a holistic approach is desirable, where complex behavior, performance, and ease of modeling are supported equally. This dissertation caters to this goal in the form of several interconnected threads of investigation, each of which contributes a piece of an unified solution. First, it will be demonstrated how various non-linear materials can be combined with lattice deformers to yield simulations with behavioral richness and a high potential for parallelism. This potential will be exploited to show how a hybrid solver approach based on large macroblocks can accelerate the convergence of these deformers. Further extensions of the lattice concept with non-manifold topology will allow for efficient processing of self-collisions and topology change. Finally, these concepts will be explored in the context of a case study on virtual plastic surgery, demonstrating a real-world problem space where these ideas can be combined to build an expressive authoring tool, allowing surgeons to record procedures digitally for future reference or education.
The attitude inversion method of geostationary satellites based on unscented particle filter
NASA Astrophysics Data System (ADS)
Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao
2018-04-01
The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.
A sequential linear optimization approach for controller design
NASA Technical Reports Server (NTRS)
Horta, L. G.; Juang, J.-N.; Junkins, J. L.
1985-01-01
A linear optimization approach with a simple real arithmetic algorithm is presented for reliable controller design and vibration suppression of flexible structures. Using first order sensitivity of the system eigenvalues with respect to the design parameters in conjunction with a continuation procedure, the method converts a nonlinear optimization problem into a maximization problem with linear inequality constraints. The method of linear programming is then applied to solve the converted linear optimization problem. The general efficiency of the linear programming approach allows the method to handle structural optimization problems with a large number of inequality constraints on the design vector. The method is demonstrated using a truss beam finite element model for the optimal sizing and placement of active/passive-structural members for damping augmentation. Results using both the sequential linear optimization approach and nonlinear optimization are presented and compared. The insensitivity to initial conditions of the linear optimization approach is also demonstrated.
Global dynamic optimization approach to predict activation in metabolic pathways.
de Hijas-Liste, Gundián M; Klipp, Edda; Balsa-Canto, Eva; Banga, Julio R
2014-01-06
During the last decade, a number of authors have shown that the genetic regulation of metabolic networks may follow optimality principles. Optimal control theory has been successfully used to compute optimal enzyme profiles considering simple metabolic pathways. However, applying this optimal control framework to more general networks (e.g. branched networks, or networks incorporating enzyme production dynamics) yields problems that are analytically intractable and/or numerically very challenging. Further, these previous studies have only considered a single-objective framework. In this work we consider a more general multi-objective formulation and we present solutions based on recent developments in global dynamic optimization techniques. We illustrate the performance and capabilities of these techniques considering two sets of problems. First, we consider a set of single-objective examples of increasing complexity taken from the recent literature. We analyze the multimodal character of the associated non linear optimization problems, and we also evaluate different global optimization approaches in terms of numerical robustness, efficiency and scalability. Second, we consider generalized multi-objective formulations for several examples, and we show how this framework results in more biologically meaningful results. The proposed strategy was used to solve a set of single-objective case studies related to unbranched and branched metabolic networks of different levels of complexity. All problems were successfully solved in reasonable computation times with our global dynamic optimization approach, reaching solutions which were comparable or better than those reported in previous literature. Further, we considered, for the first time, multi-objective formulations, illustrating how activation in metabolic pathways can be explained in terms of the best trade-offs between conflicting objectives. This new methodology can be applied to metabolic networks with arbitrary topologies, non-linear dynamics and constraints.
Torija, Antonio J; Ruiz, Diego P
2015-02-01
The prediction of environmental noise in urban environments requires the solution of a complex and non-linear problem, since there are complex relationships among the multitude of variables involved in the characterization and modelling of environmental noise and environmental-noise magnitudes. Moreover, the inclusion of the great spatial heterogeneity characteristic of urban environments seems to be essential in order to achieve an accurate environmental-noise prediction in cities. This problem is addressed in this paper, where a procedure based on feature-selection techniques and machine-learning regression methods is proposed and applied to this environmental problem. Three machine-learning regression methods, which are considered very robust in solving non-linear problems, are used to estimate the energy-equivalent sound-pressure level descriptor (LAeq). These three methods are: (i) multilayer perceptron (MLP), (ii) sequential minimal optimisation (SMO), and (iii) Gaussian processes for regression (GPR). In addition, because of the high number of input variables involved in environmental-noise modelling and estimation in urban environments, which make LAeq prediction models quite complex and costly in terms of time and resources for application to real situations, three different techniques are used to approach feature selection or data reduction. The feature-selection techniques used are: (i) correlation-based feature-subset selection (CFS), (ii) wrapper for feature-subset selection (WFS), and the data reduction technique is principal-component analysis (PCA). The subsequent analysis leads to a proposal of different schemes, depending on the needs regarding data collection and accuracy. The use of WFS as the feature-selection technique with the implementation of SMO or GPR as regression algorithm provides the best LAeq estimation (R(2)=0.94 and mean absolute error (MAE)=1.14-1.16 dB(A)). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-04-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-03-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Fractional Gaussian model in global optimization
NASA Astrophysics Data System (ADS)
Dimri, V. P.; Srivastava, R. P.
2009-12-01
Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raimondi, Pantaleo
The design of the Stanford Linear Collider (SLC) called for a beam intensity far beyond what was practically achievable. This was due to intrinsic limitations in many subsystems and to a lack of understanding of the new physics of linear colliders. Real progress in improving the SLC performance came from precision, non-invasive diagnostics to measure and monitor the beams and from new techniques to control the emittance dilution and optimize the beams. A major contribution to the success of the last 1997-98 SLC run came from several innovative ideas for improving the performance of the Final Focus (FF). This papermore » describes some of the problems encountered and techniques used to overcome them. Building on the SLC experience, we will also present a new approach to the FF design for future high energy linear colliders.« less
Insight into efficient image registration techniques and the demons algorithm.
Vercauteren, Tom; Pennec, Xavier; Malis, Ezio; Perchant, Aymeric; Ayache, Nicholas
2007-01-01
As image registration becomes more and more central to many biomedical imaging applications, the efficiency of the algorithms becomes a key issue. Image registration is classically performed by optimizing a similarity criterion over a given spatial transformation space. Even if this problem is considered as almost solved for linear registration, we show in this paper that some tools that have recently been developed in the field of vision-based robot control can outperform classical solutions. The adequacy of these tools for linear image registration leads us to revisit non-linear registration and allows us to provide interesting theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage to the symmetric forces variant of the demons algorithm. We show that, on controlled experiments, this advantage is confirmed, and yields a faster convergence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touma, Rony; Zeidan, Dia
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potentialmore » of the proposed scheme.« less
NASA Astrophysics Data System (ADS)
Delbary, Fabrice; Aramini, Riccardo; Bozza, Giovanni; Brignone, Massimo; Piana, Michele
2008-11-01
Microwave tomography is a non-invasive approach to the early diagnosis of breast cancer. However the problem of visualizing tumors from diffracted microwaves is a difficult nonlinear ill-posed inverse scattering problem. We propose a qualitative approach to the solution of such a problem, whereby the shape and location of cancerous tissues can be detected by means of a combination of the Reciprocity Gap Functional method and the Linear Sampling method. We validate this approach to synthetic near-fields produced by a finite element method for boundary integral equations, where the breast is mimicked by the axial view of two nested cylinders, the external one representing the skin and the internal one representing the fat tissue.
Combinatorial approaches to gene recognition.
Roytberg, M A; Astakhova, T V; Gelfand, M S
1997-01-01
Recognition of genes via exon assembly approaches leads naturally to the use of dynamic programming. We consider the general graph-theoretical formulation of the exon assembly problem and analyze in detail some specific variants: multicriterial optimization in the case of non-linear gene-scoring functions; context-dependent schemes for scoring exons and related procedures for exon filtering; and highly specific recognition of arbitrary gene segments, oligonucleotide probes and polymerase chain reaction (PCR) primers.
Leveraging Structural Characteristics of Interdependent Networks to Model Non-Linear Cascading Risks
2013-04-01
and Teresa Wu, Arizona State University Eugene Rex Jalao, Arizona State University and University of the Philippines Christopher Auger, Lars Baldus...Institute of Technology The RITE Approach to Agile Acquisition Timothy Boyce, Iva Sherman, and Nicholas Roussel Space and Naval Warfare Systems Center...Demonstration Office: Ad Hoc Problem Solving as a Mechanism for Adaptive Change Kathryn Aten and John T . Dillard Naval Postgraduate School A
Modelling of deformation of underground tunnel lining, interacting with water-saturated soil
NASA Astrophysics Data System (ADS)
Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.
2016-11-01
Built finite element method of calculating the deformation of underground tunnel lining, interacting with dry and water-saturated soils. To simulate the interaction between the lining and soils environments, including physical and non-linear, a special "contact" finite element, which allows to consider all cases of interaction between the contacting surfaces. It solved a number of problems of deformation with the ground subway tunnel lining rings.
An Alternative Procedure for Estimating Unit Learning Curves,
1985-09-01
the model accurately describes the real-life situation, i.e., when the model is properly applied to the data, it can be a powerful tool for...predicting unit production costs. There are, however, some unique estimation problems inherent in the model . The usual method of generating predicted unit...production costs attempts to extend properties of least squares estimators to non- linear functions of these estimators. The result is biased estimates of
Mitigation of Power Quality Problems in Grid-Interactive Distributed Generation System
NASA Astrophysics Data System (ADS)
Bhende, C. N.; Kalam, A.; Malla, S. G.
2016-04-01
Having an inter-tie between low/medium voltage grid and distributed generation (DG), both exposes to power quality (PQ) problems created by each other. This paper addresses various PQ problems arise due to integration of DG with grid. The major PQ problems are due to unbalanced and non-linear load connected at DG, unbalanced voltage variations on transmission line and unbalanced grid voltages which severely affect the performance of the system. To mitigate the above mentioned PQ problems, a novel integrated control of distribution static shunt compensator (DSTATCOM) is presented in this paper. DSTATCOM control helps in reducing the unbalance factor of PCC voltage. It also eliminates harmonics from line currents and makes them balanced. Moreover, DSTATCOM supplies the reactive power required by the load locally and hence, grid need not to supply the reactive power. To show the efficacy of the proposed controller, several operating conditions are considered and verified through simulation using MATLAB/SIMULINK.
Multiscale functions, scale dynamics, and applications to partial differential equations
NASA Astrophysics Data System (ADS)
Cresson, Jacky; Pierret, Frédéric
2016-05-01
Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.
NASA Astrophysics Data System (ADS)
Simmons, Daniel; Cools, Kristof; Sewell, Phillip
2016-11-01
Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.
Morris, Melody K.; Saez-Rodriguez, Julio; Lauffenburger, Douglas A.; Alexopoulos, Leonidas G.
2012-01-01
Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms. PMID:23226239
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Daniel, E-mail: daniel.simmons@nottingham.ac.uk; Cools, Kristof; Sewell, Phillip
Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removesmore » staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications. - Graphical abstract:.« less
NASA Astrophysics Data System (ADS)
Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud
2016-09-01
The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.
Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G
2012-01-01
Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.
NASA Astrophysics Data System (ADS)
Hurtado, Daniel E.; Rojas, Guillermo
2018-04-01
Computer simulations constitute a powerful tool for studying the electrical activity of the human heart, but computational effort remains prohibitively high. In order to recover accurate conduction velocities and wavefront shapes, the mesh size in linear element (Q1) formulations cannot exceed 0.1 mm. Here we propose a novel non-conforming finite-element formulation for the non-linear cardiac electrophysiology problem that results in accurate wavefront shapes and lower mesh-dependance in the conduction velocity, while retaining the same number of global degrees of freedom as Q1 formulations. As a result, coarser discretizations of cardiac domains can be employed in simulations without significant loss of accuracy, thus reducing the overall computational effort. We demonstrate the applicability of our formulation in biventricular simulations using a coarse mesh size of ˜ 1 mm, and show that the activation wave pattern closely follows that obtained in fine-mesh simulations at a fraction of the computation time, thus improving the accuracy-efficiency trade-off of cardiac simulations.
Nie, Xiaobing; Zheng, Wei Xing
2015-05-01
This paper is concerned with the problem of coexistence and dynamical behaviors of multiple equilibrium points for neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays. The fixed point theorem and other analytical tools are used to develop certain sufficient conditions that ensure that the n-dimensional discontinuous neural networks with time-varying delays can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable. The importance of the derived results is that it reveals that the discontinuous neural networks can have greater storage capacity than the continuous ones. Moreover, different from the existing results on multistability of neural networks with discontinuous activation functions, the 3(n) locally stable equilibrium points obtained in this paper are located in not only saturated regions, but also unsaturated regions, due to the non-monotonic structure of discontinuous activation functions. A numerical simulation study is conducted to illustrate and support the derived theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
On the linear programming bound for linear Lee codes.
Astola, Helena; Tabus, Ioan
2016-01-01
Based on an invariance-type property of the Lee-compositions of a linear Lee code, additional equality constraints can be introduced to the linear programming problem of linear Lee codes. In this paper, we formulate this property in terms of an action of the multiplicative group of the field [Formula: see text] on the set of Lee-compositions. We show some useful properties of certain sums of Lee-numbers, which are the eigenvalues of the Lee association scheme, appearing in the linear programming problem of linear Lee codes. Using the additional equality constraints, we formulate the linear programming problem of linear Lee codes in a very compact form, leading to a fast execution, which allows to efficiently compute the bounds for large parameter values of the linear codes.
Blessing of dimensionality: mathematical foundations of the statistical physics of data.
Gorban, A N; Tyukin, I Y
2018-04-28
The concentrations of measure phenomena were discovered as the mathematical background to statistical mechanics at the end of the nineteenth/beginning of the twentieth century and have been explored in mathematics ever since. At the beginning of the twenty-first century, it became clear that the proper utilization of these phenomena in machine learning might transform the curse of dimensionality into the blessing of dimensionality This paper summarizes recently discovered phenomena of measure concentration which drastically simplify some machine learning problems in high dimension, and allow us to correct legacy artificial intelligence systems. The classical concentration of measure theorems state that i.i.d. random points are concentrated in a thin layer near a surface (a sphere or equators of a sphere, an average or median-level set of energy or another Lipschitz function, etc.). The new stochastic separation theorems describe the thin structure of these thin layers: the random points are not only concentrated in a thin layer but are all linearly separable from the rest of the set, even for exponentially large random sets. The linear functionals for separation of points can be selected in the form of the linear Fisher's discriminant. All artificial intelligence systems make errors. Non-destructive correction requires separation of the situations (samples) with errors from the samples corresponding to correct behaviour by a simple and robust classifier. The stochastic separation theorems provide us with such classifiers and determine a non-iterative (one-shot) procedure for their construction.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
Fast estimation of diffusion tensors under Rician noise by the EM algorithm.
Liu, Jia; Gasbarra, Dario; Railavo, Juha
2016-01-15
Diffusion tensor imaging (DTI) is widely used to characterize, in vivo, the white matter of the central nerve system (CNS). This biological tissue contains much anatomic, structural and orientational information of fibers in human brain. Spectral data from the displacement distribution of water molecules located in the brain tissue are collected by a magnetic resonance scanner and acquired in the Fourier domain. After the Fourier inversion, the noise distribution is Gaussian in both real and imaginary parts and, as a consequence, the recorded magnitude data are corrupted by Rician noise. Statistical estimation of diffusion leads a non-linear regression problem. In this paper, we present a fast computational method for maximum likelihood estimation (MLE) of diffusivities under the Rician noise model based on the expectation maximization (EM) algorithm. By using data augmentation, we are able to transform a non-linear regression problem into the generalized linear modeling framework, reducing dramatically the computational cost. The Fisher-scoring method is used for achieving fast convergence of the tensor parameter. The new method is implemented and applied using both synthetic and real data in a wide range of b-amplitudes up to 14,000s/mm(2). Higher accuracy and precision of the Rician estimates are achieved compared with other log-normal based methods. In addition, we extend the maximum likelihood (ML) framework to the maximum a posteriori (MAP) estimation in DTI under the aforementioned scheme by specifying the priors. We will describe how close numerically are the estimators of model parameters obtained through MLE and MAP estimation. Copyright © 2015 Elsevier B.V. All rights reserved.
Blessing of dimensionality: mathematical foundations of the statistical physics of data
NASA Astrophysics Data System (ADS)
Gorban, A. N.; Tyukin, I. Y.
2018-04-01
The concentrations of measure phenomena were discovered as the mathematical background to statistical mechanics at the end of the nineteenth/beginning of the twentieth century and have been explored in mathematics ever since. At the beginning of the twenty-first century, it became clear that the proper utilization of these phenomena in machine learning might transform the curse of dimensionality into the blessing of dimensionality. This paper summarizes recently discovered phenomena of measure concentration which drastically simplify some machine learning problems in high dimension, and allow us to correct legacy artificial intelligence systems. The classical concentration of measure theorems state that i.i.d. random points are concentrated in a thin layer near a surface (a sphere or equators of a sphere, an average or median-level set of energy or another Lipschitz function, etc.). The new stochastic separation theorems describe the thin structure of these thin layers: the random points are not only concentrated in a thin layer but are all linearly separable from the rest of the set, even for exponentially large random sets. The linear functionals for separation of points can be selected in the form of the linear Fisher's discriminant. All artificial intelligence systems make errors. Non-destructive correction requires separation of the situations (samples) with errors from the samples corresponding to correct behaviour by a simple and robust classifier. The stochastic separation theorems provide us with such classifiers and determine a non-iterative (one-shot) procedure for their construction. This article is part of the theme issue `Hilbert's sixth problem'.
Fundamental solution of the problem of linear programming and method of its determination
NASA Technical Reports Server (NTRS)
Petrunin, S. V.
1978-01-01
The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited.
Primal-dual techniques for online algorithms and mechanisms
NASA Astrophysics Data System (ADS)
Liaghat, Vahid
An offline algorithm is one that knows the entire input in advance. An online algorithm, however, processes its input in a serial fashion. In contrast to offline algorithms, an online algorithm works in a local fashion and has to make irrevocable decisions without having the entire input. Online algorithms are often not optimal since their irrevocable decisions may turn out to be inefficient after receiving the rest of the input. For a given online problem, the goal is to design algorithms which are competitive against the offline optimal solutions. In a classical offline scenario, it is often common to see a dual analysis of problems that can be formulated as a linear or convex program. Primal-dual and dual-fitting techniques have been successfully applied to many such problems. Unfortunately, the usual tricks come short in an online setting since an online algorithm should make decisions without knowing even the whole program. In this thesis, we study the competitive analysis of fundamental problems in the literature such as different variants of online matching and online Steiner connectivity, via online dual techniques. Although there are many generic tools for solving an optimization problem in the offline paradigm, in comparison, much less is known for tackling online problems. The main focus of this work is to design generic techniques for solving integral linear optimization problems where the solution space is restricted via a set of linear constraints. A general family of these problems are online packing/covering problems. Our work shows that for several seemingly unrelated problems, primal-dual techniques can be successfully applied as a unifying approach for analyzing these problems. We believe this leads to generic algorithmic frameworks for solving online problems. In the first part of the thesis, we show the effectiveness of our techniques in the stochastic settings and their applications in Bayesian mechanism design. In particular, we introduce new techniques for solving a fundamental linear optimization problem, namely, the stochastic generalized assignment problem (GAP). This packing problem generalizes various problems such as online matching, ad allocation, bin packing, etc. We furthermore show applications of such results in the mechanism design by introducing Prophet Secretary, a novel Bayesian model for online auctions. In the second part of the thesis, we focus on the covering problems. We develop the framework of "Disk Painting" for a general class of network design problems that can be characterized by proper functions. This class generalizes the node-weighted and edge-weighted variants of several well-known Steiner connectivity problems. We furthermore design a generic technique for solving the prize-collecting variants of these problems when there exists a dual analysis for the non-prize-collecting counterparts. Hence, we solve the online prize-collecting variants of several network design problems for the first time. Finally we focus on designing techniques for online problems with mixed packing/covering constraints. We initiate the study of degree-bounded graph optimization problems in the online setting by designing an online algorithm with a tight competitive ratio for the degree-bounded Steiner forest problem. We hope these techniques establishes a starting point for the analysis of the important class of online degree-bounded optimization on graphs.
The Use of Non-Standard Devices in Finite Element Analysis
NASA Technical Reports Server (NTRS)
Schur, Willi W.; Broduer, Steve (Technical Monitor)
2001-01-01
A general mathematical description of the response behavior of thin-skin pneumatic envelopes and many other membrane and cable structures produces under-constrained systems that pose severe difficulties to analysis. These systems are mobile, and the general mathematical description exposes the mobility. Yet the response behavior of special under-constrained structures under special loadings can be accurately predicted using a constrained mathematical description. The static response behavior of systems that are infinitesimally mobile, such as a non-slack membrane subtended from a rigid or elastic boundary frame, can be easily analyzed using such general mathematical description as afforded by the non-linear, finite element method using an implicit solution scheme if the incremental uploading is guided through a suitable path. Similarly, if such structures are assembled with structural lack of fit that provides suitable self-stress, then dynamic response behavior can be predicted by the non-linear, finite element method and an implicit solution scheme. An explicit solution scheme is available for evolution problems. Such scheme can be used via the method of dynamic relaxation to obtain the solution to a static problem. In some sense, pneumatic envelopes and many other compliant structures can be said to have destiny under a specified loading system. What that means to the analyst is that what happens on the evolution path of the solution is irrelevant as long as equilibrium is achieved at destiny under full load and that the equilibrium is stable in the vicinity of that load. The purpose of this paper is to alert practitioners to the fact that non-standard procedures in finite element analysis are useful and can be legitimate although they burden their users with the requirement to use special caution. Some interesting findings that are useful to the US Scientific Balloon Program and that could not be obtained without non-standard techniques are presented.
Alcohol use potentiates marijuana problem severity in young adult women.
Stein, Michael D; Caviness, Celeste M; Anderson, Bradley J
2014-01-01
Most young adult women who smoke marijuana also drink alcohol. Marijuana-related problems are associated with marijuana use frequency. We hypothesized that increased alcohol use frequency potentiates the association between frequency of marijuana use and marijuana-related problem severity. We recruited women aged 18 to 24 who smoked marijuana at least monthly and were not treatment seeking. Marijuana and alcohol use were measured using the timeline follow-back method. Problems associated with marijuana use were assessed using the Marijuana Problems Scale. Participants (n = 332) averaged 20.5 ± 1.8 years of age, were 66.7% non-Hispanic White, and reported using marijuana on 51.5 ± 30.6 and alcohol on 18.9 ± 16.8 of the 90 previous days. Controlling for education, ethnicity, years of marijuana use, and other drug use, frequency of marijuana use (b = .22; p < .01) and frequency of alcohol use (b = 0.13; p < .05) had significant, positive effects on marijuana problem severity. In a separate multivariate model, the linear by linear interaction of marijuana by alcohol use frequency was significant (b = 0.18; p < .01), consistent with the hypothesis. Concurrent alcohol use impacts the experience of negative consequences from marijuana use in a community sample of young women. Discussions of marijuana use in young adults should consider the possible potentiating effects of alcohol use. Copyright © 2014 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.
Detection of linear polarization from SNR Cassiopeia A at low radio frequencies
NASA Astrophysics Data System (ADS)
Raja, Wasim; Deshpande, A.
We report detection of the weak but significant linear polarization from the Supernova Remnant Cas A at low radio frequencies (327 MHz) using the GMRT. The spectro-polarimetric data was analyzed using the new technique of Faraday Tomography (RM-synthesis). The problems of disentangling weak sky polarization from any residual instrumental polarization is discussed. A novel technique to establish association of the apparent polarization to the source, even in the presence of instrumental leakage is demonstrated. The anti-correlation of the polarized emission with soft X-ray counts seen at various Faraday-depths provides direct evidence of the co-existence of thermal and non-thermal plasmas within the source.
Fabrication and testing of non-graphitic superhybrid composites
NASA Technical Reports Server (NTRS)
Lark, R. F.; Sinclair, J. H.; Chamis, C. C.
1979-01-01
A study was conducted to determine the fabrication feasibility and the mechanical properties of adhesively-bonded boron aluminum/titanium and non-graphitic fiber/epoxy resin superhybrid (NGSH) composite laminates for potential aerospace applications. The major driver for this study was the elimination of a potential graphite fiber release problem in the event of a fire. The results of the study show that non-graphitic fibers, such as S-glass and Kevlar 49, may be substituted for the graphite fibers used in superhybrid (SH) composites for some applications. As is to be expected, however, the non-graphitic superhybrids have lower stiffness properties than the graphitic superhybrids. In-plane and flexural moduli of the laminates studied in this program can be predicted reasonably well using linear laminate theory while nonlinear laminate theory is required for strength predictions.
Solution Methods for 3D Tomographic Inversion Using A Highly Non-Linear Ray Tracer
NASA Astrophysics Data System (ADS)
Hipp, J. R.; Ballard, S.; Young, C. J.; Chang, M.
2008-12-01
To develop 3D velocity models to improve nuclear explosion monitoring capability, we have developed a 3D tomographic modeling system that traces rays using an implementation of the Um and Thurber ray pseudo- bending approach, with full enforcement of Snell's Law in 3D at the major discontinuities. Due to the highly non-linear nature of the ray tracer, however, we are forced to substantially damp the inversion in order to converge on a reasonable model. Unfortunately the amount of damping is not known a priori and can significantly extend the number of calls of the computationally expensive ray-tracer and the least squares matrix solver. If the damping term is too small the solution step-size produces either an un-realistic model velocity change or places the solution in or near a local minimum from which extrication is nearly impossible. If the damping term is too large, convergence can be very slow or premature convergence can occur. Standard approaches involve running inversions with a suite of damping parameters to find the best model. A better solution methodology is to take advantage of existing non-linear solution techniques such as Levenberg-Marquardt (LM) or quasi-newton iterative solvers. In particular, the LM algorithm was specifically designed to find the minimum of a multi-variate function that is expressed as the sum of squares of non-linear real-valued functions. It has become a standard technique for solving non-linear least squared problems, and is widely adopted in a broad spectrum of disciplines, including the geosciences. At each iteration, the LM approach dynamically varies the level of damping to optimize convergence. When the current estimate of the solution is far from the ultimate solution LM behaves as a steepest decent method, but transitions to Gauss- Newton behavior, with near quadratic convergence, as the estimate approaches the final solution. We show typical linear solution techniques and how they can lead to local minima if the damping is set too low. We also describe the LM technique and show how it automatically determines the appropriate damping factor as it iteratively converges on the best solution. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.
Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times
NASA Astrophysics Data System (ADS)
Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao
2016-04-01
Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.