Relations between entanglement and purity in non-Markovian dynamics
NASA Astrophysics Data System (ADS)
González-Gutiérrez, Carlos A.; Román-Ancheyta, Ricardo; Espitia, Diego; Lo Franco, Rosario
2016-09-01
Knowledge of the relationships among different features of quantumness, like entanglement and state purity, is important from both fundamental and practical viewpoints. Yet, this issue remains little explored in dynamical contexts for open quantum systems. We address this problem by studying the dynamics of entanglement and purity for two-qubit systems using paradigmatic models of radiation-matter interaction, with a qubit being isolated from the environment (spectator configuration). We show the effects of the corresponding local quantum channels on an initial two-qubit pure entangled state in the concurrence-purity diagram and find the conditions which enable dynamical closed formulas of concurrence, used to quantify entanglement, as a function of purity. We finally discuss the usefulness of these relations in assessing entanglement and purity thresholds which allow noisy quantum teleportation. Our results provide new insights about how different properties of composite open quantum systems behave and relate each other during quantum evolutions.
Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics
NASA Astrophysics Data System (ADS)
Orieux, Adeline; D'Arrigo, Antonio; Ferranti, Giacomo; Franco, Rosario Lo; Benenti, Giuliano; Paladino, Elisabetta; Falci, Giuseppe; Sciarrino, Fabio; Mataloni, Paolo
2015-02-01
In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop scheme in which the environment is measured, the outcome controling the local operations on the system. The restored entanglement is a manifestation of ``hidden'' quantum correlations resumed by the local control. Relying on local control, both schemes improve the efficiency of entanglement sharing in distributed quantum networks.
NASA Astrophysics Data System (ADS)
Nourmandipour, A.; Tavassoly, M. K.; Rafiee, M.
2016-02-01
We provide an analytical investigation of the pairwise entanglement dynamics for a system, consisting of an arbitrary number of qubits dissipating into a common and non-Markovian environment for both weak- and strong-coupling regimes. In the latter case, a revival of pairwise entanglement due to the memory depth of the environment is observed. The leakage of photons into a continuum state is assumed to be the source of dissipation. We show that for an initially Werner state, the environment washes out the pairwise entanglement, but a series of nonselective measurements can protect the relevant entanglement. On the other hand, by limiting the number of qubits initially in the superposition of single excitation, a stationary entanglement can be created between qubits initially in the excited and ground states. Finally, we determine the stationary distribution of the entanglement versus the total number of qubits in the system.
Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics
Orieux, Adeline; D'Arrigo, Antonio; Ferranti, Giacomo; Franco, Rosario Lo; Benenti, Giuliano; Paladino, Elisabetta; Falci, Giuseppe; Sciarrino, Fabio; Mataloni, Paolo
2015-01-01
In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop scheme in which the environment is measured, the outcome controling the local operations on the system. The restored entanglement is a manifestation of “hidden” quantum correlations resumed by the local control. Relying on local control, both schemes improve the efficiency of entanglement sharing in distributed quantum networks. PMID:25712406
Non-Markovianity-assisted steady state entanglement.
Huelga, Susana F; Rivas, Ángel; Plenio, Martin B
2012-04-20
We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.
Entanglement dynamics in a non-Markovian environment: An exactly solvable model
NASA Astrophysics Data System (ADS)
Wilson, Justin H.; Fregoso, Benjamin M.; Galitski, Victor M.
2012-05-01
We study the non-Markovian effects on the dynamics of entanglement in an exactly solvable model that involves two independent oscillators, each coupled to its own stochastic noise source. First, we develop Lie algebraic and functional integral methods to find an exact solution to the single-oscillator problem which includes an analytic expression for the density matrix and the complete statistics, i.e., the probability distribution functions for observables. For long bath time correlations, we see nonmonotonic evolution of the uncertainties in observables. Further, we extend this exact solution to the two-particle problem and find the dynamics of entanglement in a subspace. We find the phenomena of “sudden death” and “rebirth” of entanglement. Interestingly, all memory effects enter via the functional form of the energy and hence the time of death and rebirth is controlled by the amount of noisy energy added into each oscillator. If this energy increases above (decreases below) a threshold, we obtain sudden death (rebirth) of entanglement.
Error Distributions on Large Entangled States with Non-Markovian Dynamics
NASA Astrophysics Data System (ADS)
McCutcheon, Dara P. S.; Lindner, Netanel H.; Rudolph, Terry
2014-12-01
We investigate the distribution of errors on a computationally useful entangled state generated via the repeated emission from an emitter undergoing strongly non-Markovian evolution. For emitter-environment coupling of pure-dephasing form, we show that the probability that a particular patten of errors occurs has a bound of Markovian form, and thus, accuracy threshold theorems based on Markovian models should be just as effective. Beyond the pure-dephasing assumption, though complicated error structures can arise, they can still be qualitatively bounded by a Markovian error model.
Non-Markovian dynamics of quantum discord
Fanchini, F. F.; Caldeira, A. O.; Werlang, T.; Brasil, C. A.; Arruda, L. G. E.
2010-05-15
We evaluate the quantum discord dynamics of two qubits in independent and common non-Markovian environments. We compare the dynamics of entanglement with that of quantum discord. For independent reservoirs the quantum discord vanishes only at discrete instants whereas the entanglement can disappear during a finite time interval. For a common reservoir, quantum discord and entanglement can behave very differently with sudden birth of the former but not of the latter. Furthermore, in this case the quantum discord dynamics presents sudden changes in the derivative of its time evolution which is evidenced by the presence of kinks in its behavior at discrete instants of time.
Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment
Cheng, Jiong; Zhang, Wen-Zhao; Zhou, Ling; Zhang, Weiping
2016-01-01
We investigate dynamics of an optomechanical system under the non-Markovian environment. In the weak optomechanical single-photon coupling regime, we provide an analytical approach fully taking into account the non-Markovian memory effects. When the cavity-bath coupling strength crosses a certain threshold, an oscillating memory state for the classical cavity field is formed. Due to the existence of the non-decay optical bound state, a nonequilibrium optomechanical thermal entanglement is preserved even without external driving laser. Our results provide a potential usage to generate and protect entanglement via non-Markovian environment. PMID:27032674
Fermionic-mode entanglement in non-Markovian environment
Cheng, Jiong; Han, Yan; An, Qing-zhi; Zhou, Ling
2015-03-15
We evaluate the non-Markovian effects on the entanglement dynamics of a fermionic system interacting with two dissipative vacuum reservoirs. The exact solution of density matrix is derived by utilizing the Feynman–Vernon influence functional theory in the fermionic coherent state representation and the Grassmann calculus, which are valid for both the fermionic and bosonic baths, and their difference lies in the dependence of the parity of the initial states. The fermionic entanglement dynamics is presented by adding an additional restriction to the density matrix known as the superselection rules. Our analysis shows that the usual decoherence suppression schemes implemented in qubits systems can also be achieved for systems of identical fermions, and the initial state proves its importance in the evolution of fermionic entanglement. Our results provide a potential way to decoherence controlling of identical fermions.
Entanglement oscillations in non-Markovian quantum channels
Maniscalco, Sabrina; Olivares, Stefano; Paris, Matteo G. A.
2007-06-15
We study the non-Markovian dynamics of a two-mode bosonic system interacting with two uncorrelated thermal bosonic reservoirs. We present the solution to the exact microscopic Master equation in terms of the quantum characteristic function and study in detail the dynamics of entanglement for bipartite Gaussian states. In particular, we analyze the effects of short-time system-reservoir correlations on the separability thresholds and show that the relevant parameter is the reservoir spectral density. If the frequencies of the involved modes are within the reservoir spectral density, entanglement persists for a longer time than in a Markovian channel. On the other hand, when the reservoir spectrum is out of resonance, short-time correlations lead to a faster decoherence and to the appearance of entanglement oscillations.
Robust fermionic-mode entanglement of a nanoelectronic system in non-Markovian environments
NASA Astrophysics Data System (ADS)
Cheng, Jiong; Zhang, Wen-Zhao; Han, Yan; Zhou, Ling
2015-02-01
A maximal steady-state fermionic entanglement of a nanoelectronic system is generated in finite temperature non-Markovian environments. The fermionic entanglement dynamics is presented by connecting the exact solution of the system with an appropriate definition of fermionic entanglement. We prove that the two understandings of the dissipationless non-Markovian dynamics, namely, the bound state and the modified Laplace transformation, are completely equivalent. For comparison, the steady-state entanglement is also studied in the wide-band limit and Born-Markovian approximation. When the environments have a finite band structure, we find that the system presents various kinds of relaxation processes. The final states can be thermal or thermal-like states, quantum memory states, and oscillating quantum memory states. Our study provides an analytical way to explore the non-Markovian entanglement dynamics of identical fermions in a realistic setting, i.e., finite-temperature reservoirs with a cutoff spectrum.
Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
NASA Astrophysics Data System (ADS)
Zi-Long, Fan; Yu-Kun, Ren; Hao-Sheng, Zeng
2016-01-01
We present a paradigmatic method for exactly studying non-Markovian dynamics of a multi-level V-type atom interacting with a zero-temperature bosonic bath. Special attention is paid to the entanglement evolution and the dynamical non-Markovianity of a three-level V-type atom. We find that the entanglement negativity decays faster and non-Markovianity is smaller in the resonance regions than those in the non-resonance regions. More importantly, the quantum interference between the dynamical non-Markovianities induced by different transition channels is manifested, and the frequency domains for constructive and destructive interferences are found. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20124306110003), and the Construct Program of the National Key Discipline, China.
Energy backflow and non-Markovian dynamics
NASA Astrophysics Data System (ADS)
Guarnieri, G.; Uchiyama, C.; Vacchini, B.
2016-01-01
We explore the behavior in time of the energy exchange between a system of interest and its environment, together with its relationship to the non-Markovianity of the system dynamics. In order to evaluate the energy exchange we rely on the full counting statistics formalism, which we use to evaluate the first moment of its probability distribution. We focus in particular on the energy backflow from environment to system, to which we associate a suitable condition and quantifier, which enables us to draw a connection with a recently introduced notion of non-Markovianity based on information backflow. This quantifier is then studied in detail in the case of the spin-boson model, described within a second-order time-convolutionless approximation, observing that non-Markovianity allows for the observation of energy backflow. This analysis allows us to identify the parameters region in which energy backflow is higher.
Exact Closed Master Equation for Gaussian Non-Markovian Dynamics.
Ferialdi, L
2016-03-25
Non-Markovian master equations describe general open quantum systems when no approximation is made. We provide the exact closed master equation for the class of Gaussian, completely positive, trace preserving, non-Markovian dynamics. This very general result allows us to investigate a vast variety of physical systems. We show that the master equation for non-Markovian quantum Brownian motion is a particular case of our general result. Furthermore, we derive the master equation unraveled by a non-Markovian, dissipative stochastic Schrödinger equation, paving the way for the analysis of dissipative non-Markovian collapse models.
NASA Astrophysics Data System (ADS)
Jiang, Li; Zhang, Guo-Feng
2017-03-01
By using the effective non-Markovian measure (Breuer et al., Phys. Rev. Lett. 103, 210401 2009) we investigate non-Markovian dynamics of a pair of two-level atoms (TLAs) system, each of which interacting with a local reservoir. We show that subsystem dynamics can be controlled by manipulating the coupling between TLAs, temperature and relaxation rate of the atoms. Moreover, the correlation between non-Markovianity of subsystem and entanglement between the subsystem and the structured bath is investigated, the results show that the emergence of non-Markovianity has a negative effect on the entanglement.
Solvable non-Markovian dynamic network
NASA Astrophysics Data System (ADS)
Georgiou, Nicos; Kiss, Istvan Z.; Scalas, Enrico
2015-10-01
Non-Markovian processes are widespread in natural and human-made systems, yet explicit modeling and analysis of such systems is underdeveloped. We consider a non-Markovian dynamic network with random link activation and deletion (RLAD) and heavy-tailed Mittag-Leffler distribution for the interevent times. We derive an analytically and computationally tractable system of Kolmogorov-like forward equations utilizing the Caputo derivative for the probability of having a given number of active links in the network and solve them. Simulations for the RLAD are also studied for power-law interevent times and we show excellent agreement with the Mittag-Leffler model. This agreement holds even when the RLAD network dynamics is coupled with the susceptible-infected-susceptible spreading dynamics. Thus, the analytically solvable Mittag-Leffler model provides an excellent approximation to the case when the network dynamics is characterized by power-law-distributed interevent times. We further discuss possible generalizations of our result.
Non-Markovian dynamics of a qubit
Maniscalco, Sabrina; Petruccione, Francesco
2006-01-15
In this paper we investigate the non-Markovian dynamics of a qubit by comparing two generalized master equations with memory. In the case of a thermal bath, we derive the solution of the recently proposed post-Markovian master equation [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101(R) (2005)] and we study the dynamics for an exponentially decaying memory kernel. We compare the solution of the post-Markovian master equation with the solution of the typical memory kernel master equation. Our results lead to a new physical interpretation of the reservoir correlation function and bring to light the limits of usability of master equations with memory for the system under consideration.
Colloquium: Non-Markovian dynamics in open quantum systems
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Entanglement and non-markovianity of quantum evolutions.
Rivas, Angel; Huelga, Susana F; Plenio, Martin B
2010-07-30
We address the problem of quantifying the non-markovian character of quantum time evolutions of general systems in contact with an environment. We introduce two different measures of non-markovianity that exploit the specific traits of quantum correlations and are suitable for opposite experimental contexts. When complete tomographic knowledge about the evolution is available, our measure provides a necessary and sufficient condition to quantify strictly the non-markovianity. In the opposite case, when no information whatsoever is available, we propose a sufficient condition for non-markovianity. Remarkably, no optimization procedure underlies our derivation, which greatly enhances the practical relevance of the proposed criteria.
Excitation energy transfer: Study with non-Markovian dynamics
Liang Xianting
2010-11-15
In this paper, we investigate the non-Markovian dynamics of a model to mimic the excitation energy transfer (EET) between chromophores in photosynthesis systems. The numerical path integral method is used. This method includes the non-Markovian effects of the environmental affects, and it does not need the perturbation approximation in solving the dynamics of systems of interest. It implies that the coherence helps the EET between chromophores through lasting the transfer time rather than enhancing the transfer rate of the EET. In particular, the non-Markovian environment greatly increases the efficiency of the EET in the photosynthesis systems.
Quantum regression theorem and non-Markovianity of quantum dynamics
NASA Astrophysics Data System (ADS)
Guarnieri, Giacomo; Smirne, Andrea; Vacchini, Bassano
2014-08-01
We explore the connection between two recently introduced notions of non-Markovian quantum dynamics and the validity of the so-called quantum regression theorem. While non-Markovianity of a quantum dynamics has been defined looking at the behavior in time of the statistical operator, which determines the evolution of mean values, the quantum regression theorem makes statements about the behavior of system correlation functions of order two and higher. The comparison relies on an estimate of the validity of the quantum regression hypothesis, which can be obtained exactly evaluating two-point correlation functions. To this aim we consider a qubit undergoing dephasing due to interaction with a bosonic bath, comparing the exact evaluation of the non-Markovianity measures with the violation of the quantum regression theorem for a class of spectral densities. We further study a photonic dephasing model, recently exploited for the experimental measurement of non-Markovianity. It appears that while a non-Markovian dynamics according to either definition brings with itself violation of the regression hypothesis, even Markovian dynamics can lead to a failure of the regression relation.
Exact solution for a non-Markovian dissipative quantum dynamics.
Ferialdi, Luca; Bassi, Angelo
2012-04-27
We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.
Role of environmental correlations in the non-Markovian dynamics of a spin system
Lorenzo, Salvatore; Plastina, Francesco; Paternostro, Mauro
2011-09-15
We study the dynamics of a chain of interacting quantum particles affected by an individual or collective environment(s), focusing on the role played by the environmental quantum correlations over the evolution of the chain. The presence of entanglement in the state of the environment magnifies the non-Markovian nature of the chain's dynamics, giving rise to structures in figures of merit such as spin entanglement and purity that are not observed under a separable environmental state. Our analysis can be relevant to problems tackling the open-system dynamics of biological complexes of strong current interest.
Linear Optics Simulation of Quantum Non-Markovian Dynamics
Chiuri, Andrea; Greganti, Chiara; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo
2012-01-01
The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects. PMID:23236588
Linear Optics Simulation of Quantum Non-Markovian Dynamics
NASA Astrophysics Data System (ADS)
Chiuri, Andrea; Greganti, Chiara; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo
2012-12-01
The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects.
Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting
2011-09-15
Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.
Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics
Berrada, K.
2014-01-15
Robustness of the geometric phase (GP) with respect to the environmental effects is a basic condition for an effective quantum computation. Here, we study quantitatively the GP of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system. We find that with the change of the damping coupling, the GP is very sensitive to its properties exhibiting long collapse and revival phenomena, which play a significant role in enhancing the stabilization and control of the system dynamics. Moreover, we show that the GP can be considered as a tool for testing and characterizing the nature of the qubit–environment coupling. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the qubit with its environment under external classical noise is evaluated and investigated during the time evolution. -- Highlights: •Geometric phase under noise phase laser. •Dynamics of the geometric phase under non-Markovian dynamics in the presence of classical noise. •Solution of master equation of the system in terms atomic inversion. •Nonlocal correlation between the system and its environment under non-Markovianity.
Non-Markovian dynamics in the extended cluster spin-1/2 XX chain
NASA Astrophysics Data System (ADS)
Mahmoudi, M.; Mahdavifar, S.; Zadeh, T. Mohammad Ali; Soltani, M. R.
2017-01-01
We study the dynamics of entanglement, mutual information, and quantum discord in the extended cluster spin-1/2 XX chain, equivalent to a one-dimensional spin-1/2 XX model with three-spin interaction (TSI). Selecting the nearest neighbor pair spins as an open quantum system, the rest of the chain plays the role of the environment. The two-point Heisenberg and the TSI are responsible for coupling between the system and the environment. Although the revival phenomenon of quantum correlations as an indication of non-Markovian dynamics is observed for TSI stronger than the Heisenberg interaction, the study of the trace distance has proven that the dynamical phase transition from the Markovian to the non-Markovian regime happens at a critical value where the TSI is equal to half of the Heisenberg interaction. By focusing on the nearest neighbor pair spins of the environment, we have also shown that the dynamics of quantum correlation in the environment is sensitive to Markovian and non-Markovian regions.
Non-Markovian dynamics in ultracold Rydberg aggregates
NASA Astrophysics Data System (ADS)
Genkin, M.; Schönleber, D. W.; Wüster, S.; Eisfeld, A.
2016-07-01
We propose a setup of an open quantum system in which the environment can be tuned such that either Markovian or non-Markovian system dynamics can be achieved. The implementation uses ultracold Rydberg atoms, relying on their strong long-range interactions. Our suggestion extends the features available for quantum simulators of molecular systems employing Rydberg aggregates and presents a new test bench for fundamental studies of the classification of system-environment interactions and the resulting system dynamics in open quantum systems.
NASA Astrophysics Data System (ADS)
Ding, Zhi-yong; He, Juan; Ye, Liu
2017-02-01
A feasible scheme for protecting the Greenberger-Horne-Zeilinger (GHZ) entanglement state in non-Markovian environments is proposed. It consists of prior weak measurement on each qubit before the interaction with decoherence environments followed by post quantum measurement reversals. It is shown that both the fidelity and concurrence of the GHZ state can be effectively improved. Meanwhile, we also verified that our scenario can enhance tripartite nonlocality remarkably. In addition, the result indicates that the larger the weak measurement strength, the better the effectiveness of the scheme with the lower success probability.
Non-Markovian dynamics without using a quantum trajectory
Wu Chengjun; Li Yang; Zhu Mingyi; Guo Hong
2011-05-15
Open quantum systems interacting with structured environments is important and manifests non-Markovian behavior, which was conventionally studied using a quantum trajectory stochastic method. In this paper, by dividing the effects of the environment into two parts, we propose a deterministic method without using a quantum trajectory. This method is more efficient and accurate than the stochastic method in most Markovian and non-Markovian cases. We also extend this method to the generalized Lindblad master equation.
Long-time memory in non-Markovian evolutions
Chruscinski, Dariusz; Pascazio, Saverio
2010-03-15
If the dynamics of an open quantum system is non-Markovian, its asymptotic state strongly depends on the initial conditions, even if the dynamics possesses an invariant state. This is the very essence of memory effects. In particular, the asymptotic state can remember and partially preserve its initial entanglement. Interestingly, even if the non-Markovian evolution relaxes to an equilibrium state, this state needs not be invariant. Therefore, the noninvariance of equilibrium becomes a clear sign of non-Markovianity.
Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics
NASA Astrophysics Data System (ADS)
Berrada, K.
2014-01-01
Robustness of the geometric phase (GP) with respect to the environmental effects is a basic condition for an effective quantum computation. Here, we study quantitatively the GP of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system. We find that with the change of the damping coupling, the GP is very sensitive to its properties exhibiting long collapse and revival phenomena, which play a significant role in enhancing the stabilization and control of the system dynamics. Moreover, we show that the GP can be considered as a tool for testing and characterizing the nature of the qubit-environment coupling. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the qubit with its environment under external classical noise is evaluated and investigated during the time evolution.
NASA Astrophysics Data System (ADS)
He, Zhi; Zhu, Lie-Qiang; Li, Li
2017-03-01
A non-Markovianity measure based on Brukner–Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner–Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner–Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. Supported by the National Natural Science Foundation of China under Grant No. 61505053, the Natural Science Foundation of Hunan Province under Grant No. 2015JJ3092, the Research Foundation of Education Bureau of Hunan Province, China under Grant No. 16B177, the School Foundation from the Hunan University of Arts and Science under Grant No. 14ZD01
Dissipative particle dynamics incorporating non-Markovian effect
NASA Astrophysics Data System (ADS)
Kinefuchi, Ikuya; Yoshimoto, Yuta; Takagi, Shu
2015-11-01
The coarse-graining methodology of molecular simulations is of great importance to analyze large-scale, complex hydrodynamic phenomena. In the present study, we derive the equation of motion for non-Markovian dissipative particle dynamics (NMDPD) by introducing the history effects on the time evolution of the system. Our formulation is based on the generalized Langevin equation, which describes the motions of the centers of mass of clusters comprising microscopic particles. The mean, friction, and fluctuating forces in the NMDPD model are directly constructed from an underlying MD system without any scaling procedure. For the validation of our formulation, we construct NMDPD models from high-density Lennard-Jones systems, in which the typical time scales of the coarse-grained particle motions and the fluctuating forces are not fully separable. The NMDPD models reproduce the temperatures, diffusion coefficients, and viscosities of the corresponding MD systems more accurately than the conventional DPD models based on a Markovian approximation. Our results suggest that the NMDPD method is a promising alternative for simulating mesoscale flows where a Markovian approximation is not valid.
Quantum speed limits in open systems: Non-Markovian dynamics without rotating-wave approximation
Sun, Zhe; Liu, Jing; Ma, Jian; Wang, Xiaoguang
2015-01-01
We derive an easily computable quantum speed limit (QSL) time bound for open systems whose initial states can be chosen as either pure or mixed states. Moreover, this QSL time is applicable to either Markovian or non-Markovian dynamics. By using of a hierarchy equation method, we numerically study the QSL time bound in a qubit system interacting with a single broadened cavity mode without rotating-wave, Born and Markovian approximation. By comparing with rotating-wave approximation (RWA) results, we show that the counter-rotating terms are helpful to increase evolution speed. The problem of non-Markovianity is also considered. We find that for non-RWA cases, increasing system-bath coupling can not always enhance the non-Markovianity, which is qualitatively different from the results with RWA. When considering the relation between QSL and non-Markovianity, we find that for small broadening widths of the cavity mode, non-Markovianity can increase the evolution speed in either RWA or non-RWA cases, while, for larger broadening widths, it is not true for non-RWA cases. PMID:25676589
Quantum Langevin approach for non-Markovian quantum dynamics of the spin-boson model
NASA Astrophysics Data System (ADS)
Zhou, Zheng-Yang; Chen, Mi; Yu, Ting; You, J. Q.
2016-02-01
One longstanding difficult problem in quantum dissipative dynamics is to solve the spin-boson model in a non-Markovian regime where a tractable systematic master equation does not exist. The spin-boson model is particularly important due to its crucial applications in quantum noise control and manipulation as well as its central role in developing quantum theories of open systems. Here we solve this important model by developing a non-Markovian quantum Langevin approach. By projecting the quantum Langevin equation onto the coherent states of the bath, we can derive a set of non-Markovian quantum Bloch equations containing no explicit noise variables. This special feature offers a tremendous advantage over the existing stochastic Schrödinger equations in numerical simulations. The physical significance and generality of our approach are briefly discussed.
Equivalence between Non-Markovian and Markovian Dynamics in Epidemic Spreading Processes
NASA Astrophysics Data System (ADS)
Starnini, Michele; Gleeson, James P.; Boguñá, Marián
2017-03-01
A general formalism is introduced to allow the steady state of non-Markovian processes on networks to be reduced to equivalent Markovian processes on the same substrates. The example of an epidemic spreading process is considered in detail, where all the non-Markovian aspects are shown to be captured within a single parameter, the effective infection rate. Remarkably, this result is independent of the topology of the underlying network, as demonstrated by numerical simulations on two-dimensional lattices and various types of random networks. Furthermore, an analytic approximation for the effective infection rate is introduced, which enables the calculation of the critical point and of the critical exponents for the non-Markovian dynamics.
Non-Markovian dynamics of quantum systems. I. Formalism and transport coefficients.
Kanokov, Z; Palchikov, Yu V; Adamian, G G; Antonenko, N V; Scheid, W
2005-01-01
Generalized Langevin equations and fluctuation-dissipation relations are derived for the case of a nonlinear non-Markovian noise. The explicit expressions for the time-dependent friction and diffusion coefficients are presented for the case of general and linear couplings in the coordinate and momentum between the collective harmonic oscillator and heat bath. The long-time tails of correlation functions are investigated in the low- and high-temperature regimes of dissipation for different couplings. The Onsager's regression hypothesis is discussed for the non-Markovian dynamics. The Lindblad theory is justified on the basis of the microscopical model.
Dynamical invariants in a non-Markovian quantum-state-diffusion equation
NASA Astrophysics Data System (ADS)
Luo, Da-Wei; Pyshkin, P. V.; Lam, Chi-Hang; Yu, Ting; Lin, Hai-Qing; You, J. Q.; Wu, Lian-Ao
2015-12-01
We find dynamical invariants for open quantum systems described by the non-Markovian quantum-state-diffusion (QSD) equation. In stark contrast to closed systems where the dynamical invariant can be identical to the system density operator, these dynamical invariants no longer share the equation of motion for the density operator. Moreover, the invariants obtained with a biorthonormal basis can be used to render an exact solution to the QSD equation and the corresponding non-Markovian dynamics without using master equations or numerical simulations. Significantly we show that we can apply these dynamical invariants to reverse engineering a Hamiltonian that is capable of driving the system to the target state, providing a different way to design control strategy for open quantum systems.
Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics
Ubbelohde, N.; Maire, N.; Haug, R. J.; Roszak, K.; Hohls, F.; Novotný, T.
2013-12-04
For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.
Markovian and Non-Markovian Modeling of Membrane Dynamics with Milestoning.
Cardenas, Alfredo E; Elber, Ron
2016-08-25
We exploit atomically detailed simulations and the milestoning theory to extract coarse grained models of membrane kinetics and thermodynamics. Non-Markovian and Markovian theories for the phosphate group displacements are used to coarsely represent membrane motions. The construction of the two models makes it possible to examine their consistency and accuracy. The equilibrium and fluctuations of the phosphate groups along the normal to the membrane plane are estimated, and milestoning equations are constructed and solved. An optimal Markovian model is constructed that reproduces exactly the equilibrium and mean first passage time (MFPT) of the non-Markovian model. The equilibrium solution of both models is favorably compared to distributions obtained from straightforward molecular dynamics simulations. The picture for the kinetics is complex. Multiple local relaxation times of the mass density are illustrated emphasizing the non-Markovian characteristics of the process. In Markovian modeling, only a single relaxation time is assumed for a state. Mapping of particle dynamics to the dynamics of a field density offers a new way of coarse graining complex systems as membranes that may bridge between atomically detailed models and phenomenological descriptions of macroscopic membranes.
Non-Markovian dynamics in chiral quantum networks with spins and photons
NASA Astrophysics Data System (ADS)
Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter
2016-06-01
We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.
Dynamics of non-Markovian open quantum systems
NASA Astrophysics Data System (ADS)
de Vega, Inés; Alonso, Daniel
2017-01-01
Open quantum systems (OQSs) cannot always be described with the Markov approximation, which requires a large separation of system and environment time scales. An overview is given of some of the most important techniques available to tackle the dynamics of an OQS beyond the Markov approximation. Some of these techniques, such as master equations, Heisenberg equations, and stochastic methods, are based on solving the reduced OQS dynamics, while others, such as path integral Monte Carlo or chain mapping approaches, are based on solving the dynamics of the full system. The physical interpretation and derivation of the various approaches are emphasized, how they are connected is explored, and how different methods may be suitable for solving different problems is examined.
Non-Markovian autoresonant dynamics of tunneling from discrete to continuum modes
Barak, Assaf; Segev, Mordechai
2011-09-15
We study the autoresonant dynamics of a discrete level coupled to a continuum, and show that passing adiabatically through a linear resonance, above a well-defined threshold, yields a transition to nonlinear phase locking and linear non-Markovian decay to the continuum. This process results in broadening of the population of the continuum modes beyond its natural linewidth. This concept can be employed to alter spontaneous emission, where driving an atom into phase locking with continuum modes will yield the emission of short pulses.
Self-Diffusion and Non-Markovian Dynamics in Strongly Coupled Ultracold Neutral Plasmas
NASA Astrophysics Data System (ADS)
Strickler, Trevor; Langin, Thomas; McQuillen, Patrick; Killian, Thomas
2015-05-01
Collisional processes in weakly coupled plasmas are well-described by the Landau-Spitzer formalism. Classical plasma theory breaks down, however, in strongly coupled systems because of the non-perturbative nature of particle interactions, and improving our understanding of this regime is an important fundamental challenge. We present experimental measurements of the self-diffusion constant and observation of non-Markovian equilibration for strongly coupled ions in an ultracold neutral plasma (UCNP) created by photoionizing strontium atoms in a magneto-optical trap. Our diagnostic uses optical pumping to create ``spin-tagged'' subpopulations of ions having skewed velocity distributions that then relax back to equilibrium. A Green-Kubo relation is used to extract the self-diffusion constant from the equilibration curves. With improved time resolution (down to 30 ns), we have explored the early time dynamics of these skewed ion distributions within 100 ns after the optical pumping, where molecular dynamics simulations predict non-Markovian deviations from the exponential velocity damping expected for weakly coupled systems. At longer times, we observe oscillations of the average velocity during the relaxation, which indicate coupling of single-particle motion to collective modes. This work was supported by the United States National Science Foundation and the Department of Energy (PHY-0714603), and the Air Force Office of Scientific Research (FA9550-12-1-0267).
Non-Markovian dynamics of fully coupled fermionic and bosonic oscillators
NASA Astrophysics Data System (ADS)
Sargsyan, V. V.; Lacroix, D.; Adamian, G. G.; Antonenko, N. V.
2017-03-01
The non-Markovian Langevin approach is applied to study the dynamics of fermionic (bosonic) oscillator linearly coupled to a fermionic (bosonic) environment. The analytical expressions for occupation numbers in two different types of couplings (rotating-wave approximation and fully coupled) are compared and discussed. The weak-coupling and high- and low-temperature limits are considered as well. The conditions under which the environment imposes its thermal equilibrium on the collective subsystem are discussed. The sameness of the results, obtained with both the Langevin approach and the discretized environment method are shown. Short- and long-time nonequilibrium dynamics of fermionic and bosonic open quantum systems are analyzed both analytically and numerically.
NASA Astrophysics Data System (ADS)
Salimi, S.; Haseli, S.; Khorashad, A. S.; Adabi, F.
2016-09-01
The interaction between system and environment is a fundamental concept in the theory of open quantum systems. As a result of the interaction, an amount of correlation (both classical and quantum) emerges between the system and the environment. In this work, we recall the quantity that will be very useful to describe the emergence of the correlation between the system and the environment, namely, the total entropy production. Appearance of total entropy production is due to the entanglement production between the system and the environment. In this work, we discuss about the role of the total entropy production for detecting the non-Markovianity. By utilizing the relation between the total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity. We apply our criterion for the special case, where the composite system has initial correlation with environment.
Alonso, Daniel; Vega, Ines de
2010-06-15
Open quantum systems are often encountered in many different physical situations. From quantum optics to statistical mechanics, they are fundamental in the understanding of a great variety of different phenomena. Some of the most common examples are the relaxation to equilibrium, the existence of nonequilibrium stationary states, and the dynamics of atoms in interaction with electromagnetic fields. A crucial step in the analysis is to consider the quantum open system and its environment as the two mutually interacting components of a larger isolated system. Thereafter, the so-called Markov approximation is often considered, which consists on assuming that the time scales associated to the dynamics of the quantum open system are larger than those of the environment. It is the interplay of the different time scales associated with the system and the environment what determines the validity of the different approximations made. In this paper we will discuss the dynamics of a open quantum system in contact with a reservoir when the Markov approximation is not valid, and we have to include some non-Markovian or memory effects.
Non-Markovian dynamics in plasmon-induced spontaneous emission interference
NASA Astrophysics Data System (ADS)
Thanopulos, I.; Yannopapas, V.; Paspalakis, E.
2017-02-01
We investigate theoretically the non-Markovian dynamics of a degenerate V-type quantum emitter in the vicinity of a metallic nanosphere, a system that exhibits quantum interference in spontaneous emission due to the anisotropic Purcell effect. We calculate numerically the electromagnetic Green's tensor and employ the effective modes differential equation method for calculating the quantum dynamics of the emitter population, with respect to the resonance frequency and the initial state of the emitter, as well as its distance from the nanosphere. We find that the emitter population evolution varies between a gradual total decay and a partial decay combined with oscillatory population dynamics, depending strongly on the specific values of the above three parameters. Under strong-coupling conditions, coherent population trapping can be observed in this system. We compare our exact results with results when the flat continuum approximation for the vacuum modified by the metallic nanosphere is applied. We conclude that the flat continuum approximation is an excellent approximation only when the spectral density of the system under study is characterized by nonoverlapping plasmonic resonances.
Quantum metrology in non-Markovian environments.
Chin, Alex W; Huelga, Susana F; Plenio, Martin B
2012-12-07
We analyze precision bounds for a local phase estimation in the presence of general, non-Markovian phase noise. We demonstrate that the metrological equivalence of product and maximally entangled states that holds under strictly Markovian dephasing fails in the non-Markovian case. Using an exactly solvable model of a physically realistic finite bandwidth dephasing environment, we demonstrate that the ensuing non-Markovian dynamics enables quantum correlated states to outperform metrological strategies based on uncorrelated states using otherwise identical resources. We show that this conclusion is a direct result of the coherent dynamics of the global state of the system and environment and therefore the obtained scaling with the number of particles, which surpasses the standard quantum limit but does not achieve Heisenberg resolution, possesses general validity that goes beyond specific models. This is in marked contrast with the situation encountered under general Markovian noise, where an arbitrarily small amount of noise is enough to restore the scaling dictated by the standard quantum limit.
Experimental observation of weak non-Markovianity
Bernardes, Nadja K.; Cuevas, Alvaro; Orieux, Adeline; Monken, C. H.; Mataloni, Paolo; Sciarrino, Fabio; Santos, Marcelo F.
2015-01-01
Non-Markovianity has recently attracted large interest due to significant advances in its characterization and its exploitation for quantum information processing. However, up to now, only non-Markovian regimes featuring environment to system backflow of information (strong non-Markovianity) have been experimentally simulated. In this work, using an all-optical setup we simulate and observe the so-called weak non-Markovian dynamics. Through full process tomography, we experimentally demonstrate that the dynamics of a qubit can be non-Markovian despite an always increasing correlation between the system and its environment which, in our case, denotes no information backflow. We also show the transition from the weak to the strong regime by changing a single parameter in the environmental state, leading us to a better understanding of the fundamental features of non-Markovianity. PMID:26627910
NASA Astrophysics Data System (ADS)
Zhu, Qin-Sheng; Ding, Chang-Chun; Wu, Shao-Yi; Lai, Wei
2015-12-01
In this work, we research the non-Markovian dynamical process of the dimer system and the effect of the interactional environments for the information feedback under different temperature T. Not only the functional relation of the trace distance and the fidelity are obtained, but also the changing properties of the fidelity and the measure quantity {\\scr N}(φ) which are used to quantify the degree of the non-Markovian process are discussed as a function of the interactional strength q between the environments. These results show a possible method which can preserve the information and enhance the distinguishability of the pair of states in decohering environments. Supported by the Fundamental Research Funds for the Central Universities under Grants No. ZYGX2012J046
Non-Markovian dynamics of an open quantum system with nonstationary coupling
Kalandarov, S. A.; Adamian, G. G.; Kanokov, Z.; Antonenko, N. V.; Scheid, W.
2011-04-15
The spectral, dissipative, and statistical properties of the damped quantum oscillator are studied in the case of non-Markovian and nonstationary system-heat bath coupling. The dissipation of collective energy is shown to be slowed down, and the decoherence rate and entropy grow with modulation frequency.
Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps
Vasile, Ruggero; Maniscalco, Sabrina; Paris, Matteo G. A.; Breuer, Heinz-Peter; Piilo, Jyrki
2011-11-15
We introduce a non-Markovianity measure for continuous-variable open quantum systems based on the idea put forward in H.-P. Breuer et al.[Phys. Rev. Lett. 103, 210401 (2009);], that is, by quantifying the flow of information from the environment back to the open system. Instead of the trace distance we use here the fidelity to assess distinguishability of quantum states. We employ our measure to evaluate non-Markovianity of two paradigmatic Gaussian channels: the purely damping channel and the quantum Brownian motion channel with Ohmic environment. We consider different classes of Gaussian states and look for pairs of states maximizing the backflow of information. For coherent states we find simple analytical solutions, whereas for squeezed states we provide both exact numerical and approximate analytical solutions in the weak coupling limit.
NASA Astrophysics Data System (ADS)
Schmidt, R.; Carusela, M. F.; Pekola, J. P.; Suomela, S.; Ankerhold, J.
2015-06-01
Work, moments of work, and heat flux are studied for the generic case of a strongly driven two-level system immersed in a bosonic heat bath in domains of parameter space where perturbative treatments fail. This includes in particular the interplay between non-Markovian dynamics and moderate to strong external driving. Exact data are compared with predictions from weak-coupling approaches. Further, the role of system-bath correlations in the initial thermal state and their impact on the heat flux are addressed. The relevance of these results for current experimental activities on solid-state devices is discussed.
NASA Astrophysics Data System (ADS)
Voulgarakis, Nikolaos K.; Satish, Siddarth; Chu, Jhih-Wei
2009-12-01
A multiscale computational method is developed to model the nanoscale viscoelasticity of fluids by bridging non-Markovian fluctuating hydrodynamics (FHD) and molecular dynamics (MD) simulations. To capture the elastic responses that emerge at small length scales, we attach an additional rheological model parallel to the macroscopic constitutive equation of a fluid. The widely used linear Maxwell model is employed as a working choice; other models can be used as well. For a fluid that is Newtonian in the macroscopic limit, this approach results in a parallel Newtonian-Maxwell model. For water, argon, and an ionic liquid, the power spectrum of momentum field autocorrelation functions of the parallel Newtonian-Maxwell model agrees very well with those calculated from all-atom MD simulations. To incorporate thermal fluctuations, we generalize the equations of FHD to work with non-Markovian rheological models and colored noise. The fluctuating stress tensor (white noise) is integrated in time in the same manner as its dissipative counterpart and numerical simulations indicate that this approach accurately preserves the set temperature in a FHD simulation. By mapping position and velocity vectors in the molecular representation onto field variables, we bridge the non-Markovian FHD with atomistic MD simulations. Through this mapping, we quantitatively determine the transport coefficients of the parallel Newtonian-Maxwell model for water and argon from all-atom MD simulations. For both fluids, a significant enhancement in elastic responses is observed as the wave number of hydrodynamic modes is reduced to a few nanometers. The mapping from particle to field representations and the perturbative strategy of developing constitutive equations provide a useful framework for modeling the nanoscale viscoelasticity of fluids.
NASA Astrophysics Data System (ADS)
Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta
2015-08-01
Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.
Electronic energy transfer in model photosynthetic systems: Markovian vs. non-Markovian dynamics.
Singh, Navinder; Brumer, Paul
2011-01-01
A simple numerical algorithm for solving the non-Markovian master equation in the second Born approximation is developed and used to propagate the traditional dimer system that models electronic energy transfer in photosynthetic systems. Specifically, the coupled integro-differential equations for the reduced density matrix are solved by an efficient auxiliary function method in both the energy and site representations. In addition to giving exact results to this order, the approach allows us to access the range of the reorganization energy and decay rates of the phonon auto-correlation function for which the Markovian Redfield theory and the second-order approximation is useful. For example, the use of Redfield theory for lambda > 10 cm(-1) in Fenna-Mathews-Olson (FMO) type systems is shown to be fundamentally inaccurate.
Digital quantum simulation of many-body non-Markovian dynamics
NASA Astrophysics Data System (ADS)
Sweke, R.; Sanz, M.; Sinayskiy, I.; Petruccione, F.; Solano, E.
2016-08-01
We present an algorithmic method for the digital quantum simulation of many-body locally indivisible non-Markovian open quantum systems. It consists of two parts: first, a Suzuki-Lie-Trotter decomposition of the global system propagator into the product of subsystem propagators, which may not be quantum channels, and second, an algorithmic procedure for the implementation of the subsystem propagators through unitary operations and measurements on a dilated space. By providing rigorous error bounds for the relevant Suzuki-Lie-Trotter decomposition, we are able to analyze the efficiency of the method, and connect it with an appropriate measure of the local indivisibility of the system. In light of our analysis, the proposed method is expected to be experimentally achievable for a variety of interesting cases.
Measuring and using non-Markovianity
NASA Astrophysics Data System (ADS)
Pineda, Carlos; Gorin, Thomas; Davalos, David; Wisniacki, Diego A.; García-Mata, Ignacio
2016-02-01
We construct measures for the non-Markovianity of quantum evolution with a physically meaningful interpretation. We first provide a general setting in the framework of channel capacities and propose two families of meaningful quantitative measures, based on the largest revival of a channel capacity, avoiding some drawbacks of other non-Markovianity measures. We relate the proposed measures to the task of information screening. This shows that the non-Markovianity of a quantum process may be used as a resource. Under these considerations, we analyze two paradigmatic examples, a qubit in a quantum environment with classically mixed dynamics and the Jaynes-Cummings model.
Comparisons of different witnesses of non-Markovianity
NASA Astrophysics Data System (ADS)
Zuo, Wei; Qian, Xiao-Qing; Liang, Xian-Ting
2017-01-01
In this paper, the evolutions of two kinds of witnesses of the non-Markovianity and their rates of changes with time are investigated and compared. Four definitions, the trace distance, fidelity, quantum relative entropy, and quantum Fisher information are used for the first kind of witnesses which are based on the completely positive maps (CPM). Three definitions, the quantum entanglement, quantum mutual information, and quantum discord are used for the second kind of witnesses, and they are based on the local completely positive maps (LCPM). An open two-level quantum system model and a numerically quantum dissipative dynamics method, hierarchy equation of motion (HEM) are used in the investigations. It is shown that the evolutions of the witnesses and their rates of the changes calculated with different definitions clearly show the characteristics of the non-Markovianity and they are in agreement with each other.
Exploiting Non-Markovianity for Quantum Control
NASA Astrophysics Data System (ADS)
Reich, Daniel M.; Katz, Nadav; Koch, Christiane P.
2015-07-01
Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.
Inequivalence of correlation-based measures of non-Markovianity
NASA Astrophysics Data System (ADS)
Neto, Alaor Cervati; Karpat, Göktuǧ; Fanchini, Felipe Fernandes
2016-09-01
We conclusively show that the entanglement- and the mutual-information-based measures of quantum non-Markovianity are inequivalent. To this aim, we first analytically solve the optimization problem in the definition of the entanglement-based measure for a two-level system. We demonstrate that the optimal initial bipartite state of the open system and the ancillary is always given by one of the Bell states for any one-qubit dynamics. On top of this result, we present an explicit example dynamics where memory effects emerge according to the mutual-information-based measure, even though the time evolution remains memoryless with respect to the entanglement-based measure. Finally, we explain this disagreement between the two measures in terms of the information dynamics of the open system, exploring the accessible and inaccessible parts of information.
Non-Markovian effect on remote state preparation
Xu, Zhen-Yu; Liu, Chen; Luo, Shunlong; Zhu, Shiqun
2015-05-15
Memory effect of non-Markovian dynamics in open quantum systems is often believed to be beneficial for quantum information processing. In this work, we employ an experimentally controllable two-photon open system, with one photon experiencing a dephasing environment and the other being free from noise, to show that non-Markovian effect may also have a negative impact on quantum tasks such as remote state preparation: For a certain period of controlled time interval, stronger non-Markovian effect yields lower fidelity of remote state preparation, as opposed to the common wisdom that more information leads to better performance. As a comparison, a positive non-Markovian effect on the RSP fidelity with another typical non-Markovian noise is analyzed. Consequently, the observed dual character of non-Markovian effect will be of great importance in the field of open systems engineering.
Wen, Kai; Sakata, Fumihiko; Li, Zhu-Xia; Wu, Xi-Zhen; Zhang, Ying-Xun; Zhou, Shan-Gui
2013-07-05
Macroscopic parameters as well as precise information on the random force characterizing the Langevin-type description of the nuclear fusion process around the Coulomb barrier are extracted from the microscopic dynamics of individual nucleons by exploiting the numerical simulation of the improved quantum molecular dynamics. It turns out that the dissipation dynamics of the relative motion between two fusing nuclei is caused by a non-Gaussian distribution of the random force. We find that the friction coefficient as well as the time correlation function of the random force takes particularly large values in a region a little bit inside of the Coulomb barrier. A clear non-Markovian effect is observed in the time correlation function of the random force. It is further shown that an emergent dynamics of the fusion process can be described by the generalized Langevin equation with memory effects by appropriately incorporating the microscopic information of individual nucleons through the random force and its time correlation function.
Continuous-variable-entanglement dynamics in structured reservoirs
Vasile, Ruggero; Maniscalco, Sabrina; Olivares, Stefano; Paris, Matteo G. A.
2009-12-15
We address the evolution of entanglement in bimodal continuous variable quantum systems interacting with two independent structured reservoirs. We derive an analytic expression for the entanglement of formation without performing the Markov and the secular approximations and study in details the entanglement dynamics for various types of structured reservoirs and for different reservoir temperatures, assuming the two modes initially excited in a twin-beam state. Our analytic solution allows us to identify three dynamical regimes characterized by different behaviors of the entanglement: the entanglement sudden death, the non-Markovian revival and the non-secular revival regimes. Remarkably, we find that, contrarily to the Markovian case, the short-time system-reservoir correlations in some cases destroy quickly the initial entanglement even at zero temperature.
Affecting non-Markovian behaviour by changing bath structures
NASA Astrophysics Data System (ADS)
Venkataraman, V.; Plato, A. D. K.; Tufarelli, Tommaso; Kim, M. S.
2014-01-01
For many open quantum systems, a master equation approach employing the Markov approximation cannot reliably describe the dynamical behaviour. This is the case, for example, in a number of solid state or biological systems, and it has motivated a line of research aimed at quantifying the amount of non-Markovian behaviour (NMB) in a given model. Within this framework, we investigate the dynamics of a quantum harmonic oscillator linearly coupled to a bosonic bath. We focus on Gaussian states, which are suitably treated using a covariance matrix approach. Concentrating on an entanglement based NMB quantifier (NMBQ) proposed by Rivas et al (2010 Phys. Rev. Lett. 105 050403), we consider the role that near resonant and off-resonant modes play in affecting the NMBQ. By using a large but finite bath of oscillators for both Ohmic and super Ohmic spectral densities we find, by systematically increasing the coupling strength, initially the near resonant modes provide the most significant non-Markovian effects, while after a certain threshold of coupling strength the off-resonant modes play the dominant role. We also consider the NMBQ for two other models where we add a single strongly coupled oscillator to the model in extra bath mode and ‘buffer’ configurations, which affects the modes that determine NMB.
Non-Markovianity of Gaussian Channels.
Torre, G; Roga, W; Illuminati, F
2015-08-14
We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.
NASA Astrophysics Data System (ADS)
Cerrillo, Javier; Buser, Maximilian; Brandes, Tobias
2016-12-01
Nonequilibrium transport properties of quantum systems have recently become experimentally accessible in a number of platforms in so-called full-counting experiments that measure transient and steady-state nonequilibrium transport dynamics. We show that the effect of the measurement back-action can be exploited to establish general relationships between transport coefficients in the transient regime which take the form of fluctuation-dissipation theorems in the steady state. This result becomes most conspicuous in the transient dynamics of open quantum systems under strong-coupling to non-Markovian environments in nonequilibrium settings. In order to explore this regime, a new simulation method based in a hierarchy of equations of motion has been developed. We instantiate our proposal with the study of energetic conductance between two baths connected via a few level system.
Quantum non-Markovianity: characterization, quantification and detection.
Rivas, Ángel; Huelga, Susana F; Plenio, Martin B
2014-09-01
We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.
NASA Astrophysics Data System (ADS)
Costa, A. C. S.; Beims, M. W.; Angelo, R. M.
2016-11-01
Generalized quantum discord (Dq) , Einstein-Podolsky-Rosen steering (S) , entanglement (E) , and Bell nonlocality (N), are logically distinct quantifiers of quantum correlations. All these measures capture nonclassical aspects of quantum states and play some role as resources in quantum information processing. In this work, we look for the hierarchy satisfied by these quantum correlation witnesses for a class of two-qubit states. We show that N ⊳ S ⊳ E ⊳Dq, meaning that nonlocality implies steering, which in turn implies entanglement, which then implies q-discord. For the quantum states under concern, we show that the invariance of this hierarchy under noisy quantum channels directly implies a death chronology. Additionally, we have found that sudden death of all quantum resources except discord is absent only for a subset of states of measure zero. At last, we provide an illustration of another consequence of the aforementioned hierarchy, namely, the existence of a sudden birth chronology under non-Markovian channels.
Rossi, Matteo A. C.; Paris, Matteo G. A.
2016-01-14
We address the interaction of single- and two-qubit systems with an external transverse fluctuating field and analyze in detail the dynamical decoherence induced by Gaussian noise and random telegraph noise (RTN). Upon exploiting the exact RTN solution of the time-dependent von Neumann equation, we analyze in detail the behavior of quantum correlations and prove the non-Markovianity of the dynamical map in the full parameter range, i.e., for either fast or slow noise. The dynamics induced by Gaussian noise is studied numerically and compared to the RTN solution, showing the existence of (state dependent) regions of the parameter space where the two noises lead to very similar dynamics. We show that the effects of RTN noise and of Gaussian noise are different, i.e., the spectrum alone is not enough to summarize the noise effects, but the dynamics under the effect of one kind of noise may be simulated with high fidelity by the other one.
Non-Markovianity hinders Quantum Darwinism
Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina
2016-01-01
We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors. PMID:26786857
Non-Markovianity hinders Quantum Darwinism.
Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina
2016-01-20
We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.
Non-Markovianity hinders Quantum Darwinism
NASA Astrophysics Data System (ADS)
Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina
2016-01-01
We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.
NASA Astrophysics Data System (ADS)
Tahira, Rabia; Ge, Guoqin; Ikram, Manzoor
2016-12-01
We investigate the time evolution of a general two-qubit pure entangled state in different structured environments. A general expression is obtained to evaluate the entanglement dynamics of two-qubit systems for two different dissipative environments in the non-Markovian regime. In one case it is single Lorentzian and is detuned from the system while in the other case two Lorentzians form a photonic band gap and is resonant with the system. In the first case, we show that entanglement can be generated from the initial separable state in the non-Markovian regime. Compared to our earlier work under Markov approximation (Tahira et al 2008 J. Phys. B: At. Mol. Opt. Phys. 41 205501), we show that disentanglement rates as well as sudden death times are modified in structured environments. Therefore, we can retain the entanglement for a longer time by controlling the system-environment coupling parameters.
Entanglement dynamics of nonidentical oscillators under decohering environments
Galve, Fernando; Giorgi, Gian Luca; Zambrini, Roberta
2010-06-15
We study the evolution of entanglement for a pair of coupled nonidentical harmonic oscillators in contact with an environment. For both cases of a common bath and of two separate baths for each of the oscillators, a full master equation is provided without rotating-wave approximation. The entanglement dynamics is analyzed as a function of the diversity between the oscillators' frequencies and their positive or negative mutual coupling and also the correlation between the occupation numbers. The singular effect of the resonance condition (identical oscillators) and its relationship with the possibility of preserving asymptotic entanglement are discussed. The importance of the bath's memory properties is investigated by comparing Markovian and non-Markovian evolutions.
Non-Markovian full counting statistics in quantum dot molecules
Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming
2015-01-01
Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules. PMID:25752245
Non-Markovian expansion in quantum Brownian motion
NASA Astrophysics Data System (ADS)
Fraga, Eduardo S.; Krein, Gastão; Palhares, Letícia F.
2014-01-01
We consider the non-Markovian Langevin evolution of a dissipative dynamical system in quantum mechanics in the path integral formalism. After discussing the role of the frequency cutoff for the interaction of the system with the heat bath and the kernel and noise correlator that follow from the most common choices, we derive an analytic expansion for the exact non-Markovian dissipation kernel and the corresponding colored noise in the general case that is consistent with the fluctuation-dissipation theorem and incorporates systematically non-local corrections. We illustrate the modifications to results obtained using the traditional (Markovian) Langevin approach in the case of the exponential kernel and analyze the case of the non-Markovian Brownian motion. We present detailed results for the free and the quadratic cases, which can be compared to exact solutions to test the convergence of the method, and discuss potentials of a general nonlinear form.
Non-Markovian effects on quantum-communication protocols
Yeo, Ye; Oh, C. H.; An, Jun-Hong
2010-09-15
We show how, under the influence of non-Markovian environments, two different maximally entangled Bell states give rise to states that have equal classical correlations and the same capacities to violate the Bell-Clauser-Horne-Shimony-Holt inequality, but intriguingly differing usefulness for teleportation and dense coding. We elucidate how different entanglement measures like negativity and concurrence, and two different measures of quantum discord, could account for these behaviors. In particular, we explicitly show how the Ollivier-Zurek measure of discord directly accounts for one state being a better resource for dense coding compared to another. Our study leads to several important issues about these measures of discord.
Quantum non-Markovianity induced by Anderson localization
Lorenzo, Salvatore; Lombardo, Federico; Ciccarello, Francesco; Palma, G. Massimo
2017-01-01
As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence, when an atom interacts with a disordered lattice, one indeed observes a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario, we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by releasing all its excitation into the CCA (initially in its vacuum state). By introducing static disorder in the CCA the field normal modes become Anderson-localized, giving rise to a non-Markovian atomic dynamics. We show the existence of a functional relationship between a rigorous measure of quantum non-Markovianity and the CCA localization. We furthermore show that the average non-Markovianity of the atomic dynamics is well-described by a phenomenological model in which the atom is coupled, at the same time, to a single mode and to a standard - Markovian - dissipative bath. PMID:28205542
Quantum non-Markovianity induced by Anderson localization
NASA Astrophysics Data System (ADS)
Lorenzo, Salvatore; Lombardo, Federico; Ciccarello, Francesco; Palma, G. Massimo
2017-02-01
As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence, when an atom interacts with a disordered lattice, one indeed observes a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario, we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by releasing all its excitation into the CCA (initially in its vacuum state). By introducing static disorder in the CCA the field normal modes become Anderson-localized, giving rise to a non-Markovian atomic dynamics. We show the existence of a functional relationship between a rigorous measure of quantum non-Markovianity and the CCA localization. We furthermore show that the average non-Markovianity of the atomic dynamics is well-described by a phenomenological model in which the atom is coupled, at the same time, to a single mode and to a standard - Markovian - dissipative bath.
Measures of non-Markovianity: Divisibility versus backflow of information
Chruscinski, Dariusz; Kossakowski, Andrzej
2011-05-15
We analyze two recently proposed measures of non-Markovianity: one based on the concept of divisibility of the dynamical map and the other one based on distinguishability of quantum states. We provide a model to show that these two measures need not agree. In addition, we discuss possible generalizations and intricate relations between these measures.
Quantum non-Markovianity induced by Anderson localization.
Lorenzo, Salvatore; Lombardo, Federico; Ciccarello, Francesco; Palma, G Massimo
2017-02-16
As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence, when an atom interacts with a disordered lattice, one indeed observes a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario, we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by releasing all its excitation into the CCA (initially in its vacuum state). By introducing static disorder in the CCA the field normal modes become Anderson-localized, giving rise to a non-Markovian atomic dynamics. We show the existence of a functional relationship between a rigorous measure of quantum non-Markovianity and the CCA localization. We furthermore show that the average non-Markovianity of the atomic dynamics is well-described by a phenomenological model in which the atom is coupled, at the same time, to a single mode and to a standard - Markovian - dissipative bath.
Non-Markovian character in human mobility: Online and offline.
Zhao, Zhi-Dan; Cai, Shi-Min; Lu, Yang
2015-06-01
The dynamics of human mobility characterizes the trajectories that humans follow during their daily activities and is the foundation of processes from epidemic spreading to traffic prediction and information recommendation. In this paper, we investigate a massive data set of human activity, including both online behavior of browsing websites and offline one of visiting towers based mobile terminations. The non-Markovian character observed from both online and offline cases is suggested by the scaling law in the distribution of dwelling time at individual and collective levels, respectively. Furthermore, we argue that the lower entropy and higher predictability in human mobility for both online and offline cases may originate from this non-Markovian character. However, the distributions of individual entropy and predictability show the different degrees of non-Markovian character between online and offline cases. To account for non-Markovian character in human mobility, we apply a protype model with three basic ingredients, namely, preferential return, inertial effect, and exploration to reproduce the dynamic process of online and offline human mobilities. The simulations show that the model has an ability to obtain characters much closer to empirical observations.
Non-Markovian character in human mobility: Online and offline
NASA Astrophysics Data System (ADS)
Zhao, Zhi-Dan; Cai, Shi-Min; Lu, Yang
2015-06-01
The dynamics of human mobility characterizes the trajectories that humans follow during their daily activities and is the foundation of processes from epidemic spreading to traffic prediction and information recommendation. In this paper, we investigate a massive data set of human activity, including both online behavior of browsing websites and offline one of visiting towers based mobile terminations. The non-Markovian character observed from both online and offline cases is suggested by the scaling law in the distribution of dwelling time at individual and collective levels, respectively. Furthermore, we argue that the lower entropy and higher predictability in human mobility for both online and offline cases may originate from this non-Markovian character. However, the distributions of individual entropy and predictability show the different degrees of non-Markovian character between online and offline cases. To account for non-Markovian character in human mobility, we apply a protype model with three basic ingredients, namely, preferential return, inertial effect, and exploration to reproduce the dynamic process of online and offline human mobilities. The simulations show that the model has an ability to obtain characters much closer to empirical observations.
Geometric quantum discord and non-Markovianity of structured reservoirs
Hu, Ming-Liang Lian, Han-Li
2015-11-15
The reservoir memory effects can lead to information backflow and recurrence of the previously lost quantum correlations. We establish connections between the direction of information flow and variation of the geometric quantum discords (GQDs) measured respectively by the trace distance, the Hellinger distance, and the Bures distance for two qubits subjecting to the bosonic structured reservoirs, and unveil their dependence on a factor whose derivative signifies the (non-)Markovianity of the dynamics. By considering the reservoirs with Lorentzian and Ohmic-like spectra, we further demonstrated that the non-Markovianity induced by the backflow of information from the reservoirs to the system enhances the GQDs in most of the parameter regions. This highlights the potential of non-Markovianity as a resource for protecting the GQDs. -- Highlights: •Dependence of GQDs on a factor determined by spectrum of the structured reservoir. •Connection between the direction of information flow and variation of the GQDs. •Non-Markovianity with the backflow of information enhances GQDs in a wide region. •The GQDs are enhanced with the information loss in a very narrow region.
Thermodynamic power of non-Markovianity
Bylicka, Bogna; Tukiainen, Mikko; Chruściński, Dariusz; Piilo, Jyrki; Maniscalco, Sabrina
2016-01-01
The natural framework to discuss thermodynamics at the quantum level is the theory of open quantum systems. Memory effects arising from strong system-environment correlations may lead to information back-flow, that is non-Markovian behaviour. The relation between non-Markovianity and quantum thermodynamics has been until now largely unexplored. Here we show by means of Landauer’s principle that memory effects control the amount of work extraction by erasure in presence of realistic environments. PMID:27323947
Connecting two jumplike unravelings for non-Markovian open quantum systems
Luoma, Kimmo; Suominen, Kalle-Antti; Piilo, Jyrki
2011-09-15
The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well understood while, for the non-Markovian case, there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics: the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, are associated with the decay rates of time-local master equations and, consequently, with the jump rates of the NMQJ method.
Nonclassical correlations in non-Markovian continuous-variable systems
Vasile, Ruggero; Maniscalco, Sabrina; Giorda, Paolo; Olivares, Stefano; Paris, Matteo G. A.
2010-07-15
We consider two identical and noninteracting harmonic oscillators coupled to either two independent bosonic baths or to a common bosonic bath. Under the only assumption, weak coupling, we analyze in detail the non-Markovian short-time-scale evolution of intensity correlations, entanglement, and quantum discord for initial two-mode squeezed-thermal vacuum states. In the independent reservoirs case, we observe the detrimental effect of the environment for all these quantities and we establish a hierarchy for their robustness against the environmental noise. In the common reservoir case, for initial uncorrelated states, we find that only quantum discord can be created via interaction with the bath, while entanglement and subshot noise intensity correlations remain absent.
Non-Markovian quantum jump with generalized Lindblad master equation.
Huang, X L; Sun, H Y; Yi, X X
2008-10-01
The Monte Carlo wave function method or the quantum-trajectory-jump approach is a powerful tool to study dissipative dynamics governed by the Markovian master equation, in particular for high-dimensional systems and when it is difficult to simulate directly. We extend this method to the non-Markovian case described by the generalized Lindblad master equation. Two examples to illustrate the method are presented and discussed. The results show that the method can correctly reproduce the dissipative dynamics for the system. The difference between this method and the traditional Markovian jump approach and the computational efficiency of this method is also discussed.
Optimal management of non-Markovian biological populations
Williams, B.K.
2007-01-01
Wildlife populations typically are described by Markovian models, with population dynamics influenced at each point in time by current but not previous population levels. Considerable work has been done on identifying optimal management strategies under the Markovian assumption. In this paper we generalize this work to non-Markovian systems, for which population responses to management are influenced by lagged as well as current status and/or controls. We use the maximum principle of optimal control theory to derive conditions for the optimal management such a system, and illustrate the effects of lags on the structure of optimal habitat strategies for a predator-prey system.
Quantum non-Markovian reservoirs of atomic condensates engineered via dipolar interactions
NASA Astrophysics Data System (ADS)
Yuan, Ji-Bing; Xing, Hai-Jun; Kuang, Le-Man; Yi, Su
2017-03-01
We investigate the quantum dephasing dynamics of an impurity qubit immersed in a quasi-two-dimensional dipolar Bose-Einstein condensate whose collective excitations act as a reservoir for the qubit. We show that the properties of the environment are highly engineerable through the relative strength of the dipolar and contact interactions such that qubit's dephasing dynamics could be Markovian, weak non-Markovian, or even highly non-Markovian. It is also revealed that the appearance of the roton excitation is responsible for the highly non-Markovian dephasing dynamics. Since rotonlike dispersions also appear in condensates placed in cavities or with spin-orbit couplings, our results pave the way for searching for systems that are suitable environment engineering.
Non-Markovian relaxation of a three-level system: quantum trajectory approach.
Jing, Jun; Yu, Ting
2010-12-10
The non-Markovian dynamics of a three-level quantum system coupled to a bosonic environment is a difficult problem due to the lack of an exact dynamic equation such as a master equation. We present for the first time an exact quantum trajectory approach to a dissipative three-level model. We have established a convolutionless stochastic Schrödinger equation called the time-local quantum state diffusion (QSD) equation without any approximations, in particular, without Markov approximation. Our exact time-local QSD equation opens a new avenue for exploring quantum dynamics for a higher dimensional quantum system coupled to a non-Markovian environment.
Lei, Chan U; Zhang Weimin
2011-11-15
In this paper, we provide a mechanism of decoherence suppression for open quantum systems in general and that for a ''Schroedinger cat-like'' state in particular, through strong couplings to non-Markovian reservoirs. Different from the usual strategies in the literature of suppressing decoherence by decoupling the system from the environment, here the decoherence suppression employs a strong back-reaction from non-Markovian reservoirs. The mechanism relies on the existence of the singularities (bound states) of the nonequilibrium retarded Green function, which completely determines the dissipation and decoherence dynamics of open systems. As an application, we examine the decoherence dynamics of a photonic crystal nanocavity that is coupled to a waveguide. The strong non-Markovian suppression of decoherence for the ''optical cat'' state is attained.
Generalization of Pairwise Models to non-Markovian Epidemics on Networks
NASA Astrophysics Data System (ADS)
Kiss, Istvan Z.; Röst, Gergely; Vizi, Zsolt
2015-08-01
In this Letter, a generalization of pairwise models to non-Markovian epidemics on networks is presented. For the case of infectious periods of fixed length, the resulting pairwise model is a system of delay differential equations, which shows excellent agreement with results based on stochastic simulations. Furthermore, we analytically compute a new R0 -like threshold quantity and an analytical relation between this and the final epidemic size. Additionally, we show that the pairwise model and the analytic results can be generalized to an arbitrary distribution of the infectious times, using integro-differential equations, and this leads to a general expression for the final epidemic size. By showing the rigorous link between non-Markovian dynamics and pairwise delay differential equations, we provide the framework for a more systematic understanding of non-Markovian dynamics.
NASA Astrophysics Data System (ADS)
Jungblut, Swetlana; Dellago, Christoph
2015-02-01
Using the crystallization transition in a Lennard-Jones fluid as example, we show that mean first-passage time based methods may underestimate the reaction rates. We trace the reason of this deficiency back to the non-Markovian character of the dynamics caused by the projection to a poorly chosen reaction coordinate. The non-Markovianity of the dynamics becomes apparent in the behavior of the recurrence times.
Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach
NASA Astrophysics Data System (ADS)
Chen, Yusui; You, J. Q.; Yu, Ting
2014-11-01
A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.
Non-markovian boltzmann equation
Kremp, D.; Bonitz, M.; Kraeft, W.D.; Schlanges, M.
1997-08-01
A quantum kinetic equation for strongly interacting particles (generalized binary collision approximation, ladder or T-matrix approximation) is derived in the framework of the density operator technique. In contrast to conventional kinetic theory, which is valid on large time scales as compared to the collision (correlation) time only, our approach retains the full time dependencies, especially also on short time scales. This means retardation and memory effects resulting from the dynamics of binary correlations and initial correlations are included. Furthermore, the resulting kinetic equation conserves total energy (the sum of kinetic and potential energy). The second aspect of generalization is the inclusion of many-body effects, such as self-energy, i.e., renormalization of single-particle energies and damping. To this end we introduce an improved closure relation to the Bogolyubov{endash}Born{endash}Green{endash}Kirkwood{endash}Yvon hierarchy. Furthermore, in order to express the collision integrals in terms of familiar scattering quantities (Mo/ller operator, T-matrix), we generalize the methods of quantum scattering theory by the inclusion of medium effects. To illustrate the effects of memory and damping, the results of numerical simulations are presented. {copyright} 1997 Academic Press, Inc.
NASA Astrophysics Data System (ADS)
Bhattacharya, Samyadeb; Misra, Avijit; Mukhopadhyay, Chiranjib; Pati, Arun Kumar
2017-01-01
An exact canonical master equation of the Lindblad form is derived for a central spin interacting uniformly with a sea of completely unpolarized spins. The Kraus operators for the dynamical map are also derived. The non-Markovianity of the dynamics in terms of the divisibility breaking of the dynamical map and the increase of the trace distance fidelity between quantum states is shown. Moreover, it is observed that the irreversible entropy production rate is always negative (for a fixed initial state) whenever the dynamics exhibits non-Markovian behavior. In continuation with the study of witnessing non-Markovianity, it is shown that the positive rate of change of the purity of the central qubit is a faithful indicator of the non-Markovian information backflow. Given the experimental feasibility of measuring the purity of a quantum state, a possibility of experimental demonstration of non-Markovianity and the negative irreversible entropy production rate is addressed. This gives the present work considerable practical importance for detecting the non-Markovianity and the negative irreversible entropy production rate.
Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks.
Scholtes, Ingo; Wider, Nicolas; Pfitzner, René; Garas, Antonios; Tessone, Claudio J; Schweitzer, Frank
2014-09-24
Recent research has highlighted limitations of studying complex systems with time-varying topologies from the perspective of static, time-aggregated networks. Non-Markovian characteristics resulting from the ordering of interactions in temporal networks were identified as one important mechanism that alters causality and affects dynamical processes. So far, an analytical explanation for this phenomenon and for the significant variations observed across different systems is missing. Here we introduce a methodology that allows to analytically predict causality-driven changes of diffusion speed in non-Markovian temporal networks. Validating our predictions in six data sets we show that compared with the time-aggregated network, non-Markovian characteristics can lead to both a slow-down or speed-up of diffusion, which can even outweigh the decelerating effect of community structures in the static topology. Thus, non-Markovian properties of temporal networks constitute an important additional dimension of complexity in time-varying complex systems.
Non-Markovianity in Randomized Benchmarking
NASA Astrophysics Data System (ADS)
Ball, Harrison; Stace, Tom M.; Biercuk, Michael J.
2015-03-01
Randomized benchmarking is routinely employed to recover information about the fidelity of a quantum operation by exploiting probabilistic twirling errors over an implementation of the Clifford group. Standard assumptions of Markovianity in the underlying noise environment, however, remain at odds with realistic, correlated noise encountered in real systems. We model single-qubit randomized benchmarking experiments as a sequence of ideal Clifford operations interleaved with stochastic dephasing errors, implemented as unitary rotations about σz. Successive error rotations map to a sequence of random variables whose correlations introduce non-Markovian effects emulating realistic colored-noise environments. The Markovian limit is recovered by turning off all correlations, reducing each error to an independent Gaussian-distributed random variable. We examine the dependence of the statistical distribution of fidelity outcomes on these noise correlations, deriving analytic expressions for probability density functions and related statistics for relevant fidelity metrics. This enables us to characterize and bear out the distinction between the Markovian and non-Markovian cases, with implications for interpretation and handling of experimental data.
Recovering entanglement by local operations
D’Arrigo, A.; Lo Franco, R.; Benenti, G.; Paladino, E.; Falci, G.
2014-11-15
We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of “hidden” entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We also discuss how hidden entanglement may provide new insights about entanglement revivals in non-Markovian dynamics.
Fisher information due to a phase noisy laser under non-Markovian environment
Abdel-Khalek, S.
2014-12-15
More recently, K. Berrada [Annals of Physics 340 (2014) 60-69] [1] studied the geometric phase of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system, and collapse and revival phenomena were found for large class of states. In this paper, using this noise effect, we study the quantum fisher information (QFI) for a two-level atom system driven by a phase noise laser under non-Markovian dynamics. A new quantity, called QFI flow is used to characterize the damping effect and unveil a fundamental connection between non-Markovian behavior and dynamics of system–environment correlations under phase noise laser. It is shown that QFI flow has disappeared suddenly followed by a sudden birth depending on the kind of the environment damping. QFI flow provides an indicator to characterize the dissipative quantum system’s decoherence by analyzing the behavior of the dynamical non-Markovian coefficients.
Observation of non-Markovian micromechanical Brownian motion
Gröblacher, S.; Trubarov, A.; Prigge, N.; Cole, G. D.; Aspelmeyer, M.; Eisert, J.
2015-01-01
All physical systems are to some extent open and interacting with their environment. This insight, basic as it may seem, gives rise to the necessity of protecting quantum systems from decoherence in quantum technologies and is at the heart of the emergence of classical properties in quantum physics. The precise decoherence mechanisms, however, are often unknown for a given system. In this work, we make use of an opto-mechanical resonator to obtain key information about spectral densities of its condensed-matter heat bath. In sharp contrast to what is commonly assumed in high-temperature quantum Brownian motion describing the dynamics of the mechanical degree of freedom, based on a statistical analysis of the emitted light, it is shown that this spectral density is highly non-Ohmic, reflected by non-Markovian dynamics, which we quantify. We conclude by elaborating on further applications of opto-mechanical systems in open system identification. PMID:26216619
Optomechanical cooling in the non-Markovian regime
NASA Astrophysics Data System (ADS)
Zhang, Wen-Zhao; Cheng, Jiong; Li, Wen-Dong; Zhou, Ling
2016-06-01
We propose a scheme in which the cooling of a mechanical resonator is achieved by exposing the optomechanical system to a non-Markovian environment. Because of the backflow from the non-Markovian environment, the phonon number can go beyond the conventional cooling limit in a Markovian environment. Utilizing the spectrum density obtained in a recent experiment [S. Gröblacher et al., Nat. Commun. 6, 7606 (2015)], 10.1038/ncomms8606, we show that the cooling process is highly effective in a non-Markovian environment. Analysis of the cooling mechanism in a non-Markovian environment reveals that the non-Markovian memory effect is instrumental in the cooling process.
Non-Markovian stochastic processes: colored noise.
Łuczka, J
2005-06-01
We survey classical non-Markovian processes driven by thermal equilibrium or nonequilibrium (nonthermal) colored noise. Examples of colored noise are presented. For processes driven by thermal equilibrium noise, the fluctuation-dissipation relation holds. In consequence, the system has to be described by a generalized (integro-differential) Langevin equation with a restriction on the damping integral kernel: Its form depends on the correlation function of noise. For processes driven by nonequilibrium noise, there is no such a restriction: They are considered to be described by stochastic differential (Ito- or Langevin-type) equations with an independent noise term. For the latter, we review methods of analysis of one-dimensional systems driven by Ornstein-Uhlenbeck noise.
Classical non-Markovian Boltzmann equation
Alexanian, Moorad
2014-08-01
The modeling of particle transport involves anomalous diffusion, (x²(t) ) ∝ t{sup α} with α ≠ 1, with subdiffusive transport corresponding to 0 < α < 1 and superdiffusive transport to α > 1. These anomalies give rise to fractional advection-dispersion equations with memory in space and time. The usual Boltzmann equation, with only isolated binary collisions, is Markovian and, in particular, the contributions of the three-particle distribution function are neglected. We show that the inclusion of higher-order distribution functions give rise to an exact, non-Markovian Boltzmann equation with resulting transport equations for mass, momentum, and kinetic energy with memory in both time and space. The two- and the three-particle distribution functions are considered under the assumption that the two- and the three-particle correlation functions are translationally invariant that allows us to obtain advection-dispersion equations for modeling transport in terms of spatial and temporal fractional derivatives.
Classical non-Markovian Boltzmann equation
NASA Astrophysics Data System (ADS)
Alexanian, Moorad
2014-08-01
The modeling of particle transport involves anomalous diffusion, ⟨x2(t) ⟩ ∝ tα with α ≠ 1, with subdiffusive transport corresponding to 0 < α < 1 and superdiffusive transport to α > 1. These anomalies give rise to fractional advection-dispersion equations with memory in space and time. The usual Boltzmann equation, with only isolated binary collisions, is Markovian and, in particular, the contributions of the three-particle distribution function are neglected. We show that the inclusion of higher-order distribution functions give rise to an exact, non-Markovian Boltzmann equation with resulting transport equations for mass, momentum, and kinetic energy with memory in both time and space. The two- and the three-particle distribution functions are considered under the assumption that the two- and the three-particle correlation functions are translationally invariant that allows us to obtain advection-dispersion equations for modeling transport in terms of spatial and temporal fractional derivatives.
Mean first-passage times of non-Markovian random walkers in confinement
NASA Astrophysics Data System (ADS)
Guérin, T.; Levernier, N.; Bénichou, O.; Voituriez, R.
2016-06-01
The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.
Non-Markovianity: initial correlations and nonlinear optical measurements
Dijkstra, Arend G.; Tanimura, Yoshitaka
2012-01-01
By extending the response function approach developed in nonlinear optics, we analytically derive an expression for the non-Markovianity in the time evolution of a system in contact with a quantum mechanical bath, and find a close connection with the directly observable nonlinear optical response. The result indicates that memory in the bath-induced fluctuations rather than in the dissipation causes non-Markovianity. Initial correlations between states of the system and the bath are shown to be essential for a correct understanding of the non-Markovianity. These correlations are included in our treatment through a preparation function. PMID:22753819
NASA Astrophysics Data System (ADS)
Ebadi, H.; Saeedian, M.; Ausloos, M.; Jafari, G. R.
2016-11-01
The Boolean network is one successful model to investigate discrete complex systems such as the gene interacting phenomenon. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self-organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function —one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of the yeast cell cycle network, we discover a power-law-like memory with a more robust dynamics than the Markovian dynamics.
Dynamics of non-Markovian exclusion processes
NASA Astrophysics Data System (ADS)
Khoromskaia, Diana; Harris, Rosemary J.; Grosskinsky, Stefan
2014-12-01
Driven diffusive systems are often used as simple discrete models of collective transport phenomena in physics, biology or social sciences. Restricting attention to one-dimensional geometries, the asymmetric simple exclusion process (ASEP) plays a paradigmatic role to describe noise-activated driven motion of entities subject to an excluded volume interaction and many variants have been studied in recent years. While in the standard ASEP the noise is Poissonian and the process is therefore Markovian, in many applications the statistics of the activating noise has a non-standard distribution with possible memory effects resulting from internal degrees of freedom or external sources. This leads to temporal correlations and can significantly affect the shape of the current-density relation as has been studied recently for a number of scenarios. In this paper we report a general framework to derive the fundamental diagram of ASEPs driven by non-Poissonian noise by using effectively only two simple quantities, viz., the mean residual lifetime of the jump distribution and a suitably defined temporal correlation length. We corroborate our results by detailed numerical studies for various noise statistics under periodic boundary conditions and discuss how our approach can be applied to more general driven diffusive systems.
Efficient superdense coding in the presence of non-Markovian noise
NASA Astrophysics Data System (ADS)
Liu, Bi-Heng; Hu, Xiao-Min; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can; Karlsson, Antti; Laine, Elsi-Mari; Maniscalco, Sabrina; Macchiavello, Chiara; Piilo, Jyrki
2016-04-01
Many quantum information tasks rely on entanglement, which is used as a resource, for example, to enable efficient and secure communication. Typically, noise, accompanied by loss of entanglement, reduces the efficiency of quantum protocols. We develop and demonstrate experimentally a superdense coding scheme with noise, where the decrease of entanglement in Alice's encoding state does not reduce the efficiency of the information transmission. Having an almost fully dephased classical two-photon polarization state at the time of encoding with concurrence of 0.163+/-0.007 , we reach values of mutual information close to 1.52+/- 0.02 (1.89+/- 0.05) with 3-state (4-state) encoding. This high efficiency relies both on non-Markovian features, that Bob exploits just before his Bell state measurement, and on very high visibility (99.6{%}+/-0.1{%}) of the Hong-Ou-Mandel interference within the experimental set-up. Our proof-of-principle results with measurements on mutual information pave the way for exploiting non-Markovianity to improve the efficiency and security of quantum information processing tasks.
Transient unidirectional energy flow and diode-like phenomenon induced by non-Markovian environments
Jing, Jun; Segal, Dvira; Li, Baowen; Wu, Lian-Ao
2015-01-01
Relying on an exact time evolution scheme, we identify a novel transient energy transfer phenomenon in an exactly-solvable quantum microscopic model consisting of a three-level system coupled to two non-Markovian zero-temperature bosonic baths through two separable quantum channels. The dynamics of this model can be solved exactly using the quantum-state-diffusion equation formalism, demonstrating finite intervals of unidirectional energy flow across the system, typically, from the non-Markovian environment towards the more Markovian bath. Furthermore, when introducing a spatial asymmetry into the system, an analogue of the rectification effect is realized. In the long time limit, the dynamics arrives at a stationary state and the effects recede. Understanding temporal characteristics of directional energy flow will aid in designing microscopic energy transfer devices. PMID:26478230
Entanglement revive and information flow within the decoherent environment.
Shi, Jia-Dong; Wang, Dong; Ye, Liu
2016-08-10
In this paper, the dynamics of entanglement is investigated in the presence of a noisy environment. We reveal its revival behavior and probe the mechanisms of this behavior via an information-theoretic approach. By analyzing the correlation distribution and the information flow within the composite system including the qubit subsystem and a noisy environment, it has been found that the subsystem-environment coupling can induce the quasi-periodic entanglement revival. Furthermore, the dynamical relationship among tripartite correlations, bipartite entanglement and local state information is explored, which provides a new insight into the non-Markovian mechanisms during the evolution.
Entanglement revive and information flow within the decoherent environment
Shi, Jia-dong; Wang, Dong; Ye, Liu
2016-01-01
In this paper, the dynamics of entanglement is investigated in the presence of a noisy environment. We reveal its revival behavior and probe the mechanisms of this behavior via an information-theoretic approach. By analyzing the correlation distribution and the information flow within the composite system including the qubit subsystem and a noisy environment, it has been found that the subsystem-environment coupling can induce the quasi-periodic entanglement revival. Furthermore, the dynamical relationship among tripartite correlations, bipartite entanglement and local state information is explored, which provides a new insight into the non-Markovian mechanisms during the evolution. PMID:27506664
Non-Markovian master equation for a system of Fermions interacting with an electromagnetic field
Stefanescu, Eliade Scheid, Werner; Sandulescu, Aurel
2008-05-15
For a system of charged Fermions interacting with an electromagnetic field, we derive a non-Markovian master equation in the second-order approximation of the weak dissipative coupling. A complex dissipative environment including Fermions, Bosons and the free electromagnetic field is taken into account. Besides the well-known Markovian term of Lindblad's form, that describes the decay of the system by correlated transitions of the system and environment particles, this equation includes new Markovian and non-Markovian terms proceeding from the fluctuations of the self-consistent field of the environment. These terms describe fluctuations of the energy levels, transitions among these levels stimulated by the fluctuations of the self-consistent field of the environment, and the influence of the time-evolution of the environment on the system dynamics. We derive a complementary master equation describing the environment dynamics correlated with the dynamics of the system. As an application, we obtain non-Markovian Maxwell-Bloch equations and calculate the absorption spectrum of a field propagation mode transversing an array of two-level quantum dots.
Non-Markovian Complexity in the Quantum-to-Classical Transition.
Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco
2015-08-25
The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free.
Non-Markovian Complexity in the Quantum-to-Classical Transition
Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco
2015-01-01
The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free. PMID:26303002
Non-Markovian work fluctuation theorem in crossed electric and magnetic fields.
Jiménez-Aquino, J I
2015-08-01
The validity of the transient work fluctuation theorem for a charged Brownian harmonic oscillator embedded in a non-Markovian heat bath and under the action of crossed electric and magnetic fields is investigated. The aforementioned theorem is verified to be valid within the context of the generalized Langevin equation with an arbitrary memory kernel and arbitrary dragging in the potential minimum. The fluctuation-dissipation relation of the second kind is assumed to be valid and shows that the non-Markovian stochastic dynamics associated with the particle, in the absence of the external time-dependent electric field, reaches an equilibrium state, as is precisely demanded by such a relation. The Jarzynski equality in this problem is also analyzed.
Jump-diffusion unravelling of a non-Markovian generalized Lindblad master equation
Barchielli, A.; Pellegrini, C.
2010-11-15
The ''correlated-projection technique'' has been successfully applied to derive a large class of highly non-Markovian dynamics, the so called non-Markovian generalized Lindblad-type equations or Lindblad rate equations. In this article, general unravelings are presented for these equations, described in terms of jump-diffusion stochastic differential equations for wave functions. We show also that the proposed unraveling can be interpreted in terms of measurements continuous in time but with some conceptual restrictions. The main point in the measurement interpretation is that the structure itself of the underlying mathematical theory poses restrictions on what can be considered as observable and what is not; such restrictions can be seen as the effect of some kind of superselection rule. Finally, we develop a concrete example and discuss possible effects on the heterodyne spectrum of a two-level system due to a structured thermal-like bath with memory.
Non-Markovian linear response theory for quantum open systems and its applications
NASA Astrophysics Data System (ADS)
Shen, H. Z.; Li, D. X.; Yi, X. X.
2017-01-01
The Kubo formula is an equation that expresses the linear response of an observable due to a time-dependent perturbation. It has been extended from closed systems to open systems in recent years under the Markovian approximation, but is barely explored for open systems in non-Markovian regimes. In this paper, we derive a formula for the linear response of an open system to a time-independent external field. This response formula is available for both Markovian and non-Markovian dynamics depending on parameters in the spectral density of the environment. As an illustration of the theory, the Hall conductance of a two-band system subjected to environments is derived and discussed. With the tight-binding model, we point out the Hall conductance changes from Markovian to non-Markovian dynamics by modulating the spectral density of the environment. Our results suggest a way to the controlling of the system response, which has potential applications for quantum statistical mechanics and condensed matter physics.
Non-Markovian linear response theory for quantum open systems and its applications.
Shen, H Z; Li, D X; Yi, X X
2017-01-01
The Kubo formula is an equation that expresses the linear response of an observable due to a time-dependent perturbation. It has been extended from closed systems to open systems in recent years under the Markovian approximation, but is barely explored for open systems in non-Markovian regimes. In this paper, we derive a formula for the linear response of an open system to a time-independent external field. This response formula is available for both Markovian and non-Markovian dynamics depending on parameters in the spectral density of the environment. As an illustration of the theory, the Hall conductance of a two-band system subjected to environments is derived and discussed. With the tight-binding model, we point out the Hall conductance changes from Markovian to non-Markovian dynamics by modulating the spectral density of the environment. Our results suggest a way to the controlling of the system response, which has potential applications for quantum statistical mechanics and condensed matter physics.
Non-Markovian Quantum Friction of Bright Solitons in Superfluids.
Efimkin, Dmitry K; Hofmann, Johannes; Galitski, Victor
2016-06-03
We explore the quantum dynamics of a bright matter-wave soliton in a quasi-one-dimensional bosonic superfluid with attractive interactions. Specifically, we focus on the dissipative forces experienced by the soliton due to its interaction with Bogoliubov excitations. Using the collective coordinate approach and the Keldysh formalism, a Langevin equation of motion for the soliton is derived from first principles. The equation contains a stochastic Langevin force (associated with quantum noise) and a nonlocal in time dissipative force, which appears due to inelastic scattering of Bogoliubov quasiparticles off of the moving soliton. It is shown that Ohmic friction (i.e., a term proportional to the soliton's velocity) is absent in the integrable setup. However, the Markovian approximation gives rise to the Abraham-Lorentz force (i.e., a term proportional to the derivative of the soliton's acceleration), which is known from classical electrodynamics of a charged particle interacting with its own radiation. These Abraham-Lorentz equations famously contain a fundamental causality paradox, where the soliton (particle) interacts with excitations (radiation) originating from future events. We show, however, that the causality paradox is an artifact of the Markovian approximation, and our exact non-Markovian dissipative equations give rise to physical trajectories. We argue that the quantum friction discussed here should be observable in current quantum gas experiments.
Li, Zhen; Lee, Hee Sun; Darve, Eric; Karniadakis, George Em
2017-01-07
Memory effects are often introduced during coarse-graining of a complex dynamical system. In particular, a generalized Langevin equation (GLE) for the coarse-grained (CG) system arises in the context of Mori-Zwanzig formalism. Upon a pairwise decomposition, GLE can be reformulated into its pairwise version, i.e., non-Markovian dissipative particle dynamics (DPD). GLE models the dynamics of a single coarse particle, while DPD considers the dynamics of many interacting CG particles, with both CG systems governed by non-Markovian interactions. We compare two different methods for the practical implementation of the non-Markovian interactions in GLE and DPD systems. More specifically, a direct evaluation of the non-Markovian (NM) terms is performed in LE-NM and DPD-NM models, which requires the storage of historical information that significantly increases computational complexity. Alternatively, we use a few auxiliary variables in LE-AUX and DPD-AUX models to replace the non-Markovian dynamics with a Markovian dynamics in a higher dimensional space, leading to a much reduced memory footprint and computational cost. In our numerical benchmarks, the GLE and non-Markovian DPD models are constructed from molecular dynamics (MD) simulations of star-polymer melts. Results show that a Markovian dynamics with auxiliary variables successfully generates equivalent non-Markovian dynamics consistent with the reference MD system, while maintaining a tractable computational cost. Also, transient subdiffusion of the star-polymers observed in the MD system can be reproduced by the coarse-grained models. The non-interacting particle models, LE-NM/AUX, are computationally much cheaper than the interacting particle models, DPD-NM/AUX. However, the pairwise models with momentum conservation are more appropriate for correctly reproducing the long-time hydrodynamics characterised by an algebraic decay in the velocity autocorrelation function.
Non-Markovian time evolution of an accelerated qubit
NASA Astrophysics Data System (ADS)
Moustos, Dimitris; Anastopoulos, Charis
2017-01-01
We present a new method for evaluating the response of a moving qubit detector interacting with a scalar field in Minkowski spacetime. We treat the detector as an open quantum system, but we do not invoke the Markov approximation. The evolution equations for the qubit density matrix are valid at all times, for all qubit trajectories, and they incorporate non-Markovian effects. We analyze in detail the case of uniform acceleration, providing a detailed characterization of all regimes where non-Markovian effects are significant. We argue that the most stable characterization of acceleration temperature refers to the late time behavior of the detector because interaction with the field vacuum brings the qubit to a thermal state at the Unruh temperature. In contrast, the early-time transition rate, that is invoked in most discussions of acceleration temperature, does not exhibit a thermal behavior when non-Markovian effects are taken into account. Finally, we note that the non-Markovian evolution derived here also applies to the mathematically equivalent problem of a static qubit interacting with a thermal field bath.
NASA Astrophysics Data System (ADS)
Chen, Yu; Zou, Jian; Yang, Zi-Yi; Li, Longwu; Li, Hai; Shao, Bin
2016-08-01
The dynamics of N-qubit GHZ state quantum Fisher information (QFI) under phase noise lasers (PNLs) driving is investigated in terms of non-Markovian master equation. We first investigate the non-Markovian dynamics of the QFI of N-qubit GHZ state and show that when the ratio of the PNL rate and the system-environment coupling strength is very small, the oscillations of the QFIs decay slower which corresponds to the non-Markovian region; yet when it becomes large, the QFIs monotonously decay which corresponds to the Markovian region. When the atom number N increases, QFIs in both regions decay faster. We further find that the QFI flow disappears suddenly followed by a sudden birth depending on the ratio of the PNL rate and the system-environment coupling strength and the atom number N, which unveil a fundamental connection between the non-Markovian behaviors and the parameters of system-environment couplings. We discuss two optimal positive operator-valued measures (POVMs) for two different strategies of our model and find the condition of the optimal measurement. At last, we consider the QFI of two atoms with qubit-qubit interaction under random telegraph noises (RTNs).
Non-Markovian State-Dependent Networks in Critical Loading
2013-01-23
orthant. We give an application to generalised Jackson networks with state-dependent rates. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...process is a continuous-path reflected process on the nonnegative orthant. We give an application to generalised Jackson networks with state-dependent...We give an application to generalised Jackson networks with state-dependent rates. Keywords: State-dependent networks, non-Markovian networks
High Resolution non-Markovianity in NMR
Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.
2016-01-01
Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts. PMID:27669652
High Resolution non-Markovianity in NMR
NASA Astrophysics Data System (ADS)
Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.
2016-09-01
Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts.
Two-dimensional photon echoes reveal non-Markovian energy transfer in an excitonic dimer
NASA Astrophysics Data System (ADS)
Duan, Hong-Guang; Frey, Moritz; Thorwart, Michael; Nalbach, Peter
2016-11-01
We show that strong non-Markovian effects can be revealed by the steady-state two-dimensional (2D) photon echo spectra at asymptotic waiting times. For this, we use a simple dimer toy model that is strongly coupled to a harmonic bath with parameters typical for photoactive biomolecules. We calculate the 2D photon echo spectra employing both the numerically exact hierarchy equation of motion and the quasiadiabatic path integral approach and compare these results with approximate results from a time-nonlocal quantum master equation approach. While the latter correctly reproduces the exact population dynamics at long times, it fails at the same time to correctly describe the 2D photon echo spectra at long waiting times. The differences show that non-Markovian effects are much more important for the steady-state 2D photon echoes than for the equilibrium populations. Thus, accurate theoretical descriptions of the energy transfer dynamics in biomolecular complexes have to be based on numerically exact simulations of the environmental fluctuations when nonlinear response functions are analyzed.
Non-Markovian coarse-grained modeling of polymeric fluids based on the Mori-Zwanzig formalism
NASA Astrophysics Data System (ADS)
Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George
The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables based on the Mori-Zwanzig formalism. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons on both static and dynamic properties between the CG models with Markovian and non-Markovian approximations will be presented. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.
Quantum Monte Carlo method applied to non-Markovian barrier transmission
NASA Astrophysics Data System (ADS)
Hupin, Guillaume; Lacroix, Denis
2010-01-01
In nuclear fusion and fission, fluctuation and dissipation arise because of the coupling of collective degrees of freedom with internal excitations. Close to the barrier, quantum, statistical, and non-Markovian effects are expected to be important. In this work, a new approach based on quantum Monte Carlo addressing this problem is presented. The exact dynamics of a system coupled to an environment is replaced by a set of stochastic evolutions of the system density. The quantum Monte Carlo method is applied to systems with quadratic potentials. In all ranges of temperature and coupling, the stochastic method matches the exact evolution, showing that non-Markovian effects can be simulated accurately. A comparison with other theories, such as Nakajima-Zwanzig or time-convolutionless, shows that only the latter can be competitive if the expansion in terms of coupling constant is made at least to fourth order. A systematic study of the inverted parabola case is made at different temperatures and coupling constants. The asymptotic passing probability is estimated by different approaches including the Markovian limit. Large differences with an exact result are seen in the latter case or when only second order in the coupling strength is considered, as is generally assumed in nuclear transport models. In contrast, if fourth order in the coupling or quantum Monte Carlo method is used, a perfect agreement is obtained.
Non-Markovian quantum Brownian motion of a harmonic oscillator
Tang, J.
1994-02-01
We apply the density-matrix method to the study of quantum Brownian motion of a harmonic oscillator coupled to a heat bath, a system investigated previously by Caldeira and Leggett using a different method. Unlike the earlier work, in our derivation of the master equation the non-Markovian terms are maintained. Although the same model of interaction is used, discrepancy is found between their results and our equation in the Markovian limit. We also point out that the particular interaction model used by both works cannot lead to the phenomenological generalized Langevin theory of Kubo.
Entanglement and discord assisted entropic uncertainty relations under decoherence
NASA Astrophysics Data System (ADS)
Yao, ChunMei; Chen, ZhiHua; Ma, ZhiHao; Severini, Simone; Serafini, Alessio
2014-09-01
The uncertainty principle is a crucial aspect of quantum mechanics. It has been shown that quantum entanglement as well as more general notions of correlations, such as quantum discord, can relax or tighten the entropic uncertainty relation in the presence of an ancillary system. We explored the behaviour of entropic uncertainty relations for system of two qubits-one of which subjects to several forms of independent quantum noise, in both Markovian and non-Markovian regimes. The uncertainties and their lower bounds, identified by the entropic uncertainty relations, increase under independent local unital Markovian noisy channels, but they may decrease under non-unital channels. The behaviour of the uncertainties (and lower bounds) exhibit periodical oscillations due to correlation dynamics under independent non-Markovian reservoirs. In addition, we compare different entropic uncertainty relations in several special cases and find that discord-tightened entropic uncertainty relations offer in general a better estimate of the uncertainties in play.
Trapping of coherence and entanglement in photonic band-gaps
NASA Astrophysics Data System (ADS)
Feng, Ling-Juan; Zhang, Ying-Jie; Xing, Gui-Chao; Xia, Yun-Jie; Gong, Shang-Qing
2017-02-01
We investigate the coherence trapping of a two-level atom transversally interacting with a reservoir with a photonic band-gap structure function. We then focus on the multipartite entanglement dynamics via genuinely multipartite concurrence among N independent atoms each locally coupled with its own reservoir. By considering the Lorentzian width and the system size, we find that for the resonant and near-resonant conditions, the increase of Lorentzian width and the decrease of system size can lead to the occurrence of coherence trapping and entanglement trapping. By choosing the multipartite GHZ state as atomic initial state, we show that the multipartite entanglement may exhibit entanglement sudden death depending on the initial condition and the system size. In addition, we also analyze how the crossover behaviors of two dynamical regimes are influenced by the Lorentzian width and the weight ratio, in terms of the non-Markovianity.
Stochastic simulation of dissipation and non-Markovian effects in open quantum systems.
Lacroix, Denis
2008-04-01
The exact dynamics of a system coupled to an environment can be described by an integro-differential stochastic equation for the reduced density. The influence of the environment is incorporated through a mean field which is both stochastic and nonlocal in time and where the standard two-time correlation functions of the environment appear naturally. Since no approximation is made, the presented theory incorporates exactly dissipative and non-Markovian effects. Applications to the spin-boson model coupled to a heat bath with various coupling regimes and temperature show that the presented stochastic theory can be a valuable tool to simulate exactly the dynamics of open quantum systems. Links with the stochastic Schrödinger equation method and possible extensions to "imaginary time" propagation are discussed.
Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation
Bolivar, A.O.
2011-05-15
Highlights: > Classical Brownian motion described by a non-Markovian Fokker-Planck equation. > Quantization process. > Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. > A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.
Counting statistics of non-Markovian quantum stochastic processes.
Flindt, Christian; Novotný, Tomás; Braggio, Alessandro; Sassetti, Maura; Jauho, Antti-Pekka
2008-04-18
We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole of the resolvent of the memory kernel from which we extract the zero-frequency cumulants of the current using a recursive scheme. The finite-frequency noise is expressed not only in terms of the resolvent, but also initial system-environment correlations. As an illustrative example we consider electron transport through a dissipative double quantum dot for which we study the effects of dissipation on the zero-frequency cumulants of high orders and the finite-frequency noise.
Vega, Ines de; Alonso, Daniel; Gaspard, Pierre
2005-02-01
It is our aim to study the dynamics of a two-level atom immersed in the modified radiation field of a photonic band-gap material using non-Markovian stochastic Schroedinger equations. Up to now, such methodology has only been applied to toy models and not to physically realistic systems as the one presented here. In order to check its validity, we shall study several of the physical phenomena already described in the literature within non-Markovian master equations, such as the long-time-limit residual population in the excited level of the atom and the population inversion which occurs in the atomic system when applying an external laser field. In addition to the stochastic equation, we propose a non-Markovian master equation derived from the stochastic formalism, which in contrast to the current models of master equation preserves positivity. We propose a correlation function for the radiation field (environment) that captures many of the physically relevant aspects of the problem and describes the short-time behavior in a more accurate way than previously proposed ones. This characteristic permits a correct description of the fluctuations of the electromagnetic field, which in the stochastic formalism are represented by the noise, and a better description of the non-Markovian effects in the atomic dynamics. The methodology presented in this paper to apply stochastic Schroedinger equations can be followed to study more complex systems, like many-level atoms embedded in more complicated photonic band-gap structures.
NASA Astrophysics Data System (ADS)
Shi, Pengqin; Hu, Menghan; Ying, Yaofeng; Jin, Jinshuang
2016-09-01
Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.
Non-Markovian Brownian motion in a magnetic field and time-dependent force fields
NASA Astrophysics Data System (ADS)
Hidalgo-Gonzalez, J. C.; Jiménez-Aquino, J. I.; Romero-Bastida, M.
2016-11-01
This work focuses on the derivation of the velocity and phase-space generalized Fokker-Planck equations for a Brownian charged particle embedded in a memory thermal bath and under the action of force fields: a constant magnetic field and arbitrary time-dependent force fields. To achieve the aforementioned goal we use a Gaussian but non-Markovian generalized Langevin equation with an arbitrary friction memory kernel. In a similar way, the generalized diffusion equation in the zero inertia limit is also derived. Additionally we show, in the absence of the time-dependent external forces, that, if the fluctuation-dissipation relation of the second kind is valid, then the generalized Langevin dynamics associated with the charged particle reaches a stationary state in the large-time limit. The consistency of our theoretical results is also verified when they are compared with those derived in the absence of the force fields and in the Markovian case.
Generalized trace-distance measure connecting quantum and classical non-Markovianity
NASA Astrophysics Data System (ADS)
Wißmann, Steffen; Breuer, Heinz-Peter; Vacchini, Bassano
2015-10-01
We establish a direct connection of quantum Markovianity of an open system to its classical counterpart by generalizing the criterion based on the information flow. Here the flow is characterized by the time evolution of Helstrom matrices, given by the weighted difference of statistical operators, under the action of the quantum dynamical map. It turns out that the introduced criterion is equivalent to P divisibility of a quantum process, namely, divisibility in terms of positive maps, which provides a direct connection to classical Markovian stochastic processes. Moreover, it is shown that mathematical representations similar to those found for the original trace-distance-based measure hold true for the associated generalized measure for quantum non-Markovianity. That is, we prove orthogonality of optimal states showing a maximal information backflow and establish a local and universal representation of the measure. We illustrate some properties of the generalized criterion by means of examples.
Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective
Bylicka, B.; Chruściński, D.; Maniscalco, S.
2014-01-01
Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication. PMID:25043763
Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective.
Bylicka, B; Chruściński, D; Maniscalco, S
2014-07-21
Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication.
Continuous-variable quantum key distribution in non-Markovian channels
Vasile, Ruggero; Olivares, Stefano; Paris, MatteoG. A.; Maniscalco, Sabrina
2011-04-15
We address continuous-variable quantum key distribution (QKD) in non-Markovian lossy channels and show how the non-Markovian features may be exploited to enhance security and/or to detect the presence and the position of an eavesdropper along the transmission line. In particular, we suggest a coherent-state QKD protocol which is secure against Gaussian individual attacks based on optimal 1{yields}2 asymmetric cloning machines for arbitrarily low values of the overall transmission line. The scheme relies on specific non-Markovian properties, and cannot be implemented in ordinary Markovian channels characterized by uniform losses. Our results give a clear indication of the potential impact of non-Markovian effects in QKD.
A framework for the direct evaluation of large deviations in non-Markovian processes
NASA Astrophysics Data System (ADS)
Cavallaro, Massimo; Harris, Rosemary J.
2016-11-01
We propose a general framework to simulate stochastic trajectories with arbitrarily long memory dependence and efficiently evaluate large deviation functions associated to time-extensive observables. This extends the ‘cloning’ procedure of Giardiná et al (2006 Phys. Rev. Lett. 96 120603) to non-Markovian systems. We demonstrate the validity of this method by testing non-Markovian variants of an ion-channel model and the totally asymmetric exclusion process, recovering results obtainable by other means.
Extending the applicability of Redfield theories into highly non-Markovian regimes
Montoya-Castillo, Andrés; Reichman, David R.; Berkelbach, Timothy C.
2015-11-21
We present a new, computationally inexpensive method for the calculation of reduced density matrix dynamics for systems with a potentially large number of subsystem degrees of freedom coupled to a generic bath. The approach consists of propagation of weak-coupling Redfield-like equations for the high-frequency bath degrees of freedom only, while the low-frequency bath modes are dynamically arrested but statistically sampled. We examine the improvements afforded by this approximation by comparing with exact results for the spin-boson model over a wide range of parameter space. We further generalize the method to multi-site models and compare with exact results for a model of the Fenna–Matthews–Olson complex. The results from the method are found to dramatically improve Redfield dynamics in highly non-Markovian regimes, at a similar computational cost. Relaxation of the mode-freezing approximation via classical (Ehrenfest) evolution of the low-frequency modes results in a dynamical hybrid method. We find that this Redfield-based dynamical hybrid approach, which is computationally more expensive than bare Redfield dynamics, yields only a marginal improvement over the simpler approximation of complete mode arrest.
Dynamics in entangled polyethylene melts
NASA Astrophysics Data System (ADS)
Salerno, K. Michael; Agrawal, Anupriya; Peters, Brandon L.; Perahia, Dvora; Grest, Gary S.
2016-10-01
Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion at the atomic length scale and motion of the entire macromolecule. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using linear polyethylene as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion with λ methylene groups per CG bead (denoted CGλ) with λ = 2,3,4 and 6 from a fully-atomistic polyethylene melt simulation. By rescaling time in the CG models by a factor α, the chain mobility for the atomistic and CG models match. We show that independent of the degree of coarse graining, all measured static and dynamic properties are essentially the same once the dynamic scaling factor α and a non-crossing constraint for the CG6 model are included. The speedup of the CG4 model is about 3 times that of the CG3 model and is comparable to that of the CG6 model. Using these CG models we were able to reach times of over 500 μs, allowing us to measure a number of quantities, including the stress relaxation function, plateau modulus and shear viscosity, and compare directly to experiment.
Cavity-based architecture to preserve quantum coherence and entanglement.
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-09-09
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.
Cavity-based architecture to preserve quantum coherence and entanglement
NASA Astrophysics Data System (ADS)
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-09-01
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.
Dynamics of momentum entanglement in lowest-order QED
Lamata, L.; Leon, J.; Solano, E.
2006-01-15
We study the dynamics of momentum entanglement generated in the lowest-order QED interaction between two massive spin-(1/2) charged particles, which grows in time as the two fermions exchange virtual photons. We observe that the degree of generated entanglement between interacting particles with initial well-defined momentum can be infinite. We explain this divergence in the context of entanglement theory for continuous variables, and show how to circumvent this apparent paradox. Finally, we discuss two different possibilities of transforming momentum into spin entanglement, through dynamical operations or through Lorentz boosts.
NASA Astrophysics Data System (ADS)
Jang, Seogjoo; Hoyer, Stephan; Fleming, Graham; Whaley, K. Birgitta
2014-10-01
A generalized master equation (GME) governing quantum evolution of modular exciton density (MED) is derived for large scale light harvesting systems composed of weakly interacting modules of multiple chromophores. The GME-MED offers a practical framework to incorporate real time coherent quantum dynamics calculations of small length scales into dynamics over large length scales, and also provides a non-Markovian generalization and rigorous derivation of the Pauli master equation employing multichromophoric Förster resonance energy transfer rates. A test of the GME-MED for four sites of the Fenna-Matthews-Olson complex demonstrates how coherent dynamics of excitonic populations over coupled chromophores can be accurately described by transitions between subgroups (modules) of delocalized excitons. Application of the GME-MED to the exciton dynamics between a pair of light harvesting complexes in purple bacteria demonstrates its promise as a computationally efficient tool to investigate large scale exciton dynamics in complex environments.
Entanglement Dynamics of Electrons and Photons
NASA Astrophysics Data System (ADS)
Wu, Xiang-Yao; Liu, Xiao-Jing; Lu, Jing-Bin; Li, Tian-Shun; Zhang, Si-Qi; Liang, Yu; Ma, Ji; Li, Hong
2016-12-01
Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.
The Design of Collectives of Agents to Control Non-Markovian Systems
NASA Technical Reports Server (NTRS)
Lawson, John W.; Wolpert, David H.
2004-01-01
The Collective Intelligence (COIN) framework concerns the design of collectives of reinforcement-learning agents such that their interaction causes a provided "world" utility function concerning the entire collective to be maximized. Previously, we applied that framework to scenarios involving Markovian dynamics where no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. This approach sets the individual utility function of each agent to be both aligned with the world utility, and at the same time, easy for the associated agents to optimize. Here we extend that approach to systems involving non-Markovian dynamics. In computer simulations, we compare our techniques with each other and with conventional "team games". We show whereas in team games performance often degrades badly with time, it steadily improves when our techniques are used. We also investigate situations where the system's dimensionality is effectively reduced. We show that this leads to difficulties in the agents ability to learn. The implication is that learning is a property only of high-enough dimensional systems.
The Design of Collectives of Agents to Control Non-Markovian Systems
NASA Technical Reports Server (NTRS)
Lawson, John W.; Wolpert, David H.; Clancy, Daniel (Technical Monitor)
2002-01-01
The 'Collective Intelligence' (COIN) framework concerns the design of collectives of reinforcement-learning agents such that their interaction causes a provided 'world' utility function concerning the entire collective to be maximized. Previously, we applied that framework to scenarios involving Markovian dynamics where no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. This approach sets the individual utility function of each agent to be both aligned with the world utility, and at the same time, easy for the associated agents to optimize. Here we extend that approach to systems involving non-Markovian dynamics. In computer simulations, we compare our techniques with each other and with conventional-'team games'. We show whereas in team games performance often degrades badly with time, it steadily improves when our techniques are used. We also investigate situations where the system's dimensionality is effectively reduced. We show that this leads to difficulties in the agents' ability to learn. The implication is that 'learning' is a property only of high-enough dimensional systems.
Dynamical entanglement purification using chains of atoms and optical cavities
Gonta, Denis; Loock, Peter van
2011-10-15
In the framework of cavity QED, we propose a practical scheme to purify dynamically a bipartite entangled state using short chains of atoms coupled to high-finesse optical cavities. In contrast to conventional entanglement purification protocols, we avoid controlled-not gates, thus reducing complicated pulse sequences and superfluous qubit operations. Our interaction scheme works in a deterministic way and, together with entanglement distribution and swapping, opens a route toward efficient quantum repeaters for long-distance quantum communication.
Interpretation of non-Markovian stochastic Schroedinger equations as a hidden-variable theory
Gambetta, Jay; Wiseman, H.M.
2003-12-01
Do diffusive non-Markovian stochastic Schroedinger equations (SSEs) for open quantum systems have a physical interpretation? In a recent paper [Phys. Rev. A 66, 012108 (2002)] we investigated this question using the orthodox interpretation of quantum mechanics. We found that the solution of a non-Markovian SSE represents the state the system would be in at that time if a measurement was performed on the environment at that time, and yielded a particular result. However, the linking of solutions at different times to make a trajectory is, we concluded, a fiction. In this paper we investigate this question using the modal (hidden variable) interpretation of quantum mechanics. We find that the noise function z(t) appearing in the non-Markovian SSE can be interpreted as a hidden variable for the environment. That is, some chosen property (beable) of the environment has a definite value z(t) even in the absence of measurement on the environment. The non-Markovian SSE gives the evolution of the state of the system 'conditioned' on this environment hidden variable. We present the theory for diffusive non-Markovian SSEs that have as their Markovian limit SSEs corresponding to homodyne and heterodyne detection, as well as one which has no Markovian limit.
Exact Analytic Solution of the Non-Markovian Chemical Reaction Process Via Time-Subordination
NASA Astrophysics Data System (ADS)
Benson, D. A.
2015-12-01
Perfectly-mixed reactions are Markovian, because the advance of the state depends only on the current state. Poor mixing (or the partner process of upscaling over heterogeneous concentrations) renders the process non-Markovian because of memory of the chemical structure. In other words, a particle takes some time to reach a suitable reaction site. The time depends on structure, and the structure changes over time. For purely diffusive transport, a calculation of the random time to reach the edges of ``islands'' allows a solution of the non-Markovian reaction rates that evolve (decrease) over time. This randomization of the active (operational) reaction time leads to non-Markovian reactions and an integro-differential governing equation of chemical evolution. Implications for more complex (advection/diffusion) environments are discussed.
Equivalence of the measures of non-Markovianity for open two-level systems
Zeng Haosheng; Tang Ning; Zheng Yanping; Wang Guoyou
2011-09-15
Different measures have been presented to depict the deviation of quantum time evolution in open systems from Markovian processes. We demonstrate that the measure proposed by Breuer, Laine, and Piilo [Phys. Rev. Lett. 103, 210401 (2009)] and the two measures proposed by Rivas, Huelga, and Plenio [Phys. Rev. Lett. 105, 050403 (2010)] have exactly the same non-Markovian time-evolution intervals and thus are really equivalent to each other when they are applied to open two-level systems coupled to environments via the Jaynes-Cummings or dephasing models. This equivalence implies that the three measures, in different ways, capture the intrinsic character of the non-Markovianity of quantum evolutional processes. We also show that the maximization in the definition of the first measure can be actually removed for the considered models without influencing the sensibility of the measure to detect non-Markovianity.
An alternative realization of the exact non-Markovian stochastic Schrödinger equation.
Song, Kai; Song, Linze; Shi, Qiang
2016-06-14
Based on the path integral approach, we derive a new realization of the exact non-Markovian stochastic Schrödinger equation (SSE). The main difference from the previous non-Markovian quantum state diffusion (NMQSD) method is that the complex Gaussian stochastic process used for the forward propagation of the wave function is correlated, which may be used to reduce the amplitude of the non-Markovian memory term at high temperatures. The new SSE is then written into the recently developed hierarchy of pure states scheme, in a form that is more closely related to the hierarchical equation of motion approach. Numerical simulations are then performed to demonstrate the efficiency of the new method.
Jesenko, Simon; Znidaric, Marko
2013-05-07
We analyze efficiency of excitation energy transfer in photosynthetic complexes in transient and stationary setting. In the transient setting, the absorption process is modeled as an individual event resulting in a subsequent relaxation dynamics. In the stationary setting the absorption is a continuous stationary process, leading to the nonequilibrium steady state. We show that, as far as the efficiency is concerned, both settings can be considered to be the same, as they result in almost identical efficiency. We also show that non-Markovianity has no effect on the resulting efficiency, i.e., corresponding Markovian dynamics results in identical efficiency. Even more, if one maps dynamics to appropriate classical rate equations, the same efficiency as in quantum case is obtained.
Dynamics of entanglement in systems of identical fermions undergoing decoherence
NASA Astrophysics Data System (ADS)
Valdés-Hernández, A.; Majtey, A. P.; Plastino, A. R.
2015-03-01
Information that is stored in quantum-mechanical systems can be easily lost because of the interaction with the environment in a process known as decoherence. Possible physical implementations of many processes in quantum information theory involve systems of identical particles, whence comprehension of the dynamics of entanglement induced by decoherence processes in identical-particle open systems becomes relevant. Here we study the effects and concomitant entanglement evolution arising from the interaction between a system of two identical fermions and the environment for two paradigmatic quantum channels. Entanglement measures are introduced to quantify the entanglement between the different parties, and a study of the dynamics of entanglement for some particular examples is carried out. Our analysis, which includes also the evolution of an entanglement indicator based on an entropic criteria, offers insights into the dynamics of entanglement in open systems of identical particles, involving the emergence of multipartite genuine entanglement. The results improve our understanding of the phenomenon of decoherence and will provide strategies to control it.
Non-Markovian far-infrared spectra of HCl and DCl in liquid SF6
NASA Astrophysics Data System (ADS)
Hernández, A. Calvo; Velasco, S.; Mauricio, F.
1986-01-01
The far-infrared spectrum of dilute solutions of HCl and DCl in liquid SF6 have been calculated by applying of two non-Markovian spectral theories previously reported in a recent work [A. Calvo Hernández, S. Velasco, and F. Mauricio, Phys. Rev. A 31, 3419 (1985)]. The calculated spectra are compared with the experimental spectra. Even though the systems under study are relatively far from the Markovian limit, the agreement between theoretical and experimental spectra shows the wide range of validity of both non-Markovian spectral theories.
Long-lived quantum coherence and non-Markovianity of photosynthetic complexes
NASA Astrophysics Data System (ADS)
Chen, Hong-Bin; Lien, Jiun-Yi; Hwang, Chi-Chuan; Chen, Yueh-Nan
2014-04-01
Long-lived quantum coherence in photosynthetic pigment-protein complexes has recently been reported at physiological temperature. It has been pointed out that the discrete vibrational modes may be responsible for the long-lived coherence. Here, we propose an analytical non-Markovian model to explain the origin of the long-lived coherence in pigment-protein complexes. We show that the memory effect of the discrete vibrational modes produces a long oscillating tail in the coherence. We further use the recently proposed measure to quantify the non-Markovianity of the system and find out the prolonged coherence is highly correlated to it.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-01-01
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556
Dynamics of Quantum Matter with Long-Range Entanglement
2013-06-07
REPORT Final Report: Dynamics of quantum matter with long-range entanglement. 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Recent experiments on...ultracold atoms in optical lattices have opened a remarkable new window on the dynamics of quantum matter with long-range entanglement. The simplest...paradigm of this is the boson superfluid-insulator quantum phase transition in two spatial dimensions. This project will study the theoretical
Entanglement dynamics in quantum many-body systems
NASA Astrophysics Data System (ADS)
Ho, Wen Wei; Abanin, Dmitry A.
2017-03-01
The dynamics of entanglement has recently been realized as a useful probe in studying ergodicity and its breakdown in quantum many-body systems. In this paper, we study theoretically the growth of entanglement in quantum many-body systems and propose a method to measure it experimentally. We show that entanglement growth is related to the spreading of local operators in real space. We present a simple toy model for ergodic systems in which linear spreading of operators results in a universal, linear-in-time growth of entanglement for initial product states, in contrast with the logarithmic growth of entanglement in many-body localized (MBL) systems. Furthermore, we show that entanglement growth is directly related to the decay of the Loschmidt echo in a composite system comprised of several copies of the original system, in which connections are controlled by a quantum switch (two-level system). By measuring only the switch's dynamics, the growth of the Rényi entropies can be extracted. Our work provides a way of understanding entanglement dynamics in many-body systems and to directly measure its growth in time via a single local measurement.
Dynamics of entanglement between two atomic samples with spontaneous scattering
Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio
2004-07-01
We investigate the effects of spontaneous scattering on the evolution of entanglement of two atomic samples, probed by phase-shift measurements on optical beams interacting with both samples. We develop a formalism of conditional quantum evolutions and present a wave function analysis implemented in numerical simulations of the state vector dynamics. This method allows us to track the evolution of entanglement and to compare it with the predictions obtained when spontaneous scattering is neglected. We provide numerical evidence that the interferometric scheme to entangle atomic samples is only marginally affected by the presence of spontaneous scattering and should thus be robust even in more realistic situations.
Nanoparticle effect on polymer chain dynamics and entanglement network
NASA Astrophysics Data System (ADS)
Li, Ying; Kroger, Martin
We investigated structure and dynamics of polymer nanocomposites through molecular modeling, by considering different molecular weights of polymers chains, and volume fractions of fillers. The dynamics of unentangled chains can be separated into two phases, a bulk polymer phase and a confined polymer phase between fillers. The dynamics of a confined polymer is slower than that of a bulk polymer, while still exhibiting high mobility. The amount of the bulk polymer phase is found to exponentially decay with increasing volume fraction of fillers. When highly entangled polymer chains are confined between fillers, their conformation and entanglement network are dramatically changed, in district with their unentangled counterparts. The entangled polymer chains are found to be significantly disentangled and flattened during increment of the volume fractions of spherical nonattractive fillers. A critical volume fraction is found to control the crossover from polymer chain entanglements to `nanoparticle entanglements', below which the polymer chain relaxation accelerates upon filling. These results provide a microscopic understanding of the dynamics of entangled polymer chains inside their composites, and offer an explanation for the unusual rheological properties of polymer composites. Supported by Department of Mechanical Engineering, University of Connecticut.
Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism
NASA Astrophysics Data System (ADS)
Parish, Eric J.; Duraisamy, Karthik
2017-01-01
This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from nonequilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered, and insight gained from the orthogonal dynamics equation is used as a starting point for model development. A class of subgrid models is considered which represent nonlocal behavior via a finite memory approximation [Stinis, arXiv:1211.4285 (2012)], the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z-based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at varying mesh resolutions. The trajectory of each resolved mode in phase space is accurately predicted for cases where the coarse graining is moderate. Large eddy simulations (LESs) of homogeneous isotropic turbulence and the Taylor-Green Vortex show that the M-Z-based models are able to provide excellent predictions, accurately capturing the subgrid contribution to energy transfer. Last, LESs of fully developed channel flow demonstrate the applicability of M-Z-based models to nondecaying problems. It is notable that the form of the closure is not imposed by the modeler, but is rather derived from the mathematics of the coarse graining, highlighting the potential of M-Z-based techniques to define LES closures.
Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength
Ge, Ting; Robbins, Mark O.; Perahia, Dvora; ...
2014-07-25
Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface.more » The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical
Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength
Ge, Ting; Robbins, Mark O.; Perahia, Dvora; Grest, Gary S.
2014-07-25
Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface. The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.
Entanglement dynamics for uniformly accelerated two-level atoms
NASA Astrophysics Data System (ADS)
Hu, Jiawei; Yu, Hongwei
2015-01-01
We study, in the paradigm of open quantum systems, the entanglement dynamics of two uniformly accelerated atoms with the same acceleration perpendicular to the separation. The two-atom system is treated as an open system coupled with a bath of fluctuating massless scalar fields in the Minkowski vacuum, and the master equation that governs its evolution is derived. It has been found that, for accelerated atoms with a nonvanishing separation, entanglement sudden death is a general feature when the initial state is entangled, while for those in a separable initial state, entanglement sudden birth only happens for atoms with an appropriate interatomic separation and sufficiently small acceleration. Remarkably, accelerated atoms can get entangled in certain circumstances while the inertial ones in the Minkowski vacuum cannot. A comparison between the results of accelerated atoms and those of static ones in a thermal bath shows that uniformly accelerated atoms exhibit features distinct from those immersed in a thermal bath at the Unruh temperature in terms of entanglement dynamics.
Open-system dynamics of entanglement: a key issues review.
Aolita, Leandro; de Melo, Fernando; Davidovich, Luiz
2015-04-01
One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and
Solving non-Markovian open quantum systems with multi-channel reservoir coupling
NASA Astrophysics Data System (ADS)
Broadbent, Curtis J.; Jing, Jun; Yu, Ting; Eberly, Joseph H.
2012-08-01
We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically.
Phase stability and dynamics of entangled polymer-nanoparticle composites
Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.
2015-06-10
Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.
Phase stability and dynamics of entangled polymer–nanoparticle composites
Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.
2015-01-01
Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host. PMID:26044723
Quantum measurements in continuous time, non-Markovian evolutions and feedback.
Barchielli, Alberto; Gregoratti, Matteo
2012-11-28
In this article, we reconsider a version of quantum trajectory theory based on the stochastic Schrödinger equation with stochastic coefficients, which was mathematically introduced in the 1990s, and we develop it in order to describe the non-Markovian evolution of a quantum system continuously measured and controlled, thanks to a measurement-based feedback. Indeed, realistic descriptions of a feedback loop have to include delay and thus need a non-Markovian theory. The theory allows us to put together non-Markovian evolutions and measurements in continuous time, in agreement with the modern axiomatic formulation of quantum mechanics. To illustrate the possibilities of such a theory, we apply it to a two-level atom stimulated by a laser. We introduce closed loop control too, via the stimulating laser, with the aim of enhancing the 'squeezing' of the emitted light, or other typical quantum properties. Note that here we change the point of view with respect to the usual applications of control theory. In our model, the 'system' is the two-level atom, but we do not want to control its state, to bring the atom to a final target state. Our aim is to control the 'Mandel Q-parameter' and the spectrum of the emitted light; in particular, the spectrum is not a property at a single time, but involves a long interval of times (a Fourier transform of the autocorrelation function of the observed output is needed).
Equivalence of the measures of non-Markovianity for open two-level systems
NASA Astrophysics Data System (ADS)
Zeng, Hao-Sheng; Tang, Ning; Zheng, Yan-Ping; Wang, Guo-You
2011-09-01
Different measures have been presented to depict the deviation of quantum time evolution in open systems from Markovian processes. We demonstrate that the measure proposed by Breuer, Laine, and Piilo [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.210401 103, 210401 (2009)] and the two measures proposed by Rivas, Huelga, and Plenio [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.050403 105, 050403 (2010)] have exactly the same non-Markovian time-evolution intervals and thus are really equivalent to each other when they are applied to open two-level systems coupled to environments via the Jaynes-Cummings or dephasing models. This equivalence implies that the three measures, in different ways, capture the intrinsic character of the non-Markovianity of quantum evolutional processes. We also show that the maximization in the definition of the first measure can be actually removed for the considered models without influencing the sensibility of the measure to detect non-Markovianity.
Continuous joint measurement and entanglement of qubits in remote cavities
NASA Astrophysics Data System (ADS)
Motzoi, Felix; Whaley, K. Birgitta; Sarovar, Mohan
2015-09-01
We present a first-principles theoretical analysis of the entanglement of two superconducting qubits in spatially separated microwave cavities by a sequential (cascaded) probe of the two cavities with a coherent mode, that provides a full characterization of both the continuous measurement induced dynamics and the entanglement generation. We use the SLH formalism to derive the full quantum master equation for the coupled qubits and cavities system, within the rotating wave and dispersive approximations, and conditioned equations for the cavity fields. We then develop effective stochastic master equations for the dynamics of the qubit system in both a polaronic reference frame and a reduced representation within the laboratory frame. We compare simulations with and analyze tradeoffs between these two representations, including the onset of a non-Markovian regime for simulations in the reduced representation. We provide conditions for ensuring persistence of entanglement and show that using shaped pulses enables these conditions to be met at all times under general experimental conditions. The resulting entanglement is shown to be robust with respect to measurement imperfections and loss channels. We also study the effects of qubit driving and relaxation dynamics during a weak measurement, as a prelude to modeling measurement-based feedback control in this cascaded system.
Dynamically Disordered Quantum Walk as a Maximal Entanglement Generator
NASA Astrophysics Data System (ADS)
Vieira, Rafael; Amorim, Edgard P. M.; Rigolin, Gustavo
2013-11-01
We show that the entanglement between the internal (spin) and external (position) degrees of freedom of a qubit in a random (dynamically disordered) one-dimensional discrete time quantum random walk (QRW) achieves its maximal possible value asymptotically in the number of steps, outperforming the entanglement attained by using ordered QRW. The disorder is modeled by introducing an extra random aspect to QRW, a classical coin that randomly dictates which quantum coin drives the system’s time evolution. We also show that maximal entanglement is achieved independently of the initial state of the walker, study the number of steps the system must move to be within a small fixed neighborhood of its asymptotic limit, and propose two experiments where these ideas can be tested.
Data-driven non-Markovian closure models
NASA Astrophysics Data System (ADS)
Kondrashov, Dmitri; Chekroun, Mickaël D.; Ghil, Michael
2015-03-01
This paper has two interrelated foci: (i) obtaining stable and efficient data-driven closure models by using a multivariate time series of partial observations from a large-dimensional system; and (ii) comparing these closure models with the optimal closures predicted by the Mori-Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a generalization and a time-continuous limit of existing multilevel, regression-based approaches to closure in a data-driven setting; these approaches include empirical model reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the MZ formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are derived on the structure of the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a broad class of MSM applications, a class that includes non-polynomial predictors and nonlinearities that do not necessarily preserve quadratic energy invariants. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. It is shown that the resulting closure model with energy-conserving nonlinearities efficiently captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lotka-Volterra model of population dynamics in its chaotic regime. The challenges here include the rarity of strange attractors in the model's parameter
Entanglement effect in polymer melts by Dissipative Particle Dynamics (DPD)
NASA Astrophysics Data System (ADS)
Khani, Shaghayegh; Maia, Joao
2015-03-01
Dissipative Particle Dynamics (DPD) is a mesoscale simulation method that has shown a very good potential in modeling different soft matter systems from colloidal suspensions to highly entangled polymers. Like any other simulation technique DPD is associated with some deficiencies, for instance in the case of entangled polymers soft repulsions used in DPD allow particle overlap which may result in topology violations that prevent the correct capturing of the entanglement effect. Therefore, in the present work in order to properly reproduce the dynamics and viscoelastic properties of polymers the soft repulsions between the particles are substituted with a repulsive potential between non-adjacent bonds of different FENE chains. Also, DPD is a coarse-grained simulation method that can be used to model time and length scales longer than atomistic models; however, due to the existence of an upper level limit for the level of coarse graining this method is not applicable for the whole mesoscopic range. Thus, this work represents a new approach for tuning the level of coarse-graining by adjusting the simulation parameters. The ability of the method in capturing the entanglement effects is validated by simulating dynamic and viscoelastic properties of polymers.
NASA Astrophysics Data System (ADS)
Buldyreva, Jeanna
2013-06-01
Reliable modeling of radiative transfer in planetary atmospheres requires accounting for the collisional line mixing effects in the regions of closely spaced vibrotational lines as well as in the spectral wings. Because of too high CPU cost of calculations from ab initio potential energy surfaces (if available), the relaxation matrix describing the influence of collisions is usually built by dynamical scaling laws, such as Energy-Corrected Sudden law. Theoretical approaches currently used for calculation of absorption near the band center are based on the impact approximation (Markovian collisions without memory effects) and wings are modeled via introducing some empirical parameters [1,2]. Operating with the traditional non-symmetric metric in the Liouville space, these approaches need corrections of the ECS-modeled relaxation matrix elements ("relaxation times" and "renormalization procedure") in order to ensure the fundamental relations of detailed balance and sum rules.We present an extension to the infrared absorption case of the previously developed [3] for rototranslational Raman scattering spectra of linear molecules non-Markovian approach of ECS-type. Owing to the specific choice of symmetrized metric in the Liouville space, the relaxation matrix is corrected for initial bath-molecule correlations and satisfies non-Markovian sum rules and detailed balance. A few standard ECS parameters determined by fitting to experimental linewidths of the isotropic Q-branch enable i) retrieval of these isolated-line parameters for other spectroscopies (IR absorption and anisotropic Raman scattering); ii) reproducing of experimental intensities of these spectra. Besides including vibrational angular momenta in the IR bending shapes, Coriolis effects are also accounted for. The efficiency of the method is demonstrated on OCS-He and CO_2-CO_2 spectra up to 300 and 60 atm, respectively. F. Niro, C. Boulet, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 88, 483
NASA Astrophysics Data System (ADS)
Luo, JunYan; Yan, Yiying; Huang, Yixiao; Yu, Li; He, Xiao-Ling; Jiao, HuJun
2017-01-01
We investigate the noise correlations of spin and charge currents through an electron spin resonance (ESR)-pumped quantum dot, which is tunnel coupled to three electrodes maintained at an equivalent chemical potential. A recursive scheme is employed with inclusion of the spin degrees of freedom to account for the spin-resolved counting statistics in the presence of non-Markovian effects due to coupling with a dissipative heat bath. For symmetric spin-up and spin-down tunneling rates, an ESR-induced spin flip mechanism generates a pure spin current without an accompanying net charge current. The stochastic tunneling of spin carriers, however, produces universal shot noises of both charge and spin currents, revealing the effective charge and spin units of quasiparticles in transport. In the case of very asymmetric tunneling rates for opposite spins, an anomalous relationship between noise autocorrelations and cross correlations is revealed, where super-Poissonian autocorrelation is observed in spite of a negative cross correlation. Remarkably, with strong dissipation strength, non-Markovian memory effects give rise to a positive cross correlation of the charge current in the absence of a super-Poissonian autocorrelation. These unique noise features may offer essential methods for exploiting internal spin dynamics and various quasiparticle tunneling processes in mesoscopic transport.
Exact non-Markovian master equation for the spin-boson and Jaynes-Cummings models
NASA Astrophysics Data System (ADS)
Ferialdi, L.
2017-02-01
We provide the exact non-Markovian master equation for a two-level system interacting with a thermal bosonic bath, and we write the solution of such a master equation in terms of the Bloch vector. We show that previous approximated results are particular limits of our exact master equation. We generalize these results to more complex systems involving an arbitrary number of two-level systems coupled to different thermal baths, providing the exact master equations also for these systems. As an example of this general case we derive the master equation for the Jaynes-Cummings model.
Post-Markovian dynamics of quantum correlations: entanglement versus discord
NASA Astrophysics Data System (ADS)
Mohammadi, Hamidreza
2017-02-01
Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY-Heisenberg model in the presence of spin-orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.
Communication: Polymer entanglement dynamics: Role of attractive interactions
NASA Astrophysics Data System (ADS)
Grest, Gary S.
2016-10-01
The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. To follow chain mobility by numerical simulations from the intermediate Rouse and reptation regimes to the late time diffusive regime, highly coarse grained models with purely repulsive interactions between monomers are widely used since they are computationally the most efficient. Here using large scale molecular dynamics simulations, the effect of including the attractive interaction between monomers on the dynamics of entangled polymer melts is explored for the first time over a wide temperature range. Attractive interactions have little effect on the local packing for all temperatures T and on the chain mobility for T higher than about twice the glass transition Tg. These results, across a broad range of molecular weight, show that to study the dynamics of entangled polymer melts, the interactions can be treated as pure repulsive, confirming a posteriori the validity of previous studies and opening the way to new large scale numerical simulations.
Communication: Polymer entanglement dynamics: Role of attractive interactions
Grest, Gary S.
2016-10-10
The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. To follow chain mobility by numerical simulations from the intermediate Rouse and reptation regimes to the late time diffusive regime, highly coarse grained models with purely repulsive interactions between monomers are widely used since they are computationally the most efficient. In this paper, using large scale molecular dynamics simulations, the effect of including the attractive interaction between monomers on the dynamics of entangled polymer melts is explored for the first time over a wide temperature range. Attractive interactions have little effect onmore » the local packing for all temperatures T and on the chain mobility for T higher than about twice the glass transition Tg. Finally, these results, across a broad range of molecular weight, show that to study the dynamics of entangled polymer melts, the interactions can be treated as pure repulsive, confirming a posteriori the validity of previous studies and opening the way to new large scale numerical simulations.« less
Communication: Polymer entanglement dynamics: Role of attractive interactions
Grest, Gary S.
2016-10-10
The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. To follow chain mobility by numerical simulations from the intermediate Rouse and reptation regimes to the late time diffusive regime, highly coarse grained models with purely repulsive interactions between monomers are widely used since they are computationally the most efficient. In this paper, using large scale molecular dynamics simulations, the effect of including the attractive interaction between monomers on the dynamics of entangled polymer melts is explored for the first time over a wide temperature range. Attractive interactions have little effect on the local packing for all temperatures T and on the chain mobility for T higher than about twice the glass transition T_{g}. Finally, these results, across a broad range of molecular weight, show that to study the dynamics of entangled polymer melts, the interactions can be treated as pure repulsive, confirming a posteriori the validity of previous studies and opening the way to new large scale numerical simulations.
Quantum Zeno-type effect and non-Markovianity in a three-level system
Karlsson, Antti; Francica, Francesco; Piilo, Jyrki; Plastina, Francesco
2016-01-01
We study the coexistence of the quantum Zeno-type effect and non-Markovianity for a system decaying in a structured bosonic environment and subject to a control field. The interaction with the environment induces decay from the excited to the ground level, which, in turn, is coherently coupled to another meta-stable state. The control of the strength of the coherent coupling between the stable levels allows the engineering of both the dissipation and of the memory effects, without modifying neither the system-reservoir interaction, nor environmental properties. We use this framework in two different parameter regimes corresponding to fast (bad cavity limit) and slow dissipation (good cavity limit) in the original and un-controlled qubit system. Our results show a non-monotonic behavior of memory effects when increasing the effectiveness of the Zeno-like freezing. Moreover, we identify a new source of memory effects which allows the persistence of non-Markovianity for long times while the excited state has already been depleted. PMID:27996016
Markovian and Non-Markovian Protein Sequence Evolution: Aggregated Markov Process Models
Kosiol, Carolin; Goldman, Nick
2011-01-01
Over the years, there have been claims that evolution proceeds according to systematically different processes over different timescales and that protein evolution behaves in a non-Markovian manner. On the other hand, Markov models are fundamental to many applications in evolutionary studies. Apparent non-Markovian or time-dependent behavior has been attributed to influence of the genetic code at short timescales and dominance of physicochemical properties of the amino acids at long timescales. However, any long time period is simply the accumulation of many short time periods, and it remains unclear why evolution should appear to act systematically differently across the range of timescales studied. We show that the observed time-dependent behavior can be explained qualitatively by modeling protein sequence evolution as an aggregated Markov process (AMP): a time-homogeneous Markovian substitution model observed only at the level of the amino acids encoded by the protein-coding DNA sequence. The study of AMPs sheds new light on the relationship between amino acid-level and codon-level models of sequence evolution, and our results suggest that protein evolution should be modeled at the codon level rather than using amino acid substitution models. PMID:21718704
Quantum Zeno-type effect and non-Markovianity in a three-level system
NASA Astrophysics Data System (ADS)
Karlsson, Antti; Francica, Francesco; Piilo, Jyrki; Plastina, Francesco
2016-12-01
We study the coexistence of the quantum Zeno-type effect and non-Markovianity for a system decaying in a structured bosonic environment and subject to a control field. The interaction with the environment induces decay from the excited to the ground level, which, in turn, is coherently coupled to another meta-stable state. The control of the strength of the coherent coupling between the stable levels allows the engineering of both the dissipation and of the memory effects, without modifying neither the system-reservoir interaction, nor environmental properties. We use this framework in two different parameter regimes corresponding to fast (bad cavity limit) and slow dissipation (good cavity limit) in the original and un-controlled qubit system. Our results show a non-monotonic behavior of memory effects when increasing the effectiveness of the Zeno-like freezing. Moreover, we identify a new source of memory effects which allows the persistence of non-Markovianity for long times while the excited state has already been depleted.
Dynamic cross-correlations between entangled biofilaments as they diffuse.
Tsang, Boyce; Dell, Zachary E; Jiang, Lingxiang; Schweizer, Kenneth S; Granick, Steve
2017-03-10
Entanglement in polymer and biological physics involves a state in which linear interthreaded macromolecules in isotropic liquids diffuse in a spatially anisotropic manner beyond a characteristic mesoscopic time and length scale (tube diameter). The physical reason is that linear macromolecules become transiently localized in directions transverse to their backbone but diffuse with relative ease parallel to it. Within the resulting broad spectrum of relaxation times there is an extended period before the longest relaxation time when filaments occupy a time-averaged cylindrical space of near-constant density. Here we show its implication with experiments based on fluorescence tracking of dilutely labeled macromolecules. The entangled pairs of aqueous F-actin biofilaments diffuse with separation-dependent dynamic cross-correlations that exceed those expected from continuum hydrodynamics up to strikingly large spatial distances of ≈15 µm, which is more than 10(4) times the size of the solvent water molecules in which they are dissolved, and is more than 50 times the dynamic tube diameter, but is almost equal to the filament length. Modeling this entangled system as a collection of rigid rods, we present a statistical mechanical theory that predicts these long-range dynamic correlations as an emergent consequence of an effective long-range interpolymer repulsion due to the de Gennes correlation hole, which is a combined consequence of chain connectivity and uncrossability. The key physical assumption needed to make theory and experiment agree is that solutions of entangled biofilaments localized in tubes that are effectively dynamically incompressible over the relevant intermediate time and length scales.
Dynamic cross-correlations between entangled biofilaments as they diffuse
Tsang, Boyce; Dell, Zachary E.; Jiang, Lingxiang; Schweizer, Kenneth S.; Granick, Steve
2017-01-01
Entanglement in polymer and biological physics involves a state in which linear interthreaded macromolecules in isotropic liquids diffuse in a spatially anisotropic manner beyond a characteristic mesoscopic time and length scale (tube diameter). The physical reason is that linear macromolecules become transiently localized in directions transverse to their backbone but diffuse with relative ease parallel to it. Within the resulting broad spectrum of relaxation times there is an extended period before the longest relaxation time when filaments occupy a time-averaged cylindrical space of near-constant density. Here we show its implication with experiments based on fluorescence tracking of dilutely labeled macromolecules. The entangled pairs of aqueous F-actin biofilaments diffuse with separation-dependent dynamic cross-correlations that exceed those expected from continuum hydrodynamics up to strikingly large spatial distances of ≈15 µm, which is more than 104 times the size of the solvent water molecules in which they are dissolved, and is more than 50 times the dynamic tube diameter, but is almost equal to the filament length. Modeling this entangled system as a collection of rigid rods, we present a statistical mechanical theory that predicts these long-range dynamic correlations as an emergent consequence of an effective long-range interpolymer repulsion due to the de Gennes correlation hole, which is a combined consequence of chain connectivity and uncrossability. The key physical assumption needed to make theory and experiment agree is that solutions of entangled biofilaments localized in tubes that are effectively dynamically incompressible over the relevant intermediate time and length scales. PMID:28283664
Spin dynamics and entanglement growth with trapped ions, atoms & molecules
NASA Astrophysics Data System (ADS)
Schachenmayer, Johannes; Lanyon, Ben; Roos, Christian; Daley, Andrew; Zhu, Bihui; Rey, Ana Maria
2014-03-01
Trapped ions and systems of cold atoms or molecules in optical lattices offer controlled environments to experimentally study non-equilibrium dynamics of many-body quantum spin-models with interactions of varying range. Theoretically calculating dynamics of observables for these experiments is a major challenge both analytically and numerically. In 1D, the growth behavior of the entanglement entropy between different blocks of a many-body state determines whether the evolution of the system can be efficiently simulated on a classical computer or not. In return, the study of entanglement growth can guide experiments to regimes where a quantum simulator can outperform a numerical simulation. Here we present results on the entanglement growth behavior in 1D strings of ions after a quench, and show how the growth depends on the range of the interactions. Furthermore we report on progress on methods for higher dimensional systems. These can be used to model Ramsey-dynamics for current experiments with alkaline earth atoms or polar molecules in optical lattices, or for systems with Rydberg atoms.
Entanglement of Semiflexiible Polymers: A Brownian Dynamics Study
NASA Astrophysics Data System (ADS)
Ramanathan, Shriram
2005-03-01
We report extensive Brownian dynamics simulations of very tightly entangled solutions of semiflexible rods, of length L comparable to their persistence length Lp, at concentrations comparable to those in recent experiments on Fd-virus and filamentous actin. We find a clear crossover with increasing number concentration c from a regime of loosely entangled rods, in which rotational diffusion is hindered by topological constraints but transverse bending fluctuations are not, to a tightly entangled regime in which bending fluctuations are also restricted, and can relax only by reptation along a wormlike tube. This crossover occurs at a dimensionless concentration c^**L^3 ˜500 for chains with L = Lp. The tube radius Re is found to depend upon c and Lp with the predicted scaling relation Rec-3/5 Lp-1/5 for c > c^**. The dynamic modulus G(t) has been obtained from simulations of the relaxation of stress after a small amplitude step extension of the simulation unit cell. An elastic plateau in G(t) that is absent at lower concentrations also appears for c >=c^**.
NASA Astrophysics Data System (ADS)
Berrada, K.
2016-11-01
In this paper, we study the Fisher information for a quantum system consisting of two identical qubits, each of them locally interacting with a bosonic reservoir in the same environment for non-Markovian open, dissipative quantum system. Based on the influx of the information, we propose an information-theoretical approach for characterizing the time-dependent memory effect of environment and diffusion function under the effect of the physical parameters. More precisely, an interesting monotonic relation between the time derivative of quantum Fisher information (QFI) and diffusion function behavior is observed during the time evolution. The phenomenon is that the QFI, namely the precision of estimation, changes dramatically with the environment structure. The dependence of the physical parameters shows that the increasing in the temperature will damage the amount of the QFI with respect of the ratio between the reservoir cutoff frequency and the system oscillation frequency.
Analysis of non-Markovian coupling of a lattice-trapped atom to free space
NASA Astrophysics Data System (ADS)
Stewart, Michael; Krinner, Ludwig; Pazmiño, Arturo; Schneble, Dominik
2017-01-01
Behavior analogous to that of spontaneous emission in photonic band-gap materials has been predicted for an atom-optical system consisting of an atom confined in a well of a state-dependent optical lattice that is coupled to free space through an internal-state transition [de Vega et al., Phys. Rev. Lett. 101, 260404 (2008), 10.1103/PhysRevLett.101.260404]. Using the Weisskopf-Wigner approach and considering a one-dimensional geometry, we analyze the properties of this system in detail, including the evolution of the lattice-trapped population, the momentum distribution of emitted matter waves, and the detailed structure of an evanescent matter-wave state below the continuum boundary. We compare and contrast our findings for the transition from Markovian to non-Markovian behaviors to those previously obtained for three dimensions.
Non-Markovian transmission through two quantum dots connected by a continuum
NASA Astrophysics Data System (ADS)
Cao, Yunshan; Xu, Luting; Meng, Jianyu; Li, Xin-Qi
2012-10-01
We consider a transport setup that contains a double-dot connected by a continuum. Via an exact solution of the time-dependent Schrödinger equation, we demonstrate a highly non-Markovian quantum-coherence-mediated transport through this dot-continuum-dot (DCD) system, which is in contrast with the common premise since in typical case a quantum particle does not reenter the system of interest once it irreversibly decayed into a continuum (such as the spontaneous emission of a photon). We also find that this DCD system supports an unusual steady state with unequal source and drain currents, owing to electrons irreversibly entering the continuum and floating there.
A Bohmian approach to the non-Markovian non-linear Schrödinger–Langevin equation
Vargas, Andrés F.; Morales-Durán, Nicolás; Bargueño, Pedro
2015-05-15
In this work, a non-Markovian non-linear Schrödinger–Langevin equation is derived from the system-plus-bath approach. After analyzing in detail previous Markovian cases, Bohmian mechanics is shown to be a powerful tool for obtaining the desired generalized equation.
Dynamics of two topologically entangled chains
Ferrari, F.; Paturej, J.; Piatek, M.; Vilgis, T. A.
2011-04-15
Starting from a given topological invariant, we argue that it is possible to construct a topological field theory with a finite number of Feynman diagrams and an amplitude of gauge invariant objects that is a function of that invariant. This is, for example, the case of the Gauss linking number and of the abelian BF models which have been already successfully applied in the statistical mechanics of polymers. In this work it is shown that a suitable generalization of the BF model can be applied also to polymer dynamics, where the polymer trajectories are not static, but change their shape during time.
Dynamics of entangled rod-coil block copolymers
NASA Astrophysics Data System (ADS)
Wang, Muzhou; Timachova, Ksenia; Alexander-Katz, Alfredo; Likhtman, Alexei E.; Olsen, Bradley D.
2014-03-01
Polymer science is exploring advanced materials which combine functional domains such as proteins and semiconducting polymers with traditional flexible polymers onto the same molecule. While many studies have focused on equilibrium structure-property relationships, little is known about how the conformational restrictions of rigid domains affect dynamical phenomena such as mechanical properties, processing pathways, and self-assembly kinetics. We have recently introduced a reptation theory for entangled rod-coil block copolymers as a model for this wider class of functional polymeric materials. The theory hypothesizes that the motion of rod-coils is slowed relative to rod and coil homopolymers because of a mismatch between the curvature of the rod and coil entanglement tubes. This effect leads to activated reptation and arm retraction as two relaxation mechanisms that govern the short and long rod regimes, respectively. These results were verified by tracer diffusion measurements using molecular dynamics simulation and forced Rayleigh scattering in both the rod-coil diblock and coil-rod-coil triblock configurations. The tracer diffusion results were then compared to experimental self-diffusion measurements which require a consideration of the motion of the surrounding chains.
Entanglement dynamics for a conditionally kicked harmonic oscillator
NASA Astrophysics Data System (ADS)
Arrais, Eric G.; Sales, J. S.; de Almeida, N. G.
2016-08-01
The time evolution of the quantum kicked harmonic oscillator (KHO) is described by the Floquet operator which maps the state of the system immediately before one kick onto the state at a time immediately after the next. Quantum KHO is characterized by three parameters: the coupling strength V 0, the so-called Lamb-Dicke parameter η whose square is proportional to the effective Planck constant {{\\hslash }}{{eff}}, and the ratio T of the natural frequency of the oscillator and the kick frequency. To a given coupling strength and depending on T being a natural or irrational number, the phase space of the classical kicked oscillator can display different behaviors, as for example, stochastic webs or quasicrystal structures, thus showing a chaotic or localized behavior that is mirrored in the quantum phase space. On the other hand, the classical limit is studied letting {{\\hslash }}{{eff}} become negligible. In this paper we investigate how the ratio T, considered as integer, rational or irrational, influences the entanglement dynamics of the quantum KHO and study how the entanglement dynamics behaves when varying either V 0 or {{\\hslash }}{{eff}} parameters.
NASA Astrophysics Data System (ADS)
Grest, Gary S.
2008-03-01
Twenty years ago at the APS March Meeting, Kurt Kremer and I presented the first numerical evidence from computer simulations that the reptation model of Edwards and de Gennes correctly describes the dynamics of entangled linear polymer melts. For chains longer than the entanglement length Ne, the monomers of a chain move predominantly along their own contour. The distinctive signature of reptation dynamics, which we observed, was that on intermediate time scales, the mean squared displacement of a monomer increases with time as t^ 1/4. Though these early simulations were limited to chains of a few Ne, they demonstrated the potential of computer simulations to contribute to our understanding of polymer dynamics. Here I will review the progress over the past twenty years and present an outlook for the future in modeling entangled polymer melts and networks. With present day computers coupled with efficient parallel molecular dynamics codes, it is now possible to follow the equilibrium dynamics of chains of length 10-20Ne from the early Rouse regime to the long time diffusive regime. Result of these simulations support the earlier results obtained on chains of only a few Ne. Further evidence for the tube models of polymer dynamics has been obtained by identifying the primitive path mesh that characterizes the microscopic topological state of the computer- generated conformations of the chains. In particular, the plateau moduli derived on the basis of this analysis quantitatively reproduce experimental data for a wide spectrum of entangled polymer liquids including semi-dilute theta solutions of synthetic polymers, the corresponding dense melts, and solutions of semi-flexible (bio)polymers such as f-actin or suspensions of rodlike viruses. We also find that in agreement with the reptation model, the stress, end-to-end distance and entanglement length of an entangled melt subjected to uniaxial elongation, all relax on the same time scale.
Microscopic theory for dynamics in entangled polymer nanocomposites
NASA Astrophysics Data System (ADS)
Yamamoto, Umi
New microscopic theories for describing dynamics in polymer nanocomposites are developed and applied. The problem is addressed from two distinct perspectives and using two different theoretical approaches. The first half of this dissertation studies the long-time and intermediate-time dynamics of nanoparticles in entangled and unentangled polymer melts for dilute particle concentrations. Using a combination of mode-coupling, Brownian motion, and polymer physics ideas, the nanoparticle long-time diffusion coefficients is formulated in terms of multiple length-scales, packing microstructures, and spatially-resolved polymer density fluctuation dynamics. The key motional mechanism is described via the parallel relaxation of the force exerted on the particle controlled by collective polymer constraint-release and the particle self-motion. A sharp but smooth crossover from the hydrodynamic to the non-hydrodynamic regime is predicted based on the Stokes-Einstein violation ratio as a function of all the system variables. Quantitative predictions are made for the recovery of the Stokes-Einstein law, and the diffusivity in the crossover regime agrees surprisingly well with large-scale molecular dynamics simulations for all particle sizes and chain lengths studied. The approach is also extended to address intermediate-time anomalous transport of a single nanoparticle and two-particle relative diffusion. The second half of this dissertation focuses on developing a novel dynamical theory for a liquid of infinitely-thin rods in the presence of hard spherical obstacles, aiming at a technical and conceptual extension of the existing paradigm for entangled polymer dynamics. As a fundamental theoretical development, the two-component generalization of a first-principles dynamic meanfield approach is presented. The theory enforces inter-needle topological uncrossability and needlesphere impenetrability in a unified manner, leading to a generalized theory of entanglements that
Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain
NASA Astrophysics Data System (ADS)
Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong
2010-07-01
This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.
Yao, Yao
2015-09-15
The deep sub-Ohmic spin–boson model shows a longstanding non-Markovian coherence at low temperature. Motivating to quench this robust coherence, the thermal effect is unitarily incorporated into the time evolution of the model, which is calculated by the adaptive time-dependent density matrix renormalization group algorithm combined with the orthogonal polynomials theory. Via introducing a unitary heating operator to the bosonic bath, the bath is heated up so that a majority portion of the bosonic excited states is occupied. It is found in this situation the coherence of the spin is quickly quenched even in the coherent regime, in which the non-Markovian feature dominates. With this finding we come up with a novel way to implement the unitary equilibration, the essential term of the eigenstate-thermalization hypothesis, through a short-time evolution of the model.
Continuous Time Open Quantum Random Walks and Non-Markovian Lindblad Master Equations
NASA Astrophysics Data System (ADS)
Pellegrini, Clément
2014-02-01
A new type of quantum random walks, called Open Quantum Random Walks, has been developed and studied in Attal et al. (Open quantum random walks, preprint) and (Central limit theorems for open quantum random walks, preprint). In this article we present a natural continuous time extension of these Open Quantum Random Walks. This continuous time version is obtained by taking a continuous time limit of the discrete time Open Quantum Random Walks. This approximation procedure is based on some adaptation of Repeated Quantum Interactions Theory (Attal and Pautrat in Annales Henri Poincaré Physique Théorique 7:59-104, 2006) coupled with the use of correlated projectors (Breuer in Phys Rev A 75:022103, 2007). The limit evolutions obtained this way give rise to a particular type of quantum master equations. These equations appeared originally in the non-Markovian generalization of the Lindblad theory (Breuer in Phys Rev A 75:022103, 2007). We also investigate the continuous time limits of the quantum trajectories associated with Open Quantum Random Walks. We show that the limit evolutions in this context are described by jump stochastic differential equations. Finally we present a physical example which can be described in terms of Open Quantum Random Walks and their associated continuous time limits.
NASA Astrophysics Data System (ADS)
Fedotov, Sergei; Korabel, Nickolay
2015-12-01
We present a nonlinear and non-Markovian random walks model for stochastic movement and the spatial aggregation of living organisms that have the ability to sense population density. We take into account social crowding effects for which the dispersal rate is a decreasing function of the population density and residence time. We perform stochastic simulations of random walks and discover the phenomenon of self-organized anomaly (SOA), which leads to a collapse of stationary aggregation pattern. This anomalous regime is self-organized and arises without the need for a heavy tailed waiting time distribution from the inception. Conditions have been found under which the nonlinear random walk evolves into anomalous state when all particles aggregate inside a tiny domain (anomalous aggregation). We obtain power-law stationary density-dependent survival function and define the critical condition for SOA as the divergence of mean residence time. The role of the initial conditions in different SOA scenarios is discussed. We observe phenomenon of transient anomalous bimodal aggregation.
Extracting work from a single reservoir in the non-Markovian underdamped regime.
Paredes-Altuve, Oscar; Medina, Ernesto; Colmenares, Pedro J
2016-12-01
We derive optimal-work finite time protocols for a colloidal particle in a harmonic well in the general non-Markovian underdamped regime in contact with a single reservoir. Optimal-work protocols with and without measurements of position and velocity are shown to be linear in time. In order to treat the underdamped regime one must address forcing the particle at the start and at the end of a protocol, conditions which dominate the short time behavior of the colloidal particle. We find that for protocols without measurement the least work by an external agent decreases linearly for forced start-stop conditions while those only forced at starting conditions are quadratic (slower) at short times, while both decrease asymptotically to zero for quasistatic processes. When measurements are performed, protocols with start-end forcing are still more efficient at short times but can be overtaken by start-only protocols at a threshold time. Measurement protocols derive work from the reservoir but always below that predicted by Sagawa's generalization of the second law. Velocity measurement protocols are more efficient in deriving work than position measurements.
Fedotov, Sergei; Korabel, Nickolay
2015-12-01
We present a nonlinear and non-Markovian random walks model for stochastic movement and the spatial aggregation of living organisms that have the ability to sense population density. We take into account social crowding effects for which the dispersal rate is a decreasing function of the population density and residence time. We perform stochastic simulations of random walks and discover the phenomenon of self-organized anomaly (SOA), which leads to a collapse of stationary aggregation pattern. This anomalous regime is self-organized and arises without the need for a heavy tailed waiting time distribution from the inception. Conditions have been found under which the nonlinear random walk evolves into anomalous state when all particles aggregate inside a tiny domain (anomalous aggregation). We obtain power-law stationary density-dependent survival function and define the critical condition for SOA as the divergence of mean residence time. The role of the initial conditions in different SOA scenarios is discussed. We observe phenomenon of transient anomalous bimodal aggregation.
Entangled Polymer Melt Dynamics Studied By Low-Field NMR
NASA Astrophysics Data System (ADS)
Vaca Chavez, Fabian; Huebsch, Patrick; Zirbs, Ronald; Binder, Wolfgang; Saalwaechter, Kay
2009-03-01
Proton Multiple-Quantum (MQ) NMR is a powerful technique to investigate polymer dynamics due to its sensitivity to molecular motions on very different timescales. Entangled melts exhibit dynamic processes that cover a wide range of timescales, starting from fast ps-scale segmental reorientation up to diffusive and cooperative motions on the ms-s-scale. In this work, we apply MQ NMR to linear poly(cis-1,4-isoprene) and poly(isobutylene) of different molecular weight above the glass transition over suitable ranges of temperature, in order to establish the dynamic regimes predicted by the tube model, and, for the first time, to extract actual time scale information. This directly complements many neutron scattering studies, which are restricted to the sub-μs-timescale. Measurements on PIB-grafted silica particles with different molecular weights and different chain densities on the surface of the particle are also shown. The data is analyzed by establishing scaling laws which can be directly associated with different dynamic regimes predicted by the tube/reptation model. Full analytical analyses based on a correlation function which explicitly includes segmental, Rouse, and reptation dynamics are discussed.
NASA Astrophysics Data System (ADS)
Jiménez-Aquino, J. I.; Romero-Bastida, M.
2016-09-01
In this paper we derive the non-Markovian barotropic-type and Hall-type fluctuation relations for noninteracting charged Brownian particles embedded in a memory heat bath and under the action of crossed electric and magnetic fields. We first obtain a more general non-Markovian fluctuation relation formulated within the context of a generalized Langevin equation with arbitrary friction memory kernel and under the action of a constant magnetic field and an arbitrary time-dependent electric field. It is shown that this fluctuation relation is related to the total amount of an effective work done on the charged particle as it is driven out of equilibrium by the applied time-dependent electric field. Both non-Markovian barotropic- and Hall-type fluctuation relations are then derived when the electric field is assumed to be also a constant vector pointing along just one axis. In the Markovian limit, we show explicitly that they reduce to the same results reported in the literature.
Jiménez-Aquino, J I; Romero-Bastida, M
2016-09-01
In this paper we derive the non-Markovian barotropic-type and Hall-type fluctuation relations for noninteracting charged Brownian particles embedded in a memory heat bath and under the action of crossed electric and magnetic fields. We first obtain a more general non-Markovian fluctuation relation formulated within the context of a generalized Langevin equation with arbitrary friction memory kernel and under the action of a constant magnetic field and an arbitrary time-dependent electric field. It is shown that this fluctuation relation is related to the total amount of an effective work done on the charged particle as it is driven out of equilibrium by the applied time-dependent electric field. Both non-Markovian barotropic- and Hall-type fluctuation relations are then derived when the electric field is assumed to be also a constant vector pointing along just one axis. In the Markovian limit, we show explicitly that they reduce to the same results reported in the literature.
Trail, Collin M; Madhok, Vaibhav; Deutsch, Ivan H
2008-10-01
We study the dynamical generation of entanglement as a signature of chaos in a system of periodically kicked coupled tops, where chaos and entanglement arise from the same physical mechanism. The long-time-averaged entanglement as a function of the position of an initially localized wave packet very closely correlates with the classical phase space surface of section--it is nearly uniform in the chaotic sea, and reproduces the detailed structure of the regular islands. The uniform value in the chaotic sea is explained by the random state conjecture. As classically chaotic dynamics take localized distributions in phase space to random distributions, quantized versions take localized coherent states to pseudorandom states in Hilbert space. Such random states are highly entangled, with an average value near that of the maximally entangled state. For a map with global chaos, we derive that value based on analytic results for the entropy of random states. For a mixed phase space, we use the Percival conjecture to identify a "chaotic subspace" of the Hilbert space. The typical entanglement, averaged over the unitarily invariant Haar measure in this subspace, agrees with the long-time-averaged entanglement for initial states in the chaotic sea. In all cases the dynamically generated entanglement is that of a random complex vector, even though the system is time-reversal invariant, and the Floquet operator is a member of the circular orthogonal ensemble.
NASA Astrophysics Data System (ADS)
da Silva, Roberto; Vainstein, Mendeli H.; Lamb, Luis C.; Prado, Sandra D.
2013-03-01
We propose a novel probabilistic model that outputs the final standings of a soccer league, based on a simple dynamics that mimics a soccer tournament. In our model, a team is created with a defined potential (ability) which is updated during the tournament according to the results of previous games. The updated potential modifies a team future winning/losing probabilities. We show that this evolutionary game is able to reproduce the statistical properties of final standings of actual editions of the Brazilian tournament (Brasileirão) if the starting potential is the same for all teams. Other leagues such as the Italian (Calcio) and the Spanish (La Liga) tournaments have notoriously non-Gaussian traces and cannot be straightforwardly reproduced by this evolutionary non-Markovian model with simple initial conditions. However, we show that by setting the initial abilities based on data from previous tournaments, our model is able to capture the stylized statistical features of double round robin system (DRRS) tournaments in general. A complete understanding of these phenomena deserves much more attention, but we suggest a simple explanation based on data collected in Brazil: here several teams have been crowned champion in previous editions corroborating that the champion typically emerges from random fluctuations that partly preserve the Gaussian traces during the tournament. On the other hand, in the Italian and Spanish cases, only a few teams in recent history have won their league tournaments. These leagues are based on more robust and hierarchical structures established even before the beginning of the tournament. For the sake of completeness, we also elaborate a totally Gaussian model (which equalizes the winning, drawing, and losing probabilities) and we show that the scores of the Brazilian tournament “Brasileirão” cannot be reproduced. This shows that the evolutionary aspects are not superfluous and play an important role which must be considered in
Kato, Akihito; Tanimura, Yoshitaka
2016-12-14
We consider a quantum system strongly coupled to multiple heat baths at different temperatures. Quantum heat transport phenomena in this system are investigated using two definitions of the heat current: one in terms of the system energy and the other in terms of the bath energy. When we consider correlations among system-bath interactions (CASBIs)-which have a purely quantum mechanical origin-the definition in terms of the bath energy becomes different. We found that CASBIs are necessary to maintain the consistency of the heat current with thermodynamic laws in the case of strong system-bath coupling. However, within the context of the quantum master equation approach, both of these definitions are identical. Through a numerical investigation, we demonstrate this point for a non-equilibrium spin-boson model and a three-level heat engine model using the reduced hierarchal equations of motion approach under the strongly coupled and non-Markovian conditions. We observe the cyclic behavior of the heat currents and the work performed by the heat engine, and we find that their phases depend on the system-bath coupling strength. Through consideration of the bath heat current, we show that the efficiency of the heat engine decreases as the strength of the system-bath coupling increases, due to the CASBI contribution. In the case of a large system-bath coupling, the efficiency decreases further if the bath temperature is increased, even if the ratio of the bath temperatures is fixed, due to the discretized nature of energy eigenstates. This is also considered to be a unique feature of quantum heat engines.
NASA Astrophysics Data System (ADS)
Kato, Akihito; Tanimura, Yoshitaka
2016-12-01
We consider a quantum system strongly coupled to multiple heat baths at different temperatures. Quantum heat transport phenomena in this system are investigated using two definitions of the heat current: one in terms of the system energy and the other in terms of the bath energy. When we consider correlations among system-bath interactions (CASBIs)—which have a purely quantum mechanical origin—the definition in terms of the bath energy becomes different. We found that CASBIs are necessary to maintain the consistency of the heat current with thermodynamic laws in the case of strong system-bath coupling. However, within the context of the quantum master equation approach, both of these definitions are identical. Through a numerical investigation, we demonstrate this point for a non-equilibrium spin-boson model and a three-level heat engine model using the reduced hierarchal equations of motion approach under the strongly coupled and non-Markovian conditions. We observe the cyclic behavior of the heat currents and the work performed by the heat engine, and we find that their phases depend on the system-bath coupling strength. Through consideration of the bath heat current, we show that the efficiency of the heat engine decreases as the strength of the system-bath coupling increases, due to the CASBI contribution. In the case of a large system-bath coupling, the efficiency decreases further if the bath temperature is increased, even if the ratio of the bath temperatures is fixed, due to the discretized nature of energy eigenstates. This is also considered to be a unique feature of quantum heat engines.
Dynamics in entangled polyethylene melts [Multi time scale dynamics in entangled polyethylene melts
Salerno, K. Michael; Agrawal, Anupriya; Peters, Brandon L.; Perahia, Dvora; Grest, Gary S.
2016-10-10
Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion at the atomic length scale and motion of the entire macromolecule. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using linear polyethylene as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion with λ methylene groups per CG bead (denoted CGλ) with λ = 2,3,4 and 6 from a fully-atomistic polyethylene melt simulation. By rescaling time in the CG models by a factor α, the chain mobility for the atomistic and CG models match. We show that independent of the degree of coarse graining, all measured static and dynamic properties are essentially the same once the dynamic scaling factor α and a non-crossing constraint for the CG6 model are included. The speedup of the CG4 model is about 3 times that of the CG3 model and is comparable to that of the CG6 model. Furthermore, using these CG models we were able to reach times of over 500 μs, allowing us to measure a number of quantities, including the stress relaxation function, plateau modulus and shear viscosity, and compare directly to experiment.
Dynamics in entangled polyethylene melts [Multi time scale dynamics in entangled polyethylene melts
Salerno, K. Michael; Agrawal, Anupriya; Peters, Brandon L.; ...
2016-10-10
Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion at the atomic length scale and motion of the entire macromolecule. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using linear polyethylene as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion with λ methylene groups per CG bead (denoted CGλ) with λ = 2,3,4 and 6 from a fully-atomistic polyethylene melt simulation. By rescaling time in the CG models by a factormore » α, the chain mobility for the atomistic and CG models match. We show that independent of the degree of coarse graining, all measured static and dynamic properties are essentially the same once the dynamic scaling factor α and a non-crossing constraint for the CG6 model are included. The speedup of the CG4 model is about 3 times that of the CG3 model and is comparable to that of the CG6 model. Furthermore, using these CG models we were able to reach times of over 500 μs, allowing us to measure a number of quantities, including the stress relaxation function, plateau modulus and shear viscosity, and compare directly to experiment.« less
NASA Astrophysics Data System (ADS)
Xu, Lan; Wu, Guiping; Yan, Lin
2017-03-01
We study the dynamics of quantum entanglement and quantum discord between two non-interacting qubits, which couple with two independent spin baths, obeying the XXZ Hamiltonian. After the Holstein-Primakoff transformation, one could reduce the spin bath to a single-mode bosonic bath field. Then we use this model to study the entanglement and discord dynamics of two qubits in their corresponding spin bath. For the initial Werner state, it is indicated that both entanglement and quantum discord exhibit death and revival behavior, while the quantum correlations change more smaller.
Entanglement dynamics in two-mode Gaussian systems
NASA Astrophysics Data System (ADS)
Jami, S.; Labbafi, Z.
2016-11-01
The current study investigated the time evolution of entanglement in an open quantum system. This system includes two independent harmonic oscillators interacting with a general environment. This study reports the solution of the time evolution of the covariance matrix by using the Markovian master equation. It was found that the entanglement for a preferred Gaussian state, is a continuous variable system. This study examined the time evolution of the entanglement by using Simon's separability criterion for continuous variable systems and computing covariance matrix with considering environmental factors such as temperature for two initial state of system (separable and entangled) with drawing Simon's criterion and logarithmic negativity. The results demonstrated that for a certain value of dispersion and dissipation coefficient, the initial state of the system is saved over the time. But for other amounts of the above factors, entanglement birth, entanglement death and repeated entanglement birth and entanglement death happen in the system. Furthermore, the present study investigated the behavior of system's purity under the effects of environmental factors, such as temperature and environment parameter with regard to the relation between purity and covariance matrix for two-mode Gaussian state.
Entanglement dynamics in two-mode Gaussian systems
NASA Astrophysics Data System (ADS)
Jami, S.; Labbafi, Z.
2017-04-01
The current study investigated the time evolution of entanglement in an open quantum system. This system includes two independent harmonic oscillators interacting with a general environment. This study reports the solution of the time evolution of the covariance matrix by using the Markovian master equation. It was found that the entanglement for a preferred Gaussian state, is a continuous variable system. This study examined the time evolution of the entanglement by using Simon's separability criterion for continuous variable systems and computing covariance matrix with considering environmental factors such as temperature for two initial state of system (separable and entangled) with drawing Simon's criterion and logarithmic negativity. The results demonstrated that for a certain value of dispersion and dissipation coefficient, the initial state of the system is saved over the time. But for other amounts of the above factors, entanglement birth, entanglement death and repeated entanglement birth and entanglement death happen in the system. Furthermore, the present study investigated the behavior of system's purity under the effects of environmental factors, such as temperature and environment parameter with regard to the relation between purity and covariance matrix for two-mode Gaussian state.
Equilibrium Dynamics in the Nondiffusive Regime of an Entangled Polymer Blend
Lumma, D.; Borthwick, M. A.; Falus, P.; Lurio, L. B.; Mochrie, S. G. J.
2001-03-05
The dynamics of compositional fluctuations in a miscible, entangled homopolymer blend of poly(ethylene oxide) and poly(methyl methacrylate) were studied on length scales smaller than the polymer radii of gyration, and for times comparable to the polymers' disentanglement time. The measured relaxation rates are consistent with predictions of the reptation model, as expressed via the dynamic random-phase approximation. Moreover, the observed mode amplitudes allow for an estimate of the entanglement length in the blend.
Dynamic entanglement transfer in a double-cavity optomechanical system
NASA Astrophysics Data System (ADS)
Huan, Tiantian; Zhou, Rigui; Ian, Hou
2015-08-01
We give a theoretical study of a double-cavity system in which a mechanical resonator beam is coupled to two cavity modes on both sides through radiation pressures. The indirect coupling between the cavities via the resonator sets up a correlation in the optomechanical entanglements between the two cavities with the common resonator. This correlation initiates an entanglement transfer from the intracavity photon-phonon entanglements to an intercavity photon-photon entanglement. Using numerical solutions, we show two distinct regimes of the optomechanical system, in which the indirect entanglement either builds up and eventually saturates or undergoes a death-and-revival cycle, after a time lapse for initiating the cooperative motion of the left and right cavity modes.
Large dynamic light-matter entanglement from driving neither too fast nor too slow
NASA Astrophysics Data System (ADS)
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.
2015-09-01
A significant problem facing next-generation quantum technologies is how to generate and manipulate macroscopic entanglement in light and matter systems. Here we report a regime of dynamical light-matter behavior in which a giant, system-wide entanglement is generated by varying the light-matter coupling at intermediate velocities. This enhancement is far larger, broader ranged, and more experimentally accessible than that occurring near the quantum phase transition of the same model under adiabatic conditions. By appropriate choices of the coupling within this intermediate regime, the enhanced entanglement can be made to spread system-wide or to reside in each subsystem separately.
Dynamics of holographic entanglement entropy following a local quench
NASA Astrophysics Data System (ADS)
Rangamani, Mukund; Rozali, Moshe; Vincart-Emard, Alexandre
2016-04-01
We discuss the behaviour of holographic entanglement entropy following a local quench in 2+1 dimensional strongly coupled CFTs. The entanglement generated by the quench propagates along an emergent light-cone, reminiscent of the Lieb-Robinson light-cone propagation of correlations in non-relativistic systems. We find the speed of propagation is bounded from below by the entanglement tsunami velocity obtained earlier for global quenches in holographic systems, and from above by the speed of light. The former is realized for sufficiently broad quenches, while the latter pertains for well localized quenches. The non-universal behavior in the intermediate regime appears to stem from finite-size effects. We also note that the entanglement entropy of subsystems reverts to the equilibrium value exponentially fast, in contrast to a much slower equilibration seen in certain spin models.
Open-system dynamics of graph-state entanglement.
Cavalcanti, Daniel; Chaves, Rafael; Aolita, Leandro; Davidovich, Luiz; Acín, Antonio
2009-07-17
We consider graph states of an arbitrary number of particles undergoing generic decoherence. We present methods to obtain lower and upper bounds for the system's entanglement in terms of that of considerably smaller subsystems. For an important class of noisy channels, namely, the Pauli maps, these bounds coincide and thus provide the exact analytical expression for the entanglement evolution. All of the results apply also to (mixed) graph-diagonal states and hold true for any convex entanglement monotone. Since any state can be locally depolarized to some graph-diagonal state, our method provides a lower bound for the entanglement decay of any arbitrary state. Finally, this formalism also allows for the direct identification of the robustness under size scaling of graph states in the presence of decoherence, merely by inspection of their connectivities.
Dynamics of entanglement in a two-dimensional spin system
Xu Qing; Sadiek, Gehad; Kais, Sabre
2011-06-15
We consider the time evolution of entanglement in a finite two-dimensional transverse Ising model. The model consists of a set of seven localized spin-(1/2) particles in a two-dimensional triangular lattice coupled through nearest-neighbor exchange interaction in the presence of an external time-dependent magnetic field. The magnetic field is applied in different function forms: step, exponential, hyperbolic, and periodic. We found that the time evolution of the entanglement shows an ergodic behavior under the effect of the time-dependent magnetic fields. Also, we found that while the step magnetic field causes great disturbance to the system, creating rapid oscillations, the system shows great controllability under the effects of the other magnetic fields where the entanglement profile follows closely the shape of the applied field even with the same frequency for periodic fields. This follow-up trend breaks down as the strength of the field, the transition constant for the exponential and hyperbolic forms, or the frequency for periodic field increase leading to rapid oscillations. We observed that the entanglement is very sensitive to the initial value of the applied periodic field: the smaller the initial value is, the less distorted the entanglement profile is. Furthermore, the effect of thermal fluctuations is very devastating to the entanglement, which decays very rapidly as the temperature increases. Interestingly, although a large value of the magnetic field strength may yield a small entanglement, the magnetic field strength was found to be more persistent against thermal fluctuations than the small field strengths.
Publisher's Note: Non-Markovian dynamics of a qubit [Phys. Rev. A 73, 012111 (2006)
NASA Astrophysics Data System (ADS)
Maniscalco, Sabrina; Petruccione, Franceso
2006-02-01
This paper was published online on 24 January 2006 with an incorrect electronic address in the first author’s byline footnote. The electronic address for the first author should read “sabrina.maniscalco@utu.fi.” The byline footnote has been corrected as of 26 January 2006. The byline footnote is correct in the printed version of the journal.
Publisher's Note: Non-Markovian dynamics of a qubit [Phys. Rev. A 73, 012111 (2006)
Maniscalco, Sabrina; Petruccione, Franceso
2006-02-15
This paper was published online on 24 January 2006 with an incorrect electronic address in the first author's byline footnote. The electronic address for the first author should read 'sabrina.maniscalco at utu.fi'. The byline footnote has been corrected as of 26 January 2006. The byline footnote is correct in the printed version of the journal.
Effect of long-range hopping and interactions on entanglement dynamics and many-body localization
NASA Astrophysics Data System (ADS)
Singh, Rajeev; Moessner, Roderich; Roy, Dibyendu
2017-03-01
We numerically investigate the dynamics of entanglement in a chain of spinless fermions with nonrandom but long-range hopping and interactions, and with random on-site energies. For moderate disorder in the absence of interactions, the chain hosts delocalized states at the top of the band which undergo a delocalization-localization transition with increasing disorder. We find an interesting regime in this noninteracting disordered chain where the long-time entanglement entropy scales as S (t )˜lnt and the saturated entanglement entropy scales with system size L as S (L ,t →∞ )˜lnL . We further study the interplay of long-range hopping and interactions on the growth of entanglement and the many-body localization (MBL) transition in this system. We develop an analogy to higher-dimensional short-range systems to compare and contrast such behavior with the physics of MBL in a higher dimension.
Entanglement dynamics of quantum oscillators nonlinearly coupled to thermal environments
NASA Astrophysics Data System (ADS)
Voje, Aurora; Croy, Alexander; Isacsson, Andreas
2015-07-01
We study the asymptotic entanglement of two quantum harmonic oscillators nonlinearly coupled to an environment. Coupling to independent baths and a common bath are investigated. Numerical results obtained using the Wangsness-Bloch-Redfield method are supplemented by analytical results in the rotating wave approximation. The asymptotic negativity as function of temperature, initial squeezing, and coupling strength, is compared to results for systems with linear system-reservoir coupling. We find that, due to the parity-conserving nature of the coupling, the asymptotic entanglement is considerably more robust than for the linearly damped cases. In contrast to linearly damped systems, the asymptotic behavior of entanglement is similar for the two bath configurations in the nonlinearly damped case. This is due to the two-phonon system-bath exchange causing a suppression of information exchange between the oscillators via the bath in the common-bath configuration at low temperatures.
Dynamical features of interference phenomena in the presence of entanglement
Kaufherr, T.; Aharonov, Y.; Nussinov, S.; Popescu, S.; Tollaksen, J.
2011-05-15
A strongly interacting, and entangling, heavy nonrecoiling external particle effects a significant change of the environment. Described locally, the corresponding entanglement event is a generalized electric Aharonov-Bohm effect, which differs from the original one in a crucial way. We propose a gedanken interference experiment. The predicted shift of the interference pattern is due to a self-induced or ''private'' potential difference experienced while the particle is in vacuum. We show that all nontrivial Born-Oppenheimer potentials are ''private'' potentials. We apply the Born-Oppenheimer approximation to interference states. Using our approach, we calculate the relative phase of the external heavy particle as well as its uncertainty throughout an interference experiment or entanglement event. We thus complement the Born-Oppenheimer approximation for interference states.
Dynamics of entanglement among the environment oscillators of a many-body system
NASA Astrophysics Data System (ADS)
de Paula, A. L.; Freitas, Dagoberto S.
2016-06-01
In this work, we extend the discussion that began in Ref. 16 [A. L. de Paula, Jr., J. G. G. de Oliveira, Jr., J. G. P. de Faria, D. S. Freitas and M. C. Nemes, Phys. Rev. A 89 (2014) 022303] to deal with the dynamics of the concurrence of a many-body system. In that previous paper, the discussion was focused on the residual entanglement between the partitions of the system. The purpose of the present contribution is to shed some light on the dynamical properties of entanglement among the environment oscillators. We consider a system consisting of a harmonic oscillator linearly coupled to N others and solve the corresponding dynamical problem analytically. We divide the environment into two arbitrary partitions and the entanglement dynamics between any of these partitions is quantified and it shows that in the case when excitations in each partition are equal, the concurrence reaches the value 1 and the two partitions of the environment are maximally entangled. For long times, the excitations of the main oscillator are completely transferred to environment and the environment oscillators are found entangled.
Open-system dynamics of entanglement:a key issues review
NASA Astrophysics Data System (ADS)
Aolita, Leandro; de Melo, Fernando; Davidovich, Luiz
2015-04-01
One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations. In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors. In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and
Self-Similar Conformations and Dynamics of Non-Concatenated Entangled Ring Polymers
NASA Astrophysics Data System (ADS)
Ge, Ting
A scaling model of self-similar conformations and dynamics of non-concatenated entangled ring polymers is developed. Topological constraints force these ring polymers into compact conformations with fractal dimension D =3 that we call fractal loopy globules (FLGs). This result is based on the conjecture that the overlap parameter of loops on all length scales is equal to the Kavassalis-Noolandi number 10-20. The dynamics of entangled rings is self-similar, and proceeds as loops of increasing sizes are rearranged progressively at their respective diffusion times. The topological constraints associated with smaller rearranged loops affect the dynamics of larger loops by increasing the effective friction coefficient, but have no influence on the tubes confining larger loops. Therefore, the tube diameter defined as the average spacing between relevant topological constraints increases with time, leading to ``tube dilation''. Analysis of the primitive paths in molecular dynamics (MD) simulations suggests complete tube dilation with the tube diameter on the order of the time-dependent characteristic loop size. A characteristic loop at time t is defined as a ring section that has diffused a distance of its size during time t. We derive dynamic scaling exponents in terms of fractal dimensions of an entangled ring and the underlying primitive path and a parameter characterizing the extent of tube dilation. The results reproduce the predictions of different dynamic models of a single non-concatenated entangled ring. We demonstrate that traditional generalization of single-ring models to multi-ring dynamics is not self-consistent and develop a FLG model with self-consistent multi-ring dynamics and complete tube dilation. Various dynamic scaling exponents predicted by the self-consistent FLG model are consistent with recent computer simulations and experiments. We also perform MD simulations of nanoparticle (NP) diffusion in melts of non-concatenated entangled ring polymers
NASA Astrophysics Data System (ADS)
Gupta, Manish Kumar; You, Chenglong; Dowling, Jonathan P.; Lee, Hwang
2016-05-01
We study the dynamics of decoherence in an optical fiber for the case of entangled photons. Such a study will allow us to increase the physical length of fiber for transmission of entangled photon from the sources such as SPDC. We analytically derive the model for Decoherence of entangled state photons in a single-mode fiber. We also show that entanglement lifetime can be increased for Bell state and Werner state with open loop control technique called Dynamical decoupling. The authors would like to acknowledge support from the Air Force Office of Scientific Research, the Army Research Office, the National Science Foundation and the Northrop Grumman Corporation.
NASA Astrophysics Data System (ADS)
Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fai, Lukong Cornelius; Fouokeng, Georges Collince
2017-04-01
We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.
NASA Astrophysics Data System (ADS)
Kawecki, M.; Gutfreund, P.; Adlmann, F. A.; Lindholm, E.; Longeville, S.; Lapp, A.; Wolff, M.
2016-09-01
Neutron Spin Echo spectroscopy provides unique insight into molecular and submolecular dynamics as well as intra- and inter-molecular interactions in soft matter. These dynamics may change drastically under shear flow. In particular in polymer physics a stress plateau is observed, which might be explained by an entanglement-disentanglement transition. However, such a transition is difficult to identify directly by experiments. Neutron Spin Echo has been proven to provide information about entanglement length and degree by probing the local dynamics of the polymer chains. Combining shear experiments and neutron spin echo is challenging since, first the beam polarisation has to be preserved during scattering and second, Doppler scattered neutrons may cause inelastic scattering. In this paper we present a new shear device adapted for these needs. We demonstrate that a high beam polarisation can be preserved and present first data on an entangled polymer solution under shear. To complement the experiments on the dynamics we present novel SANS data revealing shear- induced conformational changes in highly entangled polymers.
Entanglement dynamics of one-dimensional driven spin systems in time-varying magnetic fields
Alkurtass, Bedoor; Sadiek, Gehad; Kais, Sabre
2011-08-15
We study the dynamics of nearest-neighbor entanglement for a one-dimensional spin chain with a nearest-neighbor time-dependent Heisenberg coupling J(t) between the spins in the presence of a time-dependent external magnetic field h(t) at zero and finite temperatures. We consider different forms of time dependence for the coupling and magnetic field: exponential, hyperbolic, and periodic. Solving the system numerically, we examined the system-size effect on the entanglement asymptotic value. It was found that, for a small system size, the entanglement starts to fluctuate within a short period of time after applying the time-dependent coupling. The period of time increases as the system size increases and disappears completely as the size goes to infinity. Testing the effect of the transition constant for an exponential or hyperbolic coupling showed a direct impact on the asymptotic value of the entanglement; the larger the constant is, the lower the asymptotic value and the more rapid decay of entanglement are, which confirms the nonergodic character of the system. We also found that, when J(t) is periodic, the entanglement shows a periodic behavior with the same period, which disappears upon applying periodic magnetic field with the same frequency. Solving the case J(t)={lambda}h(t), for constant {lambda}, exactly, we showed that the time evolution and asymptotic value of entanglement are dictated solely by the parameter {lambda}=J/h rather than the individual values of J and h, not only when they are time independent and at zero temperature, but also when they are time dependent but proportional at zero and finite temperatures for all degrees of anisotropy.
Avoiding disentanglement of multipartite entangled optical beams with a correlated noisy channel
Deng, Xiaowei; Tian, Caixing; Su, Xiaolong; Xie, Changde
2017-01-01
A quantum communication network can be constructed by distributing a multipartite entangled state to space-separated nodes. Entangled optical beams with highest flying speed and measurable brightness can be used as carriers to convey information in quantum communication networks. Losses and noises existing in real communication channels will reduce or even totally destroy entanglement. The phenomenon of disentanglement will result in the complete failure of quantum communication. Here, we present the experimental demonstrations on the disentanglement and the entanglement revival of tripartite entangled optical beams used in a quantum network. We experimentally demonstrate that symmetric tripartite entangled optical beams are robust in pure lossy but noiseless channels. In a noisy channel, the excess noise will lead to the disentanglement and the destroyed entanglement can be revived by the use of a correlated noisy channel (non-Markovian environment). The presented results provide useful technical references for establishing quantum networks. PMID:28295024
Avoiding disentanglement of multipartite entangled optical beams with a correlated noisy channel
NASA Astrophysics Data System (ADS)
Deng, Xiaowei; Tian, Caixing; Su, Xiaolong; Xie, Changde
2017-03-01
A quantum communication network can be constructed by distributing a multipartite entangled state to space-separated nodes. Entangled optical beams with highest flying speed and measurable brightness can be used as carriers to convey information in quantum communication networks. Losses and noises existing in real communication channels will reduce or even totally destroy entanglement. The phenomenon of disentanglement will result in the complete failure of quantum communication. Here, we present the experimental demonstrations on the disentanglement and the entanglement revival of tripartite entangled optical beams used in a quantum network. We experimentally demonstrate that symmetric tripartite entangled optical beams are robust in pure lossy but noiseless channels. In a noisy channel, the excess noise will lead to the disentanglement and the destroyed entanglement can be revived by the use of a correlated noisy channel (non-Markovian environment). The presented results provide useful technical references for establishing quantum networks.
NASA Astrophysics Data System (ADS)
Schuetz, M. J. A.; Kessler, E. M.; Vandersypen, L. M. K.; Cirac, J. I.; Giedke, G.
2014-05-01
We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in an electrically defined double quantum dot in the Pauli-blockade regime. We derive a master-equation-based framework and show that the coupled electron-nuclear system displays an instability towards the buildup of large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.
Quantum spin dynamics and entanglement in systems with long-range interactions
NASA Astrophysics Data System (ADS)
Rey, Ana M.
One of the fundamental goals of modern quantum sciences is to learn how to control and manipulate non-equilibrium many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, out-of-equilibrium systems are complex, typically strongly correlated and entangled, and thus to model them we are in an urgent need of new methodologies. In this talk I will discuss new theoretical methods that we have developed to investigate emergent non-equilibrium phenomena in driven-dissipative spin systems interacting via long-range interactions. I will show we can capture the dynamics of correlations and entanglement in close systems and the interplay between dissipation and entanglement in open quantum systems including spin-boson models. As a specific application I will discuss the use of our methods to model the spin dynamics exhibited by arrays of trapped ions with controllable long-range interactions. I will show that our predictions are consistent with recent experimental measurements. I will also discuss new protocols to diagnostic and characterize entanglement based on well-established NMR protocols This work is supported by NSF, ARO, AFOSR-MURI, and NIST.
NASA Astrophysics Data System (ADS)
Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fai, Lukong Cornelius
2017-02-01
We address the dynamics of quantum correlations, including entanglement and quantum discord of a three-qubit system interacting with a classical pure dephasing random telegraph noise (RTN) in three different physical environmental situations (independent, mixed and common environments). Two initial entangled states of the system are examined, namely the Greenberger-Horne-Zeilinger (GHZ)- and Werner (W)-type states. The classical noise is introduced as a stochastic process affecting the energy splitting of the qubits. With the help of suitable measures of tripartite entanglement (entanglement witnesses and lower bound of concurrence) and quantum discord (global quantum discord and quantum dissension), we show that the evolution of quantum correlations is not only affected by the type of the system-environment interaction but also by the input configuration of the qubits and the memory properties of the environmental noise. Indeed, depending on the memory properties of the environmental noise and the initial state considered, we find that independent, common and mixed environments can play opposite roles in preserving quantum correlations, and that the sudden death and revival phenomena or the survival of quantum correlations may occur. On the other hand, we also show that the W-type state has strong dynamics under this noise than the GHZ-type ones.
Dynamics of the area law of entanglement entropy
NASA Astrophysics Data System (ADS)
Leichenauer, Stefan; Moosa, Mudassir; Smolkin, Michael
2016-09-01
We study the evolution of the universal area law of entanglement entropy when the Hamiltonian of the system undergoes a time dependent perturbation. In particular, we derive a general formula for the time dependent first order correction to the area law under the assumption that the field theory resides in a vacuum state when a small time-dependent perturbation of a relevant coupling constant is turned on. Using this formula, we carry out explicit calculations in free field theories deformed by a time dependent mass, whereas for a generic QFT we show that the time dependent first order correction is governed by the spectral function defining the two-point correlation function of the trace of the energy-momentum tensor. We also carry out holographic calculations based on the HRT proposal and find qualitative and, in certain cases, quantitative agreement with the field theory calculations.
Craven, Galen T; Popov, Alexander V; Hernandez, Rigoberto
2015-04-21
The dynamical properties of a system of soft rods governed by stochastic hard collisions (SHCs) have been determined over a varying range of softness using molecular dynamics simulations in one dimension and analytic theory. The SHC model allows for interpenetration of the system's constituent particles in the simulations, generating overlapping clustering behavior analogous to the spatial structures observed in systems governed by deterministic bounded potentials. Through variation of an assigned softness parameter δ, the limiting ranges of intermolecular softness are bridged, connecting the limiting ensemble behavior from hard to ideal (completely soft). Various dynamical and structural observables are measured from simulation and compared to developed theoretical values. The spatial properties are found to be well predicted by theories developed for the deterministic penetrable-sphere model with a transformation from energetic to probabilistic arguments. While the overlapping spatial structures are complex, the dynamical properties can be adequately approximated through a theory built on impulsive interactions with Enskog corrections. Our theory suggests that as the softness of interaction is varied toward the ideal limit, correlated collision processes are less important to the energy transfer mechanism, and Markovian processes dominate the evolution of the configuration space ensemble. For interaction softness close to hard limit, collision processes are highly correlated and overlapping spatial configurations give rise to entanglement of single-particle trajectories.
Multipartite entanglement in conditional states
NASA Astrophysics Data System (ADS)
Urbina, Juan Diego; Strunz, Walter T.; Viviescas, Carlos
2013-02-01
A key lesson of the decoherence program is that information flowing out from an open system is stored in the quantum state of the surroundings. Simultaneously, quantum measurement theory shows that the evolution of any open system when its environment is measured is nonlinear and leads to pure states conditioned on the measurement record. Here we report the discovery of a fundamental relation between measurement and entanglement which is characteristic of this scenario. It takes the form of a scaling law between the amount of entanglement in the conditional state of the system and the probabilities of the experimental outcomes obtained from measuring the state of the environment, with the latter modeled as a bosonic field linearly coupled with the system. Using the scaling, we construct the distribution of entanglement over the ensemble of experimental outcomes for standard models with one open channel and provide rigorous results on finite-time disentanglement in systems coupled to non-Markovian baths. In principle, the scaling allows the direct experimental detection and quantification of entanglement in conditional states of a large class of open systems by quantum tomography of the bath even when it consists of a single mode.
Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk
NASA Astrophysics Data System (ADS)
Schütz, Gunter M.; Trimper, Steffen
2004-10-01
We consider a discrete-time random walk where the random increment at time step t depends on the full history of the process. We calculate exactly the mean and variance of the position and discuss its dependence on the initial condition and on the memory parameter p . At a critical value pc(1)=1/2 where memory effects vanish there is a transition from a weakly localized regime [where the walker (elephant) returns to its starting point] to an escape regime. Inside the escape regime there is a second critical value where the random walk becomes superdiffusive. The probability distribution is shown to be governed by a non-Markovian Fokker-Planck equation with hopping rates that depend both on time and on the starting position of the walk. On large scales the memory organizes itself into an effective harmonic oscillator potential for the random walker with a time-dependent spring constant k=(2p-1)/t . The solution of this problem is a Gaussian distribution with time-dependent mean and variance which both depend on the initiation of the process.
NASA Astrophysics Data System (ADS)
Liu, Da-Jiang; Chen, Hung-Ting; Lin, Victor S.-Y.; Evans, J. W.
2010-04-01
We analyze a model for polymerization at catalytic sites distributed within parallel linear pores of a mesoporous material. Polymerization occurs primarily by reaction of monomers diffusing into the pores with the ends of polymers near the pore openings. Monomers and polymers undergo single-file diffusion within the pores. Model behavior, including the polymer length distribution, is determined by kinetic Monte Carlo simulation of a suitable atomistic-level lattice model. While the polymers remain within the pore, their length distribution during growth can be described qualitatively by a Markovian rate equation treatment. However, once they become partially extruded, the distribution is shown to exhibit non-Markovian scaling behavior. This feature is attributed to the long-tail in the "return-time distribution" for the protruding end of the partially extruded polymer to return to the pore, such return being necessary for further reaction and growth. The detailed form of the scaled length distribution is elucidated by application of continuous-time random walk theory.
Liu, Da-Jiang; Chen, Hung-Ting; Lin, Victor S-Y; Evans, J W
2010-04-21
We analyze a model for polymerization at catalytic sites distributed within parallel linear pores of a mesoporous material. Polymerization occurs primarily by reaction of monomers diffusing into the pores with the ends of polymers near the pore openings. Monomers and polymers undergo single-file diffusion within the pores. Model behavior, including the polymer length distribution, is determined by kinetic Monte Carlo simulation of a suitable atomistic-level lattice model. While the polymers remain within the pore, their length distribution during growth can be described qualitatively by a Markovian rate equation treatment. However, once they become partially extruded, the distribution is shown to exhibit non-Markovian scaling behavior. This feature is attributed to the long-tail in the "return-time distribution" for the protruding end of the partially extruded polymer to return to the pore, such return being necessary for further reaction and growth. The detailed form of the scaled length distribution is elucidated by application of continuous-time random walk theory.
NASA Astrophysics Data System (ADS)
Strasberg, Philipp; Schaller, Gernot; Lambert, Neill; Brandes, Tobias
2016-07-01
We propose a method to study the thermodynamic behaviour of small systems beyond the weak coupling and Markovian approximation, which is different in spirit from conventional approaches. The idea is to redefine the system and environment such that the effective, redefined system is again coupled weakly to Markovian residual baths and thus, allows to derive a consistent thermodynamic framework for this new system-environment partition. To achieve this goal we make use of the reaction coordinate (RC) mapping, which is a general method in the sense that it can be applied to an arbitrary (quantum or classical and even time-dependent) system coupled linearly to an arbitrary number of harmonic oscillator reservoirs. The core of the method relies on an appropriate identification of a part of the environment (the RC), which is subsequently included as a part of the system. We demonstrate the power of this concept by showing that non-Markovian effects can significantly enhance the steady state efficiency of a three-level-maser heat engine, even in the regime of weak system-bath coupling. Furthermore, we show for a single electron transistor coupled to vibrations that our method allows one to justify master equations derived in a polaron transformed reference frame.
Signatures of many-body localization in the dynamics of two-site entanglement
NASA Astrophysics Data System (ADS)
Iemini, Fernando; Russomanno, Angelo; Rossini, Davide; Scardicchio, Antonello; Fazio, Rosario
2016-12-01
We are able to detect clear signatures of dephasing—a distinct trait of many-body localization (MBL)—via the dynamics of two-site entanglement, quantified through the concurrence. Using the protocol implemented by M. Schreiber et al. [Science 349, 842 (2015), 10.1126/science.aaa7432], we show that in the MBL phase the average two-site entanglement decays in time as a power law, while in the Anderson localized phase it tends to a plateau. The power-law exponent is not universal and displays a clear dependence on the interaction strength. This behavior is also qualitatively different from the ergodic phase, where the two-site entanglement decays exponentially. All the results are obtained by means of time-dependent density matrix renormalization-group simulations and further corroborated by analytical calculations on an effective model. Two-site entanglement has been measured in cold atoms: our analysis paves the way for the first direct experimental test of many-body dephasing in the MBL phase.
Entangled Valence Electron-Hole Dynamics Revealed by Stimulated Attosecond X-ray Raman Scattering
Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan
2012-01-01
We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by stimulated resonant Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction. PMID:23755318
Kubotani, Hiroto; Adachi, Satoshi; Toda, Mikito
2008-06-20
The exact formula of the one-level distribution of the Schmidt eigenvalues is obtained for dynamical formation of entanglement in quantum chaos. The formula is based on the random matrix theory of the fixed-trace ensemble, and is derived using the theory of the holonomic system of differential equations. We confirm that the formula describes the universality of the distribution of the Schmidt eigenvalues in quantum chaos.
Entangled valence electron-hole dynamics revealed by stimulated attosecond x-ray Raman scattering
Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; Mukamel, Shaul
2012-09-06
We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by resonant stimulated Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.
Mechanistic insights into the Structure and Dynamics of Entangled and Hydrated Lambda-Phage DNA
Chakraborty, Sandipan; Uematsu, Takashi; Svanberg, Christer; Jacobsson, Per; Swenson, Jan; Zäch, Michael; Trehan, Rajendar; Armstrong, George; Sengupta, Bidisha
2012-01-01
Intrinsic dynamics of DNA plays crucial role in DNA-protein interactions and has been emphasized as a possible key component for in vivo chromatin organization. We have prepared entangled DNA micro tube above the overlap concentration by exploiting the complementary cohesive ends of λ-phage DNA, which is confirmed by atomic force microscopy and agarose gel electrophoresis. Photon correlation spectroscopy further confirmed that the entangled solutions are found to exhibit the classical hydrodynamics of a single chain segment on length scales smaller than the hydrodynamic length scale of single λ-phage DNA molecule. We also observed that in 41.6% (gm water/gm DNA) hydrated state, λ-phage DNA exhibits a dynamic transition temperature (Tdt) at 187 K and a crossover temperature (Tc) at 246 K. Computational insight reveals that the observed structure and dynamics of entangled λ-phage DNA are distinctively different from the behavior of the corresponding unentangled DNA with open cohesive ends, which is reminiscent with our experimental observation. PMID:22515820
NASA Astrophysics Data System (ADS)
Pagel, D.; Alvermann, A.; Fehske, H.
2017-01-01
We calculate the emission spectra, the Glauber g(2 ) function, and the entanglement of formation for two-level emitters coupled to a single cavity mode and subject to an external laser excitation. To evaluate these quantities we couple the system to environmental degrees of freedom, which leads to dissipative dynamics. Because of the periodic time dependence of the system Hamiltonian, the coefficients of the Markovian master equation are constant only if Floquet states are used as the computational basis. Studying the emission spectra, we show that the dynamic Stark effect first appears in second order of the laser intensity. For the Glauber function, we find clearly distinguished parameter regimes of super- and sub-Poissonian light emission and explain the additional features appearing for finite laser intensity in terms of the quasienergy spectrum of the driven emitter-cavity system. Finally, we analyze the temperature and emitter-cavity-coupling regimes where entanglement among the emitters is generated and show that the laser excitation leads to a decrease of entanglement.
Goujon, Florent; Malfreyt, Patrice; Tildesley, Dominic J
2008-07-21
We use a simple spring-spring repulsion to model entanglements between polymers in dissipative particle dynamics (DPD) simulations. The model is applied to a polymer brushes system to study lubrication. We demonstrate that this method leads to mechanical equilibrium in polymer brushes using the normal DPD time step. The number of bond crossings is calculated to provide a quantitative description of the entanglement. We demonstrate that it is possible to avoid 99% of the bond crossings with the values of spring-spring repulsion that can be used without significantly decreasing the time step. A shear force is applied to the system to study the effect of the decrease in the bond crossings on the structure and rheological properties of the brushes. In particular, we show how the friction coefficient increases with the decrease in the bond crossings of the polymers.
A single particle model to simulate the dynamics of entangled polymer melts
NASA Astrophysics Data System (ADS)
Kindt, P.; Briels, W. J.
2007-10-01
We present a computer simulation model of polymer melts representing each chain as one single particle. Besides the position coordinate of each particle, we introduce a parameter nij for each pair of particles i and j within a specified distance from each other. These numbers, called entanglement numbers, describe the deviation of the system of ignored coordinates from its equilibrium state for the given configuration of the centers of mass of the polymers. The deviations of the entanglement numbers from their equilibrium values give rise to transient forces, which, together with the conservative forces derived from the potential of mean force, govern the displacements of the particles. We have applied our model to a melt of C800H1602 chains at 450K and have found good agreement with experiments and more detailed simulations. Properties addressed in this paper are radial distribution functions, dynamic structure factors, and linear as well as nonlinear rheological properties.
Why is the tube model inapplicable for entangled polymer dynamics at large deformation
NASA Astrophysics Data System (ADS)
Wang, Shi-Qing; Wang, Yangyang
2011-03-01
Accumulating experimental revelation of the phenomenology governing dynamics of entangled linear polymers at large deformations has caused us to question the legitimacy of the tube model as an acceptable theoretical description of nonlinear polymer rheology. Upon an explicit investigation of its premise, we have come to realize that the tube model did not overcome the difficulty confronted by other theories and did not contain the basic physics required to explain why and how the entanglement network must break down during large deformations. It considered an unrealistic situation where a load-bearing chain relaxed fast in an affinely deformed tube so that only the chain segment orientation produced the shear stress for applied rates lower than the Rouse rate. A non-monotonic relation between the resulting shear stress and imposed strain for startup shear and step deformations arose from excessive chain orientation not collapse of the entanglement network. In the tube model, the nature of the overshoot is not yielding (transition from elastic deformation to flow), but an elastic instability. Accumulating experimental observations contradict this picture. This presentation will elucidate how the emerging physical picture differs from that of the unrealistic tube model.
Black holes as random particles: entanglement dynamics in infinite range and matrix models
NASA Astrophysics Data System (ADS)
Magán, Javier M.
2016-08-01
We first propose and study a quantum toy model of black hole dynamics. The model is unitary, displays quantum thermalization, and the Hamiltonian couples every oscillator with every other, a feature intended to emulate the color sector physics of large- {N} matrix models. Considering out of equilibrium initial states, we analytically compute the time evolution of every correlator of the theory and of the entanglement entropies, allowing a proper discussion of global thermalization/scrambling of information through the entire system. Microscopic non-locality causes factorization of reduced density matrices, and entanglement just depends on the time evolution of occupation densities. In the second part of the article, we show how the gained intuition extends to large- {N} matrix models, where we provide a gauge invariant entanglement entropy for `generalized free fields', again depending solely on the quasinormal frequencies. The results challenge the fast scrambling conjecture and point to a natural scenario for the emergence of the so-called brick wall or stretched horizon. Finally, peculiarities of these models in regards to the thermodynamic limit and the information paradox are highlighted.
Wang, Lifei; Martens, Craig C; Zheng, Yujun
2012-07-21
In this paper, we extend the entangled trajectory molecular dynamics (ETMD) method to multidimensional systems. The integrodifferential form of the evolution equation for the Wigner function is employed, allowing general potentials not represented as a polynomial to be treated. As the example, the method is applied to a two-dimensional model of scattering from an Eckart barrier. The results of ETMD are in good agreement with quantum hydrodynamics and exact quantum simulations. By comparing the quantum and classical trajectory in phase space, the quantum tunneling phenomenon is interpreted vividly.
Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles
Liu, Siqi; Senses, Erkan; Jiao, Yang; ...
2016-04-15
Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure–dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. Our work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. And for particles within highly ordered strings and aggregated systems, they experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics ismore » diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer.« less
Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles
Liu, Siqi; Senses, Erkan; Jiao, Yang; Narayanan, Suresh; Akcora, Pinar
2016-04-15
Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure–dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. Our work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. And for particles within highly ordered strings and aggregated systems, they experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics is diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer.
Vega, Ines de; Alonso, Daniel
2006-02-15
In this paper we derive the evolution equation for the reduced propagator, an object that evolves vectors of the Hilbert space of a system S interacting with an environment B in a non-Markovian way. This evolution is conditioned to certain initial and final states of the environment. Once an average over these environmental states is made, reduced propagators permit the evaluation of multiple-time correlation functions of system observables. When this average is done stochastically the reduced propagator evolves according to a stochastic Schroedinger equation. In addition, it is possible to obtain the evolution equations of the multiple-time correlation functions which generalize the well-known quantum regression theorem to the non-Markovian case. Here, both methods, stochastic and evolution equations, are described by assuming a weak coupling between system and environment. Finally, we show that reduced propagators can be used to obtain a master equation with general initial conditions, and not necessarily an initial vacuum state for the environment. We illustrate the theory with several examples.
Weiss, Christoph; Teichmann, Niklas
2008-04-11
A Bose-Einstein condensate in a tilted double-well potential under the influence of time-periodic potential differences is investigated in the regime where the mean-field (Gross-Pitaevskii) dynamics become chaotic. For some parameters near stable regions, even averaging over several condensate oscillations does not remove the differences between mean-field and N-particle results. While introducing decoherence via piecewise deterministic processes reduces those differences, they are due to the emergence of mesoscopic entangled states in the chaotic regime.
NASA Astrophysics Data System (ADS)
Sen, Arnab; Nandy, Sourav; Sengupta, K.
2016-12-01
We study a class of periodically driven d -dimensional integrable models and show that after n drive cycles with frequency ω , pure states with non-area-law entanglement entropy Sn(l ) ˜lα (n ,ω ) are generated, where l is the linear dimension of the subsystem, and d -1 ≤α (n ,ω )≤d . The exponent α (n ,ω ) eventually approaches d (volume law) for large enough l when n →∞ . We identify and analyze the crossover phenomenon from an area (S ˜ld -1 for d ≥1 ) to a volume (S ˜ld ) law and provide a criterion for their occurrence which constitutes a generalization of Hastings's theorem to driven integrable systems in one dimension. We also find that Sn generically decays to S∞ as (ω/n ) (d +2 )/2 for fast and (ω/n ) d /2 for slow periodic drives; these two dynamical phases are separated by a topological transition in the eigenspectrum of the Floquet Hamiltonian. This dynamical transition manifests itself in the temporal behavior of all local correlation functions and does not require a critical point crossing during the drive. We find that these dynamical phases show a rich re-entrant behavior as a function of ω for d =1 models and also discuss the dynamical transition for d >1 models. Finally, we study entanglement properties of the steady state and show that singular features (cusps and kinks in d =1 ) appear in S∞ as a function of ω whenever there is a crossing of the Floquet bands. We discuss experiments which can test our theory.
Zeno dynamics in quantum open systems
Zhang, Yu-Ran; Fan, Heng
2015-01-01
Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states. PMID:26099840
Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime
Tian, Zehua; Jing, Jiliang
2014-11-15
In the framework of open quantum systems, we study the internal dynamics of both freely falling and static two-level atoms interacting with quantized conformally coupled massless scalar field in de Sitter spacetime. We find that the atomic transition rates depend on both the nature of de Sitter spacetime and the motion of atoms, interestingly the steady states for both cases are always driven to being purely thermal, regardless of the atomic initial states. This thermalization phenomenon is structurally similar to what happens to an elementary quantum system immersed in a thermal field, and thus reveals the thermal nature of de Sitter spacetime. Besides, we find that the thermal baths will drive the entanglement shared by the freely falling atom (the static atom) and its auxiliary partner, a same two-level atom which is isolated from external fields, to being sudden death, and the proper time for the entanglement to be extinguished is computed. We also analyze that such thermalization and disentanglement phenomena, in principle, could be understood from the perspective of table-top simulation experiment.
Adamyan, H. H.; Kryuchkyan, G. Yu.
2006-08-15
We investigate semiclassical dynamics and quantum properties of light beams generated in time-modulated nondegenerate optical parametric oscillator (NOPO). Having in view production of continuous-variable (CV) entangled states of light beams we propose two experimentally feasible schemes of NOPO: (i) driven by continuously modulated pump field; (ii) under action of a periodic sequence of identical laser pulses. It is shown that the time modulation of pump field amplitude essentially improves the degree of CV entanglement in NOPO. On the whole the level of integral two-mode squeezing, which characterizes the degree of CV entanglement, goes below the standard limit established in an ordinary NOPO with monochromatic pumping. We develop semiclassical and quantum theories of these devices for both below- and above-threshold regimes of generation. Properties of CV entanglement for various operational regimes of the devices are discussed in the time domain in application to time-resolved quantum information technologies. Our analytical results are in well agreement with the results of numerical simulation and support a concept of CV entangled states of time-modulated light beams.
NASA Astrophysics Data System (ADS)
Adamyan, H. H.; Kryuchkyan, G. Yu.
2006-08-01
We investigate semiclassical dynamics and quantum properties of light beams generated in time-modulated nondegenerate optical parametric oscillator (NOPO). Having in view production of continuous-variable (CV) entangled states of light beams we propose two experimentally feasible schemes of NOPO: (i) driven by continuously modulated pump field; (ii) under action of a periodic sequence of identical laser pulses. It is shown that the time modulation of pump field amplitude essentially improves the degree of CV entanglement in NOPO. On the whole the level of integral two-mode squeezing, which characterizes the degree of CV entanglement, goes below the standard limit established in an ordinary NOPO with monochromatic pumping. We develop semiclassical and quantum theories of these devices for both below- and above-threshold regimes of generation. Properties of CV entanglement for various operational regimes of the devices are discussed in the time domain in application to time-resolved quantum information technologies. Our analytical results are in well agreement with the results of numerical simulation and support a concept of CV entangled states of time-modulated light beams.
NASA Astrophysics Data System (ADS)
Szańkowski, Piotr; Trippenbach, Marek; Cywiński, Łukasz; Band, Yehuda B.
2015-09-01
We investigate the decay of two-qubit entanglement caused by the influence of classical noise. We consider the whole spectrum of cases ranging from independent to fully correlated noise affecting each qubit. We take into account different spatial symmetries of noises, and the regimes of noise autocorrelation time. The latter can be either much shorter than the characteristic qubit decoherence time (Markovian decoherence), or much longer (approaching the quasi-static bath limit). We express the entanglement of two-qubit states in terms of expectation values of spherical tensor operators which allows for transparent insight into the role of the symmetry of both the two-qubit state and the noise for entanglement dynamics.
Alba, David; Crater, Horace W.; Lusanna, Luca
2011-06-15
A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics, where the world-lines of the particles are parametrized in terms of the Fokker-Pryce center of inertia and of Wigner-covariant relative 3-coordinates inside the instantaneous Wigner 3-spaces, and where there is a decoupled (non-covariant and non-local) canonical relativistic center of mass. This approach: (a) allows us to make a consistent quantization in every inertial frame; (b) leads to a description of both bound and scattering states; (c) offers new insights on the relativistic localization problem; (d) leads to a non-relativistic limit with a Hamilton-Jacobi treatment of the Newton center of mass; (e) clarifies non-local aspects (spatial non-separability) of relativistic entanglement connected with Lorentz signature and not present in its non-relativistic treatment.
Quantum spin dynamics and entanglement generation with hundreds of trapped ions
NASA Astrophysics Data System (ADS)
Bohnet, Justin G.; Sawyer, Brian C.; Britton, Joseph W.; Wall, Michael L.; Rey, Ana Maria; Foss-Feig, Michael; Bollinger, John J.
2016-06-01
Quantum simulation of spin models can provide insight into problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. We studied quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of 9Be+ ions in a Penning trap. We verified entanglement in spin-squeezed states of up to 219 ions, directly observing 4.0 ± 0.9 decibels of spectroscopic enhancement, and observed states with non-Gaussian statistics consistent with oversqueezed states. The good agreement with ab initio theory that includes interactions and decoherence lays the groundwork for simulations of the transverse-field Ising model with variable-range interactions, which are generally intractable with classical methods.
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2011-03-01
The idea that quantum randomness can be reduced to randomness of classical fields (fluctuating at time and space scales which are essentially finer than scales approachable in modern quantum experiments) is rather old. Various models have been proposed, e.g., stochastic electrodynamics or the semiclassical model. Recently a new model, so called prequantum classical statistical field theory (PCSFT), was developed. By this model a "quantum system" is just a label for (so to say "prequantum") classical random field. Quantum averages can be represented as classical field averages. Correlations between observables on subsystems of a composite system can be as well represented as classical correlations. In particular, it can be done for entangled systems. Creation of such classical field representation demystifies quantum entanglement. In this paper we show that quantum dynamics (given by Schrödinger's equation) of entangled systems can be represented as the stochastic dynamics of classical random fields. The "effect of entanglement" is produced by classical correlations which were present at the initial moment of time, cf. views of Albert Einstein.
Microscopic Theory for Entangled Polymer Dynamics in Rod-Sphere Nanocomposites
NASA Astrophysics Data System (ADS)
Yamamoto, Umi; Schweizer, Kenneth
2014-03-01
We have developed a self-consistent microscopic theory for the long-time dynamics of needles in an array of static spherical fillers. The approach exactly enforces the dynamical two-body rod topological uncrossability and sphere impenetrability constraints, leading to a generalized concept of entanglements that includes the filler excluded volume effect. How the diffusion anisotropy (transverse versus longitudinal motion) depends on the filler-needle aspect ratio, polymer concentration, and filler volume fraction is established. Due to the steric blocking of the longitudinal reptative motion by obstacles, a literal localization transition is predicted that is generically controlled by the ratio of filler diameter to the pure polymer tube diameter or needle length. For a window of filler sizes and loadings, the needle is predicted to diffuse via a ``renormalized'' reptation dynamics where the tube is compressed and the longitudinal motion is retarded in a manner that depends on all system variables. At high filler volume fractions the needle diffusivity is strongly suppressed, and localization ultimately occurs in the unentangled needle regime. Generalization of the approach to treat mobile fillers, flexible chains, and nonrandom microstructure is also possible.
Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua
2013-12-14
Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Kilfoil, Maria L.
2013-03-01
The high fidelity segregation of chromatin is the central problem in cell mitosis. The role of mechanics underlying this, however, is undetermined. Work in this area has largely focused on cytoskeletal elements of the process. Preliminary work in our lab suggests the mechanical properties of chromatin are fundamental in this process. Nevertheless, the mechanical properties of chromatin in the cellular context are not well-characterized. For better understanding of the role of mechanics in this cellular process, and of the chromatin mechanics in vivo generally, a systematic dynamical description of chromatin in vivo is required. Accordingly, we label specific sites on chromatin with fluorescent proteins of different wave lengths, enabling us to detect multiple spots separately in 3D and track their displacements in time inside living yeast cells. We analyze the pairwise cross-correlated motion between spots as a function of relative distance along the DNA contour. Comparison between the reptation model and our data serves to test our conjecture that chromatin in the cell is basically an entangled polymer network under constraints to thermal motion, and removal of constraints by non-thermal cellular processes is expected to affect its dynamic behavior.
Entanglement production due to quench dynamics of an anisotropic XY chain in a transverse field
NASA Astrophysics Data System (ADS)
Sengupta, K.; Sen, Diptiman
2009-09-01
We compute concurrence and negativity as measures of two-spin entanglement generated by a power-law quench (characterized by a rate τ-1 and an exponent α ) which takes an anisotropic XY chain in a transverse field through a quantum critical point (QCP). We show that only spins separated by an even number of lattice spacings get entangled in such a process. Moreover, there is a critical rate of quench, τc-1 , above which no two-spin entanglement is generated; the entire entanglement is multipartite. The ratio of the entanglements between consecutive even neighbors can be tuned by changing the quench rate. We also show that for large τ , the concurrence (negativity) scales as α/τ (α/τ) , and we relate this scaling behavior to defect production by the quench through a QCP.
Entanglement dynamics of two nitrogen vacancy centers coupled by a nanomechanical resonator
NASA Astrophysics Data System (ADS)
Toklikishvili, Z.; Chotorlishvili, L.; Mishra, S. K.; Stagraczynski, S.; Schüler, M.; Rau, A. R. P.; Berakdar, J.
2017-03-01
In this paper we study the time evolution of the entanglement between two remote NV Centers (nitrogen vacancy in diamond) connected by a dual-mode nanomechanical resonator with magnetic tips on both sides. Calculating the negativity as a measure for the entanglement, we find that the entanglement between two spins oscillates with time and can be manipulated by varying the parameters of the system. We observed the phenomenon of a sudden death and the periodic revivals of entanglement in time. For the study of quantum decoherence, we implement a Lindblad master equation. In spite of its complexity, the model is analytically solvable under fairly reasonable assumptions, and shows that the decoherence influences the entanglement, the sudden death, and the revivals in time.
What can we learn from the dynamics of entanglement and quantum discord in the Tavis-Cummings model?
NASA Astrophysics Data System (ADS)
Restrepo, Juliana; Rodriguez, Boris A.
We revisit the problem of the dynamics of quantum correlations in the exact Tavis-Cummings model. We show that many of the dynamical features of quantum discord attributed to dissipation are already present in the exact framework and are due to the well known non-linearities in the model and to the choice of initial conditions. Through a comprehensive analysis, supported by explicit analytical calculations, we find that the dynamics of entanglement and quantum discord are far from being trivial or intuitive. In this context, we find states that are indistinguishable from the point of view of entanglement and distinguishable from the point of view of quantum discord, states where the two quantifiers give opposite information and states where they give roughly the same information about correlations at a certain time. Depending on the initial conditions, this model exhibits a fascinating range of phenomena that can be used for experimental purposes such as: Robust states against change of manifold or dissipation, tunable entanglement states and states with a counterintuitive sudden birth as the number of photons increase. We furthermore propose an experiment called quantum discord gates where discord is zero or non-zero depending on the number of photons. This work was supported by the Vicerrectoria de Investigacion of the Universidad Antonio Narino, Colombia under Project Number 20141031 and by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion (COLCIENCIAS) of Colombia under Grant Number.
NASA Astrophysics Data System (ADS)
Thapliyal, Ashish Vachaspati
Entanglement is an essential element of quantum mechanics. The aim of this work is to explore various properties of entanglement from the viewpoints of both physics and information science, thus providing a unique picture of entanglement from an interdisciplinary point of view. The focus of this work is on quantifying entanglement as a resource. We start with bipartite states, proposing a new measure of bipartite entanglement called entanglement of assistance, showing that bound entangled states of rank two cannot exist, exploring the number of members required in the ensemble achieving the entanglement of formation and the possibility of bound entangled states that are negative under partial transposition (NPT bound entangled states). For multipartite states we introduce the notions of reducibilities and equivalences under entanglement non-increasing operations and we study the relations between various reducibilities and equivalences such as exact and asymptotic LOCC, asymptotic LOCCq, cLOCC, LOc, etc. We use this new language to attempt to quantify entanglement for multiple parties. We introduce the idea of entanglement span and minimal entanglement generating set and entanglement coefficients associated with it which are the entanglement measures, thus proposing a multicomponent measure of entanglement for three or more parties. We show that the class of Schmidt decomposable states have only GHZM or Cat-like entanglement. Further we introduce the class of multiseparable states for quantification of their entanglement and prove that they are equivalent to the Schmidt decomposable states, and thus have only Cat-like entanglement. We further explore the conditions under which LOCO equivalences are possible for multipartite isentropic states. We define Cat-distillability, EPRB-distillability and distillability for multipartite mixed states and show that distillability implies EPRB-distillability. Further we show that all non-factorizable pure states are Cat
Distance and coupling dependence of entanglement in the presence of a quantum field
NASA Astrophysics Data System (ADS)
Hsiang, J.-T.; Hu, B. L.
2015-12-01
We study the entanglement between two coupled detectors, the internal degrees of freedom of which are modeled by harmonic oscillators, interacting with a common quantum field, paying special attention to two less studied yet important features: finite separation and direct coupling. Distance dependence is essential in quantum teleportation and relativistic quantum information considerations. The presence of a quantum field as the environment accords an indirect interaction between the two oscillators at finite separation of a non-Markovian nature which competes with the direct coupling between them. The interplay between these two factors results in a rich variety of interesting entanglement behaviors at late times. We show that the entanglement behavior reported in prior work assuming no separation between the detectors can at best be a transient effect at very short times and claims that such behaviors represent late-time entanglement are misplaced. Entanglement between the detectors with direct coupling enters in the consideration of macroscopic quantum phenomena and other frontline issues. We find that with direct coupling entanglement between the two detectors can sustain over a finite distance, in contrast to the no direct coupling case reported before, where entanglement cannot survive at a separation more than a few inverse high-frequency cutoff scales. This work provides a functional platform for systematic investigations into the entanglement behavior of continuous variable quantum systems, such as used in quantum electro- and optomechanics.
Dynamic Entangled Porous Framework for Hydrocarbon (C2-C3) Storage, CO2 Capture, and Separation.
Sikdar, Nivedita; Bonakala, Satyanarayana; Haldar, Ritesh; Balasubramanian, Sundaram; Maji, Tapas Kumar
2016-04-18
Storage and separation of small (C1-C3) hydrocarbons are of great significance as these are alternative energy resources and also can be used as raw materials for many industrially important materials. Selective capture of greenhouse gas, CO2 from CH4 is important to improve the quality of natural gas. Among the available porous materials, MOFs with permanent porosity are the most suitable to serve these purposes. Herein, a two-fold entangled dynamic framework {[Zn2 (bdc)2 (bpNDI)]⋅4DMF}n with pore surface carved with polar functional groups and aromatic π clouds is exploited for selective capture of CO2 , C2, and C3 hydrocarbons at ambient condition. The framework shows stepwise CO2 and C2 H2 uptake at 195 K but type I profiles are observed at 298 K. The IAST selectivity of CO2 over CH4 is the highest (598 at 298 K) among the MOFs without open metal sites reported till date. It also shows high selectivity for C2 H2 , C2 H4 , C2 H6 , and C3 H8 over CH4 at 298 K. DFT calculations reveal that aromatic π surface and the polar imide (RNC=O) functional groups are the primary adsorption sites for adsorption. Furthermore, breakthrough column experiments showed CO2 /CH4 C2 H6 /CH4 and CO2 /N2 separation capability at ambient condition.
NASA Astrophysics Data System (ADS)
Abdel-Khalek, S.; Quthami, M.; Ahmed, M. M. A.
2015-02-01
In this paper, we study the dynamics of the atomic inversion and von Neumann entropy for a moving and non-moving two-level atom interacting with multi SU(1,1) quantum system. The wave function and system density matrix using specific initial conditions are obtained. The effects of initial atomic state position and detuning parameters are examined in the absence and presence of the atomic motion effect. Important phenomena such as entanglement sudden death, sudden birth and long-living entanglement are explored during time evolution. The results show that the detuning parameter and excitation number is very useful in generating a high amount of entanglement.
Protocol using kicked Ising dynamics for generating states with maximal multipartite entanglement
NASA Astrophysics Data System (ADS)
Mishra, Sunil K.; Lakshminarayan, Arul; Subrahmanyam, V.
2015-02-01
We present a solvable model of iterating cluster state protocols that lead to entanglement production, between contiguous blocks, of 1 ebit per iteration. This continues until the blocks are maximally entangled, at which stage an unravelling begins at the same rate until the blocks are unentangled. The model is a variant of the transverse-field Ising model and can be implemented with controlled-not and single-qubit gates. The interqubit entanglement as measured by the concurrence is shown to be zero for periodic chain realizations, while for open boundaries there are very specific instances at which these can develop. Thus we introduce a class of simply produced states with very large multipartite entanglement content of potential use in measurement-based quantum computing.
Otsuka, K; Chu, S-C; Lin, C-C; Tokunaga, K; Ohtomo, T
2009-11-23
To provide the underlying physical mechanism for formations of spatial- and polarization-entangled lasing patterns (namely, SPEPs), we performed experiments using a c-cut Nd:GdVO(4) microchip laser with off-axis laser-diode pumping. This extends recent work on entangled lasing pattern generation from an isotropic laser, where such a pattern was explained only in terms of generalized coherent states (GCSs) formed by mathematical manipulation. Here, we show that polarization-resolved transverse patterns can be well explained by the transverse mode-locking of distinct orthogonal linearly polarized Ince-Gauss (IG) mode pairs rather than GCSs. Dynamic properties of SPEPs were experimentally examined in both free-running and modulated conditions to identify long-term correlations of IG mode pairs over time. The complete chaos synchronization among IG mode pairs subjected to external perturbation is also demonstrated.
NASA Astrophysics Data System (ADS)
Varma, R. K.
2012-02-01
Matter wave interference effects on the macro-scale predicted by the author in charged particle dynamics in a magnetic field [R.K. Varma, Phys. Rev. E 64, 036608 (2001)], and observed subsequently [R.K. Varma, A.M. Punithavelu, S.B. Banerjee, Phys. Rev. E 65, 026503 (2002); R.K. Varma, S.B. Banerjee, Phys. Scr. 75, 19 (2007)] have been shown here to be an interesting consequence of quantum entanglement between the parallel and perpendicular degrees of freedom of the particle. Treating the problem in the framework of the inelastic scattering theory, it is shown that these macro-scale matter waves are generated in the `parallel' degree of freedom as a modulation of the plane wave state of the particle along the field concomitantly with the excitation of Landau levels in the perpendicular degree of freedom in an inelastic scattering episode. We highlight here the role of quantum entanglement leading to the generation of this macro-scale quantum entity which has been shown to exhibit observable consequences. This case also exemplifies a situation exhibiting quantum entanglement on the macro-scale.
Chen, Yen-Hung; I, Lin
2008-02-01
We investigate experimentally the detailed dynamics of how an existing microbubble B1 is impacted and shattered by another nearby pulsed-laser-induced microbubble B2, and the backward interaction on B2 in a thin liquid layer. Mediated by the flow field, potential energy can be accumulated or lost through the alternate compression and expansion of the two bubbles. The symmetry breaking induced by the presence of the nearby counterbubble generates push-pull-type alternate forward and backward axial jetting on the compressed bubble associated with the elongated shape or even entrainment of the counterexpanding bubble into the jet-indented boundary. The strong penetrating axial jet through B1, and its interplay with the transverse jets by the flow field surrounding B1 in the first compression stage and the second expanding stage of B1 lead to a complicated fragmentation pattern of B1. Increasing the interbubble interaction by decreasing the interbubble distance causes B2 to become entangled with B1 through its entrainments into the backward axial jet-indented region of B2, in the expansion phase of B2. At the extreme of large laser energy for B2, the leftward reexpansion of B1 is suppressed. The strong shear flow field generates many tiny bubbles around the liquid-gas boundaries of the two axial jet-induced major daughter bubbles from B1. The detailed interaction behaviors over a broad range of the energy of B2, 0.14-0.55 microJ (corresponding to the maximum bubble expansion energy), and of the interbubble distance (170-500 microm) are presented and discussed.
Quantum transitions and quantum entanglement from Dirac-like dynamics simulated by trapped ions
NASA Astrophysics Data System (ADS)
Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo
2016-05-01
Quantum transition probabilities and quantum entanglement for two-qubit states of a four-level trapped ion quantum system are computed for time-evolving ionic states driven by Jaynes-Cummings Hamiltonians with interactions mapped onto a SU(2 )⊗SU(2 ) group structure. Using the correspondence of the method of simulating a 3 +1 dimensional Dirac-like Hamiltonian for bispinor particles into a single trapped ion, one preliminarily obtains the analytical tools for describing ionic state transition probabilities as a typical quantum oscillation feature. For Dirac-like structures driven by generalized Poincaré classes of coupling potentials, one also identifies the SU(2 )⊗SU(2 ) internal degrees of freedom corresponding to intrinsic parity and spin polarization as an adaptive platform for computing the quantum entanglement between the internal quantum subsystems which define two-qubit ionic states. The obtained quantum correlational content is then translated into the quantum entanglement of two-qubit ionic states with quantum numbers related to the total angular momentum and to its projection onto the direction of the trapping magnetic field. Experimentally, the controllable parameters simulated by ion traps can be mapped into a Dirac-like system in the presence of an electrostatic field which, in this case, is associated to ionic carrier interactions. Besides exhibiting a complete analytical profile for ionic quantum transitions and quantum entanglement, our results indicate that carrier interactions actively drive an overall suppression of the quantum entanglement.
Stephanou, Pavlos S; Baig, Chunggi; Tsolou, Georgia; Mavrantzas, Vlasis G; Kröger, Martin
2010-03-28
The topological state of entangled polymers has been analyzed recently in terms of primitive paths which allowed obtaining reliable predictions of the static (statistical) properties of the underlying entanglement network for a number of polymer melts. Through a systematic methodology that first maps atomistic molecular dynamics (MD) trajectories onto time trajectories of primitive chains and then documents primitive chain motion in terms of a curvilinear diffusion in a tubelike region around the coarse-grained chain contour, we are extending these static approaches here even further by computing the most fundamental function of the reptation theory, namely, the probability psi(s,t) that a segment s of the primitive chain remains inside the initial tube after time t, accounting directly for contour length fluctuations and constraint release. The effective diameter of the tube is independently evaluated by observing tube constraints either on atomistic displacements or on the displacement of primitive chain segments orthogonal to the initial primitive path. Having computed the tube diameter, the tube itself around each primitive path is constructed by visiting each entanglement strand along the primitive path one after the other and approximating it by the space of a small cylinder having the same axis as the entanglement strand itself and a diameter equal to the estimated effective tube diameter. Reptation of the primitive chain longitudinally inside the effective constraining tube as well as local transverse fluctuations of the chain driven mainly from constraint release and regeneration mechanisms are evident in the simulation results; the latter causes parts of the chains to venture outside their average tube surface for certain periods of time. The computed psi(s,t) curves account directly for both of these phenomena, as well as for contour length fluctuations, since all of them are automatically captured in the atomistic simulations. Linear viscoelastic
Khani, Shaghayegh; Yamanoi, Mikio; Maia, Joao
2013-05-07
Dissipative Particle Dynamics (DPD) has shown a great potential in studying the dynamics and rheological properties of soft matter; however, it is associated with deficiencies in describing the characteristics of entangled polymer melts. DPD deficiencies are usually correlated to the time integrating method and the unphysical bond crossings due to utilization of soft potentials. One shortcoming of DPD thermostat is the inability to produce real values of Schmidt number for fluids. In order to overcome this, an alternative Lowe-Anderson (LA) method, which successfully stabilizes the temperature, is used in the present work. Additionally, a segmental repulsive potential was introduced to avoid unphysical bond crossings. The performance of the method in simulating polymer systems is discussed by monitoring the static and dynamic characteristics of polymer chains and the results from the LA method are compared to standard DPD simulations. The performance of the model is evaluated on capturing the main shear flow properties of entangled polymer systems. Finally the linear and nonlinear viscoelastic properties of such systems are discussed.
Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio
2011-02-04
We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.
The Dynamics of Entangled DNA Networks using Single-Molecule Methods
NASA Astrophysics Data System (ADS)
Chapman, Cole David
Single molecule experiments were performed on DNA, a model polymer, and entangled DNA networks to explore diffusion within complex polymeric fluids and their linear and non-linear viscoelasticity. DNA molecules of varying length and topology were prepared using biological methods. An ensemble of individual molecules were then fluorescently labeled and tracked in blends of entangled linear and circular DNA to examine the dependence of diffusion on polymer length, topology, and blend ratio. Diffusion was revealed to possess a non-monotonic dependence on the blend ratio, which we believe to be due to a second-order effect where the threading of circular polymers by their linear counterparts greatly slows the mobility of the system. Similar methods were used to examine the diffusive and conformational behavior of DNA within highly crowded environments, comparable to that experienced within the cell. A previously unseen gamma distributed elongation of the DNA in the presence of crowders, proposed to be due to entropic effects and crowder mobility, was observed. Additionally, linear viscoelastic properties of entangled DNA networks were explored using active microrheology. Plateau moduli values verified for the first time the predicted independence from polymer length. However, a clear bead-size dependence was observed for bead radii less than ~3x the tube radius, a newly discovered limit, above which microrheology results are within the continuum limit and may access the bulk properties of the fluid. Furthermore, the viscoelastic properties of entangled DNA in the non-linear regime, where the driven beads actively deform the network, were also examined. By rapidly driving a bead through the network utilizing optical tweezers, then removing the trap and tracking the bead's subsequent motion we are able to model the system as an over-damped harmonic oscillator and find the elasticity to be dominated by stress-dependent entanglements.
NASA Astrophysics Data System (ADS)
Rustaee, N.; Tavassoly, M. K.; Daneshmand, R.
2017-01-01
In this paper we study the interaction between two two-level atoms with a two-mode quantized field in the presence of damping. Dipole-dipole interaction between the two atoms and the correlation between the two modes of field are also taken into account. To solve the model, using appropriate transformations, we reduce the considered model to a well-known Jaynes-Cummings model. After finding the analytical solution for the atom-field system, the effects of damping, field-field correlation and atomic dipole-dipole interaction on the entanglement between atoms and population inversion are investigated, numerically. It is observed that the dynamical behavior of the degree of entanglement for damped systems, in relatively large domains of time, takes a low but constant value adequately far from the beginning of the interaction. In addition, it is found that the value of population inversion after the initial oscillations takes negative values for damped systems and eventually vanishes by increasing time. Also, it is seen that simultaneous presence of both dipole-dipole interaction and field-field correlation provides typical collapse-revival phenomenon in the time-behavior of atomic inversion.
Delayed birth of distillable entanglement in the evolution of bound entangled states
Derkacz, Lukasz; Jakobczyk, Lech
2010-08-15
The dynamical creation of entanglement between three-level atoms coupled to the common vacuum is investigated. For the class of bound entangled initial states, we show that the dynamics of closely separated atoms generates stationary distillable entanglement of asymptotic states. We also find that the effect of delayed sudden birth of distillable entanglement occurs in the case of atoms separated by a distance comparable with the radiation wavelength.
Multipartite entanglement for entanglement teleportation
Lee, Jinhyoung; Min, Hyegeun; Oh, Sung Dahm
2002-11-01
A scheme for entanglement teleportation is proposed to incorporate multipartite entanglement of four qubits as a quantum channel. Based on the invariance of entanglement teleportation under an arbitrary two-qubit unitary transformation, we derive relations for the separabilities of joint measurements at a sending station and of unitary operations at a receiving station. From the relations of the separabilities it is found that an inseparable quantum channel always leads to total teleportation of entanglement with an inseparable joint measurement and/or a nonlocal unitary operation.
NASA Astrophysics Data System (ADS)
Dahlsten, Oscar C. O.; Lupo, Cosmo; Mancini, Stefano; Serafini, Alessio
2014-09-01
We provide a summary of both seminal and recent results on typical entanglement. By ‘typical’ values of entanglement, we refer here to values of entanglement quantifiers that (given a reasonable measure on the manifold of states) appear with arbitrarily high probability for quantum systems of sufficiently high dimensionality. We shall focus on pure states and work within the Haar measure framework for discrete quantum variables, where we report on results concerning the average von Neumann and linear entropies as well as arguments implying the typicality of such values in the asymptotic limit. We then proceed to discuss the generation of typical quantum states with random circuitry. Different phases of entanglement, and the connection between typical entanglement and thermodynamics are discussed. We also cover approaches to measures on the non-compact set of Gaussian states of continuous variable quantum systems.
Entanglement versus energy in the entanglement transfer problem
Cavalcanti, Daniel; Oliveira, J. G. Jr.; Santos, Marcelo Franca; Peixoto de Faria, J. G.; Terra Cunha, Marcelo O.
2006-10-15
We study the relation between energy and entanglement in an entanglement transfer problem. We first analyze the general setup of two entangled qubits ('a' and 'b') exchanging this entanglement with two other independent qubits ('A' and 'B'). Qubit 'a' ('b') interacts with qubit 'A' ('B') via a spin-exchange-like unitary evolution. A physical realization of this scenario could be the problem of two-level atoms transferring entanglement to resonant cavities via independent Jaynes-Cummings interactions. We study the dynamics of entanglement and energy for the second pair of qubits (tracing out the originally entangled ones) and show that these quantities are closely related. For example, the allowed quantum states occupy a restricted area in a phase diagram entanglement vs energy. Moreover, the curve which bounds this area is exactly the one followed if both interactions are equal and the entire four qubit system is isolated. We also consider the case when the target pair of qubits is subjected to losses and can spontaneously decay.
Evolution of Quantum Entanglement in Open Systems
Isar, A.
2010-08-04
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators interacting with a thermal environment. Using Peres-Simon necessary sufficient criterion for separability of two-mode Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse revival of entanglement take place.
Entanglement replication in driven dissipative many-body systems.
Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F
2013-01-25
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
Dynamic hysteresis modelling of entangled cross-linked fibres in shear
NASA Astrophysics Data System (ADS)
Piollet, Elsa; Poquillon, Dominique; Michon, Guilhem
2016-11-01
The objective of this paper is to characterize and model the vibration behaviour of entangled carbon fibres cross-linked with epoxy resin. The material is tested in shear, in a double lap configuration. Experimental testing is carried out for frequencies varying from 1 Hz to 80 Hz and for shear strain amplitudes ranging from 5 ·10-4 to 1 ·10-2. Measured shear stress-strain hysteresis loops show a nonlinear behaviour with a low frequency dependency. The hysteresis loops are decomposed in a linear part and three nonlinear parts: a dry friction hysteresis, a stiffening term and a stiction-like overshoot term. The Generalized Dahl Model is used in conjunction with other hysteresis models to develop an appropriate description of the measured hysteresis loops, based on the three nonlinear parts. In particular, a new one-state formulation of the Bliman-Sorine model is developed. A new identification procedure is also introduced for the Dahl model, based on the so-called backbone curve. The model is shown to capture well the complex shapes of the measured hysteresis loops at all amplitudes.
NASA Astrophysics Data System (ADS)
Arian Zad, Hamid
2016-12-01
We analytically investigate Multiple Quantum (MQ) NMR dynamics in a mixed-three-spin (1/2,1,1/2) system with XXX Heisenberg model at the front of an external homogeneous magnetic field B. A single-ion anisotropy property ζ is considered for the spin-1. The intensities dependence of MQ NMR coherences on their orders (zeroth and second orders) for two pairs of spins (1,1/2) and (1/2,1/2) of the favorite tripartite system are obtained. It is also investigated dynamics of the pairwise quantum entanglement for the bipartite (sub)systems (1,1/2) and (1/2,1/2) permanently coupled by, respectively, coupling constants J}1 and J}2, by means of concurrence and fidelity. Then, some straightforward comparisons are done between these quantities and the intensities of MQ NMR coherences and ultimately some interesting results are reported. We also show that the time evolution of MQ coherences based on the reduced density matrix of the pair spins (1,1/2) is closely connected with the dynamics of the pairwise entanglement. Finally, we prove that one can introduce MQ coherence of the zeroth order corresponds to the pair spins (1,1/2) as an entanglement witness at some special time intervals.
Entanglement routers using macroscopic singlets.
Bayat, Abolfazl; Bose, Sougato; Sodano, Pasquale
2010-10-29
We propose a mechanism where high entanglement between very distant boundary spins is generated by suddenly connecting two long Kondo spin chains. We show that this procedure provides an efficient way to route entanglement between multiple distant sites. We observe that the key features of the entanglement dynamics of the composite spin chain are well described by a simple model of two singlets, each formed by two spins. The proposed routing mechanism is a footprint of the emergence of a Kondo cloud in a Kondo system and can be engineered and observed in varied physical settings.
Entanglement rates for bipartite open systems
NASA Astrophysics Data System (ADS)
Vershynina, Anna
2015-08-01
We provide an upper bound on the maximal rate at which irreversible quantum dynamics can generate entanglement in a bipartite system. The generator of irreversible dynamics consists of a Hamiltonian and dissipative terms in Lindblad form. The relative entropy of entanglement is chosen as a measure of entanglement in an ancilla-free system. We provide an upper bound on the entangling rate which has a logarithmic dependence on a dimension of a smaller system in a bipartite cut. We also investigate the rate of change of quantum mutual information in an ancilla-assisted system and provide an upper bound independent of dimension of ancillas.
Internal entanglement amplification by external interactions
Peskin, Uri; Huang Zhen; Kais, Sabre
2007-07-15
We propose a scheme to control the level of entanglement between two fixed spin-1/2 systems by interaction with a third particle. For specific designs, entanglement is shown to be 'pumped' into the system from the surroundings even when the spin-spin interaction within the system is small or nonexistent. The effect of the external particle on the system is introduced by including a dynamic spinor in the Hamiltonian. Controlled amplification of the internal entanglement to its maximum value is demonstrated. The possibility of entangling noninteracting spins in a stationary state is also demonstrated by coupling each one of them to a flying qubit in a quantum wire.
Polygamy of distributed entanglement
NASA Astrophysics Data System (ADS)
Buscemi, Francesco; Gour, Gilad; Kim, Jeong San
2009-07-01
While quantum entanglement is known to be monogamous (i.e., shared entanglement is restricted in multipartite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multiqubit systems and several trade-offs between UE and other correlation measures.
NASA Astrophysics Data System (ADS)
Bashkirov, E. K.; Mastyugin, M. S.
2014-02-01
The influence of dipole-dipole interaction on the entanglement between two Δ-type artificial atoms interacting with two-mode field via non-degenerate two-photon transitions has been investigated. The atom-field system is assumed to be prepared in four-partite atom-field entangled state. The results show that the entanglement between two atoms can be increased by means of dipole-dipole interaction and for some initial states the entanglement sudden death effect can be weakened.
Experimental Entanglement Redistribution under Decoherence Channels
NASA Astrophysics Data System (ADS)
Aguilar, G. H.; Valdés-Hernández, A.; Davidovich, L.; Walborn, S. P.; Souto Ribeiro, P. H.
2014-12-01
When an initially entangled pair of qubits undergoes local decoherence processes, there are a number of ways in which the original entanglement can spread throughout the multipartite system consisting of the two qubits and their environments. Here, we report theoretical and experimental results regarding the dynamics of the distribution of entanglement in this system. The experiment employs an all optical setup in which the qubits are encoded in the polarization degrees of freedom of two photons, and each local decoherence channel is implemented with an interferometer that couples the polarization to the path of each photon, which acts as an environment. We monitor the dynamics and distribution of entanglement and observe the transition from bipartite to multipartite entanglement and back, and show how these transitions are intimately related to the sudden death and sudden birth of entanglement. The multipartite entanglement is further analyzed in terms of three- and four-partite entanglement contributions, and genuine four-qubit entanglement is observed at some points of the evolution.
Nonequilibrium transient dynamics of photon statistics
NASA Astrophysics Data System (ADS)
Ali, Md. Manirul; Zhang, Wei-Min
2017-03-01
We investigate the transient dynamics of photon statistics through two-time correlation functions for optical field coupled to a non-Markovian environment, described by the Fano-type Hamiltonian. We exactly solve the time-evolution of an initially nonclassical state which exhibits photon antibunching. We find that the transient correlations at different times t yield a smooth transition from antibunching to bunching photon statistics in the weak system-environment coupling regime. In the strong-coupling regime, the two-time correlations exhibit oscillations that persists both in the transient process and in the steady-state limit. The oscillatory behavior of photon statistics is a manifestation of strong non-Markovian memory dynamics where the system remains in nonequilibrium from its environment. We also find that the antibunching-to-bunching transition in the weak-coupling regime and the photon statistical oscillations in the strong-coupling regime are strongly influenced by the environment temperature.
NASA Astrophysics Data System (ADS)
Tridon, F.; Battaglia, A.
2015-06-01
A novel technique based on Ka-W band dual-wavelength Doppler spectra has been developed for the simultaneous retrieval of binned rain drop size distributions (DSD) and air state parameters like vertical wind and air broadening caused by turbulence and wind shear. The rationale underpinning the method consists in exploiting the peculiar features observed in Doppler spectra caused by the wavelength dependence of scattering and absorption properties. A notional study based on a large data set of DSDs measured by a two-dimensional video disdrometer demonstrates that the retrieval performs best for small/moderate air broadening spectral width and when mean volume diameters exceed at least 1 mm. The retrieval is also limited to ranges below cloud base and where the signal-to-noise ratio of both radars exceed 10 dB, which rules out regions affected by strong attenuation. Broadly speaking, it is applicable to rain rates comprised between roughly 1 and 30 mm h-1. Preliminary retrieval for observations at the Atmospheric Radiation Measurement Southern Great Plains site shows very good agreement with independent reflectivity measurements from a 0.915 GHz wind profiler. The proposed methodology shows great potential in linking microphysics to dynamics in rainfall studies.
Quantum Entanglement and Quantum Discord in Gaussian Open Systems
Isar, Aurelian
2011-10-03
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.
Quantum Entanglement in Open Systems
Isar, Aurelian
2008-01-24
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, the master equation for two independent harmonic oscillators interacting with an environment is solved in the asymptotic long-time regime. Using the Peres-Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that the two non-interacting systems become asymptotically entangled for certain environments, so that in the long-time regime they manifest non-local quantum correlations. We calculate also the logarithmic negativity characterizing the degree of entanglement of the asymptotic state.
Generalized Master Equations Leading to Completely Positive Dynamics
NASA Astrophysics Data System (ADS)
Vacchini, Bassano
2016-12-01
We provide a general construction of quantum generalized master equations with a memory kernel leading to well-defined, that is, completely positive and trace-preserving, time evolutions. The approach builds on an operator generalization of memory kernels appearing in the description of non-Markovian classical processes and puts into evidence the nonuniqueness of the relationship arising due to the typical quantum issue of operator ordering. The approach provides a physical interpretation of the structure of the kernels, and its connection with the classical viewpoint allows for a trajectory description of the dynamics. Previous apparently unrelated results are now connected in a unified framework, which further allows us to phenomenologically construct a large class of non-Markovian evolutions taking as the starting point collections of time-dependent maps and instantaneous transformations describing the microscopic interaction dynamics.
Goyal, Sandeep K.; Ghosh, Sibasish
2010-10-15
Entanglement sudden death (ESD) in spatially separated two-mode Gaussian states coupled to local thermal and squeezed thermal baths is studied by mapping the problem to that of the quantum-to-classical transition. Using Simon's criterion concerning the characterization of classicality in Gaussian states, the time to ESD is calculated by analyzing the covariance matrices of the system. The results for the two-mode system at T=0 and T>0 for the two types of bath states are generalized to n modes, and are shown to be similar in nature to the results for the general discrete n-qubit system.
Entangling two transportable neutral atoms via local spin exchange.
Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A
2015-11-12
To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.
Entangling two transportable neutral atoms via local spin exchange
NASA Astrophysics Data System (ADS)
Kaufman, A. M.; Lester, B. J.; Foss-Feig, M.; Wall, M. L.; Rey, A. M.; Regal, C. A.
2015-11-01
To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.
Charged topological entanglement entropy
NASA Astrophysics Data System (ADS)
Matsuura, Shunji; Wen, Xueda; Hung, Ling-Yan; Ryu, Shinsei
2016-05-01
A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry-protected topological (SPT) phases in (2+1)-dimensional space-time by using this charged entanglement entropy. SPT phases are short-range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is nonzero for nontrivial SPT phases and therefore it is a useful measure to detect short-range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles.
Generalized entanglement entropy
NASA Astrophysics Data System (ADS)
Taylor, Marika
2016-07-01
We discuss two measures of entanglement in quantum field theory and their holographic realizations. For field theories admitting a global symmetry, we introduce a global symmetry entanglement entropy, associated with the partitioning of the symmetry group. This quantity is proposed to be related to the generalized holographic entanglement entropy defined via the partitioning of the internal space of the bulk geometry. Thesecond measure of quantum field theory entanglement is the field space entanglement entropy, obtained by integrating out a subset of the quantum fields. We argue that field space entanglement entropy cannot be precisely realised geometrically in a holographic dual. However, for holographic geometries with interior decoupling regions, the differential entropy provides a close analogue to the field space entanglement entropy. We derive generic descriptions of such inner throat regions in terms of gravity coupled to massive scalars and show how the differential entropy in the throat captures features of the field space entanglement entropy.
Decoherence and quantum-classical master equation dynamics.
Grunwald, Robbie; Kapral, Raymond
2007-03-21
The conditions under which quantum-classical Liouville dynamics may be reduced to a master equation are investigated. Systems that can be partitioned into a quantum-classical subsystem interacting with a classical bath are considered. Starting with an exact non-Markovian equation for the diagonal elements of the density matrix, an evolution equation for the subsystem density matrix is derived. One contribution to this equation contains the bath average of a memory kernel that accounts for all coherences in the system. It is shown to be a rapidly decaying function, motivating a Markovian approximation on this term in the evolution equation. The resulting subsystem density matrix equation is still non-Markovian due to the fact that bath degrees of freedom have been projected out of the dynamics. Provided the computation of nonequilibrium average values or correlation functions is considered, the non-Markovian character of this equation can be removed by lifting the equation into the full phase space of the system. This leads to a trajectory description of the dynamics where each fictitious trajectory accounts for decoherence due to the bath degrees of freedom. The results are illustrated by computations of the rate constant of a model nonadiabatic chemical reaction.
Deterministic entanglement generation from driving through quantum phase transitions
NASA Astrophysics Data System (ADS)
Luo, Xin-Yu; Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Han, Ming-Fei; Tey, Meng Khoon; You, Li
2017-02-01
Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a rubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs.
Measuring entanglement entropy in a quantum many-body system.
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-03
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
Freezing distributed entanglement in spin chains
D'Amico, Irene; Lovett, Brendon W.; Spiller, Timothy P.
2007-09-15
We show how to freeze distributed entanglement that has been created from the natural dynamics of spin chain systems. The technique that we propose simply requires single-qubit operations and isolates the entanglement in specific qubits at the ends of branches. Such frozen entanglement provides a useful resource, for example for teleportation or distributed quantum processing. The scheme can be applied to a wide range of systems--including actual spin systems and alternative qubit embodiments in strings of quantum dots, molecules, or atoms.
NASA Astrophysics Data System (ADS)
Liang, Xian-Ting; Zhang, Wei-Min; Zhuo, Yi-Zhong
2010-01-01
In this paper, we present a theoretical description to the quantum coherence and decoherence phenomena of energy transfer in photosynthesis observed in a recent experiment [Science 316, 1462 (2007)]. As a successive two-color laser pulses with selected frequencies cast on a sample of the photosynthetic purple bacterium Rb. sphaeroides two resonant excitations of electrons in chromophores can be generated. However, this effective two-level subsystem will interact with its protein environment and decoherence is inevitable. We describe this subsystem coupled with its environment as a dynamical spin-boson model. The non-Markovian decoherence dynamics is described using a quasiadiabatic propagator path integral (QUAPI) approach. With the photon-induced effective time-dependent level splitting energy and level flip coupling coefficient between the two excited states and the environment-induced non-Markovian decoherence dynamics, our theoretical result is in good agreement with the experimental data.
Long distance entanglement distribution
NASA Astrophysics Data System (ADS)
Broadfoot, Stuart Graham
Developments in the interdisciplinary field of quantum information open up previously impossible abilities in the realms of information processing and communication. Quantum entanglement has emerged as one property of quantum systems that acts as a resource for quantum information processing and, in particular, enables teleportation and secure cryptography. Therefore, the creation of entangled resources is of key importance for the application of these technologies. Despite a great deal of research the efficient creation of entanglement over long distances is limited by inevitable noise. This problem can be overcome by creating entanglement between nodes in a network and then performing operations to distribute the entanglement over a long distance. This thesis contributes to the field of entanglement distribution within such quantum networks. Entanglement distribution has been extensively studied for one-dimensional networks resulting in "quantum repeater" protocols. However, little work has been done on higher dimensional networks. In these networks a fundamentally different scaling, called "long distance entanglement distribution", can appear between the resources and the distance separating the systems to be entangled. I reveal protocols that enable long distance entanglement distribution for quantum networks composed of mixed state and give a few limitations to the capabilities of entanglement distribution. To aid in the implementation of all entanglement distribution protocols I finish by introducing a new system, composed of an optical nanofibre coupled to a carbon nanotube, that may enable new forms of photo-detectors and quantum memories.
Extremal extensions of entanglement witnesses: Finding new bound entangled states
Sengupta, R.; Arvind
2011-09-15
In this paper, we discuss extremal extensions of entanglement witnesses based on Choi's map. The constructions are based on a generalization of the Choi map, from which we construct entanglement witnesses. These extremal extensions are powerful in terms of their capacity to detect entanglement of positive under partial transpose (PPT) entangled states and lead to unearthing of entanglement of new PPT states. We also use the Cholesky-like decomposition to construct entangled states which are revealed by these extremal entanglement witnesses.
Memory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chain
NASA Astrophysics Data System (ADS)
Apollaro, Tony J. G.; di Franco, Carlo; Plastina, Francesco; Paternostro, Mauro
2011-03-01
Using recently proposed measures for non-Markovianity [H.-P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.210401 103, 210401 (2009)], we study the dynamics of a qubit coupled to a spin environment via an energy-exchange mechanism. We show the existence of a point, in the parameter space of the system, where the qubit dynamics is effectively Markovian and that such a point separates two regions with completely different dynamical behaviors. Indeed, our study demonstrates that the qubit evolution can in principle be tuned from a perfectly forgetful one to a deep non-Markovian regime where the qubit is strongly affected by the dynamical backaction of the environmental spins. By means of a theoretical quantum process tomography analysis, we provide a complete and intuitive characterization of the qubit channel.
Memory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chain
Apollaro, Tony J. G.; Di Franco, Carlo; Plastina, Francesco; Paternostro, Mauro
2011-03-15
Using recently proposed measures for non-Markovianity [H.-P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)], we study the dynamics of a qubit coupled to a spin environment via an energy-exchange mechanism. We show the existence of a point, in the parameter space of the system, where the qubit dynamics is effectively Markovian and that such a point separates two regions with completely different dynamical behaviors. Indeed, our study demonstrates that the qubit evolution can in principle be tuned from a perfectly forgetful one to a deep non-Markovian regime where the qubit is strongly affected by the dynamical backaction of the environmental spins. By means of a theoretical quantum process tomography analysis, we provide a complete and intuitive characterization of the qubit channel.
Geometrically induced singular behavior of entanglement
NASA Astrophysics Data System (ADS)
Cavalcanti, D.; Saldanha, P. L.; Cosme, O.; Brandão, F. G. S. L.; Monken, C. H.; Pádua, S.; Santos, M. França; Cunha, M. O. Terra
2008-07-01
We show that the geometry of the set of quantum states plays a crucial role in the behavior of entanglement in different physical systems. More specifically, it is shown that singular points at the border of the set of unentangled states originate singularities in the dynamics of entanglement of smoothly varying quantum states. We illustrate this result by implementing a photonic parametric down-conversion experiment. Moreover, this effect is connected to recently discovered singularities in condensed matter models.
Gaussian entanglement of formation
Wolf, M.M.; Giedke, G.; Krueger, O.; Werner, R. F.; Cirac, J.I.
2004-05-01
We introduce a Gaussian version of the entanglement of formation adapted to bipartite Gaussian states by considering decompositions into pure Gaussian states only. We show that this quantity is an entanglement monotone under Gaussian operations and provide a simplified computation for states of arbitrary many modes. For the case of one mode per site the remaining variational problem can be solved analytically. If the considered state is in addition symmetric with respect to interchanging the two modes, we prove additivity of the considered entanglement measure. Moreover, in this case and considering only a single copy, our entanglement measure coincides with the true entanglement of formation.
Quantum Entanglement Swapping between Two Multipartite Entangled States
NASA Astrophysics Data System (ADS)
Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi
2016-12-01
Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.
NASA Astrophysics Data System (ADS)
Snyder, Douglas
2009-04-01
There are two steps in establishing a quantum entanglement. These two steps often are not considered as independent from one another. Step 1 involves the interaction through which the particles are to be entangled. Step 2 involves making the result of the interaction through which the development of the entanglement begins available to the environment. Step 1 can occur in isolation from the environment. Step 2 then occurs with making the result of the interaction available to the environment through no longer isolating the particles. The entanglement that begins to develop in step 1 can originate in a form where there is which-way information. With step 2, the entanglement is complete and which-way information is established (option 1). Instead of completing the entanglement with step 2, the developing entanglement can be eliminated with the result that which-way information is lost. The result is a distribution for each of the paired particles that exhibits interference (option 2). The elimination of the developing entanglement results in haunted quantum entanglement. Through the use of options 1 and 2, one need not associate measurements on each of two entangled particles after measurements on each of the particles in order to decipher information. Associating measurements can be done automatically as measurements are made through the ability to control whether a developing entanglement is allowed to be fully established or instead eliminated. Options 1 and 2 can be used in a communications device.
Trajectory based non-markovian dissipative tunneling.
Koch, Werner; Grossmann, Frank; Tannor, David J
2010-12-03
The influence of a dissipative environment on scattering of a particle by a barrier is investigated by using the recently introduced bohmian mechanics with complex action [J. Chem. Phys. 125, 231103 (2006)]. An extension of this complex trajectory based formalism to include the interaction of the tunneling particle with an environment of harmonic oscillators with a continuous spectral density and at a certain finite temperature allows us to calculate transmission probabilities beyond the weak system bath coupling regime. The results display an increasing tunneling probability for energies below the barrier and a decreased transmission above the barrier due to the coupling. Furthermore, we demonstrate that solutions of a markovian master equation fail to do so in general.
Dynamical Change of Quantum Fisher Information of Cavity-Reservoir Systems
NASA Astrophysics Data System (ADS)
Huang, Jiang; Xie, Qin
2016-04-01
We study the quantum Fisher information (QFI) dynamics of the phase parameter in the enlarged cavity-reservoir systems at zero temperature under two situations of large N limit and non-Markovian environment, respectively. We find an important relation that the total quantities of QFI of the cavity and reservoir are equal to unit during the dynamical evolution. The lost QFI of the cavity transfers to its corresponding reservoir with the same quantities simultaneously. Moreover, we also find that the detuning parameter and non-Markovian effect are two significant factors to affect the preservation of QFI. Supported by the National Natural Science Foundation of China under Grant No. 11374096 and the Natural Science Foundation of Guangdong Province under Grant No. 2015A030310354 and the Projection of Enhancing School with Innovation of Guangdong Ocean University under Grant Nos. GDOU2014050251 and GDOU2014050252
Renormalized entanglement entropy
NASA Astrophysics Data System (ADS)
Taylor, Marika; Woodhead, William
2016-08-01
We develop a renormalization method for holographic entanglement entropy based on area renormalization of entangling surfaces. The renormalized entanglement en-tropy is derived for entangling surfaces in asymptotically locally anti-de Sitter spacetimes in general dimensions and for entangling surfaces in four dimensional holographic renor-malization group flows. The renormalized entanglement entropy for disk regions in AdS 4 spacetimes agrees precisely with the holographically renormalized action for AdS 4 with spherical slicing and hence with the F quantity, in accordance with the Casini-Huerta-Myers map. We present a generic class of holographic RG flows associated with deforma-tions by operators of dimension 3 /2 < Δ < 5 /2 for which the F quantity increases along the RG flow, hence violating the strong version of the F theorem. We conclude by explaining how the renormalized entanglement entropy can be derived directly from the renormalized partition function using the replica trick i.e. our renormalization method for the entangle-ment entropy is inherited directly from that of the partition function. We show explicitly how the entanglement entropy counterterms can be derived from the standard holographic renormalization counterterms for asymptotically locally anti-de Sitter spacetimes.
Spectral conditions for entanglement witnesses versus bound entanglement
Chruscinski, Dariusz; Kossakowski, Andrzej; Sarbicki, Gniewomir
2009-10-15
It is shown that entanglement witnesses constructed via the family of spectral conditions are decomposable, i.e., cannot be used to detect bound entanglement. It supports several observations that bound entanglement reveals highly nonspectral features.
Influence of external magnetic field on dynamics of open quantum systems.
Kalandarov, Sh A; Kanokov, Z; Adamian, G G; Antonenko, N V
2007-03-01
The influence of an external magnetic field on the non-Markovian dynamics of an open two-dimensional quantum system is investigated. The fluctuations of collective coordinate and momentum and transport coefficients are studied for a charged harmonic oscillator linearly coupled to a neutral bosonic heat bath. It is shown that the dissipation of collective energy slows down with increasing strength of the external magnetic field. The role of magnetic field in the diffusion processes is illustrated by several examples.
Influence of external magnetic field on dynamics of open quantum systems
Kalandarov, Sh. A.; Kanokov, Z.; Adamian, G. G.; Antonenko, N. V.
2007-03-15
The influence of an external magnetic field on the non-Markovian dynamics of an open two-dimensional quantum system is investigated. The fluctuations of collective coordinate and momentum and transport coefficients are studied for a charged harmonic oscillator linearly coupled to a neutral bosonic heat bath. It is shown that the dissipation of collective energy slows down with increasing strength of the external magnetic field. The role of magnetic field in the diffusion processes is illustrated by several examples.
Witnessing entanglement without entanglement witness operators
Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto
2016-01-01
Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables. PMID:27681625
Witnessing entanglement without entanglement witness operators
NASA Astrophysics Data System (ADS)
Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto
2016-10-01
Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables.
Quantum entanglement for two qubits in a nonstationary cavity
NASA Astrophysics Data System (ADS)
Berman, Oleg L.; Kezerashvili, Roman Ya.; Lozovik, Yurii E.
2016-11-01
The quantum entanglement and the probability of the dynamical Lamb effect for two qubits caused by nonadiabatic fast change of the boundary conditions are studied. The conditional concurrence of the qubits for each fixed number of created photons in a nonstationary cavity is obtained as a measure of the dynamical quantum entanglement due to the dynamical Lamb effect. We discuss the physical realization of the dynamical Lamb effect, based on superconducting qubits.
Ballistic spreading of entanglement in a diffusive nonintegrable system.
Kim, Hyungwon; Huse, David A
2013-09-20
We study the time evolution of the entanglement entropy of a one-dimensional nonintegrable spin chain, starting from random nonentangled initial pure states. We use exact diagonalization of a nonintegrable quantum Ising chain with transverse and longitudinal fields to obtain the exact quantum dynamics. We show that the entanglement entropy increases linearly with time before finite-size saturation begins, demonstrating a ballistic spreading of the entanglement, while the energy transport in the same system is diffusive. Thus, we explicitly demonstrate that the spreading of entanglement is much faster than the energy diffusion in this nonintegrable system.
Quantum Spin Baths Induced Transition of Decoherence and Entanglement
Chen Pochung; Lai Chengyan; Hung, J.-T.; Mou Chungyu
2008-11-07
We investigate the reduced dynamics of single or two qubits coupled to an interacting quantum spin bath modeled by a XXZ spin chain. By using the method of time-dependent density matrix renormalization group (t-DMRG), we evaluate nonperturbatively the induced decoherence and entanglement. We find that the behavior of both decoherence and entanglement strongly depend on the phase of the underlying spin bath. We show that spin baths can induce entanglement for an initially disentangled pair of qubits. We observe that entanglement sudden death only occurs in paramagnetic phase and discuss the effect of the coupling range.
Geometric measures of entanglement
Uyanik, K.; Turgut, S.
2010-03-15
The geometric measure of entanglement, which expresses the minimum distance to product states, has been generalized to distances to sets that remain invariant under the stochastic reducibility relation. For each such set, an associated entanglement monotone can be defined. The explicit analytical forms of these measures are obtained for bipartite entangled states. Moreover, the three-qubit case is discussed and it is argued that the distance to the W states is a new monotone.
Sancho, Pedro; Plaja, Luis
2011-06-15
T. Tanabe et al. [Phys. Rev. A 82, 040101(R) (2010)] have experimentally demonstrated that the emission properties of unstable atoms in entangled and product states are different. The authors define an apparent decay time as a fitting parameter which falls below the lifetime of the single atom for entangled pairs. We argue that their results about coincidence time spectra are correct, but those concerning lifetimes cannot be considered conclusive because they assume the emission of photons by the two atoms to be independent processes, a doubtful hypothesis for entangled states. We suggest an improved evaluation of the lifetimes based on a rigorous approach, which demands some modifications of the experimental procedure.
NASA Astrophysics Data System (ADS)
Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing; Fei, Shao-Ming
2016-08-01
We present several criteria for genuine multipartite entanglement from universal uncertainty relations based on majorization theory. Under non-negative Schur-concave functions, the vector-type uncertainty relation generates a family of infinitely many detectors to check genuine multipartite entanglement. We also introduce the concept of k-separable circles via geometric distance for probability vectors, which include at most ( k-1)-separable states. The entanglement witness is also generalized to a universal entanglement witness which is able to detect the k-separable states more accurately.
Entanglement in Bose-Einstein Condensates with One-Body Losses
NASA Astrophysics Data System (ADS)
Li, Song-Song
2017-02-01
We investigate quantum entanglement in two mutually non-interacting and spatially non-overlapping Bose-Einstein condensates in two harmonic potentials with one-body losses. One-body losses play an important role in the dynamical process of generating quantum entanglement. The stronger one-body losses induce more entanglement and maintain in a longer time interval.
Quantum entanglement in the multiverse
NASA Astrophysics Data System (ADS)
Robles-Pérez, S.; González-Díaz, P. F.
2014-01-01
We show that the quantum state of a multiverse made up of classically disconnected regions of the space-time, whose dynamical evolution is dominated by a homogeneous and isotropic fluid, is given by a squeezed state. These are typical quantum states that have no classical counterpart and therefore allow analyzing the violation of classical inequalities as well as the EPR argument in the context of the quantum multiverse. The thermodynamical properties of entanglement are calculated for a composite quantum state of two universes whose states are quantum-mechanically correlated. The energy of entanglement between the positive and negative modes of a scalar field, which correspond to the expanding and contracting branches of a phantom universe, are also computed.
Reduced dynamics with initial correlations: Multiconfigurational approach
NASA Astrophysics Data System (ADS)
Burghardt, I.
2001-01-01
Dynamical equations for a subsystem interacting with an environment are proposed which are adapted to a multiconfigurational form of the density operator. Initial correlations are accounted for in a non-Markovian master equation. Two variants of the latter are derived by projection operator techniques and cumulant expansion techniques, respectively. The present scheme is developed in view of describing the ultrafast dynamics in solute-solvent complexes where the details of system-environment correlations are of importance. The master equation is readily integrated into the equations of motion derived by the multiconfiguration time-dependent Hartree method, which provides an efficient scheme for the numerical propagation of the density operator.
Entanglement by Path Identity.
Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton
2017-02-24
Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces-starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.
Ultrafine Entanglement Witnessing
NASA Astrophysics Data System (ADS)
Shahandeh, Farid; Ringbauer, Martin; Loredo, Juan C.; Ralph, Timothy C.
2017-03-01
Entanglement witnesses are invaluable for efficient quantum entanglement certification without the need for expensive quantum state tomography. Yet, standard entanglement witnessing requires multiple measurements and its bounds can be elusive as a result of experimental imperfections. Here, we introduce and demonstrate a novel procedure for entanglement detection which simply and seamlessly improves any standard witnessing procedure by using additional available information to tighten the witnessing bounds. Moreover, by relaxing the requirements on the witness operators, our method removes the general need for the difficult task of witness decomposition into local observables. We experimentally demonstrate entanglement detection with our approach using a separable test operator and a simple fixed measurement device for each agent. Finally, we show that the method can be generalized to higher-dimensional and multipartite cases with a complexity that scales linearly with the number of parties.
NASA Astrophysics Data System (ADS)
Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton
2017-02-01
Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces—starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.
Quantum entanglement percolation
NASA Astrophysics Data System (ADS)
Siomau, Michael
2016-09-01
Quantum communication demands efficient distribution of quantum entanglement across a network of connected partners. The search for efficient strategies for the entanglement distribution may be based on percolation theory, which describes evolution of network connectivity with respect to some network parameters. In this framework, the probability to establish perfect entanglement between two remote partners decays exponentially with the distance between them before the percolation transition point, which unambiguously defines percolation properties of any classical network or lattice. Here we introduce quantum networks created with local operations and classical communication, which exhibit non-classical percolation transition points leading to striking communication advantages over those offered by the corresponding classical networks. We show, in particular, how to establish perfect entanglement between any two nodes in the simplest possible network—the 1D chain—using imperfectly entangled pairs of qubits.
Carnis, Jerome; Cha, Wonsuk; Wingert, James; Kang, Jinback; Jiang, Zhang; Song, Sanghoon; Sikorski, Marcin; Robert, Aymeric; Gutt, Christian; Chen, San-Wen; Dai, Yeling; Ma, Yicong; Guo, Hongyu; Lurio, Laurence B.; Shpyrko, Oleg; Narayanan, Suresh; Cui, Mengmeng; Kosif, Irem; Emrick, Todd; Russell, Thomas P.; Lee, Hae Cheol; Yu, Chung-Jong; Grübel, Gerhard; Sinha, Sunil K.; Kim, Hyunjung
2014-01-01
The recent advent of hard x-ray free electron lasers (XFELs) opens new areas of science due to their exceptional brightness, coherence, and time structure. In principle, such sources enable studies of dynamics of condensed matter systems over times ranging from femtoseconds to seconds. However, the studies of “slow” dynamics in polymeric materials still remain in question due to the characteristics of the XFEL beam and concerns about sample damage. Here we demonstrate the feasibility of measuring the relaxation dynamics of gold nanoparticles suspended in polymer melts using X-ray photon correlation spectroscopy (XPCS), while also monitoring eventual X-ray induced damage. In spite of inherently large pulse-to-pulse intensity and position variations of the XFEL beam, measurements can be realized at slow time scales. The X-ray induced damage and heating are less than initially expected for soft matter materials. PMID:25109363
Entanglement of formation in two-mode Gaussian systems in a thermal environment
Dumitru, Irina Isar, Aurelian
2015-12-07
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in a separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.
Entanglement negativity in the multiverse
Kanno, Sugumi; Soda, Jiro E-mail: jonathan.shock@uct.ac.za
2015-03-01
We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.
Entanglement negativity in the multiverse
Kanno, Sugumi; Shock, Jonathan P.; Soda, Jiro
2015-03-10
We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.
Multipartite Entanglement And Firewalls
NASA Astrophysics Data System (ADS)
Luo, Shengqiao; Stoltenberg, Henry; Albrecht, Andreas
2016-03-01
Black holes offer an exciting area to explore the nature of quantum gravity. The classic work on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-Sully AMPS have noted an apparent paradox in reconciling fundamental properties of quantum mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the existence of a ``firewall'' inside the black hole horizon which prevents objects from falling smoothly toward the singularity. A fundamental limitation on the behavior of quantum entanglement known as ``monogamy'' plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. We identified an example which could change the AMPS accounting of quantum entanglement and perhaps eliminating the need for a firewall. Looking at different many body entanglement measures and their monogamy properties can tell us subtle ways in which different subsystems can share their entanglement. Specific measures we consider include negativity, concurrence, and mutual information. Taking insights from these different measures, we constructed toy models for black hole decay which have different entanglement behaviors than those assumed by AMPS. We hope to use our effective toy model to demonstrate interesting new ways of thinking about black holes.
Constructing optimal entanglement witnesses
Chruscinski, Dariusz; Pytel, Justyna; Sarbicki, Gniewomir
2009-12-15
We provide a class of indecomposable entanglement witnesses. In 4x4 case, it reproduces the well-known Breuer-Hall witness. We prove that these witnesses are optimal and atomic, i.e., they are able to detect the 'weakest' quantum entanglement encoded into states with positive partial transposition. Equivalently, we provide a construction of indecomposable atomic maps in the algebra of 2kx2k complex matrices. It is shown that their structural physical approximations give rise to entanglement breaking channels. This result supports recent conjecture by Korbicz et al. [Phys. Rev. A 78, 062105 (2008)].
Chain entanglements. I. Theory
NASA Astrophysics Data System (ADS)
Fixman, Marshall
1988-09-01
A model of concentrated polymer solution dynamics is described. The forces in a linear generalized Langevin equation for the motion of a probe chain are derived on the assumption that all relaxation of the forces is due to motion of the surrounding matrix. Vicinal chain displacements are classified as viscoelastic deformation, reptation, and minor residual fluctuations. The latter provide a torsional relaxation of the primitive path that minimizes the significance of transverse forces on the probe chain. All displacements of vicinal segments are assumed proportional to the forces that they exert on the probe chain. In response to an external force, the displacement of the probe chain relative to a laboratory frame is increased by viscoelastic deformation of the matrix, but reptative diffusion relative to the deforming matrix is slowed down. The net effect on translational diffusion is negligible if the probe and vicinal chains have the same chain length N, but the friction constant for reptative motion is increased by a factor N1-xs. xs=1/2 if Gaussian conformational statistics applies during the disengagement process, while xs =0.6 if excluded volume statistics applies. The translational friction constant is βp ˜N2, as in reptation theory, but the viscosity is η˜N4-xs . The persistence of entanglements during the translational diffusion of the probe chain across many radii of gyration is rationalized pictorially in terms of correlated reptative motion of the probe and vicinal chains.
Communication: quantum dynamics in classical spin baths.
Sergi, Alessandro
2013-07-21
A formalism for studying the dynamics of quantum systems embedded in classical spin baths is introduced. The theory is based on generalized antisymmetric brackets and predicts the presence of open-path off-diagonal geometric phases in the evolution of the density matrix. The weak coupling limit of the equation can be integrated by standard algorithms and provides a non-Markovian approach to the computer simulation of quantum systems in classical spin environments. It is expected that the theory and numerical schemes presented here have a wide applicability.
NASA Astrophysics Data System (ADS)
D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio
2016-09-01
Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.
Gaussian Intrinsic Entanglement
NASA Astrophysics Data System (ADS)
Mišta, Ladislav; Tatham, Richard
2016-12-01
We introduce a cryptographically motivated quantifier of entanglement in bipartite Gaussian systems called Gaussian intrinsic entanglement (GIE). The GIE is defined as the optimized mutual information of a Gaussian distribution of outcomes of measurements on parts of a system, conditioned on the outcomes of a measurement on a purifying subsystem. We show that GIE vanishes only on separable states and exhibits monotonicity under Gaussian local trace-preserving operations and classical communication. In the two-mode case, we compute GIE for all pure states as well as for several important classes of symmetric and asymmetric mixed states. Surprisingly, in all of these cases, GIE is equal to Gaussian Rényi-2 entanglement. As GIE is operationally associated with the secret-key agreement protocol and can be computed for several important classes of states, it offers a compromise between computable and physically meaningful entanglement quantifiers.
Spatiotemporal multipartite entanglement
Kolobov, Mikhail I.; Patera, Giuseppe
2011-05-15
In this Rapid Communication, we propose, following the spirit of quantum imaging, to generalize the theory of multipartite entanglement for the continuous-variable Gaussian states by considering, instead of the global covariance matrix, the local correlation matrix at two different spatiotemporal points ({rho}-vector,t) and ({rho}-vector{sup '},t{sup '}), with {rho}-vector being the transverse coordinate. Our approach makes it possible to introduce the characteristic spatial length and the characteristic time of the multipartite entanglement, which in general depend on the number of 'parties' in the system. As an example, we consider tripartite entanglement in spontaneous parametric down-conversion with a spatially structured pump. We investigate spatiotemporal properties of such entanglement and calculate its characteristic spatial length and time.
Multipartite entangled states in particle mixing
Blasone, M.; Dell'Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F.
2008-05-01
In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.
Entanglement from longitudinal and scalar photons
Franson, J. D
2011-09-15
The covariant quantization of the electromagnetic field in the Lorentz gauge gives rise to longitudinal and scalar photons in addition to the usual transverse photons. It is shown here that the exchange of longitudinal and scalar photons can produce entanglement between two distant atoms or harmonic oscillators. The form of the entangled states produced in this way is very different from that obtained in the Coulomb gauge, where the longitudinal and scalar photons do not exist. A generalized gauge transformation is used to show that all physically observable effects are the same in the two gauges, despite the differences in the form of the entangled states. An approach of this kind may be useful for a covariant description of the dynamics of quantum information processing.
Entangled networks, synchronization, and optimal network topology.
Donetti, Luca; Hurtado, Pablo I; Muñoz, Miguel A
2005-10-28
A new family of graphs, entangled networks, with optimal properties in many respects, is introduced. By definition, their topology is such that it optimizes synchronizability for many dynamical processes. These networks are shown to have an extremely homogeneous structure: degree, node distance, betweenness, and loop distributions are all very narrow. Also, they are characterized by a very interwoven (entangled) structure with short average distances, large loops, and no well-defined community structure. This family of nets exhibits an excellent performance with respect to other flow properties such as robustness against errors and attacks, minimal first-passage time of random walks, efficient communication, etc. These remarkable features convert entangled networks in a useful concept, optimal or almost optimal in many senses, and with plenty of potential applications in computer science or neuroscience.
Quantum entanglement produced in the formation of a black hole
Martin-Martinez, Eduardo; Leon, Juan; Garay, Luis J.
2010-09-15
A field in the vacuum state, which is in principle separable, can evolve to an entangled state in a dynamical gravitational collapse. We will study, quantify, and discuss the origin of this entanglement, showing that it could even reach the maximal entanglement limit for low frequencies or very small black holes, with consequences in micro-black hole formation and the final stages of evaporating black holes. This entanglement provides quantum information resources between the modes in the asymptotic future (thermal Hawking radiation) and those which fall to the event horizon. We will also show that fermions are more sensitive than bosons to this quantum entanglement generation. This fact could be helpful in finding experimental evidence of the genuine quantum Hawking effect in analog models.
Multipartite entanglement and firewalls
NASA Astrophysics Data System (ADS)
Luo, Shengqiao; Stoltenberg, Henry; Albrecht, Andreas
2017-03-01
Black holes offer an exciting area to explore the nature of quantum gravity. The classic work on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-Sully (AMPS) have noted an apparent paradox in reconciling fundamental properties of quantum mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the existence of a "firewall" inside the black hole horizon which prevents objects from falling smoothly toward the singularity. A fundamental limitation on the behavior of quantum entanglement known as "monogamy" plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. Using the multipartite entanglement measure called negativity, we identify an example which could change the AMPS accounting of quantum entanglement and perhaps eliminate the need for a firewall. Specifically, we constructed a toy model for black hole decay which has different entanglement behavior than that assumed by AMPS. We discuss the additional steps that would be needed to bring lessons from our toy model to our understanding of realistic black holes.
Reliable Entanglement Verification
NASA Astrophysics Data System (ADS)
Arrazola, Juan; Gittsovich, Oleg; Donohue, John; Lavoie, Jonathan; Resch, Kevin; Lütkenhaus, Norbert
2013-05-01
Entanglement plays a central role in quantum protocols. It is therefore important to be able to verify the presence of entanglement in physical systems from experimental data. In the evaluation of these data, the proper treatment of statistical effects requires special attention, as one can never claim to have verified the presence of entanglement with certainty. Recently increased attention has been paid to the development of proper frameworks to pose and to answer these type of questions. In this work, we apply recent results by Christandl and Renner on reliable quantum state tomography to construct a reliable entanglement verification procedure based on the concept of confidence regions. The statements made do not require the specification of a prior distribution nor the assumption of an independent and identically distributed (i.i.d.) source of states. Moreover, we develop efficient numerical tools that are necessary to employ this approach in practice, rendering the procedure ready to be employed in current experiments. We demonstrate this fact by analyzing the data of an experiment where photonic entangled two-photon states were generated and whose entanglement is verified with the use of an accessible nonlinear witness.
Chitanvis, S.M.
1998-09-01
We have developed a theory of polymer entanglement using an extended Cahn-Hilliard functional with two extra terms. One is a nonlocal attractive term, operating over mesoscales, which is interpreted as giving rise to entanglement, and the other is a local repulsive term indicative of excluded volume interactions. This functional can be derived using notions from gauge theory. We go beyond the Gaussian approximation, to the one-loop level, to show that the system exhibits a crossover to a state of entanglement as the average chain length between points of entanglement decreases. This crossover is marked by {ital critical} slowing down, as the effective diffusion constant goes to zero. We have also computed the tensile modulus of the system, and we find a corresponding crossover to a regime of high modulus. The single parameter in our theory is obtained by fitting to available experimental data on polystyrene melts of various chain lengths. Extrapolation of this fit yields a model for the crossover to entanglement. The need for additional experiments detailing the crossover to the entangled state is pointed out. {copyright} {ital 1998} {ital The American Physical Society}
Entangling power and operator entanglement of nonunitary quantum evolutions
NASA Astrophysics Data System (ADS)
Kong, Fan-Zhen; Zhao, Jun-Long; Yang, Ming; Cao, Zhuo-Liang
2015-07-01
We propose a method to calculate the operator entanglement and entangling power of a noisy nonunitary operation in terms of linear entropy. By decomposing the Kraus operators of noisy evolution as the sum of products of Pauli matrices, we derive the analytical expression of the operator entanglement for a general nonunitary operation. The definition of entangling power is extended from the ideal unitary operation case to the nonunitary case via a Kraus operator representation and the analytical expression of the entangling power for a general nonunitary operation is derived. To demonstrate the effectiveness of the above method, we investigate the properties of operator entanglement and entangling power of nonunitary operations caused by phase damping noise. Our findings imply that the pure phase damping noise has its own operator entanglement and entangling power, which increase exponentially with time and asymptotically approach their respective upper bounds. In addition, when the phase damping noise is added to an ideal operation, such as an iswap operation or a controlled-Z operation, it can make the operation's entangling power grow exponentially with the strength of noise, but leave its operator entanglement invariant. In this sense, we can conclude that, for a general operation, operator entanglement is a more intrinsic property than entangling power.
Song, Ya-Ju; Tan, Qing-Shou; Kuang, Le-Man
2017-01-01
We investigate the possibility to control quantum evolution speed of a single dephasing qubit for arbitrary initial states by the use of periodic dynamical decoupling (PDD) pulses. It is indicated that the quantum speed limit time (QSLT) is determined by initial and final quantum coherence of the qubit, as well as the non-Markovianity of the system under consideration during the evolution when the qubit is subjected to a zero-temperature Ohmic-like dephasing reservoir. It is shown that final quantum coherence of the qubit and the non-Markovianity of the system can be modulated by PDD pulses. Our results show that for arbitrary initial states of the dephasing qubit with non-vanishing quantum coherence, PDD pulses can be used to induce potential acceleration of the quantum evolution in the short-time regime, while PDD pulses can lead to potential speedup and slow down in the long-time regime. We demonstrate that the effect of PDD on the QSLT for the Ohmic or sub-Ohmic spectrum (Markovian reservoir) is much different from that for the super-Ohmic spectrum (non-Markovian reservoir). PMID:28272546
NASA Astrophysics Data System (ADS)
Song, Ya-Ju; Tan, Qing-Shou; Kuang, Le-Man
2017-03-01
We investigate the possibility to control quantum evolution speed of a single dephasing qubit for arbitrary initial states by the use of periodic dynamical decoupling (PDD) pulses. It is indicated that the quantum speed limit time (QSLT) is determined by initial and final quantum coherence of the qubit, as well as the non-Markovianity of the system under consideration during the evolution when the qubit is subjected to a zero-temperature Ohmic-like dephasing reservoir. It is shown that final quantum coherence of the qubit and the non-Markovianity of the system can be modulated by PDD pulses. Our results show that for arbitrary initial states of the dephasing qubit with non-vanishing quantum coherence, PDD pulses can be used to induce potential acceleration of the quantum evolution in the short-time regime, while PDD pulses can lead to potential speedup and slow down in the long-time regime. We demonstrate that the effect of PDD on the QSLT for the Ohmic or sub-Ohmic spectrum (Markovian reservoir) is much different from that for the super-Ohmic spectrum (non-Markovian reservoir).
Nanorod Mobility within Entangled Wormlike Micelle Solutions
Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh; ...
2016-12-20
In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less
Nanorod Mobility within Entangled Wormlike Micelle Solutions
Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh; Leheny, Robert L.
2016-12-20
In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentration is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.
Optimal Gaussian entanglement swapping
Hoelscher-Obermaier, Jason; Loock, Peter van
2011-01-15
We consider entanglement swapping with general mixed two-mode Gaussian states and calculate the optimal gains for a broad class of such states including those states most relevant in communication scenarios. We show that, for this class of states, entanglement swapping adds no additional mixedness; that is, the ensemble-average output state has the same purity as the input states. This implies that, by using intermediate entanglement swapping steps, it is, in principle, possible to distribute entangled two-mode Gaussian states of higher purity as compared to direct transmission. We then apply the general results on optimal Gaussian swapping to the problem of quantum communication over a lossy fiber and demonstrate that, in contrast to the negative conclusions in the literature, swapping-based schemes in fact often perform better than direct transmission for high input squeezing. However, an effective transmission analysis reveals that the hope for improved performance based on optimal Gaussian entanglement swapping is spurious since the swapping does not lead to an enhancement of the effective transmission. This implies that the same or better results can always be obtained using direct transmission in combination with, in general, less squeezing.
Entanglement of distinguishable quantum memories
NASA Astrophysics Data System (ADS)
Vittorini, G.; Hucul, D.; Inlek, I. V.; Crocker, C.; Monroe, C.
2014-10-01
Time-resolved photon detection can be used to generate entanglement between distinguishable photons. This technique can be extended to entangle quantum memories that emit photons with different frequencies and identical temporal profiles without the loss of entanglement rate or fidelity. We experimentally realize this process using remotely trapped 171Yb+ ions where heralded entanglement is generated by interfering distinguishable photons. This technique may be necessary for future modular quantum systems and networks that are composed of heterogeneous qubits.
Lithography using quantum entangled particles
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2003-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Lithography using quantum entangled particles
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor)
2001-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Detecting entanglement with Jarzynski's equality
Hide, Jenny; Vedral, Vlatko
2010-06-15
We present a method for detecting the entanglement of a state using nonequilibrium processes. A comparison of relative entropies allows us to construct an entanglement witness. The relative entropy can further be related to the quantum Jarzynski equality, allowing nonequilibrium work to be used in entanglement detection. To exemplify our results, we consider two different spin chains.
Estimating concurrence via entanglement witnesses
Jurkowski, Jacek; Chruscinski, Dariusz
2010-05-15
We show that each entanglement witness detecting a given bipartite entangled state provides an estimation of its concurrence. We illustrate our result with several well-known examples of entanglement witnesses and compare the corresponding estimation of concurrence with other estimations provided by the trace norm of partial transposition and realignment.
Deriving covariant holographic entanglement
NASA Astrophysics Data System (ADS)
Dong, Xi; Lewkowycz, Aitor; Rangamani, Mukund
2016-11-01
We provide a gravitational argument in favour of the covariant holographic entanglement entropy proposal. In general time-dependent states, the proposal asserts that the entanglement entropy of a region in the boundary field theory is given by a quarter of the area of a bulk extremal surface in Planck units. The main element of our discussion is an implementation of an appropriate Schwinger-Keldysh contour to obtain the reduced density matrix (and its powers) of a given region, as is relevant for the replica construction. We map this contour into the bulk gravitational theory, and argue that the saddle point solutions of these replica geometries lead to a consistent prescription for computing the field theory Rényi entropies. In the limiting case where the replica index is taken to unity, a local analysis suffices to show that these saddles lead to the extremal surfaces of interest. We also comment on various properties of holographic entanglement that follow from this construction.
Quantum Entanglement and Information
NASA Astrophysics Data System (ADS)
Zeilinger, Anton
2002-04-01
The development of quantum entanglement presents a very interesting and typical case how fundamental reasearch leads to new technologically interesting concepts. Initially it was introduced by Einstein and Schroedinger because of its philosophical interest. This, together with Bell's theorem, led to experiments beginning in the early 1970-s which also were only motivated by their importance for the foundations of physics. Most remarkably, in recent years people discovered that quantum entanglement can be useful in completely novel ways of transmitting and processing of information with no analog in classical physics. Here the most developed areas are quantum communication, quantum cryptography, quantum teleportation and quantum computation. In the talk I will present the basics of these applications of entanglement and I will discuss some existing experimental realisations. Finally I will argue that, while it is impossible to foresee where the present development will lead us, it is very likely that in the end a novel kind of information technology will emerge.
Perfect embezzlement of entanglement
NASA Astrophysics Data System (ADS)
Cleve, Richard; Liu, Li; Paulsen, Vern I.
2017-01-01
Van Dam and Hayden introduced a concept commonly referred to as embezzlement, where, for any entangled quantum state ϕ, there is an entangled catalyst state ψ, from which a high fidelity approximation of ϕ ⊗ ψ can be produced using only local operations. We investigate a version of this where the embezzlement is perfect (i.e., the fidelity is 1). We prove that perfect embezzlement is impossible in a tensor product framework, even with infinite-dimensional Hilbert spaces and infinite entanglement entropy. Then we prove that perfect embezzlement is possible in a commuting operator framework. We prove this using the theory of C*-algebras and we also provide an explicit construction. Next, we apply our results to analyze perfect versions of a nonlocal game introduced by Regev and Vidick. Finally, we analyze the structure of perfect embezzlement protocols in the commuting operator model, showing that they require infinite-dimensional Hilbert spaces.
NASA Astrophysics Data System (ADS)
Chembo, Yanne K.
2016-03-01
that can lead to squeezed states of light under some optimal conditions that are analytically determined. These quantum correlations can persist regardless the dynamical state of the system (rolls or solitons), regardless of the spectral extension of the comb (number side modes) and regardless of the dispersion regime (normal or anomalous). We also explicitly determine the phase quadratures leading to photon entanglement and analytically calculate their quantum-noise spectra. For both the below- and above-threshold cases, we study with particular emphasis the two principal architectures for Kerr comb generation, namely the add-through and add-drop configurations. It is found that regardless of the configuration, an essential parameter is the ratio between out-coupling and total losses, which plays a key role as it directly determines the efficiency of the detected fluorescence or squeezing spectra. We finally discuss the relevance of Kerr combs for quantum information systems at optical telecommunication wavelengths below and above threshold.
Dissipative long-range entanglement generation between electronic spins
NASA Astrophysics Data System (ADS)
Benito, M.; Schuetz, M. J. A.; Cirac, J. I.; Platero, G.; Giedke, G.
2016-09-01
We propose a scheme for deterministic generation and long-term stabilization of entanglement between two electronic spin qubits confined in spatially separated quantum dots. Our approach relies on an electronic quantum bus, consisting either of quantum Hall edge channels or surface acoustic waves, that can mediate long-range coupling between localized spins over distances of tens of micrometers. Since the entanglement is actively stabilized by dissipative dynamics, our scheme is inherently robust against noise and imperfections.
NASA Astrophysics Data System (ADS)
Baez, John C.; Vicary, Jamie
2014-11-01
Maldacena and Susskind have proposed a correspondence between wormholes and entanglement, dubbed ER=EPR. We study this in the context of three-dimensional topological quantum field theory (TQFT), where we show that the formation of a wormhole is the same process as creating a particle-antiparticle pair. A key feature of the ER=EPR proposal is that certain apparently entangled degrees of freedom turn out to be the same. We name this phenomenon ‘fake entanglement’, and show how it arises in our TQFT model.
Entanglement control in a superconducting qubit system by an electromagnetic field
NASA Astrophysics Data System (ADS)
Zhang, Y. Q.; Xu, J. B.
2011-08-01
By making use of the dynamical algebraic method we investigate a quantum system consisting of superconducting qubits interacting with data buses, where the qubits are driven by time-dependent electromagnetic field and obtain an explicit expression of time evolution operator. Furthermore, we explore the entanglement dynamics and the influence of the time-dependent electromagnetic field and the initial state on the entanglement sudden death and birth for the system. It is shown that the entanglement between the qubit and bus as well as the entanglement sudden death and birth can be controlled by the time-dependent electromagnetic field.
NASA Astrophysics Data System (ADS)
Shan, Chuan-Jia; Chen, Tao; Liu, Ji-Bing; Cheng, Wei-Wen; Liu, Tang-Kun; Huang, Yan-Xia; Li, Hong
2010-06-01
In this paper, we investigate the dynamical behaviour of entanglement in terms of concurrence in a bipartite system subjected to an external magnetic field under the action of dissipative environments in the extended Werner-like initial state. The interesting phenomenon of entanglement sudden death as well as sudden birth appears during the evolution process. We analyse in detail the effect of the purity of the initial entangled state of two qubits via Heisenberg XY interaction on the apparition time of entanglement sudden death and entanglement sudden birth. Furthermore, the conditions on the conversion of entanglement sudden death and entanglement sudden birth can be generalized when the initial entangled state is not pure. In particular, a critical purity of the initial mixed entangled state exists, above which entanglement sudden birth vanishes while entanglement sudden death appears. It is also noticed that stable entanglement, which is independent of different initial states of the qubits (pure or mixed state), occurs even in the presence of decoherence. These results arising from the combination of the extended Werner-like initial state and dissipative environments suggest an approach to control and enhance the entanglement even after purity induced sudden birth, death and revival.
Photon Entanglement Through Brain Tissue
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.
2016-12-01
Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.
Photon Entanglement Through Brain Tissue
Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.
2016-01-01
Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness. PMID:27995952
Entanglement in Quantum-Classical Hybrid
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.
Effect of entanglements on mechanical properties of glassy polymers
NASA Astrophysics Data System (ADS)
Hoy, Robert Scott
Glass forming polymers are of great industrial importance and scientific interest because of their unique mechanical properties, which arise from the connectivity and random-walk-like structure of the constituent chains. In this thesis I study the relation of entanglements to the mechanical properties of model polymer glasses and brushes using molecular dynamics simulations. We perform extensive studies of glassy strain hardening, which stabilizes polymers against strain localization and fracture. Fundamental inconsistencies in existing entropic models of strain hardening imply that our understanding of its microscopic origins is far from complete. The dependence of stress on strain and entanglement density is consistent with experiment and entropic models. However, many of the assumptions of these models are totally inconsistent with our simulation results. The dependence on temperature, rate and interaction strength can be understood as reflecting changes in the plastic flow stress rather than a network entropy. A substantial energetic contribution to the stress rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic arrangements. The deformation of the entanglement network is not affine to the macroscopic stretch. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain. The entropic back stress responsible for shape recovery arises from chain orientation rather than entanglement. We also present some other results unrelated to strain hardening. We analyze the entanglement of polymer brushes embedded in long-chain melts and in implicit good and theta solvents. The melt-embedded brushes are more self-entangled than those in the solvents. The degree of self-entanglement of the brushes in the solvents follows a simple
Hierarchy of Stochastic Pure States for Open Quantum System Dynamics
NASA Astrophysics Data System (ADS)
Suess, D.; Eisfeld, A.; Strunz, W. T.
2014-10-01
We derive a hierarchy of stochastic evolution equations for pure states (quantum trajectories) for open quantum system dynamics with non-Markovian structured environments. This hierarchy of pure states (HOPS) is generally applicable and provides the exact reduced density operator as an ensemble average over normalized states. The corresponding nonlinear equations are presented. We demonstrate that HOPS provides an efficient theoretical tool and apply it to the spin-boson model, the calculation of absorption spectra of molecular aggregates, and energy transfer in a photosynthetic pigment-protein complex.
Entanglement with classical fields
Lee, K.F.; Thomas, J.E.
2004-05-01
We experimentally demonstrate a simple classical-field optical heterodyne method which employs postselection to reproduce the polarization correlations of a four-particle entangled state. We give a heuristic argument relating this method to the measurement of multiple quantum fields by correlated homodyne detection. We suggest that using multiple classical fields and postselection, one can reproduce the polarization correlations obtained in quantum experiments which employ multiple single-photon sources and linear optics to prepare multiparticle entangled states. Our experimental scheme produces four spatially separated beams which are separately detected by mixing with four independent optical local oscillators (LO) of variable polarization. Analog multiplication of the four beat signals enables projection onto a four-particle polarization-state basis. Appropriate band pass filtering is used to produce a signal proportional to the projections of the maximally entangled four-field polarization state, H{sub 1})H{sub 2})H{sub 3})H{sub 4})+V{sub 1})V{sub 2})V{sub 3})V{sub 4}), onto the product of the four LO polarizations. Since the data from multiple observers is combined prior to postselection, this method does not constitute a test of nonlocality. However, we reproduce the polarization correlations of the 32 elements in the truth table from the quantum mechanical Greenberger-Horne-Zeilinger experiments on the violation of local realism. We also demonstrate a form of classical entanglement swapping in a four-particle basis.
Postcolonial Entanglements: Unruling Stories
ERIC Educational Resources Information Center
Pacini-Ketchabaw, Veronica
2012-01-01
In this article, I use Donna Haraway's philosophy to think about postcolonial encounters between different species. I follow entangled stories of the deer/settler-child figure to trouble colonialisms and untangle the histories and trajectories that we inhabit with other species through colonial histories. I shy away from generalizations and…
Orbital angular momentum entanglement
NASA Astrophysics Data System (ADS)
Romero, Mary Jacquiline Romero
Entanglement in higher dimensions is an attractive concept that is a challenge to realise experimentally. To this end, the entanglement of the orbital angular momentum (OAM) of photons holds promise. The OAM state-space is discrete and theoretically unbounded. In the work that follows, we investigate various aspects of OAM entanglement. We show how the correlations in OAM and its conjugate variable, angular position, are determined by phase- matching and the shape of the pump beam in spontaneous parametric down- conversion. We implement tests of quantum mechanics which have been previously done for other variables. We show the Einstein-Podolsky-Rosen paradox for OAM and angle, supporting the incompatibility of quantum mechanics with locality and realism. We demonstrate violations of Bell-type inequalities, thereby discounting local hidden variables for describing the correlations we observe. We show the Hardy paradox using OAM, again highlighting the nonlocal nature of quantum mechanics. We demonstrate violations of Leggett-type inequalities, thereby discounting nonlocal hidden variables for describing correlations. Lastly, we have looked into the entanglement of topological vortex structures formed from a special superposition of OAM modes and show violations of Bell-type inequalities confined to a finite, isolated volume.
Entanglement Created by Dissipation
Alharbi, Abdullah F.; Ficek, Zbigniew
2011-10-27
A technique for entangling closely separated atoms by the process of dissipative spontaneous emission is presented. The system considered is composed of two non-identical two-level atoms separated at the quarter wavelength of a driven standing wave laser field. At this atomic distance, only one of the atoms can be addressed by the laser field. In addition, we arrange the atomic dipole moments to be oriented relative to the inter-atomic axis such that the dipole-dipole interaction between the atoms is zero at this specific distance. It is shown that an entanglement can be created between the atoms on demand by tuning the Rabi frequency of the driving field to the difference between the atomic transition frequencies. The amount of the entanglement created depends on the ratio between the damping rates of the atoms, but is independent of the frequency difference between the atoms. We also find that the transient buildup of an entanglement between the atoms may differ dramatically for different initial atomic conditions.
Muon-fluorine entanglement in fluoropolymers.
Lancaster, T; Pratt, F L; Blundell, S J; McKenzie, I; Assender, H E
2009-08-26
We present the results of muon spin relaxation measurements on the fluoropolymers polytetrafluoroethylene (PTFE), poly(vinylidene fluoride) (PVDF) and poly(vinyl fluoride) (PVF). Entanglement between the muon spin and the spins of the fluorine nuclei in the polymers allows us to identify the different muon stopping states that occur in each of these materials and provides a method of probing the local environment of the muon and the dynamics of the polymer chains.
Bipartite entanglement in continuous-variable tripartite systems
NASA Astrophysics Data System (ADS)
Olsen, M. K.; Corney, J. F.
2016-11-01
In the field of continuous-variable tripartite entanglement, the systems utilised can be either asymmetric or symmetric. It is therefore of interest to examine the differences in the entanglement properties of these two types of system, using two examples that are known to produce tripartite entanglement. We examine one asymmetric and one fully symmetric Gaussian continuous-variable system in terms of their tripartite and bipartite entanglement properties. We first treat pure states and are able to find analytic solutions using the undepleted pump approximation for the Hamiltonian models. Our symmetric system exhibits perfect tripartite correlations, but only in the unphysical limit of infinite squeezing. For more realistic squeezing parameters, the two systems exhibit both tripartite and bipartite entanglement. Secondly we treat the more experimentally reasonable situation where the interactions take place inside optical cavities and we are dealing with mixed states. In these cases, where the criteria for genuine tripartite entanglement are more stringent, we find that tripartite entanglement is still available, although over smaller bandwidths than three-mode inseparability. In general, the spectral results are consistent with the analytical solutions. We conclude that none of the outputs are completely analogous to either GHZ or W states, but there are parameter regions of the Hamiltonian dynamics where they produce T states as introduced by Adesso et al. [1,2]. In the intracavity cases, both bipartite entanglement and tripartite inseparability are always present, with genuine tripartite entanglement appearing as the pumping rate is increased. The qualitative differences in the output states for different interaction parameters indicate that continuous-variable tripartite quantum information systems offer a versatility not found in two-mode bipartite systems.
General polygamy inequality of multiparty quantum entanglement
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2012-06-01
Using entanglement of assistance, we establish a general polygamy inequality of multiparty entanglement in arbitrary-dimensional quantum systems. For multiparty closed quantum systems, we relate our result with the monogamy of entanglement, and clarify that the entropy of entanglement bounds both monogamy and polygamy of multiparty quantum entanglement.
Nanoshell-mediated robust entanglement between coupled quantum dots
NASA Astrophysics Data System (ADS)
Hakami, Jabir; Zubairy, M. Suhail
2016-02-01
The exact entanglement dynamics in a hybrid structure consisting of two quantum dots (QDs) in the proximity of a metal nanoshell is investigated. Nanoshells can enhance the local density of states, leading to a strong-coupling regime where the excitation energy can coherently be transferred between the QDs and the nanoshell in the form of Rabi oscillations. The long-lived entangled states can be created deterministically by optimizing the shell thickness as well as the ratio of the distances between the QDs and the surface of the shell. The loss of the system is greatly reduced even when the QDs are ultraclose to the shell, which signifies a slow decay rate of the coherence information and longtime entanglement preservation. Our protocol allows for an on-demand, fast, and almost perfect entanglement even at strong carrier-phonon interaction where other systems fail.
Entanglement and quantum teleportation via decohered tripartite entangled states
Metwally, N.
2014-12-15
The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.
High-dimensional entanglement certification
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto
2016-01-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs. PMID:27311935
Entanglement in fermionic systems
Banuls, Mari-Carmen; Cirac, J. Ignacio; Wolf, Michael M.
2007-08-15
The anticommuting properties of fermionic operators, together with the presence of parity conservation, affect the concept of entanglement in a composite fermionic system. Hence different points of view can give rise to different reasonable definitions of separable and entangled states. Here we analyze these possibilities and the relationship between the different classes of separable states. The behavior of the various classes when taking multiple copies of a state is also studied, showing that some of the differences vanish in the asymptotic regime. In particular, in the case of only two fermionic modes all the classes become equivalent in this limit. We illustrate the differences and relations by providing a complete characterization of all the sets defined for systems of two fermionic modes. The results are applied to Gibbs states of infinite chains of fermions whose interaction corresponds to a XY Hamiltonian with transverse magnetic field.
Relative Entropy and Squashed Entanglement
NASA Astrophysics Data System (ADS)
Li, Ke; Winter, Andreas
2014-02-01
We are interested in the properties and relations of entanglement measures. Especially, we focus on the squashed entanglement and relative entropy of entanglement, as well as their analogues and variants. Our first result is a monogamy-like inequality involving the relative entropy of entanglement and its one-way LOCC variant. The proof is accomplished by exploring the properties of relative entropy in the context of hypothesis testing via one-way LOCC operations, and by making use of an argument resembling that by Piani on the faithfulness of regularized relative entropy of entanglement. Following this, we obtain a commensurate and faithful lower bound for squashed entanglement, in the form of one-way LOCC relative entropy of entanglement. This gives a strengthening to the strong subadditivity of von Neumann entropy. Our result improves the trace-distance-type bound derived in Brandão et al. (Commun Math Phys, 306:805-830, 2011), where faithfulness of squashed entanglement was first proved. Applying Pinsker's inequality, we are able to recover the trace-distance-type bound, even with slightly better constant factor. However, the main improvement is that our new lower bound can be much larger than the old one and it is almost a genuine entanglement measure. We evaluate exactly the relative entropy of entanglement under various restricted measurement classes, for maximally entangled states. Then, by proving asymptotic continuity, we extend the exact evaluation to their regularized versions for all pure states. Finally, we consider comparisons and separations between some important entanglement measures and obtain several new results on these, too.
Matched witness for multipartite entanglement
NASA Astrophysics Data System (ADS)
Chen, Xiao-yu; Jiang, Li-zhen; Xu, Zhu-an
2017-04-01
Entanglement criteria for multipartite entangled states are obtained by matching witnesses to multipartite entangled states. The necessary and sufficient criterion of separability for three qubit X states is given as an example to illustrate the procedure of finding a criterion. The result is utilized to obtain the noise tolerance of W state. The necessary and sufficient criteria of three partite separability and full separability for four qubit noisy cluster states, three partite separability for four qubit noisy GHZ states are obtained.
Inter-Universal Quantum Entanglement
NASA Astrophysics Data System (ADS)
Robles-Pérez, S. J.; González-Díaz, P. F.
2015-01-01
The boundary conditions to be imposed on the quantum state of the whole multiverse could be such that the universes would be created in entangled pairs. Then, interuniversal entanglement would provide us with a vacuum energy for each single universe that might be fitted with observational data, making testable not only the multiverse proposal but also the boundary conditions of the multiverse. Furthermore, the second law of the entanglement thermodynamics would enhance the expansion of the single universes.
Effects of dynamic disorder on exciton migration: Quantum diffusion, coherences, and energy transfer
NASA Astrophysics Data System (ADS)
Dutta, Rajesh; Bagchi, Biman
2016-10-01
We study excitation transfer and migration in a one-dimensional lattice characterized by dynamic disorder. The diagonal and off-diagonal energy disorders arise from the coupling of system and bath. We consider both same bath (when baths are spatially correlated) and independent bath (when baths are completely uncorrelated) limits. In the latter case, all diagonal and off-diagonal bath coupling elements fluctuate independently of each other and the dynamics is complicated. We obtain time dependent population distribution by solving Kubo's quantum stochastic Liouville equation. In the Markovian limit, both energy transfer dynamics and mean square displacement of the exciton behave the similar way in same and independent bath cases. However, these two baths can give rise to a markedly different behavior in the non-Markovian limit. We note that previously only the same bath case has been studied in the non-Markovian limit. The other main results of our study include the following. (i) For an average, non-zero off-diagonal coupling value J, exciton migration remains coherent in same bath case even at long times while it becomes incoherent in independent bath case in the Markovian limit. (ii) Coherent transfer is manifested in an oscillatory behavior of the energy transfer dynamics accompanied by faster-than diffusive spread of the exciton from the original position. (iii) Agreement with available analytical expression of mean squared displacement is good in Markovian limit for independent bath (off-diagonal fluctuation) case but only qualitative in non-Markovian limit for which no complete analytical solution is available. (iv) We observe transition from coherent to incoherent transport in independent bath (diagonal fluctuation) case when the bath is made progressively more Markovian. We present an analytical study that shows coherence to propagate through excited bath states. (v) The correlation time of the bath plays a unique role in dictating the diffusive spread
Entanglement in quantum catastrophes
Emary, Clive; Lambert, Neill; Brandes, Tobias
2005-06-15
We classify entanglement singularities for various two-mode bosonic systems in terms of catastrophe theory. Employing an abstract phase-space representation, we obtain exact results in limiting cases for the entropy in cusp, butterfly, and two-dimensional catastrophes. We furthermore use numerical results to extract the scaling of the entropy with the nonlinearity parameter, and discuss the role of mixing entropies in more complex systems.
Deterministic Entangled Nanosource
2008-08-01
currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-09-2008 2. REPORT TYPE...Final Report 3. DATES COVERED (From - To) Sep 2005 – Sep 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9550-05-1-0455...Deterministic Entangled Nanosource 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Khitrova, Galina 5e. TASK
Fragile entanglement statistics
NASA Astrophysics Data System (ADS)
Brody, Dorje C.; Hughston, Lane P.; Meier, David M.
2015-10-01
If X and Y are independent, Y and Z are independent, and so are X and Z, one might be tempted to conclude that X, Y, and Z are independent. But it has long been known in classical probability theory that, intuitive as it may seem, this is not true in general. In quantum mechanics one can ask whether analogous statistics can emerge for configurations of particles in certain types of entangled states. The explicit construction of such states, along with the specification of suitable sets of observables that have the purported statistical properties, is not entirely straightforward. We show that an example of such a configuration arises in the case of an N-particle GHZ state, and we are able to identify a family of observables with the property that the associated measurement outcomes are independent for any choice of 2,3,\\ldots ,N-1 of the particles, even though the measurement outcomes for all N particles are not independent. Although such states are highly entangled, the entanglement turns out to be ‘fragile’, i.e. the associated density matrix has the property that if one traces out the freedom associated with even a single particle, the resulting reduced density matrix is separable.
Entanglement continuous unitary transformations
NASA Astrophysics Data System (ADS)
Sahin, Serkan; Schmidt, Kai Phillip; Orús, Román
2017-01-01
Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called “entanglement-CUT” or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We provide the general idea behind eCUT and explain its implementation for finite 1d systems using the formalism of matrix product operators. We also present proof-of-principle results for the spin-(1/2) 1d quantum Ising model and the 3-state quantum Potts model in a transverse field. Entanglement-CUTs can also be generalized to higher dimensions and to the thermodynamic limit.
Higher-order quantum entanglement
NASA Technical Reports Server (NTRS)
Zeilinger, Anton; Horne, Michael A.; Greenberger, Daniel M.
1992-01-01
In quantum mechanics, the general state describing two or more particles is a linear superposition of product states. Such a superposition is called entangled if it cannot be factored into just one product. When only two particles are entangled, the stage is set for Einstein-Podolsky-Rosen (EPR) discussions and Bell's proof that the EPR viewpoint contradicts quantum mechanics. If more than two particles are involved, new possibilities and phenomena arise. For example, the Greenberger, Horne, and Zeilinger (GHZ) disproof of EPR applies. Furthermore, as we point out, with three or more particles even entanglement itself can be an entangled property.
Witnessing entanglement in hybrid systems
NASA Astrophysics Data System (ADS)
Borrelli, Massimo; Rossi, Matteo; Macchiavello, Chiara; Maniscalco, Sabrina
2014-08-01
We extend the definition of entanglement witnesses based on spin structure factors to the case of scatterers with quantum mechanical motion. We show that this allows for hybrid entanglement detection and specialize the witness for a chain of trapped ions. Within this framework, we also show how the collective vibronic state of the chain can act as an undesired quantum environment affecting the spin-spin-entanglement detection. Furthermore, we investigate several specific cases where these witness operators allow us to detect hybrid entanglement.
Entanglement teleportation via werner states
Lee; Kim
2000-05-01
Transfer of entanglement and information is studied for quantum teleportation of an unknown entangled state through noisy quantum channels. We find that the quantum entanglement of the unknown state can be lost during the teleportation even when the channel is quantum correlated. We introduce a fundamental parameter of correlation information which dissipates linearly during the teleportation through the noisy channel. Analyzing the transfer of correlation information, we show that the purity of the initial state is important in determining the entanglement of the replica state.
A Logical Approach to Entanglement
NASA Astrophysics Data System (ADS)
Das, Abhishek
2016-10-01
In this paper we innovate a logical approach to develop an intuition regarding the phenomenon of quantum entanglement. In the vein of the logic introduced we substantiate that particles that were entangled in the past will be entangled in perpetuity and thereby abide a rule that restricts them to act otherwise. We also introduce a game and by virtue of the concept of Nash equilibrium we have been able to show that entangled particles will mutually correspond to an experiment that is performed on any one of the particle.
Creating multiphoton-polarization bound entangled states
Wei, Tzu-Chieh; Lavoie, Jonathan; Kaltenbaek, Rainer
2011-03-15
Bound entangled states are the exotic objects in the entangled world. They require entanglement to create them, but once they are formed, it is not possible to locally distill any free entanglement from them. It is only until recently that a few bound entangled states were realized in the laboratory. Motivated by these experiments, we propose schemes for creating various classes of bound entangled states with photon polarization. These include Acin-Bruss-Lewenstein-Sanpara states, Duer's states, Lee-Lee-Kim bound entangled states, and an unextendible-product-basis bound entangled state.
Dynamically correcting two-qubit gates against any systematic logical error
NASA Astrophysics Data System (ADS)
Calderon Vargas, Fernando Antonio
The reliability of quantum information processing depends on the ability to deal with noise and error in an efficient way. A significant source of error in many settings is coherent, systematic gate error. This work introduces a set of composite pulse sequences that generate maximally entangling gates and correct all systematic errors within the logical subspace to arbitrary order. These sequences are applica- ble for any two-qubit interaction Hamiltonian, and make no assumptions about the underlying noise mechanism except that it is constant on the timescale of the opera- tion. The prime use for our results will be in cases where one has limited knowledge of the underlying physical noise and control mechanisms, highly constrained control, or both. In particular, we apply these composite pulse sequences to the quantum system formed by two capacitively coupled singlet-triplet qubits, which is charac- terized by having constrained control and noise sources that are low frequency and of a non-Markovian nature.
Entanglement and the process of measuring the position of a quantum particle
Apel, V.M.; Curilef, S.; Plastino, A.R.
2015-03-15
We explore the entanglement-related features exhibited by the dynamics of a composite quantum system consisting of a particle and an apparatus (here referred to as the “pointer”) that measures the position of the particle. We consider measurements of finite duration, and also the limit case of instantaneous measurements. We investigate the time evolution of the quantum entanglement between the particle and the pointer, with special emphasis on the final entanglement associated with the limit case of an impulsive interaction. We consider entanglement indicators based on the expectation values of an appropriate family of observables, and also an entanglement measure computed on particular exact analytical solutions of the particle–pointer Schrödinger equation. The general behavior exhibited by the entanglement indicators is consistent with that shown by the entanglement measure evaluated on particular analytical solutions of the Schrödinger equation. In the limit of instantaneous measurements the system’s entanglement dynamics corresponds to that of an ideal quantum measurement process. On the contrary, we show that the entanglement evolution corresponding to measurements of finite duration departs in important ways from the behavior associated with ideal measurements. In particular, highly localized initial states of the particle lead to highly entangled final states of the particle–pointer system. This indicates that the above mentioned initial states, in spite of having an arbitrarily small position uncertainty, are not left unchanged by a finite-duration position measurement process. - Highlights: • We explore entanglement features of a quantum position measurement. • We consider instantaneous and finite-duration measurements. • We evaluate the entanglement of exact time-dependent particle–pointer states.
Dissipative entanglement of quantum spin fluctuations
NASA Astrophysics Data System (ADS)
Benatti, F.; Carollo, F.; Floreanini, R.
2016-06-01
We consider two non-interacting infinite quantum spin chains immersed in a common thermal environment and undergoing a local dissipative dynamics of Lindblad type. We study the time evolution of collective mesoscopic quantum spin fluctuations that, unlike macroscopic mean-field observables, retain a quantum character in the thermodynamical limit. We show that the microscopic dissipative dynamics is able to entangle these mesoscopic degrees of freedom, through a purely mixing mechanism. Further, the behaviour of the dissipatively generated quantum correlations between the two chains is studied as a function of temperature and dissipation strength.
NASA Astrophysics Data System (ADS)
Olivares-Rivas, Wilmer; Colmenares, Pedro J.
2016-09-01
The non-static generalized Langevin equation and its corresponding Fokker-Planck equation for the position of a viscous fluid particle were solved in closed form for a time dependent external force. Its solution for a constant external force was obtained analytically. The non-Markovian stochastic differential equation, associated to the dynamics of the position under a colored noise, was then applied to the description of the dynamics and persistence time of particles constrained within absorbing barriers. Comparisons with molecular dynamics were very satisfactory.
Quantum Trajectories and Their Statistics for Remotely Entangled Quantum Bits
NASA Astrophysics Data System (ADS)
Chantasri, Areeya; Kimchi-Schwartz, Mollie E.; Roch, Nicolas; Siddiqi, Irfan; Jordan, Andrew N.
2016-10-01
We experimentally and theoretically investigate the quantum trajectories of jointly monitored transmon qubits embedded in spatially separated microwave cavities. Using nearly quantum-noise-limited superconducting amplifiers and an optimized setup to reduce signal loss between cavities, we can efficiently track measurement-induced entanglement generation as a continuous process for single realizations of the experiment. The quantum trajectories of transmon qubits naturally split into low and high entanglement classes. The distribution of concurrence is found at any given time, and we explore the dynamics of entanglement creation in the state space. The distribution exhibits a sharp cutoff in the high concurrence limit, defining a maximal concurrence boundary. The most-likely paths of the qubits' trajectories are also investigated, resulting in three probable paths, gradually projecting the system to two even subspaces and an odd subspace, conforming to a "half-parity" measurement. We also investigate the most-likely time for the individual trajectories to reach their most entangled state, and we find that there are two solutions for the local maximum, corresponding to the low and high entanglement routes. The theoretical predictions show excellent agreement with the experimental entangled-qubit trajectory data.
Entanglement Entropy of Black Holes
NASA Astrophysics Data System (ADS)
Solodukhin, Sergey N.
2011-12-01
The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.
Spread of entanglement and causality
NASA Astrophysics Data System (ADS)
Casini, Horacio; Liu, Hong; Mezei, Márk
2016-07-01
We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of [1] to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches.
Entanglement preservation by continuous distillation
Mundarain, D.; Orszag, M.
2009-05-15
We study the two-qubit entanglement preservation for a system in the presence of independent thermal baths. We use a combination of filtering operations and distillation protocols as a series of frequent measurements on the system. It is shown that a small fraction of the total amount of available copies of the system preserves or even improves its initial entanglement during the evolution.
Entanglement for All Quantum States
ERIC Educational Resources Information Center
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…
Entanglement entropy and anomaly inflow
NASA Astrophysics Data System (ADS)
Hughes, Taylor L.; Leigh, Robert G.; Parrikar, Onkar; Ramamurthy, Srinidhi T.
2016-03-01
We study entanglement entropy for parity-violating (time-reversal breaking) quantum field theories on R1 ,2 in the presence of a domain wall between two distinct parity-odd phases. The domain wall hosts a 1 +1 -dimensional conformal field theory (CFT) with nontrivial chiral central charge. Such a CFT possesses gravitational anomalies. It has been shown recently that, as a consequence, its intrinsic entanglement entropy is sensitive to Lorentz boosts around the entangling surface. Here, we show using various methods that the entanglement entropy of the three-dimensional bulk theory is also sensitive to such boosts owing to parity-violating effects, and that the bulk response to a Lorentz boost precisely cancels the contribution coming from the domain wall CFT. We argue that this can naturally be interpreted as entanglement inflow (i.e., inflow of entanglement entropy analogous to the familiar Callan-Harvey effect) between the bulk and the domain-wall, mediated by the low-lying states in the entanglement spectrum. These results can be generally applied to 2 +1 -d topological phases of matter that have edge theories with gravitational anomalies, and provide a precise connection between the gravitational anomaly of the physical edge theory and the low-lying spectrum of the entanglement Hamiltonian.
Secure Key from Bound Entanglement
NASA Astrophysics Data System (ADS)
Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Oppenheim, Jonathan
2005-04-01
We characterize the set of shared quantum states which contain a cryptographically private key. This allows us to recast the theory of privacy as a paradigm closely related to that used in entanglement manipulation. It is shown that one can distill an arbitrarily secure key from bound entangled states. There are also states that have less distillable private keys than the entanglement cost of the state. In general, the amount of distillable key is bounded from above by the relative entropy of entanglement. Relationships between distillability and distinguishability are found for a class of states which have Bell states correlated to separable hiding states. We also describe a technique for finding states exhibiting irreversibility in entanglement distillation.
On precession of entangled spins in a strong laser field
Eliashvili, M.; Gerdt, V.; Khvedelidze, A.
2009-05-15
A dynamics of the entanglement under an environmental influence is modelled by a bound state composed of two heavy particles interacting with a strong laser. Adopting the semiclassical attitude, a trajectory of the bound state's center-of-mass is found from the Newton equations solved beyond the dipole approximation and taking into account the magnetic field effect. At the same time the dynamics of constituent spins under the laser coupling is studied quantum mechanically solving the nonrelativistic von Neumann equation with the effective Hamiltonian determined by the bound state's classical trajectory. Based on the solution, the effects of an intense linearly polarized monochromatic plane wave on the precession of entangled spins are discussed for a specific kind of mixed initial states including a family of maximally entangled Werner states.
Entanglement entropy converges to classical entropy around periodic orbits
Asplund, Curtis T.; Berenstein, David
2016-03-15
We consider oscillators evolving subject to a periodic driving force that dynamically entangles them, and argue that this gives the linearized evolution around periodic orbits in a general chaotic Hamiltonian dynamical system. We show that the entanglement entropy, after tracing over half of the oscillators, generically asymptotes to linear growth at a rate given by the sum of the positive Lyapunov exponents of the system. These exponents give a classical entropy growth rate, in the sense of Kolmogorov, Sinai and Pesin. We also calculate the dependence of this entropy on linear mixtures of the oscillator Hilbert-space factors, to investigate the dependence of the entanglement entropy on the choice of coarse graining. We find that for almost all choices the asymptotic growth rate is the same.
Quantum discord and entanglement of two atoms in a micromaser-type system
NASA Astrophysics Data System (ADS)
Yan, Xue-Qun; Wang, Fu-Zhong
2016-06-01
The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. We show that the entangled state can be created by initially maximally mixed state and there exist collapse and revival phenomena for the time evolutions of both entanglement and quantum discord under the system considered as the field is initially in the Fock state. Our results confirm that entanglement and quantum discord have similar behaviors in certain time ranges, such as their oscillations during the time evolution being almost in phase, but they also present significant differences, such as quantum discord being maintained even after the complete loss of entanglement. Furthermore, we exhibit clearly that the dynamics of quantum discord under the action of environment are intimately related to the generation and evolution of entanglement.
Deterministic Entangled Nanosource
2008-08-01
control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01-09-2008 2. REPORT TYPE Final Report 3...DATES COVERED (From - To) Sep 2005 - Sep 200? 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9550-05-1-0455 5b. GRANT NUMBER Deterministic...Entangled Nanosource 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER Khitrova, Galina 5f. WORK UNIT NUMBER 7. PERFORMING
NASA Astrophysics Data System (ADS)
Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio; Weinberg, Sean J.
2016-12-01
We study the Hilbert space structure of classical spacetimes under the assumption that entanglement in holographic theories determines semiclassical geometry. We show that this simple assumption has profound implications; for example, a superposition of classical spacetimes may lead to another classical spacetime. Despite its unconventional nature, this picture admits the standard interpretation of superpositions of well-defined semiclassical spacetimes in the limit that the number of holographic degrees of freedom becomes large. We illustrate these ideas using a model for the holographic theory of cosmological spacetimes.
Entangled active matter: From cells to ants
NASA Astrophysics Data System (ADS)
Hu, D. L.; Phonekeo, S.; Altshuler, E.; Brochard-Wyart, F.
2016-07-01
Both cells and ants belong to the broad field of active matter, a novel class of non-equilibrium materials composed of many interacting units that individually consume energy and collectively generate motion or mechanical stresses. However cells and ants differ from fish and birds in that they can support static loads. This is because cells and ants can be entangled, so that individual units are bound by transient links. Entanglement gives cells and ants a set of remarkable properties usually not found together, such as the ability to flow like a fluid, spring back like an elastic solid, and self-heal. In this review, we present the biology, mechanics and dynamics of both entangled cells and ants. We apply concepts from soft matter physics and wetting to characterize these systems as well as to point out their differences, which arise from their differences in size. We hope that our viewpoints will spur further investigations into cells and ants as active materials, and inspire the fabrication of synthetic active matter.
Stochastic Wilson-Cowan models of neuronal network dynamics with memory and delay
NASA Astrophysics Data System (ADS)
Goychuk, Igor; Goychuk, Andriy
2015-04-01
We consider a simple Markovian class of the stochastic Wilson-Cowan type models of neuronal network dynamics, which incorporates stochastic delay caused by the existence of a refractory period of neurons. From the point of view of the dynamics of the individual elements, we are dealing with a network of non-Markovian stochastic two-state oscillators with memory, which are coupled globally in a mean-field fashion. This interrelation of a higher-dimensional Markovian and lower-dimensional non-Markovian dynamics is discussed in its relevance to the general problem of the network dynamics of complex elements possessing memory. The simplest model of this class is provided by a three-state Markovian neuron with one refractory state, which causes firing delay with an exponentially decaying memory within the two-state reduced model. This basic model is used to study critical avalanche dynamics (the noise sustained criticality) in a balanced feedforward network consisting of the excitatory and inhibitory neurons. Such avalanches emerge due to the network size dependent noise (mesoscopic noise). Numerical simulations reveal an intermediate power law in the distribution of avalanche sizes with the critical exponent around -1.16. We show that this power law is robust upon a variation of the refractory time over several orders of magnitude. However, the avalanche time distribution is biexponential. It does not reflect any genuine power law dependence.
Communication Dynamics in Finite Capacity Social Networks
NASA Astrophysics Data System (ADS)
Haerter, Jan O.; Jamtveit, Bjørn; Mathiesen, Joachim
2012-10-01
In communication networks, structure and dynamics are tightly coupled. The structure controls the flow of information and is itself shaped by the dynamical process of information exchanged between nodes. In order to reconcile structure and dynamics, a generic model, based on the local interaction between nodes, is considered for the communication in large social networks. In agreement with data from a large human organization, we show that the flow is non-Markovian and controlled by the temporal limitations of individuals. We confirm the versatility of our model by predicting simultaneously the degree-dependent node activity, the balance between information input and output of nodes, and the degree distribution. Finally, we quantify the limitations to network analysis when it is based on data sampled over a finite period of time.
Lethal entanglement in baleen whales.
Cassoff, Rachel M; Moore, Kathleen M; McLellan, William A; Barco, Susan G; Rotsteins, David S; Moore, Michael J
2011-10-06
Understanding the scenarios whereby fishing gear entanglement of large whales induces mortality is important for the development of mitigation strategies. Here we present a series of 21 cases involving 4 species of baleen whales in the NW Atlantic, describing the available sighting history, necropsy observations, and subsequent data analyses that enabled the compilation of the manners in which entanglement can be lethal. The single acute cause of entanglement mortality identified was drowning from entanglement involving multiple body parts, with the animal's inability to surface. More protracted causes of death included impaired foraging during entanglement, resulting in starvation after many months; systemic infection arising from open, unresolved entanglement wounds; and hemorrhage or debilitation due to severe gear-related damage to tissues. Serious gear-induced injury can include laceration of large vessels, occlusion of the nares, embedding of line in growing bone, and massive periosteal proliferation of new bone in an attempt to wall off constricting, encircling lines. These data show that baleen whale entanglement is not only a major issue for the conservation of some baleen whale populations, but is also a major concern for the welfare of each affected individual.
Quantum Entanglement on a Hypersphere
NASA Astrophysics Data System (ADS)
Peters, James F.; Tozzi, Arturo
2016-08-01
A quantum entanglement's composite system does not display separable states and a single constituent cannot be fully described without considering the other states. We introduce quantum entanglement on a hypersphere - which is a 4D space undetectable by observers living in a 3D world -, derived from signals originating on the surface of an ordinary 3D sphere. From the far-flung branch of algebraic topology, the Borsuk-Ulam theorem states that, when a pair of opposite (antipodal) points on a hypersphere are projected onto the surface of 3D sphere, the projections have matching description. In touch with this theorem, we show that a separable state can be achieved for each of the entangled particles, just by embedding them in a higher dimensional space. We view quantum entanglement as the simultaneous activation of signals in a 3D space mapped into a hypersphere. By showing that the particles are entangled at the 3D level and un-entangled at the 4D hypersphere level, we achieved a composite system in which each local constituent is equipped with a pure state. We anticipate this new view of quantum entanglement leading to what are known as qubit information systems.
Monogamy of quantum entanglement and other correlations
Koashi, Masato; Winter, Andreas
2004-02-01
It has been observed by numerous authors that a quantum system being entangled with another one limits its possible entanglement with a third system: this has been dubbed the 'monogamous nature of entanglement'. In this paper we present a simple identity which captures the trade off between entanglement and classical correlation, which can be used to derive rigorous monogamy relations. We also prove various other trade offs of a monogamy nature for other entanglement measures and secret and total correlation measures.
Boundary effects in entanglement entropy
NASA Astrophysics Data System (ADS)
Berthiere, Clément; Solodukhin, Sergey N.
2016-09-01
We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary of d-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension d and is shown to be monotonic, the peculiarity of d = 3 case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the boundary is composed of two parallel planes at a finite separation and compute the entanglement entropy as well as its density in this case. The complete contribution to entanglement entropy due to the boundaries is shown not to depend on the distance between the planes and is simply twice the entropy in the case of single plane boundary. Additionally, we find how the area law, the part in the entropy proportional to the area of entire entangling surface, depends on the size of the separation between the two boundaries. The latter is shown to appear in the UV finite part of the entropy.
Local cloning of entangled states
Gheorghiu, Vlad; Yu Li; Cohen, Scott M.
2010-08-15
We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.
Frequency-bin entangled photons
Olislager, L.; Emplit, P.; Nguyen, A. T.; Massar, S.; Merolla, J.-M.; Huy, K. Phan
2010-07-15
A monochromatic laser pumping a parametric down-conversion crystal generates frequency-entangled photon pairs. We study this experimentally by addressing such frequency-entangled photons at telecommunication wavelengths (around 1550 nm) with fiber-optics components such as electro-optic phase modulators and narrow-band frequency filters. The theory underlying our approach uses the notion of frequency-bin entanglement. Our results show that the phase modulators address coherently up to eleven frequency bins, leading to an interference pattern which can violate by more than five standard deviations a Bell inequality adapted to our setup.
Complementary sequential measurements generate entanglement
NASA Astrophysics Data System (ADS)
Coles, Patrick J.; Piani, Marco
2014-01-01
We present a paradigm for capturing the complementarity of two observables. It is based on the entanglement created by the interaction between the system observed and the two measurement devices used to measure the observables sequentially. Our main result is a lower bound on this entanglement and resembles well-known entropic uncertainty relations. Besides its fundamental interest, this result directly bounds the effectiveness of sequential bipartite operations—corresponding to the measurement interactions—for entanglement generation. We further discuss the intimate connection of our result with two primitives of information processing, namely, decoupling and coherent teleportation.
Entangled light from white noise.
Plenio, M B; Huelga, S F
2002-05-13
An atom that couples to two distinct leaky optical cavities is driven by an external optical white noise field. We describe how entanglement between the light fields sustained by two optical cavities arises in such a situation. The entanglement is maximized for intermediate values of the cavity damping rates and the intensity of the white noise field, vanishing both for small and for large values of these parameters and thus exhibiting a stochastic-resonancelike behavior. This example illustrates the possibility of generating entanglement by exclusively incoherent means and sheds new light on the constructive role noise may play in certain tasks of interest for quantum information processing.
Entanglement entropy on fuzzy spaces
Dou, Djamel; Ydri, Badis
2006-08-15
We study the entanglement entropy of a scalar field in 2+1 spacetime where space is modeled by a fuzzy sphere and a fuzzy disc. In both models we evaluate numerically the resulting entropies and find that they are proportional to the number of boundary degrees of freedom. In the Moyal plane limit of the fuzzy disc the entanglement entropy per unite area (length) diverges if the ignored region is of infinite size. The divergence is (interpreted) of IR-UV mixing origin. In general we expect the entanglement entropy per unite area to be finite on a noncommutative space if the ignored region is of finite size.
Entanglement and Squeezing in Solid State Circuits
Wen Yihuo; Gui Lulong
2008-11-07
We investigate the dynamics of a system consisting of a Cooper-pair box and two superconducting transmission line resonators. There exist both linear and nonlinear interactions in such a system. We show that single-photon entanglement state can be generated in a simple way in the linear interaction regime. In nonlinear interaction regime, we derive the Hamiltonian of degenerate three-wave mixing and propose a scheme for generating squeezed state of microwave using the three-wave mixing in solid state circuits. In the following, we design a system for generating squeezed states of nanamechanical resonator.
Local Chain Segregation and Entanglements in a Confined Polymer Melt
NASA Astrophysics Data System (ADS)
Lee, Nam-Kyung; Diddens, Diddo; Meyer, Hendrik; Johner, Albert
2017-02-01
The reptation mechanism, introduced by de Gennes and Edwards, where a polymer diffuses along a fluffy tube, defined by the constraints imposed by its surroundings, convincingly describes the relaxation of long polymers in concentrated solutions and melts. We propose that the scale for the tube diameter is set by local chain segregation, which we study analytically. We show that the concept of local segregation is especially operational for confined geometries, where segregation extends over mesoscopic domains, drastically reducing binary contacts, and provide an estimate of the entanglement length. Our predictions are quantitatively supported by extensive molecular dynamics simulations on systems consisting of long, entangled chains.
Complementarity and entanglement in quantum information theory
NASA Astrophysics Data System (ADS)
Tessier, Tracey Edward
This research investigates two inherently quantum mechanical phenomena, namely complementarity and entanglement, from an information-theoretic perspective. Beyond philosophical implications, a thorough grasp of these concepts is crucial for advancing our understanding of foundational issues in quantum mechanics, as well as in studying how the use of quantum systems might enhance the performance of certain information processing tasks. The primary goal of this thesis is to shed light on the natures and interrelationships of these phenomena by approaching them from the point of view afforded by information theory. We attempt to better understand these pillars of quantum mechanics by studying the various ways in which they govern the manipulation of information, while at the same time gaining valuable insight into the roles they play in specific applications. The restrictions that nature places on the distribution of correlations in a multipartite quantum system play fundamental roles in the evolution of such systems and yield vital insights into the design of protocols for the quantum control of ensembles with potential applications in the field of quantum computing. By augmenting the existing formalism for quantifying entangled correlations, we show how this entanglement sharing behavior may be studied in increasingly complex systems of both theoretical and experimental significance. Further, our results shed light on the dynamical generation and evolution of multipartite entanglement by demonstrating that individual members of an ensemble of identical systems coupled to a common probe can become entangled with one another, even when they do not interact directly. The findings presented in this thesis support the conjecture that Hilbert space dimension is an objective property of a quantum system since it constrains the number of valid conceptual divisions of the system into subsystems. These arbitrary observer-induced distinctions are integral to the theory since
Gaussian entanglement distribution via satellite
NASA Astrophysics Data System (ADS)
Hosseinidehaj, Nedasadat; Malaney, Robert
2015-02-01
In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.
Experimental Ten-Photon Entanglement
NASA Astrophysics Data System (ADS)
Wang, Xi-Lin; Chen, Luo-Kan; Li, W.; Huang, H.-L.; Liu, C.; Chen, C.; Luo, Y.-H.; Su, Z.-E.; Wu, D.; Li, Z.-D.; Lu, H.; Hu, Y.; Jiang, X.; Peng, C.-Z.; Li, L.; Liu, N.-L.; Chen, Yu-Ao; Lu, Chao-Yang; Pan, Jian-Wei
2016-11-01
We report the first experimental demonstration of quantum entanglement among ten spatially separated single photons. A near-optimal entangled photon-pair source was developed with simultaneously a source brightness of ˜12 MHz /W , a collection efficiency of ˜70 % , and an indistinguishability of ˜91 % between independent photons, which was used for a step-by-step engineering of multiphoton entanglement. Under a pump power of 0.57 W, the ten-photon count rate was increased by about 2 orders of magnitude compared to previous experiments, while maintaining a state fidelity sufficiently high for proving the genuine ten-particle entanglement. Our work created a state-of-the-art platform for multiphoton experiments, and enabled technologies for challenging optical quantum information tasks, such as the realization of Shor's error correction code and high-efficiency scattershot boson sampling.
Experimental Ten-Photon Entanglement.
Wang, Xi-Lin; Chen, Luo-Kan; Li, W; Huang, H-L; Liu, C; Chen, C; Luo, Y-H; Su, Z-E; Wu, D; Li, Z-D; Lu, H; Hu, Y; Jiang, X; Peng, C-Z; Li, L; Liu, N-L; Chen, Yu-Ao; Lu, Chao-Yang; Pan, Jian-Wei
2016-11-18
We report the first experimental demonstration of quantum entanglement among ten spatially separated single photons. A near-optimal entangled photon-pair source was developed with simultaneously a source brightness of ∼12 MHz/W, a collection efficiency of ∼70%, and an indistinguishability of ∼91% between independent photons, which was used for a step-by-step engineering of multiphoton entanglement. Under a pump power of 0.57 W, the ten-photon count rate was increased by about 2 orders of magnitude compared to previous experiments, while maintaining a state fidelity sufficiently high for proving the genuine ten-particle entanglement. Our work created a state-of-the-art platform for multiphoton experiments, and enabled technologies for challenging optical quantum information tasks, such as the realization of Shor's error correction code and high-efficiency scattershot boson sampling.
Transverse correlations in multiphoton entanglement
Wen Jianming; Rubin, Morton H.; Shih Yanhua
2007-10-15
We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case.
Bell's Theorem and Entangled Solitons
NASA Astrophysics Data System (ADS)
Rybakov, Yu. P.; Kamalov, T. F.
2016-09-01
Entangled solitons construction being introduced in the nonlinear spinor field model, the Einstein—Podolsky—Rosen (EPR) spin correlation is calculated and shown to coincide with the quantum mechanical one for the 1/2-spin particles.
Purification of Logic-Qubit Entanglement
Zhou, Lan; Sheng, Yu-Bo
2016-01-01
Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165
Concentrating partial entanglement by local operations
NASA Astrophysics Data System (ADS)
Bennett, Charles H.; Bernstein, Herbert J.; Popescu, Sandu; Schumacher, Benjamin
1996-04-01
If two separated observers are supplied with entanglement, in the form of n pairs of particles in identical partly entangled pure states, one member of each pair being given to each observer, they can, by local actions of each observer, concentrate this entanglement into a smaller number of maximally entangled pairs of particles, for example, Einstein-Podolsky-Rosen singlets, similarly shared between the two observers. The concentration process asymptotically conserves entropy of entanglement-the von Neumann entropy of the partial density matrix seen by either observer-with the yield of singlets approaching, for large n, the base-2 entropy of entanglement of the initial partly entangled pure state. Conversely, any pure or mixed entangled state of two systems can be produced by two classically communicating separated observers, drawing on a supply of singlets as their sole source of entanglement.
Entropic force and entanglement system
Myung, Yun Soo; Kim, Yong-Wan
2010-05-15
We introduce the isothermal cavity, static holographic screen, and accelerating surface as holographic screen to study the entropic force in the presence of the Schwarzschild black hole. These may merge to provide a consistent holographic screen to define the entropic force on the stretched horizon near the event horizon. Considering the similarity between the stretched horizon of black hole and the entanglement system, we may define the entropic force in the entanglement system without referring to the source mass.
Purification of genuine multipartite entanglement
Huber, Marcus; Plesch, Martin
2011-06-15
In tasks where multipartite entanglement plays a central role, state purification is, due to inevitable noise, a crucial part of the procedure. We consider a scenario exploiting the multipartite entanglement in a straightforward multipartite purification algorithm and compare it to bipartite purification procedures combined with state teleportation. While complete purification requires an infinite amount of input states in both cases, we show that for an imperfect output fidelity the multipartite procedure exhibits a major advantage in terms of input states used.
Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers
2017-01-01
The motion of nanoparticles (NPs) in entangled melts of linear polymers and nonconcatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a and is related to the hopping diffusion of NPs in the entanglement network. In contrast to the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled nonconcatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers.
Constructing entanglement measures for fermions
NASA Astrophysics Data System (ADS)
Johansson, Markus; Raissi, Zahra
2016-10-01
In this paper we describe a method for finding polynomial invariants under stochastic local operations and classical communication (SLOCC) for a system of delocalized fermions shared between different parties, with global particle-number conservation as the only constraint. These invariants can be used to construct entanglement measures for different types of entanglement in such a system. It is shown that the invariants, and the measures constructed from them, take a nonzero value only if the state of the system allows for the observation of Bell-nonlocal correlations. Invariants of this kind are constructed for systems of two and three spin-1/2 fermions and examples of maximally entangled states are given that illustrate the different types of entanglement distinguished by the invariants. A general condition for the existence of SLOCC invariants and their associated measures is given as a relation between the number of fermions, their spin, and the number of spatial modes of the system. In addition, the effect of further constraints on the system, including the localization of a subset of the fermions, is discussed. Finally, a hybrid Ising-Hubbard Hamiltonian is constructed for which the ground state of a three-site chain exhibits a high degree of entanglement at the transition between a regime dominated by on-site interaction and a regime dominated by Ising interaction. This entanglement is well described by a measure constructed by the introduced method.
Enhancement of multipartite entanglement in an open system under non-inertial frames
NASA Astrophysics Data System (ADS)
Sun, Wen-Yang; Wang, Dong; Yang, Jie; Ye, Liu
2017-04-01
In this paper, multipartite entanglement enhancement in an open system under non-inertial frames via local non-unitary operations is explored. Explicitly, we investigate an available methodology to enhance tripartite entanglement of X-state, when the systems suffer from amplitude damping (AD) noise and one subsystem is under non-inertial frames. As an illustration, we consider three cases (one subsystem or multi-subsystem suffers from decoherence) by using local non-unitary operations, and the corresponding entanglement behaviors are revealed. It turns out that the local non-unitary operation can enhance entanglement to some degree. The Unruh effect and decoherence will influence the tripartite entanglement. However, the impact of Unruh effect on tripartite entanglement is weaker than that of decoherence. In addition, we obtain an interesting result: One can estimate and probe the decoherence strength (AD noise) in accordance with the change of local non-unitary operation strength and genuinely multipartite entanglement variation. Therefore, our work may be beneficial to explore the dynamic behavior of tripartite entanglement in open systems under relativity frame.
Minimal Entanglement Witness from Electrical Current Correlations
NASA Astrophysics Data System (ADS)
Brange, F.; Malkoc, O.; Samuelsson, P.
2017-01-01
Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.
Entangling power of an expanding universe
Steeg, Greg Ver; Menicucci, Nicolas C.
2009-02-15
We show that entanglement can be used to detect spacetime curvature. Quantum fields in the Minkowski vacuum are entangled with respect to local field modes. This entanglement can be swapped to spatially separated quantum systems using standard local couplings. A single, inertial field detector in the exponentially expanding (de Sitter) vacuum responds as if it were bathed in thermal radiation in a Minkowski universe. We show that using two inertial detectors, interactions with the field in the thermal case will entangle certain detector pairs that would not become entangled in the corresponding de Sitter case. The two universes can thus be distinguished by their entangling power.
A Subsystem-Independent Generalization of Entanglement
NASA Astrophysics Data System (ADS)
Barnum, Howard; Knill, Emanuel; Ortiz, Gerardo; Somma, Rolando; Viola, Lorenza
2004-03-01
We present a generalization of entanglement based on the idea that entanglement is relative to a distinguished subspace of observables rather than a distinguished subsystem decomposition. A pure quantum state is entangled relative to such a subspace if its expectations are a proper mixture of those of other states. Many information-theoretic aspects of entanglement can be extended to this observable-based setting, suggesting new ways of measuring and classifying multipartite entanglement. By going beyond the distinguishable-subsystem framework, generalized entanglement also provides novel tools for probing quantum correlations in interacting many-body systems.
NASA Astrophysics Data System (ADS)
Akulin, V. M.; Kabatiansky, G. A.; Mandilara, A.
2015-10-01
Using geometric means, we first consider a density matrix decomposition of a multipartite quantum system of a finite dimension into two density matrices: a separable one, also known as the best separable approximation, and an essentially entangled one, which contains no product state components. We show that this convex decomposition can be achieved in practice with the help of a linear programming algorithm that scales in the general case polynomially with the system dimension. We illustrate the algorithm implementation with an example of a composite system of dimension 12 that undergoes a loss of coherence due to classical noise and we trace the time evolution of its essentially entangled component. We suggest a "geometric" description of entanglement dynamics and demonstrate how it explains the well-known phenomena of sudden death and revival of multipartite entanglements. For a statistical weight loss of the essentially entangled component with time, its average entanglement content is not affected by the coherence loss.
Quantum entanglement assisted key distribution
NASA Astrophysics Data System (ADS)
Tang, Ke; Ji, Ping; Zhang, Xiaowen
2007-04-01
Quantum correlations or entanglement is a basic ingredient for many applications of quantum information theory.One important application using quantum entanglement exploits the correlation nature of entangled photon states is quantum key distribution, which is proven unbreakable in principle and provides the highest possible security that is impossible in classical information theory. However, generating entangled photon pairs is not a simple task -- only approximately one out of a million pump photons decay into a signal and idler photon pair. This low rate of entangled photon pairs is further reduced by the overhead required in order for the rectification of the inevitable errors due to channel imperfections or caused by potential eavesdroppers. As a consequence, quantum key distribution suffers from a low bit rate, which is in the order of hundreds to thousands bits per second or below. On the other hand, the classical public key distribution does not impose a tight limit on the transmission rate. However, it is subject to the risks of eavesdroppers sitting in the middle of the insecure channel. In this paper, we propose a hybrid key distribution method which uses public key distribution method to generate a raw key, and then uses entanglement assisted communication to modify the raw key by inserting a number of quantum bits in the raw key. Building upon the foundation of the unconditional security of quantum key distribution, we use the privacy amplification to make the affection of inserted bits expand to a whole key. Our quantum entanglement assisted key distribution scheme greatly improves the efficiency of key distribution while without compromising the level of security achievable by quantum cryptography.
Generating Entangled State with Parametric Amplifier
NASA Astrophysics Data System (ADS)
Huang, Jian
2017-04-01
We present a scheme for generating entangled state with parametric amplifier with different initial states. Its shown that the entangled state is always generated except some special cases by adjusting the coupling strength and the total number of photons.
From entanglement witness to generalized Catalan numbers
Cohen, E.; Hansen, T.; Itzhaki, N.
2016-01-01
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one. PMID:27461089
From entanglement witness to generalized Catalan numbers
NASA Astrophysics Data System (ADS)
Cohen, E.; Hansen, T.; Itzhaki, N.
2016-07-01
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one.
Sequential Path Entanglement for Quantum Metrology
Jin, Xian-Min; Peng, Cheng-Zhi; Deng, Youjin; Barbieri, Marco; Nunn, Joshua; Walmsley, Ian A.
2013-01-01
Path entanglement is a key resource for quantum metrology. Using path-entangled states, the standard quantum limit can be beaten, and the Heisenberg limit can be achieved. However, the preparation and detection of such states scales unfavourably with the number of photons. Here we introduce sequential path entanglement, in which photons are distributed across distinct time bins with arbitrary separation, as a resource for quantum metrology. We demonstrate a scheme for converting polarization Greenberger-Horne-Zeilinger entanglement into sequential path entanglement. We observe the same enhanced phase resolution expected for conventional path entanglement, independent of the delay between consecutive photons. Sequential path entanglement can be prepared comparably easily from polarization entanglement, can be detected without using photon-number-resolving detectors, and enables novel applications.
Family of nonlocal bound entangled states
NASA Astrophysics Data System (ADS)
Yu, Sixia; Oh, C. H.
2017-03-01
Bound entanglement, being entangled yet not distillable, is essential to our understanding of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that violate a Bell inequality have been constructed for a two-qutrit system, disproving a conjecture by Peres that bound entanglement is local. Here we construct this kind of nonlocal bound entangled state for all finite dimensions larger than two, making possible their experimental demonstration in most general systems. We propose a Bell inequality, based on a Hardy-type argument for nonlocality, and a steering inequality to identify their nonlocality. We also provide a family of entanglement witnesses to detect their entanglement beyond the Bell inequality and the steering inequality.
Deterministic generation of remote entanglement with active quantum feedback
NASA Astrophysics Data System (ADS)
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-01
We consider the task of deterministically entangling two remote qubits using joint measurement and feedback, but no directly entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Finally, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; Sarovar, Mohan; Whaley, K. Birgitta
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can be modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less
Symmetry-protected topological entanglement
NASA Astrophysics Data System (ADS)
Marvian, Iman
2017-01-01
We propose an order parameter for the symmetry-protected topological (SPT) phases which are protected by Abelian on-site symmetries. This order parameter, called the SPT entanglement, is defined as the entanglement between A and B , two distant regions of the system, given that the total charge (associated with the symmetry) in a third region C is measured and known, where C is a connected region surrounded by A , B , and the boundaries of the system. In the case of one-dimensional systems we prove that in the limit where A and B are large and far from each other compared to the correlation length, the SPT entanglement remains constant throughout a SPT phase, and furthermore, it is zero for the trivial phase while it is nonzero for all the nontrivial phases. Moreover, we show that the SPT entanglement is invariant under the low-depth quantum circuits which respect the symmetry, and hence it remains constant throughout a SPT phase in the higher dimensions as well. Also, we show that there is an intriguing connection between SPT entanglement and the Fourier transform of the string order parameters, which are the traditional tool for detecting SPT phases. This leads to an algorithm for extracting the relevant information about the SPT phase of the system from the string order parameters. Finally, we discuss implications of our results in the context of measurement-based quantum computation.
Entanglement entropy of electronic excitations
NASA Astrophysics Data System (ADS)
Plasser, Felix
2016-05-01
A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.
GENERAL: Entanglement sudden death induced by the Dzialoshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Zeng, Hong-Fang; Shao, Bin; Yang, Lin-Guang; Li, Jian; Zou, Jian
2009-08-01
In this paper, we study the entanglement dynamics of two-spin Heisenberg XYZ model with the Dzialoshinskii-Moriya (DM) interaction. The system is initially prepared in the Werner state. The effects of purity of the initial state and DM coupling parameter on the evolution of entanglement are investigated. The necessary and sufficient condition for the appearance of the entanglement sudden death (ESD) phenomenon has been deduced. The result shows that the ESD always occurs if the initial state is sufficiently impure for the given coupling parameter or the DM interaction is sufficiently strong for the given initial state. Moreover, the critical values of them are calculated.
Quantum entanglement and the Bell matrix
NASA Astrophysics Data System (ADS)
Lai, Anna Chiara; Pedicini, Marco; Rognone, Silvia
2016-07-01
We present a class of maximally entangled states generated by a high-dimensional generalisation of the cnot gate. The advantage of our constructive approach is the simple algebraic structure of both entangling operator and resulting entangled states. In order to show that the method can be applied to any dimension, we introduce new sufficient conditions for global and maximal entanglement with respect to Meyer and Wallach's measure.
Tighter entanglement monogamy relations of qubit systems
NASA Astrophysics Data System (ADS)
Jin, Zhi-Xiang; Fei, Shao-Ming
2017-03-01
Monogamy relations characterize the distributions of entanglement in multipartite systems. We investigate monogamy relations related to the concurrence C and the entanglement of formation E. We present new entanglement monogamy relations satisfied by the α -th power of concurrence for all α ≥ 2, and the α -th power of the entanglement of formation for all α ≥ √{2}. These monogamy relations are shown to be tighter than the existing ones.
Effect of Cavity QED on Entanglement
NASA Astrophysics Data System (ADS)
Rfifi, Saad; Siyouri, Fatimazahra
2016-11-01
We use a quantum electrodynamics model, to study the evolution of maximally entangled bipartite states (Bell states), as well as a maximally entangled tripartite states as a multipartite system. Furthermore, we study the entanglement behaviour of these output states in cavity QED as function of interaction time and the coupling strength. The present study discusses the separability and the entanglement limit of such states after interaction with a cavity QED.
NASA Astrophysics Data System (ADS)
Namiki, Ryo
2013-12-01
We consider the composability of quantum channels from a limited amount of entanglement via local oper-ations and classical communication (LOCC). We show that any k-partial-entanglement-breaking channel can be composed from an entangled state with a Schmidt number of k via one-way LOCC. From the entanglement-assisted construction we can reach an alternative definition of partial-entanglement-breaking channels.
Lithography system using quantum entangled photons
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2002-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Fermionic entanglement ambiguity in noninertial frames
Montero, Miguel; Martin-Martinez, Eduardo
2011-06-15
We analyze an ambiguity in previous works on entanglement of fermionic fields in noninertial frames. This ambiguity, related to the anticommutation properties of field operators, leads to nonunique results when computing entanglement measures for the same state. We show that the ambiguity disappears when we introduce detectors, which are in any case necessary as a means to probe the field entanglement.
Polygamy of entanglement in multipartite quantum systems
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2009-08-01
We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.
Use of entanglement in quantum optics
NASA Technical Reports Server (NTRS)
Horne, Michael A.; Bernstein, Herbert J.; Greenberger, Daniel M.; Zeilinger, Anton
1992-01-01
Several recent demonstrations of two-particle interferometry are reviewed and shown to be examples of either color entanglement or beam entanglement. A device, called a number filter, is described and shown to be of value in preparing beam entanglements. Finally, we note that all three concepts (color and beam entaglement, and number filtering) may be extended to three or more particles.
Quantum walk coherences on a dynamical percolation graph.
Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine
2015-08-27
Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media.
NASA Astrophysics Data System (ADS)
Assadi, Leila; Jafarpour, Mojtaba
2016-11-01
We use concurrence to study bipartite entanglement, Meyer-Wallach measure and its generalizations to study multi-partite entanglement and MABK and SASA inequalities to study the non-local properties of the 4-qubit entangled graph states, quantitatively. Then, we present 3 classifications, each one in accordance with one of the aforementioned properties. We also observe that the classification according to multipartite entanglement does exactly coincide with that according to nonlocal properties, but does not match with that according to bipartite entanglement. This observation signifies the fact that non-locality and multipartite entanglement enjoy the same basic underlying principles, while bipartite entanglement may not reveal the non-locality issue in its entirety.
Monogamy of quantum entanglement and other correlations
NASA Astrophysics Data System (ADS)
Koashi, Masato; Winter, Andreas
2004-02-01
It has been observed by numerous authors that a quantum system being entangled with another one limits its possible entanglement with a third system: this has been dubbed the “monogamous nature of entanglement.” In this paper we present a simple identity which captures the trade off between entanglement and classical correlation, which can be used to derive rigorous monogamy relations. We also prove various other trade offs of a monogamy nature for other entanglement measures and secret and total correlation measures.
Reservoir-Engineered Entanglement in Optomechanical Systems
NASA Astrophysics Data System (ADS)
Wang, Ying-Dan; Clerk, Aashish A.
2013-06-01
We show how strong steady-state entanglement can be achieved in a three-mode optomechanical system (or other parametrically coupled bosonic system) by effectively laser cooling a delocalized Bogoliubov mode. This approach allows one to surpass the bound on the maximum stationary intracavity entanglement possible with a coherent two-mode squeezing interaction. In particular, we find that optimizing the relative ratio of optomechanical couplings, rather than simply increasing their magnitudes, is essential for achieving strong entanglement. Unlike typical dissipative entanglement schemes, our results cannot be described by treating the effects of the entangling reservoir via a Linblad master equation.
Entanglement and nonclassicality: A mutual impression
NASA Astrophysics Data System (ADS)
Gholipour, H.; Shahandeh, F.
2016-06-01
We find a sufficient condition to imprint the single-mode bosonic phase-space nonclassicality onto a bipartite state as modal entanglement and vice versa using an arbitrary beam splitter. Surprisingly, the entanglement produced or detected in this way depends only on the nonclassicality of the marginal input or output states, regardless of their purity and separability. In this way, our result provides a sufficient condition for generating entangled states of arbitrary high temperature and arbitrary large number of particles. We also study the evolution of the entanglement within a lossy Mach-Zehnder interferometer and show that unless both modes are totally lost, the entanglement does not diminish.
NASA Astrophysics Data System (ADS)
Ali, Mazhar
2017-01-01
We investigate the dynamics of entanglement and nonlocality for multipartite quantum systems under collective dephasing. Using an exact and computable measure for genuine entanglement, we demonstrate the possibility of a non trivial phenomenon of time-invariant entanglement for multipartite quantum systems. We find that for four qubits, there exist quantum states, which are changing continously nevertheless their genuine entanglement remains constant. Based on our numerical results, we conjecture that there is no evidence of time-invariant entanglement for quantum states of three qubits. We point out that quantum states exhibiting time-invariant entanglement must live in both decoherence free subspace and in the subspaces orthogonal to it. The previous studies on this feature for two qubits can be recovered from our studies as a special case. We also study the nonlocality of quantum states under collective dephasing. We find that although genuine entanglement of quantum states may not change, however their nonlocality changes. We discuss the possibility of finite time end of genuine nonlocality.
Temporal Multimode Storage of Entangled Photon Pairs
NASA Astrophysics Data System (ADS)
Tiranov, Alexey; Strassmann, Peter C.; Lavoie, Jonathan; Brunner, Nicolas; Huber, Marcus; Verma, Varun B.; Nam, Sae Woo; Mirin, Richard P.; Lita, Adriana E.; Marsili, Francesco; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas
2016-12-01
Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witnesses, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method, useful for the characterization of multiplexed quantum memories.