Sample records for non-linear thin shell

  1. Enceladus's crust as a non-uniform thin shell: I tidal deformations

    NASA Astrophysics Data System (ADS)

    Beuthe, Mikael

    2018-03-01

    The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should take into account the lateral variations of shell structure. I construct here the theory of non-uniform viscoelastic thin shells, allowing for depth-dependent rheology and large lateral variations of shell thickness and rheology. Coupling to tides yields two 2D linear partial differential equations of the fourth order on the sphere which take into account self-gravity, density stratification below the shell, and core viscoelasticity. If the shell is laterally uniform, the solution agrees with analytical formulas for tidal Love numbers; errors on displacements and stresses are less than 5% and 15%, respectively, if the thickness is less than 10% of the radius. If the shell is non-uniform, the tidal thin shell equations are solved as a system of coupled linear equations in a spherical harmonic basis. Compared to finite element models, thin shell predictions are similar for the deformations due to Enceladus's pressurized ocean, but differ for the tides of Ganymede. If Enceladus's shell is conductive with isostatic thickness variations, surface stresses are approximately inversely proportional to the local shell thickness. The radial tide is only moderately enhanced at the south pole. The combination of crustal thinning and convection below the poles can amplify south polar stresses by a factor of 10, but it cannot explain the apparent time lag between the maximum plume brightness and the opening of tiger stripes. In a second paper, I will study the impact of a non-uniform crust on tidal dissipation.

  2. Fluid-structure interaction simulations of deformable structures with non-linear thin shell elements

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, Hafez; Hedayat, Mohammadali; Borazjani, Iman; Scientific Computing; Biofluids Laboratory Team

    2017-11-01

    Large deformation of structures in a fluid is simulated using a strongly coupled partitioned fluid-structure interaction (FSI) approach which is stabilized with under-relaxation and the Aitken acceleration technique. The fluid is simulated using a recently developed implicit Newton-Krylov method with a novel analytical Jacobian. Structures are simulated using a triangular thin-shell finite element formulation, which considers only translational degrees of freedom. The thin-shell method is developed on the top of a previously implemented membrane finite element formulation. A sharp interface immersed boundary method is used to handle structures in the fluid domain. The developed FSI framework is validated against two three-dimensional experiments: (1) a flexible aquatic vegetation in the fluid and (2) a heaving flexible panel in fluid. Furthermore, the developed FSI framework is used to simulate tissue heart valves, which involve large deformations and non-linear material properties. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.

  3. Effects of Initial Geometric Imperfections On the Non-Linear Response of the Space Shuttle Superlightweight Liquid-Oxygen Tank

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Young, Richard D.; Collins, Timothy J.; Starnes, James H., Jr.

    2002-01-01

    The results of an analytical study of the elastic buckling and nonlinear behavior of the liquid-oxygen tank for the new Space Shuttle superlightweight external fuel tank are presented. Selected results that illustrate three distinctly different types of non-linear response phenomena for thin-walled shells which are subjected to combined mechanical and thermal loads are presented. These response phenomena consist of a bifurcation-type buckling response, a short-wavelength non-linear bending response and a non-linear collapse or "snap-through" response associated with a limit point. The effects of initial geometric imperfections on the response characteristics are emphasized. The results illustrate that the buckling and non-linear response of a geometrically imperfect shell structure subjected to complex loading conditions may not be adequately characterized by an elastic linear bifurcation buckling analysis, and that the traditional industry practice of applying a buckling-load knock-down factor can result in an ultraconservative design. Results are also presented that show that a fluid-filled shell can be highly sensitive to initial geometric imperfections, and that the use a buckling-load knock-down factor is needed for this case.

  4. Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes

    NASA Technical Reports Server (NTRS)

    Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank

    2004-01-01

    Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.

  5. Dynamics of thin-shell wormholes with different cosmological models

    NASA Astrophysics Data System (ADS)

    Sharif, Muhammad; Mumtaz, Saadia

    This work is devoted to investigate the stability of thin-shell wormholes in Einstein-Hoffmann-Born-Infeld electrodynamics. We also study the attractive and repulsive characteristics of these configurations. A general equation-of-state is considered in the form of linear perturbation which explores the stability of the respective wormhole solutions. We assume Chaplygin, linear and logarithmic gas models to study exotic matter at thin-shell and evaluate stability regions for different values of the involved parameters. It is concluded that the Hoffmann-Born-Infeld parameter and electric charge enhance the stability regions.

  6. Perturbative dynamics of thin-shell wormholes beyond general relativity: An alternative approach

    NASA Astrophysics Data System (ADS)

    Rubín de Celis, Emilio; Tomasini, Cecilia; Simeone, Claudio

    Recent studies relating the approximations for the equations-of-state for thin shells and their consequent perturbative evolution are extended to thin-shell wormholes in theories beyond general relativity and more than four spacetime dimensions. The assumption of equations-of-state of the same form for static and slowly evolving shells appears as a strong restriction excluding the possibility of oscillatory evolutions. Then the new results considerably differ from previous ones obtained within the usual linearized approach.

  7. Stability of thin shell wormholes with a modified Chaplygin gas in Einstein-Hoffman-Born-Infeld theory

    NASA Astrophysics Data System (ADS)

    Eid, A.

    2017-11-01

    In the framework of Darmois-Israel formalism, the dynamics of motion equations of spherically symmetric thin shell wormholes that are supported by a modified Chaplygin gas in Einstein-Hoffman-Born-Infeld theory are constructed. The stability analysis of a thin shell wormhole is also discussed using a linearized radial perturbation around static solutions at the wormhole throat. The existence of stable static solutions depends on the value of some parameters of dynamical shell.

  8. Stability of cylindrical thin shell wormholes supported by MGCG in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Eid, A.

    2018-02-01

    In the framework of f(R) modified theory of gravity, the dynamical equations of motion of a cylindrical thin shell wormholes supported by a modified generalized Chaplygin gas are constructed, using the cut and paste scheme (Darmois Israel formalism). The mechanical stability analysis of a cylindrical thin shell wormhole is discussed using a linearized radial perturbation around static solutions at the wormhole throat. The presence of stable static solutions depends on the suitable values of some parameters of dynamical shell.

  9. On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks

    NASA Astrophysics Data System (ADS)

    Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.

    2016-06-01

    We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.

  10. Stability of generic thin shells in conformally flat spacetimes

    NASA Astrophysics Data System (ADS)

    Amirabi, Z.

    2017-07-01

    Some important spacetimes are conformally flat; examples are the Robertson-Walker cosmological metric, the Einstein-de Sitter spacetime, and the Levi-Civita-Bertotti-Robinson and Mannheim metrics. In this paper we construct generic thin shells in conformally flat spacetime supported by a perfect fluid with a linear equation of state, i.e., p=ω σ . It is shown that, for the physical domain of ω , i.e., 0<ω ≤ 1, such thin shells are not dynamically stable. The stability of the timelike thin shells with the Mannheim spacetime as the outer region is also investigated.

  11. Isogeometric Kirchhoff-Love shell formulations for biological membranes

    PubMed Central

    Tepole, Adrián Buganza; Kabaria, Hardik; Bletzinger, Kai-Uwe; Kuhl, Ellen

    2015-01-01

    Computational modeling of thin biological membranes can aid the design of better medical devices. Remarkable biological membranes include skin, alveoli, blood vessels, and heart valves. Isogeometric analysis is ideally suited for biological membranes since it inherently satisfies the C1-requirement for Kirchhoff-Love kinematics. Yet, current isogeometric shell formulations are mainly focused on linear isotropic materials, while biological tissues are characterized by a nonlinear anisotropic stress-strain response. Here we present a thin shell formulation for thin biological membranes. We derive the equilibrium equations using curvilinear convective coordinates on NURBS tensor product surface patches. We linearize the weak form of the generic linear momentum balance without a particular choice of a constitutive law. We then incorporate the constitutive equations that have been designed specifically for collagenous tissues. We explore three common anisotropic material models: Mooney-Rivlin, May Newmann-Yin, and Gasser-Ogden-Holzapfel. Our work will allow scientists in biomechanics and mechanobiology to adopt the constitutive equations that have been developed for solid three-dimensional soft tissues within the framework of isogeometric thin shell analysis. PMID:26251556

  12. Evolution of helical perturbations in a thin-shell model of an imploding liner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D. D.; Dorf, M. A.

    A thin-shell model of the liner stability has been revisited and applied to the stability of the helical perturbations. Several stages of the implosion have been identified, starting from a long initial “latent” phase of an almost resting liner, continuing to the second stage of a rapid contraction and significant perturbation growth, and then transitioning to the third stage where perturbations become ballistic and highly non-linear. The stage of stagnation and rebound is beyond the scope of this paper. An importance of vorticity conservation during the late stages is emphasized. Nonlinear evolution of perturbations is followed up to the pointmore » of the formation of cusp structures. Effects of in-surface flows and of their enhancement due to the vorticity conservation are discussed. It is shown that the pre-machined perturbations created only on the outer surface of the liner grow much slower than one could anticipate. The limitations on the thin-shell description are discussed.« less

  13. Repeated crossing of two concentric spherical thin-shells with charge

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.

    Interaction/collision of two concentric spherical thin-shells of linear fluid resulting in collapse has been considered recently. We show that addition of finely tuned electric charges on the shells apart from the cosmological constant serves to delay the collapse indefinitely, yielding an ever colliding system of two concentric fluid shells. Given the finely tuned charges, this provides an example of a perpetual two-body motion in general relativity.

  14. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  15. Preliminarily study on the maximum handling size, prey size and species selectivity of growth hormone transgenic and non-transgenic common carp Cyprinus carpio when foraging on gastropods

    NASA Astrophysics Data System (ADS)

    Zhu, Tingbing; Zhang, Lihong; Zhang, Tanglin; Wang, Yaping; Hu, Wei; Olsen, Rolf Eric; Zhu, Zuoyan

    2017-10-01

    The present study preliminarily examined the differences in maximum handling size, prey size and species selectivity of growth hormone transgenic and non-transgenic common carp Cyprinus carpio when foraging on four gastropods species (Bellamya aeruginosa, Radix auricularia, Parafossarulus sinensis and Alocinma longicornis) under laboratory conditions. In the maximum handling size trial, five fish from each age group (1-year-old and 2-year-old) and each genotype (transgenic and non-transgenic) of common carp were individually allowed to feed on B. aeruginosa with wide shell height range. The results showed that maximum handling size increased linearly with fish length, and there was no significant difference in maximum handling size between the two genotypes. In the size selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on three size groups of B. aeruginosa. The results show that the two genotypes of C. carpio favored the small-sized group over the large-sized group. In the species selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on thin-shelled B. aeruginosa and thick-shelled R. auricularia, and five pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on two gastropods species (P. sinensis and A. longicornis) with similar size and shell strength. The results showed that both genotypes preferred thin-shelled Radix auricularia rather than thick-shelled B. aeruginosa, but there were no significant difference in selectivity between the two genotypes when fed on P. sinensis and A. longicornis. The present study indicates that transgenic and non-transgenic C. carpio show similar selectivity of predation on the size- and species-limited gastropods. While this information may be useful for assessing the environmental risk of transgenic carp, it does not necessarily demonstrate that transgenic common carp might have lesser environmental impacts than non-transgenic carp.

  16. Enhanced linear photonic nanojet generated by core-shell optical microfibers

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Yen, Tzu-Ping; Chen, Chien-Wen

    2017-05-01

    The generation of linear photonic nanojet using core-shell optical microfiber is demonstrated numerically and experimentally in the visible light region. The power flow patterns for the core-shell optical microfiber are calculated by using the finite-difference time-domain method. The focusing properties of linear photonic nanojet are evaluated in terms of length and width along propagation and transversal directions. In experiment, the silica optical fiber is etched chemically down to 6 μm diameter and coated with metallic thin film by using glancing angle deposition. We show that the linear photonic nanojet is enhanced clearly by metallic shell due to surface plasmon polaritons. The large-area superresolution imaging can be performed by using a core-shell optical microfiber in the far-field system. The potential applications of this core-shell optical microfiber include micro-fluidics and nano-structure measurements.

  17. Sensitivity Analysis of Stability Problems of Steel Structures using Shell Finite Elements and Nonlinear Computation Methods

    NASA Astrophysics Data System (ADS)

    Kala, Zdeněk; Kala, Jiří

    2011-09-01

    The main focus of the paper is the analysis of the influence of residual stress on the ultimate limit state of a hot-rolled member in compression. The member was modelled using thin-walled elements of type SHELL 181 and meshed in the programme ANSYS. Geometrical and material non-linear analysis was used. The influence of residual stress was studied using variance-based sensitivity analysis. In order to obtain more general results, the non-dimensional slenderness was selected as a study parameter. Comparison of the influence of the residual stress with the influence of other dominant imperfections is illustrated in the conclusion of the paper. All input random variables were considered according to results of experimental research.

  18. Simulations of heart valves by thin shells with non-linear material properties

    NASA Astrophysics Data System (ADS)

    Borazjani, Iman; Asgharzadeh, Hafez; Hedayat, Mohammadali

    2016-11-01

    The primary function of a heart valve is to allow blood to flow in only one direction through the heart. Triangular thin-shell finite element formulation is implemented, which considers only translational degrees of freedom, in three-dimensional domain to simulate heart valves undergoing large deformations. The formulation is based on the nonlinear Kirchhoff thin-shell theory. The developed method is intensively validated against numerical and analytical benchmarks. This method is added to previously developed membrane method to obtain more realistic results since ignoring bending forces can results in unrealistic wrinkling of heart valves. A nonlinear Fung-type constitutive relation, based on experimentally measured biaxial loading tests, is used to model the material properties for response of the in-plane motion in heart valves. Furthermore, the experimentally measured liner constitutive relation is used to model the material properties to capture the flexural motion of heart valves. The Fluid structure interaction solver adopts a strongly coupled partitioned approach that is stabilized with under-relaxation and the Aitken acceleration technique. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.

  19. Asymptotic approximations for pure bending of thin cylindrical shells

    NASA Astrophysics Data System (ADS)

    Coman, Ciprian D.

    2017-08-01

    A simplified partial wrinkling scenario for in-plane bending of thin cylindrical shells is explored by using several asymptotic strategies. The eighth-order boundary eigenvalue problem investigated here originates in the Donnel-Mushtari-Vlasov shallow shell theory coupled with a linear membrane pre-bifurcation state. It is shown that the corresponding neutral stability curve is amenable to a detailed asymptotic analysis based on the method of multiple scales. This is further complemented by an alternative WKB approximation that provides comparable information with significantly less effort.

  20. Exploring the remarkable limits of continuum elastic theory to understand the nanomechanics of viruses

    NASA Astrophysics Data System (ADS)

    Roos, Wouter; Gibbons, Melissa; Klug, William; Wuite, Gijs

    2009-03-01

    We report nanoindentation experiments by atomic force microscopy on capsids of the Hepatitis B Virus (HBV). HBV is investigated because its capsids can form in either a smaller T=3 or a bigger T=4 configuration, making it an ideal system to test the predictive power of continuum elastic theory to describe nanometre-sized objects. It is shown that for small, consecutive indentations the particles behave reversibly linear and no material fatigue occurs. For larger indentations the particles start to deform non-linearly. The experimental force response fits very well with finite element simulations on coarse grained models of HBV capsids. Furthermore, this also fits with thin shell simulations guided by the F"oppl- von K'arm'an (FvK) number (the dimensionless ratio of stretching and bending stiffness of a thin shell). Both the T=3 and T=4 morphology are very well described by the simulations and the capsid material turns out to have the same Young's modulus, as expected. The presented results demonstrate the surprising strength of continuum elastic theory to describe indentation of viral capsids.

  1. Global Curvature Buckling and Snapping of Spherical Shells.

    NASA Astrophysics Data System (ADS)

    Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark; Bade, Abdikhalaq; Trejo, Miguel; Holmes, Douglas

    A spherical shell under external pressure will eventually buckle locally through the development of a dimple. However, when a free spherical shell is subject to variations in natural curvature, it will either buckle globally or snap towards a buckled configuration. We study the similarities and differences between pressure and curvature instabilities in spherical shells. We show how the critical buckling natural curvature is largely independent of the thinness and half-angle of the shell, while the critical snapping natural curvature grows linearly with the half-angle. As a result, we demonstrate how a critical half-angle, depending only on the thinness of the shell, sets the threshold between two different kinds of snapping: as a rule of thumb, shallow shells snap into everted shells, while deep shells snap into buckled shells. As the developed models are purely geometrical, the results are applicable to a large variety of stimuli and scales. NSF CAREER CMMI-1454153.

  2. Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J. R.; Rachlew, E.

    2006-11-01

    Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size.

  3. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review)

    NASA Astrophysics Data System (ADS)

    Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.

    2012-11-01

    Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)

  4. Thin Shell Model for NIF capsule stagnation studies

    NASA Astrophysics Data System (ADS)

    Hammer, J. H.; Buchoff, M.; Brandon, S.; Field, J. E.; Gaffney, J.; Kritcher, A.; Nora, R. C.; Peterson, J. L.; Spears, B.; Springer, P. T.

    2015-11-01

    We adapt the thin shell model of Ott et al. to asymmetric ICF capsule implosions on NIF. Through much of an implosion, the shell aspect ratio is large so the thin shell approximation is well satisfied. Asymmetric pressure drive is applied using an analytic form for ablation pressure as a function of the x-ray flux, as well as time-dependent 3D drive asymmetry from hohlraum calculations. Since deviations from a sphere are small through peak velocity, we linearize the equations, decompose them by spherical harmonics and solve ODE's for the coefficients. The model gives the shell position, velocity and areal mass variations at the time of peak velocity, near 250 microns radius. The variables are used to initialize 3D rad-hydro calculations with the HYDRA and ARES codes. At link time the cold fuel shell and ablator are each characterized by a density, adiabat and mass. The thickness, position and velocity of each point are taken from the thin shell model. The interior of the shell is filled with a uniform gas density and temperature consistent with the 3/2PV energy found from 1D rad-hydro calculations. 3D linked simulations compare favorably with integrated simulations of the entire implosion. Through generating synthetic diagnostic data, the model offers a method for quickly testing hypothetical sources of asymmetry and comparing with experiment. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Non-linear vibrations of sandwich viscoelastic shells

    NASA Astrophysics Data System (ADS)

    Benchouaf, Lahcen; Boutyour, El Hassan; Daya, El Mostafa; Potier-Ferry, Michel

    2018-04-01

    This paper deals with the non-linear vibration of sandwich viscoelastic shell structures. Coupling a harmonic balance method with the Galerkin's procedure, one obtains an amplitude equation depending on two complex coefficients. The latter are determined by solving a classical eigenvalue problem and two linear ones. This permits to get the non-linear frequency and the non-linear loss factor as functions of the displacement amplitude. To validate our approach, these relationships are illustrated in the case of a circular sandwich ring.

  6. A parameter-free variational coupling approach for trimmed isogeometric thin shells

    NASA Astrophysics Data System (ADS)

    Guo, Yujie; Ruess, Martin; Schillinger, Dominik

    2017-04-01

    The non-symmetric variant of Nitsche's method was recently applied successfully for variationally enforcing boundary and interface conditions in non-boundary-fitted discretizations. In contrast to its symmetric variant, it does not require stabilization terms and therefore does not depend on the appropriate estimation of stabilization parameters. In this paper, we further consolidate the non-symmetric Nitsche approach by establishing its application in isogeometric thin shell analysis, where variational coupling techniques are of particular interest for enforcing interface conditions along trimming curves. To this end, we extend its variational formulation within Kirchhoff-Love shell theory, combine it with the finite cell method, and apply the resulting framework to a range of representative shell problems based on trimmed NURBS surfaces. We demonstrate that the non-symmetric variant applied in this context is stable and can lead to the same accuracy in terms of displacements and stresses as its symmetric counterpart. Based on our numerical evidence, the non-symmetric Nitsche method is a viable parameter-free alternative to the symmetric variant in elastostatic shell analysis.

  7. Formation of organized nanostructures from unstable bilayers of thin metallic liquids

    NASA Astrophysics Data System (ADS)

    Khenner, Mikhail; Yadavali, Sagar; Kalyanaraman, Ramki

    2011-12-01

    Dewetting of pulsed-laser irradiated, thin (<20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.

  8. Explicit formulation of an anisotropic Allman/DKT 3-node thin triangular flat shell elements

    NASA Astrophysics Data System (ADS)

    Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.

    A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular, flat shell element in global coordinates is presented. An Allman triangle is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending triangle. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, membrane and bending strain-displacement matrices.

  9. Curvature-driven morphing of non-Euclidean shells

    NASA Astrophysics Data System (ADS)

    Pezzulla, Matteo; Stoop, Norbert; Jiang, Xin; Holmes, D. P.

    2017-05-01

    We investigate how thin structures change their shape in response to non-mechanical stimuli that can be interpreted as variations in the structure's natural curvature. Starting from the theory of non-Euclidean plates and shells, we derive an effective model that reduces a three-dimensional stimulus to the natural fundamental forms of the mid-surface of the structure, incorporating expansion, or growth, in the thickness. Then, we apply the model to a variety of thin bodies, from flat plates to spherical shells, obtaining excellent agreement between theory and numerics. We show how cylinders and cones can either bend more or unroll, and eventually snap and rotate. We also study the nearly isometric deformations of a spherical shell and describe how this shape change is ruled by the geometry of a spindle. As the derived results stem from a purely geometrical model, they are general and scalable.

  10. Large-deflection-theory Analysis of the Effect of Web Initial Curvature on the Ultimate Strength of Steel Plate Girder

    NASA Astrophysics Data System (ADS)

    Kala, Jiří; Kala, Zdeněk

    2011-09-01

    The objective of the paper is to analyze the influence of initial imperfections on the behaviour of thin-walled girders welded of slender plate elements. In parallel with experiments, one of the ultimate load tests was computer modelled. In so doing, the girder was modelled, using the geometrically and materially non-linear variant of the shell finite element method, by the ANSYS program. The shape changing during loading process is often accompanying with sudden "snap-through" i. e. rapid curvature change.

  11. A thin-walled pressurized sphere exposed to external general corrosion and nonuniform heating

    NASA Astrophysics Data System (ADS)

    Sedova, Olga S.; Pronina, Yulia G.; Kuchin, Nikolai L.

    2018-05-01

    A thin-walled spherical shell subjected to simultaneous action of internal and external pressure, nonuniform heating and outside mechanochemical corrosion is considered. It is assumed that the shell is homogeneous, isotropic and linearly elastic. The rate of corrosion is linearly dependent on the equivalent stress, which is the sum of mechanical and temperature stress components. Paper presents a new analytical solution, which takes into account the effect of the internal and external pressure values themselves, not only their difference. At the same time, the new solution has a rather simple form as compared to the results based on the solution to the Lame problem for a thick-walled sphere under pressure. The solution obtained can serve as a benchmark for numerical analysis and for a qualitative forecast of durability of the vessel.

  12. Convergence of finite difference transient response computations for thin shells.

    NASA Technical Reports Server (NTRS)

    Sobel, L. H.; Geers, T. L.

    1973-01-01

    Numerical studies pertaining to the limits of applicability of the finite difference method in the solution of linear transient shell response problems are performed, and a computational procedure for the use of the method is recommended. It is found that the only inherent limitation of the finite difference method is its inability to reproduce accurately response discontinuities. This is not a serious limitation in view of natural constraints imposed by the extension of Saint Venant's principle to transient response problems. It is also found that the short wavelength limitations of thin shell (Bernoulli-Euler) theory create significant convergence difficulties in computed response to certain types of transverse excitations. These difficulties may be overcome, however, through proper selection of finite difference mesh dimensions and temporal smoothing of the excitation.

  13. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.; Greene, N.; Palko, Joseph L.; Eldridge, Jeffrey; Sutter, James; Saulsberry, R.; Beeson, H.

    2009-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Administration's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to a previously reported experimental investigation and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel s residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV hardware.

  14. Core-Shell Double Gyroid Structure Formed by Linear ABC Terpolymer Thin Films.

    PubMed

    Antoine, Ségolène; Aissou, Karim; Mumtaz, Muhammad; Telitel, Siham; Pécastaings, Gilles; Wirotius, Anne-Laure; Brochon, Cyril; Cloutet, Eric; Fleury, Guillaume; Hadziioannou, Georges

    2018-05-01

    The synthesis and self-assembly in thin-film configuration of linear ABC triblock terpolymer chains consisting of polystyrene (PS), poly(2-vinylpyridine) (P2VP), and polyisoprene (PI) are described. For that purpose, a hydroxyl-terminated PS-b-P2VP (45 kg mol -1 ) building block and a carboxyl-terminated PI (9 kg mol -1 ) are first separately prepared by anionic polymerization, and then are coupled via a Steglich esterification reaction. This quantitative and metal-free catalyst synthesis route reveals to be very interesting since functionalization and purification steps are straightforward, and well-defined terpolymers are produced. A solvent vapor annealing (SVA) process is used to promote the self-assembly of frustrated PS-b-P2VP-b-PI chains into a thin-film core-shell double gyroid (Q 230 , space group: Ia3¯d) structure. As terraces are formed within PS-b-P2VP-b-PI thin films during the SVA process under a CHCl 3 vapor, different plane orientations of the Q 230 structure ((211), (110), (111), and (100)) are observed at the polymer-air interface depending on the film thickness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Non-axisymmetric α2Ω-dynamo waves in thin stellar shells

    NASA Astrophysics Data System (ADS)

    Bassom, Andrew P.; Kuzanyan, Kirill M.; Sokoloff, Dmitry; Soward, Andrew M.

    2005-04-01

    Linear α2Ω-dynamo waves are investigated in a thin turbulent, differentially rotating convective stellar shell. A simplified one-dimensional model is considered and an asymptotic solution constructed based on the small aspect ratio of the shell. In a previous paper Griffiths et al. (Griffiths, G.L., Bassom, A.P., Soward, A.M. and Kuzanyan, K.M., Nonlinear α2Ω-dynamo waves in stellar shells, Geophys. Astrophys. Fluid Dynam., 2001, 94, 85-133) considered the modulation of dynamo waves, linked to a latitudinal-dependent local α-effect and radial gradient of the zonal shear flow. These effects are measured at latitude θ by the magnetic Reynolds numbers Rαf(θ) and RΩg(θ). The modulated Parker wave, which propagates towards the equator, is localised at some mid-latitude θp under a Gaussian envelope. In this article, we include the influence of a latitudinal-dependent zonal flow possessing angular velocity Ω*(θ) and consider the possibility of non-axisymmetric dynamo waves with azimuthal wave number m. We find that the critical dynamo number Dc = RαRΩ is minimised by axisymmetric modes in the αΩ-limit (Rα→0). On the other hand, when Rα ≠ 0 there may exist a band of wave numbers 0 < m < m† for which the non-axisymmetric modes have a smaller Dc than in the axisymmetric case. Here m† is regarded as a continuous function of Rα with the property m†→0 as Rα→0 and the band is only non-empty when m† >1, which happens for sufficiently large Rα. The preference for non-axisymmetric modes is possible because the wind-up of the non-axisymmetric structures can be compensated by phase mixing inherent to the α2Ω-dynamo. For parameter values resembling solar conditions, the Parker wave of maximum dynamo activity at latitude θp not only propagates equatorwards but also westwards relative to the local angular velocity Ω*(θp). Since the critical dynamo number Dc = RαRΩ is O (1) for small Rα, the condition m† > 1 for non-axisymmetric mode preference imposes an upper limit on the size of |dΩ*/dθ|.

  16. Determining linear vibration frequencies of a ferromagnetic shell

    NASA Astrophysics Data System (ADS)

    Bagdoev, A. G.; Vardanyan, A. V.; Vardanyan, S. V.; Kukudzhanov, V. N.

    2007-10-01

    The problems of determining the roots of dispersion equations for free bending vibrations of thin magnetoelastic plates and shells are of both theoretical and practical interest, in particular, in studying vibrations of metallic structures used in controlled thermonuclear reactors. These problems were solved on the basis of the Kirchhoff hypothesis in [1-5]. In [6], an exact spatial approach to determining the vibration frequencies of thin plates was suggested, and it was shown that it completely agrees with the solution obtained according to the Kirchhoff hypothesis. In [7-9], this exact approach was used to solve the problem on vibrations of thin magnetoelastic plates, and it was shown by cumbersome calculations that the solutions obtained according to the exact theory and the Kirchhoff hypothesis differ substantially except in a single case. In [10], the equations of the dynamic theory of elasticity in the axisymmetric problem are given. In [11], the equations for the vibration frequencies of thin ferromagnetic plates with arbitrary conductivity were obtained in the exact statement. In [12], the Kirchhoff hypothesis was used to obtain dispersion relations for a magnetoelastic thin shell. In [5, 13-16], the relations for the Maxwell tensor and the ponderomotive force for magnetics were presented. In [17], the dispersion relations for thin ferromagnetic plates in the transverse field in the spatial statement were studied analytically and numerically. In the present paper, on the basis of the exact approach, we study free bending vibrations of a thin ferromagnetic cylindrical shell. We obtain the exact dispersion equation in the form of a sixth-order determinant, which can be solved numerically in the case of a magnetoelastic thin shell. The numerical results are presented in tables and compared with the results obtained by the Kirchhoff hypothesis. We show a large number of differences in the results, even for the least frequency.

  17. Localized tidal deformations and dissipation in Enceladus

    NASA Astrophysics Data System (ADS)

    Beuthe, M.

    2017-12-01

    The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should include lateral variations of shell structure. I solve this problem with a new theory of non-uniform viscoelastic thin shells, allowing for large lateral variations of crustal thickness as well as large 3D variations of crustal rheology. The coupling to tidal forcing takes into account self-gravity, density stratification below the shell, core viscoelasticity, and crustal compressibility. The resulting tidal thin shell equations are two partial differential equations defined on the spherical surface, which can be solved numerically much faster than 3D Finite Element Methods. The error on tidal displacements is less than 5% if the thickness is less than 10% of the radius while the error on the deviatoric stress varies between 0 and 10%. If Enceladus's shell is conductive with isostatic thickness variations, crustal thinning increases surface stresses by 60% at the north pole and by a factor of more than 3 at the south pole. Similarly, the surface flux resulting from crustal dissipation increases by a factor of 3 at the south pole. If dissipation is an order of magnitude higher than predicted by the Maxwell model (as suggested by recent experimental data), the power dissipated in the crust could reach 50% of the total power required to maintain the crust in thermal equilibrium, and most of the surface flux variation could be explained by latitudinal variations of crustal dissipation. In all cases, a large part of the heat budget must be generated below the crust.

  18. Performance of an anisotropic Allman/DKT 3-node thin triangular flat shell element

    NASA Astrophysics Data System (ADS)

    Ertas, A.; Krafcik, J. T.; Ekwaro-Osire, S.

    1992-05-01

    A simple, explicit formulation of the stiffness matrix for an anisotropic, 3-node, thin triangular flat shell element in global coordinates is presented. An Allman triangle (AT) is used for membrane stiffness. The membrane stiffness matrix is explicitly derived by applying an Allman transformation to a Felippa 6-node linear strain triangle (LST). Bending stiffness is incorporated by the use of a discrete Kirchhoff triangle (DKT) bending element. Stiffness terms resulting from anisotropic membrane-bending coupling are included by integrating, in area coordinates, the membrane and bending strain-displacement matrices. Using the aforementioned approach, the objective of this study is to develop and test the performance of a practical 3-node flat shell element that could be used in plate problems with unsymmetrically stacked composite laminates. The performance of the latter element is tested on plates of varying aspect ratios. The developed 3-node shell element should simplify the programming task and have the potential of reducing the computational time.

  19. Magnetic suppression of turbulence and the star formation activity of molecular clouds

    NASA Astrophysics Data System (ADS)

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique; Körtgen, Bastian; Banerjee, Robi; Hartmann, Lee

    2018-03-01

    We present magnetohydrodynamic simulations aimed at studying the effect of the magnetic suppression of turbulence (generated through various instabilities during the formation of molecular clouds by converging) on the subsequent star formation (SF) activity. We study four magnetically supercritical models with magnetic field strengths B = 0, 1, 2, and 3 μG (corresponding to mass-to-flux ratios of ∞, 4.76, 2.38, and 1.59 times the critical value), with the magnetic field, initially being aligned with the flows. We find that, for increasing magnetic field strength, the clouds formed tend to be more massive, denser, less turbulent, and with higher SF activity. This causes the onset of SF activity in the non-magnetic or more weakly magnetized cases to be delayed by a few Myr in comparison to the more strongly magnetized cases. We attribute this behaviour to the suppression of the non-linear thin shell instability (NTSI) by the magnetic field, previously found by Heitsch and coworkers. This result is contrary to the standard notion that the magnetic field provides support to the clouds, thus reducing their star formation rate. However, our result is a completely non-linear one, and could not be foreseen from simple linear considerations.

  20. Geometrically nonlinear transient vibrations of actively damped anti-symmetric angle ply laminated composite shallow shell using active fibre composite (AFC) actuators

    NASA Astrophysics Data System (ADS)

    Ashok, M. H.; Shivakumar, J.; Nandurkar, Santosh; Khadakbhavi, Vishwanath; Pujari, Sanjay

    2018-02-01

    In present work, the thin laminated composite shallow shell as smart structure with AFC material’s ACLD treatment is analyzed for geometrically nonlinear transient vibrations. The AFC material is used to make the constraining layer of the ACLD treatment. Golla-Hughes-McTavish (GHM) is used to model the constrained viscoelastic layer of the ACLD treatment in time domain. Along with a simple first-order shear deformation theory the Von Kármán type non-linear strain displacement relations are used for deriving this electromechanical coupled problem. A 3-dimensional finite element model of smart composite panels integrated with the ACLD treated patches has been modelled to reveal the performance of ACLD treated patches on improving the damping properties of slender anti-symmetric angle-ply laminated shallow shell, in controlling the transient vibrations which are geometrically nonlinear. The mathematical results explain that the ACLD treated patches considerably enhance the damping properties of anti-symmetric angle-ply panels undergoing geometrically nonlinear transient vibrations.

  1. Non-Deterministic Dynamic Instability of Composite Shells

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2004-01-01

    A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics, and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties, in that order.

  2. Quantum corrected Schwarzschild thin-shell wormhole

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet

    2016-11-01

    Recently, Ali and Khalil (Nucl Phys B, 909, 173-185, 2016), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois-Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to keep the wormhole stable. We then study the stability analysis of the wormhole by considering phantom-energy for the exotic matter, generalized Chaplygin gas (GCG), and the linearized stability analysis. It is argued that quantum corrections can affect the stability domain of the wormhole.

  3. Analytical and experimental studies of natural vibrations modes of ring-stiffened truncated-cone shells with variable theoretical ring fixity

    NASA Technical Reports Server (NTRS)

    Naumann, E. C.; Catherines, D. S.; Walton, W. C., Jr.

    1971-01-01

    Experimental and analytical investigations of the vibratory behavior of ring-stiffened truncated-cone shells are described. Vibration tests were conducted on 60 deg conical shells having up to four ring stiffeners and for free-free and clamped-free edge constraints and 9 deg conical shells, for two thicknesses, each with two angle rings and for free-free, free-clamped, and clamped-clamped edge constraints. The analytical method is based on linear thin shell theory, employing the Rayleigh-Ritz method. Discrete rings are represented as composed of one or more segments, each of which is a short truncated-cone shell of uniform thickness. Equations of constraint are used to join a ring and shell along a circumferential line connection. Excellent agreement was obtained for comparisons of experimental and calculated frequencies.

  4. Scanning the parameter space of collapsing rotating thin shells

    NASA Astrophysics Data System (ADS)

    Rocha, Jorge V.; Santarelli, Raphael

    2018-06-01

    We present results of a comprehensive study of collapsing and bouncing thin shells with rotation, framing it in the context of the weak cosmic censorship conjecture. The analysis is based on a formalism developed specifically for higher odd dimensions that is able to describe the dynamics of collapsing rotating shells exactly. We analyse and classify a plethora of shell trajectories in asymptotically flat spacetimes. The parameters varied include the shell’s mass and angular momentum, its radial velocity at infinity, the (linear) equation-of-state parameter and the spacetime dimensionality. We find that plunges of rotating shells into black holes never produce naked singularities, as long as the matter shell obeys the weak energy condition, and so respects cosmic censorship. This applies to collapses of dust shells starting from rest or with a finite velocity at infinity. Not even shells with a negative isotropic pressure component (i.e. tension) lead to the formation of naked singularities, as long as the weak energy condition is satisfied. Endowing the shells with a positive isotropic pressure component allows for the existence of bouncing trajectories satisfying the dominant energy condition and fully contained outside rotating black holes. Otherwise any turning point occurs always inside the horizon. These results are based on strong numerical evidence from scans of numerous sections in the large parameter space available to these collapsing shells. The generalisation of the radial equation of motion to a polytropic equation-of-state for the matter shell is also included in an appendix.

  5. Relativistic Bose-Einstein condensates thin-shell wormholes

    NASA Astrophysics Data System (ADS)

    Richarte, M. G.; Salako, I. G.; Graça, J. P. Morais; Moradpour, H.; Övgün, Ali

    2017-10-01

    We construct traversable thin-shell wormholes which are asymptotically Ads/dS applying the cut and paste procedure for the case of an acoustic metric created by a relativistic Bose-Einstein condensate. We examine several definitions of the flare-out condition along with the violation or not of the energy conditions for such relativistic geometries. Under reasonable assumptions about the equation of state of the matter located at the shell, we concentrate on the mechanical stability of wormholes under radial perturbation preserving the original spherical symmetry. To do so, we consider linearized perturbations around static solutions. We obtain that dS acoustic wormholes remain stable under radial perturbations as long as they have small radius; such wormholes with finite radius do not violate the strong/null energy condition. Besides, we show that stable Ads wormhole satisfy some of the energy conditions whereas unstable Ads wormhole with large radii violate them.

  6. Resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Malmberg, J.-A.; Brunsell, P. R.

    2002-01-01

    Observations of resistive wall instabilities and tearing mode dynamics in the EXTRAP T2R thin shell (τw=6 ms) reversed field pinch are described. A nonresonant mode (m=1,n=-10) with the same handedness as the internal field grows nearly exponentially with an average growth time of about 2.6 ms (less than 1/2 of the shell time) consistent with linear stability theory. The externally nonresonant unstable modes (m=1,n>0), predicted by linear stability theory, are observed to have only low amplitudes (in the normal low-Θ operation mode of the device). The radial field of the dominant internally resonant tearing modes (m=1,n=-15 to n=-12) remain low due to spontaneous fast mode rotation, corresponding to angular phase velocities up to 280 krad/s. Phase aligned mode structures are observed to rotate toroidally with an average angular velocity of 40 krad/s, in the opposite direction of the plasma current. Toward the end of the discharge, the radial field of the internally resonant modes grows as the modes slow down and become wall-locked, in agreement with nonlinear computations. Fast rotation of the internally resonant modes has been observed only recently and is attributed to a change of the front-end system (vacuum vessel, shell, and TF coil) of the device.

  7. Stress concentration factors for circular, reinforced penetrations in pressurized cylindrical shells. Ph.D. Thesis - Virginia Univ.

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W., Jr.

    1975-01-01

    The effect on stresses in a cylindrical shell with a circular penetration subject to internal pressure was investigated in thin, shallow linearly, elastic cylindrical shells. Results provide numerical predictions of peak stress concentration factors around nonreinforced and reinforced penetrations in pressurized cylindrical shells. Analytical results were correlated with published formulas, as well as theoretical and experimental results. An accuracy study was made of the finite element program for each of the configurations considered important in pressure vessel technology. A formula is developed to predict the peak stress concentration factor for analysis and/or design in conjunction with the ASME Boiler and Pressure Vessel Code.

  8. Non-isothermal buckling behavior of viscoplastic shell structures

    NASA Technical Reports Server (NTRS)

    Riff, Richard; Simitses, G. J.

    1988-01-01

    Described are the mathematical model and solution methodologies for analyzing the structural response of thin, metallic elasto-viscoplastic shell structures under large thermomechanical loads and their non-isothermal buckling behavior. Among the system responses associated with these loads and conditions are snap-through, buckling, thermal buckling, and creep buckling. This geometric and material nonlinearities (of high order) can be anticipated and are considered in the model and the numerical treatment.

  9. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry

    PubMed Central

    Ooi, Leslie C.-L.; Low, Eng-Ti L.; Abdullah, Meilina O.; Nookiah, Rajanaidu; Ting, Ngoot C.; Nagappan, Jayanthi; Manaf, Mohamad A. A.; Chan, Kuang-Lim; Halim, Mohd A.; Azizi, Norazah; Omar, Wahid; Murad, Abdul J.; Lakey, Nathan; Ordway, Jared M.; Favello, Anthony; Budiman, Muhammad A.; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T.; Jiang, Nan; Smith, Steven W.; Brown, Clyde R.; Kuek, Alex C. S.; Bahrain, Shabani; Hoynes-O’Connor, Allison; Nguyen, Amelia Y.; Chaudhari, Hemangi G.; Shah, Shivam A.; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts. PMID:27446094

  10. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry.

    PubMed

    Ooi, Leslie C-L; Low, Eng-Ti L; Abdullah, Meilina O; Nookiah, Rajanaidu; Ting, Ngoot C; Nagappan, Jayanthi; Manaf, Mohamad A A; Chan, Kuang-Lim; Halim, Mohd A; Azizi, Norazah; Omar, Wahid; Murad, Abdul J; Lakey, Nathan; Ordway, Jared M; Favello, Anthony; Budiman, Muhammad A; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T; Jiang, Nan; Smith, Steven W; Brown, Clyde R; Kuek, Alex C S; Bahrain, Shabani; Hoynes-O'Connor, Allison; Nguyen, Amelia Y; Chaudhari, Hemangi G; Shah, Shivam A; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian government tax receipts.

  11. A Theoretical Investigation of Composite Overwrapped Pressure Vessel (COPV) Mechanics Applied to NASA Full Scale Tests

    NASA Technical Reports Server (NTRS)

    Greene, N.; Thesken, J. C.; Murthy, P. L. N.; Phoenix, S. L.; Palko, J.; Eldridge, J.; Sutter, J.; Saulsberry, R.; Beeson, H.

    2006-01-01

    A theoretical investigation of the factors controlling the stress rupture life of the National Aeronautics and Space Agency's (NASA) composite overwrapped pressure vessels (COPVs) continues. Kevlar(TradeMark) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar(TradeMark) filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However, due to the presence of a load sharing liner, the manufacturing induced residual stresses and the complex mechanical response, the state of actual fiber stress in flight hardware and test articles is not clearly known. This paper is a companion to the experimental investigation reported in [1] and develops a theoretical framework necessary to design full-scale pathfinder experiments and accurately interpret the experimentally observed deformation and failure mechanisms leading up to static burst in COPVs. The fundamental mechanical response of COPVs is described using linear elasticity and thin shell theory and discussed in comparison to existing experimental observations. These comparisons reveal discrepancies between physical data and the current analytical results and suggest that the vessel's residual stress state and the spatial stress distribution as a function of pressure may be completely different from predictions based upon existing linear elastic analyses. The 3D elasticity of transversely isotropic spherical shells demonstrates that an overly compliant transverse stiffness relative to membrane stiffness can account for some of this by shifting a thin shell problem well into the realm of thick shell response. The use of calibration procedures are demonstrated as calibrated thin shell model results and finite element results are shown to be in good agreement with the experimental results. The successes reported here have lead to continuing work with full scale testing of larger NASA COPV hardware.

  12. Analysis of transient, linear wave propagation in shells by the finite difference method

    NASA Technical Reports Server (NTRS)

    Geers, T. L.; Sobel, L. H.

    1971-01-01

    The applicability of the finite difference method to propagation problems in shells, and the response of a cylindrical shell with cutouts to both longitudinal and radial transient excitations are investigated. It is found that the only inherent limitation of the finite difference method is its inability to reproduce accurately response discontinuities. The short wave length limitations of thin shell theory create significant convergence difficulties may often be overcome through proper selection of finite difference mesh dimensions and temporal or spatial smoothing of the excitation. Cutouts produce moderate changes in early and intermediate time response of a cylindrical shell to axisymmetric pulse loads applied at one end. The cutouts may facilitate the undesirable late-time transfer of load-injected extensional energy into nonaxisymmetric flexural response.

  13. Evolution of diffraction and self-diffraction phenomena in thin films of Gelite Bloom/Hibiscus Sabdariffa

    NASA Astrophysics Data System (ADS)

    Cano-Lara, Miroslava; Severiano-Carrillo, Israel; Trejo-Durán, Mónica; Alvarado-Méndez, Edgar

    2017-09-01

    In this work, we present a study of non-linear optical response in thin films elaborated with Gelite Bloom and extract of Hibiscus Sabdariffa. Non-linear refraction and absorption effects were studied experimentally (Z-scan technique) and numerically, by considering the transmittance as non-linear absorption and refraction contribution. We observe large phase shifts to far field, and diffraction due to self-phase modulation of the sample. Diffraction and self-diffraction effects were observed as time function. The aim of studying non-linear optical properties in thin films is to eliminate thermal vortex effects that occur in liquids. This is desirable in applications such as non-linear phase contrast, optical limiting, optics switches, etc. Finally, we find good agreement between experimental and theoretical results.

  14. Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation

    NASA Astrophysics Data System (ADS)

    Reinoso, J.; Paggi, M.; Linder, C.

    2017-06-01

    Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.

  15. Thin glass shells for AO: from plano to off-axis aspherics

    NASA Astrophysics Data System (ADS)

    Harel, Emmanuelle; Anretar, Alain; Antelme, Jean-Pierre; Caillon, Stéphane; Dussourd, Adrien; Foucaud, Guillaume; Jaury, Hervé; Roure, Océane; William, Jean-Philippe; Wuillaume, Philippe; Ruch, Eric; Geyl, Roland

    2016-07-01

    Reosc has been working on thin glass shells for many years and was recently selected by ESO for the production of the E-ELT M4 mirror thin glass shells. Previously Reosc also produced the aspheric thin shell for the VLT-M2 AO Facility. Based on this experience we will discuss how off axis thin glass shells can be made for the next generation AO systems like the GMT one.

  16. Resistive switching of Sn-doped In2O3/HfO2 core-shell nanowire: geometry architecture engineering for nonvolatile memory.

    PubMed

    Huang, Chi-Hsin; Chang, Wen-Chih; Huang, Jian-Shiou; Lin, Shih-Ming; Chueh, Yu-Lun

    2017-05-25

    Core-shell NWs offer an innovative approach to achieve nanoscale metal-insulator-metal (MIM) heterostructures along the wire radial direction, realizing three-dimensional geometry architecture rather than planar type thin film devices. This work demonstrated the tunable resistive switching characteristics of ITO/HfO 2 core-shell nanowires with controllable shell thicknesses by the atomic layer deposition (ALD) process for the first time. Compared to planar HfO 2 thin film device configuration, ITO/HfO 2 core-shell nanowire shows a prominent resistive memory behavior, including lower power consumption with a smaller SET voltage of ∼0.6 V and better switching voltage uniformity with variations (standard deviation(σ)/mean value (μ)) of V SET and V RESET from 0.38 to 0.14 and from 0.33 to 0.05 for ITO/HfO 2 core-shell nanowire and planar HfO 2 thin film, respectively. In addition, endurance over 10 3 cycles resulting from the local electric field enhancement can be achieved, which is attributed to geometry architecture engineering. The concept of geometry architecture engineering provides a promising strategy to modify the electric-field distribution for solving the non-uniformity issue of future RRAM.

  17. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    NASA Astrophysics Data System (ADS)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  18. Electrospun Polyurethane-Core and Gelatin-Shell Coaxial Fibre Coatings for Miniature Implantable Biosensors

    PubMed Central

    Wang, Ning; Burugapalli, Krishna; Wijesuriya, Shavini; Far, Mahshid Yazdi; Song, Wenhui; Moussy, Francis; Zheng, Yudong; Ma, Yanxuan; Wu, Zhentao; Li, Kang

    2014-01-01

    The aim of this study was to introduce bioactivity to the electrospun coating for implantable glucose biosensors. Coaxial fibre membranes having polyurethane as the core and gelatin as the shell were produced using a range of polyurethane concentrations (2, 4, 6 & 8% wt/v) while keeping gelatin concentration (10% wt/v) constant in 2,2,2-trifluoroethanol. The gelatin shell was stabilized using glutaraldehyde vapour. The formation of core-shell structure was confirmed using TEM, SEM and FTIR. The coaxial fibre membranes showed uniaxial tensile properties intermediate to that of the pure polyurethane and the gelatin fibre membranes. The gelatin shell increased hydrophilicity and glucose transport flux across the coaxial fibre membranes. The coaxial fibre membranes having small fibre diameter (541 nm) and a thick gelatin shell (52%) did not affect the sensor sensitivity, but decreased sensor’s linearity in the long run. In contrast, thicker coaxial fibre membranes (1133 nm) having a thin gelatin shell (34%) maintained both sensitivity and linearity till 84 days of the study period. To conclude, polyurethane-gelatin co-axial fibre membranes, due to their faster permeability to glucose, tailorable mechanical properties and bioactivity are potential candidates for coatings to favourably modify the host responses to extend the reliable in vivo lifetime of implantable glucose biosensors. PMID:24346001

  19. A generic double-curvature piezoelectric shell energy harvester: Linear/nonlinear theory and applications

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Hu, S. D.; Tzou, H. S.

    2014-12-01

    Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.

  20. Chameleon scalar fields in relativistic gravitational backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by ourmore » analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}« less

  1. Asymmetric thin-shell wormholes

    NASA Astrophysics Data System (ADS)

    Forghani, S. Danial; Mazharimousavi, S. Habib; Halilsoy, Mustafa

    2018-06-01

    Spacetime wormholes in isotropic spacetimes are represented traditionally by embedding diagrams which were symmetric paraboloids. This mirror symmetry, however, can be broken by considering different sources on different sides of the throat. This gives rise to an asymmetric thin-shell wormhole, whose stability is studied here in the framework of the linear stability analysis. Having constructed a general formulation, using a variable equation of state and related junction conditions, the results are tested for some examples of diverse geometries such as the cosmic string, Schwarzschild, Reissner-Nordström and Minkowski spacetimes. Based on our chosen spacetimes as examples, our finding suggests that symmetry is an important factor to make a wormhole more stable. Furthermore, the parameter γ , which corresponds to the radius dependency of the pressure on the wormholes's throat, can affect the stability in a great extent.

  2. Determination and analysis of non-linear index profiles in electron-beam-deposited MgOAl2O3ZrO2 ternary composite thin-film optical coatings

    NASA Astrophysics Data System (ADS)

    Sahoo, N. K.; Thakur, S.; Senthilkumar, M.; Das, N. C.

    2005-02-01

    Thickness-dependent index non-linearity in thin films has been a thought provoking as well as intriguing topic in the field of optical coatings. The characterization and analysis of such inhomogeneous index profiles pose several degrees of challenges to thin-film researchers depending upon the availability of relevant experimental and process-monitoring-related information. In the present work, a variety of novel experimental non-linear index profiles have been observed in thin films of MgOAl2O3ZrO2 ternary composites in solid solution under various electron-beam deposition parameters. Analysis and derivation of these non-linear spectral index profiles have been carried out by an inverse-synthesis approach using a real-time optical monitoring signal and post-deposition transmittance and reflection spectra. Most of the non-linear index functions are observed to fit polynomial equations of order seven or eight very well. In this paper, the application of such a non-linear index function has also been demonstrated in designing electric-field-optimized high-damage-threshold multilayer coatings such as normal- and oblique-incidence edge filters and a broadband beam splitter for p-polarized light. Such designs can also advantageously maintain the microstructural stability of the multilayer structure due to the low stress factor of the non-linear ternary composite layers.

  3. Fabrication and characterization of optical sensors using metallic core-shell thin film nanoislands for ozone detection

    NASA Astrophysics Data System (ADS)

    Addanki, Satish; Nedumaran, D.

    2017-07-01

    Core-Shell nanostructures play a vital role in the sensor field owing to their performance improvements in sensing characteristics and well-established synthesis procedures. These nanostructures can be ingeniously tuned to achieve tailored properties for a particular application of interest. In this work, an Ag-Au core-shell thin film nanoislands with APTMS (3-Aminopropyl trimethoxysilane) and PVA (Polyvinyl alcohol) binding agents was modeled, synthesized and characterized. The simulation results were used to fabricate the sensor through chemical route. The results of this study confirmed that the APTMS based Ag-Au core-shell thin film nanoislands offered a better performance over the PVA based Ag-Au core-shell thin film nanoislands. Also, the APTMS based Ag-Au core-shell thin film nanoislands exhibited better sensitivity towards ozone sensing over the other types, viz., APTMS/PVA based Au-Ag core-shell and standalone Au/Ag thin film nanoislands.

  4. Euclidean supergravity

    NASA Astrophysics Data System (ADS)

    de Wit, Bernard; Reys, Valentin

    2017-12-01

    Supergravity with eight supercharges in a four-dimensional Euclidean space is constructed at the full non-linear level by performing an off-shell time-like reduction of five-dimensional supergravity. The resulting four-dimensional theory is realized off-shell with the Weyl, vector and tensor supermultiplets and a corresponding multiplet calculus. Hypermultiplets are included as well, but they are themselves only realized with on-shell supersymmetry. We also briefly discuss the non-linear supermultiplet. The off-shell reduction leads to a full understanding of the Euclidean theory. A complete multiplet calculus is presented along the lines of the Minkowskian theory. Unlike in Minkowski space, chiral and anti-chiral multiplets are real and supersymmetric actions are generally unbounded from below. Precisely as in the Minkowski case, where one has different formulations of Poincaré supergravity upon introducing different compensating supermultiplets, one can also obtain different versions of Euclidean supergravity.

  5. Requirements for Weatherproofing Thin Shell Concrete Roofs. Proceedings of the Conference of Building Research Institute, Division of Engineering and Industrial Research (Spring 1961).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    Topics discussed include--(1) requirements for weatherproofing and sealant materials for thin shell concrete roof, (2) effect of physical factors on weatherproofing of thin shell concrete roofs, (3) problems and limitations imposed by thin shell concrete roofs and their effect on weatherproofing and sealant materials, and (4) properties and uses…

  6. Gaussian Curvature as an Identifier of Shell Rigidity

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Davit

    2017-11-01

    In the paper we deal with shells with non-zero Gaussian curvature. We derive sharp Korn's first (linear geometric rigidity estimate) and second inequalities on that kind of shell for zero or periodic Dirichlet, Neumann, and Robin type boundary conditions. We prove that if the Gaussian curvature is positive, then the optimal constant in the first Korn inequality scales like h, and if the Gaussian curvature is negative, then the Korn constant scales like h 4/3, where h is the thickness of the shell. These results have a classical flavour in continuum mechanics, in particular shell theory. The Korn first inequalities are the linear version of the famous geometric rigidity estimate by Friesecke et al. for plates in Arch Ration Mech Anal 180(2):183-236, 2006 (where they show that the Korn constant in the nonlinear Korn's first inequality scales like h 2), extended to shells with nonzero curvature. We also recover the uniform Korn-Poincaré inequality proven for "boundary-less" shells by Lewicka and Müller in Annales de l'Institute Henri Poincare (C) Non Linear Anal 28(3):443-469, 2011 in the setting of our problem. The new estimates can also be applied to find the scaling law for the critical buckling load of the shell under in-plane loads as well as to derive energy scaling laws in the pre-buckled regime. The exponents 1 and 4/3 in the present work appear for the first time in any sharp geometric rigidity estimate.

  7. Nanolaminate Mirrors With "Piston" Figure-Control Actuators

    NASA Technical Reports Server (NTRS)

    Lowman, Andrew; Redding, David; Hickey, Gregory; Knight, Jennifer; Moynihan, Philip; Lih, Shyh0Shiuh; Barbee, Troy

    2003-01-01

    Efforts are under way to develop a special class of thin-shell curved mirrors for high-resolution imaging in visible and infrared light in a variety of terrestrial or extraterrestrial applications. These mirrors can have diameters of the order of a meter and include metallic film reflectors on nanolaminate substrates supported by multiple distributed piezoceramic gpiston h-type actuators for micron-level figure control. Whereas conventional glass mirrors of equivalent size and precision have areal mass densities between 50 and 150 kg/sq m, the nanolaminate mirrors, including not only the reflector/ shell portions but also the actuators and the backing structures needed to react the actuation forces, would have areal mass densities that may approach .5 kg/m2. Moreover, whereas fabrication of a conventional glass mirror of equivalent precision takes several years, the reflector/shell portion of a nanolaminate mirror can be fabricated in less than a week, and its actuation system can be fabricated in 1 to 2 months. The engineering of these mirrors involves a fusion of the technological heritage of multisegmented adaptive optics and deformable mirrors with more recent advances in metallic nanolaminates and in mathematical modeling of the deflections of thin, curved shells in response to displacements by multiple, distributed actuators. Because a nanolaminate shell is of the order of 10 times as strong as an otherwise identical shell made of a single, high-strength, non-nanolaminate metal suitable for mirror use, a nanolaminate mirror can be made very thin (typically between 100 and 150 m from the back of the nanolaminate substrate to the front reflecting surface). The thinness and strength of the nanolaminate are what make it possible to use distributed gpiston h-type actuators for surface figure control with minimal local concentrated distortion (called print-through in the art) at the actuation points.

  8. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  9. Gravastars with higher dimensional spacetimes

    NASA Astrophysics Data System (ADS)

    Ghosh, Shounak; Ray, Saibal; Rahaman, Farook; Guha, B. K.

    2018-07-01

    We present a new model of gravastar in the higher dimensional Einsteinian spacetime including Einstein's cosmological constant Λ. Following Mazur and Mottola (2001, 2004) we design the star with three specific regions, as follows: (I) Interior region, (II) Intermediate thin spherical shell and (III) Exterior region. The pressure within the interior region is equal to the negative matter density which provides a repulsive force over the shell. This thin shell is formed by ultra relativistic plasma, where the pressure is directly proportional to the matter-energy density which does counter balance the repulsive force from the interior whereas the exterior region is completely vacuum assumed to be de Sitter spacetime which can be described by the generalized Schwarzschild solution. With this specification we find out a set of exact non-singular and stable solutions of the gravastar which seems physically very interesting and reasonable.

  10. Uniform Thin Films of CdSe and CdSe(ZnS) Core(shell) Quantum Dots by Sol-Gel Assembly: Enabling Photoelectrochemical Characterization and Electronic Applications

    PubMed Central

    Korala, Lasantha; Wang, Zhijie; Liu, Yi; Maldonado, Stephen; Brock, Stephanie L.

    2013-01-01

    Optoelectronic properties of quantum dot (QD) films are limited by (1) poor interfacial chemistry and (2) non-radiative recombination due to surface traps. To address these performance issues, sol-gel methods are applied to fabricate thin films of CdSe and core(shell) CdSe(ZnS) QDs. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging with chemical analysis confirms that the surface of the QDs in the sol-gel thin films are chalcogen-rich, consistent with an oxidative-induced gelation mechanism in which connectivity is achieved by formation of dichalcogenide covalent linkages between particles. The ligand removal and assembly process is probed by thermogravimetric, spectroscopic and microscopic studies. Further enhancement of inter-particle coupling via mild thermal annealing, which removes residual ligands and reinforces QD connectivity, results in QD sol-gel thin films with superior charge transport properties, as shown by a dramatic enhancement of electrochemical photocurrent under white light illumination relative to thin films composed of ligand-capped QDs. A more than 2-fold enhancement in photocurrent, and a further increase in photovoltage can be achieved by passivation of surface defects via overcoating with a thin ZnS shell. The ability to tune interfacial and surface characteristics for the optimization of photophysical properties suggests that the sol-gel approach may enable formation of QD thin films suitable for a range of optoelectronic applications. PMID:23350924

  11. A geometric nonlinear degenerated shell element using a mixed formulation with independently assumed strain fields. Final Report; Ph.D. Thesis, 1989

    NASA Technical Reports Server (NTRS)

    Graf, Wiley E.

    1991-01-01

    A mixed formulation is chosen to overcome deficiencies of the standard displacement-based shell model. Element development is traced from the incremental variational principle on through to the final set of equilibrium equations. Particular attention is paid to developing specific guidelines for selecting the optimal set of strain parameters. A discussion of constraint index concepts and their predictive capability related to locking is included. Performance characteristics of the elements are assessed in a wide variety of linear and nonlinear plate/shell problems. Despite limiting the study to geometric nonlinear analysis, a substantial amount of additional insight concerning the finite element modeling of thin plate/shell structures is provided. For example, in nonlinear analysis, given the same mesh and load step size, mixed elements converge in fewer iterations than equivalent displacement-based models. It is also demonstrated that, in mixed formulations, lower order elements are preferred. Additionally, meshes used to obtain accurate linear solutions do not necessarily converge to the correct nonlinear solution. Finally, a new form of locking was identified associated with employing elements designed for biaxial bending in uniaxial bending applications.

  12. An immersed-shell method for modelling fluid–structure interactions

    PubMed Central

    Viré, A.; Xiang, J.; Pain, C. C.

    2015-01-01

    The paper presents a novel method for numerically modelling fluid–structure interactions. The method consists of solving the fluid-dynamics equations on an extended domain, where the computational mesh covers both fluid and solid structures. The fluid and solid velocities are relaxed to one another through a penalty force. The latter acts on a thin shell surrounding the solid structures. Additionally, the shell is represented on the extended domain by a non-zero shell-concentration field, which is obtained by conservatively mapping the shell mesh onto the extended mesh. The paper outlines the theory underpinning this novel method, referred to as the immersed-shell approach. It also shows how the coupling between a fluid- and a structural-dynamics solver is achieved. At this stage, results are shown for cases of fundamental interest. PMID:25583857

  13. Structural Concepts Study of Non-circular Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivel

    1996-01-01

    A preliminary study of structural concepts for noncircular fuselage configurations is presented. For an unconventional flying-wing type aircraft, in which the fuselage is inside the wing, multiple fuselage bays with non-circular sections need to be considered. In a conventional circular fuselage section, internal pressure is carried efficiently by a thin skin via hoop tension. If the section is non-circular, internal pressure loads also induce large bending stresses. The structure must also withstand additional bending and compression loads from aerodynamic and gravitational forces. Flat and vaulted shell structural configurations for such an unconventional, non-circular pressurized fuselage of a large flying-wing were studied. A deep honeycomb sandwich-shell and a ribbed double-wall shell construction were considered. Combinations of these structural concepts were analyzed using both analytical and simple finite element models of isolated sections for a comparative conceptual study. Weight, stress, and deflection results were compared to identify a suitable configuration for detailed analyses. The flat sandwich-shell concept was found preferable to the vaulted shell concept due to its superior buckling stiffness. Vaulted double-skin ribbed shell configurations were found to be superior due to their weight savings, load diffusion, and fail-safe features. The vaulted double-skin ribbed shell structure concept was also analyzed for an integrated wing-fuselage finite element model. Additional problem areas such as wing-fuselage junction and pressure-bearing spar were identified.

  14. BPS magnetic monopole bags

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ki-Myeong; Weinberg, Erick J.; Physics Department, Columbia University, New York, New York 10027

    2009-01-15

    We explore the characteristics of spherical bags made of large numbers of BPS magnetic monopoles. There are two extreme limits. In the Abelian bag, N zeros of the Higgs field are arranged in a quasiregular lattice on a sphere of radius R{sub cr}{approx}N/v, where v is the Higgs vacuum expectation value. The massive gauge fields of the theory are largely confined to a thin shell at this radius that separates an interior with almost vanishing magnetic and Higgs fields from an exterior region with long-range Coulomb magnetic and Higgs fields. In the other limiting case, which we term a non-Abelianmore » bag, the N zeros of the Higgs field are all the origin, but there is again a thin shell of radius R{sub cr}. In this case the region enclosed by this shell can be viewed as a large monopole core, with small Higgs field but nontrivial massive and massless gauge fields.« less

  15. Manufacturing of glassy thin shell for adaptive optics: results achieved

    NASA Astrophysics Data System (ADS)

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.

    2012-07-01

    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  16. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  17. Wormholes versus black holes: quasinormal ringing at early and late times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konoplya, R.A.; Zhidenko, A., E-mail: roman.konoplya@uni-tuebingen.de, E-mail: olexandr.zhydenko@ufabc.edu.br

    Recently it has been argued that the phantom thin-shell wormholes matched with the Schwarzschild space-time near the Schwarzschild radius ring like Schwarzschild black holes at early times, but differently at late times [1]. Here we consider perturbations of the wormhole which was constructed without thin-shells: the Bronnikov-Ellis wormhole supported by the phantom matter and electromagnetic field. This wormhole solution is known to be stable under specific equation of state of the phantom matter. We show that if one does not use the above thin-shell matching, the wormhole, depending on the values of its parameters, either rings as the black holemore » at all times or rings differently also at all times . The wormhole's spectrum, investigated here, posses a number of distinctive features. In the final part we have considered general properties of scattering around arbitrary rotating traversable wormholes. We have found that symmetric and non-symmetric (with respect to the throat) wormholes are qualitatively different in this respect: first, superradiance is allowed only if for those non-symmetric wormholes for which the asymptotic values of the rotation parameters are different on both sides from the throat. Second, the symmetric wormholes cannot mimic effectively the ringing of a black hole at a few various dominant multipoles at the same time, so that the future observations of various events should easily tell the symmetric wormhole from a black hole.« less

  18. DNA nanoparticles with core-shell morphology.

    PubMed

    Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc

    2014-10-14

    Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.

  19. Faraday Wave Turbulence on a Spherical Liquid Shell

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  20. Effect of antimony (Sb) addition on the linear and non-linear optical properties of amorphous Ge-Te-Sb thin films

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Kaur, J.; Tripathi, S. K.; Sharma, I.

    2017-12-01

    Non-crystalline thin films of Ge20Te80-xSbx (x = 0, 2, 4, 6, 10) systems were deposited on glass substrate using thermal evaporation technique. The optical coefficients were accurately determined by transmission spectra using Swanepoel envelope method in the spectral region of 400-1600 nm. The refractive index was found to increase from 2.38 to 2.62 with the corresponding increase in Sb content over the entire spectral range. The dispersion of refractive index was discussed in terms of the single oscillator Wemple-DiDomenico model. Tauc relation for the allowed indirect transition showed decrease in optical band gap. To explore non-linearity, the spectral dependence of third order susceptibility of a-Ge-Te-Sb thin films was evaluated from change of index of refraction using Miller's rule. Susceptibility values were found to enhance rapidly from 10-13 to 10-12 (esu), with the red shift in the absorption edge. Non-linear refractive index was calculated by Fourier and Snitzer formula. The values were of the order of 10-12 esu. At telecommunication wavelength, these non-linear refractive index values showed three orders higher than that of silica glass. Dielectric constant and optical conductivity were also reported. The prepared Sb doped thin films on glass substrate with observed improved functional properties have a noble prospect in the application of nonlinear optical devices and might be used for a high speed communication fiber. Non-linear parameters showed good agreement with the values given in the literature.

  1. Experimental Observation of Thin-shell Instability in a Collisionless Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, H.; Doria, D.; Sarri, G.

    We report on the experimental observation of the instability of a plasma shell, which formed during the expansion of a laser-ablated plasma into a rarefied ambient medium. By means of a proton radiography technique, the evolution of the instability is temporally and spatially resolved on a timescale much shorter than the hydrodynamic one. The density of the thin shell exceeds that of the surrounding plasma, which lets electrons diffuse outward. An ambipolar electric field grows on both sides of the thin shell that is antiparallel to the density gradient. Ripples in the thin shell result in a spatially varying balancemore » between the thermal pressure force mediated by this field and the ram pressure force that is exerted on it by the inflowing plasma. This mismatch amplifies the ripples by the same mechanism that drives the hydrodynamic nonlinear thin-shell instability (NTSI). Our results thus constitute the first experimental verification that the NTSI can develop in colliding flows.« less

  2. Experimental Observation of Thin-shell Instability in a Collisionless Plasma

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Doria, D.; Dieckmann, M. E.; Sarri, G.; Romagnani, L.; Bret, A.; Cerchez, M.; Giesecke, A. L.; Ianni, E.; Kar, S.; Notley, M.; Prasad, R.; Quinn, K.; Willi, O.; Borghesi, M.

    2017-01-01

    We report on the experimental observation of the instability of a plasma shell, which formed during the expansion of a laser-ablated plasma into a rarefied ambient medium. By means of a proton radiography technique, the evolution of the instability is temporally and spatially resolved on a timescale much shorter than the hydrodynamic one. The density of the thin shell exceeds that of the surrounding plasma, which lets electrons diffuse outward. An ambipolar electric field grows on both sides of the thin shell that is antiparallel to the density gradient. Ripples in the thin shell result in a spatially varying balance between the thermal pressure force mediated by this field and the ram pressure force that is exerted on it by the inflowing plasma. This mismatch amplifies the ripples by the same mechanism that drives the hydrodynamic nonlinear thin-shell instability (NTSI). Our results thus constitute the first experimental verification that the NTSI can develop in colliding flows.

  3. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    NASA Astrophysics Data System (ADS)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.

  4. Finite Rotation Analysis of Highly Thin and Flexible Structures

    NASA Technical Reports Server (NTRS)

    Clarke, Greg V.; Lee, Keejoo; Lee, Sung W.; Broduer, Stephen J. (Technical Monitor)

    2001-01-01

    Deployable space structures such as sunshields and solar sails are extremely thin and highly flexible with limited bending rigidity. For analytical investigation of their responses during deployment and operation in space, these structures can be modeled as thin shells. The present work examines the applicability of the solid shell element formulation to modeling of deployable space structures. The solid shell element formulation that models a shell as a three-dimensional solid is convenient in that no rotational parameters are needed for the description of kinematics of deformation. However, shell elements may suffer from element locking as the thickness becomes smaller unless special care is taken. It is shown that, when combined with the assumed strain formulation, the solid shell element formulation results in finite element models that are free of locking even for extremely thin structures. Accordingly, they can be used for analysis of highly flexible space structures undergoing geometrically nonlinear finite rotations.

  5. Models of Interacting Stellar Winds

    NASA Astrophysics Data System (ADS)

    Wilkin, Francis Patrick

    Stars drive supersonic winds which interact violently with their surroundings. Analytic and numerical models of hypersonic, interacting circumstellar flows are presented for several important astrophysical problems. A new solution method for steady-state, axisymmetric, wind collision problems is applied to radiative bow shocks from moving stars and to the collision of two spherical winds in a binary star system. The solutions obtained describe the shape of the geometrically thin, shocked shell of matter, as well as its mass surface density and the tangential velocity within it. Analytic solutions are also obtained for non-axisymmetric bow shocks, where the asymmetry arises due to either a transverse gradient in the ambient medium, or a misaligned, axisymmetric stellar wind. While the solutions are all easily scaled in terms of their relevant dimensional parameters, the important assumption of radiative shocks implies that the models are most applicable towards systems with dense environments and low preshock velocities. The bow shock model has previously been applied to cometary, ultracompact HII regions by Van Buren et al. (1990), who discussed extensively the applicability of the thin shell approximation. I next model the collision between a protostellar wind and supersonic infall from a rotating cloud, employing a quasi-steady, thin-shell formulation. The spherical wind is initially crushed to the protostellar surface by nearly spherical infall. The centrifugal distortion of infalling matter eventually permits a wind-supported, trapped bubble to slowly expand on an evolutionary (~ 105 yr) time. The shell becomes progressively more extended along the rotational axis, due to the asymmetry of the infall. When the quasi-steady assumption breaks down, the shell has become a needle-like, bipolar configuration that may represent a precursor to protostellar jets. I stress, however, the likelihood of instability for the shell, and the possibility of oscillatory behavior in a fully time-dependent model.

  6. A Variational Principle for Reconstruction of Elastic Deformations in Shear Deformable Plates and Shells

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Spangler, Jan L.

    2003-01-01

    A variational principle is formulated for the inverse problem of full-field reconstruction of three-dimensional plate/shell deformations from experimentally measured surface strains. The formulation is based upon the minimization of a least squares functional that uses the complete set of strain measures consistent with linear, first-order shear-deformation theory. The formulation, which accommodates for transverse shear deformation, is applicable for the analysis of thin and moderately thick plate and shell structures. The main benefit of the variational principle is that it is well suited for C(sup 0)-continuous displacement finite element discretizations, thus enabling the development of robust algorithms for application to complex civil and aeronautical structures. The methodology is especially aimed at the next generation of aerospace vehicles for use in real-time structural health monitoring systems.

  7. Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamaki, Takashi; Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501; Tsujikawa, Shinji

    2008-10-15

    We derive analytic solutions of a chameleon scalar field {phi} that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m{sub A} inside of the body. The standard thin-shell field profile is recovered by taking the limit m{sub A}r{sub c}{yields}{infinity}, where r{sub c} is a radius of the body. We show the existence of 'no-shell' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under themore » condition m{sub A}r{sub c}>>1, the effective coupling of {phi} with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value {phi}{sub A} at the extremum of an effective potential induced by the matter coupling.« less

  8. Optical figuring specifications for thin shells to be used in adaptive telescope mirrors

    NASA Astrophysics Data System (ADS)

    Riccardi, A.

    2006-06-01

    The present work describes the guidelines to define the optical figuring specifications for optical manufacturing of thin shells in terms of figuring error power spectrum (and related rms vs scale distributon) to be used in adaptive optics correctors with force actuators like Deformable Secondary Mirrors (DSM). In particular the numerical example for a thin shell for a VLT DSM is considered.

  9. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions.

    PubMed

    Rosenberg, M J; Zylstra, A B; Frenje, J A; Rinderknecht, H G; Johnson, M Gatu; Waugh, C J; Séguin, F H; Sio, H; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Hohenberger, M; Stoeckl, C; Sangster, T C; Yeamans, C B; LePape, S; Mackinnon, A J; Bionta, R M; Talison, B; Casey, D T; Landen, O L; Moran, M J; Zacharias, R A; Kilkenny, J D; Nikroo, A

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.

  10. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and pR are determined in thin-shell inertial-confinement-fusion implosions

    DOE PAGES

    Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; ...

    2014-10-10

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore » filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF« less

  11. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Frenje, J. A.

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore » filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.« less

  12. Dynamic Probabilistic Instability of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties in that order.

  13. Normal Modes of Vibration of the PHALANX Gun

    DTIC Science & Technology

    1993-06-01

    Clamps Bricks, Thin Shells, Rigid Elements Mid-Barrel Clamps Bricks, Rigid Elements Barrels Beams with tubular cross-section Stub Rotor Bricks, Thin...Shells Rotor Bricks Needle Bearing Bricks, Springs Casing Thin Shells Thrust Bearing Bricks, Springs Recoil Adapters Bricks, Rigid Elements, Springs... rigid elements were used to connect the barrels to the clamps and stub rotor and the recoil adapter springs to 48 the gun body. "End release codes

  14. A non-LTE kinetic model for quick analysis of K-shell spectra from Z-pinch plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J., E-mail: s.duan@163.com; Huang, X. B., E-mail: s.duan@163.com; Cai, H. C., E-mail: s.duan@163.com

    Analyzing and modeling K-shell spectra emitted by low-to moderate-atomic number plasma is a useful and effective way to retrieve temperature density of z-pinch plasmas. In this paper, a non-LTE population kinetic model for quick analysis of K-shell spectra was proposed. The model contains ionization stages from bare nucleus to neutral atoms and includes all the important atomic processes. In the present form of the model, the plasma is assumed to be both optically thin and homogeneous with constant temperature and density, and only steady-state situation is considered. According to the detailed calculations for aluminum plasmas, contours of ratios of certainmore » K-shell lines in electron temperature and density plane as well as typical synthesized spectra were presented and discussed. The usefulness of the model is demonstrated by analyzing the spectrum from a neon gas-puff Z-pinch experiment performed on a 1 MA pulsed-power accelerator.« less

  15. Axisymmetric thermoviscoelastoplastic state of thin laminated shells made of a damageable material

    NASA Astrophysics Data System (ADS)

    Galishin, A. Z.

    2008-04-01

    A technique for the determination of the axisymmetric thermoviscoelastoplastic state of laminated thin shells made of a damageable material is developed. The technique is based on the kinematic equations of the theory of thin shells that account for transverse shear strains. The thermoviscoplastic equations, which describe the deformation of a shell element along paths of small curvature, are used as the constitutive equations. The equivalent stress that appears in the kinetic equations of damage and creep is determined from a failure criterion that accounts for the stress mode. The thermoviscoplastic deformation of a two-layer shell that models an element of a rocket engine nozzle is considered as an example

  16. The theory of spherically symmetric thin shells in conformal gravity

    NASA Astrophysics Data System (ADS)

    Berezin, Victor; Dokuchaev, Vyacheslav; Eroshenko, Yury

    The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy-momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl-Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ( = massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl-Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.

  17. Transient Response of Shells of Revolution by Direct Integration and Modal Superposition Methods

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.; Adelman, H. M.

    1974-01-01

    The results of an analytical effort to obtain and evaluate transient response data for a cylindrical and a conical shell by use of two different approaches: direct integration and modal superposition are described. The inclusion of nonlinear terms is more important than the inclusion of secondary linear effects (transverse shear deformation and rotary inertia) although there are thin-shell structures where these secondary effects are important. The advantages of the direct integration approach are that geometric nonlinear and secondary effects are easy to include and high-frequency response may be calculated. In comparison to the modal superposition technique the computer storage requirements are smaller. The advantages of the modal superposition approach are that the solution is independent of the previous time history and that once the modal data are obtained, the response for repeated cases may be efficiently computed. Also, any admissible set of initial conditions can be applied.

  18. Benchmark solution of the dynamic response of a spherical shell at finite strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Versino, Daniele; Brock, Jerry S.

    2016-09-28

    Our paper describes the development of high fidelity solutions for the study of homogeneous (elastic and inelastic) spherical shells subject to dynamic loading and undergoing finite deformations. The goal of the activity is to provide high accuracy results that can be used as benchmark solutions for the verification of computational physics codes. Furthermore, the equilibrium equations for the geometrically non-linear problem are solved through mode expansion of the displacement field and the boundary conditions are enforced in a strong form. Time integration is performed through high-order implicit Runge–Kutta schemes. Finally, we evaluate accuracy and convergence of the proposed method bymore » means of numerical examples with finite deformations and material non-linearities and inelasticity.« less

  19. Ferroelectric hydration shells around proteins: electrostatics of the protein-water interface.

    PubMed

    LeBard, David N; Matyushov, Dmitry V

    2010-07-22

    Numerical simulations of hydrated proteins show that protein hydration shells are polarized into a ferroelectric layer with large values of the average dipole moment magnitude and the dipole moment variance. The emergence of the new polarized mesophase dramatically alters the statistics of electrostatic fluctuations at the protein-water interface. The linear response relation between the average electrostatic potential and its variance breaks down, with the breadth of the electrostatic fluctuations far exceeding the expectations of the linear response theories. The dynamics of these non-Gaussian electrostatic fluctuations are dominated by a slow (approximately = 1 ns) component that freezes in at the temperature of the dynamical transition of proteins. The ferroelectric shell propagates 3-5 water diameters into the bulk.

  20. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    PubMed

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  1. On the dynamic response at the wheel axle of a pneumatic tire

    NASA Astrophysics Data System (ADS)

    Kung, L. E.; Soedel, W.; Yang, T. Y.

    1986-06-01

    A method for calculating the steady state displacement response and force transmission at the wheel axle of a pneumatic tire-suspension system due to a steady state force or displacement excitation at the tire to ground contact point is developed. The method requires the frequency responses (or receptances)_of both tire-wheel and suspension units. The frequency response of the tire-wheel unit is obtained by using the modal expansion method. The natural frequencies and mode shapes of the tire-wheel unit are obtained by using a geometrically non-linear, ring type, thin shell finite element of laminate composite. The frequency response of the suspension unit is obtained analytically. These frequency responses are used to calculate the force-input and the displacement-input responses at the wheel axle. This method allows the freedom of designing a vehicle and its tires independently and still achieving optimum dynamic performance.

  2. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  3. Improved nine-node shell element MITC9i with reduced distortion sensitivity

    NASA Astrophysics Data System (ADS)

    Wisniewski, K.; Turska, E.

    2017-11-01

    The 9-node quadrilateral shell element MITC9i is developed for the Reissner-Mindlin shell kinematics, the extended potential energy and Green strain. The following features of its formulation ensure an improved behavior: 1. The MITC technique is used to avoid locking, and we propose improved transformations for bending and transverse shear strains, which render that all patch tests are passed for the regular mesh, i.e. with straight element sides and middle positions of midside nodes and a central node. 2. To reduce shape distortion effects, the so-called corrected shape functions of Celia and Gray (Int J Numer Meth Eng 20:1447-1459, 1984) are extended to shells and used instead of the standard ones. In effect, all patch tests are passed additionally for shifts of the midside nodes along straight element sides and for arbitrary shifts of the central node. 3. Several extensions of the corrected shape functions are proposed to enable computations of non-flat shells. In particular, a criterion is put forward to determine the shift parameters associated with the central node for non-flat elements. Additionally, the method is presented to construct a parabolic side for a shifted midside node, which improves accuracy for symmetric curved edges. Drilling rotations are included by using the drilling Rotation Constraint equation, in a way consistent with the additive/multiplicative rotation update scheme for large rotations. We show that the corrected shape functions reduce the sensitivity of the solution to the regularization parameter γ of the penalty method for this constraint. The MITC9i shell element is subjected to a range of linear and non-linear tests to show passing the patch tests, the absence of locking, very good accuracy and insensitivity to node shifts. It favorably compares to several other tested 9-node elements.

  4. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Guo, S. C.; Chu, M. S.

    2002-11-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω-2≪1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX.

  5. Detection of λ-cyhalothrin by a core-shell spherical SiO2-based surface thin fluorescent molecularly imprinted polymer film.

    PubMed

    Gao, Lin; Han, Wenjuan; Li, Xiuying; Wang, Jixiang; Yan, Yongsheng; Li, Chunxiang; Dai, Jiangdong

    2015-12-01

    A fluorescent core-shell molecularly imprinted polymer based on the surface of SiO2 beads was synthesized and its application in the fluorescence detection of ultra-trace λ-cyhalothrin (LC) was investigated. The shell was prepared by copolymerization of acrylamide with allyl fluorescein in the presence of LC to form recognition sites. The experimental results showed that the thin fluorescent molecularly imprinted polymer (FMIP) film exhibited better selective recognition ability than fluorescent molecularly non-imprinted polymer (FNIP). A new nonlinear relationship between quenching rate and concentration was found in this work. In addition, the nonlinear relationship allowed a lower concentration range of 0-5.0 nM to be described by the Stern-Volmer equation with a correlation coefficient of 0.9929. The experiment results revealed that the SiO2@FMIP was satisfactory as a recognition element for determination of LC in soda water samples. Therefore this study demonstrated the potential of MIP for the recognition and detection of LC in food.

  6. Curvature-Induced Instabilities of Shells

    NASA Astrophysics Data System (ADS)

    Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark P.; Bade, Abdikhalaq J.; Holmes, Douglas P.

    2018-01-01

    Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood. Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing scaling predictions for the instabilities that are in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.

  7. Non-uniform thickness in Europa's icy shell: implications for astrobiology mission design

    NASA Astrophysics Data System (ADS)

    Fairén, A.; Amils, R.

    The exploration of Europa's subsurface ocean is hardly constrained by the presence of an outer ice shell of unknown thickness: a somewhat thin crust would allow easier access to the ocean below. Current estimates for the thickness of Europa's icy surface range from a few km [1] to a few tens of km [2], the shell overlying a liquid water ocean up to 150 km thick [3,4,5]. The surface is believed to be young (mean age of 30-80 Myr [6]) and geologically active [7,8,9], as it is sparsely cratered. Here we report geological evidence indicating that the thickness of Europa's ice crust is actually a complex combination of thicker and thinner areas, highlighting the implications of such structure in the future exploration of the inner ocean. Detailed geologic mapping of impact craters, palimpsests and chaotic terrains distribution on Europa's surface, offers an initial approach to a comprehensive description of the thickness variation in the ice shell. Our analysis is based in: (1) Crater distribution, morphology, diameter and depth. Seminal work by Schenk [2] of transitions in crater shape/diameter suggested enhanced structural collapse of craters with diameter >27-33 km, that will consequently form multiring basins, due to weaker ice or a global ocean at depths >19-25 km. This being true, strictly can only be interpreted regionally: multiring basins indicate regions where the ice shell is thick; in those regions where the icy surface is thin, a bolide impact will breach the ice and leave neither crater nor multiring basin behind, but probably Ganymede's type palimpsests. (2) Palimpsest-type features distribution, indicating regions where the ice shell is too thin to support crater formation after big bolide impacts. In Ganymede, palimpsests are circular, low albedo and relief features formerly formed by impacts [10,11]. (3) Chaotic terrain distribution, considering features tens to hundreds of km across, that may be the evidence for very thin ice areas (from ˜ 2 km to zero shell thickness [12]) with liquid water at shallow depths [5], allowing for bolide penetration, diapirism and the extrusion of water to the surface. The heterogeneity in shell's thickness may be originated in spatial variations in tidal heating [13] and/or warm water upwellings from the silicate interior capable of melt-through the ice from below [12,14]. This thickness heterogeneity can be embedded in a general equatorward thickening trending, due to tidal dissipation and surface temperature variations [15]. A major constraint must be addressed at this point: the dynamism of ductile ice near the base of the shell may drive to decay in lateral thickness contrasts. But this effect has been examined both assuming ice as a Newtonian [16,17,18] and a non-Newtonian material [19], broadly reaching to similar conclusions: global shell thickness variations may survive for up to 100 Myr. In addition, lateral pressure gradients may not decay if they comprise only shallow depths [19]. Therefore, our results point to a dynamic non-uniform Europa's icy shell, displaying some regional and temporal heterogeneity in thickness. As thin/thick ice distribution is as time dependent as the surface ice features are (both are reshaped in periods ˜ 100 Myr), the analysis performed here offers an estimation of the current thickness distribution in the ice shell, estimation that cannot be extrapolated to ancient (e.g., >100 Myr) times. The astrobiological potential the shell and ocean below possess is highlighted by these results: a somewhere thin outer crust allows the possibility for some exogenous materials delivered by asteroids and comets to reach the inner liquid water ocean by breaching the brittle lithosphere [20], and so join to those generated in the interior of Europa via volcanic and hydrothermal activity [21]. In addition, pressure gradients driving the ductile ice at the base of the shell to flow laterally may help to redistribute such materials among the inner ice shell and/or ocean through time. Our results have a direct deal with the investigation of Europa's interior. Mission design will need to incorporate a drill system routine well suited to penetrate the ice shell tens of meters in the thinner areas, allowing to deep subsurface access and sampling. Landing and drilling targets should be selected among the zones where mapping indicates the presence of a thinner ice shell, as it may potentially suggest the existence of nutrient-rich hydrothermal plumes rising from the rocky interior and melting the ice from below, probably creating chaotic terrains [14]. Little-cratered, thin-crust areas would consequently be interpreted as key pacemakers to detect both the ice/ocean interface and the most complex environments under the ice shell. Additionally, drilling processes will be clearly easier in such zones. References: [1] Hoppa, G., et al. Science 285, 1899-1903 (1999). [2] Schenk, P.M. Nature 417, 419-421 (2002). [3] Anderson J.D. et al. Science 276, 1236-1239 (1997). [4] Anderson J.D. et al. Science 281, 2019-2022 (1998). [5] Carr, M.H., et al. Nature 391, 363-365 (1998). [6] Zahnle, K., et al. Icarus 163, 263-289 (2003). [7] Smith, B.A., et al. Science 206, 927-950 (1979). [8] Zahnle, K., et al. Icarus 136, 202-222 (1998). [9] Levison, H.F., et al. Icarus 143, 415-420 (2000). [10] Schenk, P.M. Lunar Planet. Sci. Conf. XXVII, #1137-1138 (1996). [11] Farrar, K.S. & Collins, G.C. Lunar Planet Sci. Conf. XXXIII, #1450 (2002). [12] Greenberg, R., et al. Icarus 141, 263-286 (1999). [13] Ojakangas, G.W. & Stevenson, D.J. Icarus 81, 220-241 (1989). [14] Collins, G.C. & Goodman, J.C. Europa's Icy Shell Conf., #7032 (2004). [15] Tobie, G., et al. J. Geophys. Res. 108, doi: 10.1029/2003JE002099 (2003). [16] Stevenson, D.J. Lunar Planet Sci. Conf. XXXI, #1506 (2000). [17] O'Brien, D.P., et al. Icarus 156, 152-161 (2002). [18] Buck, L., et al. Geophys. Res. Lett. 29, doi: 10.1029/2002GL016171 (2002). [19] Nimmo, F. Icarus in press (2004). [20] Pierazzo, E. and Chyba, C. F. Icarus 157, 120-127 (2002). [21] McCord, T.B. et al. Science 280, 1242-1245 (1998).

  8. Magnetic diagnostics for equilibrium reconstructions with eddy currents on the lithium tokamak experimenta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, J. C.; Bialek, J.; Lazerson, S.

    2014-11-01

    The Lithium Tokamak eXperiment is a spherical tokamak with a close-fitting low-recycling wall composed of thin lithium layers evaporated onto a stainless steel-lined copper shell. Long-lived non-axisymmetric eddy currents are induced in the shell and vacuum vessel by transient plasma and coil currents and these eddy currents influence both the plasma and the magnetic diagnositc signals that are used as constraints for equilibrium reconstruction. A newly installed set of re-entrant magnetic diagnostics and internal saddle flux loops, compatible with high-temperatures and lithium environments, is discussed. Details of the axisymmetric (2D) and non-axisymmetric (3D) treatments of the eddy currents and themore » equilibrium reconstruction are presented.« less

  9. Magnetic diagnostics for equilibrium reconstructions with eddy currents on the lithium tokamak experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, J. C., E-mail: jschmitt@pppl.gov; Lazerson, S.; Majeski, R.

    2014-11-15

    The Lithium Tokamak eXperiment is a spherical tokamak with a close-fitting low-recycling wall composed of thin lithium layers evaporated onto a stainless steel-lined copper shell. Long-lived non-axisymmetric eddy currents are induced in the shell and vacuum vessel by transient plasma and coil currents and these eddy currents influence both the plasma and the magnetic diagnostic signals that are used as constraints for equilibrium reconstruction. A newly installed set of re-entrant magnetic diagnostics and internal saddle flux loops, compatible with high-temperatures and lithium environments, is discussed. Details of the axisymmetric (2D) and non-axisymmetric (3D) treatments of the eddy currents and themore » equilibrium reconstruction are presented.« less

  10. Evaluating and interpreting the chemical relevance of the linear response kernel for atoms II: open shell.

    PubMed

    Boisdenghien, Zino; Fias, Stijn; Van Alsenoy, Christian; De Proft, Frank; Geerlings, Paul

    2014-07-28

    Most of the work done on the linear response kernel χ(r,r') has focussed on its atom-atom condensed form χAB. Our previous work [Boisdenghien et al., J. Chem. Theory Comput., 2013, 9, 1007] was the first effort to truly focus on the non-condensed form of this function for closed (sub)shell atoms in a systematic fashion. In this work, we extend our method to the open shell case. To simplify the plotting of our results, we average our results to a symmetrical quantity χ(r,r'). This allows us to plot the linear response kernel for all elements up to and including argon and to investigate the periodicity throughout the first three rows in the periodic table and in the different representations of χ(r,r'). Within the context of Spin Polarized Conceptual Density Functional Theory, the first two-dimensional plots of spin polarized linear response functions are presented and commented on for some selected cases on the basis of the atomic ground state electronic configurations. Using the relation between the linear response kernel and the polarizability we compare the values of the polarizability tensor calculated using our method to high-level values.

  11. Thin Shell Manufacturing for large Wavefront correctors

    NASA Astrophysics Data System (ADS)

    Ruch, Eric; Poutriquet, Florence

    2011-09-01

    One of the major key elements in large adaptive optical systems is the thin shell, used as a deformable mirror. Although the optical prescriptions are relaxed with respect to a passive mirror, especially in the low spatial frequency domain, other requirements, such as the cosmetic defects (scratch & dig), the tight control of the thickness uniformity and of course the fragility of the piece having an aspect ratio up to 1000:1, generate new problems during the manufacturing, testing and handling of such optics. Moreover, the optical surface has to be tested in two different ways: a classical optical test bench allows us to create a surface map of the mirror. This map is then computed to determine the force required by the actuators to flatten the mirror and this becomes also a specification for polishing and implies a good interaction with the voice coil manufacturer. More than twenty years ago Sagem - Reosc developed the first meter class thin shell for early adaptive optics experiments. Since then, large thin shell have been used as the optical part in composite mirrors and more recently the aspheric shell for the VLT Deformable Secondary Mirror has been polished and prototypes, up to scale 1, of the E-ELT M4 Adaptive Mirror have been delivered to ESO in 2010. This paper will present some recent results in the manufacturing and testing technologies of large this shell, especially focusing on the development of the 1,1 meter convex aspherical shell for the VLT M2 mirror and on the results obtained on the largest thin shell produced so far (2,5 meter in diameter) developed as a demonstrator for the future E-ELT M4.

  12. Fast Radio Bursts from the Collapse of Strange Star Crusts

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Geng, Jin-Jun; Huang, Yong-Feng

    2018-05-01

    Fast radio bursts (FRBs) are transient radio sources at cosmological distances. No counterparts in other bands have been observed for non-repeating FRBs. Here we suggest the collapse of strange star (SS) crusts as a possible origin for FRBs. SSs, which are composed of almost equal numbers of u, d, and s quarks, may be encapsulated by a thin crust of normal hadronic matter. When a SS accretes matter from its environment, the crust becomes heavier and heavier. It may finally collapse, leading to the release of a large amount of magnetic energy and plenty of electron/positron pairs on a very short timescale. Electron/positron pairs in the polar cap region of the SS can be accelerated to relativistic velocities, streaming along the magnetic field lines to form a thin shell. FRBs are produced by coherent emission from these electrons when the shell is expanding. Basic characteristics of observed FRBs can be explained in our model.

  13. Static response of coated microbubbles compressed between rigid plates: Simulations and asymptotic analysis including elastic and adhesive forces

    NASA Astrophysics Data System (ADS)

    Lytra, A.; Pelekasis, N.

    2018-03-01

    The static response of coated microbubbles is investigated with a novel approach employed for modeling contact between a microbubble and the cantilever of an atomic force microscope. Elastic tensions and moments are described via appropriate constitutive laws. The encapsulated gas is assumed to undergo isothermal variations. Due to the hydrophilic nature of the cantilever, an ultrathin aqueous film is formed, which transfers the force onto the shell. An interaction potential describes the local pressure applied on the shell. The problem is solved in axisymmetric form with the finite element method. The response is governed by the dimensionless bending, k^ b=kb/(χ R02 ), pressure, P^ A=(PAR0 )/χ , and interaction potential, W ^ =w0/χ . Hard polymeric shells have negligible resistance to gas compression, while for the softer lipid shells gas compressibility is comparable with shell elasticity. As the external force increases, numerical simulations reveal that the force versus deformation (f vs d) curve of polymeric shells exhibits a transition from the linear O(d) (Reissner) regime, marked by flattened shapes around the contact region, to a non-linear O(d1/2) (Pogorelov) regime dominated by shapes exhibiting crater formation due to buckling. When lipid shells are tested, buckling is bypassed as the external force increases and flattened shapes prevail in an initially linear f vs d curve. Transition to a curved upwards regime is observed as the force increases, where gas compression and area dilatation form the dominant balance providing a nonlinear regime with an O(d3) dependence. Asymptotic analysis recovers the above patterns and facilitates estimation of the shell mechanical properties.

  14. On the mechanics of growing thin biological membranes

    NASA Astrophysics Data System (ADS)

    Rausch, Manuel K.; Kuhl, Ellen

    2014-02-01

    Despite their seemingly delicate appearance, thin biological membranes fulfill various crucial roles in the human body and can sustain substantial mechanical loads. Unlike engineering structures, biological membranes are able to grow and adapt to changes in their mechanical environment. Finite element modeling of biological growth holds the potential to better understand the interplay of membrane form and function and to reliably predict the effects of disease or medical intervention. However, standard continuum elements typically fail to represent thin biological membranes efficiently, accurately, and robustly. Moreover, continuum models are typically cumbersome to generate from surface-based medical imaging data. Here we propose a computational model for finite membrane growth using a classical midsurface representation compatible with standard shell elements. By assuming elastic incompressibility and membrane-only growth, the model a priori satisfies the zero-normal stress condition. To demonstrate its modular nature, we implement the membrane growth model into the general-purpose non-linear finite element package Abaqus/Standard using the concept of user subroutines. To probe efficiently and robustness, we simulate selected benchmark examples of growing biological membranes under different loading conditions. To demonstrate the clinical potential, we simulate the functional adaptation of a heart valve leaflet in ischemic cardiomyopathy. We believe that our novel approach will be widely applicable to simulate the adaptive chronic growth of thin biological structures including skin membranes, mucous membranes, fetal membranes, tympanic membranes, corneoscleral membranes, and heart valve membranes. Ultimately, our model can be used to identify diseased states, predict disease evolution, and guide the design of interventional or pharmaceutic therapies to arrest or revert disease progression.

  15. On the mechanics of growing thin biological membranes

    PubMed Central

    Rausch, Manuel K.; Kuhl, Ellen

    2013-01-01

    Despite their seemingly delicate appearance, thin biological membranes fulfill various crucial roles in the human body and can sustain substantial mechanical loads. Unlike engineering structures, biological membranes are able to grow and adapt to changes in their mechanical environment. Finite element modeling of biological growth holds the potential to better understand the interplay of membrane form and function and to reliably predict the effects of disease or medical intervention. However, standard continuum elements typically fail to represent thin biological membranes efficiently, accurately, and robustly. Moreover, continuum models are typically cumbersome to generate from surface-based medical imaging data. Here we propose a computational model for finite membrane growth using a classical midsurface representation compatible with standard shell elements. By assuming elastic incompressibility and membrane-only growth, the model a priori satisfies the zero-normal stress condition. To demonstrate its modular nature, we implement the membrane growth model into the general-purpose non-linear finite element package Abaqus/Standard using the concept of user subroutines. To probe efficiently and robustness, we simulate selected benchmark examples of growing biological membranes under different loading conditions. To demonstrate the clinical potential, we simulate the functional adaptation of a heart valve leaflet in ischemic cardiomyopathy. We believe that our novel approach will be widely applicable to simulate the adaptive chronic growth of thin biological structures including skin membranes, mucous membranes, fetal membranes, tympanic membranes, corneoscleral membranes, and heart valve membranes. Ultimately, our model can be used to identify diseased states, predict disease evolution, and guide the design of interventional or pharmaceutic therapies to arrest or revert disease progression. PMID:24563551

  16. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    PubMed Central

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; Zhidkov, A.; Pikuz, T. A.; Nishiuchi, M.; Pikuz, S. A.; Skobelev, I. Yu.; Abdallah, J.; Sakaki, H.; Sagisaka, A.; Pirozhkov, A. S.; Ogura, K.; Fukuda, Y.; Kanasaki, M.; Hasegawa, N.; Nishikino, M.; Kando, M.; Watanabe, Y.; Kawachi, T.; Masuda, S.; Hosokai, T.; Kodama, R.; Kondo, K.

    2015-01-01

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 1021  W/cm2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~1017  W/cm2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. Femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems. PMID:26330230

  17. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    DOE PAGES

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; ...

    2015-09-02

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 10 21 W/cm 2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E 4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery,more » changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~10 17 W/cm 2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. As a result, femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.« less

  18. Designing with non-linear viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy

    2017-11-01

    Material design is typically limited to hard materials or simple fluids; however, design with more complex materials can provide ways to enhance performance. Using the Criminale-Ericksen-Filbey (CEF) constitutive model in the thin film lubrication limit, we derive a modified Reynolds Equation (based on asymptotic analysis) that includes shear thinning, first normal stress, and terminal regime viscoelastic effects. This allows for designing non-linear viscoelastic fluids in thin-film creeping flow scenarios, i.e. optimizing the shape of rheological material properties to achieve different design objectives. We solve the modified Reynolds equation using the pseudo-spectral method, and describe a case study in full-film lubricated sliding where optimal fluid properties are identified. These material-agnostic property targets can then guide formulation of complex fluids which may use polymeric, colloidal, or other creative approaches to achieve the desired non-Newtonian properties.

  19. MagIC: Fluid dynamics in a spherical shell simulator

    NASA Astrophysics Data System (ADS)

    Wicht, J.; Gastine, T.; Barik, A.; Putigny, B.; Yadav, R.; Duarte, L.; Dintrans, B.

    2017-09-01

    MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.

  20. A Bottle-around-a-Ship Method To Generate Hollow Thin-Shelled Particles Containing Encapsulated Iron Species with Application to the Environmental Decontamination of Chlorinated Compounds.

    PubMed

    Su, Yang; Wang, Yingqing; Owoseni, Olasehinde; Zhang, Yueheng; Gamliel, David Pierce; Valla, Julia A; McPherson, Gary L; John, Vijay T

    2018-04-25

    Thin-shelled hollow silica particles are synthesized using an aerosol-based process where the concentration of a silica precursor tetraethyl orthosilicate (TEOS) determines the shell thickness. The synthesis involves a novel concept of the salt bridging of an iron salt, FeCl 3 , to a cationic surfactant, cetyltrimethylammonium bromide (CTAB), which modulates the templating effect of the surfactant on silica porosity. The salt bridging leads to a sequestration of the surfactant in the interior of the droplet with the formation of a dense silica shell around the organic material. Subsequent calcination consistently results in hollow particles with encapsulated iron oxides. Control of the TEOS levels leads to the generation of ultrathin-shelled (∼10 nm) particles which become susceptible to rupture upon exposure to ultrasound. The dense silica shell that is formed is impervious to entry of chemical species. Mesoporosity is restored to the shell through desilication and reassembly, again using CTAB as a template. The mesoporous-shelled hollow particles show good reactivity toward the reductive dichlorination of trichloroethylene (TCE), indicating access of TCE to the particle interior. The ordered mesoporous thin-shelled particles containing active iron species are viable systems for chemical reaction and catalysis.

  1. Thermal Convection in a Creeping Solid With Melting/Freezing Interfaces at Either or Both Boundaries

    NASA Astrophysics Data System (ADS)

    Labrosse, S.; Morison, A.; Deguen, R.; Alboussiere, T.; Tackley, P. J.; Agrusta, R.

    2017-12-01

    Thermal convection in the solid mantles of the Earth, other terrestrial planets and icy satellites sets in while it is still crystallising from a liquid layer (see abstract by Morison et al, this conference). The existence of an ocean (water or magma) either or both below and above the solid mantle modifies the conditions applying at the boundary since matter can flow through it by changing phase. Adapting the boundary conditions developed for the dynamics of the inner core by Deguen et al (GJI 2013) to the plane layer and the spherical shell, we solve the linear stability problem and obtain weakly non-linear solutions as well as direct numerical solutions in both geometries, with a liquid-solid phase change at either or both boundaries. The phase change boundary condition is controlled by a dimensionless number, Φ , which when small, allows easy flow through the boundary while the classical non-penetrating boundary condition is recovered for large values. If both boundaries have a phase change, the preferred wavelength of the flow is large, i.e. λ ∝Φ -1/2 in a plane layer and degree 1 in a spherical shell, and the critical Rayleigh number is of order Φ . The heat transfer efficiency, as measured by the dependence of the Nusselt number on the Rayleigh number also increases indefinitely for decreasing values of Φ . If only one boundary has a phase change condition, the critical wavelength is increased by about a factor 2 and the critical Rayleigh number is decreased by about a factor 4. The dynamics is controlled entirely by the boundary layer opposite to the phase change interface and the geometry of the flow. This model provides a natural explanation for the emergence of degree 1 convection in thin ice layers and implies a style of early mantle dynamics on Earth very different from what is classically envisioned.

  2. Parametric Studies Of Lightweight Reflectors Supported On Linear Actuator Arrays

    NASA Astrophysics Data System (ADS)

    Seibert, George E.

    1987-10-01

    This paper presents the results of numerous design studies carried out at Perkin-Elmer in support of the design of large diameter controllable mirrors for use in laser beam control, surveillance, and astronomy programs. The results include relationships between actuator location and spacing and the associated degree of correctability attainable for a variety of faceplate configurations subjected to typical disturbance environments. Normalizations and design curves obtained from closed-form equations based on thin shallow shell theory and computer based finite-element analyses are presented for use in preliminary design estimates of actuator count, faceplate structural properties, system performance prediction and weight assessments. The results of the analyses were obtained from a very wide range of mirror configurations, including both continuous and segmented mirror geometries. Typically, the designs consisted of a thin facesheet controlled by point force actuators which in turn were mounted on a structurally efficient base panel, or "reaction structure". The faceplate materials considered were fused silica, ULE fused silica, Zerodur, aluminum and beryllium. Thin solid faceplates as well as rib-reinforced cross-sections were treated, with a wide variation in thickness and/or rib patterns. The magnitude and spatial frequency distribution of the residual or uncorrected errors were related to the input error functions for mirrors of many different diameters and focal ratios. The error functions include simple sphere-to-sphere corrections, "parabolization" of spheres, and higher spatial frequency input error maps ranging from 0.5 to 7.5 cycles per diameter. The parameter which dominates all of the results obtained to date, is a structural descriptor of thin shell behavior called the characteristic length. This parameter is a function of the shell's radius of curvature, thickness, and Poisson's ratio of the material used. The value of this constant, in itself, describes the extent to which the deflection under a point force is localized by the shell's curvature. The deflection shape is typically a near-gaussian "bump" with a zero-crossing at a local radius of approximately 3.5 characteristic lengths. The amplitude is a function of the shells elastic modulus, radius, and thickness, and is linearly proportional to the applied force. This basic shell behavior is well-treated in an excellent set of papers by Eric Reissner entitled "Stresses and Small Displacements of Shallow Spherical Shells".1'2 Building on the insight offered by these papers, we developed our design tools around two derived parameters, the ratio of the mirror's diameter to its characteristic length (D/l), and the ratio of the actuator spacing to the characteristic length (b/l). The D/1 ratio determines the "finiteness" of the shell, or its dependence on edge boundary conditions. For D/1 values greater than 10, the influence of edges is almost totally absent on interior behavior. The b/1 ratio, the basis of all our normalizations is the most universal term in the description of correctability or ratio of residual/input errors. The data presented in the paper, shows that the rms residual error divided by the peak amplitude of the input error function is related to the actuator spacing to characteristic length ratio by the following expression RMS Residual Error b 3.5 k (I) (1) Initial Error Ampl. The value of k ranges from approximately 0.001 for low spatial frequency initial errors up to 0.05 for higher error frequencies (e.g. 5 cycles/diameter). The studies also yielded insight to the forces required to produce typical corrections at both the center and edges of the mirror panels. Additionally, the data lends itself to rapid evaluation of the effects of trading faceplate weight for increased actuator count,

  3. Monte Carlo simulations of nematic and chiral nematic shells

    NASA Astrophysics Data System (ADS)

    Wand, Charlie R.; Bates, Martin A.

    2015-01-01

    We present a systematic Monte Carlo simulation study of thin nematic and cholesteric shells with planar anchoring using an off-lattice model. The results obtained using the simple model correspond with previously published results for lattice-based systems, with the number, type, and position of defects observed dependent on the shell thickness with four half-strength defects in a tetrahedral arrangement found in very thin shells and a pair of defects in a bipolar (boojum) configuration observed in thicker shells. A third intermediate defect configuration is occasionally observed for intermediate thickness shells, which is stabilized in noncentrosymmetric shells of nonuniform thickness. Chiral nematic (cholesteric) shells are investigated by including a chiral term in the potential. Decreasing the pitch of the chiral nematic leads to a twisted bipolar (chiral boojum) configuration with the director twist increasing from the inner to the outer surface.

  4. Investing the effectiveness of retention performance in a non-volatile floating gate memory device with a core-shell structure of CdSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hoon; Kim, Jung-Min; Lim, Ki-Tae; Cho, Hyeong Jun; Bang, Jin Ho; Kim, Yong-Sang

    2016-03-01

    In this paper, we empirically investigate the retention performance of organic non-volatile floating gate memory devices with CdSe nanoparticles (NPs) as charge trapping elements. Core-structured CdSe NPs or core-shell-structured ZnS/CdSe NPs were mixed in PMMA and their performance in pentacene based device was compared. The NPs and self-organized thin tunneling PMMA inside the devices exhibited hysteresis by trapping hole during capacitance-voltage characterization. Despite of core-structured NPs showing a larger memory window, the retention time was too short to be adopted by an industry. By contrast core-shell structured NPs showed an improved retention time of >10000 seconds than core-structure NCs. Based on these results and the energy band structure, we propose the retention mechanism of each NPs. This investigation of retention performance provides a comparative and systematic study of the charging/discharging behaviors of NPs based memory devices. [Figure not available: see fulltext.

  5. Experimental investigation of heat transfer and pressure drop characteristics of non-Newtonian nanofluids flowing in the shell-side of a helical baffle heat exchanger with low-finned tubes

    NASA Astrophysics Data System (ADS)

    Tan, Yunkai; He, Zhenbin; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo

    2017-09-01

    An aqueous solution of Xanthan Gum (XG) at a weight fraction as high as 0.2% was used as the base liquid, the stable MWCNTs-dispersed non-Newtonian nanofluids at different weight factions of MWCNTs was prepared. The base fluid and all nanofluids show pseudoplastic (shear-thinning) rheological behavior. Experiments were performed to compare the shell-side forced convective heat transfer coefficient and pressure drop of non-Newtonian nanofluids to those of non-Newtonian base fluid in an integrally helical baffle heat exchanger with low-finned tubes. The experimental results showed that the enhancement of the convective heat transfer coefficient increases with an increase in the Peclet number and the nanoparticle concentration. For nanofluids with 1.0, 0.5 and 0.2 wt% of multi-walled carbon nanotubes (MWCNTs), the heat transfer coefficients respectively augmented by 24.3, 13.2 and 4.7% on average and the pressure drops become larger than those of the base fluid. The comprehensive thermal performance factor is higher than one and increases with an increasing weight fraction of MWCNTs. A remarkable heat transfer enhancement in the shell side of helical baffle heat exchanger with low-finned tubes can be obtained by adding MWCNTs into XG aqueous solution based on thermal resistance analysis. New correlations have been suggested for the shell-side friction coefficient and the Nusselt numbers of non-Newtonian nanofluids and give very good agreement with experimental data.

  6. Folding of non-Euclidean curved shells

    NASA Astrophysics Data System (ADS)

    Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan

    2015-03-01

    Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.

  7. Vibrations of a thin cylindrical shell stiffened by rings with various stiffness

    NASA Astrophysics Data System (ADS)

    Nesterchuk, G. A.

    2018-05-01

    The problem of vibrations of a thin-walled elastic cylindrical shell reinforced by frames of different rigidity is investigated. The solution for the case of the clamped shell edges was obtained by asymptotic methods and refined by the finite element method. Rings with zero eccentricity and stiffness varying along the generatrix of the shell cylinder are considered. Varying the optimal coefficients of the distribution functions of the rigidity of the frames and finding more precise parameters makes it possible to find correction factors for analytical formulas of approximate calculation.

  8. Better Finite-Element Analysis of Composite Shell Structures

    NASA Technical Reports Server (NTRS)

    Clarke, Gregory

    2007-01-01

    A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.

  9. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.

    PubMed

    Doinikov, Alexander A; Haac, Jillian F; Dayton, Paul A

    2009-02-01

    A general theoretical approach to the development of zero-thickness encapsulation models for contrast microbubbles is proposed. The approach describes a procedure that allows one to recast available rheological laws from the bulk form to a surface form which is used in a modified Rayleigh-Plesset equation governing the radial dynamics of a contrast microbubble. By the use of the proposed procedure, the testing of different rheological laws for encapsulation can be carried out. Challenges of existing shell models for lipid-encapsulated microbubbles, such as the dependence of shell parameters on the initial bubble radius and the "compression-only" behavior, are discussed. Analysis of the rheological behavior of lipid encapsulation is made by using experimental radius-time curves for lipid-coated microbubbles with radii in the range 1.2-2.5 microm. The curves were acquired for a research phospholipid-coated contrast agent insonified with a 20 cycle, 3.0 MHz, 100 kPa acoustic pulse. The fitting of the experimental data by a model which treats the shell as a viscoelastic solid gives the values of the shell surface viscosity increasing from 0.30 x 10(-8) kg/s to 2.63 x 10(-8) kg/s for the range of bubble radii, indicated above. The shell surface elastic modulus increases from 0.054 N/m to 0.37 N/m. It is proposed that this increase may be a result of the lipid coating possessing the properties of both a shear-thinning and a strain-softening material. We hypothesize that these complicated rheological properties do not allow the existing shell models to satisfactorily describe the dynamics of lipid encapsulation. In the existing shell models, the viscous and the elastic shell terms have the linear form which assumes that the viscous and the elastic stresses acting inside the lipid shell are proportional to the shell shear rate and the shell strain, respectively, with constant coefficients of proportionality. The analysis performed in the present paper suggests that a more general, nonlinear theory may be more appropriate. It is shown that the use of the nonlinear theory for shell viscosity allows one to model the "compression-only" behavior. As an example, the results of the simulation for a 2.03 microm radius bubble insonified with a 6 cycle, 1.8 MHz, 100 kPa acoustic pulse are given. These parameters correspond to the acoustic conditions under which the "compression-only" behavior was observed by de Jong et al. [Ultrasound Med. Biol. 33 (2007) 653-656]. It is also shown that the use of the Cross law for the modeling of the shear-thinning behavior of shell viscosity reduces the variance of experimentally estimated values of the shell viscosity and its dependence on the initial bubble radius.

  10. Stress-strain state on non-thin plates and shells. Generalized theory (survey)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemish, Yu.N.; Khoma, I.Yu.

    1994-05-01

    In the first part of this survey, we examined exact and approximate analytic solutions of specific problems for thick shells and plates obtained on the basis of three-dimensional equations of the mathematical theory of elasticity. The second part of the survey, presented here, is devoted to systematization and analysis of studies made in regard to a generalized theory of plates and shells based on expansion of the sought functions into Fourier series in Legendre polynomials of the thickness coordinate. Methods are described for constructing systems of differential equations in the coefficients of the expansions (as functions of two independent variablesmore » and time), along with the corresponding boundary and initial conditions. Matters relating to substantiation of the given approach and its generalizations are also discussed.« less

  11. Variational Theory of Motion of Curved, Twisted and Extensible Elastic Rods

    DTIC Science & Technology

    1993-01-18

    nonlinear theory such as questions of existence of solutions and global behavior have been carried out by Antman (1976). His basic work entitled "The...Aerosp. Ens. Q017/018 16 REFERENCES Antman , S.S., "Ordinary Differential Equations of Non-Linear ElastIcity 1: Foundatious of the Theories of Non-Linearly...Elutic rods and Shells," A.R.M.A. 61 (1976), 307-351. Antman , S.S., "The Theory of Rods", Handbuch der Physik, Vol. Vla/2, Springer-Verlq, Berlin

  12. Finite indentation of highly curved elastic shells

    NASA Astrophysics Data System (ADS)

    Pearce, S. P.; King, J. R.; Steinbrecher, T.; Leubner-Metzger, G.; Everitt, N. M.; Holdsworth, M. J.

    2018-01-01

    Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, while measuring the applied force and displacement. This gives immediate information on the fracture strength of the material (from the force required to puncture), but it is also theoretically possible to determine the elastic properties by comparing the resulting force-displacement curves with a mathematical model. Existing mathematical studies generally assume that the elastic surface is initially flat, which is often not the case for biological membranes. We previously outlined a theory for the indentation of curved isotropic, incompressible, hyperelastic membranes (with no bending stiffness) which breaks down for highly curved surfaces, as the entire membrane becomes wrinkled. Here, we introduce the effect of bending stiffness, ensuring that energy is required to change the shell shape without stretching, and find that commonly neglected terms in the shell equilibrium equation must be included. The theory presented here allows for the estimation of shape- and size-independent elastic properties of highly curved surfaces via indentation experiments, and is particularly relevant for biological surfaces.

  13. Finite indentation of highly curved elastic shells

    PubMed Central

    2018-01-01

    Experimentally measuring the elastic properties of thin biological surfaces is non-trivial, particularly when they are curved. One technique that may be used is the indentation of a thin sheet of material by a rigid indenter, while measuring the applied force and displacement. This gives immediate information on the fracture strength of the material (from the force required to puncture), but it is also theoretically possible to determine the elastic properties by comparing the resulting force–displacement curves with a mathematical model. Existing mathematical studies generally assume that the elastic surface is initially flat, which is often not the case for biological membranes. We previously outlined a theory for the indentation of curved isotropic, incompressible, hyperelastic membranes (with no bending stiffness) which breaks down for highly curved surfaces, as the entire membrane becomes wrinkled. Here, we introduce the effect of bending stiffness, ensuring that energy is required to change the shell shape without stretching, and find that commonly neglected terms in the shell equilibrium equation must be included. The theory presented here allows for the estimation of shape- and size-independent elastic properties of highly curved surfaces via indentation experiments, and is particularly relevant for biological surfaces. PMID:29434505

  14. Development and applications of a flat triangular element for thin laminated shells

    NASA Astrophysics Data System (ADS)

    Mohan, P.

    Finite element analysis of thin laminated shells using a three-noded flat triangular shell element is presented. The flat shell element is obtained by combining the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element similar to the Allman element, but derived from the Linear Strain Triangular (LST) element. The major drawback of the DKT plate bending element is that the transverse displacement is not explicitly defined within the interior of the element. In the present research, free vibration analysis is performed both by using a lumped mass matrix and a so called consistent mass matrix, obtained by borrowing shape functions from an existing element, in order to compare the performance of the two methods. Several numerical examples are solved to demonstrate the accuracy of the formulation for both small and large rotation analysis of laminated plates and shells. The results are compared with those available in the existing literature and those obtained using the commercial finite element package ABAQUS and are found to be in good agreement. The element is employed for two main applications involving large flexible structures. The first application is the control of thermal deformations of a spherical mirror segment, which is a segment of a multi-segmented primary mirror used in a space telescope. The feasibility of controlling the surface distortions of the mirror segment due to arbitrary thermal fields, using discrete and distributed actuators, is studied. The second application is the analysis of an inflatable structure, being considered by the US Army for housing vehicles and personnel. The updated Lagrangian formulation of the flat shell element has been developed primarily for the nonlinear analysis of the tent structure, since such a structure is expected to undergo large deformations and rotations under the action of environmental loads like the wind and snow loads. The follower effects of the pressure load have been included in the updated Lagrangian formulation of the flat shell element and have been validated using standard examples in the literature involving deformation-dependent pressure loads. The element can be used to obtain the nonlinear response of the tent structure under wind and snow loads. (Abstract shortened by UMI.)

  15. Radio to Gamma-Ray Emission from Shell-Type Supernova Remnants: Predictions from Non-Linear Shock Acceleration Models

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P.; Grenier, Isabelle A.; Goret, Philippe

    1998-01-01

    Supernova remnants (SNRs) are widely believed to be the principal source of galactic cosmic rays, produced by diffusive shock acceleration in the environs of the remnant's expanding blast wave. Such energetic particles can produce gamma-rays and lower energy photons via interactions with the ambient plasma. The recently reported observation of TeV gamma-rays from SN1006 by the CANGAROO Collaboration, combined with the fact that several unidentified EGRET sources have been associated with known radio/optical/X-ray-emitting remnants, provides powerful motivation for studying gamma-ray emission from SNRs. In this paper, we present results from a Monte Carlo simulation of non-linear shock structure and acceleration coupled with photon emission in shell-like SNRs. These non-linearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to acceleration efficiency considerations and impact photon intensities and spectral shapes at all energies, producing GeV/TeV intensity ratios that are quite different from test particle predictions.

  16. A Complete Structural Inventory of the Mycobacterial Microcompartment Shell Proteins Constrains Models of Global Architecture and Transport*

    PubMed Central

    Mallette, Evan

    2017-01-01

    Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. PMID:27927988

  17. A Complete Structural Inventory of the Mycobacterial Microcompartment Shell Proteins Constrains Models of Global Architecture and Transport.

    PubMed

    Mallette, Evan; Kimber, Matthew S

    2017-01-27

    Bacterial microcompartments are bacterial analogs of eukaryotic organelles in that they spatially segregate aspects of cellular metabolism, but they do so by building not a lipid membrane but a thin polyhedral protein shell. Although multiple shell protein structures are known for several microcompartment types, additional uncharacterized components complicate systematic investigations of shell architecture. We report here the structures of all four proteins proposed to form the shell of an uncharacterized microcompartment designated the Rhodococcus and Mycobacterium microcompartment (RMM), which, along with crystal interactions and docking studies, suggests possible models for the particle's vertex and edge organization. MSM0272 is a typical hexameric β-sandwich shell protein thought to form the bulk of the facet. MSM0273 is a pentameric β-barrel shell protein that likely plugs the vertex of the particle. MSM0271 is an unusual double-ringed bacterial microcompartment shell protein whose rings are organized in an offset position relative to all known related proteins. MSM0275 is related to MSM0271 but self-organizes as linear strips that may line the facet edge; here, the presence of a novel extendable loop may help ameliorate poor packing geometry of the rigid main particle at the angled edges. In contrast to previously characterized homologs, both of these proteins show closed pores at both ends. This suggests a model where key interactions at the vertex and edges are mediated at the inner layer of the shell by MSM0271 (encircling MSM0273) and MSM0275, and the facet is built from MSM0272 hexamers tiling in the outer layer of the shell. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A Simplified Method of Elastic-Stability Analysis for Thin Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Batdorf, S B

    1947-01-01

    This paper develops a new method for determining the buckling stresses of cylindrical shells under various loading conditions. In part I, the equation for the equilibrium of cylindrical shells introduced by Donnell in NACA report no. 479 to find the critical stresses of cylinders in torsion is applied to find critical stresses for cylinders with simply supported edges under other loading conditions. In part II, a modified form of Donnell's equation for the equilibrium of thin cylindrical shells is derived which is equivalent to Donnell's equation but has certain advantages in physical interpretation and in ease of solution, particularly in the case of shells having clamped edges. The question of implicit boundary conditions is also considered.

  19. Spline Approximation of Thin Shell Dynamics

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1996-01-01

    A spline-based method for approximating thin shell dynamics is presented here. While the method is developed in the context of the Donnell-Mushtari thin shell equations, it can be easily extended to the Byrne-Flugge-Lur'ye equations or other models for shells of revolution as warranted by applications. The primary requirements for the method include accuracy, flexibility and efficiency in smart material applications. To accomplish this, the method was designed to be flexible with regard to boundary conditions, material nonhomogeneities due to sensors and actuators, and inputs from smart material actuators such as piezoceramic patches. The accuracy of the method was also of primary concern, both to guarantee full resolution of structural dynamics and to facilitate the development of PDE-based controllers which ultimately require real-time implementation. Several numerical examples provide initial evidence demonstrating the efficacy of the method.

  20. Luminescent high temperature sensor based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, He-lin; Yang, Ai-jun; Sui, Cheng-hua

    2013-11-01

    A high temperature sensor based on the multi-parameter temperature dependent characteristic of photoluminescence (PL) of quantum dot (QD) thin film is demonstrated by depositing the CdSe/ZnS core/shell QDs on the SiO2 glass substrates. The variations of the intensity, the peak wavelength and the full width at half maximum (FWHM) of PL spectra with temperature are studied experimentally and theoretically. The results indicate that the peak wavelength of the PL spectra changes linearly with temperature, while the PL intensity and FWHM vary exponentially for the temperature range from 30 °C to 180 °C. Using the obtained temperature dependent optical parameters, the resolution of the designed sensor can reach 0.1 nm/°C.

  1. Reflective photoluminescence fiber temperature probe based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, Helin; Yang, Aijun; Chen, Zhongshi; Geng, Yan

    2014-08-01

    A reflective fiber temperature sensor based on the optical temperature dependent characteristics of a quantum dots (QDs) thin film is developed by depositing the CdSe/ZnS core/shell quantum dots on the SiO2 glass substrates. As the temperature is changed from 30 to 200°C, the peak wavelengths of PL spectra from the sensing head increase linearly with the temperature, while the peak intensity and the full width at half maximum (FWHM) of PL spectra vary exponentially according to the specific physical law. Using the obtained temperature-dependent peak-wavelength shift, the average resolution of the designed fiber temperature sensor can reach 0.12 nm/°C, while it reaches 0.056 nm/°C according to the FWHM of PL spectrum.

  2. A spline-based non-linear diffeomorphism for multimodal prostate registration.

    PubMed

    Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice

    2012-08-01

    This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Static, free vibration and thermal analysis of composite plates and shells using a flat triangular shell element

    NASA Astrophysics Data System (ADS)

    Kapania, R. K.; Mohan, P.

    1996-09-01

    Finite element static, free vibration and thermal analysis of thin laminated plates and shells using a three noded triangular flat shell element is presented. The flat shell element is a combination of the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element derived from the Linear Strain Triangular (LST) element with a total of 18 degrees of freedom (3 translations and 3 rotations per node). Explicit formulations are used for the membrane, bending and membrane-bending coupling stiffness matrices and the thermal load vector. Due to a strong analogy between the induced strain caused by the thermal field and the strain induced in a structure due to an electric field the present formulation is readily applicable for the analysis of structures excited by surface bonded or embedded piezoelectric actuators. The results are presented for (i) static analysis of (a) simply supported square plates under doubly sinusoidal load and uniformly distributed load (b) simply supported spherical shells under a uniformly distributed load, (ii) free vibration analysis of (a) square cantilever plates, (b) skew cantilever plates and (c) simply supported spherical shells; (iii) Thermal deformation analysis of (a) simply supported square plates, (b) simply supported-clamped square plate and (c) simply supported spherical shells. A numerical example is also presented demonstrating the application of the present formulation to analyse a symmetrically laminated graphite/epoxy laminate excited by a layer of piezoelectric polyvinylidene flouride (PVDF). The results presented are in good agreement with those available in the literature.

  4. Enhanced direct-drive implosions with thin high-Z ablation layers.

    PubMed

    Mostovych, Andrew N; Colombant, Denis G; Karasik, Max; Knauer, James P; Schmitt, Andrew J; Weaver, James L

    2008-02-22

    New direct-drive spherical implosion experiments with deuterium filled plastic shells have demonstrated significant and absolute (2x) improvements in neutron yield when the shells are coated with a very thin layer ( approximately 200-400 A) of high-Z material such as palladium. This improvement is interpreted as resulting from increased stability of the imploding shell. These results provide for a possible path to control laser imprint and stability in laser-fusion-energy target designs.

  5. Effects of calcination temperature for rate capability of triple-shelled ZnFe2O4 hollow microspheres for lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Hwang, Hojin; Shin, Haeun; Lee, Wan-Jin

    2017-04-01

    Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward and outward ripening with three different calcination temperatures. Thin triple-shelled ZnFe2O4 hollow microspheres calcined at 450 °C (ZFO-450) delivers a high reversible capacity of 932 mA h g-1 at a current density of 2 A g-1 even at the 200th cycle without obvious decay. Furthermore, ZFO-450 delivers 1235, 1005, 865, 834, and 845 mA h g-1 at high current densities of 0.5, 2, 5, 10, and 20 A g-1 after 100 cycles. Thin triple-shelled hollow microsphere prepared at an optimum calcination temperature provides exceptional rate capability and outstanding rate retention due to (i) the formation of nanoparticles leading to thin shell with morphological integrity, (ii) the facile mass transfer by thin shell with mesoporous structure, and (iii) the void space with macroporous structure alleviating volume change occurring during cycling.

  6. Effects of calcination temperature for rate capability of triple-shelled ZnFe2O4 hollow microspheres for lithium ion battery anodes

    PubMed Central

    Hwang, Hojin; Shin, Haeun; Lee, Wan-Jin

    2017-01-01

    Triple-shelled ZnFe2O4 hollow microspheres (ZFO) as anode materials for lithium ion battery are prepared through a one-pot hydrothermal reaction using the composite solution consisting of sucrose in water and metal ions in ethylene glycol (EG), followed by different calcination processes. The architectures of ZFO micro spheres are differently synthesized through a mutual cooperation of inward and outward ripening with three different calcination temperatures. Thin triple-shelled ZnFe2O4 hollow microspheres calcined at 450 °C (ZFO-450) delivers a high reversible capacity of 932 mA h g−1 at a current density of 2 A g−1 even at the 200th cycle without obvious decay. Furthermore, ZFO-450 delivers 1235, 1005, 865, 834, and 845 mA h g−1 at high current densities of 0.5, 2, 5, 10, and 20 A g−1 after 100 cycles. Thin triple-shelled hollow microsphere prepared at an optimum calcination temperature provides exceptional rate capability and outstanding rate retention due to (i) the formation of nanoparticles leading to thin shell with morphological integrity, (ii) the facile mass transfer by thin shell with mesoporous structure, and (iii) the void space with macroporous structure alleviating volume change occurring during cycling. PMID:28418001

  7. The orbital thermal evolution and global expansion of Ganymede

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Showman, Adam P.; Tobie, Gabriel

    2009-03-01

    The tectonically and cryovolcanically resurfaced terrains of Ganymede attest to the satellite's turbulent geologic history. Yet, the ultimate cause of its geologic violence remains unknown. One plausible scenario suggests that the Galilean satellites passed through one or more Laplace-like resonances before evolving into the current Laplace resonance. Passage through such a resonance can excite Ganymede's eccentricity, leading to tidal dissipation within the ice shell. To evaluate the effects of resonance passage on Ganymede's thermal history we model the coupled orbital-thermal evolution of Ganymede both with and without passage through a Laplace-like resonance. In the absence of tidal dissipation, radiogenic heating alone is capable of creating large internal oceans within Ganymede if the ice grain size is 1 mm or greater. For larger grain sizes, oceans will exist into the present epoch. The inclusion of tidal dissipation significantly alters Ganymede's thermal history, and for some parameters (e.g. ice grain size, tidal Q of Jupiter) a thin ice shell (5 to 20 km) can be maintained throughout the period of resonance passage. The pulse of tidal heating that accompanies Laplace-like resonance capture can cause up to 2.5% volumetric expansion of the satellite and contemporaneous formation of near surface partial melt. The presence of a thin ice shell and high satellite orbital eccentricity would generate moderate diurnal tidal stresses in Ganymede's ice shell. Larger stresses result if the ice shell rotates non-synchronously. The combined effects of satellite expansion, its associated tensile stress, rapid formation of near surface partial melt, and tidal stress due to an eccentric orbit may be responsible for creating Ganymede's unique surface features.

  8. Colloidal InP/ZnS core shell nanocrystals studied by linearly and circularly polarized photoluminescence

    NASA Astrophysics Data System (ADS)

    Langof, L.; Fradkin, L.; Ehrenfreund, E.; Lifshitz, E.; Micic, O. I.; Nozik, A. J.

    2004-02-01

    The magneto-optical properties of InP/ZnS core-shell nanocrystals (NCs) were investigated by measuring the degree of linear and circular polarization of photoluminescence (PL) spectra, in the presence of an external magnetic field under resonant or non-resonant excitation. The linearly polarized PL data strongly indicate that InP/ZnS NCs have a prolongated shape. The resonant-excited circularly polarized PL decay curves indicate that the spin relaxation time of the studied samples is shorter than the radiative lifetime of their exciton. Furthermore, the magnetic field-induced circularly polarized PL process reveals an exciton g factor ( gex) of 0.55. Thus, such studies may serve as a tool to directly estimate the NC's shape anisotropy and to determine the g-factor of charge carriers and excitons in those NCs.

  9. Free vibrations of thin-walled semicircular graphite-epoxy composite frames

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Noor, Ahmed K.; Peters, Jeanne M.

    1990-01-01

    A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modeled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frame. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a non-dimensional thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.

  10. A combined experimental and finite element study to predict the failure mechanisms in SiC coated carbon/carbon composites at room and elevated temperatures under flexural loading

    NASA Technical Reports Server (NTRS)

    Mahfuz, Hassan; Das, Partha S.; Xue, Dongwei; Krishnagopalan, Jaya; Jeelani, Shaik

    1993-01-01

    Response of quasi-isotropic laminates of SiC coated Carbon/Carbon (C/C) composites have been investigated under flexural loading at various temperatures. Variation of load-deflection behavior with temperatures are studied. Increase in flexural strength and stiffness are observed with the rise in temperature. Extensive analyses through Optical Microscope (OM) and Non-Destructive Evaluation (NDE) have been performed to understand the failure mechanisms. Damage zone is found only within the neighborhood of the loading plane. Isoparametric layered shell elements developed on the basis of the first order shear deformation theory have been used to model the thin laminates of C/C under flexural loading. Large deformation behavior has been considered in the finite element analysis to account for the non-linearities encountered during the actual test. Data generated using finite element analysis are presented to corroborate the experimental findings, and a comparison in respect of displacement and stress-strain behavior are given to check the accuracy of the finite element analysis. Reasonable correlation between the experimental and finite element results have been established.

  11. High-efficiency and mechano-/photo- bi-catalysis of piezoelectric-ZnO@ photoelectric-TiO2 core-shell nanofibers for dye decomposition.

    PubMed

    You, Huilin; Wu, Zheng; Jia, Yanmin; Xu, Xiaoli; Xia, Yuntao; Han, Zichen; Wang, Yu

    2017-09-01

    A mechano-/photo- bi-catalyst of piezoelectric-ZnO@photoelectric-TiO 2 core-shell nanofibers was hydrothermally synthesized for Methyl Orange (10 mg L -1 ) decomposition. The mechano-/photo- bi-catalysis in ZnO@TiO 2 is superior to mechano- or photo-catalysis in decomposing Methyl Orange, which is mainly attributed to the synergy effect of the piezoelectric-ZnO core's mechano-catalysis and the thin photoelectric TiO 2 shell's photo-catalysis. The heterostructure of the piezoelectric-ZnO@photoelectric-TiO 2 core-shell interface, being helpful to reduce electron-hole pair recombination and to separate the piezoelectrically-/photoelectric ally- induced electrons and holes, may also make a great contribution to the enhanced catalysis performance. The mechano-/photo-bi-catalysis in ZnO@TiO 2 core-shell nanofibers possesses the advantages of high efficiency, non-toxicity and tractability and is potential in utilizing mechanical/solar energy to deal with dye wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Marangoni-induced symmetry-breaking pattern selection on viscous fluids

    NASA Astrophysics Data System (ADS)

    Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele

    2016-11-01

    Symmetry breaking transitions on curved surfaces are found in a wide range of dissipative systems, ranging from asymmetric cell divisions to structure formation in thin films. Inherent within the nonlinearities are the associated curvilinear geometry, the elastic stretching, bending and the various fluid dynamical processes. We present a generalised Swift-Hohenberg pattern selection theory on a thin, curved and viscous films in the presence of non-trivial Marangoni effect. Testing the theory with experiments on soap bubbles, we observe the film pattern selection to mimic that of the elastic wrinkling morphology on a curved elastic bilayer in regions of slow viscous flow. By examining the local state of damping of surface capillary waves we attempt to establish an equivalence between the Marangoni fluid dynamics and the nonlinear elastic shell theory above the critical wavenumber of the instabilities and propose a possible explanation for the perceived elastic-fluidic duality. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.

  13. Addendum to ''Thin-shell wormholes supported by ordinary matter in Einstein-Gauss-Bonnet gravity''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simeone, Claudio

    2011-04-15

    Thin-shell wormholes are constructed starting from the exotic branch of the Wiltshire spherically symmetric solution of Einstein-Gauss-Bonnet gravity. The energy-momentum tensor of the shell is studied, and it is shown that configurations supported by matter satisfying the energy conditions exist for certain values of the parameters. Differing from the previous result associated with the normal branch of the Wiltshire solution, this is achieved for small positive values of the Gauss-Bonnet parameter and for vanishing charge.

  14. Compositional analysis and structural elucidation of glycosaminoglycans in chicken eggs

    PubMed Central

    Liu, Zhangguo; Zhang, Fuming; Li, Lingyun; Li, Guoyun; He, Wenqing; Linhardt, Robert J.

    2014-01-01

    Glycosaminoglycans (GAGs) have numerous applications in the fields of pharmaceuticals, cosmetics, nutraceuticals, and foods. GAGs are also critically important in the developmental biology of all multicellular animals. GAGs were isolated from chicken egg components including yolk, thick egg white, thin egg white, membrane, calcified shell matrix supernatant, and shell matrix deposit. Disaccharide compositional analysis was performed using ultra high-performance liquid chromatography-mass spectrometry. The results of these analyses showed that all four families of GAGs were detected in all egg components. Keratan sulfate was found in egg whites (thick and thin) and shell matrix (calcified shell matrix supernatant and deposit) with high level. Chondroitin sulfates were much more plentiful in both shell matrix components and membrane. Hyaluronan was plentiful in both shell matrix components and membrane, but were only present in a trace of quantities in the yolk. Heparan sulfate was plentiful in the shell matrix deposit but was present in a trace of quantities in the egg content components (yolk, thick and thin egg whites). Most of the chondroitin and heparan sulfate disaccharides were present in the GAGs found in chicken eggs with the exception of chondroitin and heparan sulfate 2,6-disulfated disaccharides. Both CS and HS in the shell matrix deposit contained the most diverse chondroitin and heparan sulfate disaccharide compositions. Eggs might provide a potential new source of GAGs. PMID:25218438

  15. Organochlorine pesticides, polychlorinated biphenyls, and mercury in osprey eggs--1970-79--and their relationships to shell thinning and productivity

    USGS Publications Warehouse

    Wiemeyer, Stanley N.; Bunck, C.M.; Krynitsky, A.J.

    1988-01-01

    Osprey (Pandion haliaetus) eggs were collected in 14 states in 1970-79 and analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), and mercury. Moderate shell thinning occurred in eggs from several areas. DDE was detected in all eggs, PCBs in 99%, DDD in 96%, dieldrin in 52%, and other compounds less frequently. Concentrations of DDT and its metabolites declined in eggs from Cape May County, New Jersey between 1970-72 and 1978-79. Eggs .from New Jersey in the early 1970s contained the highest concentrations of DDE. Dieldrin concentrations declined in eggs from the Potomac River, Maryland during 1971-77. Five different contaminants were significantly negatively correlated with shell thickness; DDE was most closely correlated. Ten percent shell thinning was associated with 2.0 ppm DDE, 15% with 4.2 ppm, and 20% with 8.7 ppm in eggs collected from randomly selected nests before egg loss. Shell thickness could not be accurately predicted from DDE concentrations in eggs collected after failure to hatch, presumably because the eggs with the thinnest shells had been broken and were unavailable for sampling. DDE was also significantly negatively correlated with brood size. Other contaminants did not appear to adversely affect shell thickness or reproductive success.

  16. Static and free-vibration analyses of cracks in thin-shell structures based on an isogeometric-meshfree coupling approach

    NASA Astrophysics Data System (ADS)

    Nguyen-Thanh, Nhon; Li, Weidong; Zhou, Kun

    2018-03-01

    This paper develops a coupling approach which integrates the meshfree method and isogeometric analysis (IGA) for static and free-vibration analyses of cracks in thin-shell structures. In this approach, the domain surrounding the cracks is represented by the meshfree method while the rest domain is meshed by IGA. The present approach is capable of preserving geometry exactness and high continuity of IGA. The local refinement is achieved by adding the nodes along the background cells in the meshfree domain. Moreover, the equivalent domain integral technique for three-dimensional problems is derived from the additional Kirchhoff-Love theory to compute the J-integral for the thin-shell model. The proposed approach is able to address the problems involving through-the-thickness cracks without using additional rotational degrees of freedom, which facilitates the enrichment strategy for crack tips. The crack tip enrichment effects and the stress distribution and displacements around the crack tips are investigated. Free vibrations of cracks in thin shells are also analyzed. Numerical examples are presented to demonstrate the accuracy and computational efficiency of the coupling approach.

  17. Contact interaction of thin-walled elements with an elastic layer and an infinite circular cylinder under torsion

    NASA Astrophysics Data System (ADS)

    Kanetsyan, E. G.; Mkrtchyan, M. S.; Mkhitaryan, S. M.

    2018-04-01

    We consider a class of contact torsion problems on interaction of thin-walled elements shaped as an elastic thin washer – a flat circular plate of small height – with an elastic layer, in particular, with a half-space, and on interaction of thin cylindrical shells with a solid elastic cylinder, infinite in both directions. The governing equations of the physical models of elastic thin washers and thin circular cylindrical shells under torsion are derived from the exact equations of mathematical theory of elasticity using the Hankel and Fourier transforms. Within the framework of the accepted physical models, the solution of the contact problem between an elastic washer and an elastic layer is reduced to solving the Fredholm integral equation of the first kind with a kernel representable as a sum of the Weber–Sonin integral and some integral regular kernel, while solving the contact problem between a cylindrical shell and solid cylinder is reduced to a singular integral equation (SIE). An effective method for solving the governing integral equations of these problems are specified.

  18. A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell

    PubMed Central

    Joyce, Walter G.; Lucas, Spencer G.; Scheyer, Torsten M.; Heckert, Andrew B.; Hunt, Adrian P.

    2008-01-01

    A new, thin-shelled fossil from the Upper Triassic (Revueltian: Norian) Chinle Group of New Mexico, Chinlechelys tenertesta, is one of the most primitive known unambiguous members of the turtle stem lineage. The thin-shelled nature of the new turtle combined with its likely terrestrial habitat preference hint at taphonomic filters that basal turtles had to overcome before entering the fossil record. Chinlechelys tenertesta possesses neck spines formed by multiple osteoderms, indicating that the earliest known turtles were covered with rows of dermal armour. More importantly, the primitive, vertically oriented dorsal ribs of the new turtle are only poorly associated with the overlying costal bones, indicating that these two structures are independent ossifications in basal turtles. These novel observations lend support to the hypothesis that the turtle shell was originally a complex composite in which dermal armour fused with the endoskeletal ribs and vertebrae of an ancestral lineage instead of forming de novo. The critical shell elements (i.e. costals and neurals) are thus not simple outgrowths of the bone of the endoskeletal elements as has been hypothesized from some embryological observations. PMID:18842543

  19. A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell.

    PubMed

    Joyce, Walter G; Lucas, Spencer G; Scheyer, Torsten M; Heckert, Andrew B; Hunt, Adrian P

    2009-02-07

    A new, thin-shelled fossil from the Upper Triassic (Revueltian: Norian) Chinle Group of New Mexico, Chinlechelys tenertesta, is one of the most primitive known unambiguous members of the turtle stem lineage. The thin-shelled nature of the new turtle combined with its likely terrestrial habitat preference hint at taphonomic filters that basal turtles had to overcome before entering the fossil record. Chinlechelys tenertesta possesses neck spines formed by multiple osteoderms, indicating that the earliest known turtles were covered with rows of dermal armour. More importantly, the primitive, vertically oriented dorsal ribs of the new turtle are only poorly associated with the overlying costal bones, indicating that these two structures are independent ossifications in basal turtles. These novel observations lend support to the hypothesis that the turtle shell was originally a complex composite in which dermal armour fused with the endoskeletal ribs and vertebrae of an ancestral lineage instead of forming de novo. The critical shell elements (i.e. costals and neurals) are thus not simple outgrowths of the bone of the endoskeletal elements as has been hypothesized from some embryological observations.

  20. Steep Decay Phase Shaped by the Curvature Effect. II. Spectral Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Da-Bin; Mu, Hui-Jun; Lu, Rui-Jing

    We derive a simple analytical formula to describe the evolution of spectral index β in the steep decay phase shaped by the curvature effect with the assumption that the spectral parameters and Lorentz factor of the jet shell are the same for different latitudes. Here, the value of β is estimated in the 0.3−10 keV energy band. For a spherical thin shell with a cutoff power-law (CPL) intrinsic radiation spectrum, the spectral evolution can be read as a linear function of observer time. For the situation with the Band function intrinsic radiation spectrum, the spectral evolution may be complex. Ifmore » the observed break energy of the radiation spectrum is larger than 10 keV, the spectral evolution is the same as that shaped by jet shells with a CPL spectrum. If the observed break energy is less than 0.3 keV, the value of β would be a constant. For others, the spectral evolution can be approximated as a logarithmal function of the observer time in general.« less

  1. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles

    PubMed Central

    Doinikov, Alexander A.; Haac, Jillian F.; Dayton, Paul A.

    2009-01-01

    A general theoretical approach to the development of zero-thickness encapsulation models for contrast microbubbles is proposed. The approach describes a procedure that allows one to recast available rheological laws from the bulk form to a surface form which is used in a modified Rayleigh-Plesset equation governing the radial dynamics of a contrast microbubble. By the use of the proposed procedure, the testing of different rheological laws for encapsulation can be carried out. Challenges of existing shell models for lipid-encapsulated microbubbles, such as the dependence of shell parameters on the initial bubble radius and the “compression-only” behavior, are discussed. Analysis of the rheological behavior of lipid encapsulation is made by using experimental radius-time curves for lipid-coated microbubbles with radii in the range 1.2 – 2.5 μm. The curves were acquired for a research phospholipid-coated contrast agent insonified with a 20-cycle, 3.0 MHz, 100 kPa acoustic pulse. The fitting of the experimental data by a model which treats the shell as a viscoelastic solid gives the values of the shell surface viscosity increasing from 0.30×10-8 kg/s to 2.63×10-8 kg/s for the range of bubble radii indicated above. The shell surface elastic modulus increases from 0.054 N/m to 0.37 N/m. It is proposed that this increase may be a result of the lipid coating possessing the properties of both a shear-thinning and a strain-softening material. We hypothesize that these complicated rheological properties do not allow the existing shell models to satisfactorily describe the dynamics of lipid encapsulation. In the existing shell models, the viscous and the elastic shell terms have the linear form which assumes that the viscous and the elastic stresses acting inside the lipid shell are proportional to the shell shear rate and the shell strain, respectively, with constant coefficients of proportionality. The analysis performed in the present paper suggests that a more general, nonlinear theory may be more appropriate. It is shown that the use of the nonlinear theory for shell viscosity allows one to model the “compression-only” behavior. As an example, the results of the simulation for a 2.03- μm-radius bubble insonified with a 6-cycle, 1.8 MHz, 100 kPa acoustic pulse are given. These parameters correspond to the acoustic conditions under which the “compression-only” behavior was observed by de Jong et al. [Ultrasound Med. Biol. 33 (2007) 653–656]. It is also shown that the use of the Cross law for the modeling of the shear-thinning behavior of shell viscosity reduces the variance of experimentally estimated values of the shell viscosity and its dependence on the initial bubble radius. PMID:18990417

  2. Prediction of the vibroacoustic behavior of a submerged shell with non-axisymmetric internal substructures by a condensed transfer function method

    NASA Astrophysics Data System (ADS)

    Meyer, V.; Maxit, L.; Guyader, J.-L.; Leissing, T.

    2016-01-01

    The vibroacoustic behavior of axisymmetric stiffened shells immersed in water has been intensively studied in the past. On the contrary, little attention has been paid to the modeling of these shells coupled to non-axisymmetric internal frames. Indeed, breaking the axisymmetry couples the circumferential orders of the Fourier series and considerably increases the computational costs. In order to tackle this issue, we propose a sub-structuring approach called the Condensed Transfer Function (CTF) method that will allow assembling a model of axisymmetric stiffened shell with models of non-axisymmetric internal frames. The CTF method is developed in the general case of mechanical subsystems coupled along curves. A set of orthonormal functions called condensation functions, which depend on the curvilinear abscissa along the coupling line, is considered. This set is then used as a basis for approximating and decomposing the displacements and the applied forces at the line junctions. Thanks to the definition and calculation of condensed transfer functions for each uncoupled subsystem and by using the superposition principle for passive linear systems, the behavior of the coupled subsystems can be deduced. A plane plate is considered as a test case to study the convergence of the method with respect to the type and the number of condensation functions taken into account. The CTF method is then applied to couple a submerged non-periodically stiffened shell described using the Circumferential Admittance Approach (CAA) with internal substructures described by Finite Element Method (FEM). The influence of non-axisymmetric internal substructures can finally be studied and it is shown that it tends to increase the radiation efficiency of the shell and can modify the vibrational and acoustic energy distribution.

  3. A computer program for the geometrically nonlinear static and dynamic analysis of arbitrarily loaded shells of revolution, theory and users manual

    NASA Technical Reports Server (NTRS)

    Ball, R. E.

    1972-01-01

    A digital computer program known as SATANS (static and transient analysis, nonlinear, shells) for the geometrically nonlinear static and dynamic response of arbitrarily loaded shells of revolution is presented. Instructions for the preparation of the input data cards and other information necessary for the operation of the program are described in detail and two sample problems are included. The governing partial differential equations are based upon Sanders' nonlinear thin shell theory for the conditions of small strains and moderately small rotations. The governing equations are reduced to uncoupled sets of four linear, second order, partial differential equations in the meridional and time coordinates by expanding the dependent variables in a Fourier sine or cosine series in the circumferential coordinate and treating the nonlinear modal coupling terms as pseudo loads. The derivatives with respect to the meridional coordinate are approximated by central finite differences, and the displacement accelerations are approximated by the implicit Houbolt backward difference scheme with a constant time interval. The boundaries of the shell may be closed, free, fixed, or elastically restrained. The program is coded in the FORTRAN 4 language and is dimensioned to allow a maximum of 10 arbitrary Fourier harmonics and a maximum product of the total number of meridional stations and the total number of Fourier harmonics of 200. The program requires 155,000 bytes of core storage.

  4. Non-modal linear stability analysis of thin film spreading by Marangoni stresses

    NASA Astrophysics Data System (ADS)

    Fischer, Benjamin John

    The spontaneous spreading and stability characteristics of a thin Newtonian liquid film partially coated by an insoluble surfactant monolayer are investigated in this thesis. Thin films sheared by Marangoni stresses ire characterized by film thinning in the upstream region near the terminating edge of the initial monolayer and an advancing ridge further downstream. For sufficiently thin films, experiments have shown there develops dendritic fingering patterns upstream of the ridge. To probe the mechanisms responsible for unstable flow, a non-modal linear stability analysis is required because the base-states describing these flows are space and time-dependent. A new measure of disturbance amplification is introduced, based on the relative kinetic energy of the perturbations to the base-states, to analyze surfactant monolayers spreading either from a finite or infinite source. These studies reveal that disturbance amplification is most significant in highly curved regions of the film characterized by a large: change in the shear stress, which can develop at the advancing ridge and at the edge of the initial monolayer. For spreading from both a finite and infinite source, disturbances that convect through the ridge undergo transient amplification but eventually decay to restore film stability. By contrast, disturbances that localize to the thinned region undergo sustained amplification when surfactant is continuously supplied to the liquid film thereby promoting film instability. By focusing on these susceptible regions, the relevant evolution equations are simplified to extract more information about the mechanism leading to instability. The length-scale controlling these "inner" regions represents the balance of viscous, capillary and Marangoni stresses. Simplification of these equations allows identification of steady travelling wave solutions whose linearized stability behavior shows that a flat film subject to a jump increase in shear stress is asymptotically unstable. This thesis concludes by comparing recent experiments in our laboratory of a droplet of low surface tension liquid (oleic acid) spreading on a thin Newtonian film (glycerol) before the onset of instability with numerical simulations. Similar power law behavior for the ridge advance and qualitatively similar film profiles shapes occur when the simulations utilize a non-linear equation of state for the surfactant monolayer.

  5. A Leonard-Sanders-Budiansky-Koiter-Type Nonlinear Shell Theory with a Hierarchy of Transverse-Shearing Deformations

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2013-01-01

    A detailed exposition on a refined nonlinear shell theory suitable for nonlinear buckling analyses of laminated-composite shell structures is presented. This shell theory includes the classical nonlinear shell theory attributed to Leonard, Sanders, Koiter, and Budiansky as an explicit proper subset. This approach is used in order to leverage the exisiting experience base and to make the theory attractive to industry. In addition, the formalism of general tensors is avoided in order to expose the details needed to fully understand and use the theory. The shell theory is based on "small" strains and "moderate" rotations, and no shell-thinness approximations are used. As a result, the strain-displacement relations are exact within the presumptions of "small" strains and "moderate" rotations. The effects of transverse-shearing deformations are included in the theory by using analyst-defined functions to describe the through-the-thickness distributions of transverse-shearing strains. Constitutive equations for laminated-composite shells are derived without using any shell-thinness approximations, and simplified forms and special cases are presented.

  6. Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondic, L.; Shelley, M.J.; Palffy-Muhoray, P.

    We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid in a radial Hele-Shaw cell. Using Darcy{close_quote}s law generalized for non-Newtonian fluids, we perform simulations of the full dynamical problem. The simulations show that shear thinning significantly influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable agreement with a general linear stability analysis. {copyright} {ital 1998} {ital The American Physical Society}

  7. Dynamic Stiffness Modeling of Composite Plate and Shell Assemblies

    DTIC Science & Technology

    2013-12-09

    FA8655-10-1-3084 Report 6 Dynamic Stiffness Modelling of Plate and Shell Assemblies 4 Introduction Aerospace structures are generally made up of thin ...Sound and Vibration, 294(1- 2):131–161, 2006. [23] Y. F. Xing and B. Liu. New exact solutions for free vibrations of thin orthotropic rectangular plates ...Structures, 89(5–6):467–475, 2011. [80] A.Y.T. Leung. Dynamic stiffness analysis of laminated composite plates . Thin - Walled Structures, 25:109–133, 1996

  8. Dynamics of test particles in thin-shell wormhole spacetimes

    NASA Astrophysics Data System (ADS)

    Diemer, Valeria; Smolarek, Elena

    2013-09-01

    Geodesic motion in traversable Schwarzschild and Kerr thin-shell wormholes constructed by the cut-and-paste method introduced by Visser (1989 Nucl. Phys. B 328 203; 1995 Wormholes: from Einstein to Hawking (Woodbury, MN: American Institute of Physics)) is studied. The orbits are calculated exactly in terms of elliptic functions and visualized with the help of embedding diagrams.

  9. Self-assembly of core-shell structure PtO2@Pt nanodots and their formation evolution

    NASA Astrophysics Data System (ADS)

    Yang, Weijia; Liu, Junjie; Liu, Mingquan; Zhao, Zhicheng; Song, Yapeng; Tang, Xiufeng; Luo, Jianyi; Zeng, Qingguang; He, Xin

    2018-05-01

    Core-shell structure PtO2@Pt nanodots have been self-assembly by vacuum sputtering and high temperature annealing. First, Pt thin films with a small amount of PtO2 are grown on the sapphire substrates by vacuum sputtering. And then high temperature annealing on the thin films is carried out at 800 °C for 2 min to form Pt nanodots. During the cooling process, the atmosphere is deployed to supplant the nitrogen. Finally, even distributed core-shell structure PtO2@Pt nanodots with a diameter from 100 to 300 nm are achieved. Furthermore, the formation evolution of core-shell structure PtO2@Pt nanodots is also proposed. This work open up a new approach for fabricating core-shell structure nanodots.

  10. Capsules made from prefabricated thin films

    NASA Astrophysics Data System (ADS)

    Amstad, Esther

    2018-02-01

    Capsules are composed of a core, typically a liquid containing active substances, and a surrounding shell. They are used to delay the degradation of active ingredients, protect them from reacting or interacting with substances contained in the surrounding shell, or to prevent premature consumption of encapsulants (1, 2). The performance of capsules is often determined by their permeability toward encapsulants and stability against rupture; these parameters can be adjusted with the composition, structure, and thickness of the shell (3, 4). Mechanically robust capsules with a minimal permeability even toward low molecular weight substances often have rather thick shells (5). On page 775 of this issue, Kumar et al. (6) report an elegant process to fabricate capsules with very thin, rigid shells that display a low permeability even toward small encapsulants.

  11. A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture

    NASA Astrophysics Data System (ADS)

    Marmottant, Philippe; van der Meer, Sander; Emmer, Marcia; Versluis, Michel; de Jong, Nico; Hilgenfeldt, Sascha; Lohse, Detlef

    2005-12-01

    We present a model applicable to ultrasound contrast agent bubbles that takes into account the physical properties of a lipid monolayer coating on a gas microbubble. Three parameters describe the properties of the shell: a buckling radius, the compressibility of the shell, and a break-up shell tension. The model presents an original non-linear behavior at large amplitude oscillations, termed compression-only, induced by the buckling of the lipid monolayer. This prediction is validated by experimental recordings with the high-speed camera Brandaris 128, operated at several millions of frames per second. The effect of aging, or the resultant of repeated acoustic pressure pulses on bubbles, is predicted by the model. It corrects a flaw in the shell elasticity term previously used in the dynamical equation for coated bubbles. The break-up is modeled by a critical shell tension above which gas is directly exposed to water.

  12. Fabrication of slender elastic shells by the coating of curved surfaces

    NASA Astrophysics Data System (ADS)

    Lee, A.; Brun, P.-T.; Marthelot, J.; Balestra, G.; Gallaire, F.; Reis, P. M.

    2016-04-01

    Various manufacturing techniques exist to produce double-curvature shells, including injection, rotational and blow molding, as well as dip coating. However, these industrial processes are typically geared for mass production and are not directly applicable to laboratory research settings, where adaptable, inexpensive and predictable prototyping tools are desirable. Here, we study the rapid fabrication of hemispherical elastic shells by coating a curved surface with a polymer solution that yields a nearly uniform shell, upon polymerization of the resulting thin film. We experimentally characterize how the curing of the polymer affects its drainage dynamics and eventually selects the shell thickness. The coating process is then rationalized through a theoretical analysis that predicts the final thickness, in quantitative agreement with experiments and numerical simulations of the lubrication flow field. This robust fabrication framework should be invaluable for future studies on the mechanics of thin elastic shells and their intrinsic geometric nonlinearities.

  13. Multi-Dimensional Damage Detection for Surfaces and Structures

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Lewis, Mark; Roberson, Luke; Medelius, Pedro; Gibson, Tracy; Parks, Steen; Snyder, Sarah

    2013-01-01

    Current designs for inflatable or semi-rigidized structures for habitats and space applications use a multiple-layer construction, alternating thin layers with thicker, stronger layers, which produces a layered composite structure that is much better at resisting damage. Even though such composite structures or layered systems are robust, they can still be susceptible to penetration damage. The ability to detect damage to surfaces of inflatable or semi-rigid habitat structures is of great interest to NASA. Damage caused by impacts of foreign objects such as micrometeorites can rupture the shell of these structures, causing loss of critical hardware and/or the life of the crew. While not all impacts will have a catastrophic result, it will be very important to identify and locate areas of the exterior shell that have been damaged by impacts so that repairs (or other provisions) can be made to reduce the probability of shell wall rupture. This disclosure describes a system that will provide real-time data regarding the health of the inflatable shell or rigidized structures, and information related to the location and depth of impact damage. The innovation described here is a method of determining the size, location, and direction of damage in a multilayered structure. In the multi-dimensional damage detection system, layers of two-dimensional thin film detection layers are used to form a layered composite, with non-detection layers separating the detection layers. The non-detection layers may be either thicker or thinner than the detection layers. The thin-film damage detection layers are thin films of materials with a conductive grid or striped pattern. The conductive pattern may be applied by several methods, including printing, plating, sputtering, photolithography, and etching, and can include as many detection layers that are necessary for the structure construction or to afford the detection detail level required. The damage is detected using a detector or sensory system, which may include a time domain reflectometer, resistivity monitoring hardware, or other resistance-based systems. To begin, a layered composite consisting of thin-film damage detection layers separated by non-damage detection layers is fabricated. The damage detection layers are attached to a detector that provides details regarding the physical health of each detection layer individually. If damage occurs to any of the detection layers, a change in the electrical properties of the detection layers damaged occurs, and a response is generated. Real-time analysis of these responses will provide details regarding the depth, location, and size estimation of the damage. Multiple damages can be detected, and the extent (depth) of the damage can be used to generate prognostic information related to the expected lifetime of the layered composite system. The detection system can be fabricated very easily using off-the-shelf equipment, and the detection algorithms can be written and updated (as needed) to provide the level of detail needed based on the system being monitored. Connecting to the thin film detection layers is very easy as well. The truly unique feature of the system is its flexibility; the system can be designed to gather as much (or as little) information as the end user feels necessary. Individual detection layers can be turned on or off as necessary, and algorithms can be used to optimize performance. The system can be used to generate both diagnostic and prognostic information related to the health of layer composite structures, which will be essential if such systems are utilized for space exploration. The technology is also applicable to other in-situ health monitoring systems for structure integrity.

  14. Resistive wall modes in the EXTRAP T2R reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.

    2003-10-01

    Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.

  15. Simulation of the stress computation in shells

    NASA Technical Reports Server (NTRS)

    Salama, M.; Utku, S.

    1978-01-01

    A self-teaching computer program is described, whereby the stresses in thin shells can be computed with good accuracy using the best fit approach. The program is designed for use in interactive game mode to allow the structural engineer to learn about (1) the major sources of difficulties and associated errors in the computation of stresses in thin shells, (2) possible ways to reduce the errors, and (3) trade-off between computational cost and accuracy. Included are derivation of the computational approach, program description, and several examples illustrating the program usage.

  16. Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptill, James D.

    1994-01-01

    Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.

  17. Atomistic Structure and Dynamics of the Solvation Shell Formed by Organic Carbonates around Lithium Ions via Infrared Spectroscopies

    NASA Astrophysics Data System (ADS)

    Kuroda, Daniel; Fufler, Kristen

    Lithium-ion batteries have become ubiquitous to the portable energy storage industry, but efficiency issues still remain. Currently, most technological and scientific efforts are focused on the electrodes with little attention on the electrolyte. For example, simple fundamental questions about the lithium ion solvation shell composition in commercially used electrolytes have not been answered. Using a combination of linear and non-linear IR spectroscopies and theoretical calculations, we have carried out a thorough investigation of the solvation structure and dynamics of the lithium ion in various linear and cyclic carbonates at common battery electrolyte concentrations. Our studies show that carbonates coordinate the lithium ion tetrahedrally. They also reveal that linear and cyclic carbonates have contrasting dynamics in which cyclic carbonates present the most ordered structure. Finally, our experiments demonstrate that simple structural modifications in the linear carbonates impact significantly the microscopic interactions of the system. The stark differences in the solvation structure and dynamics among different carbonates reveal previously unknown details about the molecular level picture of these systems.

  18. Nonlinear equations of dynamics for spinning paraboloidal antennas

    NASA Technical Reports Server (NTRS)

    Utku, S.; Shoemaker, W. L.; Salama, M.

    1983-01-01

    The nonlinear strain-displacement and velocity-displacement relations of spinning imperfect rotational paraboloidal thin shell antennas are derived for nonaxisymmetrical deformations. Using these relations with the admissible trial functions in the principle functional of dynamics, the nonlinear equations of stress inducing motion are expressed in the form of a set of quasi-linear ordinary differential equations of the undetermined functions by means of the Rayleigh-Ritz procedure. These equations include all nonlinear terms up to and including the third degree. Explicit expressions are given for the coefficient matrices appearing in these equations. Both translational and rotational off-sets of the axis of revolution (and also the apex point of the paraboloid) with respect to the spin axis are considered. Although the material of the antenna is assumed linearly elastic, it can be anisotropic.

  19. Asymptotic analysis of the shear strain effect on the wave characteristics of a multilayered cylindrical shell filled with fluid

    NASA Astrophysics Data System (ADS)

    Amenzade, R. Yu.; Kiiko, I. A.

    2007-06-01

    It is commonly assumed that the theory based on the Kirchhoff hypotheses describes the properties inherent in the wave processes occurring in shells filled with fluids. But there are several new effects that cannot be described by this theory (in particular, the appearance of new types of waves). In this paper, we present a linearized description of axisymmetric wave motion of a perfect incompressible fluid in a multilayered cylindrical shell with allowance for shear strain; the shell is assumed to be infinite and simply supported. This description is aimed at finding new mechanical effects and hence at estimating the influence of the multiple layers and the shear strain on the wave characteristics. In a sense, it generalizes and develops well-known studies of this type. Practice necessitates deriving equations constructed under the assumption that the physical and mechanical properties of the shell material are inhomogeneous along the thickness direction or the shell is multilayered; the development of refined theories (compared with the classical theory based on the Kirchhoff—Love straight normal hypothesis) is also inspired by practice. This is primarily related to the fact that multilayered thin-walled shells made of composite materials are used in various fields of technology. It is of interest to note that, as a result of long evolution, the phenomenon of being multilayered also predominates in living organisms. For example, this is typical of big blood vessels [1] (arteries and veins). In [2], on the basis of a three-dimensional variational principle of mixed type, the equations of motion and physical relations for elastic anisotropic shells rigidly inhomogeneous in the thickness direction are derived under the assumptions of the theory of thin shells and with shear strains taken into account. It is also noted that the case of multilayered shells can be modeled by introducing functions with integrable singularities. When studying wave propagation in deformable shells containing fluid, hydroelasticity problems arise; the solution of such problems is of both theoretical and practical importance. Of topical problems in this field, problems related to pulsating blood flow in big blood vessels [3] (the theory of pulse waves) are worth mentioning. The incentive for such studies is that they can help to understand the normal operation of the blood circulatory system, predict its reaction to variations, and propose methods for artificial intervention. Thus, diagnostics, surgery, and prosthesis are closely related to biomechanics. But the applied value of such problems is not bounded by their applications in hemodynamics. They are also very important in technology because of the wide use of systems of fluid and gas transportation through pipelines with corrosion-resistant coating.

  20. Nonlinear Response of Thin Cylindrical Shells with Longitudinal Cracks and Subjected to Internal Pressure and Axial compression Loads

    NASA Technical Reports Server (NTRS)

    Starnes, James H.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical study of the nonlinear response of a thin unstiffened aluminum cylindrical shell with a longitudinal crack are presented. The shell is analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for internal pressure, axial compression, and combined internal pressure and axial compression loads. The effects of varying crack length on the nonlinear response of the shell subjected to internal pressure are described. The effects of varying crack length on the prebuckling, buckling and postbuckling responses of the shell subjected to axial compression, and subjected to combined internal pressure and axial compression are also described. The results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell. The results also indicate that crack growth instabilities and shell buckling instabilities can both affect the response of the shell as the crack length is increased.

  1. Gas-driven water volcanism in the resurfacing of Europa

    NASA Technical Reports Server (NTRS)

    Crawford, Glen D.; Stevenson, David J.

    1988-01-01

    The creation of pathways for resurfacing of water or volatiles in a model of Europa in which an ocean underlies a thin ice shell is subjected to linear elastic fracture mechanical treatment. The gas-filled portion of the upward-propagating cracks pinches off from the water-filled portion, and may rapidly rise to the surface. The eruption thus generated is at first dominated by gas, but may subsequently include a less extended foam eruption; there may be no direct relationship between this resurfacing phenomenon and the geological features thus far noted on the Europa surface.

  2. Gas-driven water volcanism in the resurfacing of Europa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, G.D.; Stevenson, D.J.

    1988-01-01

    The creation of pathways for resurfacing of water or volatiles in a model of Europa in which an ocean underlies a thin ice shell is subjected to linear elastic fracture mechanical treatment. The gas-filled portion of the upward-propagating cracks pinches off from the water-filled portion, and may rapidly rise to the surface. The eruption thus generated is at first dominated by gas, but may subsequently include a less extended foam eruption; there may be no direct relationship between this resurfacing phenomenon and the geological features thus far noted on the Europa surface. 33 references.

  3. Ruptured-yolk peritonitis and organochlorine residues in a royal tern

    USGS Publications Warehouse

    Blus, L.J.; Locke, L.N.; Stafford, C.J.

    1977-01-01

    Ruptured-yolk peritonitis was responsible for the death of a royal tern. Lodgment of eggs in the oviduct was probably due to reverse peristalsis brought about by breakage of the thin-shelled eggs and secondary bacterial infection. The thin shells were apparently not related to the low levels of DDE and other organochlorine pollutants found in tissues and egg contents.

  4. Comparisons of Backscattering from Cylindrical Shells Described by Thin Shell and Elasticity Theories.

    DTIC Science & Technology

    1991-03-04

    term that describes inextensional motion. The first equation represents the normal stress at the midsurface of the shell, which is equal to the...that the normal velocity at the midsurface of the shell is proportional to the normal derivative of the total pressw e. The scattered pressure ps can

  5. Nonlinear Analysis of the Space Shuttle Superlightweight LO2 Tank. Part 2; Behavior Under 3g End-of-Flight Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Young, Richard D.; Collins, Timothy J.; Starnes, James H.,Jr.

    1998-01-01

    Results of linear bifurcation and nonlinear analyses of the Space Shuttle super lightweight (SLWT) external liquid-oxygen (LO2) tank are presented for an important end-of-flight loading condition. These results illustrate an important type of response mode for thin-walled shells, that are subjected to combined mechanical and thermal loads, that may be encountered in the design of other liquid-fuel launch vehicles. Linear bifurcation analyses are presented that predict several nearly equal eigenvalues that correspond to local buckling modes in the aft dome of the LO2 tank. In contrast, the nonlinear response phenomenon is shown to consist of a short-wavelength bending deformation in the aft elliptical dome of the LO2 tank that grows in amplitude in a stable manner with increasing load. Imperfection sensitivity analyses are presented that show that the presence of several nearly equal eigenvalues does not lead to a premature general instability mode for the aft dome. For the linear bifurcation and nonlinear analyses, the results show that accurate predictions of the response of the shell generally require a large-scale, high fidelity finite-element model. Results are also presented that show that the SLWT LO2 tank can support loads in excess of approximately 1.9 times the values of the operational loads considered.

  6. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement.

    PubMed

    Zhou, Lin; Yu, Xiaoqiang; Zhu, Jia

    2014-02-12

    Nanostructure-based photovoltaic devices have exhibited several advantages, such as reduced reflection, extraordinary light trapping, and so forth. In particular, semiconductor nanostructures provide optical modes that have strong dependence on the size and geometry. Metallic nanostructures also attract a lot of attention because of the appealing plasmonic effect on the near-field enhancement. In this study, we propose a novel design, the metal-core/semiconductor-shell nanocones with the core radius varying in a linearly gradient style. With a thin layer of semiconductor absorber coated on a metallic cone, such a design can lead to significant and broadband absorption enhancement across the entire visible and near-infrared solar spectrum. As an example of demonstration, a layer of 16 nm thick crystalline silicon (c-Si) coated on a silver nanocone can absorb 27% of standard solar radiation across a broad spectral range of 300-1100 nm, which is equivalent to a 700 nm thick flat c-Si film. Therefore, the absorption enhancement factor approaching the Yablonovitch limit is achieved with this design. The significant absorption enhancement can be ascribed to three types of optical modes, that is, Fabry-Perot modes, plasmonic modes, and hybrid modes that combine the features of the previous two. In addition, the unique nanocone geometry enables the linearly gradient radius of the semiconductor shell, which can support multiple optical resonances, critical for the broadband absorption. Our design may find general usage as elements for the low cost, high efficiency solar conversion and water-splitting devices.

  7. Tunable Non-Thermal Distribution of Hot Electrons in a Semiconductor Injected from a Plasmonic Gold Nanostructure.

    PubMed

    Cushing, Scott Kevin; Chen, Chih-Jung; Dong, Chung Li; Kong, Xiang-Tian; Govorov, Alexander O; Liu, Ru-Shi; Wu, Nianqiang

    2018-06-26

    For semiconductors photosensitized with organic dyes or quantum dots, transferred electrons are usually considered thermalized at the conduction band edge. This study suggests that the electrons injected from a plasmonic metal into a thin semiconductor shell can be non-thermal with energy up to the plasmon frequency. In other words, the electrons injected into the semiconductor are still hot carriers. Photomodulated x-ray absorption measurements of the Ti L 2,3 edge are compared before and after excitation of the plasmon in Au@TiO 2 core shell nanoparticles. Comparison with theoretical predictions of the x-ray absorption, which include the heating and state-filling effects from injected hot carriers, suggest that the electrons transferred from the plasmon remain non-thermal in the ~10 nm TiO 2 shell, due in part to a slow trapping in defect states. By repeating the measurements for spherical, rod-like, and star-like metal nanoparticles, the magnitude of the non-thermal distribution, peak energy, and number of injected hot electrons are confirmed to be tuned by the plasmon frequency and the sharp corners of the plasmonic nanostructure. The results suggest that plasmonic photosensitizers can not only extend the sunlight absorption spectral range of semiconductor-based devices, but could also result in increased open circuit voltages and elevated thermodynamic driving forces for solar fuel generation in photoelectrochemical cells.

  8. Fano-like resonance phenomena by flexural shell modes in sound transmission through two-dimensional periodic arrays of thin-walled hollow cylinders

    NASA Astrophysics Data System (ADS)

    Kosevich, Yuriy A.; Goffaux, Cecile; Sánchez-Dehesa, Jose

    2006-07-01

    It is shown that the n=2 and 3 flexural shell vibration modes of thin-walled hollow cylinders result in Fano-like resonant enhancement of sound wave transmission through or reflection from two-dimensional periodic arrays of these cylinders in air. The frequencies of the resonant modes are well described by the analytical theory of flexural (circumferential) modes of thin-walled hollow cylinders and are confirmed by finite-difference time-domain simulations. When the modes are located in the band gaps of the phononic crystal, an enhancement of the band-gap widths is produced by the additional restoring forces caused by the flexural shell deformations. Our conclusions provide an alternative method for the vibration control of airborne phononic crystals.

  9. Large amplitude flexural vibration of thin elastic flat plates and shells

    NASA Technical Reports Server (NTRS)

    Pandalia, K. A. V.

    1972-01-01

    The general equations governing the large amplitude flexural vibration of any thin elastic shell using curvilinear orthogonal coordinates are derived and consist of two coupled, nonlinear, partial differential equations in the normal displacement w and the stress function F. From these equations, the governing equations for the case of shells of revolution or flat plates can be readily obtained as special cases. The material of the shell or plate is isotropic and homogeneous and Hooke's law for the two-dimensional case is valid. It is suggested that the difference between the hardening type of nonlinearity in the case of flat plates and straight beams and the softening type of nonlinearity in the case of shells and rings can, in general, be traced to the amount of curvature present in the underformed median surface of the structure concerned.

  10. Historical baselines and the future of shell calcification for a foundation species in a changing ocean

    PubMed Central

    Pfister, Catherine A.; Roy, Kaustuv; Wootton, J. Timothy; McCoy, Sophie J.; Paine, Robert T.; Suchanek, Thomas H.; Sanford, Eric

    2016-01-01

    Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s–1970s and shells from two Native American midden sites (∼1000–2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10–40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds. PMID:27306049

  11. Historical baselines and the future of shell calcification for a foundation species in a changing ocean

    USGS Publications Warehouse

    Pfister, Catherine A.; Roy, Kaustuv; Wootton, Timothy J.; McCoy, Sophie J.; Paine, Robert T.; Suchanek, Tom; Sanford, Eric

    2016-01-01

    Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s–1970s and shells from two Native American midden sites (∼1000–2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10–40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds..

  12. Historical baselines and the future of shell calcification for a foundation species in a changing ocean.

    PubMed

    Pfister, Catherine A; Roy, Kaustuv; Wootton, J Timothy; McCoy, Sophie J; Paine, Robert T; Suchanek, Thomas H; Sanford, Eric

    2016-06-15

    Seawater pH and the availability of carbonate ions are decreasing due to anthropogenic carbon dioxide emissions, posing challenges for calcifying marine species. Marine mussels are of particular concern given their role as foundation species worldwide. Here, we document shell growth and calcification patterns in Mytilus californianus, the California mussel, over millennial and decadal scales. By comparing shell thickness across the largest modern shells, the largest mussels collected in the 1960s-1970s and shells from two Native American midden sites (∼1000-2420 years BP), we found that modern shells are thinner overall, thinner per age category and thinner per unit length. Thus, the largest individuals of this species are calcifying less now than in the past. Comparisons of shell thickness in smaller individuals over the past 10-40 years, however, do not show significant shell thinning. Given our sampling strategy, these results are unlikely to simply reflect within-site variability or preservation effects. Review of environmental and biotic drivers known to affect shell calcification suggests declining ocean pH as a likely explanation for the observed shell thinning. Further future decreases in shell thickness could have significant negative impacts on M. californianus survival and, in turn, negatively impact the species-rich complex that occupies mussel beds. © 2016 The Author(s).

  13. Piezoelectric Non-Linear Nanomechanical Temperature and Acceleration Insensitive Clocks (PENNTAC) Phase 1 Evaluation and Plans for Phase 2

    DTIC Science & Technology

    2013-05-01

    95.2 dBc/Hz, (c) - 94.2 dBc/Hz. Fig. 4: Mechanically compensated AlN resonators. A thin oxide layer is used to completely cancel the linear...pumped is represented by a non-linear capacitor. This capacitor will be first implemented via a varactor and then substituted by a purely mechanical...demonstrate the advantages of a parametric oscillator: (i) we will first use an external electronic varactor to prove that a parametric oscillator

  14. Impact Crater Morphology and the Structure of Europa's Ice Shell

    NASA Astrophysics Data System (ADS)

    Silber, Elizabeth A.; Johnson, Brandon C.

    2017-12-01

    We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over warm convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on the thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255-265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5-7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest that a conductive-convective shell (thick shell) is more likely. Although our study does not provide a firm conclusion regarding the thickness of Europa's ice shell, our work indicates that Valhalla class multiring basins on Europa may provide robust constraints on the thickness of Europa's ice shell.

  15. Early and late lithification of aragonitic bivalve beds in the Purbeck Formation (upper jurassic-lower cretaceous) of Southern England

    NASA Astrophysics Data System (ADS)

    El-Shahat, Adam; West, Ian

    1983-05-01

    Beds of euryhaline bivalves alternating with shales constitute much of the middle Purbeck Formation. They originated on "tidal" flats at the western margin of an extensive brackish lagoon. When these shell beds are thin and enclosed in shale they are often still preserved as aragonite and are associated with "beef", fibrous calcite formed during compaction. In most cases, however, the shell debris has been converted by diagenesis into calcitic biosparrudite limestones. A compacted type has been lithified at a late stage, after deep burial. In this, pyrite is abundant and most of the shell aragonite has been replaced neomorphically by ferroan pseudopleochroic calcite. A contrasting uncompacted type of biosparrudite is characterised by bivalve fragments with micrite envelopes. Shells and former pores are occupied by non-ferroan sparry calcite cement, and there is little pyrite. These limestones frequently contain dinosaur footprints and originated in "supratidal" environments where they were cemented early, mainly in meteoric water. Once lithified they were unaffected by compaction. This uncompacted type indicates phases of mild uplift or halts in subsidence. These shell-bed lithologies, and also intermediate types described here, will probably be recognised in other lagoonal formations.

  16. Monodisperse core/shell Ni/FePt nanoparticles and their con-version to Ni/Pt to catalyze oxygen reduction

    DOE PAGES

    Zhang, Sen; Hao, Yizhou; Su, Dong; ...

    2014-10-28

    We report a size-controllable synthesis of monodisperse core/shell Ni/FePt nanoparticles (NPs) via a seed-mediated growth and their subsequent conversion to Ni/Pt NPs. Preventing surface oxidation of the Ni seeds is essential for the growth of uniform FePt shells. These Ni/FePt NPs have a thin (≈ 1 nm) FePt shell, and can be converted to Ni/Pt by acetic acid wash to yield active catalysts for oxygen reduction reaction (ORR). Tuning the core size allow for optimization of their electrocatalytic activity. The specific activity and mass activity of 4.2 nm/0.8 nm core/shell Ni/FePt reach 1.95 mA/cm² and 490 mA/mg Pt at 0.9more » V ( vs. reversible hydrogen electrode, RHE), which are much higher than those of benchmark commercial Pt catalyst (0.34 mA/cm² and 92 mA/mg Pt at 0.9 V). Our studies provide a robust approach to monodisperse core/shell NPs with non-precious metal core, making it possible to develop advanced NP catalysts with ultralow Pt content for ORR and many other heterogeneous reactions.« less

  17. Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Campbell, Joel F.

    1999-01-01

    A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.

  18. Analytical Solution of the Radiative Transfer Equation in a Thin Dusty Circumstellar Shell

    NASA Astrophysics Data System (ADS)

    Cruzalèbes, P.; Sacuto, S.

    The radiative transfer equation can be solved analytically for optically thin shells. The solution leads to a semi-analytical expression of the visibility function, which can be compared to the numerical solution given by the DUSTY code. Best-fit model parameters are given using real measurements of ISO fluxes, ISI and VLTI-MIDI visibilities for 3 late-type stars.

  19. Preparation and characterization of WO3 nanoparticles, WO3/TiO2 core/shell nanocomposites and PEDOT:PSS/WO3 composite thin films for photocatalytic and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Santos, Gustavo dos Lopes; Szżcs, Júlia; Szilágyi, Imre M.

    2016-03-01

    In this study, monoclinic WO3 nanoparticles were obtained by thermal decomposition of (NH4)xWO3 in air at 600 °C. On them by atomic layer deposition (ALD) TiO2 films were deposited, and thus core/shell WO3/TiO2 nanocomposites were prepared. We prepared composites of WO3 nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO3 and core/shell WO3/TiO2 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO3 thin films, and the coloring and bleaching states were studied.

  20. Progressive Fracture of Fiber Composite Thin Shell Structures Under Internal Pressure and Axial Loads

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Chamis, Christos C.; Minnetyan, Levon

    1996-01-01

    Graphite/epoxy composite thin shell structures were simulated to investigate damage and fracture progression due to internal pressure and axial loading. Defective and defect-free structures (thin cylinders) were examined. The three different laminates examined had fiber orientations of (90/0/+/-0)(sub s), where 0 is 45, 60, and 75 deg. CODSTRAN, an integrated computer code that scales up constituent level properties to the structural level and accounts for all possible failure modes, was used to simulate composite degradation under loading. Damage initiation, growth, accumulation, and propagation to fracture were included in the simulation. Burst pressures for defective and defect-free shells were compared to evaluate damage tolerance. The results showed that damage initiation began with matrix failure whereas damage and/or fracture progression occurred as a result of additional matrix failure and fiber fracture. In both thin cylinder cases examined (defective and defect-free), the optimum layup configuration was (90/0/+/-60)(sub s) because it had the best damage tolerance with respect to the burst pressure.

  1. Enhance the photoluminescence and radioluminescence of La2Zr2O7:Eu3+ core nanoparticles by coating with a thin Y2O3 shell

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Burger, Arnold; Groza, Michael; Mao, Yuanbing

    2017-06-01

    We report the generation of La2Zr2O7:5%Eu3+@Y2O3 (LZO5E@YO) core@shell crystalline inorganic-inorganic heterogeneous nanoparticles (NPs). The Y2O3 (YO) shell coating process based on a chemical sol-gel method led to the growth of a thin YO shell on the ordered pyrochlore La2Zr2O7:5%Eu3+ (LZO5E) core NPs. Photoluminescence (PL) analyses demonstrated a blue shift of 15 nm on charge transfer (CT) excitation band of the core@shell NPs from that of the core NPs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) along x-ray diffraction (XRD), Fourier-transform Infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) studies confirmed the formation of the thin YO layer over the LZO5E core NPs. The PL intensity of the LZO5E@YO core@shell NPs was enhanced by three fold compared to that of the LZO5E core NPs, and higher quantum yield (QY) was observed for the former compared to the original NPs by more than 70%. Higher radioluminescence (RL) emission was also observed for the core@shell NPs compared to the core NPs. Our ability of obtaining near-perfect core@shell heterostructure with enhanced luminescence performance opens the door for the development of efficient La2Zr2O7:5%Eu3+@Y2O3 NPs for both optical and x-ray scintillation applications.

  2. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    PubMed

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-09

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems to speed up the penetration of proteins into the particles. A stochastic model of the penetration of bulky proteins driven by a concentration gradient across an infinitely thin membrane of known porosity and pore size is suggested to explain this mechanism. Yet, under retained conditions, surface diffusion speeds up the mass transfer into the mesopores and levels the kinetic performance of particles built with either one or two porous shells. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Computational Simulation of Damage Progression of Composite Thin Shells Subjected to Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Gotsis, P. K.; Chamis, C. C.; Minnetyan, L.

    1996-01-01

    Defect-free and defected composite thin shells with ply orientation (90/0/+/-75) made of graphite/epoxy are simulated for damage progression and fracture due to internal pressure and axial loading. The thin shells have a cylindrical geometry with one end fixed and the other free. The applied load consists of an internal pressure in conjunction with an axial load at the free end, the cure temperature was 177 C (350 F) and the operational temperature was 21 C (70 F). The residual stresses due to the processing are taken into account. Shells with defect and without defects were examined by using CODSTRAN an integrated computer code that couples composite mechanics, finite element and account for all possible failure modes inherent in composites. CODSTRAN traces damage initiation, growth, accumulation, damage propagation and the final fracture of the structure. The results show that damage initiation started with matrix failure while damage/fracture progression occurred due to additional matrix failure and fiber fracture. The burst pressure of the (90/0/+/- 75) defected shell was 0.092% of that of the free defect. Finally the results of the damage progression of the (90/0/+/- 75), defective composite shell was compared with the (90/0/+/- theta, where theta = 45 and 60, layup configurations. It was shown that the examined laminate (90/0/+/- 75) has the least damage tolerant of the two compared defective shells with the (90/0/+/- theta), theta = 45 and 60 laminates.

  4. 3D image display of fetal ultrasonic images by thin shell

    NASA Astrophysics Data System (ADS)

    Wang, Shyh-Roei; Sun, Yung-Nien; Chang, Fong-Ming; Jiang, Ching-Fen

    1999-05-01

    Due to the properties of convenience and non-invasion, ultrasound has become an essential tool for diagnosis of fetal abnormality during women pregnancy in obstetrics. However, the 'noisy and blurry' nature of ultrasound data makes the rendering of the data a challenge in comparison with MRI and CT images. In spite of the speckle noise, the unwanted objects usually occlude the target to be observed. In this paper, we proposed a new system that can effectively depress the speckle noise, extract the target object, and clearly render the 3D fetal image in almost real-time from 3D ultrasound image data. The system is based on a deformable model that detects contours of the object according to the local image feature of ultrasound. Besides, in order to accelerate rendering speed, a thin shell is defined to separate the observed organ from unrelated structures depending on those detected contours. In this way, we can support quick 3D display of ultrasound, and the efficient visualization of 3D fetal ultrasound thus becomes possible.

  5. The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Starnes, James H., Jr.

    1998-01-01

    A summary of existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.

  6. The NASA Monographs on Shell Stability Design Recommendations: A Review and Suggested Improvements

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Starnes, James H., Jr.

    1998-01-01

    A summary of the existing NASA design criteria monographs for the design of buckling-resistant thin-shell structures is presented. Subsequent improvements in the analysis for nonlinear shell response are reviewed, and current issues in shell stability analysis are discussed. Examples of nonlinear shell responses that are not included in the existing shell design monographs are presented, and an approach for including reliability-based analysis procedures in the shell design process is discussed. Suggestions for conducting future shell experiments are presented, and proposed improvements to the NASA shell design criteria monographs are discussed.

  7. Numerical Simulation of Hysteretic Live Load Effect in a Soil-Steel Bridge

    NASA Astrophysics Data System (ADS)

    Sobótka, Maciej

    2014-03-01

    The paper presents numerical simulation of hysteretic live load effect in a soil-steel bridge. The effect was originally identified experimentally by Machelski [1], [2]. The truck was crossing the bridge one way and the other in the full-scale test performed. At the same time, displacements and stress in the shell were measured. The major conclusion from the research was that the measured quantities formed hysteretic loops. A numerical simulation of that effect is addressed in the present work. The analysis was performed using Flac finite difference code. The methodology of solving the mechanical problems implemented in Flac enables us to solve the problem concerning a sequence of load and non-linear mechanical behaviour of the structure. The numerical model incorporates linear elastic constitutive relations for the soil backfill, for the steel shell and the sheet piles, being a flexible substructure for the shell. Contact zone between the shell and the soil backfill is assumed to reflect elastic-plastic constitutive model. Maximum shear stress in contact zone is limited by the Coulomb condition. The plastic flow rule is described by dilation angle ψ = 0. The obtained results of numerical analysis are in fair agreement with the experimental evidence. The primary finding from the performed simulation is that the slip in the interface can be considered an explanation of the hysteresis occurrence in the charts of displacement and stress in the shell.

  8. New Tooling System for Forming Aluminum Beverage Can End Shell

    NASA Astrophysics Data System (ADS)

    Yamazaki, Koetsu; Otsuka, Takayasu; Han, Jing; Hasegawa, Takashi; Shirasawa, Taketo

    2011-08-01

    This paper proposes a new tooling system for forming shells of aluminum beverage can ends. At first, forming process of a conversional tooling system has been simulated using three-dimensional finite element models. Simulation results have been confirmed to be consistent with those of axisymmetric models, so simulations for further study have been performed using axisymmetric models to save computational time. A comparison shows that thinning of the shell formed by the proposed tooling system has been improved about 3.6%. Influences of the tool upmost surface profiles and tool initial positions in the new tooling system have been investigated and the design optimization method based on the numerical simulations has been then applied to search optimum design points, in order to minimize thinning subjected to the constraints of the geometrical dimensions of the shell. At last, the performance of the shell subjected to internal pressure has been confirmed to meet design requirements.

  9. Thickness Constraints on the Icy Shells of the Galilean Satellites from a Comparison of Crater Shapes

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    2002-01-01

    A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometers of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7-8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25-0.5 times the thickness of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.

  10. Free Vibration of Fiber Composite Thin Shells in a Hot Environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptill, James D.

    1995-01-01

    Results are presented of parametric studies to assess the effects of various parameters on the free vibration behavior (natural frequencies) of (plus or minus theta)2, angle-ply fiber composite thin shells in a hot environment. These results were obtained by using a three-dimensional finite element structural analysis computer code. The fiber composite shell is assumed to be cylindrical and made from T-300 graphite fibers embedded in an intermediate-modulus high-strength matrix (IMHS). The residual stresses induced into the laminated structure during curing are taken into account. The following parameters are investigated: the length and the thickness of the shell, the fiber orientations, the fiber volume fraction, the temperature profile through the thickness of the laminate and the different ply thicknesses. Results obtained indicate that: the fiber orientations and the length of the laminated shell had significant effect on the natural frequencies. The fiber volume fraction, the laminate thickness and the temperature profile through the shell thickness had a weak effect on the natural frequencies. Finally, the laminates with different ply thicknesses had insignificant influence on the behavior of the vibrated laminated shell.

  11. Elastic stability of cylindrical shells with soft elastic cores: Biomimicking natural tubular structures

    NASA Astrophysics Data System (ADS)

    Karam, Gebran Nizar

    1994-01-01

    Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.

  12. Linear viscoelasticity and thermorheological simplicity of n-hexadecane fluids under oscillatory shear via non-equilibrium molecular dynamics simulations.

    PubMed

    Tseng, Huan-Chang; Wu, Jiann-Shing; Chang, Rong-Yeu

    2010-04-28

    A small amplitude oscillatory shear flows with the classic characteristic of a phase shift when using non-equilibrium molecular dynamics simulations for n-hexadecane fluids. In a suitable range of strain amplitude, the fluid possesses significant linear viscoelastic behavior. Non-linear viscoelastic behavior of strain thinning, which means the dynamic modulus monotonously decreased with increasing strain amplitudes, was found at extreme strain amplitudes. Under isobaric conditions, different temperatures strongly affected the range of linear viscoelasticity and the slope of strain thinning. The fluid's phase states, containing solid-, liquid-, and gel-like states, can be distinguished through a criterion of the viscoelastic spectrum. As a result, a particular condition for the viscoelastic behavior of n-hexadecane molecules approaching that of the Rouse chain was obtained. Besides, more importantly, evidence of thermorheologically simple materials was presented in which the relaxation modulus obeys the time-temperature superposition principle. Therefore, using shift factors from the time-temperature superposition principle, the estimated Arrhenius flow activation energy was in good agreement with related experimental values. Furthermore, one relaxation modulus master curve well exhibited both transition and terminal zones. Especially regarding non-equilibrium thermodynamic states, variations in the density, with respect to frequencies, were revealed.

  13. 2D and 3D Simulations of Exploding Pusher Capsules

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; Smith, Andrew; Miles, Aaron

    2011-10-01

    A research campaign is underway at the National Ignition Facility (NIF) at LLNL to study rapidly evolving, non-LTE, inertial fusion plasmas. The goal is to field thin-shelled, gas filled ``Exploding Pusher'' capsules in a Polar Direct Drive (PDD) configuration. Ion temperatures of > 15 keV and electron temperatures of > 5 keV are reached. A small convergence ratio and rapidly ablated shell reduce susceptibility to hydrodynamic instabilities. Using 1D simulations, most favorable configurations were found to be thin SiO2 or Be shells containing 10 atm of D2-He3 in a 2:1 ratio. This poster describes the 2D and 3D ARES Radiation Hydrodynamics simulations of these capsules. 2D simulations are essential because the PDD configuration requires that each of the beams be ``repointed'' away from their nominal angles. Each beam can also have a separate power profile and focal length. Large ensembles of simulations were run to probe the parameter space and find the optimal pointing resulting in the most spherical implosions. Response surfaces were constructed to ascertain the susceptibility to shot-time fluctuations. We also discuss resolution convergence and present preliminary results of 3D modeling. This work performed under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. The equivalence of Darmois-Israel and distributional method for thin shells in general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansouri, R.; Khorrami, M.

    1996-11-01

    A distributional method to solve the Einstein{close_quote}s field equations for thin shells is formulated. The familiar field equations and jump conditions of Darmois-Israel formalism are derived. A careful analysis of the Bianchi identities shows that, for cases under consideration, they make sense as distributions and lead to jump conditions of Darmois-Israel formalism. {copyright} {ital 1996 American Institute of Physics.}

  15. Whispering gallery modes in a spherical microcavity with a photoluminescent shell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grudinkin, S. A., E-mail: grudink@gvg.ioffe.ru; Dontsov, A. A.; Feoktistov, N. A.

    2015-10-15

    Whispering-gallery mode spectra in optical microcavities based on spherical silica particles coated with a thin photoluminescent shell of hydrogenated amorphous silicon carbide are studied. The spectral positions of the whispering-gallery modes for spherical microcavities with a shell are calculated. The dependence of the spectral distance between the TE and TM modes on the shell thickness is examined.

  16. Nondimensional Parameters and Equations for Nonlinear and Bifurcation Analyses of Thin Anisotropic Quasi-Shallow Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2010-01-01

    A comprehensive development of nondimensional parameters and equations for nonlinear and bifurcations analyses of quasi-shallow shells, based on the Donnell-Mushtari-Vlasov theory for thin anisotropic shells, is presented. A complete set of field equations for geometrically imperfect shells is presented in terms general of lines-of-curvature coordinates. A systematic nondimensionalization of these equations is developed, several new nondimensional parameters are defined, and a comprehensive stress-function formulation is presented that includes variational principles for equilibrium and compatibility. Bifurcation analysis is applied to the nondimensional nonlinear field equations and a comprehensive set of bifurcation equations are presented. An extensive collection of tables and figures are presented that show the effects of lamina material properties and stacking sequence on the nondimensional parameters.

  17. Influence of the shell thickness and charge distribution on the effective interaction between two like-charged hollow spheres.

    PubMed

    Angelescu, Daniel G; Caragheorgheopol, Dan

    2015-10-14

    The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.

  18. Tidal dissipation in the subsurface ocean of Enceladus

    NASA Astrophysics Data System (ADS)

    Matsuyama, I.; Hay, H.; Nimmo, F.; Kamata, S.

    2017-12-01

    Icy satellites of the outer solar system have emerged as potential habitable worlds due to the presence of subsurface oceans. As a long-term energy source, tidal heating in these oceans can influence the survivability of subsurface oceans, and the thermal, rotational, and orbital evolution of these satellites. Additionally, the spatial and temporal variation of tidal heating has implications for the interior structure and spacecraft observations. Previous models for dissipation in thin oceans are not generally applicable to icy satellites because either they ignore the presence of an overlying solid shell or use a thin shell membrane approximation. We present a new theoretical treatment for tidal dissipation in thin oceans with overlying shells of arbitrary thickness and apply it to Enceladus. The shell's resistance to ocean tides increases with shell thickness, reducing tidal dissipation as expected. Both the magnitude of energy dissipation and the resonant ocean thicknesses decrease as the overlying shell thickness increases, as previously shown using a membrane approximation. In contrast to previous work based on the traditional definition of the tidal quality factor, Q, our new definition is consistent with higher energy dissipation for smaller Q, and introduces a lower limit on Q. The dissipated power and tides are not in phase with the forcing tidal potential due to the delayed ocean response. The phase lag depends on the Rayleigh friction coefficient and ocean and shell thicknesses, which implies that phase lag observations can be used to constrain these parameters. Eccentricity heating produces higher dissipation near the poles, while obliquity heating produces higher dissipation near the equator, in contrast to the dissipation patterns in the shell. The time-averaged surface distribution of tidal heating can generate lateral shell thickness variations, providing an additional constraint on the Rayleigh friction coefficient. Explaining the endogenic power radiated from the south polar terrain requires shell thicknesses smaller than about 1 km, a value that is not consistent with recent libration, gravity and topography constraints.

  19. Analytical Investigation of Elastic Thin-Walled Cylinder and Truncated Cone Shell Intersection Under Internal Pressure.

    PubMed

    Zamani, J; Soltani, B; Aghaei, M

    2014-10-01

    An elastic solution of cylinder-truncated cone shell intersection under internal pressure is presented. The edge solution theory that has been used in this study takes bending moments and shearing forces into account in the thin-walled shell of revolution element. The general solution of the cone equations is based on power series method. The effect of cone apex angle on the stress distribution in conical and cylindrical parts of structure is investigated. In addition, the effect of the intersection and boundary locations on the circumferential and longitudinal stresses is evaluated and it is shown that how quantitatively they are essential.

  20. Macroscale lateral alignment of semiconductor nanorods into freestanding thin films.

    PubMed

    Wang, Tie; Wang, Xirui; LaMontagne, Derek; Wang, Zhongwu; Cao, Y Charles

    2013-04-24

    This Communication reports that needle-like supercrystalline colloidal particles can be synthesized through anisotropy-driven self-assembly of 1,12-dodecanediamine-functionalized CdSe/CdS core/shell nanorods. The resulting superparticles exhibit both 1D lamellar and 2D hexagonal supercrystalline orders along directions parallel and perpendicular to the long axis of constituent nanorods, respectively. Our results show that the needle-like superparticles can be unidirectionally aligned through capillary forces on a patterned solid surface and further transferred into macroscopic, uniform, freestanding polymer films, which exhibit strong linear polarized PL with an enhanced polarization ratio, and are useful as energy down-conversion phosphors in polarized LEDs.

  1. Active Structural Fibers for Multifunctional Composite Materials

    DTIC Science & Technology

    2014-05-06

    capacitors. Lastly, a cathodic electrolytic deposition process has been investigated for the coating of carbon fibers with a PZT shell. The...results have demonstrated the ability to use the process to coat fibers with a thin shell of PZT . The results thus far have demonstrated the feasibility...Journal of Composite Materials, In Review. 2. Zhou, Z., Lin, Y. and Sodano, H.A., Synthesis and Characterization of Textured BaTiO3 Thin Films

  2. Equation of state of dark energy in f (R ) gravity

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Yokoyama, Jun'ichi

    2015-04-01

    f (R ) gravity is one of the simplest generalizations of general relativity, which may explain the accelerated cosmic expansion without introducing a cosmological constant. Transformed into the Einstein frame, a new scalar degree of freedom appears and it couples with matter fields. In order for f (R ) theories to pass the local tests of general relativity, it has been known that the chameleon mechanism with a so-called thin-shell solution must operate. If the thin-shell constraint is applied to a cosmological situation, it has been claimed that the equation-of-state parameter of dark energy w must be extremely close to -1 . We argue this is due to the incorrect use of the Poisson equation, which is valid only in the static case. By solving the correct Klein-Gordon equation perturbatively, we show that a thin-shell solution exists even if w deviates appreciably from -1 .

  3. Magnetic core/shell nanoparticle thin films deposited by MAPLE: Investigation by chemical, morphological and in vitro biological assays

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Socol, G.; Iordache, I.; Mihailescu, I. N.; Mihaiescu, D. E.; Grumezescu, A. M.; Balan, A.; Stamatin, I.; Chifiriuc, C.; Bleotu, C.; Saviuc, C.; Popa, M.; Chrisey, D. B.

    2012-09-01

    We report on thin film deposition of nanostructured Fe3O4/oleic acid/ceftriaxone and Fe3O4/oleic acid/cefepime nanoparticles (core/shell/adsorption-shell) were fabricated by matrix assisted pulsed laser evaporation (MAPLE) onto inert substrates. The thin films were characterized by profilometry, Fourier transform infrared spectroscopy, atomic force microscopy, and investigated by in vitro biological assays. The biological properties tested included the investigation of the microbial viability and the microbial adherence to the glass coverslip nanoparticle film, using Gram-negative and Gram-positive bacterial strains with known antibiotic susceptibility behavior, the microbial adherence to the HeLa cells monolayer grown on the nanoparticle pellicle, and the cytotoxicity on eukaryotic cells. The proposed system, based on MAPLE, could be used for the development of novel anti-microbial materials or strategies for fighting pathogenic biofilms frequently implicated in the etiology of biofilm associated chronic infections.

  4. Thin-shell wormholes in rainbow gravity

    NASA Astrophysics Data System (ADS)

    Amirabi, Z.; Halilsoy, M.; Mazharimousavi, S. Habib

    2018-03-01

    At the Planck scale of length ˜10‑35 m where the energy is comparable with the Planck energy, the quantum gravity corrections to the classical background spacetime results in gravity’s rainbow or rainbow gravity. In this modified theory of gravity, geometry depends on the energy of the test particle used to probe the spacetime, such that in the low energy limit, it yields the standard general relativity. In this work, we study the thin-shell wormholes in the spherically symmetric rainbow gravity. We find the corresponding properties in terms of the rainbow functions which are essential in the rainbow gravity and the stability of such thin-shell wormholes are investigated. Particularly, it will be shown that there are exact solutions in which high energy particles crossing the throat will encounter less amount of total exotic matter. This may be used as an advantage over general relativity to reduce the amount of exotic matter.

  5. Effective dimensional reduction algorithm for eigenvalue problems for thin elastic structures: A paradigm in three dimensions

    PubMed Central

    Ovtchinnikov, Evgueni E.; Xanthis, Leonidas S.

    2000-01-01

    We present a methodology for the efficient numerical solution of eigenvalue problems of full three-dimensional elasticity for thin elastic structures, such as shells, plates and rods of arbitrary geometry, discretized by the finite element method. Such problems are solved by iterative methods, which, however, are known to suffer from slow convergence or even convergence failure, when the thickness is small. In this paper we show an effective way of resolving this difficulty by invoking a special preconditioning technique associated with the effective dimensional reduction algorithm (EDRA). As an example, we present an algorithm for computing the minimal eigenvalue of a thin elastic plate and we show both theoretically and numerically that it is robust with respect to both the thickness and discretization parameters, i.e. the convergence does not deteriorate with diminishing thickness or mesh refinement. This robustness is sine qua non for the efficient computation of large-scale eigenvalue problems for thin elastic structures. PMID:10655469

  6. Deformation of compound shells under action of internal shock wave loading

    NASA Astrophysics Data System (ADS)

    Chernobryvko, Marina; Kruszka, Leopold; Avramov, Konstantin

    2015-09-01

    The compound shells under the action of internal shock wave loading are considered. The compound shell consists of a thin cylindrical shell and two thin parabolic shells at the edges. The boundary conditions in the shells joints satisfy the equality of displacements. The internal shock wave loading is modelled as the surplus pressure surface. This pressure is a function of the shell coordinates and time. The strain rate deformation of compound shell takes place in both the elastic and in plastic stages. In the elastic stage the equations of the structure motions are obtained by the assumed-modes method, which uses the kinetic and potential energies of the cylindrical and two parabolic shells. The dynamic behaviour of compound shells is treated. In local plastic zones the 3-D thermo-elastic-plastic model is used. The deformations are described by nonlinear model. The stress tensor elements are determined using dynamic deformation theory. The deformation properties of materials are influenced by the strain rate behaviour, the influence of temperature parameters, and the elastic-plastic properties of materials. The dynamic yield point of materials and Pisarenko-Lebedev's criterion of destruction are used. The modified adaptive finite differences method of numerical analysis is suggested for those simulations. The accuracy of the numerical simulation is verified on each temporal step of calculation and in the case of large deformation gradients.

  7. A Variational Formulation for the Finite Element Analysis of Sound Wave Propagation in a Spherical Shell

    NASA Technical Reports Server (NTRS)

    Lebiedzik, Catherine

    1995-01-01

    Development of design tools to furnish optimal acoustic environments for lightweight aircraft demands the ability to simulate the acoustic system on a workstation. In order to form an effective mathematical model of the phenomena at hand, we have begun by studying the propagation of acoustic waves inside closed spherical shells. Using a fully-coupled fluid-structure interaction model based upon variational principles, we have written a finite element analysis program and are in the process of examining several test cases. Future investigations are planned to increase model accuracy by incorporating non-linear and viscous effects.

  8. Stress Analysis of Composite Cylindrical Shells with an Elliptical Cutout

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Nemeth, M. P.

    2007-01-01

    A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; non-uniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.

  9. Synthesis and characterization of core-shell gold nanoparticles with poly(vinyl pyrrolidone) from a new precursor salt

    NASA Astrophysics Data System (ADS)

    Behera, M.; Ram, S.

    2013-02-01

    In this article, we report a facile one-step chemical synthesis of gold (Au) nanoparticles (GNPs) from a new precursor salt i.e., gold hydroxide in the presence of poly(vinyl pyrrolidone) (PVP) polymer. The non-aqueous dispersion of GNPs was comprehensively characterized by UV-Visible, FTIR, zeta potential, and transmission electron microscope (TEM). A strong surface plasmon resonance band at 529 nm in the UV-Visible spectrum confirms the formation of GNPs in the Au colloid. The FTIR spectroscopic results showed that PVP molecules get chemisorbed onto the surface of GNP via O-atom of carbonyl group. A negative zeta potential of (-)16 mV reveals accumulation of nonbonding electrons of O-atom of carbonyl group of PVP molecules on the nanosurface of GNP. TEM images demonstrate a core-shell nanostructure with an Au-crystalline core covered by a thin amorphous PVP-shell. PVP-capped GNPs could be a potential candidate for bio-sensing, catalysis, and other applications.

  10. Collapse dynamics of ultrasound contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    King, Daniel Alan

    Ultrasound contrast agents (UCAs) are micron-sized gas bubbles encapsulated with thin shells on the order of nanometers thick. The damping effects of these viscoelastic coatings are widely known to significantly alter the bubble dynamics for linear and low-amplitude behavior; however, their effects on strongly nonlinear and destruction responses are much less studied. This dissertation examines the behaviors of single collapsing shelled microbubbles using experimental and theoretical methods. The study of their dynamics is particularly relevant for emerging experimental uses of UCAs which seek to leverage localized mechanical forces to create or avoid specialized biomedical effects. The central component in this work is the study of postexcitation rebound and collapse, observed acoustically to identify shell rupture and transient inertial cavitation of single UCA microbubbles. This time-domain analysis of the acoustic response provides a unique method for characterization of UCA destruction dynamics. The research contains a systematic documentation of single bubble postexcitation collapse through experimental measurement with the double passive cavitation detection (PCD) system at frequencies ranging from 0.9 to 7.1 MHz and peak rarefactional pressure amplitudes (PRPA) ranging from 230 kPa to 6.37 MPa. The double PCD setup is shown to improve the quality of collected data over previous setups by allowing symmetric responses from a localized confocal region to be identified. Postexcitation signal percentages are shown to generally follow trends consistent with other similar cavitation metrics such as inertial cavitation, with greater destruction observed at both increased PRPA and lower frequency over the tested ranges. Two different types of commercially available UCAs are characterized and found to have very different collapse thresholds; lipid-shelled Definity exhibits greater postexcitation at lower PRPAs than albumin-shelled Optison. Furthermore, by altering the size distributions of these UCAs, it is shown that the shell material has a large influence on the occurrence of postexcitation rebound at all tested frequencies while moderate alteration of the size distribution may only play a significant role within certain frequency ranges. Finally, the conditions which generate the experimental postexcitation signal are examined theoretically using several forms of single bubble models. Evidence is provided for the usefulness of modeling this large amplitude UCA behavior with a size-varying surface tension as described in the Marmottant model; better agreement for lipid-shelled Definity UCAs is obtained by considering the dynamic response with a rupturing shell rather than either a non-rupturing or nonexistent shell. Moreover, the modeling indicates that maximum radial expansion from the initial UCA size is a suitable metric to predict postexcitation collapse, and that both shell rupture and inertial cavitation are necessary conditions to generate this behavior. Postexcitation analysis is found to be a beneficial characterization metric for studying the destruction behaviors of single UCAs when measured with the double PCD setup. This work provides quantitative documentation of UCA collapse, exploration into UCA material properties which affect this collapse, and comparison of existing single bubble models with experimentally measured postexcitation signals.

  11. Discussion paper: The kink oscillations of the thin nonuniform coronal loops

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, B. B.

    2006-12-01

    [1] MHD-oscillations of an inhomogeneous coronal loop consisting of a dense cord and a surrounding shell are investigated. Magnetic field in the cord is longitudinal and in the shell is azimuthal only. Usually the nonuniform field leads to the existence of resonance. However here we assume the resonance points non exist in the tube, i.e. the resonances are cutted. Our approach pursue a target - an investigation of an influence of the wave radiation on the tube oscillations. The resonant absorption of tube oscillation energy is eliminated. The same tube effectively radiate a magnetosonic waves into the environment and the Q-factor of the tube oscillations is small. The presented model can explain the fast damping of the coronal loop oscillations observed by the TRACE EUV channel.

  12. Metallic positive expulsion diaphragms

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1972-01-01

    High-cycle life ring-reinforced hemispherical type positive expulsion diaphragm performance was demonstrated by room temperature fluid expulsion tests of 13" diameter, 8 mil thick stainless steel configurations. A maximum of eleven (11) leak-free, fluid expulsions were achieved by a 25 deg cone angle diaphragm hoop-reinforced with .110-inch cross-sectional diameter wires. This represents a 70% improvement in diaphragm reversal cycle life compared to results previously obtained. The reversal tests confirmed analytic predictions for diaphragm cycle life increases due to increasing values of diaphragm cone angle, radius to thickness ratio and material strain to necking capacity. Practical fabrication techniques were demonstrated for forming close-tolerance, thin corrugated shells and for obtaining closely controlled reinforcing ring stiffness required to maximize diaphragm cycle life. A non-destructive inspection technique for monitoring large local shell bending strains was developed.

  13. Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes.

    PubMed

    Schenk, Paul M

    2002-05-23

    A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres to ten or more kilometres. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7 8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25 0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.

  14. Determination for the Entrapment Criterion of Non-metallic Inclusions by the Solidification Front During Steel Centrifugal Continuous Casting

    NASA Astrophysics Data System (ADS)

    Wang, Qiangqiang; Zhang, Lifeng

    2016-06-01

    In the current study, the three-dimensional fluid flow, heat transfer, and solidification in steel centrifugal continuous casting strands were simulated. The volume of fluid model was used to solve the multiphase phenomena between the molten steel and the air. The entrapment and final distribution of inclusions in the solidified shell were studied with the discussion on the effect of rotation behavior of the caster system. Main results indicate that after applying the rotation of the shell, the fluid flow transformed from a recirculation flow to a rotation flow in the mold region and was driven to flow around in the casting direction. As the distance below the meniscus increased, the distribution of the tangential speed of the flow and the centrifugal force along one diameter of the strand became symmetrical gradually. The jet flow from the nozzle hardly impinged on the same location on the shell due to the rotation of the shell during solidification. Thus, the shell thickness on the same height was uniform around, and the thinning shell and a hot spot on the surface of shell were avoided. Both of the measurement and the calculation about the distribution of oxide inclusions along the radial direction indicated the number of inclusions at the side and the center was more than that at the quarter on the cross section of billet. With a larger diameter, inclusions tended to be entrapped toward the center area of the billet.

  15. Hot-spot mix in ignition-scale implosions on the NIF [Hot-spot mix in ignition-scale implosions on the National Ignition Facility (NIF)

    DOE PAGES

    Regan, S. P.; Epstein, R.; Hammel, B. A.; ...

    2012-03-30

    Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less

  16. Hot-spot mix in ignition-scale implosions on the NIF [Hot-spot mix in ignition-scale implosions on the National Ignition Facility (NIF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, S. P.; Epstein, R.; Hammel, B. A.

    Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less

  17. A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang; Matula, Thomas J.; Brayman, Andrew A.; Crum, Lawrence A.

    2003-01-01

    Contrast bubble destruction is important in several new diagnostic and therapeutic applications. The pressure threshold of destruction is determined by the shell material, while the propensity for of the bubbles to undergo inertial cavitation (IC) depends both on the gas and shell properties of the ultrasound contrast agent (UCA). The ultrasonic fragmentation thresholds of three specific UCAs (Optison, Sonazoid, and biSpheres), each with different shell and gas properties, were determined under various acoustic conditions. The acoustic emissions generated by the agents, or their derivatives, characteristic of IC after fragmentation, was also compared, using cumulated broadband-noise emissions (IC ``dose''). Albumin-shelled Optison and surfactant-shelled Sonazoid had low fragmentation thresholds (mean=0.13 and 0.15 MPa at 1.1 MHz, 0.48 and 0.58 MPa at 3.5 MHz, respectively), while polymer-shelled biSpheres had a significant higher threshold (mean=0.19 and 0.23 MPa at 1.1 MHz, 0.73 and 0.96 MPa for thin- and thick-shell biSpheres at 3.5 MHz, respectively, p<0.01). At comparable initial concentrations, surfactant-shelled Sonazoid produced a much larger IC dose after shell destruction than did either biSpheres or Optison (p<0.01). Thick-shelled biSpheres had the highest fragmentation threshold and produced the lowest IC dose. More than two and five acoustic cycles, respectively, were necessary for the thin- and thick-shell biSpheres to reach a steady-state fragmentation threshold.

  18. Uniform thin films of CdSe and CdSe(ZnS) core(shell) quantum dots by sol-gel assembly: enabling photoelectrochemical characterization and electronic applications.

    PubMed

    Korala, Lasantha; Wang, Zhijie; Liu, Yi; Maldonado, Stephen; Brock, Stephanie L

    2013-02-26

    Optoelectronic properties of quantum dot (QD) films are limited by (1) poor interfacial chemistry and (2) nonradiative recombination due to surface traps. To address these performance issues, sol-gel methods are applied to fabricate thin films of CdSe and core(shell) CdSe(ZnS) QDs. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging with chemical analysis confirms that the surface of the QDs in the sol-gel thin films are chalcogen-rich, consistent with an oxidative-induced gelation mechanism in which connectivity is achieved by formation of dichalcogenide covalent linkages between particles. The ligand removal and assembly process is probed by thermogravimetric, spectroscopic, and microscopic studies. Further enhancement of interparticle coupling via mild thermal annealing, which removes residual ligands and reinforces QD connectivity, results in QD sol-gel thin films with superior charge transport properties, as shown by a dramatic enhancement of electrochemical photocurrent under white light illumination relative to thin films composed of ligand-capped QDs. A more than 2-fold enhancement in photocurrent, and a further increase in photovoltage can be achieved by passivation of surface defects via overcoating with a thin ZnS shell. The ability to tune interfacial and surface characteristics for the optimization of photophysical properties suggests that the sol-gel approach may enable formation of QD thin films suitable for a range of optoelectronic applications.

  19. Initial formation of calcite crystals in the thin prismatic layer with the periostracum of Pinctada fucata.

    PubMed

    Suzuki, Michio; Nakayama, Seiji; Nagasawa, Hiromichi; Kogure, Toshihiro

    2013-02-01

    Although the formation mechanism of calcite crystals in the prismatic layer has been studied well in many previous works, the initial state of calcite formation has not been observed in detail using electron microscopes. In this study, we report that the soft prismatic layer with transparent color (the thin prismatic layer) in the tip of the fresh shell of Pinctada fucata was picked up to observe the early calcification phase. A scanning electron microscope (SEM) image showed that the growth tip of the thin prismatic layer was covered by the periostracum, which was also where the initial formation of calcite crystals began. A cross-section containing the thin calcite crystals in the thin prismatic layer with the periostracum was made using a focused ion beam (FIB) system. In a transmission electron microscope (TEM) observation, the thin calcite crystal (thickness is about 1μm) on the periostracum was found to be a single crystal with the c-axis oriented perpendicular to the shell surface. On the other hand, many aggregated small particles consisting of bassanite crystals were observed in the periostracum suggesting the possibility that not only organic sulfate but also inorganic sulfates exist in the prismatic layer. These discoveries in the early calcification phase of the thin prismatic layer may help to clarify the mechanism of regulating the nucleation and orientation of the calcite crystal in the shell. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The Integration Process of Very Thin Mirror Shells with a Particular Regard to Simbol-X

    NASA Astrophysics Data System (ADS)

    Basso, S.; Pareschi, G.; Tagliaferri, G.; Mazzoleni, F.; Valtolina, R.; Citterio, O.; Conconi, P.

    2009-05-01

    The optics of Simbol-X are very thin compared to previous X-ray missions (like XMM). Therefore their shells floppy and are unable to maintain the correct shape. To avoid the deformations of their very thin X-ray optics during the integration process we adopt two stiffening rings with a good roundness. In this article the procedure used for the first three prototypes of the Simbol-X optics is presented with a description of the problems involved and with an analysis of the degradation of the performances during the integration. This analysis has been performed with the UV vertical bench measurements at INAF-OAB.

  1. A Sparse Bayesian Learning Algorithm for White Matter Parameter Estimation from Compressed Multi-shell Diffusion MRI.

    PubMed

    Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2017-09-01

    We propose a sparse Bayesian learning algorithm for improved estimation of white matter fiber parameters from compressed (under-sampled q-space) multi-shell diffusion MRI data. The multi-shell data is represented in a dictionary form using a non-monoexponential decay model of diffusion, based on continuous gamma distribution of diffusivities. The fiber volume fractions with predefined orientations, which are the unknown parameters, form the dictionary weights. These unknown parameters are estimated with a linear un-mixing framework, using a sparse Bayesian learning algorithm. A localized learning of hyperparameters at each voxel and for each possible fiber orientations improves the parameter estimation. Our experiments using synthetic data from the ISBI 2012 HARDI reconstruction challenge and in-vivo data from the Human Connectome Project demonstrate the improvements.

  2. Spatial Signal Characteristics of Shallow Paraboloidal Shell Structronic Systems

    NASA Astrophysics Data System (ADS)

    Yue, H. H.; Deng, Z. Q.; Tzou, H. S.

    Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last twenty years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of thin flexible membrane shells are not clearly understood. In this paper, modeling of free thin paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.

  3. Design of Aerosol Particle Coating: Thickness, Texture and Efficiency

    PubMed Central

    Buesser, B.; Pratsinis, S.E.

    2013-01-01

    Core-shell particles preserve the performance (e.g. magnetic, plasmonic or opacifying) of a core material while modifying its surface with a shell that facilitates (e.g. by blocking its reactivity) their incorporation into a host liquid or polymer matrix. Here coating of titania (core) aerosol particles with thin silica shells (films or layers) is investigated at non-isothermal conditions by a trimodal aerosol dynamics model, accounting for SiO2 generation by gas phase and surface oxidation of hexamethyldisiloxane (HMDSO) vapor, coagulation and sintering. After TiO2 particles have reached their final primary particle size (e.g. upon completion of sintering during their flame synthesis), coating starts by uniformly mixing them with HMDSO vapor that is oxidized either in the gas phase or on the particles’ surface resulting in SiO2 aerosols or deposits, respectively. Sintering of SiO2 deposited onto the core TiO2 particles takes place transforming rough into smooth coating shells depending on process conditions. The core-shell characteristics (thickness, texture and efficiency) are calculated for two limiting cases of coating shells: perfectly smooth (e.g. hermetic) and fractal-like. At constant TiO2 core particle production rate, the influence of coating weight fraction, surface oxidation and core particle size on coating shell characteristics is investigated and compared to pertinent experimental data through coating diagrams. With an optimal temperature profile for complete precursor conversion, the TiO2 aerosol and SiO2-precursor (HMDSO) vapor concentrations have the strongest influence on product coating shell characteristics. PMID:23729833

  4. Ionizing and Non-ionizing Radiation Effects in Thin Layer Hexagonal Boron Nitride

    DTIC Science & Technology

    2015-03-01

    capacitance-voltage measurements indicating Frenkel-Poole (FP) and Fowler-Nordheim tunneling (FNT) are the primary current mechanisms before and after...linear FNT model and a 0.013 eV increase in the barrier potential for the FP model. There was a decrease of 0.19 eV in the tunneling potential for the...non-linear FNT model. Defects generated by the neutron damage increased currents by increasing trap assisted tunneling (TAT). v

  5. Laser induced white lighting of tungsten filament

    NASA Astrophysics Data System (ADS)

    Strek, W.; Tomala, R.; Lukaszewicz, M.

    2018-04-01

    The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.

  6. Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami

    NASA Astrophysics Data System (ADS)

    Nojima, Taketoshi

    This paper describes folding methods of thin flat sheets as well as cylindrical shells by modelling folding patterns through Japanese traditional Origami technique. New folding patterns have been devised in thin flat squared or circular membrane by modifying so called Miura-Ori in Japan (one node with 4 folding lines). Some folding patterns in cylindrical shells have newly been developed including spiral configurations. Devised foldable cylindrical shells were made by using polymer sheets, and it has been assured that they can be folded quite well. The devised models will make it possible to construct foldable/deployable space structures as well as to manufacture foldable industrial products and living goods, e. g., bottles for soft drinks.

  7. LQR Control of Thin Shell Dynamics: Formulation and Numerical Implementation

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1997-01-01

    A PDE-based feedback control method for thin cylindrical shells with surface-mounted piezoceramic actuators is presented. Donnell-Mushtari equations modified to incorporate both passive and active piezoceramic patch contributions are used to model the system dynamics. The well-posedness of this model and the associated LQR problem with an unbounded input operator are established through analytic semigroup theory. The model is discretized using a Galerkin expansion with basis functions constructed from Fourier polynomials tensored with cubic splines, and convergence criteria for the associated approximate LQR problem are established. The effectiveness of the method for attenuating the coupled longitudinal, circumferential and transverse shell displacements is illustrated through a set of numerical examples.

  8. Mechanisms of Earth activity forsed by external celestial bodies:energy budjet and nature of cyclicity

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    2003-04-01

    In given report we discuss tidal and non-tidal mechanisms of forced tectonic (endogenous) activity of the Earth caused by gravitational attraction of the Moon, Sun and the planets. On the base of the classical solution of the problem of elasticity for model of the Earth with concentric mass distribution the evaluations of the tidal energy and power of Earth lunar-solar deformations, including their joint effect, were obtained. Important role of the joint energetic effect of rotational deformation of the Earth with lunar and solar tides was illustrated. Gravitational interaction of the Moon and Sun with non-spherical, non-homogeneous shells of the Earth generates big additional mechanical forces and moments of the interaction of the neighboring shells (rigid core, liquid core, mantle, lithosphere and separate plates). Acting of these forces and moments in the different time scales on the corresponding sells generates cyclic perturbations of the tensional state of the shells, their deformations, small relative translational displacements and small relative rotational oscillations of the shells. In geological period of time it leads to a fundamental tectonic reconstruction of the Earth. These additional forces and moments of the cyclic celestial-mechanical nature produce cyclic deformations of the all layers of the body and organize and control practically all natural processes. The additional force between mantle and core is cyclic and characterized by the wide basis of frequencies typical for orbital motions (of the Sun, Moon and planets), for rotational motion of the Earth, Moon and Sun and for many from observed natural processes. The problem about small relative translatory-rotary motion of the two shells separated by the thin viscous-elastic layer is studied. The differential equations of motion were obtained and have been studied in particular cases (plane motion of system; case of two axisymmetrical interacting shells and oth.) by approximate methods of small parameter and methods of averaging. Some regimes of the relative translatory-rotary motions of the shells were described in analytical form. Wide set observed geodynamical and geophysical phenomena can be illustrated as results or as reflections of the small and slow relative displacements of the shells in corresponding time-scales. Barkin's work was accepted and financed by RFBR grant 02-05-64176 and by grant SAB2000-0235 of Ministry of Education of Spain (Secretaria de Estado de Educacion y Universidades).

  9. The influence of polymer architectures on the dewetting behavior of thin polymer films: from linear chains to ring chains.

    PubMed

    Wang, Lina; Xu, Lin; Liu, Binyuan; Shi, Tongfei; Jiang, Shichun; An, Lijia

    2017-05-03

    The dewetting behavior of ring polystyrene (RPS) film and linear polystyrene (LPS) film on silanized Si substrates with different grafting densities and PDMS substrate was investigated. Results showed that polymer architectures greatly influenced the dewetting behavior of the thin polymer film. On the silanized Si substrate with 69% grafting density, RPS chains exhibited stronger adsorption compared with LPS chains, and as a result the wetting layer formed more easily. For LPS films, with a decreased annealing temperature, the stability of the polymer film changed from non-slip dewetting via apparent slip dewetting to apparently stable. However, for RPS films, the polymer film stability switched from apparent slip dewetting to apparently stable. On the silanized Si substrate with 94% grafting density, the chain adsorption became weaker and the dewetting processes were faster than that on the substrate with 69% grafting density at the same experimental temperature for both the LPS and RPS films. Moreover, on the PDMS substrate, LPS films always showed non-slip dewetting, while the dewetting kinetics of RPS films switched from non-slip dewetting to slip dewetting behaviour. Forming the wetting layer strongly influenced the stability and dewetting behavior of the thin polymer films.

  10. Thermodynamics of extremal rotating thin shells in an extremal BTZ spacetime and the extremal black hole entropy

    NASA Astrophysics Data System (ADS)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-02-01

    In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it becomes clear that there are two distinct angular velocities for the shell, the mechanical and thermodynamic angular velocities. We comment on the relationship between these two velocities. In passing, we clarify, for a static spacetime with a thermal shell, the meaning of the Tolman temperature formula at a generic radius and at the shell.

  11. Buckling and limit states of composite profiles with top-hat channel section subjected to axial compression

    NASA Astrophysics Data System (ADS)

    RóŻyło, Patryk; Debski, Hubert; Kral, Jan

    2018-01-01

    The subject of the research was a short thin-walled top-hat cross-section composite profile. The tested structure was subjected to axial compression. As part of the critical state research, critical load and the corresponding buckling mode was determined. Later in the study laminate damage areas were determined throughout numerical analysis. It was assumed that the profile is simply supported on the cross sections ends. Experimental tests were carried out on a universal testing machine Zwick Z100 and the results were compared with the results of numerical calculations. The eigenvalue problem and a non-linear problem of stability of thin-walled structures were carried out by the use of commercial software ABAQUS®. In the presented cases, it was assumed that the material is linear-elastic and non-linearity of the model results from the large displacements. Solution to the geometrically nonlinear problem was conducted by the use of the incremental-iterative Newton-Raphson method.

  12. Chaotic non-planar vibrations of the thin elastica. Part I: Experimental observation of planar instability

    NASA Astrophysics Data System (ADS)

    Cusumano, J. P.; Moon, F. C.

    1995-01-01

    In this two-part paper, the results of an investigation into the non-linear dynamics of a flexible cantilevered rod (the elastica) with a thin rectangular cross-section are presented. An experimental examination of the dynamics of the elastica over a broad parameter range forms the core of Part I. In Part II, the experimental work is related to a theoretical study of the mechanics of the elastica, and the study of a two-degree-of-freedom model obtained by modal projection. The experimental system used in this investigation is a rod with clamped-free boundary conditions, forced by sinusoidally displacing the clamped end. Planar periodic motions of the driven elastica are shown to lose stability at distinct resonant wedges, and the resulting motions are shown in general to be non-planar, chaotic, bending-torsion oscillations. Non-planar motions in all resonances exhibit energy cascading and dynamic two-well phenomena, and a family of asymmetric, bending-torsion non-linear modes is discovered. Correlation dimension calculations are used to estimate the number of active degrees of freedom in the system.

  13. Validation of annual growth rings in freshwater mussel shells using cross dating .Can

    Treesearch

    Andrew L. Rypel; Wendell R. Haag; Robert H. Findlay

    2009-01-01

    We examined the usefulness of dendrochronological cross-dating methods for studying long-term, interannual growth patterns in freshwater mussels, including validation of annual shell ring formation. Using 13 species from three rivers, we measured increment widths between putative annual rings on shell thin sections and then removed age-related variation by...

  14. Thin Shell evolution of NIF capsule with asymmetric drive and the resulting neutron diagnostics

    NASA Astrophysics Data System (ADS)

    Buchoff, Michael; Hammer, Jim

    2015-11-01

    One of the major impediments to achieving ignition via ICF is the non-spherical implosion arising from small asymmetries in the drive forcing the collapse of the capsule. Likewise, an experimental diagnostic for quantifying the characteristics of the implosion asymmetry is the final state neutrons, whose number and velocity distributions are not experimentally consistent with the expectation of a spherical implosion. In principle, connecting these initial and final state asymmetries could be solved via hydrodynamic simulations, but due to the multiple scales traversed throughout this process, these calculations are difficult and expensive, leaving much of the potential drive asymmetry profiles unexplored. In this work, we solve the resulting analytic equations from the thin-shell model proposed by Ott et. al. to evolve the capsule over a range of different drive asymmetries from its initial state (when the shell aspect ratio is much greater than 1) to a radius of roughly 250 microns, consisting of a layer of dense CH, a cold layer of dense DT, and a warm core of sparsely distributed DT. At this stage, more tractable hydrodynamical simulations are performed in the ARES code suite, determining the distribution of neutron from thermonuclear yield. These and future results allow for a multitude of tests of asymmetric sources to compare with and potentially guide experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Spherical thin-shell wormholes and modified Chaplygin gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharif, M.; Azam, M., E-mail: msharif.math@pu.edu.pk, E-mail: azammath@gmail.com

    2013-05-01

    The purpose of this paper is to construct spherical thin-shell wormhole solutions through cut and paste technique and investigate the stability of these solutions in the vicinity of modified Chaplygin gas. The Darmois-Israel formalism is used to formulate the stresses of the surface concentrating the exotic matter. We explore the stability of the wormhole solutions by using the standard potential method. We conclude that there exist more stable as well as unstable solutions than the previous study with generalized Chaplygin gas [19].

  16. Numerical analysis of stiffened shells of revolution. Volume 2: Users' manual for STAR-02S - shell theory automated for rotational structures - 2 (statics), digital computer program

    NASA Technical Reports Server (NTRS)

    Svalbonas, V.

    1973-01-01

    A procedure for the structural analysis of stiffened shells of revolution is presented. A digital computer program based on the Love-Reissner first order shell theory was developed. The computer program can analyze orthotropic thin shells of revolution, subjected to unsymmetric distributed loading or concentrated line loads, as well as thermal strains. The geometrical shapes of the shells which may be analyzed are described. The shell wall cross section can be a sheet, sandwich, or reinforced sheet or sandwich. General stiffness input options are also available.

  17. Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells

    NASA Astrophysics Data System (ADS)

    Uchikata, Nami; Yoshida, Shijun; Pani, Paolo

    2016-09-01

    The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These "I-Love-Q" relations have important implications for astrophysics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neutron star. The Love number and quadrupole moment for less compact models have the opposite sign relative to those of ordinary neutron stars, and the I-Love-Q relations continuously approach the black hole limit. We consider a variety of polytropic equations of state for the matter shell and find no universality in the I-Love-Q relations. However, we cannot deny the possibility that, similarly to the neutron-star case, an approximate universality might emerge for a limited class of equations of state. Finally, we discuss how a measurement of the tidal deformability from the gravitational-wave detection of a compact-binary inspiral can be used to constrain exotic compact objects like gravastars.

  18. Solvation of carbonaceous molecules by para-H2 and ortho-D2 clusters. II. Fullerenes.

    PubMed

    Calvo, F; Yurtsever, E

    2016-08-28

    The coating of various fullerenes by para-hydrogen and ortho-deuterium molecules has been computationally studied as a function of the solvent amount. Rotationally averaged interaction potentials for structureless hydrogen molecules are employed to model their interaction with neutral or charged carbonaceous dopants containing between 20 and 240 atoms, occasionally comparing different fullerenes having the same size but different shapes. The solvation energy and the size of the first solvation shell obtained from path-integral molecular dynamics simulations at 2 K show only minor influence on the dopant charge and on the possible deuteration of the solvent, although the shell size is largest for ortho-D2 coating cationic fullerenes. Nontrivial finite size effects have been found with the shell size varying non-monotonically close to its completion limit. For fullerenes embedded in large hydrogen clusters, the shell size and solvation energy both follow linear scaling with the fullerene size. The shell sizes obtained for C60 (+) and C70 (+) are close to 49 and 51, respectively, and agree with mass spectrometry experiments.

  19. Solvation of carbonaceous molecules by para-H2 and ortho-D2 clusters. II. Fullerenes

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Yurtsever, E.

    2016-08-01

    The coating of various fullerenes by para-hydrogen and ortho-deuterium molecules has been computationally studied as a function of the solvent amount. Rotationally averaged interaction potentials for structureless hydrogen molecules are employed to model their interaction with neutral or charged carbonaceous dopants containing between 20 and 240 atoms, occasionally comparing different fullerenes having the same size but different shapes. The solvation energy and the size of the first solvation shell obtained from path-integral molecular dynamics simulations at 2 K show only minor influence on the dopant charge and on the possible deuteration of the solvent, although the shell size is largest for ortho-D2 coating cationic fullerenes. Nontrivial finite size effects have been found with the shell size varying non-monotonically close to its completion limit. For fullerenes embedded in large hydrogen clusters, the shell size and solvation energy both follow linear scaling with the fullerene size. The shell sizes obtained for C 60+ and C 70+ are close to 49 and 51, respectively, and agree with mass spectrometry experiments.

  20. Light propagation and interaction observed with electrons.

    PubMed

    Word, Robert C; Fitzgerald, J P S; Könenkamp, R

    2016-01-01

    We discuss possibilities for a microscopic optical characterization of thin films and surfaces based on photoemission electron microscopy. We show that propagating light with wavelengths across the visible range can readily be visualized, and linear and non-linear materials properties can be evaluated non-invasively with nanometer spatial resolution. While femtosecond temporal resolution can be achieved in pump-probe-type experiments, the interferometric approach presented here has typical image frame times of ~200 fs. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Some New Problems on Shells and Thin Structures

    NASA Technical Reports Server (NTRS)

    Vlasov, V. S.

    1949-01-01

    Cylindrical shells of arbitrary section, reinforced by longitudinal and transverse members (stringers and ribs) are considered by us, for a sufficiently close spacing of the ribs, as in our previously published papers (references 1 end 2), as thin-walled orthotropic spatial systems at the cross-sections of which only axial (normal and shearing) forces can arise. The longitudinal bending and twisting moments, due to their weak effect on the stress state of the shell, are taken equal to zero. Along the longitudinal sections of the shell there may arise transverse forces in addition to the normal d shearing forces. Under the so-called static assumptions there is taken for the computation model of the shell a thin-walled spatial system consisting along its length (along a generator) of an infinite number of elementary strips capable of bending. Each of these strips is likened to a curved rod operating in each of its sections not only in tension (compression)but also in transverse bending and shear. The interaction between two adjoining transverse strips in the shell expresses itself in the transmission from one strip to the other of only the normal and shearing stresses. The static structure of the computation model here described is shown in figure 1, where the connections through which the normal and shearing stresses transmitted from one transverse strip to smother are indicated schematically by the rods located in the middle surface of the shell. In addition to the static hypothesis we introduce also geometric hypotheses. According to the latter the elongational deformations of the shell along lines parallel to the generator of its middle surface and the shear deformations in the middle surface, as ma+gitudes having . little effect on the state of the fundamental internal forces of the shell, are taken equal to zero. The deformations of the shell in our computational model are such that in the first place the lines of this surface perpendicular to the generator are inextensible at each point end in the second place the angles between the lines of principal curvature (the coordinate lines) which are straight before the deformation remain straight after the deformation.

  2. Mathematical Modeling of Electrodynamics Near the Surface of Earth and Planetary Water Worlds

    NASA Technical Reports Server (NTRS)

    Tyler, Robert H.

    2017-01-01

    An interesting feature of planetary bodies with hydrospheres is the presence of an electrically conducting shell near the global surface. This conducting shell may typically lie between relatively insulating rock, ice, or atmosphere, creating a strong constraint on the flow of large-scale electric currents. All or parts of the shell may be in fluid motion relative to main components of the rotating planetary magnetic field (as well as the magnetic fields due to external bodies), creating motionally-induced electric currents that would not otherwise be present. As such, one may expect distinguishing features in the types of electrodynamic processes that occur, as well as an opportunity for imposing specialized mathematical methods that efficiently address this class of application. The purpose of this paper is to present and discuss such specialized methods. Specifically, thin-shell approximations for both the electrodynamics and fluid dynamics are combined to derive simplified mathematical formulations describing the behavior of these electric currents as well as their associated electric and magnetic fields. These simplified formulae allow analytical solutions featuring distinct aspects of the thin-shell electrodynamics in idealized cases. A highly efficient numerical method is also presented that is useful for calculations under inhomogeneous parameter distributions. Finally, the advantages as well as limitations in using this mathematical approach are evaluated. This evaluation is presented primarily for the generic case of bodies with water worlds or other thin spherical conducting shells. More specific discussion is given for the case of Earth, but also Europa and other satellites with suspected oceans.

  3. Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product

    DOEpatents

    Dykes, Charles D.; Daniel, Sabah S.; Wood, J. F. Barry

    1990-02-20

    In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.

  4. Late Pleistocene and Holocene sedimentary facies on the Ebro continental shelf

    USGS Publications Warehouse

    Diaz, J.; Nelson, C.H.; Barber, J.H.; Giro, S.

    1990-01-01

    Late Pleistocene-Holocene history of the Ebro continental shelf of northeastern Spain is recorded in two main sedimentary units: (1) a lower, transgressive unit that covers the shelf and is exposed on the outer shelf south of 40??40???N, and (2) an upper, progradational, prodeltaic unit that borders the Ebro Delta and extends southward along the inner shelf. The lower transgressive unit includes a large linear shoal found at a water depth of 90 m and hardground mounds at water depths of 70-80 m. Some patches of earlier Pleistocene prodelta mud remain also, exposed or covered by a thin veneer of transgressive sand on the northern outer shelf. This relict sand sheet is 2-3 m thick and contains 9000-12,500 yr old oyster and other shells at water depths of 78-88 m. The upper prodelta unit covers most of the inner shelf from water depths of 20-80 m and extends from the present Ebro River Delta to an area to the southwest where the unit progressively thins and narrows. Interpretation of high-resolution seismic reflection data shows the following facies occurring progressively offshore: (1) a thick stratified facies with thin progradational "foresets beds", (2) a faintly laminated facies with sparse reflectors of low continuity, and (3) a thin transparent bottomset facies underlain by a prominent flat-lying reflector. Deposition in the northern half of the prodelta began as soon as the shoreline transgressed over the mid-shelf, but progradation of the southern half did not begin until about 1000-3000 yrs after the transgression. A classic deltaic progradational sequence is shown in the Ebro prodelta mud by (1) gradation of seismic facies away from the delta, (2) coarsening-upward sequences near the delta and fining-upward sequences in the distal mud belt deposits, and (3) thin storm-sand layers and shell lags in the nearshore stratified facies. The boundaries of the prodeltaic unit are controlled by increased current speeds on the outer shelf (where the shelf narrows) and by development of the shoreface sand body resulting from shoaling waves on the inner shelf. ?? 1990.

  5. Rollable Thin Shell Composite-Material Paraboloidal Mirrors

    NASA Technical Reports Server (NTRS)

    Meinel, Aden; Meinel, Marjorie; Romeo, Robert

    2003-01-01

    An experiment and calculation have demonstrated the feasibility of a technique of compact storage of paraboloidal mirrors made of thin composite-material (multiple layers of carbon fiber mats in a polymeric matrix) shells coated with metal for reflectivity. Such mirrors are under consideration as simple, lightweight alternatives to the heavier, more complex mirrors now used in space telescopes. They could also be used on Earth in applications in which gravitational sag of the thin shells can be tolerated. The present technique is essentially the same as that used to store large maps, posters, tapestries, and similar objects: One simply rolls up the mirror to a radius small enough to enable the insertion of the mirror in a protective cylindrical case. Provided that the stress associated with rolling the mirror is not so large as to introduce an appreciable amount of hysteresis, the mirror can be expected to spring back to its original shape, with sufficient precision to perform its intended optical function, when unrolled from storage.

  6. The chocolate-egg problem: Fabrication of thin elastic shells through coating

    NASA Astrophysics Data System (ADS)

    Lee, Anna; Marthelot, Joel; Brun, Pierre-Thomas; Reis, Pedro M.

    2015-03-01

    We study the fabrication of thin polymeric shells based on the coating of a curved surface by a viscous fluid. Upon polymerization of the resulting thin film, a slender solid structure is delivered after demolding. This technique is extensively used, empirically, in manufacturing, where it is known as rotational molding, as well as in the food industry, e.g. for chocolate-eggs. This problem is analogous to the Landau-Levich-Derjaguin coating of plates and fibers and Bretherton's problem of film deposition in cylindrical channels, albeit now on a double-curved geometry. Here, the balance between gravity, viscosity, surface tension and polymerization rate can yield a constant thickness film. We seek to identify the physical ingredients that govern the final film thickness and its profile. In our experiments using organosilicon, we systematically vary the properties of the fluid, as well as the curvature of the substrate onto which the film is coated, and characterize the final thickness profile of the shells. A reduced model is developed to rationalize the process.

  7. Thick or Thin Ice Shell on Europa? Artist Concept

    NASA Image and Video Library

    2007-12-13

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa ice shell.

  8. Preparation and characterization of WO{sub 3} nanoparticles, WO{sub 3}/TiO{sub 2} core/shell nanocomposites and PEDOT:PSS/WO{sub 3} composite thin films for photocatalytic and electrochromic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyadjiev, Stefan I., E-mail: boiajiev@gmail.com; Santos, Gustavo dos Lopes; Szűcs, Júlia

    2016-03-25

    In this study, monoclinic WO{sub 3} nanoparticles were obtained by thermal decomposition of (NH{sub 4}){sub x}WO{sub 3} in air at 600 °C. On them by atomic layer deposition (ALD) TiO{sub 2} films were deposited, and thus core/shell WO{sub 3}/TiO{sub 2} nanocomposites were prepared. We prepared composites of WO{sub 3} nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO{submore » 3} and core/shell WO{sub 3}/TiO{sub 2} nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO{sub 3} thin films, and the coloring and bleaching states were studied.« less

  9. Novel Architecture for a Long-Life, Lightweight Venus Lander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bugby, D.; Seghi, S.; Kroliczek, E.

    2009-03-16

    This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480 deg. C, 90 atm, corrosive, mostly CO{sub 2} Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to:more » (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high performance insulation as a function of temperature and pressure; (3) a bench-top ambient pressure thermal test of the evaporation system; and (4) a higher fidelity test, to be conducted in a high pressure, high temperature inert gas test chamber, of a small-scale Venus lander prototype (made from two hemispherical interconnecting halves) that includes all of the aforesaid features.22 CFR 125.4(b)(13) applicable.« less

  10. Design and development by direct polishing of the WFXT thin polynomial mirror shells

    NASA Astrophysics Data System (ADS)

    Proserpio, L.; Campana, S.; Citterio, O.; Civitani, M.; Combrinck, H.; Conconi, P.; Cotroneo, V.; Freeman, R.; Mattini, E.; Langstrof, P.; Morton, R.; Motta, G.; Oberle, O.; Pareschi, G.; Parodi, G.; Pels, C.; Schenk, C.; Stock, R.; Tagliaferri, G.

    2017-11-01

    The Wide Field X-ray Telescope (WFXT) is a medium class mission proposed to address key questions about cosmic origins and physics of the cosmos through an unprecedented survey of the sky in the soft X-ray band (0.2-6 keV) [1], [2]. In order to get the desired angular resolution of 10 arcsec (5 arcsec goal) on the entire 1 degrees Field Of View (FOV), the design of the optical system is based on nested grazing-incidence polynomial profiles mirrors, and assumes a focal plane curvature and plate scale corrections among the shells. This design guarantees an increased angular resolution also at large off-axis positions with respect to the usually adopted Wolter I configuration. In order to meet the requirements in terms of mass and effective area (less than 1200 kg, 6000 cm2 @ 1 keV), the nested shells are thin and made of quartz glass. The telescope assembly is composed by three identical modules of 78 nested shells each, with diameter up to 1.1 m, length in the range of 200-440 mm and thickness of less than 2.2 mm. At this regard, a deterministic direct polishing method is under investigation to manufacture the WFXT thin grazing-incidence mirrors made of quartz. The direct polishing method has already been used for past missions (as Einstein, Rosat, Chandra) but based on much thicker shells (10 mm ore more). The technological challenge for WFXT is to apply the same approach but for 510 times thinner shells. The proposed approach is based on two main steps: first, quartz glass tubes available on the market are ground to conical profiles; second the pre-shaped shells are polished to the required polynomial profiles using a CNC polishing machine. In this paper, preliminary results on the direct grinding and polishing of prototypes shells made by quartz glass with low thickness, representative of the WFXT optical design, are presented.

  11. Growth of fullerene-like carbon nitride thin solid films consisting of cross-linked nano-onions

    NASA Astrophysics Data System (ADS)

    Czigány, Zs.; Brunell, I. F.; Neidhardt, J.; Hultman, L.; Suenaga, K.

    2001-10-01

    Fullerene-like CNx (x≈0.12) thin solid films were deposited by reactive magnetron sputtering of graphite in a nitrogen and argon discharge on cleaved NaCl and Si(001) substrates at 450 °C. As-deposited films consist of 5 nm diam CNx nano-onions with shell sizes corresponding to Goldberg polyhedra determined by high-resolution transmission electron microscopy. Electron energy loss spectroscopy revealed that N incorporation is higher in the core of the onions than at the perimeter. N incorporation promotes pentagon formation and provides reactive sites for interlinks between shells of the onions. A model is proposed for the formation of CNx nano-onions by continuous surface nucleation and growth of hemispherical shells.

  12. A triangular thin shell finite element: Nonlinear analysis. [structural analysis

    NASA Technical Reports Server (NTRS)

    Thomas, G. R.; Gallagher, R. H.

    1975-01-01

    Aspects of the formulation of a triangular thin shell finite element which pertain to geometrically nonlinear (small strain, finite displacement) behavior are described. The procedure for solution of the resulting nonlinear algebraic equations combines a one-step incremental (tangent stiffness) approach with one iteration in the Newton-Raphson mode. A method is presented which permits a rational estimation of step size in this procedure. Limit points are calculated by means of a superposition scheme coupled to the incremental side of the solution procedure while bifurcation points are calculated through a process of interpolation of the determinants of the tangent-stiffness matrix. Numerical results are obtained for a flat plate and two curved shell problems and are compared with alternative solutions.

  13. Plasma Radiation Source Development Program

    DTIC Science & Technology

    2006-03-01

    shell mass distributions perform belter than thin shells. The dual plenum, double shell load has unique diagnostic features that enhance our...as implosion time increases. 13. SUBJECT TERMS Zpinch x-ray diagnostics Rayleigh-Taylor instability pulsed-power x-ray spectroscopy supersonic...feature permits some very useful diagnostics that shed light on critical details of the implosion process. See Section 3 for details. We have

  14. Thin fused silica shells for high-resolution and large collecting area x-ray telescopes (like Lynx/XRS)

    NASA Astrophysics Data System (ADS)

    Civitani, M. M.; Hołyszko, J.; Vecchi, G.; Basso, S.; Citterio, O.; Ghigo, M.; Pareschi, G.; Parodi, G.; Incorvaia, S.

    2017-09-01

    The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (< 1 arc second Half Energy Width, HEW), but with a much larger throughput (2.5 m2 effective area @1 keV), represents a compelling request by the scientific community. To this end the Lynx/XRS mission is being studied in USA, with the participation of international partners. In order to figure out the challenging technological task of the mirror fabrication, different approaches are considered, based on monolithic and segmented shells. Starting from the experience done on the glass prototypal shell realized in the past years, the direct polishing of thin (2 mm thick) fused silica monolithic shells is being investigated as a possible solution. A temporary stiffening structure is designed to support the shell during the figuring and polishing operations and to manage the handling up to its integration in the telescope structure. After the grinding and the polishing phases, in order to achieve the required surface accuracy, a final ion beam figuring correction is foreseen. In this paper, we present the technological process and the results achieved so far on a prototypal shell under development.

  15. A mechanism for hot-spot generation in a reactive two-dimensional sheared viscous layer

    NASA Astrophysics Data System (ADS)

    Timms, Robert; Purvis, Richard; Curtis, John P.

    2018-05-01

    A two-dimensional model for the non-uniform melting of a thin sheared viscous layer is developed. An asymptotic solution is presented for both a non-reactive and a reactive material. It is shown that the melt front is linearly stable to small perturbations in the non-reactive case, but becomes linearly unstable upon introduction of an Arrhenius source term to model the chemical reaction. Results demonstrate that non-uniform melting acts as a mechanism to generate hot spots that are found to be sufficient to reduce the time to ignition when compared with the corresponding one-dimensional model of melting.

  16. Publications - GMC 360 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 360 Publication Details Title: Photomicrographs of Petrographic Thin Sections for the Inigok Reference Shell International EP, Inc., 2009, Photomicrographs of Petrographic Thin Sections for the Inigok page for information on ordering data on DVD. Keywords Oil and Gas; Petrographic; Thin Section Top of

  17. The initiation and persistence of cracks in Enceladus' ice shell

    NASA Astrophysics Data System (ADS)

    Rudolph, M. L.; Jordan, J.; Manga, M.; Hawkins, E. K.; Grannan, A. M.; Reinhard, A.; Farough, A.; Mittal, T.; Hernandez, J. A.

    2016-12-01

    The eruption of water from a global ocean underlying Enceladus' ice shell requires; i. a mechanism to create stresses sufficient to produce cracks that reach the ocean, ii. that the ascent of water through the crack must be fast enough to keep the crack from freezing. We develop models for the evolution of stresses in the ice shell and overpressure in the ocean, the propagation of cracks into the ice shell, and the melting of ice caused by the eruption of water through the cracks. We show that modest cooling of Enceladus' interior can produce extensional stresses in the ice shell sufficient to overcome the tensile strength of ice. We show that the resultant ice shell cracks can penetrate to depths greater than 10 km. Cracks of 10 km are required to reach the interior oceans of Enceladus in the polar regions. After crack formation, we show that the present eruption rate is sufficient to keep cracks from freezing below the water-table, at which water boils and subsequently erupts. The ascent of warm water from Enceladus' ocean widens the cracks and thins the ice shell in the South Polar Terrain (SPT). Model predictions show that a crack with the minimum, sufficient heat flow to persist without freezing, would thin the surrounding ice shell by about a factor of two. This calculation for heat flow is consistent with observed heat fluxes at the surface and recent inferences of the ice shell thickness in the SPT based on the shape and gravity of Enceladus.

  18. Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Sawamiphakdi, K.

    1984-01-01

    A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.

  19. Interacting shells in AdS spacetime and chaos

    NASA Astrophysics Data System (ADS)

    Brito, Richard; Cardoso, Vitor; Rocha, Jorge V.

    2016-07-01

    We study the simplest two-body problem in asymptotically anti-de Sitter spacetime: two, infinitely thin, concentric spherical shells of matter. We include only gravitational interaction between the two shells, but we show that the dynamics of this system is highly nontrivial. We observe prompt collapse to a black hole, delayed collapse and even perpetual oscillatory motion, depending on the initial location of the shells (or their energy content). The system exhibits critical behavior, and we show strong hints that it is also chaotic.

  20. Micromagnetic study of equilibrium states in nano hemispheroidal shells

    NASA Astrophysics Data System (ADS)

    Schultz, Keren; Schultz, Moty

    2017-11-01

    We present results of micromagnetic simulations of thin ferromagnetic nano hemispheroidal shells with sizes ranging from 5 to 50 nm (inside dimensions). Depending on the geometrical and magnetic parameters of the hemispheroidal shell, there exist three different magnetic phases: easy axis, onion and vortex. The profile for the vortex magnetization distribution is analyzed and the limitations and applicability of different vortex ansatzes are discussed. In addition, we investigate the total energy density for each of the magnetic distributions as a function of the hemispheroidal shell dimensions.

  1. Ballistic Simulation Method for Lithium Ion Batteries (BASIMLIB) Using Thick Shell Composites (TSC) in LS-DYNA

    DTIC Science & Technology

    2016-08-04

    BAllistic SImulation Method for Lithium Ion Batteries (BASIMLIB) using Thick Shell Composites (TSC) in LS-DYNA Venkatesh Babu, Dr. Matt Castanier, Dr...Objective • Objective and focus of this work is to develop a – Robust simulation methodology to model lithium - ion based batteries in its module and full...unlimited  Lithium Ion Phosphate (LiFePO4) battery cell, module and pack was modeled in LS-DYNA using both Thin Shell Layer (TSL) and Thick Shell

  2. A Galerkin approximation for linear elastic shallow shells

    NASA Astrophysics Data System (ADS)

    Figueiredo, I. N.; Trabucho, L.

    1992-03-01

    This work is a generalization to shallow shell models of previous results for plates by B. Miara (1989). Using the same basis functions as in the plate case, we construct a Galerkin approximation of the three-dimensional linearized elasticity problem, and establish some error estimates as a function of the thickness, the curvature, the geometry of the shell, the forces and the Lamé costants.

  3. Unified approach to the entropy of an extremal rotating BTZ black hole: Thin shells and horizon limits

    NASA Astrophysics Data System (ADS)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-10-01

    Using a thin shell, the first law of thermodynamics, and a unified approach, we study the thermodymanics and find the entropy of a (2 +1 )-dimensional extremal rotating Bañados-Teitelbom-Zanelli (BTZ) black hole. The shell in (2 +1 ) dimensions, i.e., a ring, is taken to be circularly symmetric and rotating, with the inner region being a ground state of the anti-de Sitter spacetime and the outer region being the rotating BTZ spacetime. The extremal BTZ rotating black hole can be obtained in three different ways depending on the way the shell approaches its own gravitational or horizon radius. These ways are explicitly worked out. The resulting three cases give that the BTZ black hole entropy is either the Bekenstein-Hawking entropy, S =A/+ 4 G , or an arbitrary function of A+, S =S (A+) , where A+=2 π r+ is the area, i.e., the perimeter, of the event horizon in (2 +1 ) dimensions. We speculate that the entropy of an extremal black hole should obey 0 ≤S (A+)≤A/+ 4 G . We also show that the contributions from the various thermodynamic quantities, namely, the mass, the circular velocity, and the temperature, for the entropy in all three cases are distinct. This study complements the previous studies in thin shell thermodynamics and entropy for BTZ black holes. It also corroborates the results found for a (3 +1 )-dimensional extremal electrically charged Reissner-Nordström black hole.

  4. Effects of zonal flows on correlation between energy balance and energy conservation associated with nonlinear nonviscous atmospheric dynamics in a thin rotating spherical shell

    NASA Astrophysics Data System (ADS)

    Ibragimov, Ranis N.

    2018-03-01

    The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The energy balance is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the energy balance is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the energy balance to the conservation law.

  5. Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight

    ERIC Educational Resources Information Center

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…

  6. Homogeneous Nanodiamonds Are Different in Reality

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Chin; Gottfried, Jennifer; Pesce-Rodriguez, Rose; Advanced Energetic Materials Team

    Commercial detonation nanodiamonds (ND) have been investigated for many applications. They consist of carbon nanoparticles with diamond cores surrounded by onion-like graphitic shells. Unfortunately, variations in the purity and carbon structure between commercial ND samples due to variations in synthesis and purification conditions is an ongoing issue, since these differences can affect the resulting application-dependent ND behavior. Via characterization with transmission electron microscopy, this work investigates the structural and chemical differences among nominally homologous commercial detonation ND sold by a single vendor under the same item number. Significant discrepancies in the carbon structure and crystallinity between different batches with similar sizes and shapes were identified. The ND containing more non-carbon entities as impurities and oxygen-containing surface functional groups were found to possess thicker graphitic shells surrounding an unstable diamond core which quickly transforms to graphite under electron beam irradiation. However, the structure of ND with higher purities and thin onion shells remain unchanged over extended exposure to electron beams. This study demonstrates the structural and chemical differences between nominally identical commercial detonation ND samples and reveals their influence on the decomposition behavior of the particles.

  7. The Dynamic Response and Vibration of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) Truncated Conical Shells Resting on Elastic Foundations

    PubMed Central

    Nguyen Dinh, Duc; Nguyen, Pham Dinh

    2017-01-01

    Based on the classical shell theory, the linear dynamic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations subjected to dynamic loads is presented. The truncated conical shells are reinforced by single-walled carbon nanotubes (SWCNTs) that vary according to the linear functions of the shell thickness. The motion equations are solved by the Galerkin method and the fourth-order Runge–Kutta method. In numerical results, the influences of geometrical parameters, elastic foundations, natural frequency parameters, and nanotube volume fraction of FG-CNTRC truncated conical shells are investigated. The proposed results are validated by comparing them with those of other authors. PMID:29057821

  8. Analysis of thin-walled cylindrical composite shell structures subject to axial and bending loads: Concept development, analytical modeling and experimental verification

    NASA Astrophysics Data System (ADS)

    Mahadev, Sthanu

    Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically distinguished with respect to the circumferential arc angle, thickness-to-mean radius ratio and total laminate thickness. The potential of this methodology is challenged to analytically determine the location of the centroid. This precise location dictates the decoupling of extension-bending type deformational response in tension loaded composite structures. Upon the cross-validation of the centroidal point through the implementation of an ANSYS based finite element routine, influence of centroid is analytically examined under the application of a concentrated longitudinal tension and bending type loadings on a series of cylindrical shells characterized by three different symmetric-balanced stacking sequences. In-plane ply-stresses are computed and analyzed across the circumferential contour. An experimental investigation has been incorporated via designing an ad-hoc apparatus and test-up that accommodates the quantification of in-plane strains, computation of ply-stresses and addresses the physical characteristics for a set of auto-clave fabricated cylindrical shell articles. Consequently, this work is shown to essentially capture the mechanical aspects of cylindrical shells, thus facilitating structural engineers to design and manufacture viable structures.

  9. A comparative study of heterostructured CuO/CuWO4 nanowires and thin films

    NASA Astrophysics Data System (ADS)

    Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins

    2017-12-01

    A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.

  10. Spherical collapse in chameleon models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Ph.; Rosenfeld, R.; Steer, D.A., E-mail: brax@spht.saclay.cea.fr, E-mail: rosenfel@ift.unesp.br, E-mail: daniele.steer@apc.univ-paris7.fr

    2010-08-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in themore » presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.« less

  11. Black hole evaporation in conformal gravity

    NASA Astrophysics Data System (ADS)

    Bambi, Cosimo; Modesto, Leonardo; Porey, Shiladitya; Rachwał, Lesław

    2017-09-01

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  12. Black hole evaporation in conformal gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo; Rachwał, Lesław; Modesto, Leonardo

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  13. Blessing of dimensionality: mathematical foundations of the statistical physics of data.

    PubMed

    Gorban, A N; Tyukin, I Y

    2018-04-28

    The concentrations of measure phenomena were discovered as the mathematical background to statistical mechanics at the end of the nineteenth/beginning of the twentieth century and have been explored in mathematics ever since. At the beginning of the twenty-first century, it became clear that the proper utilization of these phenomena in machine learning might transform the curse of dimensionality into the blessing of dimensionality This paper summarizes recently discovered phenomena of measure concentration which drastically simplify some machine learning problems in high dimension, and allow us to correct legacy artificial intelligence systems. The classical concentration of measure theorems state that i.i.d. random points are concentrated in a thin layer near a surface (a sphere or equators of a sphere, an average or median-level set of energy or another Lipschitz function, etc.). The new stochastic separation theorems describe the thin structure of these thin layers: the random points are not only concentrated in a thin layer but are all linearly separable from the rest of the set, even for exponentially large random sets. The linear functionals for separation of points can be selected in the form of the linear Fisher's discriminant. All artificial intelligence systems make errors. Non-destructive correction requires separation of the situations (samples) with errors from the samples corresponding to correct behaviour by a simple and robust classifier. The stochastic separation theorems provide us with such classifiers and determine a non-iterative (one-shot) procedure for their construction.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  14. Blessing of dimensionality: mathematical foundations of the statistical physics of data

    NASA Astrophysics Data System (ADS)

    Gorban, A. N.; Tyukin, I. Y.

    2018-04-01

    The concentrations of measure phenomena were discovered as the mathematical background to statistical mechanics at the end of the nineteenth/beginning of the twentieth century and have been explored in mathematics ever since. At the beginning of the twenty-first century, it became clear that the proper utilization of these phenomena in machine learning might transform the curse of dimensionality into the blessing of dimensionality. This paper summarizes recently discovered phenomena of measure concentration which drastically simplify some machine learning problems in high dimension, and allow us to correct legacy artificial intelligence systems. The classical concentration of measure theorems state that i.i.d. random points are concentrated in a thin layer near a surface (a sphere or equators of a sphere, an average or median-level set of energy or another Lipschitz function, etc.). The new stochastic separation theorems describe the thin structure of these thin layers: the random points are not only concentrated in a thin layer but are all linearly separable from the rest of the set, even for exponentially large random sets. The linear functionals for separation of points can be selected in the form of the linear Fisher's discriminant. All artificial intelligence systems make errors. Non-destructive correction requires separation of the situations (samples) with errors from the samples corresponding to correct behaviour by a simple and robust classifier. The stochastic separation theorems provide us with such classifiers and determine a non-iterative (one-shot) procedure for their construction. This article is part of the theme issue `Hilbert's sixth problem'.

  15. A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution

    PubMed Central

    Molazemhosseini, Alireza; Liu, Chung Chiun

    2018-01-01

    A cuprous oxide (Cu2O) thin layer served as the base for a non-enzymatic glucose sensor in an alkaline medium, 0.1 NaOH solution, with a linear range of 50–200 mg/dL using differential pulse voltammetry (DPV) measurement. An X-ray photoelectron spectroscopy (XPS) study confirmed the formation of the cuprous oxide layer on the thin gold film sensor prototype. Quantitative detection of glucose in both phosphate-buffered saline (PBS) and undiluted human serum was carried out. Neither ascorbic acid nor uric acid, even at a relatively high concentration level (100 mg/dL in serum), interfered with the glucose detection, demonstrating the excellent selectivity of this non-enzymatic cuprous oxide thin layer-based glucose sensor. Chronoamperometry and single potential amperometric voltammetry were used to verify the measurements obtained by DPV, and the positive results validated that the detection of glucose in a 0.1 M NaOH alkaline medium by DPV measurement was effective. Nickel, platinum, and copper are commonly used metals for non-enzymatic glucose detection. The performance of these metal-based sensors for glucose detection using DPV were also evaluated. The cuprous oxide (Cu2O) thin layer-based sensor showed the best sensitivity for glucose detection among the sensors evaluated. PMID:29316652

  16. Use of the Bethe equation for inner-shell ionization by electron impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc

    2016-05-14

    We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L{sub 3}-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections andmore » available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232–276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.« less

  17. High Power Storage System Based on Thin Film Solid Ionics.

    DTIC Science & Technology

    1988-02-01

    linear sweep voltametry (LSV) technique (Dahn and Hearing, 1981). We observe that in non-annealed film the peak at 1.2 V Is very strong compared to that...1.8V. The redox stability range has been determined by cyclic voltametry for different preparation conditions of the films. Lithium solid state hybrid...Fig. 6 Linear sweep voltagrams at 7gV/s rate of InSe films prepared at Ts=RT (a) non-annealed, (b) annealed at 475 K during 64 hours. 11 1 -’ 1 J, -I

  18. Electrical and structural characterization of plasma polymerized polyaniline/TiO2 heterostructure diode: a comparative study of single and bilayer TiO2 thin film electrode.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik

    2011-04-01

    A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers.

  19. Recent Progress in Adjustable X-ray Optics for Astronomy

    NASA Technical Reports Server (NTRS)

    Reid, Paul B.; Allured, Ryan; Cotroneo, Vincenzo; McMuldroch, Stuart; Marquez, Vanessa; Schwartz, Daniel A.; Vikhlinin, Alexey; ODell, Stephen L.; Ramsey, Brian; Trolier-McKinstry, Susan; hide

    2014-01-01

    Two adjustable X-ray optics approaches are being developed for thin grazing incidence optics for astronomy. The first approach employs thin film piezoelectric material sputter deposited as a continuous layer on the back of thin, lightweight Wolter-I mirror segments. The piezoelectric material is used to correct mirror figure errors from fabrication, mounting/alignment, and any ground to orbit changes. The goal of this technology is to produce Wolter mirror segment pairs corrected to 0.5 arc sec image resolution. With the combination of high angular resolution and lightweight, this mirror technology is suitable for the Square Meter Arc Second Resolution Telescope for X-rays (SMART-X) mission concept.. The second approach makes use of electrostrictive adjusters and full shell nickel/cobalt electroplated replication mirrors. An array of radial adjusters is used to deform the full shells to correct the lowest order axial and azimuthal errors, improving imaging performance from the 10 - 15 arc sec level to 5 arc sec. We report on recent developments in both technologies. In particular, we discuss the use of insitu strain gauges on the thin piezo film mirrors for use as feedback on piezoelectric adjuster functionality, including their use for on-orbit figure correction. We also report on the first tests of full shell nickel/cobalt mirror correction with radial adjusters.

  20. A Designed ZnO@ZIF-8 Core-Shell Nanorod Film as a Gas Sensor with Excellent Selectivity for H2 over CO.

    PubMed

    Wu, Xiaonan; Xiong, Shunshun; Mao, Zhenghao; Hu, Sheng; Long, Xinggui

    2017-06-12

    The development of H 2 gas sensors is important for H 2 production as a fuel. In this work, a ZnO@ZIF-8 core-shell nanorod film is designed and synthesized as a gas sensor through a facile solution deposition process. This film shows an excellent selective response for H 2 over CO. By fine-tuning the reaction conditions, a ZnO@ZIF-8 core-shell structure with a thin, fine-grain, porous ZIF-8 shell is obtained. Owing to the facile H 2 penetration through the ZIF-8 thin shell (≈110 nm) and the increased oxygen vacancies for the complex film, the ZnO@ZIF-8 nanorod film shows a higher H 2 sensitivity than a raw ZnO nanorod film. More importantly, the ZnO@ZIF-8 nanorod film shows no response for CO at 200 °C. Because of the fine-grain confinement of the porous ZIF-8 shell (<140 nm), the molecular sieving effect is strengthened, which allows the effective separation of H 2 over CO. This work provides a promising strategy for the design of high-performance H 2 sensors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. M sub shell X-ray emission cross section measurements for Pt, Au, Hg, Pb, Th and U at 8 and 10 keV synchrotron photons

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Gupta, Sheenu; Tiwari, M. K.; Mittal, Raj

    2014-02-01

    M sub shell X-ray emission cross sections of Pt, Au, Hg, Pb, Th and U at 8 and 10 keV photon energies have been determined with linearly polarized photon beam from Indus-2 synchrotron source. The measured cross sections have been reported for the first time and were used to check the available theoretical Dirac-Hartree-Slater (DHS) and Dirac-Fock (DF) values reported in literature and also the presently derived Non Relativistic Hartree-Slater (NRHS), DF and DHS values for Mξ, Mδ, Mα, Mβ, Mγ, Mm1 and Mm2 group of X-rays.

  2. Minimum stiffness criteria for ring frame stiffeners of space launch vehicles

    NASA Astrophysics Data System (ADS)

    Friedrich, Linus; Schröder, Kai-Uwe

    2016-12-01

    Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.

  3. New Alloys for Electroformed Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Engelhaupt, D.; Ramsey, B. D.; ODell, S. L.; Jones, W. D.; Russell, J. K.

    2000-01-01

    The process of electroforming x-ray mirror shells off a superpolished mandrel has been widely used. The recently launched XMM mission is a good example of this, containing 174 such mirror shells of diameters ranging from 0.3-0.7 m and thicknesses of 0.47-1.07 mm. To continue to utilize this technique for the next generation of x-ray observatories, where ever-larger collecting areas will be required within the constraints of tight weight budgets, demands that new alloys be developed that can withstand the large stresses imposed on very thin shells by the replication and handling processes. Towards this end, we began a development program in late 1997 to produce a high-strength alloy suitable for electroforming very thin high-resolution x-ray optics. The requirements for this task are quite severe; not only must the electroformed deposit be very strong, it must also have extremely low residual stresses to prevent serious figure distortions in large thin-walled shells. Further, the electroforming must be performed at near room temperature, as large temperature changes will modify the figure of the mandrel, in an environment that is not corrosive for the mandrel. The figure of merit for the strength of the electroformed deposit is its Precision Elastic Limit (PEL). This is a measure of permanent strain, at the few parts per million level, under applied stress. Pure nickel is very ductile and will permanently deform, at the parts-per-million level under loads of a few x 10(exp 7) Pa. These stresses are easily exceeded when thin-walled shells (150 micron thick) are replicated. Our goal was to develop an alloy an order of magnitude stronger than this. We will present the results of our development program, showing the evolution of our plating baths through to our present 'glassy' nickel alloy that satisfies the goals above. For each we will show the electroforming characteristics of the bath and the PEL measurements for the resulting alloys. We estimate the ultimate limit on shell thickness and mass for x-ray mirrors produced in these baths.

  4. Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.

    2017-09-01

    The warpage is often encountered which occur during injection moulding process of thin shell part depending the process condition. The statistical design of experiment method which are Integrating Finite Element (FE) Analysis, moldflow analysis and response surface methodology (RSM) are the stage of few ways in minimize the warpage values of x,y and z on thin shell plastic parts that were investigated. A battery cover of a remote controller is one of the thin shell plastic part that produced by using injection moulding process. The optimum process condition parameter were determined as to achieve the minimum warpage from being occur. Packing pressure, Cooling time, Melt temperature and Mould temperature are 4 parameters that considered in this study. A two full factorial experimental design was conducted in Design Expert of RSM analysis as to combine all these parameters study. FE analysis result gain from analysis of variance (ANOVA) method was the one of the important process parameters influenced warpage. By using RSM, a predictive response surface model for warpage data will be shown.

  5. One-pot synthesis of metal-organic framework@SiO2 core-shell nanoparticles with enhanced visible-light photoactivity.

    PubMed

    Li, Zong-Qun; Wang, Ai; Guo, Chun-Yan; Tai, Yan-Fang; Qiu, Ling-Guang

    2013-10-14

    This paper presents a novel strategy to prepare Cu3(BTC)2@SiO2 core-shell nanoparticles in the size range of 200-400 nm using a new one-pot strategy under ultrasonic irradiation at room temperature. In this approach, the silica shell thickness could be finely tuned in the size range of 12-60 nm for various reaction times. Nanocomposite thin films were fabricated on the glass substrates by Sol-Gel spin coating using the products for 1.5 h, 2 h and 2.5 h, respectively, and heat treated using an infrared lamp heating system in air. The photocatalytic degradation of phenol in aqueous solution using Cu2(BTC)3@SiO2 thin films was investigated under visible light irradiation at pH 4. After a 45 min reaction with phenol, the degradation rate was up to 93.1%. Moreover, the thin film photocatalysts could be reused 5 times without appreciable loss of photocatalytic activity for degradation of phenol. The present work clearly shows that the films as photocatalysts showed higher photocatalytic performance.

  6. Engineered magnetic core shell nanoprobes: Synthesis and applications to cancer imaging and therapeutics.

    PubMed

    Mandal, Samir; Chaudhuri, Keya

    2016-02-26

    Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.

  7. Retrospective environmental biomonitoring - Mussel Watch expanded

    NASA Astrophysics Data System (ADS)

    Schöne, Bernd R.; Krause, Richard A.

    2016-09-01

    Monitoring bioavailable contaminants and determining baseline conditions in aquatic environments has become an important aspect of ecology and ecotoxicology. Since the mid-1970s and the initiation of the Mussel Watch program, this has been successfully accomplished with bivalve mollusks. These (mostly) sessile organisms reliably and proportionately record changes of a range of organic and inorganic pollutants occurring in the water, food or sediment. The great majority of studies have measured the concentration of pollutants in soft tissues and, to a much lesser extent, in whole shells or fractions thereof. Both approaches come with several drawbacks. Neither soft tissues nor whole shells can resolve temporal changes of the pollution history, except through the analysis of multiple specimens collected at different times. Soft tissues and shell fractions provide time-averaged data spanning months or years, and whole shells time-averaged data over the entire lifespan of the animal. Even with regular sampling of multiple specimens over long intervals of time, the resulting chronology may not faithfully resolve short-term changes of water quality. Compounding the problem, whole shell averages tend to be non-arithmetic and non-linear, because shell growth rate varies through seasons and lifetime, and different shell layers often vary ultrastructurally and can thus be chemically different from each other. Mussel Watch could greatly benefit from the potential of bivalve shells in providing high-resolution, temporally aligned archives of environmental variability. So far, only circa a dozen studies have demonstrated that the sclerochronological approach - i.e., combined growth pattern and high-resolution chemical analyses - can provide sub-seasonally to annually resolved time-series documenting the history of pollution over centuries and even millennia. On the other hand, the sclerochronological community has failed to fully appreciate that the formation of the shell and its chemical composition is controlled by the soft parts and that a robust interpretation of the shell record requires a detailed understanding of bivalve physiology, behavior and ecology. This review attempts to bring together the Mussel Watch and sclerochronology communities and lay the foundation of a new subdiscipline of the Mussel Watch: retrospective environmental biomonitoring. For this purpose, we provide an overview of seminal work from both fields and outline potential future research directions.

  8. Buckling analysis of Big Dee Vacuum Vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lightner, S.; Gallix, R.

    1983-12-01

    A simplified three-dimensional shell buckling analysis of the GA Technologies Inc., Big Dee Vacuum Vessel (V/V) was performed using the finite element program TRICO. A coarse-mesh linear elastic model, which accommodated the support boundary conditions, was used to determine the buckling mode shape under a uniform external pressure. Using this buckling mode shape, refined models were used to calculate the linear buckling load (P/sub crit/) more accurately. Several different designs of the Big Dee V/V were considered in this analysis. The supports for the V/V were equally-spaced radial pins at the outer diameter of the mid-plane. For all the casesmore » considered, the buckling mode was axisymmetric in the toroidal direction. Therefore, it was possible to use only a small angular sector of a toric shell for the refined analysis. P/sub crit/ for the Big Dee is about 60 atm for a uniform external pressure. Also investigated in this analysis were the effects of geometrical imperfections and non-uniform pressure distributions.« less

  9. Laminated anisotropic reinforced plastic plates and shells

    NASA Technical Reports Server (NTRS)

    Korolev, V. I.

    1981-01-01

    Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.

  10. Calculation of load distribution in stiffened cylindrical shells

    NASA Technical Reports Server (NTRS)

    Ebner, H; Koller, H

    1938-01-01

    Thin-walled shells with strong longitudinal and transverse stiffening (for example, stressed-skin fuselages and wings) may, under certain simplifying assumptions, be treated as static systems with finite redundancies. In this report the underlying basis for this method of treatment of the problem is presented and a computation procedure for stiffened cylindrical shells with curved sheet panels indicated. A detailed discussion of the force distribution due to applied concentrated forces is given, and the discussion illustrated by numerical examples which refer to an experimentally determined circular cylindrical shell.

  11. Nonlinear Shell Modeling of Thin Membranes with Emphasis on Structural Wrinkling

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Sleight, David W.; Wang, John T.

    2003-01-01

    Thin solar sail membranes of very large span are being envisioned for near-term space missions. One major design issue that is inherent to these very flexible structures is the formation of wrinkling patterns. Structural wrinkles may deteriorate a solar sail's performance and, in certain cases, structural integrity. In this paper, a geometrically nonlinear, updated Lagrangian shell formulation is employed using the ABAQUS finite element code to simulate the formation of wrinkled deformations in thin-film membranes. The restrictive assumptions of true membranes, i.e. Tension Field theory (TF), are not invoked. Two effective modeling strategies are introduced to facilitate convergent solutions of wrinkled equilibrium states. Several numerical studies are carried out, and the results are compared with recent experimental data. Good agreement is observed between the numerical simulations and experimental data.

  12. A comparison of the solvation structure and dynamics of the lithium ion in linear organic carbonates with different alkyl chain lengths.

    PubMed

    Fulfer, K D; Kuroda, D G

    2017-09-20

    The structure and dynamics of electrolytes composed of lithium hexafluorophosphate (LiPF 6 ) in dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate were investigated using a combination of linear and two-dimensional infrared spectroscopies. The solutions studied here have a LiPF 6 concentration of X(LiPF 6 ) = 0.09, which is typically found in commercial lithium ion batteries. This study focuses on comparing the differences in the solvation shell structure and dynamics produced by linear organic carbonates of different alkyl chain lengths. The IR experiments show that either linear carbonate forms a tetrahedral solvation shell (coordination number of 4) around the lithium ion irrespective of whether the solvation shell has anions in close proximity to the carbonates. Moreover, analysis of the absorption cross sections via FTIR and DFT computations reveals a distortion in the angle formed by Li + -O[double bond, length as m-dash]C which decreases from the expected 180° when the alkyl chains of the carbonate are lengthened. In addition, our findings also reveal that, likely due to its asymmetric structure, ethyl methyl carbonate has a significantly more distorted tetrahedral lithium ion solvation shell than either of the other two investigated carbonates. IR photon echo studies further demonstrate that the motions of the solvation shell have a time scale of a few picoseconds for all three linear carbonates. Interestingly, a slowdown of the in place-motions of the first solvation shell is observed when the carbonate has a longer alkyl chain length irrespective of the symmetry. In addition, vibrational energy transfer with a time scale of tens of picoseconds is observed between strongly coupled modes arising from the solvation shell structure of the Li + which corroborates the modeling of these solvation shells in terms of highly coupled vibrational states. Results of this study provide new insights into the molecular structure and dynamics of the lithium ion electrolyte components as a function of solvent structure.

  13. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Schmit, P. F.

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  14. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velikovich, A. L.; Schmit, P. F.

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  15. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    DOE PAGES

    Velikovich, A. L.; Schmit, P. F.

    2015-12-28

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less

  16. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays

    PubMed Central

    Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; Paik, Haemin; Roh, Hee Seok; Hong, Jongin; Hong, Seungbum; Han, Seung Min; No, Kwangsoo

    2015-01-01

    PVDF and P(VDF-TrFE) nano- and micro- structures have been widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use of the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures. PMID:26040539

  17. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays

    DOE PAGES

    Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; ...

    2015-06-04

    PVDF and P(VDF-TrFE) nano- and micro- structures are widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use ofmore » the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures.« less

  18. Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmit, P. F.

    2015-12-01

    Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining the "instantaneous growth rate" are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].

  19. -dimensional thin shell wormhole with deformed throat can be supported by normal matter

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.

    2015-06-01

    From the physics standpoint the exotic matter problem is a major difficulty in thin shell wormholes (TSWs) with spherical/cylindrical throat topologies. We aim to circumvent this handicap by considering angle dependent throats in dimensions. By considering the throat of the TSW to be deformed spherical, i.e., a function of and , we present general conditions which are to be satisfied by the shape of the throat in order to have the wormhole supported by matter with positive density in the static reference frame. We provide particular solutions/examples to the constraint conditions.

  20. Deformation in Micro Roll Forming of Bipolar Plate

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M.

    2017-09-01

    Micro roll forming is a new processing technology to produce bipolar plates for Proton Exchange Membrane Fuel Cells (PEMFC) from thin stainless steel foil. To gain a better understanding of the deformation of the material in this process, numerical studies are necessary before experimental implementation. In general, solid elements with several layers through the material thickness are required to analyse material thinning in processes where the deformation mode is that of bending combined with tension, but this results in high computational costs. This pure solid element approach is especially time-consuming when analysing roll forming processes which generally involves feeding a long strip through a number of successive roll stands. In an attempt to develop a more efficient modelling approach without sacrificing accuracy, two solutions are numerically analysed with ABAQUS/Explicit in this paper. In the first, a small patch of solid elements over the strip width and in the centre of the “pre-cut” sheet is coupled with shell elements while in the second approach pure shell elements are used to discretize the full sheet. In the first approach, the shell element enables accounting for the effect of material being held in the roll stands on material flow while solid elements can be applied to analyse material thinning in a small discrete area of the sheet. Experimental micro roll forming trials are performed to prove that the coupling of solid and shell elements can give acceptable model accuracy while using shell elements alone is shown to result in major deviations between numerical and experimental results.

  1. Vacuum thin shells in Einstein–Gauss–Bonnet brane-world cosmology

    NASA Astrophysics Data System (ADS)

    Ramirez, Marcos A.

    2018-04-01

    In this paper we construct new solutions of the Einstein–Gauss–Bonnet field equations in an isotropic Shiromizu–Maeda–Sasaki brane-world setting which represent a couple of Z 2-symmetric vacuum thin shells splitting from the central brane, and explore the main properties of the dynamics of the system. The matching of the separating vacuum shells with the brane-world is as smooth as possible and all matter fields are restricted to the brane. We prove the existence of these solutions, derive the criteria for their existence, analyse some fundamental aspects or their evolution and demonstrate the possibility of constructing cosmological examples that exhibit this feature at early times. We also comment on the possible implications for cosmology and the relation of this system with the thermodynamic instability of highly symmetric vacuum solutions of Lovelock theory.

  2. A Bayesian approach for estimating under-reported dengue incidence with a focus on non-linear associations between climate and dengue in Dhaka, Bangladesh.

    PubMed

    Sharmin, Sifat; Glass, Kathryn; Viennet, Elvina; Harley, David

    2018-04-01

    Determining the relation between climate and dengue incidence is challenging due to under-reporting of disease and consequent biased incidence estimates. Non-linear associations between climate and incidence compound this. Here, we introduce a modelling framework to estimate dengue incidence from passive surveillance data while incorporating non-linear climate effects. We estimated the true number of cases per month using a Bayesian generalised linear model, developed in stages to adjust for under-reporting. A semi-parametric thin-plate spline approach was used to quantify non-linear climate effects. The approach was applied to data collected from the national dengue surveillance system of Bangladesh. The model estimated that only 2.8% (95% credible interval 2.7-2.8) of all cases in the capital Dhaka were reported through passive case reporting. The optimal mean monthly temperature for dengue transmission is 29℃ and average monthly rainfall above 15 mm decreases transmission. Our approach provides an estimate of true incidence and an understanding of the effects of temperature and rainfall on dengue transmission in Dhaka, Bangladesh.

  3. Thermoviscoelastoplastic Deformation of Compound Shells of Revolution Made of a Damageable Material

    NASA Astrophysics Data System (ADS)

    Shevchenko, Yu. N.; Galishin, A. Z.; Babeshko, M. E.

    2015-11-01

    A technique for numerical analysis of the thermoviscoelastoplastic deformation of thin compound shells made of a damageable material in which a fracture front propagates is described. A procedure for automatic variation in the step of integration of the kinetic damage equation is developed. A two-layer cylindrical shell cooling by convection and subjected to internal pressure and tensile force is analyzed as an example. The numerical data are presented and analyzed

  4. Renyi Entropies of a Black Hole

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.

    2008-08-01

    The Renyi entropies, Hl, of Hawking radiation contained in a thin shell surrounding the black hole are evaluated. When the width of the shell is adjusted to the energy content corresponding to the mass defect, the Bekenstein-Hawking formula for the Shannon (S=H1) entropy of a black hole is reproduced. This result does not depend on the distance of the shell from the horizon. The Renyi entropies of higher order, however, are sensitive to it.

  5. The construction, characterization, Hg(II)-sensing and removal behavior of magnetic core-shell nanospheres loaded with fluorescence "Off-On" probe

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Wei, Xiaoyan; Chen, Jie; Sun, Ping; Ouyang, Yuxia; Fan, Juhong; Liu, Rui

    2014-12-01

    The present paper constructed and discussed core-shell structured nanospheres grafted with rhodamine based probe for Hg(II) sensing and removal. Electron microscopy images, XRD curves, thermogravimetric analysis and N2 adsorption/desorption isotherms were used to identify the core-shell structure. The inner core consisted of superparamagnetic Fe3O4 nanoparticles, which made the nanocomposite magnetically removable. The outer shell was constructed with silica molecular sieve which provided large surface area and ordered tunnels for the sensing probe, accelerating analyte adsorption and transportation. The rhodamine based sensing probe emission increased with the increasing Hg(II) concentration, showing emission "Off-On" effect, which could be explained by the structural transformation from a non-emissive one to a highly emissive one. The influence from various metal ions and pH values was also investigated, which suggested this structural transformation could only be triggered by Hg(II), showing high selectivity and linear response. The Hg(II) sensing nanocomposite could be regenerated after usage. The response time was slightly compromised and could be further improved.

  6. The role of radiative de-excitation in the neutralization process of highly charged ions interacting with a single layer of graphene

    NASA Astrophysics Data System (ADS)

    Schwestka, J.; Wilhelm, R. A.; Gruber, E.; Heller, R.; Kozubek, R.; Schleberger, M.; Facsko, S.; Aumayr, F.

    2018-05-01

    X-ray emission of slow (<1 a.u.) highly charged Argon and Xenon ions is measured for transmission through a freestanding single layer of graphene. To discriminate against X-ray emission originating from the graphene's support grid a coincidence technique is used. X-ray emission of 75 keV Ar17+ and Ar18+ ions with either one or two K-shell vacancies is recorded. Using a windowless Bruker XFlash detector allows us to measure additionally Ar KLL and KLM Auger electrons and determine the branching ratio of radiative vs. non-radiative decay of Ar K-shell holes. Furthermore, X-ray spectra for 100 keV Xe22+-Xe35+ ions are compared, showing a broad M-line peak for all cases, where M-shell vacancies are present. All these peaks are accompanied by emission lines at still higher energies indicating the presence of a hollow atom during X-ray decay. We report a linear shift of the main M-line peak to higher energies for increasing incident charge state, i.e. increasing number of M-shell holes.

  7. New Progress on Radiocarbon Geochronology in Southern Lake Tanganyika (East Africa)

    NASA Astrophysics Data System (ADS)

    McGlue, M. M.; Soreghan, M. J.

    2017-12-01

    Our limnogeological research in Lake Tanganyika focuses on elucidating the patterns of sediment accumulation on deepwater horsts, outer platforms, and littoral environments in the lake's southern basin ( 6-8°S latitude). Here, we present new radiocarbon (14C) dates from high-quality surface sediment cores, in order to make comparisons with previously published age models, to address the presence and spatiotemporal variability of a reservoir effect, and to constrain sedimentation rates and facies at sites that may be important targets for future scientific drilling. Plant macrofossils are rare in deepwater sediment cores, so charcoal and bulk organic matter have been the primary materials used for dating. On the Kavala Island Ridge (KIR) horst, initial core descriptions revealed variations in laminae presence, thickness, and chemistry. Sediment cores from the KIR at 172m water depth consist of thickly laminated diatom oozes. Charcoal from the bases of these cores returned median ages of 2.1-2.2 cal ka, suggesting linear accumulation rates on the order of 0.51 mm/yr. By contrast, a core from 420 m water depth on the KIR exhibited very thin laminations and diatom layers were much less prominent. Charcoal at the base of this core produced a median age of 8.1 cal ka, suggesting a linear accumulation rate of 0.11 mm/yr. These initial results suggest that sedimentation rates may vary considerably over sublacustrine horst blocks. We will test this initial discovery with additional sedimentation rate information from the Kalya and Nitiri horsts. In addition, we report new 14C dates made on both dead and live-collected shells of the endemic gastropod Neothauma tanganyicense. These shells form vast accumulations along shallow-water platforms of the lake and form an important substrate for a number of other endemic species. The discovery of living snails in southern Lake Tanganyika may allow for the development of a species-specific reservoir correction. A limited N. tanganyicense shell 14C dataset from the lake's northern basin exhibits time averaged over the past 1600 cal yrs; results from this project will begin to address spatial variability in time averaging, and therefore improve our understanding of shell bed formation and the extent to which anthropogenic sedimentation is impacting shell bed persistence.

  8. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    PubMed

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Modeling susceptibility difference artifacts produced by metallic implants in magnetic resonance imaging with point-based thin-plate spline image registration.

    PubMed

    Pauchard, Y; Smith, M; Mintchev, M

    2004-01-01

    Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.

  10. PV Degradation Curves: Non-Linearities and Failure Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk C.; Silverman, Timothy J.; Sekulic, Bill

    Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance. The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and appear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually,more » in service life prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration) while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may be seen in other systems.« less

  11. A circumferential crack in a cylindrical shell under tension.

    NASA Technical Reports Server (NTRS)

    Duncan-Fama, M. E.; Sanders, J. L., Jr.

    1972-01-01

    A closed cylindrical shell under uniform internal pressure has a slit around a portion of its circumference. Linear shallow shell theory predicts inverse square-root-type singularities in certain of the stresses at the crack tips. This paper reports the computed strength of these singularities for different values of a dimensionless parameter based on crack length, shell radius and shell thickness.

  12. Lyophilic matrix method for dissolution and release studies of nanoscale particles.

    PubMed

    Pessi, Jenni; Svanbäck, Sami; Lassila, Ilkka; Hæggström, Edward; Yliruusi, Jouko

    2017-10-25

    We introduce a system with a lyophilic matrix to aid dissolution studies of powders and particulate systems. This lyophilic matrix method (LM method) is based on the ability to discriminate between non-dissolved particles and the dissolved species. In the LM method the test substance is embedded in a thin lyophilic core-shell matrix. This permits rapid contact with the dissolution medium while minimizing dispersion of non-dissolved particles without presenting a substantial diffusion barrier. The method produces realistic dissolution and release results for particulate systems, especially those featuring nanoscale particles. By minimizing method-induced effects on the dissolution profile of nanopowders, the LM method overcomes shortcomings associated with current dissolution tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Thick or Thin Ice Shell on Europa?

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  14. Two-nucleon high-spin states, the Bansal-French model and the crude shell model

    NASA Astrophysics Data System (ADS)

    Chan, Tsan Ung

    1987-08-01

    Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B2n in the Bansal-French model can be deduced from the A and T linear dependence of Bn and the crude shell model. 7-2 states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.

  15. A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls.

    PubMed

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor

    2017-01-01

    We report on a top-down method for the controlled fabrication of three-dimensional (3D), closed, thin-shelled, hollow nanostructures (nanocages) on planar supports. The presented approach is based on conventional microelectronic fabrication processes and exploits the permeability of thin metal films to hollow-out polymer-filled metal nanocages through an oxygen-plasma process. The technique is used for fabricating arrays of cylindrical nanocages made of thin Al shells on silicon substrates. This hollow metal configuration features optical resonance as revealed by spectral reflectance measurements and numerical simulations. The fabricated nanocages were demonstrated as a refractometric sensor with a measured bulk sensitivity of 327 nm/refractive index unit (RIU). The pattern design flexibility and controllability offered by top-down nanofabrication techniques opens the door to the possibility of massive integration of these hollow 3D nano-objects on a chip for applications such as nanocontainers, nanoreactors, nanofluidics, nano-biosensors and photonic devices.

  16. Experimental Demonstration of Underwater Acoustic Scattering Cancellation

    PubMed Central

    Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2015-01-01

    We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85. PMID:26282067

  17. Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.

    2017-03-01

    Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness

  18. THREE-DIMENSIONAL MODELING OF THE DYNAMICS OF THERAPEUTIC ULTRASOUND CONTRAST AGENTS

    PubMed Central

    Hsiao, Chao-Tsung; Lu, Xiaozhen; Chahine, Georges

    2010-01-01

    A 3-D thick-shell contrast agent dynamics model was developed by coupling a finite volume Navier-Stokes solver and a potential boundary element method flow solver to simulate the dynamics of thick-shelled contrast agents subjected to pressure waves. The 3-D model was validated using a spherical thick-shell model validated by experimental observations. We then used this model to study shell break-up during nonspherical deformations resulting from multiple contrast agent interaction or the presence of a nearby solid wall. Our simulations indicate that the thick viscous shell resists the contrast agent from forming a re-entrant jet, as normally observed for an air bubble oscillating near a solid wall. Instead, the shell thickness varies significantly from location to location during the dynamics, and this could lead to shell break-up caused by local shell thinning and stretching. PMID:20950929

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier

    In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO 2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of themore » hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less

  20. Re-entry vehicle shape for enhanced performance

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor); Garcia, Joseph A. (Inventor); Prabhu, Dinesh K. (Inventor)

    2008-01-01

    A convex shell structure for enhanced aerodynamic performance and/or reduced heat transfer requirements for a space vehicle that re-enters an atmosphere. The structure has a fore-body, an aft-body, a longitudinal axis and a transverse cross sectional shape, projected on a plane containing the longitudinal axis, that includes: first and second linear segments, smoothly joined at a first end of each the first and second linear segments to an end of a third linear segment by respective first and second curvilinear segments; and a fourth linear segment, joined to a second end of each of the first and second segments by curvilinear segments, including first and second ellipses having unequal ellipse parameters. The cross sectional shape is non-symmetric about the longitudinal axis. The fourth linear segment can be replaced by a sum of one or more polynomials, trigonometric functions or other functions satisfying certain constraints.

  1. Meshless analysis of shear deformable shells: the linear model

    NASA Astrophysics Data System (ADS)

    Costa, Jorge C.; Tiago, Carlos M.; Pimenta, Paulo M.

    2013-10-01

    This work develops a kinematically linear shell model departing from a consistent nonlinear theory. The initial geometry is mapped from a flat reference configuration by a stress-free finite deformation, after which, the actual shell motion takes place. The model maintains the features of a complete stress-resultant theory with Reissner-Mindlin kinematics based on an inextensible director. A hybrid displacement variational formulation is presented, where the domain displacements and kinematic boundary reactions are independently approximated. The resort to a flat reference configuration allows the discretization using 2-D Multiple Fixed Least-Squares (MFLS) on the domain. The consistent definition of stress resultants and consequent plane stress assumption led to a neat formulation for the analysis of shells. The consistent linear approximation, combined with MFLS, made possible efficient computations with a desired continuity degree, leading to smooth results for the displacement, strain and stress fields, as shown by several numerical examples.

  2. Geometry induced phase transitions in magnetic spherical shell

    NASA Astrophysics Data System (ADS)

    Sloika, Mykola I.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Pylypovskyi, Oleksandr V.; Gaididei, Yuri

    2017-12-01

    Equilibrium magnetization states in spherical shells of a magnetically soft ferromagnet form two out-of-surface vortices with codirectionally magnetized vortex cores at the sphere poles: (i) a whirligig state with the in-surface magnetization oriented along parallels is typical for thick shells; (ii) a three dimensional onion state with the in-surface meridional direction of the magnetization is realized in thin shells. The geometry of spherical shell prohibits an existence of spatially homogeneous magnetization distribution, even in the case of small sample radii. By varying geometrical parameters a continuous phase transition between the whirligig and onion states takes place. The detailed analytical description of the phase diagram is well confirmed by micromagnetic simulations.

  3. Fabrication of ceramic substrate-reinforced and free forms

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.

    1985-01-01

    Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.

  4. Block copolymers from ionic liquids for the preparation of thin carbonaceous shells

    PubMed Central

    Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang

    2017-01-01

    This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials. PMID:28904612

  5. Block copolymers from ionic liquids for the preparation of thin carbonaceous shells.

    PubMed

    Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Zentel, Rudolf

    2017-01-01

    This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO 2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO 2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials.

  6. Chameleon gravity, electrostatics, and kinematics in the outer galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhasan, R.; Mann, R.B.; Afshordi, N.

    2011-12-01

    Light scalar fields are expected to arise in theories of high energy physics (such as string theory), and find phenomenological motivations in dark energy, dark matter, or neutrino physics. However, the coupling of light scalar fields to ordinary (or dark) matter is strongly constrained from laboratory, solar system, and astrophysical tests of the fifth force. One way to evade these constraints in dense environments is through the chameleon mechanism, where the field's mass steeply increases with ambient density. Consequently, the chameleonic force is only sourced by a thin shell near the surface of dense objects, which significantly reduces its magnitude.more » In this paper, we argue that thin-shell conditions are equivalent to ''conducting'' boundary conditions in electrostatics. As an application, we use the analogue of the method of images to calculate the back-reaction (or self-force) of an object around a spherical gravitational source. Using this method, we can explicitly compute the violation of the equivalence principle in the outskirts of galactic haloes (assuming an NFW dark matter profile): Intermediate mass satellites can be slower than their larger/smaller counterparts by as much as 10% close to a thin shell.« less

  7. Pattern zoology in biaxially pre-stretched elastic bilayers: from wrinkles and creases to fracture-like ridges

    NASA Astrophysics Data System (ADS)

    Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro

    The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.

  8. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    NASA Astrophysics Data System (ADS)

    Maleki, H.; Simchi, A.; Imani, M.; Costa, B. F. O.

    2012-11-01

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe3+ and Fe2+], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations <0.1 mg/mL. Surface functionalization was performed by conformal coating of the NPs with a thin shell of gold (˜4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe3O4 core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core-shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core-shell nanostructure.

  9. Three-dimensional wave evolution on electrified falling films

    NASA Astrophysics Data System (ADS)

    Tomlin, Ruben; Papageorgiou, Demetrios; Pavliotis, Greg

    2016-11-01

    We consider the full three-dimensional model for a thin viscous liquid film completely wetting a flat infinite solid substrate at some non-zero angle to the horizontal, with an electric field normal to the substrate far from the flow. Thin film flows have applications in cooling processes. Many studies have shown that the presence of interfacial waves increases heat transfer by orders of magnitude due to film thinning and convection effects. A long-wave asymptotics procedure yields a Kuramoto-Sivashinsky equation with a non-local term to model the weakly nonlinear evolution of the interface dynamics for overlying film arrangements, with a restriction on the electric field strength. The non-local term is always linearly destabilising and produces growth rates proportional to the cube of the magnitude of the wavenumber vector. A sufficiently strong electric field is able promote non-trivial dynamics for subcritical Reynolds number flows where the flat interface is stable in the absence of an electric field. We present numerical simulations where we observe rich dynamical behavior with competing attractors, including "snaking" travelling waves and other fully three-dimensional wave formations. EPSRC studentship (RJT).

  10. Three-dimensional flat shell-to-shell coupling: numerical challenges

    NASA Astrophysics Data System (ADS)

    Guo, Kuo; Haikal, Ghadir

    2017-11-01

    The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  11. Hierarchically structured nanowires on and nanosticks in ZnO microtubes

    PubMed Central

    Rivaldo-Gómez, C. M.; Cabrera-Pasca, G. A.; Zúñiga, A.; Carbonari, A. W.; Souza, J. A.

    2015-01-01

    We report both coaxial core-shell structured microwires and ZnO microtubes with growth of nanosticks in the inner and nanowires on the outer surface as a novel hierarchical micro/nanoarchitecture. First, a core-shell structure is obtained—the core is formed by metallic Zn and the semiconducting shell is comprised by a thin oxide layer covered with a high density of nanowires. Such Zn/ZnO core-shell array showed magnetoresistance effect. It is suggested that magnetic moments in the nanostructured shell superimposes to the external magnetic field enhancing the MR effect. Second, microtubes decorated with nanowires on the external surface are obtained. In an intermediate stage, a hierarchical morphology comprised of discrete nanosticks in the inner surface of the microtube has been found. Hyperfine interaction measurements disclosed the presence of confined metallic Zn regions at the interface between linked ZnO grains forming a chain and a ZnO thicker layer. Surprisingly, the metallic clusters form highly textured thin flat regions oriented parallel to the surface of the microtube as revealed by the electrical field gradient direction. The driving force to grow the internal nanosticks has been ascribed to stress-induced migration of Zn ions due to compressive stress caused by the presence of these confined regions. PMID:26456527

  12. Design and modeling of an additive manufactured thin shell for x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Feldman, Charlotte; Atkins, Carolyn; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Willingale, Richard; Doel, Peter

    2017-09-01

    Future X-ray astronomy missions require light-weight thin shells to provide large collecting areas within the weight limits of launch vehicles, whilst still delivering angular resolutions close to that of Chandra (0.5 arc seconds). Additive manufacturing (AM), also known as 3D printing, is a well-established technology with the ability to construct or `print' intricate support structures, which can be both integral and light-weight, and is therefore a candidate technique for producing shells for space-based X-ray telescopes. The work described here is a feasibility study into this technology for precision X-ray optics for astronomy and has been sponsored by the UK Space Agency's National Space Technology Programme. The goal of the project is to use a series of test samples to trial different materials and processes with the aim of developing a viable path for the production of an X-ray reflecting prototype for astronomical applications. The initial design of an AM prototype X-ray shell is presented with ray-trace modelling and analysis of the X-ray performance. The polishing process may cause print-through from the light-weight support structure on to the reflecting surface. Investigations in to the effect of the print-through on the X-ray performance of the shell are also presented.

  13. Optical and electrical characterization of a back-thinned CMOS active pixel sensor

    NASA Astrophysics Data System (ADS)

    Blue, Andrew; Clark, A.; Houston, S.; Laing, A.; Maneuski, D.; Prydderch, M.; Turchetta, R.; O'Shea, V.

    2009-06-01

    This work will report on the first work on the characterization of a back-thinned Vanilla-a 512×512 (25 μm squared) active pixel sensor (APS). Characterization of the detectors was carried out through the analysis of photon transfer curves to yield a measurement of full well capacity, noise levels, gain constants and linearity. Spectral characterization of the sensors was also performed in the visible and UV regions. A full comparison against non-back-thinned front illuminated Vanilla sensors is included. Such measurements suggest that the Vanilla APS will be suitable for a wide range of applications, including particle physics and biomedical imaging.

  14. Future Directions and Challenges in Shell Stability Analysis

    NASA Technical Reports Server (NTRS)

    Arbocz, Johann

    1998-01-01

    An answer is sought to the question of today, in 1997, after so many years of concentrated research effort in designing buckling critical thin walled shells, why one cannot do any better than using the rather conservative Lower Bound Design Philosophy of the sixties. It will be shown that with the establishment of Initial Imperfection Data Banks and the introduction of Probabilistic Design Procedures one has a viable alternative, that when used judiciously, may lead to improved shell design recommendations.

  15. Assembly of viral capsids, buckling, and the Asaro-Grinfeld-Tiller instability

    NASA Astrophysics Data System (ADS)

    Morozov, Alexander Yu.; Bruinsma, Robijn F.

    2010-04-01

    Icosahedral viral shells are characterized by intrinsic elastic stress focused on the 12 structurally required pentamers. We show that, according to thin-shell theory, assembling icosahedral viral shells should be subject to the Asaro-Grinfeld-Tiller instability (AGTI). AGTIs are encountered in growing epitaxial films exposed to extrinsic elastic stress. For viral shells, the AGTI relieves intrinsic elastic stresses by generating corrugation along the perimeter of the assembling shell. The buckling transition of Lidmar, Mirny, and Nelson provides an alternative mechanism for stress release, which in principle would allow for avoidance of AGTIs. For system parameters appropriate for viral shells however, the AGTI appears to be unavoidable. The azimuthal stress condensation produced by the AGTI might actually assist assembly by providing a guiding mechanism for the insertion of pentamers during viral assembly.

  16. Dynamics of magnetic shells and information loss problem

    NASA Astrophysics Data System (ADS)

    Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han

    2015-07-01

    We investigate dynamics of magnetic thin-shells in three dimensional anti-de Sitter background. Because of the magnetic field, an oscillatory solution is possible. This oscillating shell can tunnel to a collapsing shell or a bouncing shell, where both tunnelings induce an event horizon and a singularity. In the entire path integral, via the oscillating solution, there is a nonzero probability to maintain a trivial causal structure without a singularity. Therefore, due to the path integral, the entire wave function can conserve information. Since an oscillating shell can tunnel after a number of oscillations, in the end, it will allow an infinite number of different branchings to classical histories. This system can be a good model of the effective loss of information, where information is conserved by a solution that is originated from gauge fields.

  17. A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part II: impact modeling

    NASA Astrophysics Data System (ADS)

    Pigazzini, M. S.; Bazilevs, Y.; Ellison, A.; Kim, H.

    2017-11-01

    In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on isogeometric analysis, where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum damage mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.

  18. A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff-Love shells. Part I: basic theory and modeling of delamination and transverse shear

    NASA Astrophysics Data System (ADS)

    Bazilevs, Y.; Pigazzini, M. S.; Ellison, A.; Kim, H.

    2017-11-01

    In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on Isogeometric Analysis (IGA), where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum Damage Mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.

  19. Modeling of thin-walled structures interacting with acoustic media as constrained two-dimensional continua

    NASA Astrophysics Data System (ADS)

    Rabinskiy, L. N.; Zhavoronok, S. I.

    2018-04-01

    The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.

  20. New alloys for electroformed replicated x-ray optics

    NASA Astrophysics Data System (ADS)

    Engelhaupt, Darell E.; Ramsey, Brian D.; O'Dell, Stephen L.; Jones, William D.; Russell, J. Kevin

    2000-11-01

    The process of electroforming nickel x-ray mirror shells from superpolished mandrels has been widely used. The recently launched XMM mission by the European Space Agency (ESA) is an excellent example, containing 174 such mirror shells of diameters ranging from 0.3 - 0.7 meters and with a thickness range of 0.47 - 1.07 mm. To continue to utilize this technique for the next generation of x-ray observatories, where larger collecting areas will be required within the constraints of tight weight budgets, demands that new alloys be developed that can withstand the large stresses imposed on very thin shells by the replication, handling and launch processes. Towards this end, we began a development program in late 1997 to produce a high-strength alloy suitable for electroforming very thin high-resolution x-ray optics for the proposed Constellation-X project. Requirements for this task are quite severe; not only must the electroformed deposit be very strong, it must also have very low residual stresses to prevent serious figure distortions in large thin-walled shells. Further, the processing must be done reasonably near room temperature, as large temperature changes will modify the figure of the mandrel. Also the environment must not be corrosive or otherwise damaging to the mandrel during the processing. The results of the development program are presented, showing the evolution of our plating processes and materials through to the present 'glassy' nickel alloy that satisfies the above requirements.

  1. Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Chróścielewski, Jacek; Schmidt, Rüdiger; Eremeyev, Victor A.

    2018-05-01

    This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.

  2. Hubble Space Telescope imaging of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Hester, J. J.; Westphal, James A.; Light, Robert M.; Currie, Douglas G.; Groth, Edward J.

    1991-01-01

    New high spatial resolution observations of the material around Eta Carinae, obtained with the Hubble Space Telescope Wide Field/Planetary Camera, are presented. The star Eta Carinae is one of the most massive and luminous stars in the Galaxy, and has been episodically expelling significant quantities of gas over the last few centuries. The morphology of the bright central nebulosity (the homunculus) indicates that it is a thin shell with very well defined edges, and is clumpy on 0.2 arcsec (about 10 to the 16th cm) scales. An extension to the northeast of the star (NN/NS using Walborn's 1976 nomenclature) appears to be a stellar jet and its associated bow shock. The bow shock is notable for an intriguing series of parallel linear features across its face. The S ridge and the W arc appear to be part of a 'cap' of emission located to the SW and behind the star. Together, the NE jet and the SW cap suggest that the symmetry axis for the system runs NE-SW rather than SE-NW, as previously supposed. Overall, the data indicate that the material around the star may represent an oblate shell with polar blowouts, rather than a bipolar flow.

  3. Propagation of flexural and membrane waves with fluid loaded NASTRAN plate and shell elements

    NASA Technical Reports Server (NTRS)

    Kalinowski, A. J.; Wagner, C. A.

    1983-01-01

    Modeling of flexural and membrane type waves existing in various submerged (or in vacuo) plate and/or shell finite element models that are excited with steady state type harmonic loadings proportioned to e(i omega t) is discussed. Only thin walled plates and shells are treated wherein rotary inertia and shear correction factors are not included. More specifically, the issue of determining the shell or plate mesh size needed to represent the spatial distribution of the plate or shell response is of prime importance towards successfully representing the solution to the problem at hand. To this end, a procedure is presented for establishing guide lines for determining the mesh size based on a simple test model that can be used for a variety of plate and shell configurations such as, cylindrical shells with water loading, cylindrical shells in vacuo, plates with water loading, and plates in vacuo. The procedure for doing these four cases is given, with specific numerical examples present only for the cylindrical shell case.

  4. Publications - GMC 187 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ') from the Shell Oil Company SRS State #1 well Authors: Unknown Publication Date: 1991 Publisher: Alaska , Petrographic thin-section photographs of core (15499' and 15503') from the Shell Oil Company SRS State #1 well

  5. Renyi entropies of a black hole from Hawking radiation

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.

    2008-09-01

    The Renyi entropies of a black hole are evaluated by counting the states of the Hawking radiation which fills a thin shell surrounding the horizon. The width of the shell is determined from its energy content and the corresponding mass defect. The Bekenstein-Hawking formula for the entropy of the black hole is correctly reproduced.

  6. Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Yang, Tiejun; Chen, Yuehua

    2018-06-01

    In this paper, sound radiation modes of baffled cylinders have been derived by constructing the radiation resistance matrix analytically. By examining the characteristics of sound radiation modes, it is found that radiation coefficient of each radiation mode increases gradually with the increase of frequency while modal shapes of sound radiation modes of cylindrical shells show a weak dependence upon frequency. Based on understandings on sound radiation modes, vibro-acoustics behaviors of cylindrical shells have been analyzed. The vibration responses of cylindrical shells are described by modified Fourier series expansions and solved by Rayleigh-Ritz method involving Flügge shell theory. Then radiation efficiency of a resonance has been determined by examining whether the vibration pattern is in correspondence with a sound radiation mode possessing great radiation efficiency. Furthermore, effects of thickness and boundary conditions on sound radiation of cylindrical shells have been investigated. It is found that radiation efficiency of thicker shells is greater than thinner shells while shells with a clamped boundary constraint radiate sound more efficiently than simply supported shells under thin shell assumption.

  7. Polarization-resolved micro-photoluminescence investigation of InGaN/GaN core-shell microrods

    NASA Astrophysics Data System (ADS)

    Mounir, Christian; Schimpke, Tilman; Rossbach, Georg; Avramescu, Adrian; Strassburg, Martin; Schwarz, Ulrich T.

    2017-01-01

    We investigate the optical emission properties of the active InGaN shell of high aspect-ratio InGaN/GaN core-shell microrods (μRods) by confocal quasi-resonant polarization-resolved and excitation density dependent micro-photoluminescence (μPL). The active shell, multiple thin InGaN/GaN quantum wells (MQWs), was deposited on GaN μRods selectively grown by metal organic vapor phase epitaxy on patterned SiO2/n-GaN/sapphire template. High spatial resolution mappings reveal a very homogeneous emission intensity along the whole μRods including the tip despite a red-shift of 30 nm from the base to the tip along the 8.6 μm-long m-plane sidewalls. Looking at the Fabry-Perot interference fringes superimposed on the μPL spectra, we get structural information on the μRods. A high degree of linear polarization (DLP) of 0.6-0.66 is measured on the lower half of the m-plane side facets with a slight decrease toward the tip. We observe the typical drop of the DLP with an excitation density caused by degenerate filling of valence bands (Fermi regime). Local internal quantum efficiencies (IQEs) of 55 ±11 % up to 73 ±7 % are estimated on the m-plane facet from measurements at low temperature. Finally, simultaneously fitting the DLP and IQE as a function of the excitation density, we determine the carrier density inside the active region and the recombination rate coefficients of the m-plane MQWs. We show that phase-space filling and the background carrier density have to be included in the recombination rate model.

  8. Two-nucleon high-spin states, the Bansal-French model and the crude shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, T.U.

    Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B/sub 2n/ in the Bansal-French model can be deduced from the A and T linear dependence of B/sub n/ and the crude shell model. 7/sub 2//sup -/ states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.

  9. Control of mechanical response of freestanding PbZr0.52Ti0.48O3 films through texture

    NASA Astrophysics Data System (ADS)

    Das, Debashish; Sanchez, Luz; Martin, Joel; Power, Brian; Isaacson, Steven; Polcawich, Ronald G.; Chasiotis, Ioannis

    2016-09-01

    The texture of piezoelectric lead zirconate titanate (PZT) thin films plays a key role in their mechanical response and linearity in the stress vs. strain behavior. The open circuit mechanical properties of PZT films with controlled texture varying from 100% (001) to 100% (111) were quantified with the aid of direct strain measurements from freestanding thin film specimens. The texture was tuned using a highly {111}-textured Pt substrate and excess-Pb in the PbTiO3 seed layer. The mechanical and ferroelastic properties of 500 nm thick PZT (52/48) films were found to be strongly dependent on grain orientation: the lowest elastic modulus of 90 ± 2 GPa corresponded to pure (001) texture, and its value increased linearly with the percentage of (111) texture reaching 122 ± 3 GPa for pure (111) texture. These elastic modulus values were between those computed for transversely isotropic textured PZT films by using the soft and hard bulk PZT compliance coefficients. Pure (001) texture exhibited maximum non-linearity and ferroelastic domain switching, contrary to pure (111) texture that exhibited more linearity and the least amount of switching. A micromechanics model was employed to calculate the strain due to domain switching. The model fitted well the non-linearities in the experimental stress-strain curves of (001) and (111) textured PZT films, predicting 17% and 10% of switched 90° domains that initially were favorably aligned with the applied stress in (001) and (111) textured PZT films, respectively.

  10. Design and Development of Thin Plastic Foil, Conical Approximation, High Through-out X-Ray Telescope: Light Weight, Thin Plastic Foil, X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Schnopper, Herbert W.; Barbera, Marco; Silver, Eric; Ingram, Russell; Christensen, Finn E.; Romaine, Suzanne; Cohen, Lester; Collura, Alfonso; Murray, Stephen S.; Brinton, John C. (Technical Monitor)

    2002-01-01

    We present results from a program to develop an X-ray telescope made from thin plastic shells. Our initial results have been obtained from multi-shell cylindrical lenses that are used in a point-to-point configuration to image the small focal spot of a an X-ray tube on a microchannel plate detector. We describe the steps that led up to the present design and present data from the tests that have been used to identify the properties of the plastic material that make it a suitable X-ray reflector. We discuss two applications of our technology to X-ray missions that are designed to address some of the scientific priorities set forth in NASA's long term plans for high energy astrophysics. One mission will observe in the 1 - 10 keV band, the other will extend up to ca. 100 keV.

  11. Metal-in-metal localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Smith, G. B.; Earp, A. A.

    2010-01-01

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  12. Small bending and stretching of sandwich-type shells

    NASA Technical Reports Server (NTRS)

    Reissner, Eric

    1950-01-01

    A theory has been developed for small bending and stretching of sandwich-type shells. This theory is an extension of the known theory of homogeneous thin elastic shells. It was found that two effects are important in the present problem, which are not normally of importance in the theory of curved shells: (1) the effect of transverse shear deformation and (2) the effect of transverse normal stress deformation. The first of these two effects has been known to be of importance in the theory of plates and beams. The second effect was found to occur in a manner which is typical for shells and has no counterpart in flat-plate theory. The general results of this report have been applied to the solution of problems concerning flat plates, circular rings, circular cylindrical shells, and spherical shells. In each case numerical examples have been given, illustrating the magnitude of the effects of transverse shear and normal stress deformation.

  13. Nonlinear theory for laminated and thick plates and shells including the effects of transverse shearing

    NASA Technical Reports Server (NTRS)

    Stein, M.

    1985-01-01

    Nonlinear strain displacement relations for three-dimensional elasticity are determined in orthogonal curvilinear coordinates. To develop a two-dimensional theory, the displacements are expressed by trigonometric series representation through-the-thickness. The nonlinear strain-displacement relations are expanded into series which contain all first and second degree terms. In the series for the displacements only the first few terms are retained. Insertion of the expansions into the three-dimensional virtual work expression leads to nonlinear equations of equilibrium for laminated and thick plates and shells that include the effects of transverse shearing. Equations of equilibrium and buckling equations are derived for flat plates and cylindrical shells. The shell equations reduce to conventional transverse shearing shell equations when the effects of the trigonometric terms are omitted and to classical shell equations when the trigonometric terms are omitted and the shell is assumed to be thin.

  14. An Aeroelastic Evaluation of the Flexible Thermal Protection System for an Inatable Aerodynamic Decelerator

    NASA Astrophysics Data System (ADS)

    Goldman, Benjamin D.

    The purpose of this dissertation is to study the aeroelastic stability of a proposed flexible thermal protection system (FTPS) for the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A flat, square FTPS coupon exhibits violent oscillations during experimental aerothermal testing in NASA's 8 Foot High Temperature Tunnel, leading to catastrophic failure. The behavior of the structural response suggested that aeroelastic flutter may be the primary instability mechanism, prompting further experimental investigation and theoretical model development. Using Von Karman's plate theory for the panel-like structure and piston theory aerodynamics, a set of aeroelastic models were developed and limit cycle oscillations (LCOs) were calculated at the tunnel flow conditions. Similarities in frequency content of the theoretical and experimental responses indicated that the observed FTPS oscillations were likely aeroelastic in nature, specifically LCO/flutter. While the coupon models can be used for comparison with tunnel tests, they cannot predict accurately the aeroelastic behavior of the FTPS in atmospheric flight. This is because the geometry of the flight vehicle is no longer a flat plate, but rather (approximately) a conical shell. In the second phase of this work, linearized Donnell conical shell theory and piston theory aerodynamics are used to calculate natural modes of vibration and flutter dynamic pressures for various structural models composed of one or more conical shells resting on several circumferential elastic supports. When the flight vehicle is approximated as a single conical shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case, as "hump-mode" flutter is possible. Aeroelastic models that consider the individual FTPS layers as separate shells exhibit asymmetric flutter at high dynamic pressures relative to the single shell models. Parameter studies also examine the effects of tension, shear modulus reduction, and elastic support stiffness. Limitations of a linear structural model and piston theory aerodynamics prompted a more elaborate evaluation of the flight configuration. Using nonlinear Donnell conical shell theory for the FTPS structure, the pressure buckling and aeroelastic limit cycle oscillations were studied for a single elastically-supported conical shell. While piston theory was used initially, a time-dependent correction factor was derived using transform methods and potential flow theory to calculate more accurately the low Mach number supersonic flow. Three conical shell geometries were considered: a 3-meter diameter 70° shell, a 3.7-meter 70° shell, and a 6-meter diameter 70° shell. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD vehicle. Though agreement between theoretical and experimental strains was poor, circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With piston theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. Pre-buckling pressure loads and the aerodynamic pressure correction factor were studied for all geometries, and these effects resulted in significantly lower flutter boundaries compared with piston theory alone. In the final phase of this work, the existing linear and nonlinear FTPS shell models were coupled with NASA's FUN3D Reynolds Averaged Navier Stokes CFD code, allowing for the most physically realistic flight predictions. For the linear shell structural model, the elastically-supported shell natural modes were mapped to a CFD grid of a 6-meter HIAD vehicle, and a linear structural dynamics solver internal to the CFD code was used to compute the aeroelastic response. Aerodynamic parameters for a proposed HIAD re-entry trajectory were obtained, and aeroelastic solutions were calculated at three points in the trajectory: Mach 1, Mach 2, and Mach 11 (peak dynamic pressure). No flutter was found at any of these conditions using the linear method, though oscillations (of uncertain origin) on the order of the shell thickness may be possible in the transonic regime. For the nonlinear shell structural model, a set of assumed sinusoidal modes were mapped to the CFD grid, and the linear structural dynamics equations were replaced by a nonlinear ODE solver for the conical shell equations. Successful calculation and restart of the nonlinear dynamic aeroelastic solutions was demonstrated. Preliminary results indicated that dynamic instabilities may be possible at Mach 1 and 2, with a completely stable solution at Mach 11, though further study is needed. A major benefit of this implementation is that the coefficients and mode shapes for the nonlinear conical shell may be replaced with those of other types of structures, greatly expanding the aeroelastic capabilities of FUN3D.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Zulema; Beaklini, Pedro P. B.; Falceta-Gonçalves, Diego, E-mail: zulema.abraham@iag.usp.br

    We report observations of η Carinae obtained with ALMA in the continuum of 100, 230, 280, and 660 GHz in 2012 November, with a resolution that varied from 2.''88 to 0.''45 for the lower and higher frequencies, respectively. The source is not resolved, even at the highest frequency; its spectrum is characteristic of thermal bremsstrahlung of a compact source, but different from the spectrum of optically thin wind. The recombination lines H42α, He42α, H40α, He40α, H50β, H28α, He28α, H21α, and He21α were also detected, and their intensities reveal non-local thermodynamic equilibrium effects. We found that the line profiles could onlymore » be fit by an expanding shell of dense and ionized gas, which produces a slow shock in the surroundings of η Carinae. Combined with fittings to the continuum, we were able to constrain the shell size, radius, density, temperature, and velocity. The detection of the He recombination lines is compatible with the high-temperature gas and requires a high-energy ionizing photon flux, which must be provided by the companion star. The mass-loss rate and wind velocity, necessary to explain the formation of the shell, are compatible with an luminous blue variable eruption. The position, velocity, and physical parameters of the shell coincide with those of the Weigelt blobs. The dynamics found for the expanding shell correspond to matter ejected by η Carinae in 1941 in an event similar to that which formed the Little Homunculus; for that reason, we called the new ejecta the 'Baby Homunculus'.« less

  16. Shell-free biomass and population dynamics of dreissenids in offshore Lake Michigan, 2001-2003

    USGS Publications Warehouse

    French, J. R. P.; Adams, J.V.; Craig, J.; Stickel, R.G.; Nichols, S.J.; Fleischer, G.W.

    2007-01-01

    The USGS-Great Lakes Science Center has collected dreissenid mussels annually from Lake Michigan since zebra mussels (Dreissena polymorpha) became a significant portion of the bottom-trawl catch in 1999. For this study, we investigated dreissenid distribution, body mass, and recruitment at different depths in Lake Michigan during 2001-2003. The highest densities of dreissenid biomass were observed from depths of 27 to 46 m. The biomass of quagga mussels (Dreissena bugensis) increased exponentially during 2001-2003, while that of zebra mussels did not change significantly. Body mass (standardized for a given shell length) of both species was lowest from depths of 27 to 37m, highest from 55 to 64 m, and declined linearly at deeper depths during 2001-2003. Recruitment in 2003, as characterized by the proportion of mussels < 11 mm in the catch, varied with depth and lake region. For quagga mussels, recruitment declined linearly with depth, and was highest in northern Lake Michigan. For zebra mussels, recruitment generally declined non-linearly with depth, although the pattern was different for north, mid, and southern Lake Michigan. Our analyses suggest that quagga mussels could overtake zebra mussels and become the most abundant mollusk in terms of biomass in Lake Michigan.

  17. Isometric Non-Rigid Shape-from-Motion with Riemannian Geometry Solved in Linear Time.

    PubMed

    Parashar, Shaifali; Pizarro, Daniel; Bartoli, Adrien

    2017-10-06

    We study Isometric Non-Rigid Shape-from-Motion (Iso-NRSfM): given multiple intrinsically calibrated monocular images, we want to reconstruct the time-varying 3D shape of a thin-shell object undergoing isometric deformations. We show that Iso-NRSfM is solvable from local warps, the inter-image geometric transformations. We propose a new theoretical framework based on the Riemmanian manifold to represent the unknown 3D surfaces as embeddings of the camera's retinal plane. This allows us to use the manifold's metric tensor and Christoffel Symbol (CS) fields. These are expressed in terms of the first and second order derivatives of the inverse-depth of the 3D surfaces, which are the unknowns for Iso-NRSfM. We prove that the metric tensor and the CS are related across images by simple rules depending only on the warps. This forms a set of important theoretical results. We show that current solvers cannot solve for the first and second order derivatives of the inverse-depth simultaneously. We thus propose an iterative solution in two steps. 1) We solve for the first order derivatives assuming that the second order derivatives are known. We initialise the second order derivatives to zero, which is an infinitesimal planarity assumption. We derive a system of two cubics in two variables for each image pair. The sum-of-squares of these polynomials is independent of the number of images and can be solved globally, forming a well-posed problem for N ≥ 3 images. 2) We solve for the second order derivatives by initialising the first order derivatives from the previous step. We solve a linear system of 4N-4 equations in three variables. We iterate until the first order derivatives converge. The solution for the first order derivatives gives the surfaces' normal fields which we integrate to recover the 3D surfaces. The proposed method outperforms existing work in terms of accuracy and computation cost on synthetic and real datasets.

  18. Fabrication of ceramic substrate-reinforced and free forms by mandrel plasma spraying metal-ceramic composites

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.; Mcdonald, G.; Hendricks, R. C.

    1985-01-01

    Components fabricated of, or coated with, ceramics have lower parasitic cooling requirements. Techniques are discussed for fabricating thin-shell ceramic components and ceramic coatings for applications in rocket or jet engine environments. Thin ceramic shells with complex geometric forms involving convolutions and reentrant surfaces were fabricated by mandrel removal. Mandrel removal was combined with electroplating or plasma spraying and isostatic pressing to form a metal support for the ceramic. Rocket engine thrust chambers coated with 0.08 mm (3 mil) of ZrO2-8Y2O3 had no failures and a tenfold increase in engine life. Some measured mechanical properties of the plasma-sprayed ceramic are presented.

  19. High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors

    NASA Technical Reports Server (NTRS)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    This innovation has been developed to improve the resolutions of future spacebased active and passive microwave antennas for earth-science remote sensing missions by maintaining surface figure precisions of large membrane/thin-shell reflectors during orbiting. The intention is for these sensing instruments to be deployable at orbit altitudes one or two orders of magnitude higher than Low Earth Orbit (LEO), but still being able to acquire measurements at spatial resolution and sensitivity similar to those of LEO. Because active and passive microwave remote sensors are able to penetrate through clouds to acquire vertical profile measurements of geophysical parameters, it is desirable to elevate them to the higher orbits to obtain orbital geometries that offer large spatial coverage and more frequent observations. This capability is essential for monitoring and for detailed understanding of the life cycles of natural hazards, such as hurricanes, tropical storms, flash floods, and tsunamis. Major components of this high-precision antenna-surface-control system include a membrane/thin shell reflector, a metrology sensor, a controller, actuators, and corresponding power amplifier and signal conditioning electronics (see figure). Actuators are attached to the back of the reflector to produce contraction/ expansion forces to adjust the shape of the thin-material reflector. The wavefront-sensing metrology system continuously measures the surface figure of the reflector, converts the surface figure to digital data and feeds the data to the controller. The controller determines the control parameters and generates commands to the actuator system. The flexible, piezoelectric polymer actuators are thus activated, providing the control forces needed to correct any distortions that exist in the reflector surface. Piezoelectric polymer actuators are very thin and flexible. They can be implemented on the back of the membrane/thin-shell reflector without introducing significant amounts of mass or stiffness to the reflector. They can be rolled up or folded to accommodate the packaging needed for launch. An analytical model of the system, which includes the membrane reflector, actuator, and controller has been developed to investigate the functionality of this control system on a 35-meter-diameter membrane reflector. The performance of this system under external disturbances such as in space thermal loads and W-error due to inflation has been investigated. A subscale breadboard has been developed, and the functionality of this control concept has been demonstrated by this breadboard.

  20. Modeling Elastic Wave Propagation from an Underground Chemical Explosion Using Higher Order Finite Difference Approximation: Theory, Validation and Application to SPE

    NASA Astrophysics Data System (ADS)

    Hirakawa, E. T.; Ezzedine, S. M.; Petersson, A.; Sjogreen, B.; Vorobiev, O.; Pitarka, A.; Antoun, T.; Walter, W. R.

    2016-12-01

    Motions from underground explosions are governed by non-linear hydrodynamic response of material. However, the numerical calculation of this non-linear constitutive behavior is computationally intensive in contrast to the elastic and acoustic linear wave propagation solvers. Here, we develop a hybrid modeling approach with one-way hydrodynamic-to-elastic coupling in three dimensions in order to propagate explosion generated ground motions from the non-linear near-source region to the far-field. Near source motions are computed using GEODYN-L, a Lagrangian hydrodynamics code for high-energy loading of earth materials. Motions on a dense grid of points sampled on two nested shells located beyond the non-linear damaged zone are saved, and then passed to SW4, an anelastic anisotropic fourth order finite difference code for seismic wave modeling. Our coupling strategy is based on the decomposition and uniqueness theorems where motions are introduced into SW4 as a boundary source and continue to propagate as elastic waves at a much lower computational cost than by using GEODYN-L to cover the entire near- and the far-field domain. The accuracy of the numerical calculations and the coupling strategy is demonstrated in cases with a purely elastic medium as well as non-linear medium. Our hybrid modeling approach is applied to SPE-4' and SPE-5 which are the most recent underground chemical explosions conducted at the Nevada National Security Site (NNSS) where the Source Physics Experiments (SPE) are performed. Our strategy by design is capable of incorporating complex non-linear effects near the source as well as volumetric and topographic material heterogeneity along the propagation path to receiver, and provides new prospects for modeling and understanding explosion generated seismic waveforms. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698608.

  1. Changes in the selection differential exerted on a marine snail during the ontogeny of a predatory shore crab.

    PubMed

    Pakes, D; Boulding, E G

    2010-08-01

    Empirical estimates of selection gradients caused by predators are common, yet no one has quantified how these estimates vary with predator ontogeny. We used logistic regression to investigate how selection on gastropod shell thickness changed with predator size. Only small and medium purple shore crabs (Hemigrapsus nudus) exerted a linear selection gradient for increased shell-thickness within a single population of the intertidal snail (Littorina subrotundata). The shape of the fitness function for shell thickness was confirmed to be linear for small and medium crabs but was humped for large male crabs, suggesting no directional selection. A second experiment using two prey species to amplify shell thickness differences established that the selection differential on adult snails decreased linearly as crab size increased. We observed differences in size distribution and sex ratios among three natural shore crab populations that may cause spatial and temporal variation in predator-mediated selection on local snail populations.

  2. Performance improvement for solution-processed high-mobility ZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Sha Li, Chen; Li, Yu Ning; Wu, Yi Liang; Ong, Beng S.; Loutfy, Rafik O.

    2008-06-01

    The fabrication technology of stable, non-toxic, transparent, high performance zinc oxide (ZnO) thin-film semiconductors via the solution process was investigated. Two methods, which were, respectively, annealing a spin-coated precursor solution and annealing a drop-coated precursor solution, were compared. The prepared ZnO thin-film semiconductor transistors have well-controlled, preferential crystal orientation and exhibit superior field-effect performance characteristics. But the ZnO thin-film transistor (TFT) fabricated by annealing a drop-coated precursor solution has a distinctly elevated linear mobility, which further approaches the saturated mobility, compared with that fabricated by annealing a spin-coated precursor solution. The performance of the solution-processed ZnO TFT was further improved when substituting the spin-coating process by the drop-coating process.

  3. The energy of a prolate spheroidal shell in a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Koksharov, Yu. A.

    2017-04-01

    The problem of the energy of a spheroidal magnetic shell, solved by methods of classical electrodynamics, arises, in particular, upon the study of thin-wall biocompatible microcapsules in connection with a pressing issue of targeted drug delivery. The drug inside a microcapsule should be released from the shell at a required instant of time by destroying the capsule's shell. The placement inside a shell of magnetic nanoparticles sensitive to an external magnetic field theoretically makes it possible to solve both problems: to transport a capsule to the required place and to destroy its shell. In particular, the shell can be destroyed under the action of internal stress when the shape of a capsule is changed. In this paper, the analysis of the model of a magnetic microcapsule in the form of a prolate spheroidal shell is performed and formulas for the magnetostatic and magnetic free energy when the magnetic field is directed along the major axis of the spheroid are derived.

  4. Excitation of epsilon-near-zero resonance in ultra-thin indium tin oxide shell embedded nanostructured optical fiber.

    PubMed

    Minn, Khant; Anopchenko, Aleksei; Yang, Jingyi; Lee, Ho Wai Howard

    2018-02-05

    We report a novel optical waveguide design of a hollow step index fiber modified with a thin layer of indium tin oxide (ITO). We show an excitation of highly confined waveguide mode in the proposed fiber near the wavelength where permittivity of ITO approaches zero. Due to the high field confinement within thin ITO shell inside the fiber, the epsilon-near-zero (ENZ) mode can be characterized by a peak in modal loss of the hybrid waveguide. Our results show that such in-fiber excitation of ENZ mode is due to the coupling of the guided core mode to the thin-film ENZ mode. We also show that the phase matching wavelength, where the coupling takes place, varies depending on the refractive index of the constituents inside the central bore of the fiber. These ENZ nanostructured optical fibers have many potential applications, for example, in ENZ nonlinear and magneto-optics, as in-fiber wavelength-dependent filters, and as subwavelength fluid channel for optical and bio-photonic sensing.

  5. Damped response of shells by a constrained viscoelastic layer

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1986-01-01

    Vibration absorbers are introduced into an asymmetric configuration of thin cylinders and tori enclosing an acoustic medium. The absorbers consist of thin axial strips bonded to the cylinder with a thin viscoelastic layer. The constrained layer dissipates the energy of relative motions between strip and cylinder. The absorber is most effective on response modes with two or more circumferential waves. The use of transfer matrices is extended to the coupled cylinder-absorber system.

  6. Dynamical systems for modeling evolution of the magnetic field of the Sun, stars and planets

    NASA Astrophysics Data System (ADS)

    Popova, E.

    2016-12-01

    The magnetic activity of the Sun, stars and planets are connected with a dynamo process based on the combined action of the differential rotation and the alpha-effect. Application of this concept allows us to get different types of solutions which can describe the magnetic activity of celestial bodies. We investigated the dynamo model with the meridional circulation by the low-mode approach. This approach is based on an assumption that the magnetic field can be described by non-linear dynamical systems with a relatively small number of parameters. Such non-linear dynamical systems are based on the equations of dynamo models. With this method dynamical systems have been built for media which contains the meridional flow and thickness of the spherical shell where dynamo process operates. It was shown the possibility of coexistence of quiasi-biennial oscillations, 22-year cycle, and grand minima of magnetic activity which is consistent with the observational data for the solar activity. We obtained different regimes (oscillations, vacillations, dynamo-bursts) depending on a value of the dynamo-number, the meridional circulation, and thickness of the spherical shell. We discuss features of these regimes and compare them with the observed features of the magnetic fields of the Sun, stars and Earth. We built theoretical paleomagnetic time scale and butterfly-diagrams for the helicity and toroidal magnetic field for different regimes.

  7. Estimation of the rate of egg contamination from Salmonella-infected chickens.

    PubMed

    Arnold, M E; Martelli, F; McLaren, I; Davies, R H

    2014-02-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the most prevalent causes for human gastroenteritis and is by far the predominant Salmonella serovar among human cases, followed by Salmonella Typhimurium. Contaminated eggs produced by infected laying hens are thought to be the main source of human infection with S. Enteritidis throughout the world. Although previous studies have looked at the proportion of infected eggs from infected flocks, there is still uncertainty over the rate at which infected birds produce contaminated eggs. The aim of this study was to estimate the rate at which infected birds produce contaminated egg shells and egg contents. Data were collected from two studies, consisting of 15 and 20 flocks, respectively. Faecal and environmental sampling and testing of ovaries/caeca from laying hens were carried out in parallel with (i) for the first study, testing 300 individual eggs, contents and shells together and (ii) for the second study, testing 4000 eggs in pools of six, with shells and contents tested separately. Bayesian methods were used to estimate the within-flock prevalence of infection from the faecal and hen post-mortem data, and this was related to the proportion of positive eggs. Results indicated a linear relationship between the rate of contamination of egg contents and the prevalence of infected chickens, but a nonlinear (quadratic) relationship between infection prevalence and the rate of egg shell contamination, with egg shell contamination occurring at a much higher rate than that of egg contents. There was also a significant difference in the rate of egg contamination between serovars, with S. Enteritidis causing a higher rate of contamination of egg contents and a lower rate of contamination of egg shells compared to non-S. Enteritidis serovars. These results will be useful for risk assessments of human exposure to Salmonella-contaminated eggs. © 2013 Crown copyright. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  8. New trends in space x-ray optics

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Maršíková, V.; Pína, L.; Inneman, A.; Skulinová, M.

    2017-11-01

    The X-ray optics is a key element of various X-ray telescopes, X-ray microscopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non- Wolter X-ray optics designs for the future. Future large space X-ray telescopes (such as IXO) require precise and light-weight X-ray optics based on numerous thin reflecting shells. Novel approaches and advanced technologies are to be exploited and developed. In this contribution, we refer on results of tested X-ray mirror shells produced by glass thermal forming (GTF) and by shaping Si wafers. Both glass foils and Si wafers are commercially available, have excellent surface microroughness of a few 0.1 nm, and low weight (the volume density is 2.5 g cm-3 for glass and 2.3 g cm-3 for Si). Technologies are needed to be exploited; how to shape these substrates to achieve the required precise Xray optics geometries without degradations of the fine surface microroughness. Although glass and recently silicon wafers are considered to represent most promising materials for future advanced large aperture space Xray telescopes, there also exist other alternative materials worth further study such as amorphous metals and glassy carbon [1]. In order to achieve sub-arsec angular resolutions, principles of active optics have to be adopted.

  9. Application of a Meso-scale Based Ballistic Fabric Model to the Development of Advanced Lightweight Engine Fan Blade-Out Containment Structure

    DTIC Science & Technology

    2012-09-01

    composed of a basic metallic shell structure with a dry Kevlar wrap around it is considered. The fan blade is made of titanium alloy modeled by a Johnson...material. A multilayered Kevlar woven dry fabric structure is wrapped around the thin aluminum shell to form a soft hybrid fan case. A woven fabric material...debris protection fan case composed of a basic metallic shell structure with a dry Kevlar wrap around it is considered. The fan blade is made of titanium

  10. Mounting and Alignment of Full-Shell Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Arnold, William; Kester, Thomas; Ramsey, Brian; Smithers, Martin

    2007-01-01

    We are developing grazing-incidence x-ray optics for astronomy. The optics are full-cylinder mirror shells fabricated using electroformed-nickel replication off super-polished mandrels. For space-based applications where weight is at a premium, very-thin-walled, light-weight mirrors are required. Such shells have been fabricated at MSFC with greater than 15 arcsec resolution. The challenge, however, is to preserve this resolution during mounting and assembly. We present here a status report on a mounting and alignment system currently under development at Marshall Space Flight Center to meet this challenge.

  11. Future Directions and Challenges in Shell Stability Analysis

    NASA Technical Reports Server (NTRS)

    Arbocz, Johann

    1997-01-01

    An answer is sought to the question how comes that today, in 1997, after so many years of concentrated research effort, when it comes to designing buckling critical thin walled shells, one cannot do any better than using the rather conservative Lower Bound Design Philosophy of the sixties. It will be shown that with the establishment of Initial Imperfection Data Banks and the introduction of Probabilistic Design Procedures one has, what appears to be, a viable alternative that when used judiciously may lead step by step to improved shell design recommendations.

  12. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm.

    PubMed

    Wang, Wenhui; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2010-04-26

    This paper presents an all-silica miniature optical fiber pressure/acoustic sensor based on the Fabry-Perot (FP) interferometric principle. The endface of the etched optical fiber tip and silica thin diaphragm on it form the FP structure. The uniform and thin silica diaphragm was fabricated by etching away the silicon substrate from a commercial silicon wafer that has a thermal oxide layer. The thin film was directly thermally bonded to the endface of the optical fiber thus creating the Fabry-Perot cavity. Thin films with a thickness from 1microm to 3microm have been bonded successfully. The sensor shows good linearity and hysteresis during measurement. A sensor with 0.75 microm-thick diaphragm thinned by post silica etching was demonstrated to have a sensitivity of 11 nm/kPa. The new sensor has great potential to be used as a non-intrusive pressure sensor in a variety of sensing applications.

  13. Highly efficient photocatalytic conversion of solar energy to hydrogen by WO3/BiVO4 core-shell heterojunction nanorods

    NASA Astrophysics Data System (ADS)

    Kosar, Sonya; Pihosh, Yuriy; Bekarevich, Raman; Mitsuishi, Kazutaka; Mawatari, Kazuma; Kazoe, Yutaka; Kitamori, Takehiko; Tosa, Masahiro; Tarasov, Alexey B.; Goodilin, Eugene A.; Struk, Yaroslav M.; Kondo, Michio; Turkevych, Ivan

    2018-04-01

    Photocatalytic splitting of water under solar light has proved itself to be a promising approach toward the utilization of solar energy and the generation of environmentally friendly fuel in a form of hydrogen. In this work, we demonstrate highly efficient solar-to-hydrogen conversion efficiency of 7.7% by photovoltaic-photoelectrochemical (PV-PEC) device based on hybrid MAPbI3 perovskite PV cell and WO3/BiVO4 core-shell nanorods PEC cell tandem that utilizes spectral splitting approach. Although BiVO4 is characterized by intrinsically high recombination rate of photogenerated carriers, this is not an issue for WO3/BiVO4 core-shell nanorods, where highly conductive WO3 cores are combined with extremely thin absorber BiVO4 shell layer. Since the BiVO4 layer is thinner than the characteristic carrier diffusion length, the photogenerated charge carriers are separated at the WO3/BiVO4 heterojunction before their recombination. Also, such architecture provides sufficient optical thickness even for extremely thin BiVO4 layer due to efficient light trapping in the core-shell WO3/BiVO4 nanorods with high aspect ratio. We also demonstrate that the concept of fill factor can be used to compare I-V characteristics of different photoanodes regarding their optimization for PV/PEC tandem devices.

  14. An Explosive Bomb-Inspired Method to Prepare Collapsed and Ruptured Fe2 O3 /Nitrogen-Doped Carbon Capsules as Catalyst Support.

    PubMed

    Wu, Jie; Zhang, Hui; Feng, Yan; Zhang, Xiao; Yao, Tongjie; Lian, Yongfu

    2017-12-01

    Compared with integrated capsules, ruptured ones have better mass diffusion and transport properties due to large gaps in the shells. However, most studies focus on integrated capsules, whereas little attention has been paid to the ruptured counterparts. Herein, an explosive bomb-inspired method was employed to prepare collapsed and ruptured Fe 2 O 3 /nitrogen-doped carbon (CR-Fe 2 O 3 /NC) capsules by using polystyrene (PS) nanoparticles (NPs) as a hard template, and polypyrrole (PPy) with embedded Prussian blue (PB) NPs as the shell. During pyrolysis, PB is converted into Fe 2 O 3 , and PPy is carbonized to form NC. Importantly, the PS core decomposes into gas molecules, leading to high pressure inside of the capsule, which explodes the thin shell into pieces. The roles of shell thickness and amount of Fe 2 O 3 on determining the spherical or collapsed, and integrated or ruptured morphology were revealed. Taking advantage of structural merits, including large gaps, thin shells, low density, and high surface area, CR-Fe 2 O 3 /NC capsules were used as supports for Pd NPs. These capsules exhibited better catalytic activity than that of integrated ones. Due to the magnetic properties, they could be reused at least five times. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Active control of acoustic pressure fields using smart material technologies

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, R. C.

    1993-01-01

    An overview describing the use of piezoceramic patches in reducing noise in a structural acoustics setting is presented. The passive and active contributions due to patches which are bonded to an Euler-Bernoulli beam or thin shell are briefly discussed and the results are incorporated into a 2-D structural acoustics model. In this model, an exterior noise source causes structural vibrations which in turn lead to interior noise as a result of nonlinear fluid/structure coupling mechanism. Interior sound pressure levels are reduced via patches bonded to the flexible boundary (a beam in this case) which generate pure bending moments when an out-of-phase voltage is applied. Well-posedness results for the infinite dimensional system are discussed and a Galerkin scheme for approximating the system dynamics is outlined. Control is implemented by using linear quadratic regulator (LQR) optimal control theory to calculate gains for the linearized system and then feeding these gains back into the nonlinear system of interest. The effectiveness of this strategy for this problem is illustrated in an example.

  16. Geometric Nonlinear Computation of Thin Rods and Shells

    NASA Astrophysics Data System (ADS)

    Grinspun, Eitan

    2011-03-01

    We develop simple, fast numerical codes for the dynamics of thin elastic rods and shells, by exploiting the connection between physics, geometry, and computation. By building a discrete mechanical picture from the ground up, mimicking the axioms, structures, and symmetries of the smooth setting, we produce numerical codes that not only are consistent in a classical sense, but also reproduce qualitative, characteristic behavior of a physical system----such as exact preservation of conservation laws----even for very coarse discretizations. As two recent examples, we present discrete computational models of elastic rods and shells, with straightforward extensions to the viscous setting. Even at coarse discretizations, the resulting simulations capture characteristic geometric instabilities. The numerical codes we describe are used in experimental mechanics, cinema, and consumer software products. This is joint work with Miklós Bergou, Basile Audoly, Max Wardetzky, and Etienne Vouga. This research is supported in part by the Sloan Foundation, the NSF, Adobe, Autodesk, Intel, the Walt Disney Company, and Weta Digital.

  17. Thermal Model Development for an X-Ray Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Bonafede, Joseph A.

    2015-01-01

    Space-based x-ray optics require stringent thermal environmental control to achieve the desired image quality. Future x-ray telescopes will employ hundreds of nearly cylindrical, thin mirror shells to maximize effective area, with each shell built from small azimuthal segment pairs for manufacturability. Thermal issues with these thin optics are inevitable because the mirrors must have a near unobstructed view of space while maintaining near uniform 20 C temperature to avoid thermal deformations. NASA Goddard has been investigating the thermal characteristics of a future x-ray telescope with an image requirement of 5 arc-seconds and only 1 arc-second focusing error allocated for thermal distortion. The telescope employs 135 effective mirror shells formed from 7320 individual mirror segments mounted in three rings of 18, 30, and 36 modules each. Thermal requirements demand a complex thermal control system and detailed thermal modeling to verify performance. This presentation introduces innovative modeling efforts used for the conceptual design of the mirror assembly and presents results demonstrating potential feasibility of the thermal requirements.

  18. Study of CT Scan Flooding System at High Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.

    2017-12-01

    CT scan flooding experiment can scan micro-pore in different flooding stages by the use of CT scan technology, without changing the external morphology and internal structure of the core, and observe the distribution characterization in pore medium of different flooding fluid under different pressure.thus,it can rebuilt the distribution images of oil-water distribution in different flooding stages. However,under extreme high pressure and temperature conditions,the CT scan system can not meet the requirements. Container of low density materials or thin shell can not resist high pressure,while high density materials or thick shell will cause attenuation and scattering of X-ray. The experiment uses a simple Ct scanning systems.X ray from a point light source passing trough a micro beryllium shell on High pressure stainless steal container,continuously irradiates the core holder that can continuously 360° rotate along the core axis. A rare earth intensifying screen behind the core holder emitting light when irradiated with X ray can show the core X ray section image. An optical camera record the core X ray images through a transparency high pressure glazing that placed on the High pressure stainless steal container.Thus,multiple core X ray section images can reconstruct the 3D core reconstruction after a series of data processing.The experiment shows that both the micro beryllium shell and rare earth intensifying screen can work in high temperature and high pressure environment in the stainless steal container. This way that X-ray passes through a thin layer of micro beryllium shell , not high pressure stainless steal shell,avoid the attenuation and scattering of X-ray from the container shell,while improving the high-pressure experiment requirements.

  19. Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary-lattice Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.

    2016-04-01

    In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.

  20. Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations

    PubMed Central

    Doinikov, Alexander A.; Haac, Jillian F.; Dayton, Paul A.

    2009-01-01

    Knowledge of resonant frequencies of contrast microbubbles is important for the optimization of ultrasound contrast imaging and therapeutic techniques. To date, however, there are estimates of resonance frequencies of contrast microbubbles only for the regime of linear oscillation. The present paper proposes an approach for evaluating resonance frequencies of contrast agent microbubbles in the regime of nonlinear oscillation. The approach is based on the calculation of the time-averaged oscillation power of the radial bubble oscillation. The proposed procedure was verified for free bubbles in the frequency range 1–4 MHz and then applied to lipid-shelled microbubbles insonified with a single 20-cycle acoustic pulse at two values of the acoustic pressure amplitude, 100 kPa and 200 kPa, and at four frequencies: 1.5, 2.0, 2.5, and 3.0 MHz. It is shown that, as the acoustic pressure amplitude is increased, the resonance frequency of a lipid-shelled microbubble tends to decrease in comparison with its linear resonance frequency. Analysis of existing shell models reveals that models that treat the lipid shell as a linear viscoelastic solid appear may be challenged to provide the observed tendency in the behavior of the resonance frequency at increasing acoustic pressure. The conclusion is drawn that the further development of shell models could be improved by the consideration of nonlinear rheological laws. PMID:18977009

  1. The effect of non-Newtonian viscosity on the stability of the Blasius boundary layer

    NASA Astrophysics Data System (ADS)

    Griffiths, P. T.; Gallagher, M. T.; Stephen, S. O.

    2016-07-01

    We consider, for the first time, the stability of the non-Newtonian boundary layer flow over a flat plate. Shear-thinning and shear-thickening flows are modelled using a Carreau constitutive viscosity relationship. The boundary layer equations are solved in a self-similar fashion. A linear asymptotic stability analysis, that concerns the lower-branch structure of the neutral curve, is presented in the limit of large Reynolds number. It is shown that the lower-branch mode is destabilised and stabilised for shear-thinning and shear-thickening fluids, respectively. Favourable agreement is obtained between these asymptotic predictions and numerical results obtained from an equivalent Orr-Sommerfeld type analysis. Our results indicate that an increase in shear-thinning has the effect of significantly reducing the value of the critical Reynolds number, this suggests that the onset of instability will be significantly advanced in this case. This postulation, that shear-thinning destabilises the boundary layer flow, is further supported by our calculations regarding the development of the streamwise eigenfunctions and the relative magnitude of the temporal growth rates.

  2. Marker optimization for facial motion acquisition and deformation.

    PubMed

    Le, Binh H; Zhu, Mingyang; Deng, Zhigang

    2013-11-01

    A long-standing problem in marker-based facial motion capture is what are the optimal facial mocap marker layouts. Despite its wide range of potential applications, this problem has not yet been systematically explored to date. This paper describes an approach to compute optimized marker layouts for facial motion acquisition as optimization of characteristic control points from a set of high-resolution, ground-truth facial mesh sequences. Specifically, the thin-shell linear deformation model is imposed onto the example pose reconstruction process via optional hard constraints such as symmetry and multiresolution constraints. Through our experiments and comparisons, we validate the effectiveness, robustness, and accuracy of our approach. Besides guiding minimal yet effective placement of facial mocap markers, we also describe and demonstrate its two selected applications: marker-based facial mesh skinning and multiresolution facial performance capture.

  3. Lineament Azimuths on Europa: Implications for Evolution of the Europan Ice Shell

    NASA Astrophysics Data System (ADS)

    Kachingwe, M.; Rhoden, A.; Lekic, V.; Hurford, T., Jr.; Henning, W. G.

    2016-12-01

    Tectonic activity on Europa has been linked to tidal stress caused by its eccentric orbit, finite obliquity, and possibly non-synchronous rotation of the icy shell. Cycloids and other lineaments are thought to form in response to tidal normal stress while strike-slip motion along preexisting faults has been attributed to tidal shear stress. Tectonic features can thus provide constraints on the rotational parameters that govern tidal stress and insight into the tidal-tectonic processes operating on ice-covered ocean bodies. Past lineament azimuth predictions based on stress models accounting for either spin pole precession or longitude translation yielded distributions that varied with location on Europa (e.g. Hurford, 2005; Fig. 16 of Rhoden and Hurford, 2013). Until now, these predicted azimuths have only been tested on a few spatially restricted regions. Additionally, these predictions were made using a thin shell approximation, which neglects the viscoelastic response of Europa's ice shell. Here, we present new measurements of lineament azimuths across geographically diverse regions of Europa, focusing on locations where lineament azimuths have never before been measured but which have been imaged at better than 250 km/pixel resolution. We focus on lineaments that do not exhibit substantial curvature, and we quantify deviations in azimuth observed along each lineament. We quantitatively compare the observed distributions against published predictions as well as new predictions made with a viscoelastic tidal stress model. These results have implications for Europa's interior and the evolution of tidal stress over time.

  4. Tidal deformation of Enceladus' ice shell with variable thickness and Maxwell rheology

    NASA Astrophysics Data System (ADS)

    Soucek, Ondrej; Behounkova, Marie; Cadek, Ondrej; Tobie, Gabriel; Choblet, Gael

    2017-04-01

    Tidal deformation of icy moons has been traditionally studied using the spectral approach which is very efficient for perfectly spherical bodies with radially dependent rheological structure. Measurements of Enceladus' topography (Nimmo et al., 2011) and low-degree gravity (Iess et al., 2014) indicate that the ice shell is significantly thinned in the southern hemisphere (Iess et al., 2014; McKinnon, 2015) and according to recent gravity, shape and libration inversion, it may be only a few kilometers thick at the south pole (Cadek et al., 2016). These variations may potentially have a significant effect on the amplitude and pattern of tidal deformation, stress and associated heating inside the shell, but cannot be straightforwardly incorporated into the existing spectral codes. In order to circumvent this difficulty and to quantify the effects of ice-shell thickness variations, we have developed a three-dimensional finite element code in the framework of FEniCS package (Alnaes et al., 2015). Using this numerical tool, we address the changes in tidally-induced deformation amplitude, stresses and tidal heating for structural models of Enceladus' ice shell of various complexity. Considering Maxwell viscoelastic rheology of the shell, we compare models with uniform thickness consistent with the libration data and with constant viscosity, synthetic models with analytically parameterized thinning in the south polar region and depth-dependent viscosity varying over several orders of magnitude, and finally, models with the shell topography and thickness based on the recent model of Cadek et al. (2016). We find that the thinning of the ice shell around the south pole may lead to amplification of the stress and displacement in this region region by a factor of up to 2 and 4, respectively, depending on the average ice shell thickness, the amplitude of thinning and the viscosity structure. Our results also suggest that lateral variations of ice thickness can induce significant anomalies of the surface heat flux and, together with other effects (e.g. Souček et al., 2016), may thus contribute to the hemispheric dichotomy observed on Enceladus. Alnaes, M. S., Blechta, J., Hake, J., Johansson, J., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E.,Wells, G. N., 2015. The FEniCS Project Version 1.5. Archive of Numerical Software 3 (100), 9-23. Cadek, O., Tobie, G., van Hoolst, T., Masse, M., Choblet, G., Lefevre, A., Mitri, G., Baland, R.-M., Behounkova, M., Bourgeois, O., Trinh, A., 2016. Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Let. 46, 5653-5660. Iess, L., Stevenson, D. J., Parisi, M., Hemingway, D., Jacobson, R. A., Lunine, J. I., Nimmo, F., Armstrong, J. W., Asmar, S. W., Ducci, M., Tortora, P., Apr. 2014. The Gravity Field and Interior Structure of Enceladus. Science 344, 78-80. McKinnon, W. B., Apr. 2015. Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity. Geophys. Res. Let. 42, 2137-2143. Nimmo, F., Bills, B. G., Thomas, P. C., 2011. Geophysical implications of the long-wavelength topography of the Saturnian satellites. J. Geophys. Res. 116 (E15), E11001. Soucek, O., Hron, J., Behounkova, M., Cadek, O., 2016. Effect of the tiger stripes on the deformation of Saturn's moon Enceladus. Geophys. Res. Let. 43, 7417-7423.

  5. Core-shell silicon nanowire solar cells

    PubMed Central

    Adachi, M. M.; Anantram, M. P.; Karim, K. S.

    2013-01-01

    Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400 nm < λ < 650 nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices. PMID:23529071

  6. Low temperature storage container for transporting perishables to space station

    NASA Technical Reports Server (NTRS)

    Dean, William G (Inventor); Owen, James W. (Inventor)

    1988-01-01

    This invention is directed to the long term storage of frozen and refrigerated food and biological samples by the space shuttle to the space station. A storage container is utilized which has a passive system so that fluid/thermal and electrical interfaces with the logistics module is not required. The container for storage comprises two units, each having an inner storage shell and an outer shell receiving the inner shell and spaced about it. The novelty appears to lie in the integration of thermally efficient cryogenic storage techniques with phase change materials, including the multilayer metalized surface thin plastic film insulation and the vacuum between the shells. Additionally the fiberglass constructed shells having fiberglass honeycomb portions, and the lining of the space between the shells with foil combine to form a storage container which may keep food and biological samples at very low temperatures for very long periods of time utilizing a passive system.

  7. Sound Transmission through Two Concentric Cylindrical Sandwich Shells

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.

  8. The family Diaphanidae (Gastropoda: Heterobranchia: Cephalaspidea) in Europe, with a redescription of the enigmatic species Colobocephalus costellatus M. Sars, 1870.

    PubMed

    Ohnheiser, Lena Tina; Malaquias, Manuel António E

    2014-03-11

    Diaphanidae has traditionally been considered the basal family of the heterobranch gastropod clade Cephalaspidea with 14 species present in Europe ascribed to five genera. The monophyletic status of the family is controversial because of lack of sound synapomorphies. In this paper we present a review of the diversity of Diaphanidae in Europe and give new data on the morphology and anatomy of 50% of the species together with a synopsis of the relevant systematic characters to distinguish between all European species and genera. The rare species Colobocephalus costellatus is redescribed and shown alive for the first time.Further evidence supporting the non-monophyly of Diaphanidae is given; no synapomorphies were found to unite traditional Diaphanidae taxa, but three groups can be recognized: (1) Diaphaninae with genus Diaphana is united by a globose external, thin, and umbilicate shell and radulae with a bilobed rachidian tooth; (2) Toledoniinae, with genera Toledonia and Bogasonia share the presence of a shell with elevated spire and radulae with a unicuspid rachidian tooth; and (3) an unnamed group, with Colobocephalus and Colpodaspis which are the only genera with internal shells, sculptured and globose with short but protruding spires, and radulae lacking rachidian tooth and with smooth hook-shaped lateral teeth.

  9. Metal organic vapour-phase epitaxy growth of GaN wires on Si (111) for light-emitting diode applications

    PubMed Central

    2013-01-01

    GaN wires are grown on a Si (111) substrate by metal organic vapour-phase epitaxy on a thin deposited AlN blanket and through a thin SiNx layer formed spontaneously at the AlN/Si interface. N-doped wires are used as templates for the growth of core-shell InGaN/GaN multiple quantum wells coated by a p-doped shell. Standing single-wire heterostructures are connected using a metallic tip and a Si substrate backside contact, and the electroluminescence at room temperature and forward bias is demonstrated at 420 nm. This result points out the feasibility of lower cost nitride-based wires for light-emitting diode applications. PMID:23391377

  10. An analytical theory for a three-dimensional thick-disc thin-plate vibratory gyroscope

    NASA Astrophysics Data System (ADS)

    Sedebo, G. T.; Joubert, S. V.; Shatalov, M. Y.

    2018-04-01

    We consider a cylindrical vibratory gyroscope comprising a not necessarliy thin-shelled annular disc with small-plate thickness, vibrating in the m -th vibration mode in-plane and in the (m + 1)st vibration mode out-of-plane. We derive the equations of motion for this contrivance in the “force-to-rebalance regime” and show how a slow (three-dimensional) inertial rotation rate of the gyroscope can be calculated in terms of amplitudes of vibration and other constants, all of which can be measured experimentally or calculated when the eigenfunctions and eigenvalues of the system are known. By means of a concrete example, a numerical experiment demonstrates how varying the inner radius of the annulus as well as the thickness of the plate allows us to “tune” the vibration frequencies of the in-plane and out-of-plane vibrations so that they coincide (for all practical purposes), eliminating any frequency split. Conventionally, an array of at least three thin-shelled hemispherical (or thin-ring) vibratory (resonator) gyroscopes is used to measure any three-dimensional rotation of the craft to which the gyroscopes are fixed. With the design proposed here, the array can be reduced to a solitary, tuned, annular thick-disc thin-plate vibratory gyroscope, reducing both size and cost.

  11. Mathematical Model of Stress-Strain State of Curved Tube of Non-Circular Cross-Section with Account of Technological Wall Thickness Variation

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Ustinov, N. N.; Smolin, N. I.

    2018-05-01

    A mathematical model of the stress-strain state of a curved tube of a non-circular cross-section is presented, taking into account the technological wall thickness variation. On the basis of the semi-membrane shell theory, a system of linear differential equations describing the deformation of a tube under the effect of pressure is obtained. To solve the boundary value problem, the method of shooting is applied. The adequacy of the proposed mathematical model is verified by comparison with the experimental data and the results of the calculation of tubes by the energy method.

  12. Numerical modeling of the exterior-to-interior transmission of impulsive sound through three-dimensional, thin-walled elastic structures

    NASA Astrophysics Data System (ADS)

    Remillieux, Marcel C.; Pasareanu, Stephanie M.; Svensson, U. Peter

    2013-12-01

    Exterior propagation of impulsive sound and its transmission through three-dimensional, thin-walled elastic structures, into enclosed cavities, are investigated numerically in the framework of linear dynamics. A model was developed in the time domain by combining two numerical tools: (i) exterior sound propagation and induced structural loading are computed using the image-source method for the reflected field (specular reflections) combined with an extension of the Biot-Tolstoy-Medwin method for the diffracted field, (ii) the fully coupled vibro-acoustic response of the interior fluid-structure system is computed using a truncated modal-decomposition approach. In the model for exterior sound propagation, it is assumed that all surfaces are acoustically rigid. Since coupling between the structure and the exterior fluid is not enforced, the model is applicable to the case of a light exterior fluid and arbitrary interior fluid(s). The structural modes are computed with the finite-element method using shell elements. Acoustic modes are computed analytically assuming acoustically rigid boundaries and rectangular geometries of the enclosed cavities. This model is verified against finite-element solutions for the cases of rectangular structures containing one and two cavities, respectively.

  13. Fem and Experimental Analysis of Thin-Walled Composite Elements Under Compression

    NASA Astrophysics Data System (ADS)

    Różyło, P.; Wysmulski, P.; Falkowicz, K.

    2017-05-01

    Thin-walled steel elements in the form of openwork columns with variable geometrical parameters of holes were studied. The samples of thin-walled composite columns were modelled numerically. They were subjected to axial compression to examine their behavior in the critical and post-critical state. The numerical models were articulately supported on the upper and lower edges of the cross-section of the profiles. The numerical analysis was conducted only with respect to the non-linear stability of the structure. The FEM analysis was performed until the material achieved its yield stress. This was done to force the loss of stability by the structures. The numerical analysis was performed using the ABAQUS® software. The numerical analysis was performed only for the elastic range to ensure the operating stability of the tested thin-walled structures.

  14. Final report SI 08-SI-004: Fusion application targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biener, J; Kucheyev, S O; Wang, M Y

    2010-12-03

    Complex target structures are necessary to take full advantage of the unique laboratory environment created by inertial confinement fusion experiments. For example, uses-of-ignition targets that contain a thin layer of a low density nanoporous material inside a spherical ablator shell allow placing dopants in direct contact with the DT fuel. The ideal foam for this application is a low-density hydrocarbon foam that is strong enough to survive wetting with cryogenic hydrogen, and low enough in density (density less than {approx}30 mg/cc) to not reduce the yield of the target. Here, we discuss the fabrication foam-lined uses-of-ignition targets, and the developmentmore » of low-density foams that can be used for this application. Much effort has been directed over the last 20 years toward the development of spherical foam targets for direct-drive and fast-ignition experiments. In these targets, the spherical foam shell is used to define the shape of the cryogenic DT fuel layer, or acts as a surrogate to simulate the cryogenic fuel layer. These targets are fabricated from relatively high-density aerogels (>100 mg/cc) and coated with a few micron thick permeation barrier. With exception of the above mentioned fast ignition targets, the wall of these targets is typically larger than 100 microns. In contrast, the fusion application targets for indirect-drive experiments on NIF will require a much thinner foam shell surrounded by a much thicker ablator shell. The design requirements for both types of targets are compared in Table 1. The foam shell targets for direct-drive experiments can be made in large quantities and with reasonably high yields using an encapsulation technique pioneered by Takagi et al. in the early 90's. In this approach, targets are made by first generating unsupported foam shells using a triple-orifice droplet generator, followed by coating the dried foam shells with a thin permeation barrier. However, this approach is difficult, if not impossible, to transfer to the lower density and thinner wall foam shells required for indirect-drive uses-of-ignition targets for NIF that then would have to be coated with an at least hundred-micron-thick ablator film. So far, the thinnest shells that have been fabricated using the triple-orifice-droplet generator technique had a wall thickness of {approx}20 microns, but despite of being made from a higher-density foam formulation, the shells were mechanically very sensitive, difficult to dry, and showed large deviations from roundness. We thus decided to explore a different approach based on using prefabricated thick-walled spherical ablator shells as templates for the thin-walled foam shell. As in the case of the above mentioned encapsulation technique, the foam is made by sol-gel chemistry. However, our approach removes much the requirements on the mechanical stability of the foam shell as the foam shell is never handled in its free-standing form, and promises superior ablator uniformity and surface roughness. As discussed below, the success of this approach depends strongly on the availability of suitable aerogel chemistries (ideally pure hydrocarbon (CH)-based systems) with suitable rheological properties (high viscosity and high modulus near the gel point) that produce low-density and mechanically strong foams.« less

  15. Experiment study and FEM simulation on erythrocytes under linear stretching of optical micromanipulation

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Song, Huadong; Zhu, Panpan; Lu, Hao; Tang, Qi

    2017-08-01

    The elasticity of erythrocytes is an important criterion to evaluate the quality of blood. This paper presents a novel research on erythrocytes' elasticity with the application of optical tweezers and the finite element method (FEM) during blood storage. In this work, the erythrocytes with different in vitro times were linearly stretched by trapping force using optical tweezers and the time dependent elasticity of erythrocytes was investigated. The experimental results indicate that the membrane shear moduli of erythrocytes increased with the increasing in vitro time, namely the elasticity was decreasing. Simultaneously, an erythrocyte shell model with two parameters (membrane thickness h and membrane shear modulus H) was built to simulate the linear stretching states of erythrocytes by the FEM, and the simulations conform to the results obtained in the experiment. The evolution process was found that the erythrocytes membrane thicknesses were decreasing. The analysis assumes that the partial proteins and lipid bilayer of erythrocyte membrane were decomposed during the in vitro preservation of blood, which results in thin thickness, weak bending resistance, and losing elasticity of erythrocyte membrane. This study implies that the FEM can be employed to investigate the inward mechanical property changes of erythrocyte in different environments, which also can be a guideline for studying the erythrocyte mechanical state suffered from different diseases.

  16. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells With Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Sarnes, James H., Jr.

    2004-01-01

    Results from a numerical study of the response of thin-walled compression-loaded quasi-isotropic laminated composite cylindrical shells with unreinforced and reinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The results indicate that a local buckling response occurs in the shell near the cutout when subjected to load and is caused by a nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, reinforcement around a cutout in a compression-loaded shell is shown to retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved buckling response characteristics.

  17. Structure of Enceladus' Ice Shell

    NASA Astrophysics Data System (ADS)

    Hemingway, D.

    2016-12-01

    Constraining the internal structure of Enceladus is essential for understanding its evolution, its highly active south polar region, and its prospects for habitability. Of particular interest is the thickness of the icy shell, which has implications for the thermal structure, the effects of tidal stresses, and the conduits feeding the jets and plume. Since Enceladus' low order gravity field was first measured [1], several studies of shape and gravity have suggested the presence of an internal ocean beneath the icy shell [1-3]. These analyses, however, involve several assumptions and approximations and yield distinct shell thickness estimates (ranging from 18-60 km), only some of which are compatible with estimates from the measured physical librations (15-25 km [4,5]). Part of the challenge is that standard approaches to interior modeling (e.g., Radau-Darwin) are not well suited to Enceladus due to its fast rotation and relatively large non-hydrostatic topography [2,6]. Because of Enceladus' small radius, results are also sensitive to the details of the compensation model [7,8]. Here we apply an analytical compensation model that accommodates the spherical geometry in a manner that is distinct from previous studies, and employ a high fidelity numerical approach to modeling the hydrostatic equilibrium figure [6]. We show that the resulting shell thickness estimates are smaller than in previous models—in agreement with the libration observations—suggesting the possibility of an extremely thin ice crust at the south pole. While a range of mean shell thicknesses are permitted within the observational constraints, the amplitude of lateral shell thickness variations is well constrained. In particular, the shell is 10 km thicker at the north pole than at the south pole, potentially helping to explain the nature of the north-south polar asymmetry in endogenic activity. 1. Iess et al., Science. 344, 78-80 (2014). 2. McKinnon, Geophys. Res. Lett.42 (2015). 3. Cadek et al., Geophys. Res. Lett. (2016). 4. Thomas et al., Icarus. 264, 37-47 (2016). 5. Van Hoolst, Baland, Trinh, Icarus. 277, 311-318 (2016). 6. Tricarico, Astrophys. J. 782, 99 (2014). 7. Jeffreys, The Earth (Cambridge University Press, 6thed, 1976). 8. Turcotte, Willemann, Haxby, Norberry, J. Geophys. Res. 86, 3951-3959 (1981).

  18. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  19. Black p-branes versus black holes in non-asymptotically flat Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Habib Mazharimousavi, S.; Halilsoy, M.

    2016-09-01

    We present a class of non-asymptotically flat (NAF) charged black p-branes (BpB) with p-compact dimensions in higher-dimensional Einstein-Yang-Mills theory. Asymptotically the NAF structure manifests itself as an anti-de sitter spacetime. We determine the total mass/energy enclosed in a thin shell located outside the event horizon. By comparing the entropies of BpB with those of black holes in the same dimensions we derive transition criteria between the two types of black objects. Given certain conditions satisfied, our analysis shows that BpB can be considered excited states of black holes. An event horizon r+ versus charge square Q2 plot for the BpB reveals such a transition where r+ is related to the horizon radius rh of the black hole (BH) both with the common charge Q.

  20. Development of Curved-Plate Elements for the Exact Buckling Analysis of Composite Plate Assemblies Including Transverse Shear Effects

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Anderson, Melvin S.

    1998-01-01

    The analytical formulation of curved-plate non-linear equilibrium equations that include transverse-shear-deformation effects is presented. A unified set of non-linear strains that contains terms from both physical and tensorial strain measures is used. Using several simplifying assumptions, linearized, stability equations are derived that describe the response of the plate just after bifurcation buckling occurs. These equations are then modified to allow the plate reference surface to be located a distance z(c), from the centroid surface which is convenient for modeling stiffened-plate assemblies. The implementation of the new theory into the VICONOPT buckling and vibration analysis and optimum design program code is described. Either classical plate theory (CPT) or first-order shear-deformation plate theory (SDPT) may be selected in VICONOPT. Comparisons of numerical results for several example problems with different loading states are made. Results from the new curved-plate analysis compare well with closed-form solution results and with results from known example problems in the literature. Finally, a design-optimization study of two different cylindrical shells subject to uniform axial compression is presented.

  1. A contact algorithm for shell problems via Delaunay-based meshing of the contact domain

    NASA Astrophysics Data System (ADS)

    Kamran, K.; Rossi, R.; Oñate, E.

    2013-07-01

    The simulation of the contact within shells, with all of its different facets, represents still an open challenge in Computational Mechanics. Despite the effort spent in the development of techniques for the simulation of general contact problems, an all-seasons algorithm applicable to complex shell contact problems is yet to be developed. This work focuses on the solution of the contact between thin shells by using a technique derived from the particle finite element method together with a rotation-free shell triangle. The key concept is to define a discretization of the contact domain (CD) by constructing a finite element mesh of four-noded tetrahedra that describes the potential contact volume. The problem is completed by using an assumed-strain approach to define an elastic contact strain over the CD.

  2. Low-frequency vibrations of a cylindrical shell rotating on rollers

    NASA Astrophysics Data System (ADS)

    Filippov, S. B.

    2018-05-01

    Small free low-frequency vibrations of a rotating closed cylindrical shell which is in a contact with rigid cylindrical rollers are considered. Assumptions of semi-momentless shell theory are used. By means of the expansion of solutions in truncated Fourier series in circumference coordinate the system of the algebraic equations for the approximate calculation of the vibration frequencies and the mode shapes is obtained. The algorithm for the evaluation of frequencies and vibration modes based on analytical solution is developed. In particular, the lowest frequencies of thin cylindrical shell, representing greatest interest for applications, were found. Approximate results are compared with results of numerical calculations carried out by the Finite Elements Analysis. It is shown that the semi-momentless theory can be used for the evaluation of the low frequencies of a cylindrical shell rotating on rollers.

  3. Design of Aerosol Coating Reactors: Precursor Injection

    PubMed Central

    Buesser, Beat; Pratsinis, Sotiris E.

    2013-01-01

    Particles are coated with thin shells to facilitate their processing and incorporation into liquid or solid matrixes without altering core particle properties (coloristic, magnetic, etc.). Here, computational fluid and particle dynamics are combined to investigate the geometry of an aerosol reactor for continuous coating of freshly-made titanium dioxide core nanoparticles with nanothin silica shells by injection of hexamethyldisiloxane (HMDSO) vapor downstream of TiO2 particle formation. The focus is on the influence of HMDSO vapor jet number and direction in terms of azimuth and inclination jet angles on process temperature and coated particle characteristics (shell thickness and fraction of uncoated particles). Rapid and homogeneous mixing of core particle aerosol and coating precursor vapor facilitates synthesis of core-shell nanoparticles with uniform shell thickness and high coating efficiency (minimal uncoated core and free coating particles). PMID:23658471

  4. Intelligent control of mixed-culture bioprocesses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, D.L.; Larsen, E.D.; Miller, K.S.

    A hierarchical control system is being developed and applied to a mixed culture bioprocess in a continuous stirred tank reactor. A bioreactor, with its inherent complexity and non-linear behavior was an interesting, yet, difficult application for control theory. The bottom level of the hierarchy was implemented as a number of integrated set point controls and data acquisition modules. Within the second level was a diagnostic system that used expert knowledge to determine the operational status of the sensors, actuators, and control modules. A diagnostic program was successfully implemented for the detection of stirrer malfunctions, and to monitor liquid delivery ratesmore » and recalibrate the pumps when deviations from desired flow rates occurred. The highest control level was a supervisory shell that was developed using expert knowledge and the history of the reactor operation to determine the set points required to meet a set of production criteria. At this stage the supervisory shell analyzed the data to determine the state of the system. In future implementations, this shell will determine the set points required to optimize a cost function using expert knowledge and adaptive learning techniques.« less

  5. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    PubMed Central

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  6. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection

    NASA Astrophysics Data System (ADS)

    Panigrahi, Shrabani; Basak, Durga

    2011-05-01

    Core-shell TiO2@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC3H7)4] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO2 shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO2 coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors.

  7. Sound Transmission through Cylindrical Shell Structures Excited by Boundary Layer Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.

    1996-01-01

    This paper examines sound transmission into two concentric cylindrical sandwich shells subject to turbulent flow on the exterior surface of the outer shell. The interior of the shells is filled with fluid medium and there is an airgap between the shells in the annular space. The description of the pressure field is based on the cross-spectral density formulation of Corcos, Maestrello, and Efimtsov models of the turbulent boundary layer. The classical thin shell theory and the first-order shear deformation theory are applied for the inner and outer shells, respectively. Modal expansion and the Galerkin approach are used to obtain closed-form solutions for the shell displacements and the radiation and transmission pressures in the cavities including both the annular space and the interior. The average spectral density of the structural responses and the transmitted interior pressures are expressed explicitly in terms of the summation of the cross-spectral density of generalized force induced by the boundary layer turbulence. The effects of acoustic and hydrodynamic coincidences on the spectral density are observed. Numerical examples are presented to illustrate the method for both subsonic and supersonic flows.

  8. Quantum collapse of dust shells in 2 + 1 gravity

    NASA Astrophysics Data System (ADS)

    Ortíz, L.; Ryan, M. P.

    2007-08-01

    This paper considers the quantum collapse of infinitesimally thin dust shells in 2 + 1 gravity. In 2 + 1 gravity a shell is no longer a sphere, but a ring of matter. The classical equation of motion of such shells in terms of variables defined on the shell has been considered by Peleg and Steif (Phys Rev D 51:3992, 1995), using the 2 + 1 version of the original formulation of Israel (Nuovo Cimento B 44:1, 1966), and Crisóstomo and Olea (Phys Rev D 69:104023, 2004), using canonical methods. The minisuperspace quantum problem can be reduced to that of a harmonic oscillator in terms of the curvature radius of the shell, which allows us to use well-known methods to find the motion of coherent wave packets that give the quantum collapse of the shell. Classically, as the radius of the shell falls below a certain point, a horizon forms. In the quantum problem one can define various quantities that give “indications” of horizon formation. Without a proper definition of a “horizon” in quantum gravity, these can be nothing but indications.

  9. Secular instabilities of Keplerian stellar discs

    NASA Astrophysics Data System (ADS)

    Kaur, Karamveer; Kazandjian, Mher V.; Sridhar, S.; Touma, Jihad R.

    2018-05-01

    We present idealized models of a razor-thin, axisymmetric, Keplerian stellar disc around a massive black hole, and study non-axisymmetric secular instabilities in the absence of either counter-rotation or loss cones. These discs are prograde mono-energetic waterbags, whose phase-space distribution functions are constant for orbits within a range of eccentricities (e) and zero outside this range. The linear normal modes of waterbags are composed of sinusoidal disturbances of the edges of distribution function in phase space. Waterbags that include circular orbits (polarcaps) have one stable linear normal mode for each azimuthal wavenumber m. The m = 1 mode always has positive pattern speed and, for polarcaps consisting of orbits with e < 0.9428, only the m = 1 mode has positive pattern speed. Waterbags excluding circular orbits (bands) have two linear normal modes for each m, which can be stable or unstable. We derive analytical expressions for the instability condition, pattern speeds, growth rates, and normal mode structure. Narrow bands are unstable to modes with a wide range in m. Numerical simulations confirm linear theory and follow the non-linear evolution of instabilities. Long-time integration suggests that instabilities of different m grow, interact non-linearly, and relax collisionlessly to a coarse-grained equilibrium with a wide range of eccentricities.

  10. Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W. T.

    2017-10-01

    Controlled self-assembly of multi-component magnetic nanoparticles could lead to nanomaterial-based magnetic devices with novel structures and intriguing properties. Herein, self-assembled thin films of Fe3O4-Ag composite nanoparticles (CNPs) with hetero-dimeric shapes were fabricated using interfacial assembly method. The CNP-assembled thin films were further transferred to patterned silicon substrates followed by vacuum annealing, producing CNP-based magnetoresistive (MR) devices. Due to the presence of intra-particle interfaces and inter-particle barriers, an enhanced MR ratio and a non-linear current-voltage relation were observed in the device. The results of this work can potentially pave the way to the future exploration and development of spintronic devices built from composite nanomaterials.

  11. An Exposition on the Nonlinear Kinematics of Shells, Including Transverse Shearing Deformations

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2013-01-01

    An in-depth exposition on the nonlinear deformations of shells with "small" initial geometric imperfections, is presented without the use of tensors. First, the mathematical descriptions of an undeformed-shell reference surface, and its deformed image, are given in general nonorthogonal coordinates. The two-dimensional Green-Lagrange strains of the reference surface derived and simplified for the case of "small" strains. Linearized reference-surface strains, rotations, curvatures, and torsions are then derived and used to obtain the "small" Green-Lagrange strains in terms of linear deformation measures. Next, the geometry of the deformed shell is described mathematically and the "small" three-dimensional Green-Lagrange strains are given. The deformations of the shell and its reference surface are related by introducing a kinematic hypothesis that includes transverse shearing deformations and contains the classical Love-Kirchhoff kinematic hypothesis as a proper, explicit subset. Lastly, summaries of the essential equations are given for general nonorthogonal and orthogonal coordinates, and the basis for further simplification of the equations is discussed.

  12. Temperature studies of optical parameters of (Ag3AsS3)0.6(As2S3)0.4 thin films prepared by rapid thermal evaporation and pulse laser deposition

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Kutsyk, M. M.; Buchuk, M. Yu.; Rati, Y. Y.; Neimet, Yu. Yu.; Izai, V. Yu.; Kökényesi, S.; Nemec, P.

    2016-02-01

    (Ag3AsS3)0.6(As2S3)0.4 thin films were deposited using rapid thermal evaporation (RTE) and pulse laser deposition (PLD) techniques. Ag-enriched micrometre-sized cones (RTE) and bubbles (PLD) were observed on the thin film surface. Optical transmission spectra of the thin films were studied in the temperature range 77-300 K. The Urbach behaviour of the optical absorption edge in the thin films due to strong electron-phonon interaction was observed, the main parameters of the Urbach absorption edge were determined. Temperature dependences of the energy position of the exponential absorption edge and the Urbach energy are well described in the Einstein model. Dispersion and temperature dependences of refractive indices were analysed; a non-linear increase of the refractive indices with temperature was revealed. Disordering processes in the thin films were studied and compared with bulk composites, the differences between the thin films prepared by RTE and PLD were analysed.

  13. Nanoreactors comprising a nanoreactor shell enveloping a space, and method of making

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Rioux, Robert M [Somerville, MA; Somorjai, Gabor A [Berkeley, CA

    2011-01-25

    Described herein are nanoreactors having various shapes that can be produced by a simple chemical process. The nanoreactors described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making and have a nanoparticle enclosed therein. The nanoreactors have catalytic activity and may be used to catalyze a variety of chemical reactions.

  14. Nondimensional parameters and equations for buckling of symmetrically laminated thin elastic shallow shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    1991-01-01

    A method of deriving nondimensional equations and identifying the fundamental parameters associated with bifurcation buckling of anisotropic shells subjected to combined loads is presented. The procedure and rationale used to obtain useful nondimensional forms of the transverse equilibrium and compatibility equations for buckling are presented. Fundamental parameters are identified that represent the importance of both membrane and bending orthotropy and anisotropy on the results.

  15. Multifunctional Composite Nanofibers for Smart Structures

    DTIC Science & Technology

    2011-10-13

    low cost. It is coated onto the surface of CNF to use as a supercapacitor cathode. The high porosity and surface area of nanofiber composite...SiNP fusion, pulverization, and capacity loss can be minimized during electrochemical cycling. Carbon is also ductile in absorbing the mechanical...b) Figure 2 Core-shell CNF/Si composite with a thin layer of carbon shell coating on SiNP (a) and the capacity of both

  16. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

    PubMed Central

    Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas

    2017-01-01

    A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol–gel-processing of silica precursors is used to deposit a silica coating directly on the fiber’s surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes. PMID:28685115

  17. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process.

    PubMed

    Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas; Volkmer, Dirk

    2017-01-01

    A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol-gel-processing of silica precursors is used to deposit a silica coating directly on the fiber's surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes.

  18. SN 1986J VLBI. IV. The Nature of the Central Component

    NASA Astrophysics Data System (ADS)

    Bietenholz, Michael F.; Bartel, Norbert

    2017-12-01

    We report on Very Large Array measurements between 1 and 45 GHz of the evolving radio spectral energy distribution (SED) of SN 1986J, made in conjunction with very long baseline interferometry (VLBI) imaging. The SED of SN 1986J is unique among supernovae, and shows an inversion point and a high-frequency turnover. Both are due to the central component seen in the VLBI images, and both are progressing downward in frequency with time. The optically thin spectral index of the central component is almost the same as that of the shell. We fit a simple model to the evolving SED consisting of an optically thin shell and a partly absorbed central component. The evolution of the SED is consistent with that of a homologously expanding system. Both components are fading, but the shell is fading more rapidly. We conclude that the central component is physically inside the expanding shell, and not a surface hotspot central only in projection. Our observations are consistent with the central component being due to interaction of the shock with the dense and highly structured circumstellar medium that resulted from a period of common-envelope evolution of the progenitor. However, a young pulsar-wind nebula or emission from an accreting black hole can also not be ruled out at this point.

  19. Buckling Analysis of a Honeycomb-Core Composite Cylinder with Initial Geometric Imperfections

    NASA Technical Reports Server (NTRS)

    Cha, Gene; Schultz, Marc R.

    2013-01-01

    Thin-walled cylindrical shell structures often have buckling as the critical failure mode, and the buckling of such structures can be very sensitive to small geometric imperfections. The buckling analyses of an 8-ft-diameter, 10-ft-long honeycomb-core composite cylinder loaded in pure axial compression is discussed in this document. Two loading configurations are considered configuration 1 uses simple end conditions, and configuration 2 includes additional structure that may more closely approximate experimental loading conditions. Linear eigenvalue buckling analyses and nonlinear analyses with and without initial geometric imperfections were performed on both configurations. The initial imperfections were introduced in the shell by applying a radial load at the midlength of the cylinder to form a single inward dimple. The critical bifurcation buckling loads are predicted to be 924,190 lb and 924,020 lb for configurations 1 and 2, respectively. Nonlinear critical buckling loads of 918,750 lb and 954,900 lb were predicted for geometrically perfect configurations 1 and 2, respectively. Lower-bound critical buckling loads for configurations 1 and 2 with radial perturbations were found to be 33% and 36% lower, respectively, than the unperturbed critical loads. The inclusion of the load introduction cylinders in configuration 2 increased the maximum bending-boundary-layer rotation up to 11%.

  20. Buckling of Thin Cylindrical Shell Subject to Uniform External Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forasassi, G.; Lo Frano, R.

    2006-07-01

    The buckling of cylindrical shells under uniform external pressure loading has been widely investigated. In general, when tubes are subjected to external pressure, collapse is initiated by yielding, but interaction with instability is significant, in that imperfections associated with fabrication of shells reduce the load bearing capacity by a significant amount even when thickness is considerable. A specific buckling analysis is used to predict collapse failure of long pressure vessels and pipelines when they are subjected to external over-pressure. The problem of buckling for variable load conditions is relevant for the optimisation of several Nuclear Power Plant applications as, formore » instance, the IRIS (International Reactor Innovative and Secure) LWR integrated Steam Generator (SG) tubes. In this paper, we consider in addition to the usual assumptions of thin shell, homogeneous and isotropic material, also the tube geometric imperfections and plastic deformations that may affect the limit load. When all those conditions are considered at present, a complete theoretical analysis was not founding the literature. At Pisa University a research activity is being carried out on the buckling of thin walled metal specimen, with reference to several geometries and two different stainless steel materials. A test equipment (with the necessary data acquisition facility), suitable for carrying out many test on this issue, as well as numerical models implemented on the MARC FEM code, were set up. In this report, the results of the performed analyses of critical pressure load determination with different numerical and experimental approaches are presented. The numerical results obtained are compared with the experimental results, for the same geometry and loading conditions, showing a good agreement between these two approaches. (authors)« less

  1. The Experimental Study of the Performance of Nano-Thin Polyelectrolyte Shell for Dental Pulp Stem Cells Immobilization.

    PubMed

    Grzeczkowicz, A; Granicka, L H; Maciejewska, I; Strawski, M; Szklarczyk, M; Borkowska, M

    2015-12-01

    Carious is the most frequent disease of mineralized dental tissues which might result in dental pulp inflammation and mortality. In such cases an endodontic treatment is the only option to prolong tooth functioning in the oral cavity; however, in the cases of severe pulpitis, especially when complicated with periodontal tissue inflammation, the endodontic treatment might not be enough to protect against tooth loss. Thus, keeping the dental pulp viable and/or possibility of the reconstruction of a viable dental pulp complex, appears to become a critical factor for carious and/or pulp inflammation treatment. The nowadays technologies, which allow handling dental pulp stem cells (DPSC), seem to bring us closer to the usage of dental stem cells for tooth tissues reconstruction. Thus, DPSC immobilized within nano-thin polymeric shells, allowing for a diffusion of produced factors and separation from bacteria, may be considered as a cover system supporting technology of dental pulp reconstruction. The DPSC were immobilized using a layer-by-layer technique within nano-thin polymeric shells constructed and modified by nanostructure involvement to ensure the layers stability and integrity as well as separation from bacterial cells. The cytotoxity of the material used for membrane production was assessed on the model of adherent cells. The performance of DPSC nano-coating was assessed in vitro. Membrane coatings showed no cytotoxicity on the immobilized cells. The presence of coating shell was confirmed with flow cytometry, atomic force microscopy and visualized with fluorescent microscopy. The transfer of immobilized DPSC within the membrane system ensuring cells integrity, viability and protection from bacteria should be considered as an alternative method for dental tissues transportation and regeneration.

  2. f(R) gravity and chameleon theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2008-11-15

    We analyze f(R) modifications of Einstein's gravity as dark energy models in the light of their connection with chameleon theories. Formulated as scalar-tensor theories, the f(R) theories imply the existence of a strong coupling of the scalar field to matter. This would violate all experimental gravitational tests on deviations from Newton's law. Fortunately, the existence of a matter dependent mass and a thin-shell effect allows one to alleviate these constraints. The thin-shell condition also implies strong restrictions on the cosmological dynamics of the f(R) theories. As a consequence, we find that the equation of state of dark energy is constrainedmore » to be extremely close to -1 in the recent past. We also examine the potential effects of f(R) theories in the context of the Eoet-wash experiments. We show that the requirement of a thin shell for the test bodies is not enough to guarantee a null result on deviations from Newton's law. As long as dark energy accounts for a sizeable fraction of the total energy density of the Universe, the constraints that we deduce also forbid any measurable deviation of the dark energy equation of state from -1. All in all, we find that both cosmological and laboratory tests imply that f(R) models are almost coincident with a {lambda}CDM model at the background level.« less

  3. Dicofol (Kelthane?)-induced eggshell thinning in captive American kestrels

    USGS Publications Warehouse

    Clark, D.R.; Spann, J.W.; Bunck, C.M.

    1990-01-01

    Reproductive parameters of American kestrels (Falco sparverius) were measured through two breeding seasons. Exposure to Kelthane? (containing no DDT-related compounds) at dietary concentrations of 0 (contro!), 1, 3, 10 and 30 ug/g (wet weight) began in late November before, and continued through, the second season. Kelthane thinned eggshells and lowered the thickness index at dietary concentrations >3 ?g/g and it reduced shell weight at >10 ?g/g when comparisons were to concurrent controls. Kelthane reduced the thickness index at >3 ug/g and it reduced shell thickness and weight at >10 ug/g when comparisons were to the same birds during the previous season. All changes were dose-related. It was not previously known that as little as 3 ug/g dicofol could cause these effects. Kestrels resembled previously studied eastern screech-owls (Otus asio) in that 10 ug/ g reduced hatchability of eggs. Both these raptors showed eggshell changes without serious effects on production of young. Available data show dicofol only equal to or less effective than DDE as a shell-thinning agent. Also, DDE may have more impact than dicofol on such critical aspects of reproduction as egg hatchability and survivability of hatchlings. Field studies of dicofol residues in food chains and of residue concentrations in eggs vs. nesting success from areas of heavy dicofol use are needed to judge this chemical's ecological impact.

  4. Gravastars in f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Das, Amit; Ghosh, Shounak; Guha, B. K.; Das, Swapan; Rahaman, Farook; Ray, Saibal

    2017-06-01

    We propose a unique stellar model under the f (R ,T ) gravity by using the conjecture of Mazur-Mottola [P. Mazur and E. Mottola, Report No. LA-UR-01-5067, P. Mazur and E. Mottola, Proc. Natl. Acad. Sci. USA 101, 9545 (2004), 10.1073/pnas.0402717101] which is known as gravastar and a viable alternative to the black hole as available in literature. This gravastar is described by the three different regions, viz., (I) Interior core region, (II) Intermediate thin shell, and (III) Exterior spherical region. The pressure within the interior region is equal to the constant negative matter density which provides a repulsive force over the thin spherical shell. This thin shell is assumed to be formed by a fluid of ultrarelativistic plasma and the pressure, which is directly proportional to the matter-energy density according to Zel'dovich's conjecture of stiff fluid [Y. B. Zel'dovich, Mon. Not. R. Astron. Soc. 160, 1 (1972), 10.1093/mnras/160.1.1P], does counterbalance the repulsive force exerted by the interior core region. The exterior spherical region is completely vacuum and assumed to be de Sitter spacetime which can be described by the Schwarzschild solution. Under this specification we find out a set of exact and singularity-free solution of the gravastar which presents several other physically valid features within the framework of alternative gravity.

  5. Novel synthesis and characterization of Ag@TiO2 core shell nanostructure for non-enzymatic glucose sensor

    NASA Astrophysics Data System (ADS)

    T, Dayakar; Venkateswara Rao, K.; Vinodkumar, M.; Bikshalu, K.; Chakradhar, B.; Ramachandra Rao, K.

    2018-03-01

    Ag@TiO2 core-shell nano composite (ATCSNC) were synthesized by using Ocimum tenuiflorum leaves extract through a simple one-step hydrothermal route for Non-enzymatic glucose sensing material. The prepared NCs were characterized and found high crystallinity, red shift absorbance, interface-bonding parameters, rough surface and network like microstructure through XRD, Uv-vis, FTIR, SEM, and TEM. The prepared ATCSNC have been used for fabrication of glassy carbon electrode (GCE) and the same was applied to test its electro catalytic activity of glucose in 0.1 M NaOH. The promising results were recorded for ATCSNC/GCE with a high sensitivity (1968.72 μAm M-1cm-2), wide linear range (1 μM-8.1 mM), good response time (3 s), and excellent low detection limit (0.19 μM, S/N = 3). Furthermore, the designed sensor exhibits admirable stability and reproducibility, as well as attractive achievability for real sample analysis. As such, the proposed ATCSNC could be highly beneficial in the development of sustainable and eco-friendly glucose sensing devices.

  6. Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, Brian M., E-mail: bmhaines@lanl.gov

    2015-08-15

    In this paper, we perform a series of high-resolution 3D simulations of an OMEGA-type inertial confinement fusion (ICF) capsule implosion with varying levels of initial long-wavelength asymmetries in order to establish the physical energy loss mechanism for observed yield degradation due to long-wavelength asymmetries in symcap (gas-filled capsule) implosions. These simulations demonstrate that, as the magnitude of the initial asymmetries is increased, shell kinetic energy is increasingly retained in the shell instead of being converted to fuel internal energy. This is caused by the displacement of fuel mass away from and shell material into the center of the implosion duemore » to complex vortical flows seeded by the long-wavelength asymmetries. These flows are not fully turbulent, but demonstrate mode coupling through non-linear instability development during shell stagnation and late-time shock interactions with the shell interface. We quantify this effect by defining a separation lengthscale between the fuel mass and internal energy and show that this is correlated with yield degradation. The yield degradation shows an exponential sensitivity to the RMS magnitude of the long-wavelength asymmetries. This strong dependence may explain the lack of repeatability frequently observed in OMEGA ICF experiments. In contrast to previously reported mechanisms for yield degradation due to turbulent instability growth, yield degradation is not correlated with mixing between shell and fuel material. Indeed, an integrated measure of mixing decreases with increasing initial asymmetry magnitude due to delayed shock interactions caused by growth of the long-wavelength asymmetries without a corresponding delay in disassembly.« less

  7. MHD Waves in Coronal Loops with a Shell

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, B. B.; Solov'ev, A. A.

    2004-04-01

    We consider a model of a coronal loop in the form of a cord surrounded by a coaxial shell. Two slow magnetosonic waves longitudinally propagate within a thin flux tube on the m = 0 cylindrical mode with velocities close to the tube velocities in the cord and the shell. One wave propagates inside the cord, while the other propagates inside the shell. A peculiar feature of the second wave is that the plasma in the cord and the shell oscillates with opposite phases. There are two fast magnetosonic waves on each of the cylindrical modes with m > 0. If the plasma density in the shell is lower than that in the surrounding corona, then one of the waves is radiated into the corona, which causes the loop oscillations to be damped, while the other wave is trapped by the cord, but can also be radiated out under certain conditions. If the plasma density in the shell is higher than that in the cord, then one of the waves is trapped by the shell, while the other wave can also be trapped by the shell under certain conditions. In the wave trapped by the shell and the wave radiated by the tube, the plasma in the cord and the shell oscillates with opposite phases.

  8. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory.

    PubMed

    Saitow, Masaaki; Becker, Ute; Riplinger, Christoph; Valeev, Edward F; Neese, Frank

    2017-04-28

    The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N 6 ) with system size N, has limited its practical application to small systems consisting of not more than approximately 20-30 atoms. To overcome these limitations, low-order scaling approximations to CCSD have been intensively investigated over the past few years. In our previous work, we have shown that by combining the pair natural orbital (PNO) approach and the concept of orbital domains it is possible to achieve fully linear scaling CC implementations (DLPNO-CCSD and DLPNO-CCSD(T)) that recover around 99.9% of the total correlation energy [C. Riplinger et al., J. Chem. Phys. 144, 024109 (2016)]. The production level implementations of the DLPNO-CCSD and DLPNO-CCSD(T) methods were shown to be applicable to realistic systems composed of a few hundred atoms in a routine, black-box fashion on relatively modest hardware. In 2011, a reduced-scaling CCSD approach for high-spin open-shell unrestricted Hartree-Fock reference wave functions was proposed (UHF-LPNO-CCSD) [A. Hansen et al., J. Chem. Phys. 135, 214102 (2011)]. After a few years of experience with this method, a few shortcomings of UHF-LPNO-CCSD were noticed that required a redesign of the method, which is the subject of this paper. To this end, we employ the high-spin open-shell variant of the N-electron valence perturbation theory formalism to define the initial guess wave function, and consequently also the open-shell PNOs. The new PNO ansatz properly converges to the closed-shell limit since all truncations and approximations have been made in strict analogy to the closed-shell case. Furthermore, given the fact that the formalism uses a single set of orbitals, only a single PNO integral transformation is necessary, which offers large computational savings. We show that, with the default PNO truncation parameters, approximately 99.9% of the total CCSD correlation energy is recovered for open-shell species, which is comparable to the performance of the method for closed-shells. UHF-DLPNO-CCSD shows a linear scaling behavior for closed-shell systems, while linear to quadratic scaling is obtained for open-shell systems. The largest systems we have considered contain more than 500 atoms and feature more than 10 000 basis functions with a triple-ζ quality basis set.

  9. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory

    NASA Astrophysics Data System (ADS)

    Saitow, Masaaki; Becker, Ute; Riplinger, Christoph; Valeev, Edward F.; Neese, Frank

    2017-04-01

    The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N6) with system size N, has limited its practical application to small systems consisting of not more than approximately 20-30 atoms. To overcome these limitations, low-order scaling approximations to CCSD have been intensively investigated over the past few years. In our previous work, we have shown that by combining the pair natural orbital (PNO) approach and the concept of orbital domains it is possible to achieve fully linear scaling CC implementations (DLPNO-CCSD and DLPNO-CCSD(T)) that recover around 99.9% of the total correlation energy [C. Riplinger et al., J. Chem. Phys. 144, 024109 (2016)]. The production level implementations of the DLPNO-CCSD and DLPNO-CCSD(T) methods were shown to be applicable to realistic systems composed of a few hundred atoms in a routine, black-box fashion on relatively modest hardware. In 2011, a reduced-scaling CCSD approach for high-spin open-shell unrestricted Hartree-Fock reference wave functions was proposed (UHF-LPNO-CCSD) [A. Hansen et al., J. Chem. Phys. 135, 214102 (2011)]. After a few years of experience with this method, a few shortcomings of UHF-LPNO-CCSD were noticed that required a redesign of the method, which is the subject of this paper. To this end, we employ the high-spin open-shell variant of the N-electron valence perturbation theory formalism to define the initial guess wave function, and consequently also the open-shell PNOs. The new PNO ansatz properly converges to the closed-shell limit since all truncations and approximations have been made in strict analogy to the closed-shell case. Furthermore, given the fact that the formalism uses a single set of orbitals, only a single PNO integral transformation is necessary, which offers large computational savings. We show that, with the default PNO truncation parameters, approximately 99.9% of the total CCSD correlation energy is recovered for open-shell species, which is comparable to the performance of the method for closed-shells. UHF-DLPNO-CCSD shows a linear scaling behavior for closed-shell systems, while linear to quadratic scaling is obtained for open-shell systems. The largest systems we have considered contain more than 500 atoms and feature more than 10 000 basis functions with a triple-ζ quality basis set.

  10. Structural Assessment of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  11. Kinetically driven self-assembly of a binary solute mixture with controlled phase separation via electro-hydrodynamic flow of corona discharge.

    PubMed

    Jung, Hee Joon; Huh, June; Park, Cheolmin

    2012-10-21

    This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm(-1)). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.

  12. Kinetically driven self-assembly of a binary solute mixture with controlled phase separation via electro-hydrodynamic flow of corona discharge

    NASA Astrophysics Data System (ADS)

    Jung, Hee Joon; Huh, June; Park, Cheolmin

    2012-09-01

    This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm-1). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.

  13. Initial postbuckling analysis of elastoplastic thin-shear structures

    NASA Technical Reports Server (NTRS)

    Carnoy, E. G.; Panosyan, G.

    1984-01-01

    The design of thin shell structures with respect to elastoplastic buckling requires an extended analysis of the influence of initial imperfections. For conservative design, the most critical defect should be assumed with the maximum allowable magnitude. This defect is closely related to the initial postbuckling behavior. An algorithm is given for the quasi-static analysis of the postbuckling behavior of structures that exhibit multiple buckling points. the algorithm based upon an energy criterion allows the computation of the critical perturbation which will be employed for the definition of the critical defect. For computational efficiency, the algorithm uses the reduced basis technique with automatic update of the modal basis. The method is applied to the axisymmetric buckling of cylindrical shells under axial compression, and conclusions are given for future research.

  14. Application of various elastic thin shell theories to blood flow problems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Some existing theories, on elastic thin shells, are reviewed to ascertain their influence on the computation of phase velocities in fluid filled cylinders representing certain aspects of the behavior of arteries and veins in vivo. For physiologically meaningful parameters, including moderately large in plane prestrain that occurs in mammals, the results suggest that with one exception, the small differences in the formulations exercise little influence on the phase velocities. However, it is demonstrated that inclusion of the forces induced by the rotation of the hydrostatic pressure is essential or significantly erroneous torsional wave speeds result. Also the introduction of moderate implane prestrains that are present in living mammals is shown to lead to nonselfadjoint differential equations of motion, whose biorthogonal eigenvectors differ slightly from each other.

  15. Nonsymmetric dynamical thin-shell wormhole in Robinson-Trautman class

    NASA Astrophysics Data System (ADS)

    Svítek, O.; Tahamtan, T.

    2018-02-01

    The thin-shell wormhole created using the Darmois-Israel formalism applied to Robinson-Trautman family of spacetimes is presented. The stress energy tensor created on the throat is interpreted in terms of two dust streams and it is shown that asymptotically this wormhole settles to the Schwarzschild wormhole with a throat located at the position of the horizon. This behavior shows a nonlinear stability (within the Robinson-Trautman class) of this spherically symmetric wormhole. The gravitational radiation emitted by the Robinson-Trautman wormhole during the transition to spherical symmetry is indistinguishable from that of the corresponding black hole Robinson-Trautman spacetime. Subsequently, we show that the higher-dimensional generalization of Robinson-Trautman geometry offers a possibility of constructing wormholes without the need to violate the energy conditions for matter induced on the throat.

  16. Multishell Au/Ag/SiO 2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes

    DOE PAGES

    Chen, Kuangcai; Lin, Chia -Cheng; Vela, Javier; ...

    2015-04-07

    In this study, three-layer core–shell plasmonic nanorods (Au/Ag/SiO 2–NRs), consisting of a gold nanorod core, a thin silver shell, and a thin silica layer, were synthesized and used as optical imaging probes under a differential interference contrast microscope for single particle orientation and rotational tracking. The localized surface plasmon resonance modes were enhanced upon the addition of the silver shell, and the anisotropic optical properties of gold nanorods were maintained. The silica coating enables surface functionalization with silane coupling agents and provides enhanced stability and biocompatibility. Taking advantage of the longitudinal LSPR enhancement, the orientation and rotational information of themore » hybrid nanorods on synthetic lipid bilayers and on live cell membranes were obtained with millisecond temporal resolution using a scientific complementary metal-oxide-semiconductor camera. The results demonstrate that the as-synthesized hybrid nanorods are promising imaging probes with improved sensitivity and good biocompatibility for single plasmonic particle tracking experiments in biological systems.« less

  17. Diagnosis of high-temperature implosions using low- and high-opacity Krypton lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaakobi, B.; Epstein, R.; Hooper, C.F. Jr.

    1996-04-01

    High-temperature laser target implosions can be achieved by using relatively thin-shell targets, and they can be. diagnosed by doping the fuel with krypton and measuring K-shell and L-shell lines. Electron temperatures of up to 5 keV at modest compressed densities ({approximately}1-5g/cm{sup 3}) are predicted for such experiments, with ion temperatures peaking above 10 keV at the center. It is found that the profiles of low-opacity (optically thin) lines in the expected density range are dominated by the Doppler broadening and can provide a measurement of the ion temperature if spectrometers of spectral resolution {Delta}{lambda}/{lambda} {ge} 1000 are used. For high-opacitymore » lines, obtained with a higher krypton fill pressure, the measurement of the escape factor can yield the {rho}R of the compressed fuel. At higher densities, Stark broadening of low-opacity lines becomes important and can provide a density measurement, whereas lines of higher opacity can be used to estimate the extent of mixing.« less

  18. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part I: Linear Theory

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2014-01-01

    Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.

  19. Improved assumed-stress hybrid shell element with drilling degrees of freedom for linear stress, buckling, and free vibration analyses

    NASA Technical Reports Server (NTRS)

    Rengarajan, Govind; Aminpour, Mohammad A.; Knight, Norman F., Jr.

    1992-01-01

    An improved four-node quadrilateral assumed-stress hybrid shell element with drilling degrees of freedom is presented. The formulation is based on Hellinger-Reissner variational principle and the shape functions are formulated directly for the four-node element. The element has 12 membrane degrees of freedom and 12 bending degrees of freedom. It has nine independent stress parameters to describe the membrane stress resultant field and 13 independent stress parameters to describe the moment and transverse shear stress resultant field. The formulation encompasses linear stress, linear buckling, and linear free vibration problems. The element is validated with standard tests cases and is shown to be robust. Numerical results are presented for linear stress, buckling, and free vibration analyses.

  20. Fabrication of micromachined ceramic thin-film-type pressure sensors for overpressure tolerance and its characteristics

    NASA Astrophysics Data System (ADS)

    Chung, Gwiy-Sang; Kim, Jae-Min

    2004-04-01

    This paper describes the fabrication process and characteristics of ceramic thin-film pressure sensors based on Ta-N strain gauges for harsh environment applications. The Ta-N thin-film strain gauges are sputter-deposited on a thermally oxidized micromachined Si diaphragm with buried cavities for overpressure tolerance. The proposed device takes advantage of the good mechanical properties of single-crystalline Si as a diaphragm fabricated by SDB and electrochemical etch-stop technology, and in order to extend the temperature range, it has relatively higher resistance, stability and gauge factor of Ta-N thin-films more than other gauges. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low nonlinearity and excellent temperature stability. The sensitivity is 1.21-1.097 mV/V×kgf/cm2 in temperature ranges of 25-200°C and a maximum non-linearity is 0.43 %FS.

  1. User document for computer programs for ring-stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1973-01-01

    A user manual and related program documentation is presented for six compatible computer programs for structural analysis of axisymmetric shell structures. The programs apply to a common structural model but analyze different modes of structural response. In particular, they are: (1) Linear static response under asymmetric loads; (2) Buckling of linear states under asymmetric loads; (3) Nonlinear static response under axisymmetric loads; (4) Buckling nonlinear states under axisymmetric (5) Imperfection sensitivity of buckling modes under axisymmetric loads; and (6) Vibrations about nonlinear states under axisymmetric loads. These programs treat branched shells of revolution with an arbitrary arrangement of a large number of open branches but with at most one closed branch.

  2. The elastic theory of shells using geometric algebra

    PubMed Central

    Lasenby, J.; Agarwal, A.

    2017-01-01

    We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible. PMID:28405404

  3. The elastic theory of shells using geometric algebra.

    PubMed

    Gregory, A L; Lasenby, J; Agarwal, A

    2017-03-01

    We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible.

  4. Experimental and Numerical Study of the Buckling of Composite Profiles with Open Cross Section under Axial Compression

    NASA Astrophysics Data System (ADS)

    Rozylo, Patryk; Teter, Andrzej; Debski, Hubert; Wysmulski, Pawel; Falkowicz, Katarzyna

    2017-10-01

    The object of the research are short, thin-walled columns with an open top-hat cross section made of multilayer laminate. The walls of the investigated profiles are made of plate elements. The entire columns are subjected to uniform compression. A detailed analysis allowed us to determine critical forces and post-critical equilibrium paths. It is assumed that the columns are articulately supported on the edges forming their ends. The numerical investigation is performed by the finite element method. The study involves solving the problem of eigenvalue and the non-linear problem of stability of the structure. The numerical analysis is performed by the commercial simulation software ABAQUS®. The numerical results are then validated experimentally. In the discussed cases, it is assumed that the material operates within a linearly-elastic range, and the non-linearity of the FEM model is due to large displacements.

  5. Entanglement tsunami: universal scaling in holographic thermalization.

    PubMed

    Liu, Hong; Suh, S Josephine

    2014-01-10

    We consider the time evolution of entanglement entropy after a global quench in a strongly coupled holographic system, whose subsequent equilibration is described in the gravity dual by the gravitational collapse of a thin shell of matter resulting in a black hole. In the limit of large regions of entanglement, the evolution of entanglement entropy is controlled by the geometry around and inside the event horizon of the black hole, resulting in regimes of pre-local-equilibration quadratic growth (in time), post-local-equilibration linear growth, a late-time regime in which the evolution does not carry memory of the size and shape of the entangled region, and a saturation regime with critical behavior resembling those in continuous phase transitions. Collectively, these regimes suggest a picture of entanglement growth in which an "entanglement tsunami" carries entanglement inward from the boundary. We also make a conjecture on the maximal rate of entanglement growth in relativistic systems.

  6. Stretched graphene tented by polycaprolactone and polypyrrole net-bracket for neurotransmitter detection

    NASA Astrophysics Data System (ADS)

    Wang, Zhenzhen; Ying, Ye; Li, Li; Xu, Ting; Wu, Yiping; Guo, Xiaoyu; Wang, Feng; Shen, Haojie; Wen, Ying; Yang, Haifeng

    2017-02-01

    A net-bracket built out from the core@shell structure of chemically oxidized polypyrrole (PPy) coated electrospun polycaprolactone (PCL) nanofibers, and the following surface modification of a thin layer of positively charged poly(dimethyl diallyl ammonium chloride) (PDDA) has been applied for stretching the reduced graphene oxide (RGO) sheets to some extent with the electrochemical deposition method. The as-formed RGO/PDDA/PCL@PPy nanocomposites were investigated by using scanning electron microscopy, transmission electron microscope, X-ray diffraction and Raman spectroscopy. The graphene tented by the net-bracket showed remarkable electrocatalytic properties in detecting the neurotransmitter dopamine (DA). Low detection limit of 0.34 μM (S/N = 3) with the wide linear detection range from 4 μM to 690 μM was obtained. The successful determination of DA in real urine samples and DA injection were achieved. Such attractive fabrication strategy can be extended to make other graphene sheet-based sensors.

  7. Comparison of composite rotor blade models: A coupled-beam analysis and an MSC/NASTRAN finite-element model

    NASA Technical Reports Server (NTRS)

    Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.

    1987-01-01

    A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.

  8. Conformal supergravity in five dimensions: new approach and applications

    NASA Astrophysics Data System (ADS)

    Butter, Daniel; Kuzenko, Sergei M.; Novak, Joseph; Tartaglino-Mazzucchelli, Gabriele

    2015-02-01

    We develop a new off-shell formulation for five-dimensional (5D) conformal supergravity obtained by gauging the 5D superconformal algebra in superspace. An important property of the conformal superspace introduced is that it reduces to the super-conformal tensor calculus (formulated in the early 2000's) upon gauging away a number of superfluous fields. On the other hand, a different gauge fixing reduces our formulation to the SU(2) superspace of arXiv:0802.3953, which is suitable to describe the most general off-shell supergravity-matter couplings. Using the conformal superspace approach, we show how to reproduce practically all off-shell constructions derived so far, including he supersymmetric extensions of R 2 terms, thus demonstrating the power of our formulation. Furthermore, we construct for the first time a supersymmetric completion of the Ricci tensor squared term using the standard Weyl multiplet coupled to an off-shell vector multiplet. In addition, we present several procedures to generate higher-order off-shell invariants in supergravity, including higher-derivative ones. The covariant projective multiplets proposed in arXiv:0802.3953 are lifted to conformal superspace, and a manifestly superconformal action principle is given. We also introduce unconstrained prepotentials for the vector multiplet, the multiplet (i.e., the linear multiplet without central charge) and multiplets, with n = 0 , 1 , . . . Superform formulations are given for the BF action and the non-abelian Chern-Simons action. Finally, we describe locally supersymmetric theories with gauged central charge in conformal superspace.

  9. Task-Evoked Pupillary Responses and Cognitive Processing.

    DTIC Science & Technology

    1980-02-01

    Yingling, C.D., and Skinner, J.E. Gating of thalanic input to cerebral cortex by nucleus reticularis thalami. In J.E. Desmedt (Ed.), Attention, voluntary...innervated. Peripheral control of these muscles originates In the nucleus Edinger-Westphal (located within the third nerve nucleus at the level of the...thalamus is a thin neuronal shell, the reticular nucleus of the thalamus (Carpenter, 1978). Most of the axons from this shell enter the dorsal thalamus

  10. Weathering Tests on Protective Helmets Approved to Australian Standard AS 1698 (for Vehicle Users).

    DTIC Science & Technology

    1979-11-01

    Expanded Polystyrene HELMETI Colour Production; SAA Size ,Length Width j Mass Circumference Date Serial No. cm imm mm nu qm nun L A White July 󈨒 B535336...HELMET DETAILS Make: ARAI Model: S-75 Shell: Fibreglass Reinforced Polyester Resin Liner: Expanded Polystyrene HELMET Colour Production SAA Size...Reinforced Polyester Resin Liner; Expanded Polystyrene (with thin plastic inner shell) HELMET Colour Production’ SAA Size Length Width Mass

  11. Analysis of shell type structures subjected to time dependent mechanical and thermal loading

    NASA Technical Reports Server (NTRS)

    Simitses, G. J.; Carlson, R. L.; Riff, R.

    1985-01-01

    A general mathematical model and solution methodologies for analyzing structural response of thin, metallic shell-type structures under large transient, cyclic or static thermomechanical loads is considered. Among the system responses, which are associated with these load conditions, are thermal buckling, creep buckling and ratchetting. Thus, geometric as well as material-type nonlinearities (of high order) can be anticipated and must be considered in the development of the mathematical model.

  12. Effect of Ice-Shell Thickness Variations on the Tidal Deformation of Enceladus

    NASA Astrophysics Data System (ADS)

    Choblet, G.; Cadek, O.; Behounkova, M.; Tobie, G.; Kozubek, T.

    2015-12-01

    Recent analysis of Enceladus's gravity and topography has suggested that the thickness of the ice shell significantly varies laterally - from 30-40 km in the south polar region to 60 km elsewhere. These variations may influence the activity of the geysers and increase the tidal heat production in regions where the ice shell is thinned. Using a model including a regional or global subsurface ocean and Maxwell viscoelasticity, we investigate the impact of these variations on the tidal deformation of the moon and its heat production. For that purpose, we use different numerical approaches - finite elements, local application of 1d spectral method, and a generalized spectral method. Results obtained with these three approaches for various models of ice-shell thickness variations are presented and compared. Implications of a reduced ice shell thickness for the south polar terrain activity are discussed.

  13. AXIALLY ORIENTED SECTIONS OF NUMMULITIDS: A TOOL TO INTERPRET LARGER BENTHIC FORAMINIFERAL DEPOSITS

    PubMed Central

    Hohenegger, Johann; Briguglio, Antonino

    2015-01-01

    The “critical shear velocity” and “settling velocity” of foraminiferal shells are important parameters for determining hydrodynamic conditions during deposition of Nummulites banks. These can be estimated by determining the size, shape, and density of nummulitid shells examined in axial sections cut perpendicular to the bedding plane. Shell size and shape can be determined directly from the shell diameter and thickness, but density must be calculated indirectly from the thin section. Calculations using the half-tori method approximate shell densities by equalizing the chamber volume of each half whorl, based on the half whorl’s lumen area and its center of gravity. Results from this method yield the same lumen volumes produced empirically by micro-computed tomography. The derived hydrodynamic parameters help estimate the minimum flow velocities needed to entrain nummulitid tests and provide a potential tool to account for the nature of their accumulations. PMID:26166914

  14. AXIALLY ORIENTED SECTIONS OF NUMMULITIDS: A TOOL TO INTERPRET LARGER BENTHIC FORAMINIFERAL DEPOSITS.

    PubMed

    Hohenegger, Johann; Briguglio, Antonino

    2012-04-01

    The "critical shear velocity" and "settling velocity" of foraminiferal shells are important parameters for determining hydrodynamic conditions during deposition of Nummulites banks. These can be estimated by determining the size, shape, and density of nummulitid shells examined in axial sections cut perpendicular to the bedding plane. Shell size and shape can be determined directly from the shell diameter and thickness, but density must be calculated indirectly from the thin section. Calculations using the half-tori method approximate shell densities by equalizing the chamber volume of each half whorl, based on the half whorl's lumen area and its center of gravity. Results from this method yield the same lumen volumes produced empirically by micro-computed tomography. The derived hydrodynamic parameters help estimate the minimum flow velocities needed to entrain nummulitid tests and provide a potential tool to account for the nature of their accumulations.

  15. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Grote, Fabian; Wen, Liaoyong; Lei, Yong

    2014-06-01

    Large-scale arrays of core/shell nanostructures are highly desirable to enhance the performance of supercapacitors. Here we demonstrate an innovative template-based fabrication technique with high structural controllability, which is capable of synthesizing well-ordered three-dimensional arrays of SnO2/MnO2 core/shell nanotubes for electrochemical energy storage in supercapacitor applications. The SnO2 core is fabricated by atomic layer deposition and provides a highly electrical conductive matrix. Subsequently a thin MnO2 shell is coated by electrochemical deposition onto the SnO2 core, which guarantees a short ion diffusion length within the shell. The core/shell structure shows an excellent electrochemical performance with a high specific capacitance of 910 F g-1 at 1 A g-1 and a good rate capability of remaining 217 F g-1 at 50 A g-1. These results shall pave the way to realize aqueous based asymmetric supercapacitors with high specific power and high specific energy.

  16. Constituency and origins of cyclic growth layers in pelecypod shells, part 1

    NASA Technical Reports Server (NTRS)

    Berry, W. B. N.

    1972-01-01

    Growth layers occurring in shells of 98 species of pelecypods were examined microscopically in thin section and as natural and etched surfaces. Study began with shells of eleven species known from life history investigations to have annual cycles of growth. Internal microstructural features of the annual layers in these shells provided criteria for recognition of similar, apparently annual shell increments in eighty-six of eighty-seven other species. All of the specimens feature growth laminae, commonly on the order of 50 microns in thickness. The specimens from shallow marine environments show either a clustering of growth laminae related to the formation of concentric ridges or minor growth bands on the external shell surface. Based on observations of the number of growth laminae and clusters per annual-growth layer, it was hypothesised that the subannual increments may be related to daily and fortnightly (and in some cases monthly) cycles in the environment. Possible applications of the paleogrowth method in the fields of paleoecology and paleoclimatology are discussed.

  17. Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2015-11-01

    This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.

  18. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    PubMed Central

    Park, Nam-Hee; Akamatsu, Takafumi; Itoh, Toshio; Izu, Noriya; Shin, Woosuck

    2015-01-01

    To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell) along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface. PMID:28793420

  19. Comment on Peck et al: Vulnerability of pteropod (Limacina helicina) to ocean acidification: shell dissolution occurs despite an intact organic layer

    NASA Astrophysics Data System (ADS)

    Bednaršek, N.; Johnson, J.; Feely, R. A.

    2016-05-01

    Pteropods have been recognized as one of the most sensitive marine organisms to ocean acidification (OA). Their susceptibility is mostly related to rapid shell dissolution, which is correlated with exposure to waters undersaturated with respect to aragonite (Ωar≤ 1) (e.g., Lischka et al., 2011; Bednaršek et al., 2012a,b, 2014a,b; Busch et al., 2014). Increased dissolution weakens the shell, increases vulnerability to predation and infection, and imposes an energetic cost. The rapidity of shell dissolution is attributed to the combination of metastable aragonitic crystal structure of shells that are among the thinnest known for calcifying organisms, and an extremely thin outer organic layer (i.e. periostracum <1 μm thick), suggesting insufficient protection against shell dissolution at Ωar≤1 (Bednaršek et al., 2014b). The periostracum generally consists of polysaccharide and proteinaceous components (Gaffey and Bronnimann, 1993) but varies significantly in its structure and composition amongst taxa.

  20. Two-dimensional microsphere quasi-crystal: fabrication and properties

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia E.; Venkateswarlu, Putcha; Kukhtarev, Nickolai V.; Sarkisov, Sergey S.; Noginov, Mikhail A.; Caulfield, H. John; Curley, Michael J.

    1996-11-01

    2D quasi-crystals were fabricated from polystyrene microspheres and characterized for their structural, diffraction, and non-linear optics properties. The quasi- crystals were produced with the method based on Langmuir- Blodgett thin film technique. Illuminating the crystal with the laser beam, we observed the diffraction pattern in the direction of the beam propagation and in the direction of the back scattering, similar to the x-ray Laue pattern observed in regular crystals with hexagonal structure. The absorption spectrum of the quasi-crystal demonstrated two series of regular maxima and minima, with the spacing inversely proportional to the microspheres diameter. Illumination of the dye-doped microspheres crystal with Q- switched radiation of Nd:YAG laser showed the enhancement of non-linear properties, in particular, second harmonic generation.

  1. The Twisting of Thin-walled, Stiffened Circular Cylinders

    NASA Technical Reports Server (NTRS)

    Schapitz, E

    1938-01-01

    On the basis of the present investigation of the twisting of thin-walled, stiffened cylinders the following conclusions can be reached: 1) there is as yet no generally applicable formula for the buckling moment of the skin; 2) the mathematical treatment of the condition of the shell after buckling of the skin is based on the tension-field theory, wherein the strain condition is considered homogenous.

  2. Simulation of crash tests for high impact levels of a new bridge safety barrier

    NASA Astrophysics Data System (ADS)

    Drozda, Jiří; Rotter, Tomáš

    2017-09-01

    The purpose is to show the opportunity of a non-linear dynamic impact simulation and to explain the possibility of using finite element method (FEM) for developing new designs of safety barriers. The main challenge is to determine the means to create and validate the finite element (FE) model. The results of accurate impact simulations can help to reduce necessary costs for developing of a new safety barrier. The introductory part deals with the creation of the FE model, which includes the newly-designed safety barrier and focuses on the application of an experimental modal analysis (EMA). The FE model has been created in ANSYS Workbench and is formed from shell and solid elements. The experimental modal analysis, which was performed on a real pattern, was employed for measuring the modal frequencies and shapes. After performing the EMA, the FE mesh was calibrated after comparing the measured modal frequencies with the calculated ones. The last part describes the process of the numerical non-linear dynamic impact simulation in LS-DYNA. This simulation was validated after comparing the measured ASI index with the calculated ones. The aim of the study is to improve professional public knowledge about dynamic non-linear impact simulations. This should ideally lead to safer, more accurate and profitable designs.

  3. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, T.; Sugura, K.; Enokida, Y.

    2015-03-15

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one andmore » established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)« less

  4. High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2014-01-01

    Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.

  5. The isotopic biosignatures of photo- vs. thiotrophic bivalves: are they preserved in fossil shells?

    PubMed

    Dreier, A; Loh, W; Blumenberg, M; Thiel, V; Hause-Reitner, D; Hoppert, M

    2014-09-01

    Symbiont-bearing and non-symbiotic marine bivalves were used as model organisms to establish biosignatures for the detection of distinctive symbioses in ancient bivalves. For this purpose, the isotopic composition of lipids (δ13C) and bulk organic shell matrix (δ13C, δ34S, δ15N) from shells of several thiotrophic, phototrophic, or non-symbiotic bivalves were compared (phototrophic: Fragum fragum, Fragum unedo, Tridacna maxima; thiotrophic: Codakia tigerina, Fimbria fimbriata, Anodontia sp.; non-symbiotic: Tapes dorsatus, Vasticardium vertebratum, Scutarcopagia sp.). ∆13C values of bulk organic shell matrices, most likely representing mainly original shell protein/chitin biomass, were depleted in thio- and phototrophic bivalves compared to non-symbiotic bivalves. As the bulk organic shell matrix also showed a major depletion of δ15N (down to -2.2 ‰) for thiotrophic bivalves, combined δ13C and δ15N values are useful to differentiate between thio-, phototrophic, and non-symbiotic lifestyles. However, the use of these isotopic signatures for the study of ancient bivalves is limited by the preservation of the bulk organic shell matrix in fossils. Substantial alteration was clearly shown by detailed microscopic analyses of fossil (late Pleistocene) T. maxima and Trachycardium lacunosum shell, demonstrating a severe loss of quantity and quality of bulk organic shell matrix with time. Likewise, the composition and δ13C-values of lipids from empty shells indicated that a large part of these compounds derived from prokaryotic decomposers. The use of lipids from ancient shells for the reconstruction of the bivalve's life style therefore appears to be restricted. © 2014 John Wiley & Sons Ltd.

  6. Core-shell-corona micelles by PS-b-P2VP-b-PEO copolymers: focus on the water-induced micellization process.

    PubMed

    Willet, Nicolas; Gohy, Jean-François; Auvray, Loïc; Varshney, Sunil; Jérôme, Robert; Leyh, Bernard

    2008-04-01

    It is now well established that amphiphilic PS-b-P2VP-b-PEO linear triblock copolymers can form multilayered assemblies, thus core-shell-corona (CSC) micelles, in water. Micellization is triggered by addition of a small amount of water into a dilute solution of the PS-b-P2VP-b-PEO copolymer in a non-selective organic solvent. However, the phenomena that take place at the very beginning of this process are poorly documented. How these copolymer chains are perturbed by addition of water was investigated in this work by light and neutron scattering techniques and transmission electron microscopy. It was accordingly possible to determine the critical water concentration (CWC), the compactness of the nano-objects in solution, their number of aggregation, and their hydrodynamic diameter at each step of the micellization process.

  7. Highly luminescent silica-coated CdS/CdSe/CdS nanoparticles with strong chemical robustness and excellent thermal stability

    NASA Astrophysics Data System (ADS)

    Wang, Nianfang; Koh, Sungjun; Jeong, Byeong Guk; Lee, Dongkyu; Kim, Whi Dong; Park, Kyoungwon; Nam, Min Ki; Lee, Kangha; Kim, Yewon; Lee, Baek-Hee; Lee, Kangtaek; Bae, Wan Ki; Lee, Doh C.

    2017-05-01

    We present facile synthesis of bright CdS/CdSe/CdS@SiO2 nanoparticles with 72% of quantum yields (QYs) retaining ca 80% of the original QYs. The main innovative point is the utilization of the highly luminescent CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) as silica coating seeds. The significance of inorganic semiconductor shell passivation and structure design of quantum dots (QDs) for obtaining bright QD@SiO2 is demonstrated by applying silica encapsulation via reverse microemulsion method to three kinds of QDs with different structure: CdSe core and 2 nm CdS shell (CdSe/CdS-thin); CdSe core and 6 nm CdS shell (CdSe/CdS-thick); and CdS core, CdSe intermediate shell and 5 nm CdS outer shell (CdS/CdSe/CdS-SQW). Silica encapsulation inevitably results in lower photoluminescence quantum yield (PL QY) than pristine QDs due to formation of surface defects. However, the retaining ratio of pristine QY is different in the three silica coated samples; for example, CdSe/CdS-thin/SiO2 shows the lowest retaining ratio (36%) while the retaining ratio of pristine PL QY in CdSe/CdS-thick/SiO2 and SQW/SiO2 is over 80% and SQW/SiO2 shows the highest resulting PL QY. Thick outermost CdS shell isolates the excitons from the defects at surface, making PL QY relatively insensitive to silica encapsulation. The bright SiO2-coated SQW sample shows robustness against harsh conditions, such as acid etching and thermal annealing. The high luminescence and long-term stability highlights the potential of using the SQW/SiO2 nanoparticles in bio-labeling or display applications.

  8. Technical Note: Effect of explicit M and N-shell atomic transitions on a low-energy x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Peter G. F., E-mail: peter.watson@mail.mcgill.ca; Seuntjens, Jan

    Purpose: In EGSnrc, atomic transitions to and from the M and N-shells are treated in an average way by default. This approach is justified in which the energy difference between explicit and average M and N-shell binding energies is less than 1 keV, and for most applications can be considered negligible. However, for simulations of low energy x-ray sources on thin, high-Z targets, characteristic x-rays can make up a significant portion of the source spectra. As of release V4-2.4.0, EGSnrc has included an option to enable a more complete algorithm of all atomic transitions available in the EADL compilation. Inmore » this paper, the effect of M and N-shell averaging on the calculation of half-value layer (HVL) and relative depth dose (RDD) curve of a 50 kVp intraoperative x-ray tube with a thin gold target was investigated. Methods: A 50 kVp miniature x-ray source with a gold target (The INTRABEAM System, Carl Zeiss, Germany) was modeled with the EGSnrc user code cavity, both with and without M and N-shell averaging. From photon fluence spectra simulations, the source HVLs were determined analytically. The same source model was then used with egs-chamber to calculate RDD curves in water. Results: A 4% increase of HVL was reported when accounting for explicit M and N-shell transitions, and up to a 9% decrease in local relative dose for normalization at 3 mm depth in water. Conclusions: The EGSnrc default of using averaged M and N-shell binding energies has an observable effect on the HVL and RDD of a low energy x-ray source with high-Z target. For accurate modeling of this class of devices, explicit atomic transitions should be included.« less

  9. Lipids from the nacreous and prismatic layers of two Pteriomorpha Mollusc shells

    NASA Astrophysics Data System (ADS)

    Farre, B.; Dauphin, Y.

    2009-04-01

    Mollusc shells are the best-known Ca-carbonate biominerals. They are commonly described as a mineralized two layered structure: an outer layer composed of calcite prismatic units, and an internal layer composed of tablets of aragonite: the nacreous layer. An external organic layer (periostracum) is present in most taxa. However, the most common structure in the Mollusc shell is the aragonite crossed lamellar layer, but aragonite prisms, calcite foliated layers and homogeneous layers have been also described by Boggild (1930) in all the Mollusc orders. Since, more detailed descriptions of Bivalve shells have been done (Taylor et al., 1969, 1973). Despite the nacroprismatic arrangement is rare, calcite prismatic and aragonite nacreous layers are the best studied because of their simple 3D structure and large units. Among these Molluscs, some Bivalve species composed of these two layers are of commercial interest, such as the pearl oyster, Pinctada margaritifera, cultivated in French Polynesia to produce black pearls. It is well established that Mollusc shells are composite structures of organic and inorganic components (Hatchett, 1799; Grégoire et al., 1955; Beedham, 1958; Simkiss, 1965; Mutvei, 1969; Cuif et al., 1980; Berman et al., 1993; Kobayashi and Samata, 2006). Numerous studies are concerned with the organic matrix of the shell. Organic components are commonly obtained after a strong or mild decalcification process. They are said to consist of both a soluble and insoluble fraction. The main part of studies is dedicated to the soluble components, and among them, proteins (Grégoire et al., 1955; Grégoire, 1961; Krampitz et al., 1976; Samata et al., 1980, 2004; Weiner, 1983; Miyamoto et al., 2006). Despite the pioneering work of Wada (1980) sugars are usually neglected despite their role in biomineralization. The third component of the organic matrix of calcareous biominerals is lipids. To date, there is a paucity of information concerning the presence, abundance and composition of these components in Mollusc shells. Goulletquer and Wolowicz (1989) have estimated that proteins represent 90% of the organic matrix of the shell, carbohydrates vary from 0.15 to 0.29%, while lipids vary from 0.8 to 2.9%. Fatty acids, cholesterol, phytadienes and ketones have been described in modern and fossil shells (Cobabe and Pratt, 1995). Using a procedure to extract intra- and intercrystalline organic matrices, Collins et al. (1995) have detected n-alkanes, n-alcohols, fatty acids and sterols in modern shells. It is suggested that the contents and ratios of these components are dependant on the environment and phylogeny. Lipids of the nacreous layer of Pinctada are diverse, with cholesterol, fatty acids, triglycerides and other unknown components (Rousseau et al., 2006). It has been established that the main part of the soluble organic matrices of the nacreous layer is composed of acidic proteins (Samata, 1988, 1990), whereas the prismatic layer of Pinna is mainly composed of acidic and sulphated polysaccharides (Dauphin, 2002; Dauphin et al., 2003). The amino acid compositions of the two layers are also different (Samata, 1990). Because the organic matrices extracted from the aragonite nacre and calcite prisms are the best known materials, the lipids extracted from the calcite prisms of Pinna nobilis and Pinctada margaritifera and the aragonite nacre of P. margaritifera have been chosen as test material for characterisation of the lipid fraction of molusk shells. The nacreous layer of Pinctada is thick,whereas its prismatic layer is thin, and the prisms display complex structures. On the opposite, the calcitic prismatic layer of Pinna is thick, with no intraprismatic membranes, and its nacreous layer is thin and present only in the oldest part of the shell. Moreover, these layers have a simple geometry so that some organic components (membranes, wall…) said to be insoluble, are clearly visible. Lipids were extracted from the calcite prismatic and aragonite nacreous layer of two mollusc shells thanks organic solvents. Two methods were used for the characterisation of the lipid obtaiened Fourier Tranform Infrared Spectrometry and thin layed chromatography. Fourier Transform Infrared Spectrometry shows that lipids are present in both samples, but they are not similar. Thin layer chromatography confirms that lipids are different in the two studied layers, so that it may be suggested they are species-dependant, but also structure-dependant. Although not yet deciphered, their role in biomineralization and fossilisation processes is probably important.

  10. Post-buckling of a pressured biopolymer spherical shell with the mode interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2018-03-01

    Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.

  11. Synthesis of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Thornton, W. A.

    1974-01-01

    Computer programs for the synthesis of shells of various configurations were developed. The conditions considered are: (1) uniform shells (mainly cones) using a membrane buckling analysis, (2) completely uniform shells (cones, spheres, toroidal segments) using linear bending prebuckling analysis, and (3) revision of second design process to reduce the number of design variables to about 30 by considering piecewise uniform designs. A perturbation formula was derived and this allows exact derivatives of the general buckling load to be computed with little additional computer time.

  12. Computation of Thin-Walled Prismatic Shells

    NASA Technical Reports Server (NTRS)

    Vlasov, V. Z.

    1949-01-01

    We consider a prismatic shell consisting of a finite number of narrow rectangular plates and having in the cross-section a finite number of closed contours (fig. 1(a)). We shall assume that the rectangular plates composing the shell are rigidly joined so that there is no motion of any kind of one plate relative to the others meeting at a given connecting line. The position of a point on the middle prismatic surface is considered to be defined by the coordinate z, the distance to a certain initial cross-section z = O, end the coordinate s determining its position on the contour of the cross-section.

  13. Greenhouse effect: temperature of a metal sphere surrounded by a glass shell and heated by sunlight

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc H.; Matzner, Richard A.

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the z-axis. This development is a generalization of the simple treatment of the greenhouse effect given by Kittel and Kroemer (1980 Thermal Physics (San Francisco: Freeman)) and can serve as a very simple model demonstrating the much more complex Earth greenhouse effect. Solution of the model problem provides an excellent pedagogical tool at the Junior/Senior undergraduate level.

  14. Buckling of structures; Proceedings of the Symposium, Harvard University, Cambridge, Mass., June 17-21, 1974

    NASA Technical Reports Server (NTRS)

    Budiansky, B.

    1976-01-01

    The papers deal with such topics as the buckling and post-buckling behavior of plates and shells; methods of calculating critical buckling and collapse loads; finite element representations for thin-shell instability analysis; theory and experiment in the creep buckling of plates and shells; creep instability of thick shell structures; analytical and numerical studies of the influence of initial imperfections on the elastic buckling of columns; mode interaction in stiffened panels under compression; imperfection-sensitivity in the interactive buckling of stiffened plates; buckling of stochastically imperfect structures; and the Liapunov stability of elastic dynamic systems. A special chapter is devoted to design problems, including the design of a Mars entry 'aeroshell', and buckling design in vehicle structures. Individual items are announced in this issue.

  15. Anthropogenic relief features in tropical northern Australia: a physical and chemical analysis of the Weipa shell mounds

    NASA Astrophysics Data System (ADS)

    Fanning, Patricia; Holdaway, Simon; Allely, Kasey; Larsen, Bernie; Petchey, Fiona

    2017-04-01

    Large mounded deposits of shell are prominent archaeological features across much of the north Australian tropical coast. Many of the shell mounds are composed almost entirely of the bivalve Anadara granosa (Linnaeus 1758), a food source for Aboriginal people in the past. They are identified in the field by their distinct mounded topographic form and the unique vegetation community growing on them. A relatively long history of inquiry into the nature and significance of the shell mounds has focused primarily on analysing the shell component as clues to Australian Aboriginal coastal economies in the past. This paper presents results of new analyses on the non-shell sediments of mounds located near Weipa in far north Queensland, examining the physical and chemical signatures of depositional and post-depositional processes with a view to obtaining insights into how the mounds formed and for what purposes, and how their morphology, structure and content may have changed since they ceased accumulating. We also consider how such changes might relate to past and present environmental conditions. The mounds we studied are primarily located on topographic high points, such as cliffs, hillslopes and beach ridges, though a proportion are located on estuarine floodplains at low elevations. Terrestrial Laser Scanning (TLS) of a sample of 51 shell mounds demonstrates substantial variation in mound size and shape, and suggests patterning in mound form related to age as well as position on the landscape. However, radiocarbon chronologies demonstrate that the mounds do not conform to a model of linear formation of a shell deposit, suggesting mound histories are variable in both the nature of shell deposition as well as post-depositional processes. Soil physical and chemical analyses indicate that post-depositional diagenetic alteration has strongly influenced the present day composition and form of the shell mounds, in particular the accession of carbon and silica to the mounds by environmental burning aided by strong leaching under seasonal high rainfall conditions. As such, mound chemistry is more likely to reflect modern environmental conditions rather than provide an archive of the past.

  16. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection.

    PubMed

    Panigrahi, Shrabani; Basak, Durga

    2011-05-01

    Core-shell TiO(2)@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC(3)H(7))(4)] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO(2) shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO(2) coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors. © The Royal Society of Chemistry 2011

  17. Spherical shells buckling to the sound of music

    NASA Astrophysics Data System (ADS)

    Lee, Anna; Marthelot, Joel; Reis, Pedro

    We study how the critical buckling load of spherical elastic shells can be modified by a fluctuating external pressure field. In our experiments, we employ thin elastomeric shells of nearly uniform thickness fabricated by the coating of a hemispherical mold with a polymer solution, which upon curing yields elastic structures. A shell is submerged in a water bath and loaded quasi-statically until buckling occurs by reducing its inner volume with a syringe pump. Simultaneously, a plunger connected to an electromagnetic shaker is placed above the shell and driven sinusoidally to create a fluctuating external pressure field that can excite dynamic vibration modes of the shell. These dynamic modes induce effective compressive stresses, in addition to those from the inner pressure loading, which can modify the critical conditions for the onset of buckling. We systematically quantify how the frequency and amplitude of the external driving affects the buckling strength of our shells. In specific regions of the parameter space, we find that pressure fluctuations can result in large reductions of the critical buckling pressure. This is analogous to the classic knock-down effect in shells due to intrinsic geometric imperfections, albeit now in a way that can be controlled externally.

  18. Large-area super-resolution optical imaging by using core-shell microfibers

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Lo, Wei-Chieh

    2017-09-01

    We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.

  19. The oil palm Shell gene controls oil yield and encodes a homologue of SEEDSTICK

    PubMed Central

    Singh, Rajinder; Leslie Low, Eng-Ti; Ooi, Leslie Cheng-Li; Ong-Abdullah, Meilina; Chin, Ting Ngoot; Nagappan, Jayanthi; Nookiah, Rajanaidu; Amiruddin, Mohd Din; Rosli, Rozana; Abdul Manaf, Mohamad Arif; Chan, Kuang-Lim; Halim, Mohd Amin; Azizi, Norazah; Lakey, Nathan; Smith, Steven W; Budiman, Muhammad A; Hogan, Michael; Bacher, Blaire; Van Brunt, Andrew; Wang, Chunyan; Ordway, Jared M; Sambanthamurthi, Ravigadevi; Martienssen, Robert A

    2014-01-01

    A key event in the domestication and breeding of the oil palm, Elaeis guineensis, was loss of the thick coconut-like shell surrounding the kernel. Modern E. guineensis has three fruit forms, dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), a hybrid between dura and pisifera1–4. The pisifera palm is usually female-sterile but the tenera yields far more oil than dura, and is the basis for commercial palm oil production in all of Southeast Asia5. Here, we describe the mapping and identification of the Shell gene responsible for the different fruit forms. Using homozygosity mapping by sequencing we found two independent mutations in the DNA binding domain of a homologue of the MADS-box gene SEEDSTICK (STK) which controls ovule identity and seed development in Arabidopsis. The Shell gene is responsible for the tenera phenotype in both cultivated and wild palms from sub-Saharan Africa, and our findings provide a genetic explanation for the single gene heterosis attributed to Shell, via heterodimerization. This gene mutation explains the single most important economic trait in oil palm, and has implications for the competing interests of global edible oil production, biofuels and rainforest conservation6. PMID:23883930

  20. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu-Ag core-shell nanowire using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sarkar, Jit; Das, D. K.

    2018-01-01

    Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.

Top