Science.gov

Sample records for non-markovian entanglement dynamics

  1. Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment

    NASA Astrophysics Data System (ADS)

    Park, DaeKil

    2016-08-01

    We study on the tripartite entanglement dynamics when each party is initially entangled with other parties, but they locally interact with their own Markovian or non-Markovian environment. First we consider three GHZ-type initial states, all of which have GHZ-symmetry provided that the parameters are chosen appropriately. However, this symmetry is broken due to the effect of environment. The corresponding π -tangles, one of the tripartite entanglement measures, are analytically computed at arbitrary time. For Markovian case while the tripartite entanglement for type I exhibits an entanglement sudden death, the dynamics for the remaining cases decays normally in time with the half-life rule. For non-Markovian case the revival phenomenon of entanglement occurs after complete disappearance of entanglement. We also consider two W-type initial states. For both cases the π -tangles are analytically derived. The revival phenomenon also occurs in this case. On the analytical ground the robustness or fragility issue against the effect of environment is examined for both GHZ-type and W-type initial states.

  2. Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics.

    PubMed

    Orieux, Adeline; D'Arrigo, Antonio; Ferranti, Giacomo; Lo Franco, Rosario; Benenti, Giuliano; Paladino, Elisabetta; Falci, Giuseppe; Sciarrino, Fabio; Mataloni, Paolo

    2015-02-25

    In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop scheme in which the environment is measured, the outcome controling the local operations on the system. The restored entanglement is a manifestation of "hidden" quantum correlations resumed by the local control. Relying on local control, both schemes improve the efficiency of entanglement sharing in distributed quantum networks.

  3. Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics

    PubMed Central

    Orieux, Adeline; D'Arrigo, Antonio; Ferranti, Giacomo; Franco, Rosario Lo; Benenti, Giuliano; Paladino, Elisabetta; Falci, Giuseppe; Sciarrino, Fabio; Mataloni, Paolo

    2015-01-01

    In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop scheme in which the environment is measured, the outcome controling the local operations on the system. The restored entanglement is a manifestation of “hidden” quantum correlations resumed by the local control. Relying on local control, both schemes improve the efficiency of entanglement sharing in distributed quantum networks. PMID:25712406

  4. Dynamics and protection of entanglement in n -qubit systems within Markovian and non-Markovian environments

    NASA Astrophysics Data System (ADS)

    Nourmandipour, A.; Tavassoly, M. K.; Rafiee, M.

    2016-02-01

    We provide an analytical investigation of the pairwise entanglement dynamics for a system, consisting of an arbitrary number of qubits dissipating into a common and non-Markovian environment for both weak- and strong-coupling regimes. In the latter case, a revival of pairwise entanglement due to the memory depth of the environment is observed. The leakage of photons into a continuum state is assumed to be the source of dissipation. We show that for an initially Werner state, the environment washes out the pairwise entanglement, but a series of nonselective measurements can protect the relevant entanglement. On the other hand, by limiting the number of qubits initially in the superposition of single excitation, a stationary entanglement can be created between qubits initially in the excited and ground states. Finally, we determine the stationary distribution of the entanglement versus the total number of qubits in the system.

  5. Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments

    SciTech Connect

    Liu, K.-L.; Goan, H.-S.

    2007-08-15

    We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic fields or two nanomechanical oscillators in the quantum domain. We use the quantum open system method to derive the non-Markovian master equations of the reduced density matrix for two different but related models of the continuous variable systems. The two models both consist of two interacting harmonic oscillators. In model A, each of the two oscillators is coupled to its own independent thermal reservoir, while in model B the two oscillators are coupled to a common reservoir. To quantify the degrees of entanglement for bipartite continuous variable systems in Gaussian states, logarithmic negativity is used. We find that the dynamics of the quantum entanglement is sensitive to the initial states, the oscillator-oscillator interaction, the oscillator-environment interaction and the coupling to a common bath or to different, independent baths.

  6. Entanglement dynamics in a non-Markovian environment: An exactly solvable model

    NASA Astrophysics Data System (ADS)

    Wilson, Justin H.; Fregoso, Benjamin M.; Galitski, Victor M.

    2012-05-01

    We study the non-Markovian effects on the dynamics of entanglement in an exactly solvable model that involves two independent oscillators, each coupled to its own stochastic noise source. First, we develop Lie algebraic and functional integral methods to find an exact solution to the single-oscillator problem which includes an analytic expression for the density matrix and the complete statistics, i.e., the probability distribution functions for observables. For long bath time correlations, we see nonmonotonic evolution of the uncertainties in observables. Further, we extend this exact solution to the two-particle problem and find the dynamics of entanglement in a subspace. We find the phenomena of “sudden death” and “rebirth” of entanglement. Interestingly, all memory effects enter via the functional form of the energy and hence the time of death and rebirth is controlled by the amount of noisy energy added into each oscillator. If this energy increases above (decreases below) a threshold, we obtain sudden death (rebirth) of entanglement.

  7. Non-Markovian environments and entanglement preservation

    SciTech Connect

    Tan, Jackson; Kyaw, Thi Ha; Yeo, Ye

    2010-06-15

    Using the Shabani-Lidar post-Markovian master equation, we derive non-Markovian generalizations of important quantum decohering operations on single qubits. When environmental memory effects are being taken into account, both single-qubit coherence and two-qubit entanglement may be preserved over a longer period of time, in contrast to the corresponding situations where these are totally neglected. We argue that recognizing the fact that every environment is inherently non-Markovian could be the key to the resolution of the issue of entanglement sudden death.

  8. Non-Markovian dynamics of quantum discord

    SciTech Connect

    Fanchini, F. F.; Caldeira, A. O.; Werlang, T.; Brasil, C. A.; Arruda, L. G. E.

    2010-05-15

    We evaluate the quantum discord dynamics of two qubits in independent and common non-Markovian environments. We compare the dynamics of entanglement with that of quantum discord. For independent reservoirs the quantum discord vanishes only at discrete instants whereas the entanglement can disappear during a finite time interval. For a common reservoir, quantum discord and entanglement can behave very differently with sudden birth of the former but not of the latter. Furthermore, in this case the quantum discord dynamics presents sudden changes in the derivative of its time evolution which is evidenced by the presence of kinks in its behavior at discrete instants of time.

  9. Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment.

    PubMed

    Cheng, Jiong; Zhang, Wen-Zhao; Zhou, Ling; Zhang, Weiping

    2016-01-01

    We investigate dynamics of an optomechanical system under the non-Markovian environment. In the weak optomechanical single-photon coupling regime, we provide an analytical approach fully taking into account the non-Markovian memory effects. When the cavity-bath coupling strength crosses a certain threshold, an oscillating memory state for the classical cavity field is formed. Due to the existence of the non-decay optical bound state, a nonequilibrium optomechanical thermal entanglement is preserved even without external driving laser. Our results provide a potential usage to generate and protect entanglement via non-Markovian environment. PMID:27032674

  10. Protecting tripartite entanglement in non-Markovian environments via quantum partially collapsing measurements

    NASA Astrophysics Data System (ADS)

    Ding, Zhi-Yong; He, Juan; Ye, Liu

    2016-08-01

    In this paper, the dynamics of tripartite entanglement via π -tangle in independent non-Markovian environments is investigated. The results indicate that the π -tangle vanishes periodically as decoherence time increases with a damping of its revival amplitude due to the memory of the non-Markovian environments. In addition, we present a scheme to protect entanglement of W state from non-Markovian environments by means of the quantum partially collapsing measurements. It is worth mentioning that our scheme is a successful protection for the tripartite quantum system and the effect is better for the larger measurement strength, while the stronger decoherence suppression induces smaller success probability.

  11. Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment

    PubMed Central

    Cheng, Jiong; Zhang, Wen-Zhao; Zhou, Ling; Zhang, Weiping

    2016-01-01

    We investigate dynamics of an optomechanical system under the non-Markovian environment. In the weak optomechanical single-photon coupling regime, we provide an analytical approach fully taking into account the non-Markovian memory effects. When the cavity-bath coupling strength crosses a certain threshold, an oscillating memory state for the classical cavity field is formed. Due to the existence of the non-decay optical bound state, a nonequilibrium optomechanical thermal entanglement is preserved even without external driving laser. Our results provide a potential usage to generate and protect entanglement via non-Markovian environment. PMID:27032674

  12. Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment

    NASA Astrophysics Data System (ADS)

    Cheng, Jiong; Zhang, Wen-Zhao; Zhou, Ling; Zhang, Weiping

    2016-04-01

    We investigate dynamics of an optomechanical system under the non-Markovian environment. In the weak optomechanical single-photon coupling regime, we provide an analytical approach fully taking into account the non-Markovian memory effects. When the cavity-bath coupling strength crosses a certain threshold, an oscillating memory state for the classical cavity field is formed. Due to the existence of the non-decay optical bound state, a nonequilibrium optomechanical thermal entanglement is preserved even without external driving laser. Our results provide a potential usage to generate and protect entanglement via non-Markovian environment.

  13. Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment.

    PubMed

    Cheng, Jiong; Zhang, Wen-Zhao; Zhou, Ling; Zhang, Weiping

    2016-01-01

    We investigate dynamics of an optomechanical system under the non-Markovian environment. In the weak optomechanical single-photon coupling regime, we provide an analytical approach fully taking into account the non-Markovian memory effects. When the cavity-bath coupling strength crosses a certain threshold, an oscillating memory state for the classical cavity field is formed. Due to the existence of the non-decay optical bound state, a nonequilibrium optomechanical thermal entanglement is preserved even without external driving laser. Our results provide a potential usage to generate and protect entanglement via non-Markovian environment.

  14. Fermionic-mode entanglement in non-Markovian environment

    SciTech Connect

    Cheng, Jiong; Han, Yan; An, Qing-zhi; Zhou, Ling

    2015-03-15

    We evaluate the non-Markovian effects on the entanglement dynamics of a fermionic system interacting with two dissipative vacuum reservoirs. The exact solution of density matrix is derived by utilizing the Feynman–Vernon influence functional theory in the fermionic coherent state representation and the Grassmann calculus, which are valid for both the fermionic and bosonic baths, and their difference lies in the dependence of the parity of the initial states. The fermionic entanglement dynamics is presented by adding an additional restriction to the density matrix known as the superselection rules. Our analysis shows that the usual decoherence suppression schemes implemented in qubits systems can also be achieved for systems of identical fermions, and the initial state proves its importance in the evolution of fermionic entanglement. Our results provide a potential way to decoherence controlling of identical fermions.

  15. Investigating non-Markovian dynamics of quantum open systems

    NASA Astrophysics Data System (ADS)

    Chen, Yusui

    Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple

  16. Entanglement and non-Markovianity of a multi-level atom decaying in a cavity

    NASA Astrophysics Data System (ADS)

    Zi-Long, Fan; Yu-Kun, Ren; Hao-Sheng, Zeng

    2016-01-01

    We present a paradigmatic method for exactly studying non-Markovian dynamics of a multi-level V-type atom interacting with a zero-temperature bosonic bath. Special attention is paid to the entanglement evolution and the dynamical non-Markovianity of a three-level V-type atom. We find that the entanglement negativity decays faster and non-Markovianity is smaller in the resonance regions than those in the non-resonance regions. More importantly, the quantum interference between the dynamical non-Markovianities induced by different transition channels is manifested, and the frequency domains for constructive and destructive interferences are found. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20124306110003), and the Construct Program of the National Key Discipline, China.

  17. Discord and entanglement in non-Markovian environments at finite temperatures

    NASA Astrophysics Data System (ADS)

    Zou, Hong-Mei; Fang, Mao-Fa

    2016-09-01

    The dynamic evolutions of the discord and entanglement of two atoms immersed in two independent Lorentzian reservoirs at zero and finite temperatures have been investigated by using the time-convolutionless master-equation method. Our results show that, nonzero temperature can induce the entanglement sudden death and accelerate the decays of discord and entanglement. The discord and the entanglement have different robustness for different initial states and their robustness may change under certain conditions. When both the non-Markovian effect and detuning are present simultaneously, due to the memory and feedback effect of non-Markovian reservoirs, the discord and entanglement can be effectively protected even at nonzero temperature by increasing the non-Markovian effect and the detuning. Project supported by the Science and Technology Plan of Hunan Province, China (Grant No. 2010FJ3148), the National Natural Science Foundation of China (Grant No. 11374096), and the Doctoral Science Foundation of Hunan Normal University, China.

  18. Discord and entanglement in non-Markovian environments at finite temperatures

    NASA Astrophysics Data System (ADS)

    Zou, Hong-Mei; Fang, Mao-Fa

    2016-09-01

    The dynamic evolutions of the discord and entanglement of two atoms immersed in two independent Lorentzian reservoirs at zero and finite temperatures have been investigated by using the time-convolutionless master-equation method. Our results show that, nonzero temperature can induce the entanglement sudden death and accelerate the decays of discord and entanglement. The discord and the entanglement have different robustness for different initial states and their robustness may change under certain conditions. When both the non-Markovian effect and detuning are present simultaneously, due to the memory and feedback effect of non-Markovian reservoirs, the discord and entanglement can be effectively protected even at nonzero temperature by increasing the non-Markovian effect and the detuning. Project supported by the Science and Technology Plan of Hunan Province, China (Grant No. 2010FJ3148), the National Natural Science Foundation of China (Grant No. 11374096), and the Doctoral Science Foundation of Hunan Normal University, China.

  19. Programmable entanglement oscillations in a non-Markovian channel

    SciTech Connect

    Cialdi, Simone; Brivio, Davide; Tesio, Enrico; Paris, Matteo G. A.

    2011-04-15

    We suggest and demonstrate an all-optical experimental setup to observe and engineer entanglement oscillations of a pair of polarization qubits in an effective non-Markovian channel. We generate entangled photon pairs by spontaneous parametric down-conversion (SPDC), and then insert a programmable spatial light modulator in order to impose a polarization-dependent phase shift on the spatial domain of the SPDC output. This creates an effective programmable non-Markovian environment where modulation of the environment spectrum is obtained by inserting a spatial grating on the signal arm. In our experiment, programmable oscillations of entanglement are achieved, where the entangled state obtained at the maximum of the revival after sudden death violates Bell's inequality by 17 standard deviations.

  20. Programmable entanglement oscillations in a non-Markovian channel

    NASA Astrophysics Data System (ADS)

    Cialdi, Simone; Brivio, Davide; Tesio, Enrico; Paris, Matteo G. A.

    2011-04-01

    We suggest and demonstrate an all-optical experimental setup to observe and engineer entanglement oscillations of a pair of polarization qubits in an effective non-Markovian channel. We generate entangled photon pairs by spontaneous parametric down-conversion (SPDC), and then insert a programmable spatial light modulator in order to impose a polarization-dependent phase shift on the spatial domain of the SPDC output. This creates an effective programmable non-Markovian environment where modulation of the environment spectrum is obtained by inserting a spatial grating on the signal arm. In our experiment, programmable oscillations of entanglement are achieved, where the entangled state obtained at the maximum of the revival after sudden death violates Bell’s inequality by 17 standard deviations.

  1. GENERAL: Entanglement for Two-Qubit Extended Werner-Like States: Effect of Non-Markovian Environments

    NASA Astrophysics Data System (ADS)

    Shan, Chuan-Jia; Liu, Ji-Bing; Chen, Tao; Chen, Wei-Wen; Liu, Tang-Kun; Huang, Yan-Xia; Li, Hong

    2010-09-01

    We investigate the sudden birth and sudden death of entanglement of two qubits interacting with un-correlated structured reservoirs. The system is initially prepared in two-qubit extended Werner-like state. We work out the dependence of the entanglement dynamics on both non-Markovian environments and the purity of initial state, and show that non-Markovian environments and the purity can control the time of the two-qubit entanglement sudden death and the reservoirs' entanglement sudden birth. Furthermore, under the conditions of different purity and initial entanglement, the revival of qubits' entanglement can manifest before, simultaneously or even after the disentanglement of their corresponding reservoirs.

  2. Solvable non-Markovian dynamic network

    NASA Astrophysics Data System (ADS)

    Georgiou, Nicos; Kiss, Istvan Z.; Scalas, Enrico

    2015-10-01

    Non-Markovian processes are widespread in natural and human-made systems, yet explicit modeling and analysis of such systems is underdeveloped. We consider a non-Markovian dynamic network with random link activation and deletion (RLAD) and heavy-tailed Mittag-Leffler distribution for the interevent times. We derive an analytically and computationally tractable system of Kolmogorov-like forward equations utilizing the Caputo derivative for the probability of having a given number of active links in the network and solve them. Simulations for the RLAD are also studied for power-law interevent times and we show excellent agreement with the Mittag-Leffler model. This agreement holds even when the RLAD network dynamics is coupled with the susceptible-infected-susceptible spreading dynamics. Thus, the analytically solvable Mittag-Leffler model provides an excellent approximation to the case when the network dynamics is characterized by power-law-distributed interevent times. We further discuss possible generalizations of our result.

  3. Colloquium: Non-Markovian dynamics in open quantum systems

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  4. Entanglement Protection for Two-Qubit in a Non-Markovian Common Bath

    NASA Astrophysics Data System (ADS)

    Mu, Qingxia; Zhao, Xinyu

    2016-06-01

    In this paper, we propose a scheme to protect quantum entanglement and coherence from a non-Markovian noisy environment. By applying two quantum weak measurements before and after sending the quantum state into the noisy channel, the quantum state can be "pushed" closer to a decoherence free state thus suffer less decoherence in the time evolution. After the time evolution the second weak measurement can partially retrieve the original information encoded in the quantum system. Our study is based on a non-Markovian dynamic equation which allows us to investigate the impact of the memory effect on the performance of the protection scheme. We analyze several factors that may affect the protection efficiency. The results suggest that two measurement strengths should be chosen in a linear relation but the ratio is not one. Besides, we also show the memory effect can drastically improve the protection efficiency.

  5. Non-Markovian disentanglement dynamics of a two-qubit system

    SciTech Connect

    Cao Xiufeng; Zheng Hang

    2008-02-15

    We investigate the disentanglement dynamics of a two-qubit system in the non-Markovian approach. It is shown that only for weak coupling between the system and environment does an exponential decay of entanglement appear, for certain classes of two-qubit entangled states. When the coupling between qubit and the environment becomes stronger, entanglement sudden death always appears even if the dissipation environment is at zero temperature.

  6. Collision model for non-Markovian quantum dynamics

    NASA Astrophysics Data System (ADS)

    Kretschmer, Silvan; Luoma, Kimmo; Strunz, Walter T.

    2016-07-01

    We study the applicability of collisional models for non-Markovian dynamics of open quantum systems. By allowing interactions between the separate environmental degrees of freedom in between collisions we are able to construct a collision model that allows us to study quantum memory effects in open system dynamics. We also discuss the possibility to embed non-Markovian collision model dynamics into Markovian collision model dynamics in an extended state space. As a concrete example we show how, using the proposed class of collision models, we can discretely model non-Markovian amplitude damping of a qubit. In the time-continuous limit, we obtain the well-known results for spontaneous decay of a two-level system into a structured zero-temperature reservoir.

  7. Dynamical decoupling efficiency versus quantum non-Markovianity

    NASA Astrophysics Data System (ADS)

    Addis, Carole; Ciccarello, Francesco; Cascio, Michele; Massimo Palma, G.; Maniscalco, Sabrina

    2015-12-01

    We investigate the relationship between non-Markovianity and the effectiveness of a dynamical decoupling (DD) protocol for qubits undergoing pure dephasing. We consider an exact model in which dephasing arises due to a bosonic environment with a spectral density of the Ohmic class. This is parametrized by an Ohmicity parameter by changing which we can model both Markovian and non-Markovian environments. Interestingly, we find that engineering a non-Markovian environment is detrimental to the efficiency of the DD scheme, leading to a worse coherence preservation. We show that each DD pulse reverses the flow of quantum information and, on this basis, we investigate the connection between DD efficiency and the reservoir spectral density. Finally, in the spirit of reservoir engineering, we investigate the optimum system-reservoir parameters for achieving maximum stationary coherences.

  8. Modulation of Entanglement for Coupled Superconducting Qubits Under Non-Markovian Environment

    NASA Astrophysics Data System (ADS)

    Ji, Y. H.; Hu, J. J.; Wang, Z. S.

    2010-08-01

    The evolution of entanglement decoherence is investigated for a coupled superconducting qubit under non-Markovian environment by utilizing a commensal entanglement degree. The results show that, owing to the memory feedback effect of environment, the entanglement degree of the coupled qubits at the thermal equilibrium always monotonously tends to zero so that entanglement sudden death occurs briefly in the non-Markovian process. Different from the Markovian process, stronger the dissipation is, faster the entanglement sudden death is. We find that, furthermore, the interaction between the qubits results generally in reduction of entanglement degree in the quantum system. With some special initial states or initial phase angles, however, the influence of the interaction between qubits on the system entanglement degree can be avoided.

  9. Dzyaloshinskii-Moriya interaction effects on the entanglement dynamics of a two qubit XXZ spin system in non-Markovian environment

    NASA Astrophysics Data System (ADS)

    Tchoffo, M.; Fouokeng, G. C.; Tendong, E.; Fai, L. C.

    2016-06-01

    We investigate the entanglement dynamics of a two-qubit Heisenberg XXZ chain with Dzyaloshinskii-Moriya (DM) interactions, interacting with an anisotropic spin bath in thermal equilibrium at temperature T, driven by an external magnetic field B along the z-axis. We establish that, for an initially entangled qubit pair, the DM interactions generate entanglement and enhance it in the revival region. At high temperatures and for weak coupling between the two qubits, the DM interactions preserve entanglement. It is seen that increasing simultaneously the XY component Ω, and the z-component Γz, of the Heinsenberg interaction does not increase the entanglement, but it can rather be improved by increasing their anisotropy χ = |Γz - Ω |. These effects are weakened when the magnetic field B and the Heisenberg coupling are switched on. If the two-qubits are prepared in an initially separable state, the DM interaction instead has a negative effect on their entanglement. As a whole, entanglement can better be preserved in the spin chain even at high temperatures by increasing the external magnetic field B and the Heisenberg couplings, and by tuning the strengths of the Heinsenberg couplings and the DM interaction.

  10. Linear Optics Simulation of Quantum Non-Markovian Dynamics

    PubMed Central

    Chiuri, Andrea; Greganti, Chiara; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo

    2012-01-01

    The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects. PMID:23236588

  11. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach

    SciTech Connect

    Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting

    2011-09-15

    Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.

  12. Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics

    SciTech Connect

    Berrada, K.

    2014-01-15

    Robustness of the geometric phase (GP) with respect to the environmental effects is a basic condition for an effective quantum computation. Here, we study quantitatively the GP of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system. We find that with the change of the damping coupling, the GP is very sensitive to its properties exhibiting long collapse and revival phenomena, which play a significant role in enhancing the stabilization and control of the system dynamics. Moreover, we show that the GP can be considered as a tool for testing and characterizing the nature of the qubit–environment coupling. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the qubit with its environment under external classical noise is evaluated and investigated during the time evolution. -- Highlights: •Geometric phase under noise phase laser. •Dynamics of the geometric phase under non-Markovian dynamics in the presence of classical noise. •Solution of master equation of the system in terms atomic inversion. •Nonlocal correlation between the system and its environment under non-Markovianity.

  13. Non-Markovian dynamics of multipartite open quantum systems with internal interactions

    NASA Astrophysics Data System (ADS)

    Liu, Boyang; Dai, Hong-Yi; Chen, Xi; Zhang, Ming

    2015-04-01

    How internal interactions influence the state dynamics of multipartite open quantum systems is investigated with a typical model, where two interacting qubits are coupled with a non-Markovian vacuum field environment. A general state dynamical equation containing all the internal interactions is derived and its analytical solution is presented for the system initially in an extended Werner-like state and coupled with a Lorentzian field. With a discussion of concurrence evolutions in various systems, our research indicates that the entanglement could be significantly affected by internal interactions and omitting them imprudently would lead to errors in estimating features of the system.

  14. Non-Markovian dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Fleming, Chris H.

    An open quantum system is a quantum system that interacts with some environment whose degrees of freedom have been coarse grained away. This model describes non-equilibrium processes more general than scattering-matrix formulations. Furthermore, the microscopically-derived environment provides a model of noise, dissipation and decoherence far more general than Markovian (white noise) models. The latter are fully characterized by Lindblad equations and can be motivated phenomenologically. Non-Markovian processes consistently account for backreaction with the environment and can incorporate effects such as finite temperature and spatial correlations. We consider linear systems with bilinear coupling to the environment, or quantum Brownian motion, and nonlinear systems with weak coupling to the environment. For linear systems we provide exact solutions with analytical results for a variety of spectral densities. Furthermore, we point out an important mathematical subtlety which led to incorrect master-equation coefficients in earlier derivations, given nonlocal dissipation. For nonlinear systems we provide perturbative solutions by translating the formalism of canonical perturbation theory into the context of master equations. It is shown that unavoidable degeneracy causes an unfortunate reduction in accuracy between perturbative master equations and their solutions. We also extend the famous theorem of Lindblad, Gorini, Kossakowski and Sudarshan on completely positivity to non-Markovian master equations. Our application is primarily to model atoms interacting via a common electromagnetic field. The electromagnetic field contains correlations in both space and time, which are related to its relativistic (photon-mediated) nature. As such, atoms residing in the same field experience different environmental effects depending upon their relative position and orientation. Our more accurate solutions were necessary to assess sudden death of entanglement at zero temperature

  15. Non-Markovian dynamics without using a quantum trajectory

    SciTech Connect

    Wu Chengjun; Li Yang; Zhu Mingyi; Guo Hong

    2011-05-15

    Open quantum systems interacting with structured environments is important and manifests non-Markovian behavior, which was conventionally studied using a quantum trajectory stochastic method. In this paper, by dividing the effects of the environment into two parts, we propose a deterministic method without using a quantum trajectory. This method is more efficient and accurate than the stochastic method in most Markovian and non-Markovian cases. We also extend this method to the generalized Lindblad master equation.

  16. Long-time memory in non-Markovian evolutions

    SciTech Connect

    Chruscinski, Dariusz; Pascazio, Saverio

    2010-03-15

    If the dynamics of an open quantum system is non-Markovian, its asymptotic state strongly depends on the initial conditions, even if the dynamics possesses an invariant state. This is the very essence of memory effects. In particular, the asymptotic state can remember and partially preserve its initial entanglement. Interestingly, even if the non-Markovian evolution relaxes to an equilibrium state, this state needs not be invariant. Therefore, the noninvariance of equilibrium becomes a clear sign of non-Markovianity.

  17. Dissipative particle dynamics incorporating non-Markovian effect

    NASA Astrophysics Data System (ADS)

    Kinefuchi, Ikuya; Yoshimoto, Yuta; Takagi, Shu

    2015-11-01

    The coarse-graining methodology of molecular simulations is of great importance to analyze large-scale, complex hydrodynamic phenomena. In the present study, we derive the equation of motion for non-Markovian dissipative particle dynamics (NMDPD) by introducing the history effects on the time evolution of the system. Our formulation is based on the generalized Langevin equation, which describes the motions of the centers of mass of clusters comprising microscopic particles. The mean, friction, and fluctuating forces in the NMDPD model are directly constructed from an underlying MD system without any scaling procedure. For the validation of our formulation, we construct NMDPD models from high-density Lennard-Jones systems, in which the typical time scales of the coarse-grained particle motions and the fluctuating forces are not fully separable. The NMDPD models reproduce the temperatures, diffusion coefficients, and viscosities of the corresponding MD systems more accurately than the conventional DPD models based on a Markovian approximation. Our results suggest that the NMDPD method is a promising alternative for simulating mesoscale flows where a Markovian approximation is not valid.

  18. Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Liu, Bi-Heng; Li, Li; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can; Laine, Elsi-Mari; Breuer, Heinz-Peter; Piilo, Jyrki

    2011-12-01

    Realistic quantum mechanical systems are always exposed to an external environment. This often induces Markovian processes in which the system loses information to its surroundings. However, many quantum systems exhibit non-Markovian behaviour with a flow of information from the environment back to the system. The environment usually consists of large number of degrees of freedom which are difficult to control, but some sophisticated schemes for reservoir engineering have been developed. The control of open systems plays a decisive role, for example, in proposals for entanglement generation and dissipative quantum computation, for the design of quantum memories and in quantum metrology. Here we report an all-optical experiment which allows one to drive the open system from the Markovian to the non-Markovian regime, to control the information flow between the system and the environment, and to determine the degree of non-Markovianity by measurements on the open system.

  19. Closing the hierarchy for non-Markovian magnetization dynamics

    NASA Astrophysics Data System (ADS)

    Tranchida, J.; Thibaudeau, P.; Nicolis, S.

    2016-04-01

    We propose a stochastic approach for the description of the time evolution of the magnetization of nanomagnets, that interpolates between the Landau-Lifshitz-Gilbert and the Landau-Lifshitz-Bloch approximations, by varying the strength of the noise. In addition, we take into account the autocorrelation time of the noise and explore the consequences, when it is finite, on the scale of the response of the magnetization, i.e. when it may be described as colored, rather than white, noise and non-Markovian features become relevant. We close the hierarchy for the moments of the magnetization, by introducing a suitable truncation scheme, whose validity is tested by direct numerical solution of the moment equations and compared to the average deduced from a numerical solution of the corresponding stochastic Langevin equation. In this way we establish a general framework that allows both coarse-graining simulations and faster calculations beyond the truncation approximation used here.

  20. Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics

    SciTech Connect

    Ubbelohde, N.; Maire, N.; Haug, R. J.; Roszak, K.; Hohls, F.; Novotný, T.

    2013-12-04

    For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.

  1. Non-Markovian dynamics in chiral quantum networks with spins and photons

    NASA Astrophysics Data System (ADS)

    Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter

    2016-06-01

    We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.

  2. Entanglement detection for bipartite systems with continuous variables in non-Markovian baths

    SciTech Connect

    Duan Hongguang; Liang Xianting

    2011-03-15

    By using the dynamics described with the quantum Langevin equation and the inseparability criterion for continuous-variable systems [L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).], we discuss a method to judge whether entanglement exists in the evolutions of bipartite systems with continuous variables in their baths. By using this method we investigate a nontrivial example, namely, we judge when the entanglement exists in the evolution of the two coupled anharmonic oscillators in their environments.

  3. Non-Markovian continuous-time quantum walks on lattices with dynamical noise

    NASA Astrophysics Data System (ADS)

    Benedetti, Claudia; Buscemi, Fabrizio; Bordone, Paolo; Paris, Matteo G. A.

    2016-04-01

    We address the dynamics of continuous-time quantum walks on one-dimensional disordered lattices inducing dynamical noise in the system. Noise is described as time-dependent fluctuations of the tunneling amplitudes between adjacent sites, and attention is focused on non-Gaussian telegraph noise, going beyond the usual assumption of fast Gaussian noise. We observe the emergence of two different dynamical behaviors for the walker, corresponding to two opposite noise regimes: slow noise (i.e., strong coupling with the environment) confines the walker into few lattice nodes, while fast noise (weak coupling) induces a transition between quantum and classical diffusion over the lattice. A phase transition between the two dynamical regimes may be observed by tuning the ratio between the autocorrelation time of the noise and the coupling between the walker and the external environment generating the noise. We also address the non-Markovianity of the quantum map by assessing its memory effects, as well as evaluating the information backflow to the system. Our results suggest that the non-Markovian character of the evolution is linked to the dynamical behavior in the slow noise regime, and that fast noise induces a Markovian dynamics for the walker.

  4. Non-Markovian effect on the quantum discord

    SciTech Connect

    Wang Bo; Xu Zhenyu; Chen Zeqian; Feng Mang

    2010-01-15

    We study the non-Markovian effect on the dynamics of the quantum discord by exactly solving a model consisting of two independent qubits subject to two zero-temperature non-Markovian reservoirs, respectively. Considering the two qubits initially prepared in Bell-like or extended Werner-like states, we show that there is no occurrence of the sudden death, but only instantaneous disappearance of the quantum discord at some time points, in comparison to the entanglement sudden death in the same range of the parameters of interest. This implies that the quantum discord is more useful than the entanglement to describe the quantum correlation involved in quantum systems.

  5. The Role of the Total Entropy Production in the Dynamics of Open Quantum Systems in Detection of Non-Markovianity

    NASA Astrophysics Data System (ADS)

    Salimi, S.; Haseli, S.; Khorashad, A. S.; Adabi, F.

    2016-09-01

    The interaction between system and environment is a fundamental concept in the theory of open quantum systems. As a result of the interaction, an amount of correlation (both classical and quantum) emerges between the system and the environment. In this work, we recall the quantity that will be very useful to describe the emergence of the correlation between the system and the environment, namely, the total entropy production. Appearance of total entropy production is due to the entanglement production between the system and the environment. In this work, we discuss about the role of the total entropy production for detecting the non-Markovianity. By utilizing the relation between the total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity. We apply our criterion for the special case, where the composite system has initial correlation with environment.

  6. Dynamics of time correlation functions and stochastic quantum trajectories methods in Non-Markovian systems

    SciTech Connect

    Alonso, Daniel; Vega, Ines de

    2010-06-15

    Open quantum systems are often encountered in many different physical situations. From quantum optics to statistical mechanics, they are fundamental in the understanding of a great variety of different phenomena. Some of the most common examples are the relaxation to equilibrium, the existence of nonequilibrium stationary states, and the dynamics of atoms in interaction with electromagnetic fields. A crucial step in the analysis is to consider the quantum open system and its environment as the two mutually interacting components of a larger isolated system. Thereafter, the so-called Markov approximation is often considered, which consists on assuming that the time scales associated to the dynamics of the quantum open system are larger than those of the environment. It is the interplay of the different time scales associated with the system and the environment what determines the validity of the different approximations made. In this paper we will discuss the dynamics of a open quantum system in contact with a reservoir when the Markov approximation is not valid, and we have to include some non-Markovian or memory effects.

  7. Non-Markovian dynamics of dust charge fluctuations in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Asgari, H.; Muniandy, S. V.; Ghalee, Amir; Ghalee

    2014-06-01

    Dust charge fluctuates even in steady-state uniform plasma due to the discrete nature of the charge carriers and can be described using standard Langevin equation. In this work, two possible approaches in order to introduce the memory effect in dust charging dynamics are proposed. The first part of the paper provides the generalization form of the fluctuation-dissipation relation for non-Markovian systems based on generalized Langevin equations to determine the amplitudes of the dust charge fluctuations for two different kinds of colored noises under the assumption that the fluctuation-dissipation relation is valid. In the second part of the paper, aiming for dusty plasma system out of equilibrium, the fractionalized Langevin equation is used to derive the temporal two-point correlation function of grain charge fluctuations which is shown to be non-stationary due to the dependence on both times and not the time difference. The correlation function is used to derive the amplitude of fluctuations for early transient time.

  8. Qubit decoherence and non-Markovian dynamics at low temperatures via an effective spin-boson model

    SciTech Connect

    Shiokawa, K.; Hu, B.L.

    2004-12-01

    Quantum Brownian oscillator model (QBM), in the Fock-space representation, can be viewed as a multilevel spin-boson model. At sufficiently low temperature, the oscillator degrees of freedom are dynamically reduced to the lowest two levels and the system behaves effectively as a two-level (E2L) spin-boson model (SBM) in this limit. We discuss the physical mechanism of level reduction and analyze the behavior of E2L-SBM from the QBM solutions. The availability of close solutions for the QBM enables us to study the non-Markovian features of decoherence and leakage in a SBM in the nonperturbative regime (e.g., without invoking the Born approximation) in better details than before. Our result captures very well the characteristic non-Markovian short time low temperature behavior common in many models.

  9. Non-Markovian dynamics of an open quantum system with nonstationary coupling

    SciTech Connect

    Kalandarov, S. A.; Adamian, G. G.; Kanokov, Z.; Antonenko, N. V.; Scheid, W.

    2011-04-15

    The spectral, dissipative, and statistical properties of the damped quantum oscillator are studied in the case of non-Markovian and nonstationary system-heat bath coupling. The dissipation of collective energy is shown to be slowed down, and the decoherence rate and entropy grow with modulation frequency.

  10. Degree of Non-Markovianity of Quantum Evolution

    NASA Astrophysics Data System (ADS)

    Chruściński, Dariusz; Maniscalco, Sabrina

    2014-03-01

    We propose a new characterization of non-Markovian quantum evolution based on the concept of non-Markovianity degree. It provides an analog of a Schmidt number in the entanglement theory and reveals the formal analogy between quantum evolution and the entanglement theory: Markovian evolution corresponds to a separable state and the non-Markovian one is further characterized by its degree. It enables one to introduce a non-Markovianity witness—an analog of an entanglement witness, and a family of measures—an analog of Schmidt coefficients, and finally to characterize maximally non-Markovian evolution being an analog of the maximally entangled state. Our approach allows us to classify the non-Markovianity measures introduced so far in a unified rigorous mathematical framework.

  11. Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps

    SciTech Connect

    Vasile, Ruggero; Maniscalco, Sabrina; Paris, Matteo G. A.; Breuer, Heinz-Peter; Piilo, Jyrki

    2011-11-15

    We introduce a non-Markovianity measure for continuous-variable open quantum systems based on the idea put forward in H.-P. Breuer et al.[Phys. Rev. Lett. 103, 210401 (2009);], that is, by quantifying the flow of information from the environment back to the open system. Instead of the trace distance we use here the fidelity to assess distinguishability of quantum states. We employ our measure to evaluate non-Markovianity of two paradigmatic Gaussian channels: the purely damping channel and the quantum Brownian motion channel with Ohmic environment. We consider different classes of Gaussian states and look for pairs of states maximizing the backflow of information. For coherent states we find simple analytical solutions, whereas for squeezed states we provide both exact numerical and approximate analytical solutions in the weak coupling limit.

  12. Quantum Darwinism and non-Markovian dissipative dynamics from quantum phases of the spin-1/2 X X model

    NASA Astrophysics Data System (ADS)

    Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta

    2015-08-01

    Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.

  13. Non-Markovian decay and dynamics of decoherence in private and public environments

    NASA Astrophysics Data System (ADS)

    Dente, A. D.; Zangara, P. R.; Pastawski, H. M.

    2011-10-01

    We study the decay process in an open system, emphasizing the relevance of the environment’s spectral structure. Non-Markovian effects are included to quantitatively analyze the degradation rate of the coherent evolution. The way in which a two-level system is coupled to different environments is specifically addressed: multiple connections to a single bath (public environment) or single connections to multiple baths (private environments). We numerically evaluate the decay rate of a local excitation by using the survival probability and the Loschmidt echo. These rates are compared to analytical results obtained from the standard Fermi golden rule (FGR) in wide band approximation, and a self-consistent evaluation that accounts for the bath’s memory in cases where an exact analytical solution is possible. We observe that the correlations appearing in a public bath introduce further deviations from the FGR as compared with a private bath.

  14. Digital quantum simulation of many-body non-Markovian dynamics

    NASA Astrophysics Data System (ADS)

    Sweke, R.; Sanz, M.; Sinayskiy, I.; Petruccione, F.; Solano, E.

    2016-08-01

    We present an algorithmic method for the digital quantum simulation of many-body locally indivisible non-Markovian open quantum systems. It consists of two parts: first, a Suzuki-Lie-Trotter decomposition of the global system propagator into the product of subsystem propagators, which may not be quantum channels, and second, an algorithmic procedure for the implementation of the subsystem propagators through unitary operations and measurements on a dilated space. By providing rigorous error bounds for the relevant Suzuki-Lie-Trotter decomposition, we are able to analyze the efficiency of the method, and connect it with an appropriate measure of the local indivisibility of the system. In light of our analysis, the proposed method is expected to be experimentally achievable for a variety of interesting cases.

  15. Realizing the dynamics of a non-Markovian quantum system by Markovian coupled oscillators: a Green's function-based root locus approach

    NASA Astrophysics Data System (ADS)

    Xue, Shibei; Petersen, Ian R.

    2016-02-01

    In this paper, we develop a Green's function-based root locus approach to realizing a Lorentzian-noise-disturbed non-Markovian quantum system by Markovian coupled oscillators in an extended Hilbert space. By using a Green's function-based root locus method, we design an ancillary oscillator for Markovian coupled oscillators to be a Lorentzian noise generator. Thus a principal oscillator coupled to the ancillary oscillator via a direct interaction can capture the dynamics of a Lorentzian-noise-disturbed non-Markovian quantum system. By matching the root locus in the frequency domain, conditions for the realization are obtained and a critical transition in the non-Markovian quantum system can also be observed in the Markovian coupled oscillators.

  16. Using non-Markovian measures to evaluate quantum master equations for photosynthesis

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Bin; Lambert, Neill; Cheng, Yuan-Chung; Chen, Yueh-Nan; Nori, Franco

    2015-08-01

    When dealing with system-reservoir interactions in an open quantum system, such as a photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of the system. One question immediately arises: how good are these approximations, and in what ways can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as benchmarks for the deviation of approximate methods from exact results. We apply two frequently-used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables us to explore both entanglement and non-Markovianity measures as means to reveal how the approximations either overestimate or underestimate memory effects and quantum coherence. In addition, we show that both the approximate and exact results suggest that non-Markonivity can, counter-intuitively, increase with temperature, and with the coupling to the environment.

  17. Inequivalence of correlation-based measures of non-Markovianity

    NASA Astrophysics Data System (ADS)

    Neto, Alaor Cervati; Karpat, Göktuǧ; Fanchini, Felipe Fernandes

    2016-09-01

    We conclusively show that the entanglement- and the mutual-information-based measures of quantum non-Markovianity are inequivalent. To this aim, we first analytically solve the optimization problem in the definition of the entanglement-based measure for a two-level system. We demonstrate that the optimal initial bipartite state of the open system and the ancillary is always given by one of the Bell states for any one-qubit dynamics. On top of this result, we present an explicit example dynamics where memory effects emerge according to the mutual-information-based measure, even though the time evolution remains memoryless with respect to the entanglement-based measure. Finally, we explain this disagreement between the two measures in terms of the information dynamics of the open system, exploring the accessible and inaccessible parts of information.

  18. Non-Markovian effect on remote state preparation

    SciTech Connect

    Xu, Zhen-Yu; Liu, Chen; Luo, Shunlong; Zhu, Shiqun

    2015-05-15

    Memory effect of non-Markovian dynamics in open quantum systems is often believed to be beneficial for quantum information processing. In this work, we employ an experimentally controllable two-photon open system, with one photon experiencing a dephasing environment and the other being free from noise, to show that non-Markovian effect may also have a negative impact on quantum tasks such as remote state preparation: For a certain period of controlled time interval, stronger non-Markovian effect yields lower fidelity of remote state preparation, as opposed to the common wisdom that more information leads to better performance. As a comparison, a positive non-Markovian effect on the RSP fidelity with another typical non-Markovian noise is analyzed. Consequently, the observed dual character of non-Markovian effect will be of great importance in the field of open systems engineering.

  19. Non-Markovian effect on remote state preparation

    NASA Astrophysics Data System (ADS)

    Xu, Zhen-Yu; Liu, Chen; Luo, Shunlong; Zhu, Shiqun

    2015-05-01

    Memory effect of non-Markovian dynamics in open quantum systems is often believed to be beneficial for quantum information processing. In this work, we employ an experimentally controllable two-photon open system, with one photon experiencing a dephasing environment and the other being free from noise, to show that non-Markovian effect may also have a negative impact on quantum tasks such as remote state preparation: For a certain period of controlled time interval, stronger non-Markovian effect yields lower fidelity of remote state preparation, as opposed to the common wisdom that more information leads to better performance. As a comparison, a positive non-Markovian effect on the RSP fidelity with another typical non-Markovian noise is analyzed. Consequently, the observed dual character of non-Markovian effect will be of great importance in the field of open systems engineering.

  20. Non-Markovian effects in the first-passage dynamics of obstructed tracer particle diffusion in one-dimensional systems.

    PubMed

    Forsling, Robin; Sanders, Lloyd P; Ambjörnsson, Tobias; Lizana, Ludvig

    2014-09-01

    The standard setup for single-file diffusion is diffusing particles in one dimension which cannot overtake each other, where the dynamics of a tracer (tagged) particle is of main interest. In this article, we generalize this system and investigate first-passage properties of a tracer particle when flanked by identical crowder particles which may, besides diffuse, unbind (rebind) from (to) the one-dimensional lattice with rates k(off) (k(on)). The tracer particle is restricted to diffuse with rate k(D) on the lattice and the density of crowders is constant (on average). The unbinding rate k(off) is our key parameter and it allows us to systematically study the non-trivial transition between the completely Markovian case (k(off) ≫ k(D)) to the non-Markovian case (k(off) ≪ k(D)) governed by strong memory effects. This has relevance for several quasi one-dimensional systems. One example is gene regulation where regulatory proteins are searching for specific binding sites on a crowded DNA. We quantify the first-passage time distribution, f(t) (t is time), numerically using the Gillespie algorithm, and estimate f(t) analytically. In terms of k(off) (keeping k(D) fixed), we study the transition between the two known regimes: (i) when k(off) ≫ k(D) the particles may effectively pass each other and we recover the single particle result f(t) ∼ t(-3/2), with a reduced diffusion constant; (ii) when k(off) ≪ k(D) unbinding is rare and we obtain the single-file result f(t) ∼ t(-7/4). The intermediate region displays rich dynamics where both the characteristic f(t) - peak and the long-time power-law slope are sensitive to k(off). PMID:25194389

  1. Non-Markovian effects in the first-passage dynamics of obstructed tracer particle diffusion in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Forsling, Robin; Sanders, Lloyd P.; Ambjörnsson, Tobias; Lizana, Ludvig

    2014-09-01

    The standard setup for single-file diffusion is diffusing particles in one dimension which cannot overtake each other, where the dynamics of a tracer (tagged) particle is of main interest. In this article, we generalize this system and investigate first-passage properties of a tracer particle when flanked by identical crowder particles which may, besides diffuse, unbind (rebind) from (to) the one-dimensional lattice with rates koff (kon). The tracer particle is restricted to diffuse with rate kD on the lattice and the density of crowders is constant (on average). The unbinding rate koff is our key parameter and it allows us to systematically study the non-trivial transition between the completely Markovian case (koff ≫ kD) to the non-Markovian case (koff ≪ kD) governed by strong memory effects. This has relevance for several quasi one-dimensional systems. One example is gene regulation where regulatory proteins are searching for specific binding sites on a crowded DNA. We quantify the first-passage time distribution, f (t) (t is time), numerically using the Gillespie algorithm, and estimate f (t) analytically. In terms of koff (keeping kD fixed), we study the transition between the two known regimes: (i) when koff ≫ kD the particles may effectively pass each other and we recover the single particle result f (t) ˜ t-3/2, with a reduced diffusion constant; (ii) when koff ≪ kD unbinding is rare and we obtain the single-file result f (t) ˜ t-7/4. The intermediate region displays rich dynamics where both the characteristic f (t) - peak and the long-time power-law slope are sensitive to koff.

  2. Structural relaxation in complex liquids: non-Markovian dynamics in a bistable potential.

    PubMed

    Chaudhury, Srabanti; Cherayil, Binny J

    2006-11-14

    The time correlation function C(t) identical with of the distance fluctuations of a particle moving in a bistable potential under the action of fractional Gaussian noise (fGn) is calculated from a Smoluchowski-type equation derived from a generalized Langevin equation (GLE). The time derivative of this function, dC(t)dt, is compared with data from optical Kerr effect measurements of liquid crystal dynamics in the vicinity of the isotropic-to-nematic transition, which are related to the time derivative of an orientational correlation function. A number of characteristic features of the experimental decay curves, including short and intermediate time power law behavior and long time exponential relaxation, are qualitatively reproduced by the analytical calculations, even though the latter do not explicitly treat orientational degrees of freedom. The GLE formalism with fGn was, in fact, originally proposed as a model of protein conformational fluctuations, so the present results suggest that it may also serve more generally as a model of structural relaxation in complex condensed phase media.

  3. Non-Markovian reduced dynamics based upon a hierarchical effective-mode representation

    SciTech Connect

    Burghardt, Irene; Martinazzo, Rocco; Hughes, Keith H.

    2012-10-14

    A reduced dynamics representation is introduced which is tailored to a hierarchical, Mori-chain type representation of a bath of harmonic oscillators which are linearly coupled to a subsystem. We consider a spin-boson system where a single effective mode is constructed so as to absorb all system-environment interactions, while the residual bath modes are coupled bilinearly to the primary mode and among each other. Using a cumulant expansion of the memory kernel, correlation functions for the primary mode are obtained, which can be suitably approximated by truncated chains representing the primary-residual mode interactions. A series of reduced-dimensional bath correlation functions is thus obtained, which can be expressed as Fourier-Laplace transforms of spectral densities that are given in truncated continued-fraction form. For a master equation which is second order in the system-bath coupling, the memory kernel is re-expressed in terms of local-in-time equations involving auxiliary densities and auxiliary operators.

  4. Non-Gaussian fluctuations and non-Markovian effects in the nuclear fusion process: Langevin dynamics emerging from quantum molecular dynamics simulations.

    PubMed

    Wen, Kai; Sakata, Fumihiko; Li, Zhu-Xia; Wu, Xi-Zhen; Zhang, Ying-Xun; Zhou, Shan-Gui

    2013-07-01

    Macroscopic parameters as well as precise information on the random force characterizing the Langevin-type description of the nuclear fusion process around the Coulomb barrier are extracted from the microscopic dynamics of individual nucleons by exploiting the numerical simulation of the improved quantum molecular dynamics. It turns out that the dissipation dynamics of the relative motion between two fusing nuclei is caused by a non-Gaussian distribution of the random force. We find that the friction coefficient as well as the time correlation function of the random force takes particularly large values in a region a little bit inside of the Coulomb barrier. A clear non-Markovian effect is observed in the time correlation function of the random force. It is further shown that an emergent dynamics of the fusion process can be described by the generalized Langevin equation with memory effects by appropriately incorporating the microscopic information of individual nucleons through the random force and its time correlation function.

  5. Continuous-variable-entanglement dynamics in structured reservoirs

    SciTech Connect

    Vasile, Ruggero; Maniscalco, Sabrina; Olivares, Stefano; Paris, Matteo G. A.

    2009-12-15

    We address the evolution of entanglement in bimodal continuous variable quantum systems interacting with two independent structured reservoirs. We derive an analytic expression for the entanglement of formation without performing the Markov and the secular approximations and study in details the entanglement dynamics for various types of structured reservoirs and for different reservoir temperatures, assuming the two modes initially excited in a twin-beam state. Our analytic solution allows us to identify three dynamical regimes characterized by different behaviors of the entanglement: the entanglement sudden death, the non-Markovian revival and the non-secular revival regimes. Remarkably, we find that, contrarily to the Markovian case, the short-time system-reservoir correlations in some cases destroy quickly the initial entanglement even at zero temperature.

  6. Non-Markovianity of Gaussian Channels.

    PubMed

    Torre, G; Roga, W; Illuminati, F

    2015-08-14

    We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states.

  7. Non-Markovianity of Gaussian Channels.

    PubMed

    Torre, G; Roga, W; Illuminati, F

    2015-08-14

    We introduce a necessary and sufficient criterion for the non-Markovianity of Gaussian quantum dynamical maps based on the violation of divisibility. The criterion is derived by defining a general vectorial representation of the covariance matrix which is then exploited to determine the condition for the complete positivity of partial maps associated with arbitrary time intervals. Such construction does not rely on the Choi-Jamiolkowski representation and does not require optimization over states. PMID:26317700

  8. Quantum non-Markovianity: characterization, quantification and detection

    NASA Astrophysics Data System (ADS)

    Rivas, Ángel; Huelga, Susana F.; Plenio, Martin B.

    2014-09-01

    We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.

  9. Generalized discord, entanglement, Einstein-Podolsky-Rosen steering, and Bell nonlocality in two-qubit systems under (non-)Markovian channels: Hierarchy of quantum resources and chronology of deaths and births

    NASA Astrophysics Data System (ADS)

    Costa, A. C. S.; Beims, M. W.; Angelo, R. M.

    2016-11-01

    Generalized quantum discord (Dq), Einstein-Podolsky-Rosen steering (S), entanglement (E), and Bell nonlocality (N), are logically distinct quantifiers of quantum correlations. All these measures capture nonclassical aspects of quantum states and play some role as resources in quantum information processing. In this work, we look for the hierarchy satisfied by these quantum correlation witnesses for a class of two-qubit states. We show that N ⊳ S ⊳ E ⊳Dq, meaning that nonlocality implies steering, which in turn implies entanglement, which then implies q-discord. For the quantum states under concern, we show that the invariance of this hierarchy under noisy quantum channels directly implies a death chronology. Additionally, we have found that sudden death of all quantum resources except discord is absent only for a subset of states of measure zero. At last, we provide an illustration of another consequence of the aforementioned hierarchy, namely, the existence of a sudden birth chronology under non-Markovian channels.

  10. Non-Markovian dynamics of single- and two-qubit systems interacting with Gaussian and non-Gaussian fluctuating transverse environments

    NASA Astrophysics Data System (ADS)

    Rossi, Matteo A. C.; Paris, Matteo G. A.

    2016-01-01

    We address the interaction of single- and two-qubit systems with an external transverse fluctuating field and analyze in detail the dynamical decoherence induced by Gaussian noise and random telegraph noise (RTN). Upon exploiting the exact RTN solution of the time-dependent von Neumann equation, we analyze in detail the behavior of quantum correlations and prove the non-Markovianity of the dynamical map in the full parameter range, i.e., for either fast or slow noise. The dynamics induced by Gaussian noise is studied numerically and compared to the RTN solution, showing the existence of (state dependent) regions of the parameter space where the two noises lead to very similar dynamics. We show that the effects of RTN noise and of Gaussian noise are different, i.e., the spectrum alone is not enough to summarize the noise effects, but the dynamics under the effect of one kind of noise may be simulated with high fidelity by the other one.

  11. Non-Markovian dynamics of single- and two-qubit systems interacting with Gaussian and non-Gaussian fluctuating transverse environments.

    PubMed

    Rossi, Matteo A C; Paris, Matteo G A

    2016-01-14

    We address the interaction of single- and two-qubit systems with an external transverse fluctuating field and analyze in detail the dynamical decoherence induced by Gaussian noise and random telegraph noise (RTN). Upon exploiting the exact RTN solution of the time-dependent von Neumann equation, we analyze in detail the behavior of quantum correlations and prove the non-Markovianity of the dynamical map in the full parameter range, i.e., for either fast or slow noise. The dynamics induced by Gaussian noise is studied numerically and compared to the RTN solution, showing the existence of (state dependent) regions of the parameter space where the two noises lead to very similar dynamics. We show that the effects of RTN noise and of Gaussian noise are different, i.e., the spectrum alone is not enough to summarize the noise effects, but the dynamics under the effect of one kind of noise may be simulated with high fidelity by the other one. PMID:26772560

  12. Non-Markovianity hinders Quantum Darwinism.

    PubMed

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  13. Non-Markovianity hinders Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  14. Non-Markovianity hinders Quantum Darwinism

    PubMed Central

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors. PMID:26786857

  15. Ultrafast Optimal Sideband Cooling under Non-Markovian Evolution

    NASA Astrophysics Data System (ADS)

    Triana, Johan F.; Estrada, Andrés F.; Pachón, Leonardo A.

    2016-05-01

    A sideband cooling strategy that incorporates (i) the dynamics induced by structured (non-Markovian) environments in the target and auxiliary systems and (ii) the optimally time-modulated interaction between them is developed. For the context of cavity optomechanics, when non-Markovian dynamics are considered in the target system, ground state cooling is reached at much faster rates and at a much lower phonon occupation number than previously reported. In contrast to similar current strategies, ground state cooling is reached here for coupling-strength rates that are experimentally accessible for the state-of-the-art implementations. After the ultrafast optimal-ground-state-cooling protocol is accomplished, an additional optimal control strategy is considered to maintain the phonon number as close as possible to the one obtained in the cooling procedure. Contrary to the conventional expectation, when non-Markovian dynamics are considered in the auxiliary system, the efficiency of the cooling protocol is undermined.

  16. Entropy production in a non-Markovian environment.

    PubMed

    Kutvonen, Aki; Ala-Nissila, Tapio; Pekola, Jukka

    2015-07-01

    Stochastic thermodynamics and the associated fluctuation relations provide the means to extend the fundamental laws of thermodynamics to small scales and systems out of equilibrium. The fluctuating thermodynamic variables are usually treated in the context of either isolated Hamiltonian evolution, or Markovian dynamics in open systems. However, there is no reason a priori why the Markovian approximation should be valid in driven systems under nonequilibrium conditions. In this work, we introduce an explicitly non-Markovian model of dynamics of an open system, where the correlations between the system and the environment drive a subset of the environment out of equilibrium. Such an environment gives rise to a new type of non-Markovian entropy production term. Such non-Markovian components must be taken into account in order to recover the fluctuation relations for entropy. As a concrete example, we explicitly derive such modified fluctuation relations for the case of an overheated single electron box. PMID:26274125

  17. Non-Markovian full counting statistics in quantum dot molecules.

    PubMed

    Xue, Hai-Bin; Jiao, Hu-Jun; Liang, Jiu-Qing; Liu, Wu-Ming

    2015-03-10

    Full counting statistics of electron transport is a powerful diagnostic tool for probing the nature of quantum transport beyond what is obtainable from the average current or conductance measurement alone. In particular, the non-Markovian dynamics of quantum dot molecule plays an important role in the nonequilibrium electron tunneling processes. It is thus necessary to understand the non-Markovian full counting statistics in a quantum dot molecule. Here we study the non-Markovian full counting statistics in two typical quantum dot molecules, namely, serially coupled and side-coupled double quantum dots with high quantum coherence in a certain parameter regime. We demonstrate that the non-Markovian effect manifests itself through the quantum coherence of the quantum dot molecule system, and has a significant impact on the full counting statistics in the high quantum-coherent quantum dot molecule system, which depends on the coupling of the quantum dot molecule system with the source and drain electrodes. The results indicated that the influence of the non-Markovian effect on the full counting statistics of electron transport, which should be considered in a high quantum-coherent quantum dot molecule system, can provide a better understanding of electron transport through quantum dot molecules.

  18. Geometric quantum discord and non-Markovianity of structured reservoirs

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Liang; Lian, Han-Li

    2015-11-01

    The reservoir memory effects can lead to information backflow and recurrence of the previously lost quantum correlations. We establish connections between the direction of information flow and variation of the geometric quantum discords (GQDs) measured respectively by the trace distance, the Hellinger distance, and the Bures distance for two qubits subjecting to the bosonic structured reservoirs, and unveil their dependence on a factor whose derivative signifies the (non-)Markovianity of the dynamics. By considering the reservoirs with Lorentzian and Ohmic-like spectra, we further demonstrated that the non-Markovianity induced by the backflow of information from the reservoirs to the system enhances the GQDs in most of the parameter regions. This highlights the potential of non-Markovianity as a resource for protecting the GQDs.

  19. Entanglement dynamics of nonidentical oscillators under decohering environments

    SciTech Connect

    Galve, Fernando; Giorgi, Gian Luca; Zambrini, Roberta

    2010-06-15

    We study the evolution of entanglement for a pair of coupled nonidentical harmonic oscillators in contact with an environment. For both cases of a common bath and of two separate baths for each of the oscillators, a full master equation is provided without rotating-wave approximation. The entanglement dynamics is analyzed as a function of the diversity between the oscillators' frequencies and their positive or negative mutual coupling and also the correlation between the occupation numbers. The singular effect of the resonance condition (identical oscillators) and its relationship with the possibility of preserving asymptotic entanglement are discussed. The importance of the bath's memory properties is investigated by comparing Markovian and non-Markovian evolutions.

  20. Non-Markovian dynamics of a single-mode cavity strongly coupled to an inhomogeneously broadened spin ensemble

    NASA Astrophysics Data System (ADS)

    Krimer, Dmitry O.; Putz, Stefan; Majer, Johannes; Rotter, Stefan

    2014-10-01

    We study the dynamics of a spin ensemble strongly coupled to a single-mode resonator driven by external pulses. When the mean frequency of the spin ensemble is in resonance with the cavity mode, damped Rabi oscillations are found between the spin ensemble and the cavity mode which we describe very accurately, including the dephasing effect of the inhomogeneous spin broadening. We demonstrate that a precise knowledge of this broadening is crucial both for a qualitative and a quantitative understanding of the temporal spin-cavity dynamics. On this basis we show that coherent oscillations between the spin ensemble and the cavity can be enhanced by a few orders of magnitude, when driving the system with pulses that match special resonance conditions. Our theoretical approach is tested successfully with an experiment based on an ensemble of negatively charged nitrogen-vacancy centers in diamond strongly coupled to a superconducting coplanar single-mode waveguide resonator.

  1. Non-Markovian effects on quantum-communication protocols

    SciTech Connect

    Yeo, Ye; Oh, C. H.; An, Jun-Hong

    2010-09-15

    We show how, under the influence of non-Markovian environments, two different maximally entangled Bell states give rise to states that have equal classical correlations and the same capacities to violate the Bell-Clauser-Horne-Shimony-Holt inequality, but intriguingly differing usefulness for teleportation and dense coding. We elucidate how different entanglement measures like negativity and concurrence, and two different measures of quantum discord, could account for these behaviors. In particular, we explicitly show how the Ollivier-Zurek measure of discord directly accounts for one state being a better resource for dense coding compared to another. Our study leads to several important issues about these measures of discord.

  2. Measures of non-Markovianity: Divisibility versus backflow of information

    SciTech Connect

    Chruscinski, Dariusz; Kossakowski, Andrzej

    2011-05-15

    We analyze two recently proposed measures of non-Markovianity: one based on the concept of divisibility of the dynamical map and the other one based on distinguishability of quantum states. We provide a model to show that these two measures need not agree. In addition, we discuss possible generalizations and intricate relations between these measures.

  3. Timescales in Quantum Open Systems: Dynamics of Time Correlation Functions and Stochastic Quantum Trajectory Methods in Non-Markovian Systems

    NASA Astrophysics Data System (ADS)

    Alonso, Daniel; de Vega, Inés

    The dynamics of a system in interaction with another system, the later considered as a reservoir, is studied in many different domains in physics. This approach is useful not only to address fundamental questions like quantum decoherence decoherence and the measurement problem [1] but also to deal with practical and theoretical problems appearing in the emerging fields of nanotechnology nanotechnology [2, 3] and quantum computing quantum computing as well as in systems of ultracold atoms [7]. In many of these cases, the basic approximation is the Markov assumption in which there is a clear separation of the typical timescales associated with the system and the reservoir or environment. This separation of timescales, together with other assumptions like the weak coupling between the system and the reservoir, has been central in the development of several fields, in particular in quantum optics [8, 9]. However, in

  4. Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms

    NASA Astrophysics Data System (ADS)

    Rajagopal, A. K.; Usha Devi, A. R.; Rendell, R. W.

    2010-10-01

    It is shown that the fidelity of the dynamically evolved system with its earlier time-density matrix provides a signature of non-Markovian dynamics. Also, the fidelity associated with the initial state and the dynamically evolved state is shown to be larger in the non-Markovian evolution compared to that in the corresponding Markovian case. Starting from the Kraus representation of quantum evolution, the Markovian and non-Markovian features are discerned in its short-time structure. These two features are in concordance with each other and they are illustrated with the help of four models of interaction of the system with its environment.

  5. Thermodynamic power of non-Markovianity

    PubMed Central

    Bylicka, Bogna; Tukiainen, Mikko; Chruściński, Dariusz; Piilo, Jyrki; Maniscalco, Sabrina

    2016-01-01

    The natural framework to discuss thermodynamics at the quantum level is the theory of open quantum systems. Memory effects arising from strong system-environment correlations may lead to information back-flow, that is non-Markovian behaviour. The relation between non-Markovianity and quantum thermodynamics has been until now largely unexplored. Here we show by means of Landauer’s principle that memory effects control the amount of work extraction by erasure in presence of realistic environments. PMID:27323947

  6. Quantum Fisher information flow and non-Markovian processes of open systems

    SciTech Connect

    Lu Xiaoming; Wang Xiaoguang; Sun, C. P.

    2010-10-15

    We establish an information-theoretic approach for quantitatively characterizing the non-Markovianity of open quantum processes. Here, the quantum Fisher information (QFI) flow provides a measure to statistically distinguish Markovian and non-Markovian processes. A basic relation between the QFI flow and non-Markovianity is unveiled for quantum dynamics of open systems. For a class of time-local master equations, the exactly analytic solution shows that for each fixed time the QFI flow is decomposed into additive subflows according to different dissipative channels.

  7. Non-Markovian approach to globally coupled excitable systems

    SciTech Connect

    Prager, T.; Schimansky-Geier, L.; Zaks, M. A.; Falcke, M.

    2007-07-15

    We consider stochastic excitable units with three discrete states. Each state is characterized by a waiting time density function. This approach allows for a non-Markovian description of the dynamics of separate excitable units and of ensembles of such units. We discuss the emergence of oscillations in a globally coupled ensemble with excitatory coupling. In the limit of a large ensemble we derive the non-Markovian mean-field equations: nonlinear integral equations for the populations of the three states. We analyze the stability of their steady solutions. Collective oscillations are shown to persist in a large parameter region beyond supercritical and subcritical Hopf bifurcations. We compare the results with simulations of discrete units as well as of coupled FitzHugh-Nagumo systems.

  8. Efficient scheme for experimental quantification of non-Markovianity in high-dimensional systems

    NASA Astrophysics Data System (ADS)

    Dong, S.-J.; Liu, B.-H.; Han, Y.-J.; Guo, G.-C.; He, Lixin

    2015-04-01

    The non-Markovianity is a prominent concept of the dynamics of open quantum systems, which is of fundamental importance in quantum mechanics and quantum information. Despite lots of efforts, the experimental measurement of non-Markovianity of an open system is still limited to very small systems. Presently, it is still impossible to experimentally quantify the non-Markovianity of high-dimensional systems with the widely used Breuer-Laine-Piilo trace distance measure. In this paper, we propose a method, combining experimental measurements and numerical calculations, that allow quantifying the non-Markovianity of an N -dimensional system only scaled as N2, successfully avoiding the exponential scaling with the dimension of the open system in the current method. After the benchmark with a two-dimensional open system, we demonstrate the method in quantifying the non-Markovanity of a high-dimensional open quantum random walk system.

  9. Gaussian interferometric power as a measure of continuous-variable non-Markovianity

    NASA Astrophysics Data System (ADS)

    Souza, Leonardo A. M.; Dhar, Himadri Shekhar; Bera, Manabendra Nath; Liuzzo-Scorpo, Pietro; Adesso, Gerardo

    2015-11-01

    We investigate the non-Markovianity of continuous-variable Gaussian quantum channels through the evolution of an operational metrological quantifier, namely, the Gaussian interferometric power, which captures the minimal precision that can be achieved using bipartite Gaussian probes in a black-box phase estimation setup, where the phase shift generator is a priori unknown. We observe that the monotonicity of the Gaussian interferometric power under the action of local Gaussian quantum channels on the ancillary arm of the bipartite probes is a natural indicator of Markovian dynamics; consequently, its breakdown for specific maps can be used to construct a witness and an effective quantifier of non-Markovianity. In our work, we consider two paradigmatic Gaussian models, the damping master equation and the quantum Brownian motion, and identify analytically and numerically the parameter regimes that give rise to non-Markovian dynamics. We then quantify the degree of non-Markovianity of the channels in terms of Gaussian interferometric power, showing, in particular, that even nonentangled probes can be useful to witness non-Markovianity. This establishes an interesting link between the dynamics of bipartite continuous-variable open systems and their potential for optical interferometry. The results are an important supplement to the recent research on characterization of non-Markovianity in continuous-variable systems.

  10. Optimal management of non-Markovian biological populations

    USGS Publications Warehouse

    Williams, B.K.

    2007-01-01

    Wildlife populations typically are described by Markovian models, with population dynamics influenced at each point in time by current but not previous population levels. Considerable work has been done on identifying optimal management strategies under the Markovian assumption. In this paper we generalize this work to non-Markovian systems, for which population responses to management are influenced by lagged as well as current status and/or controls. We use the maximum principle of optimal control theory to derive conditions for the optimal management such a system, and illustrate the effects of lags on the structure of optimal habitat strategies for a predator-prey system.

  11. Decoherence suppression of open quantum systems through a strong coupling to non-Markovian reservoirs

    SciTech Connect

    Lei, Chan U; Zhang Weimin

    2011-11-15

    In this paper, we provide a mechanism of decoherence suppression for open quantum systems in general and that for a ''Schroedinger cat-like'' state in particular, through strong couplings to non-Markovian reservoirs. Different from the usual strategies in the literature of suppressing decoherence by decoupling the system from the environment, here the decoherence suppression employs a strong back-reaction from non-Markovian reservoirs. The mechanism relies on the existence of the singularities (bound states) of the nonequilibrium retarded Green function, which completely determines the dissipation and decoherence dynamics of open systems. As an application, we examine the decoherence dynamics of a photonic crystal nanocavity that is coupled to a waveguide. The strong non-Markovian suppression of decoherence for the ''optical cat'' state is attained.

  12. Generalization of Pairwise Models to non-Markovian Epidemics on Networks

    NASA Astrophysics Data System (ADS)

    Kiss, Istvan Z.; Röst, Gergely; Vizi, Zsolt

    2015-08-01

    In this Letter, a generalization of pairwise models to non-Markovian epidemics on networks is presented. For the case of infectious periods of fixed length, the resulting pairwise model is a system of delay differential equations, which shows excellent agreement with results based on stochastic simulations. Furthermore, we analytically compute a new R0 -like threshold quantity and an analytical relation between this and the final epidemic size. Additionally, we show that the pairwise model and the analytic results can be generalized to an arbitrary distribution of the infectious times, using integro-differential equations, and this leads to a general expression for the final epidemic size. By showing the rigorous link between non-Markovian dynamics and pairwise delay differential equations, we provide the framework for a more systematic understanding of non-Markovian dynamics.

  13. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    NASA Astrophysics Data System (ADS)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  14. Convolutionless Non-Markovian master equations and quantum trajectories: Brownian motion

    SciTech Connect

    Strunz, Walter T.; Yu Ting

    2004-05-01

    Stochastic Schroedinger equations for quantum trajectories offer an alternative and sometimes superior approach to the study of open quantum system dynamics. Here we show that recently established convolutionless non-Markovian stochastic Schroedinger equations may serve as a powerful tool for the derivation of convolutionless master equations for non-Markovian open quantum systems. The most interesting example is quantum Brownian motion (QBM) of a harmonic oscillator coupled to a heat bath of oscillators, one of the most employed exactly soluble models of open system dynamics. We show explicitly how to establish the direct connection between the exact convolutionless master equation of QBM and the corresponding convolutionless exact stochastic Schroedinger equation.

  15. Entanglement and entangling power of the dynamics in light-harvesting complexes

    SciTech Connect

    Caruso, Filippo; Plenio, Martin B.; Chin, Alex W.; Huelga, Susana F.; Datta, Animesh

    2010-06-15

    We study the evolution of quantum entanglement during exciton energy transfer (EET) in a network model of the Fenna-Matthews-Olson (FMO) complex, a biological pigment-protein complex involved in the early steps of photosynthesis in sulfur bacteria. The influence of Markovian as well as spatially and temporally correlated (non-Markovian) noise on the generation of entanglement across distinct chromophores (site entanglement) and different excitonic eigenstates (mode entanglement) is studied for different injection mechanisms, including thermal and coherent laser excitation. Additionally, we study the entangling power of the FMO complex under natural operating conditions. While quantum information processing tends to favor maximal entanglement, near unit EET is achieved as the result of an intricate interplay between coherent and noisy processes where the initial part of the evolution displays intermediate values of both forms of entanglement.

  16. Optical signatures of non-Markovian behavior in open quantum systems

    NASA Astrophysics Data System (ADS)

    McCutcheon, Dara P. S.

    2016-02-01

    We derive an extension to the quantum regression theorem which facilitates the calculation of two-time correlation functions and emission spectra for systems undergoing non-Markovian evolution. The derivation exploits projection operator techniques, with which we obtain explicit equations of motion for the correlation functions, making only a second-order expansion in the system-environment coupling strength and invoking the Born approximation at a fixed initial time. The results are used to investigate a driven semiconductor quantum dot coupled to an acoustic phonon bath, where we find the non-Markovian nature of the dynamics has observable signatures in the form of phonon sidebands in the resonance fluorescence emission spectrum. Furthermore, we use recently developed non-Markovianity measures to demonstrate an associated flow of information from the phonon bath back into the quantum dot exciton system.

  17. Fisher information due to a phase noisy laser under non-Markovian environment

    SciTech Connect

    Abdel-Khalek, S.

    2014-12-15

    More recently, K. Berrada [Annals of Physics 340 (2014) 60-69] [1] studied the geometric phase of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system, and collapse and revival phenomena were found for large class of states. In this paper, using this noise effect, we study the quantum fisher information (QFI) for a two-level atom system driven by a phase noise laser under non-Markovian dynamics. A new quantity, called QFI flow is used to characterize the damping effect and unveil a fundamental connection between non-Markovian behavior and dynamics of system–environment correlations under phase noise laser. It is shown that QFI flow has disappeared suddenly followed by a sudden birth depending on the kind of the environment damping. QFI flow provides an indicator to characterize the dissipative quantum system’s decoherence by analyzing the behavior of the dynamical non-Markovian coefficients.

  18. Classical non-Markovian Boltzmann equation

    SciTech Connect

    Alexanian, Moorad

    2014-08-01

    The modeling of particle transport involves anomalous diffusion, (x²(t) ) ∝ t{sup α} with α ≠ 1, with subdiffusive transport corresponding to 0 < α < 1 and superdiffusive transport to α > 1. These anomalies give rise to fractional advection-dispersion equations with memory in space and time. The usual Boltzmann equation, with only isolated binary collisions, is Markovian and, in particular, the contributions of the three-particle distribution function are neglected. We show that the inclusion of higher-order distribution functions give rise to an exact, non-Markovian Boltzmann equation with resulting transport equations for mass, momentum, and kinetic energy with memory in both time and space. The two- and the three-particle distribution functions are considered under the assumption that the two- and the three-particle correlation functions are translationally invariant that allows us to obtain advection-dispersion equations for modeling transport in terms of spatial and temporal fractional derivatives.

  19. Quantifying Non-Markovianity with Temporal Steering.

    PubMed

    Chen, Shin-Liang; Lambert, Neill; Li, Che-Ming; Miranowicz, Adam; Chen, Yueh-Nan; Nori, Franco

    2016-01-15

    Einstein-Podolsky-Rosen (EPR) steering is a type of quantum correlation which allows one to remotely prepare, or steer, the state of a distant quantum system. While EPR steering can be thought of as a purely spatial correlation, there does exist a temporal analogue, in the form of single-system temporal steering. However, a precise quantification of such temporal steering has been lacking. Here, we show that it can be measured, via semidefinite programing, with a temporal steerable weight, in direct analogy to the recently proposed EPR steerable weight. We find a useful property of the temporal steerable weight in that it is a nonincreasing function under completely positive trace-preserving maps and can be used to define a sufficient and practical measure of strong non-Markovianity. PMID:26824533

  20. Recovering entanglement by local operations

    SciTech Connect

    D’Arrigo, A.; Lo Franco, R.; Benenti, G.; Paladino, E.; Falci, G.

    2014-11-15

    We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of “hidden” entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We also discuss how hidden entanglement may provide new insights about entanglement revivals in non-Markovian dynamics.

  1. Mean first-passage times of non-Markovian random walkers in confinement.

    PubMed

    Guérin, T; Levernier, N; Bénichou, O; Voituriez, R

    2016-06-16

    The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement. PMID:27306185

  2. Mean first-passage times of non-Markovian random walkers in confinement

    NASA Astrophysics Data System (ADS)

    Guérin, T.; Levernier, N.; Bénichou, O.; Voituriez, R.

    2016-06-01

    The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions, target search processes or the spread of diseases. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels, or the motion of a tracer particle either attached to a polymeric chain or diffusing in simple or complex fluids such as nematics, dense soft colloids or viscoelastic solutions. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.

  3. Light with Tunable Non-Markovian Phase Imprint

    NASA Astrophysics Data System (ADS)

    Fischer, Robert; Vidal, Itamar; Gilboa, Doron; Correia, Ricardo R. B.; Ribeiro-Teixeira, Ana C.; Prado, Sandra D.; Hickman, Jandir; Silberberg, Yaron

    2015-08-01

    We introduce a simple and flexible method to generate spatially non-Markovian light with tunable coherence properties in one and two dimensions. The unusual behavior of this light is demonstrated experimentally by probing the far field and by recording its diffraction pattern after a double slit: In both cases we observe, instead of a central intensity maximum, a line- or cross-shaped dark region, whose width and profile depend on the non-Markovian coherence properties. Because these properties can be controlled and easily reproduced in experiment, the presented approach lends itself to serving as a test bed to study and gain a deeper understanding of non-Markovian processes.

  4. Light with Tunable Non-Markovian Phase Imprint.

    PubMed

    Fischer, Robert; Vidal, Itamar; Gilboa, Doron; Correia, Ricardo R B; Ribeiro-Teixeira, Ana C; Prado, Sandra D; Hickman, Jandir; Silberberg, Yaron

    2015-08-14

    We introduce a simple and flexible method to generate spatially non-Markovian light with tunable coherence properties in one and two dimensions. The unusual behavior of this light is demonstrated experimentally by probing the far field and by recording its diffraction pattern after a double slit: In both cases we observe, instead of a central intensity maximum, a line- or cross-shaped dark region, whose width and profile depend on the non-Markovian coherence properties. Because these properties can be controlled and easily reproduced in experiment, the presented approach lends itself to serving as a test bed to study and gain a deeper understanding of non-Markovian processes.

  5. Dynamics of non-Markovian exclusion processes

    NASA Astrophysics Data System (ADS)

    Khoromskaia, Diana; Harris, Rosemary J.; Grosskinsky, Stefan

    2014-12-01

    Driven diffusive systems are often used as simple discrete models of collective transport phenomena in physics, biology or social sciences. Restricting attention to one-dimensional geometries, the asymmetric simple exclusion process (ASEP) plays a paradigmatic role to describe noise-activated driven motion of entities subject to an excluded volume interaction and many variants have been studied in recent years. While in the standard ASEP the noise is Poissonian and the process is therefore Markovian, in many applications the statistics of the activating noise has a non-standard distribution with possible memory effects resulting from internal degrees of freedom or external sources. This leads to temporal correlations and can significantly affect the shape of the current-density relation as has been studied recently for a number of scenarios. In this paper we report a general framework to derive the fundamental diagram of ASEPs driven by non-Poissonian noise by using effectively only two simple quantities, viz., the mean residual lifetime of the jump distribution and a suitably defined temporal correlation length. We corroborate our results by detailed numerical studies for various noise statistics under periodic boundary conditions and discuss how our approach can be applied to more general driven diffusive systems.

  6. Non-Markovian correlation functions for open quantum systems

    NASA Astrophysics Data System (ADS)

    Jin, Jinshuang; Karlewski, Christian; Marthaler, Michael

    2016-08-01

    Beyond the conventional quantum regression theorem, a general formula for non-Markovian correlation functions of arbitrary system operators both in the time- and frequency-domain is given. We approach the problem by transforming the conventional time-non-local master equation into dispersed time-local equations-of-motion. The validity of our approximations is discussed and we find that the non-Markovian terms have to be included for short times. While calculations of the density matrix at short times suffer from the initial value problem, a correlation function has a well defined initial state. The resulting formula for the non-Markovian correlation function has a simple structure and is as convenient in its application as the conventional quantum regression theorem for the Markovian case. For illustrations, we apply our method to investigate the spectrum of the current fluctuations of interacting quantum dots contacted with two electrodes. The corresponding non-Markovian characteristics are demonstrated.

  7. Efficient superdense coding in the presence of non-Markovian noise

    NASA Astrophysics Data System (ADS)

    Liu, Bi-Heng; Hu, Xiao-Min; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can; Karlsson, Antti; Laine, Elsi-Mari; Maniscalco, Sabrina; Macchiavello, Chiara; Piilo, Jyrki

    2016-04-01

    Many quantum information tasks rely on entanglement, which is used as a resource, for example, to enable efficient and secure communication. Typically, noise, accompanied by loss of entanglement, reduces the efficiency of quantum protocols. We develop and demonstrate experimentally a superdense coding scheme with noise, where the decrease of entanglement in Alice's encoding state does not reduce the efficiency of the information transmission. Having an almost fully dephased classical two-photon polarization state at the time of encoding with concurrence of 0.163+/-0.007 , we reach values of mutual information close to 1.52+/- 0.02 (1.89+/- 0.05) with 3-state (4-state) encoding. This high efficiency relies both on non-Markovian features, that Bob exploits just before his Bell state measurement, and on very high visibility (99.6{%}+/-0.1{%}) of the Hong-Ou-Mandel interference within the experimental set-up. Our proof-of-principle results with measurements on mutual information pave the way for exploiting non-Markovianity to improve the efficiency and security of quantum information processing tasks.

  8. The simulation of the non-Markovian behaviour of a two-level system

    NASA Astrophysics Data System (ADS)

    Semina, I.; Petruccione, F.

    2016-05-01

    Non-Markovian relaxation dynamics of a two-level system is studied with the help of the non-linear stochastic Schrödinger equation with coloured Ornstein-Uhlenbeck noise. This stochastic Schrödinger equation is investigated numerically with an adapted Platen scheme. It is shown, that the memory effects have a significant impact to the dynamics of the system.

  9. Transient unidirectional energy flow and diode-like phenomenon induced by non-Markovian environments

    PubMed Central

    Jing, Jun; Segal, Dvira; Li, Baowen; Wu, Lian-Ao

    2015-01-01

    Relying on an exact time evolution scheme, we identify a novel transient energy transfer phenomenon in an exactly-solvable quantum microscopic model consisting of a three-level system coupled to two non-Markovian zero-temperature bosonic baths through two separable quantum channels. The dynamics of this model can be solved exactly using the quantum-state-diffusion equation formalism, demonstrating finite intervals of unidirectional energy flow across the system, typically, from the non-Markovian environment towards the more Markovian bath. Furthermore, when introducing a spatial asymmetry into the system, an analogue of the rectification effect is realized. In the long time limit, the dynamics arrives at a stationary state and the effects recede. Understanding temporal characteristics of directional energy flow will aid in designing microscopic energy transfer devices. PMID:26478230

  10. Transient unidirectional energy flow and diode-like phenomenon induced by non-Markovian environments.

    PubMed

    Jing, Jun; Segal, Dvira; Li, Baowen; Wu, Lian-Ao

    2015-10-19

    Relying on an exact time evolution scheme, we identify a novel transient energy transfer phenomenon in an exactly-solvable quantum microscopic model consisting of a three-level system coupled to two non-Markovian zero-temperature bosonic baths through two separable quantum channels. The dynamics of this model can be solved exactly using the quantum-state-diffusion equation formalism, demonstrating finite intervals of unidirectional energy flow across the system, typically, from the non-Markovian environment towards the more Markovian bath. Furthermore, when introducing a spatial asymmetry into the system, an analogue of the rectification effect is realized. In the long time limit, the dynamics arrives at a stationary state and the effects recede. Understanding temporal characteristics of directional energy flow will aid in designing microscopic energy transfer devices.

  11. Non-Markovian master equation for a system of Fermions interacting with an electromagnetic field

    SciTech Connect

    Stefanescu, Eliade Scheid, Werner; Sandulescu, Aurel

    2008-05-15

    For a system of charged Fermions interacting with an electromagnetic field, we derive a non-Markovian master equation in the second-order approximation of the weak dissipative coupling. A complex dissipative environment including Fermions, Bosons and the free electromagnetic field is taken into account. Besides the well-known Markovian term of Lindblad's form, that describes the decay of the system by correlated transitions of the system and environment particles, this equation includes new Markovian and non-Markovian terms proceeding from the fluctuations of the self-consistent field of the environment. These terms describe fluctuations of the energy levels, transitions among these levels stimulated by the fluctuations of the self-consistent field of the environment, and the influence of the time-evolution of the environment on the system dynamics. We derive a complementary master equation describing the environment dynamics correlated with the dynamics of the system. As an application, we obtain non-Markovian Maxwell-Bloch equations and calculate the absorption spectrum of a field propagation mode transversing an array of two-level quantum dots.

  12. Non-Markovian work fluctuation theorem in crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiménez-Aquino, J. I.

    2015-08-01

    The validity of the transient work fluctuation theorem for a charged Brownian harmonic oscillator embedded in a non-Markovian heat bath and under the action of crossed electric and magnetic fields is investigated. The aforementioned theorem is verified to be valid within the context of the generalized Langevin equation with an arbitrary memory kernel and arbitrary dragging in the potential minimum. The fluctuation-dissipation relation of the second kind is assumed to be valid and shows that the non-Markovian stochastic dynamics associated with the particle, in the absence of the external time-dependent electric field, reaches an equilibrium state, as is precisely demanded by such a relation. The Jarzynski equality in this problem is also analyzed.

  13. Jump-diffusion unravelling of a non-Markovian generalized Lindblad master equation

    SciTech Connect

    Barchielli, A.; Pellegrini, C.

    2010-11-15

    The ''correlated-projection technique'' has been successfully applied to derive a large class of highly non-Markovian dynamics, the so called non-Markovian generalized Lindblad-type equations or Lindblad rate equations. In this article, general unravelings are presented for these equations, described in terms of jump-diffusion stochastic differential equations for wave functions. We show also that the proposed unraveling can be interpreted in terms of measurements continuous in time but with some conceptual restrictions. The main point in the measurement interpretation is that the structure itself of the underlying mathematical theory poses restrictions on what can be considered as observable and what is not; such restrictions can be seen as the effect of some kind of superselection rule. Finally, we develop a concrete example and discuss possible effects on the heterodyne spectrum of a two-level system due to a structured thermal-like bath with memory.

  14. Non-Markovian Complexity in the Quantum-to-Classical Transition.

    PubMed

    Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco

    2015-08-25

    The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free.

  15. Non-Markovian Quantum Friction of Bright Solitons in Superfluids

    NASA Astrophysics Data System (ADS)

    Efimkin, Dmitry K.; Hofmann, Johannes; Galitski, Victor

    2016-06-01

    We explore the quantum dynamics of a bright matter-wave soliton in a quasi-one-dimensional bosonic superfluid with attractive interactions. Specifically, we focus on the dissipative forces experienced by the soliton due to its interaction with Bogoliubov excitations. Using the collective coordinate approach and the Keldysh formalism, a Langevin equation of motion for the soliton is derived from first principles. The equation contains a stochastic Langevin force (associated with quantum noise) and a nonlocal in time dissipative force, which appears due to inelastic scattering of Bogoliubov quasiparticles off of the moving soliton. It is shown that Ohmic friction (i.e., a term proportional to the soliton's velocity) is absent in the integrable setup. However, the Markovian approximation gives rise to the Abraham-Lorentz force (i.e., a term proportional to the derivative of the soliton's acceleration), which is known from classical electrodynamics of a charged particle interacting with its own radiation. These Abraham-Lorentz equations famously contain a fundamental causality paradox, where the soliton (particle) interacts with excitations (radiation) originating from future events. We show, however, that the causality paradox is an artifact of the Markovian approximation, and our exact non-Markovian dissipative equations give rise to physical trajectories. We argue that the quantum friction discussed here should be observable in current quantum gas experiments.

  16. Non-Markovian Quantum Friction of Bright Solitons in Superfluids.

    PubMed

    Efimkin, Dmitry K; Hofmann, Johannes; Galitski, Victor

    2016-06-01

    We explore the quantum dynamics of a bright matter-wave soliton in a quasi-one-dimensional bosonic superfluid with attractive interactions. Specifically, we focus on the dissipative forces experienced by the soliton due to its interaction with Bogoliubov excitations. Using the collective coordinate approach and the Keldysh formalism, a Langevin equation of motion for the soliton is derived from first principles. The equation contains a stochastic Langevin force (associated with quantum noise) and a nonlocal in time dissipative force, which appears due to inelastic scattering of Bogoliubov quasiparticles off of the moving soliton. It is shown that Ohmic friction (i.e., a term proportional to the soliton's velocity) is absent in the integrable setup. However, the Markovian approximation gives rise to the Abraham-Lorentz force (i.e., a term proportional to the derivative of the soliton's acceleration), which is known from classical electrodynamics of a charged particle interacting with its own radiation. These Abraham-Lorentz equations famously contain a fundamental causality paradox, where the soliton (particle) interacts with excitations (radiation) originating from future events. We show, however, that the causality paradox is an artifact of the Markovian approximation, and our exact non-Markovian dissipative equations give rise to physical trajectories. We argue that the quantum friction discussed here should be observable in current quantum gas experiments. PMID:27314722

  17. Non-Markovian Quantum Friction of Bright Solitons in Superfluids.

    PubMed

    Efimkin, Dmitry K; Hofmann, Johannes; Galitski, Victor

    2016-06-01

    We explore the quantum dynamics of a bright matter-wave soliton in a quasi-one-dimensional bosonic superfluid with attractive interactions. Specifically, we focus on the dissipative forces experienced by the soliton due to its interaction with Bogoliubov excitations. Using the collective coordinate approach and the Keldysh formalism, a Langevin equation of motion for the soliton is derived from first principles. The equation contains a stochastic Langevin force (associated with quantum noise) and a nonlocal in time dissipative force, which appears due to inelastic scattering of Bogoliubov quasiparticles off of the moving soliton. It is shown that Ohmic friction (i.e., a term proportional to the soliton's velocity) is absent in the integrable setup. However, the Markovian approximation gives rise to the Abraham-Lorentz force (i.e., a term proportional to the derivative of the soliton's acceleration), which is known from classical electrodynamics of a charged particle interacting with its own radiation. These Abraham-Lorentz equations famously contain a fundamental causality paradox, where the soliton (particle) interacts with excitations (radiation) originating from future events. We show, however, that the causality paradox is an artifact of the Markovian approximation, and our exact non-Markovian dissipative equations give rise to physical trajectories. We argue that the quantum friction discussed here should be observable in current quantum gas experiments.

  18. Estimating first-passage time distributions from weighted ensemble simulations and non-Markovian analyses.

    PubMed

    Suárez, Ernesto; Pratt, Adam J; Chong, Lillian T; Zuckerman, Daniel M

    2016-01-01

    First-passage times (FPTs) are widely used to characterize stochastic processes such as chemical reactions, protein folding, diffusion processes or triggering a stock option. In previous work (Suarez et al., JCTC 2014;10:2658-2667), we demonstrated a non-Markovian analysis approach that, with a sufficient subset of history information, yields unbiased mean first-passage times from weighted-ensemble (WE) simulations. The estimation of the distribution of the first-passage times is, however, a more ambitious goal since it cannot be obtained by direct observation in WE trajectories. Likewise, a large number of events would be required to make a good estimation of the distribution from a regular "brute force" simulation. Here, we show how the previously developed non-Markovian analysis can generate approximate, but highly accurate, FPT distributions from WE data. The analysis can also be applied to any other unbiased trajectories, such as from standard molecular dynamics simulations. The present study employs a range of systems with independent verification of the distributions to demonstrate the success and limitations of the approach. By comparison to a standard Markov analysis, the non-Markovian approach is less sensitive to the user-defined discretization of configuration space.

  19. Entanglement revive and information flow within the decoherent environment

    PubMed Central

    Shi, Jia-dong; Wang, Dong; Ye, Liu

    2016-01-01

    In this paper, the dynamics of entanglement is investigated in the presence of a noisy environment. We reveal its revival behavior and probe the mechanisms of this behavior via an information-theoretic approach. By analyzing the correlation distribution and the information flow within the composite system including the qubit subsystem and a noisy environment, it has been found that the subsystem-environment coupling can induce the quasi-periodic entanglement revival. Furthermore, the dynamical relationship among tripartite correlations, bipartite entanglement and local state information is explored, which provides a new insight into the non-Markovian mechanisms during the evolution. PMID:27506664

  20. Entanglement revive and information flow within the decoherent environment.

    PubMed

    Shi, Jia-Dong; Wang, Dong; Ye, Liu

    2016-01-01

    In this paper, the dynamics of entanglement is investigated in the presence of a noisy environment. We reveal its revival behavior and probe the mechanisms of this behavior via an information-theoretic approach. By analyzing the correlation distribution and the information flow within the composite system including the qubit subsystem and a noisy environment, it has been found that the subsystem-environment coupling can induce the quasi-periodic entanglement revival. Furthermore, the dynamical relationship among tripartite correlations, bipartite entanglement and local state information is explored, which provides a new insight into the non-Markovian mechanisms during the evolution. PMID:27506664

  1. Entanglement revive and information flow within the decoherent environment

    NASA Astrophysics Data System (ADS)

    Shi, Jia-Dong; Wang, Dong; Ye, Liu

    2016-08-01

    In this paper, the dynamics of entanglement is investigated in the presence of a noisy environment. We reveal its revival behavior and probe the mechanisms of this behavior via an information-theoretic approach. By analyzing the correlation distribution and the information flow within the composite system including the qubit subsystem and a noisy environment, it has been found that the subsystem-environment coupling can induce the quasi-periodic entanglement revival. Furthermore, the dynamical relationship among tripartite correlations, bipartite entanglement and local state information is explored, which provides a new insight into the non-Markovian mechanisms during the evolution.

  2. Complex membrane transport systems. A non-Markovian approach.

    PubMed

    Stephan, W

    1985-01-01

    This paper suggests a method of how to deal with complex membrane transport systems such as ion channels or ion pumps formed by proteins. The complexity of these systems results from the fact that proteins may undergo an internal dynamics of conformational changes and may thereby affect the transmembrane transport. Usually, complex transport systems are mapped into multi-state graphs and couched in terms of Markovian master equations. It is shown in this paper how the dimensionality of such multi-state systems can be reduced. The resulting description may be expressed in the form of a generalized master equation with a memory function as integral kernel. The memory function reflects the protein's own dynamics and its overall effect on the transport. This formalism, non-Markovian in nature, is applied to describe the time-dependent action of ion pumps. A general model is constructed on the basis of the rate theory which contains all the essential parts of ion pumps such as a catalytic unit and a channel-like conduit for ion translocation and which is still analytically tractable. The short-time behaviour of the pumping process turns out to be of particular interest, since it reveals the dynamics of the catalytic unit itself. A strong correlation of the particle's motion over times less than a certain correlation time has been found. This result is compared with experimental findings on the proton pump of Halobacterium halobium. It is concluded that such a perfect short-time memory could be a generic property of active transport systems.

  3. Quantum Fisher information of the GHZ state due to classical phase noise lasers under non-Markovian environment

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Zou, Jian; Yang, Zi-Yi; Li, Longwu; Li, Hai; Shao, Bin

    2016-08-01

    The dynamics of N-qubit GHZ state quantum Fisher information (QFI) under phase noise lasers (PNLs) driving is investigated in terms of non-Markovian master equation. We first investigate the non-Markovian dynamics of the QFI of N-qubit GHZ state and show that when the ratio of the PNL rate and the system-environment coupling strength is very small, the oscillations of the QFIs decay slower which corresponds to the non-Markovian region; yet when it becomes large, the QFIs monotonously decay which corresponds to the Markovian region. When the atom number N increases, QFIs in both regions decay faster. We further find that the QFI flow disappears suddenly followed by a sudden birth depending on the ratio of the PNL rate and the system-environment coupling strength and the atom number N, which unveil a fundamental connection between the non-Markovian behaviors and the parameters of system-environment couplings. We discuss two optimal positive operator-valued measures (POVMs) for two different strategies of our model and find the condition of the optimal measurement. At last, we consider the QFI of two atoms with qubit-qubit interaction under random telegraph noises (RTNs).

  4. Mechanism of entanglement preservation

    SciTech Connect

    Tong Qingjun; An Junhong; Luo Honggang; Oh, C. H.

    2010-05-15

    We study the entanglement preservation of two qubits locally interacting with their reservoirs. We show that the existence of a bound state of the qubit and its reservoir and the non-Markovian effect are two essential ingredients and their interplay plays a crucial role in preserving the entanglement in the steady state. When the non-Markovian effect is neglected, the entanglement sudden death (ESD) is reproduced. On the other hand, when the non-Markovian is significantly strong but the bound state is absent, the phenomenon of the ESD and its revival is recovered. Our formulation presents a unified picture about the entanglement preservation and provides a clear clue on how to preserve the entanglement in quantum information processing.

  5. On Reinforcement Memory for Non-Markovian Control

    NASA Astrophysics Data System (ADS)

    Osman, Hassab Elgawi

    This paper contributes on designing robotic memory controller for solving non-Markovian reinforcement tasks, which correspond to a great deal of real-life stochastic predictions and control problems. Instead of holistic search for the whole memory contents, the controller adopts associated feature analysis to produce the most likely relevant action from previous experiences. Actor-Critic (AC) learning is used to adaptively tune the control parameters, while an on-line variant of decisiontrees ensemble learner is used as memory-capable to approximate the policy of the Actor and the value function of the Critic. Learning capability is experimentally examined through non-Markovian cart-pole balancing task. The result shows that the proposed controller acquired complex behaviors such as balancing two poles simultaneously.

  6. Overcoming non-Markovian dephasing in single-photon sources through postselection

    NASA Astrophysics Data System (ADS)

    Nazir, A.; Barrett, S. D.

    2009-01-01

    We study the effects of realistic dephasing environments on a pair of solid-state single-photon sources in the context of the Hong-Ou-Mandel dip. By means of solutions for the Markovian or exact non-Markovian dephasing dynamics of the sources, we show that the resulting loss of visibility depends crucially on the timing of photon detection events. Our results demonstrate that the effective visibility can be improved via temporal postselection, and also that time-resolved interference can be a useful probe of the interaction between the emitter and its host environment.

  7. High Resolution non-Markovianity in NMR

    PubMed Central

    Bernardes, Nadja K.; Peterson, John P. S.; Sarthour, Roberto S.; Souza, Alexandre M.; Monken, C. H.; Roditi, Itzhak; Oliveira, Ivan S.; Santos, Marcelo F.

    2016-01-01

    Memoryless time evolutions are ubiquitous in nature but often correspond to a resolution-induced approximation, i.e. there are correlations in time whose effects are undetectable. Recent advances in the dynamical control of small quantum systems provide the ideal scenario to probe some of these effects. Here we experimentally demonstrate the precise induction of memory effects on the evolution of a quantum coin (qubit) by correlations engineered in its environment. In particular, we design a collisional model in Nuclear Magnetic Resonance (NMR) and precisely control the strength of the effects by changing the degree of correlation in the environment and its time of interaction with the qubit. We also show how these effects can be hidden by the limited resolution of the measurements performed on the qubit. The experiment reinforces NMR as a test bed for the study of open quantum systems and the simulation of their classical counterparts. PMID:27669652

  8. Data-based Non-Markovian Model Inference

    NASA Astrophysics Data System (ADS)

    Ghil, Michael

    2015-04-01

    This talk concentrates on obtaining stable and efficient data-based models for simulation and prediction in the geosciences and life sciences. The proposed model derivation relies on using a multivariate time series of partial observations from a large-dimensional system, and the resulting low-order models are compared with the optimal closures predicted by the non-Markovian Mori-Zwanzig formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a very broad generalization and a time-continuous limit of existing multilevel, regression-based approaches to data-based closure, in particular of empirical model reduction (EMR). We show that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the Mori-Zwanzig formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are given for the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a very broad class of MSM applications. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. The resulting reduced model with energy-conserving nonlinearities captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lokta-Volterra model of population dynamics in its chaotic regime. The positivity constraint on the solutions' components replaces here the quadratic-energy-preserving constraint of fluid-flow problems and it successfully prevents blow-up. This work is based on a close

  9. A non-Markovian model of rill erosion

    NASA Astrophysics Data System (ADS)

    Winter, C.; Damron, M.

    2009-12-01

    Stochastic processes with reinforcement are inherently non-Markovian and therefore may model geophysical processes with memory, for instance patterns of rill erosion, more realistically than Markovian models. Reinforcement provides a bias to a system that is equivalent to infinite memory, making a system more likely to occupy a given state the more often the state is visited. Some well-studied examples in applied mathematics include variations on the urn of P'olya and reinforced random walks. Many natural phenomena exhibit similar behavior: for instance, an overall pattern of rills is relatively stable once it is established, although small details of the pattern may change frequently and catastrophes that permanently alter it may occasionally occur. To model the phenomenology of rill erosion, we propose a simple discrete time, infinite-memory random process defined on the nodes and edges of an oriented diagonal lattice. Lattice models have often been used to investigate the morphology of natural drainage networks, but our focus is as much on the dynamics of network formation as it is on morphology. The lattice in our model starts out smooth in the sense that it has no edges initially, but it sprouts edges everywhere the instant the process starts, much as rain can start soil erosion everywhere on a hillslope at once. Exactly one edge (rill segment) descends from each node, and it points either left or right. Sediment loads travel along networks of edges and are accumulated at nodes. At every node and at every time step, a simple two parameter reinforcing law randomly determines the direction of the node’s output and then is updated. The degree of reinforcement is set by comparing the node's current sediment load to the load history of the entire network above it and is governed by two system parameters representing respectively rainfall intensity and the soil’s resistance to change. The current pattern of connections among nodes represents the present state of

  10. Measuring multipartite entanglement through dynamic susceptibilities

    NASA Astrophysics Data System (ADS)

    Hauke, Philipp; Heyl, Markus; Tagliacozzo, Luca; Zoller, Peter

    2016-08-01

    Entanglement is considered an essential resource in quantum technologies, and central to the understanding of quantum many-body physics. Developing protocols to detect and quantify the entanglement of many-particle quantum states is thus a key challenge for present experiments. Here, we show that the quantum Fisher information, a witness for genuinely multipartite entanglement, becomes measurable for thermal ensembles by means of the dynamic susceptibility--that is, with resources readily available in present cold atomic-gas and condensed-matter experiments. This establishes a connection between multipartite entanglement and many-body correlations contained in response functions, with immediate implications close to quantum phase transitions, where the quantum Fisher information becomes universal, allowing us to identify strongly entangled phase transitions with a divergent multipartite entanglement. We illustrate our framework using paradigmatic quantum Ising models, and point out potential signatures in optical-lattice experiments and strongly correlated materials.

  11. Non-Markovian noise mediated through anomalous diffusion within ion channels

    NASA Astrophysics Data System (ADS)

    Roy, Sisir; Mitra, Indranil; Llinas, Rodolfo

    2008-10-01

    It is evident from a wide range of experimental findings that ion channel gating is inherently stochastic. The issue of “memory effects” (diffusional retardation due to local changes in water viscosity) in ionic flow has been recently addressed using Brownian dynamics simulations. The results presented indicate such memory effects are negligible, unless the diffusional barrier is much higher than that of free solute. In this paper using differential stochastic methods we conclude that the Markovian property of exponential dwell times gives rise to a high barrier, resulting in diffusional memory effects that cannot be ignored in determining ionic flow through channels. We have addressed this question using a generalized Langevin equation that contains a combination of Markovian and non-Markovian processes with different time scales. This approach afforded the development of an algorithm that describes an oscillatory ionic diffusional sequence. The resulting oscillatory function behavior, with exponential decay, was obtained at the weak non-Markovian limit with two distinct time scales corresponding to the processes of ionic diffusion and drift. This will be analyzed further in future studies using molecular dynamics simulations. We propose that the rise of time scales and memory effects is related to differences of shear viscosity in the cytoplasm and extracellular matrix.

  12. Non-Markovian coarse-grained modeling of polymeric fluids based on the Mori-Zwanzig formalism

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bian, Xin; Li, Xiantao; Karniadakis, George

    The Mori-Zwanzig formalism for coarse-graining a complex dynamical system typically introduces memory effects. The Markovian assumption of delta-correlated fluctuating forces is often employed to simplify the formulation of coarse-grained (CG) models and numerical implementations. However, when the time scales of a system are not clearly separated, the memory effects become strong and the Markovian assumption becomes inaccurate. To this end, we incorporate memory effects into CG modeling by preserving non-Markovian interactions between CG variables based on the Mori-Zwanzig formalism. For a specific example, molecular dynamics (MD) simulations of star polymer melts are performed while the corresponding CG system is defined by grouping many bonded atoms into single clusters. Then, the effective interactions between CG clusters as well as the memory kernel are obtained from the MD simulations. The constructed CG force field with a memory kernel leads to a non-Markovian dissipative particle dynamics (NM-DPD). Quantitative comparisons on both static and dynamic properties between the CG models with Markovian and non-Markovian approximations will be presented. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.

  13. Non-Markovian quantum Brownian motion of a harmonic oscillator

    SciTech Connect

    Tang, J.

    1994-02-01

    We apply the density-matrix method to the study of quantum Brownian motion of a harmonic oscillator coupled to a heat bath, a system investigated previously by Caldeira and Leggett using a different method. Unlike the earlier work, in our derivation of the master equation the non-Markovian terms are maintained. Although the same model of interaction is used, discrepancy is found between their results and our equation in the Markovian limit. We also point out that the particular interaction model used by both works cannot lead to the phenomenological generalized Langevin theory of Kubo.

  14. Non-Markovian near-infrared Q branch of HCl diluted in liquid Ar

    NASA Astrophysics Data System (ADS)

    Padilla, Antonio; Pérez, Justo

    2013-08-01

    By using a non-Markovian spectral theory based in the Kubo cumulant expansion technique, we have qualitatively studied the infrared Q branch observed in the fundamental absorption band of HCl diluted in liquid Ar. The statistical parameters of the anisotropic interaction present in this spectral theory were calculated by means of molecular dynamics techniques, and found that the values of the anisotropic correlation times are significantly greater (by a factor of two) than those previously obtained by fitting procedures or microscopic cell models. This fact is decisive for the observation in the theoretical spectral band of a central Q resonance which is absent in the abundant previous researches carried out with the usual theories based in Kubo cumulant expansion techniques. Although the theory used in this work only allows a qualitative study of the Q branch, we can employ it to study the unknown characteristics of the Q resonance which are difficult to obtain with the quantum simulation techniques recently developed. For example, in this study we have found that the Q branch is basically a non-Markovian (or memory) effect produced by the spectral line interferences, where the PR interferential profile basically determines the Q branch spectral shape. Furthermore, we have found that the Q resonance is principally generated by the first rotational states of the first two vibrational levels, those more affected by the action of the dissolvent.

  15. Non-Markovian near-infrared Q branch of HCl diluted in liquid Ar.

    PubMed

    Padilla, Antonio; Pérez, Justo

    2013-08-28

    By using a non-Markovian spectral theory based in the Kubo cumulant expansion technique, we have qualitatively studied the infrared Q branch observed in the fundamental absorption band of HCl diluted in liquid Ar. The statistical parameters of the anisotropic interaction present in this spectral theory were calculated by means of molecular dynamics techniques, and found that the values of the anisotropic correlation times are significantly greater (by a factor of two) than those previously obtained by fitting procedures or microscopic cell models. This fact is decisive for the observation in the theoretical spectral band of a central Q resonance which is absent in the abundant previous researches carried out with the usual theories based in Kubo cumulant expansion techniques. Although the theory used in this work only allows a qualitative study of the Q branch, we can employ it to study the unknown characteristics of the Q resonance which are difficult to obtain with the quantum simulation techniques recently developed. For example, in this study we have found that the Q branch is basically a non-Markovian (or memory) effect produced by the spectral line interferences, where the PR interferential profile basically determines the Q branch spectral shape. Furthermore, we have found that the Q resonance is principally generated by the first rotational states of the first two vibrational levels, those more affected by the action of the dissolvent. PMID:24007016

  16. Non-Markovianity induced by a single-photon wave packet in a one-dimensional waveguide.

    PubMed

    Valente, D; Arruda, M F Z; Werlang, T

    2016-07-01

    The concept of non-Markovianity (NM) in quantum dynamics is still an open debate. Understanding how to generate and measure NM in specific models may aid in this quest. In quantum optics, an engineered electromagnetic environment coupled to a single atom can induce NM. The most common scenario of structured electromagnetic environment is an optical cavity, composed by a pair of mirrors. Here, we show how to generate and measure NM on a two-level system coupled to a one-dimensional waveguide with no mirrors required. The origin of the non-Markovian behavior lies in the initial state of the field, prepared as a single-photon packet. NM is shown to depend on two experimentally controllable parameters, namely, the linewidth of the packet and its central frequency. We relate the presence of NM to quantum interference. We also show how the two output channels of the waveguide provide distinct signatures of NM, both experimentally accessible.

  17. Evolution of entanglement under echo dynamics

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž; Seligman, Thomas H.; Žnidarič, Marko

    2003-04-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model.

  18. Quantum Stochastic Equations for an Opto-Mechanical Oscillator with Radiation Pressure Interaction and Non-Markovian Effects

    NASA Astrophysics Data System (ADS)

    Barchielli, Alberto

    2016-06-01

    The quantum stochastic Schrödinger equation or Hudson-Parthasarathy (HP) equation is a powerful tool to construct unitary dilations of quantum dynamical semigroups and to develop the theory of measurements in continuous time via the construction of output fields. An important feature of such an equation is that it allows to treat not only absorption and emission of quanta, but also scattering processes, which however had very few applications in physical modelling. Moreover, recent developments have shown that also some non-Markovian dynamics can be generated by suitable choices of the state of the quantum noises involved in the HP-equation. This paper is devoted to an application involving these two features, non-Markovianity and scattering process. We consider a micro-mirror mounted on a vibrating structure and reflecting a laser beam, a process giving rise to a radiation-pressure force on the mirror. We show that this process needs the scattering part of the HP-equation to be described. On the other side, non-Markovianity is introduced by the dissipation due to the interaction with some thermal environment which we represent by a phonon field, with a nearly arbitrary excitation spectrum, and by the introduction of phase noise in the laser beam. Finally, we study the full power spectrum of the reflected light and we show how the laser beam can be used as a temperature probe.

  19. Entanglement, Nonlinear Dynamics, and the Heisenberg Limit

    SciTech Connect

    Pezze, Luca; Smerzi, Augusto

    2009-03-13

    We show that quantum Fisher information provides a sufficient condition to recognize multiparticle entanglement in an N qubit state. The same criterion gives a necessary and sufficient condition for sub-shot-noise phase sensitivity in the estimation of a collective rotation angle {theta}. The analysis therefore singles out the class of entangled states which are useful to overcome classical phase sensitivity in metrology and sensors. We finally study the creation of useful entangled states by the nonlinear dynamical evolution of two decoupled Bose-Einstein condensates or trapped ions.

  20. Entanglement in Self-Supervised Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    A new type of correlation has been developed similar to quantum entanglement in self-supervised dynamics (SSD). SSDs have been introduced as a quantum-classical hybrid based upon the Madelung equation in which the quantum potential is replaced by an information potential. As a result, SSD preserves the quantum topology along with superposition, entanglement, and wave-particle duality. At the same time, it can be implemented in any scale including the Newtonian scale. The main properties of SSD associated with simulating intelligence have been formulated. The attention with this innovation is focused on intelligent agents interaction based upon the new fundamental non-New tonian effect; namely, entanglement.

  1. Stochastic simulation of dissipation and non-Markovian effects in open quantum systems.

    PubMed

    Lacroix, Denis

    2008-04-01

    The exact dynamics of a system coupled to an environment can be described by an integro-differential stochastic equation for the reduced density. The influence of the environment is incorporated through a mean field which is both stochastic and nonlocal in time and where the standard two-time correlation functions of the environment appear naturally. Since no approximation is made, the presented theory incorporates exactly dissipative and non-Markovian effects. Applications to the spin-boson model coupled to a heat bath with various coupling regimes and temperature show that the presented stochastic theory can be a valuable tool to simulate exactly the dynamics of open quantum systems. Links with the stochastic Schrödinger equation method and possible extensions to "imaginary time" propagation are discussed.

  2. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    SciTech Connect

    Bolivar, A.O.

    2011-05-15

    Highlights: > Classical Brownian motion described by a non-Markovian Fokker-Planck equation. > Quantization process. > Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. > A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.

  3. Non-Markovian Brownian motion in a magnetic field and time-dependent force fields

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gonzalez, J. C.; Jiménez-Aquino, J. I.; Romero-Bastida, M.

    2016-11-01

    This work focuses on the derivation of the velocity and phase-space generalized Fokker-Planck equations for a Brownian charged particle embedded in a memory thermal bath and under the action of force fields: a constant magnetic field and arbitrary time-dependent force fields. To achieve the aforementioned goal we use a Gaussian but non-Markovian generalized Langevin equation with an arbitrary friction memory kernel. In a similar way, the generalized diffusion equation in the zero inertia limit is also derived. Additionally we show, in the absence of the time-dependent external forces, that, if the fluctuation-dissipation relation of the second kind is valid, then the generalized Langevin dynamics associated with the charged particle reaches a stationary state in the large-time limit. The consistency of our theoretical results is also verified when they are compared with those derived in the absence of the force fields and in the Markovian case.

  4. Generalized trace-distance measure connecting quantum and classical non-Markovianity

    NASA Astrophysics Data System (ADS)

    Wißmann, Steffen; Breuer, Heinz-Peter; Vacchini, Bassano

    2015-10-01

    We establish a direct connection of quantum Markovianity of an open system to its classical counterpart by generalizing the criterion based on the information flow. Here the flow is characterized by the time evolution of Helstrom matrices, given by the weighted difference of statistical operators, under the action of the quantum dynamical map. It turns out that the introduced criterion is equivalent to P divisibility of a quantum process, namely, divisibility in terms of positive maps, which provides a direct connection to classical Markovian stochastic processes. Moreover, it is shown that mathematical representations similar to those found for the original trace-distance-based measure hold true for the associated generalized measure for quantum non-Markovianity. That is, we prove orthogonality of optimal states showing a maximal information backflow and establish a local and universal representation of the measure. We illustrate some properties of the generalized criterion by means of examples.

  5. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    NASA Astrophysics Data System (ADS)

    Shi, Pengqin; Hu, Menghan; Ying, Yaofeng; Jin, Jinshuang

    2016-09-01

    Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  6. Exact and approximate moment closures for non-Markovian network epidemics.

    PubMed

    Pellis, Lorenzo; House, Thomas; Keeling, Matt J

    2015-10-01

    Moment-closure techniques are commonly used to generate low-dimensional deterministic models to approximate the average dynamics of stochastic systems on networks. The quality of such closures is usually difficult to asses and furthermore the relationship between model assumptions and closure accuracy are often difficult, if not impossible, to quantify. Here we carefully examine some commonly used moment closures, in particular a new one based on the concept of maximum entropy, for approximating the spread of epidemics on networks by reconstructing the probability distributions over triplets based on those over pairs. We consider various models (SI, SIR, SEIR and Reed-Frost-type) under Markovian and non-Markovian assumption characterising the latent and infectious periods. We initially study with care two special networks, namely the open triplet and closed triangle, for which we can obtain analytical results. We then explore numerically the exactness of moment closures for a wide range of larger motifs, thus gaining understanding of the factors that introduce errors in the approximations, in particular the presence of a random duration of the infectious period and the presence of overlapping triangles in a network. We also derive a simpler and more intuitive proof than previously available concerning the known result that pair-based moment closure is exact for the Markovian SIR model on tree-like networks under pure initial conditions. We also extend such a result to all infectious models, Markovian and non-Markovian, in which susceptibles escape infection independently from each infected neighbour and for which infectives cannot regain susceptible status, provided the network is tree-like and initial conditions are pure. This works represent a valuable step in enriching intuition and deepening understanding of the assumptions behind moment closure approximations and for putting them on a more rigorous mathematical footing.

  7. Quantum metrology: dynamics versus entanglement.

    PubMed

    Boixo, Sergio; Datta, Animesh; Davis, Matthew J; Flammia, Steven T; Shaji, Anil; Caves, Carlton M

    2008-07-25

    A parameter whose coupling to a quantum probe of n constituents includes all two-body interactions between the constituents can be measured with an uncertainty that scales as 1/n3/2, even when the constituents are initially unentangled. We devise a protocol that achieves the 1/n3/2 scaling without generating any entanglement among the constituents, and we suggest that the protocol might be implemented in a two-component Bose-Einstein condensate.

  8. Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective.

    PubMed

    Bylicka, B; Chruściński, D; Maniscalco, S

    2014-07-21

    Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication.

  9. Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective

    PubMed Central

    Bylicka, B.; Chruściński, D.; Maniscalco, S.

    2014-01-01

    Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication. PMID:25043763

  10. Enhancement of genuine multipartite entanglement and purity of three qubits under decoherence via bang-bang pulses with finite period

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Song; Chen, Ai-Xi

    2016-08-01

    We propose a scheme to control the dynamics of genuine multipartite entanglement and purity of qubits within spatially separated thermal baths using the bang-bang pulses with finite period. The qubits are initially entangled and have no direct interactions. The genuine multipartite entanglement of the system is measured by an entanglement monotone based on a generalization of the Peres-Horodecki criterion to multipartite systems. We first derive a master equation to describe the non-Markovian dynamics of an arbitrary number of qubits within their baths with decoherence and dynamical decoupling. Then, we calculate the entanglement monotone and purity of three qubits in super-Ohmic, sub-Ohmic, and Ohmic baths numerically. The effects of the period of pulses on the non-Markovian dynamics of qubits are discussed. We show the genuine multipartite entanglement and purity can be simultaneously improved by applying the bang-bang pulses with finite period. In particular, the bang-bang pulses with finite period are more efficient when the qubits are put into the sub-Ohmic or Ohmic baths than the case of the super-Ohmic bath.

  11. Continuous-variable quantum key distribution in non-Markovian channels

    SciTech Connect

    Vasile, Ruggero; Olivares, Stefano; Paris, MatteoG. A.; Maniscalco, Sabrina

    2011-04-15

    We address continuous-variable quantum key distribution (QKD) in non-Markovian lossy channels and show how the non-Markovian features may be exploited to enhance security and/or to detect the presence and the position of an eavesdropper along the transmission line. In particular, we suggest a coherent-state QKD protocol which is secure against Gaussian individual attacks based on optimal 1{yields}2 asymmetric cloning machines for arbitrarily low values of the overall transmission line. The scheme relies on specific non-Markovian properties, and cannot be implemented in ordinary Markovian channels characterized by uniform losses. Our results give a clear indication of the potential impact of non-Markovian effects in QKD.

  12. Extending the applicability of Redfield theories into highly non-Markovian regimes

    SciTech Connect

    Montoya-Castillo, Andrés; Reichman, David R.; Berkelbach, Timothy C.

    2015-11-21

    We present a new, computationally inexpensive method for the calculation of reduced density matrix dynamics for systems with a potentially large number of subsystem degrees of freedom coupled to a generic bath. The approach consists of propagation of weak-coupling Redfield-like equations for the high-frequency bath degrees of freedom only, while the low-frequency bath modes are dynamically arrested but statistically sampled. We examine the improvements afforded by this approximation by comparing with exact results for the spin-boson model over a wide range of parameter space. We further generalize the method to multi-site models and compare with exact results for a model of the Fenna–Matthews–Olson complex. The results from the method are found to dramatically improve Redfield dynamics in highly non-Markovian regimes, at a similar computational cost. Relaxation of the mode-freezing approximation via classical (Ehrenfest) evolution of the low-frequency modes results in a dynamical hybrid method. We find that this Redfield-based dynamical hybrid approach, which is computationally more expensive than bare Redfield dynamics, yields only a marginal improvement over the simpler approximation of complete mode arrest.

  13. Extending the applicability of Redfield theories into highly non-Markovian regimes

    NASA Astrophysics Data System (ADS)

    Montoya-Castillo, Andrés; Berkelbach, Timothy C.; Reichman, David R.

    2015-11-01

    We present a new, computationally inexpensive method for the calculation of reduced density matrix dynamics for systems with a potentially large number of subsystem degrees of freedom coupled to a generic bath. The approach consists of propagation of weak-coupling Redfield-like equations for the high-frequency bath degrees of freedom only, while the low-frequency bath modes are dynamically arrested but statistically sampled. We examine the improvements afforded by this approximation by comparing with exact results for the spin-boson model over a wide range of parameter space. We further generalize the method to multi-site models and compare with exact results for a model of the Fenna-Matthews-Olson complex. The results from the method are found to dramatically improve Redfield dynamics in highly non-Markovian regimes, at a similar computational cost. Relaxation of the mode-freezing approximation via classical (Ehrenfest) evolution of the low-frequency modes results in a dynamical hybrid method. We find that this Redfield-based dynamical hybrid approach, which is computationally more expensive than bare Redfield dynamics, yields only a marginal improvement over the simpler approximation of complete mode arrest.

  14. Entanglement dynamics in the presence of controlled unital noise.

    PubMed

    Shaham, A; Halevy, A; Dovrat, L; Megidish, E; Eisenberg, H S

    2015-06-10

    Quantum entanglement is notorious for being a very fragile resource. Significant efforts have been put into the study of entanglement degradation in the presence of a realistic noisy environment. Here, we present a theoretical and an experimental study of the decoherence properties of entangled pairs of qubits. The entanglement dynamics of maximally entangled qubit pairs is shown to be related in a simple way to the noise representation in the Bloch sphere picture. We derive the entanglement level in the case when both qubits of a Bell state are transmitted through any arbitrary unital Pauli channel, and compare it to the case when the channel is applied only to one of the qubits. The dynamics of both cases was verified experimentally using an all-optical setup. We further investigated the evolution of partially entangled initial states. Different dynamics was observed for initial mixed and pure states of the same entanglement level.

  15. Entanglement and measurement-induced nonlocality of mixed maximally entangled states in multipartite dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Li-Die; Wang, Li-Tao; Yang, Mou; Xu, Jing-Zhou; Wang, Z. D.; Bai, Yan-Kui

    2016-06-01

    The maximally entangled state can be in a mixed state as well as the well-known pure state. Taking the negativity as a measure of entanglement, we study the entanglement dynamics of bipartite, mixed maximally entangled states (MMESs) in multipartite cavity-reservoir systems. It is found that the MMES can exhibit the phenomenon of entanglement sudden death, which is quite different from the asymptotic decay of the pure-Bell-state case. We also find that maximal entanglement cannot guarantee maximal nonlocality, and the MMES does not correspond to the state with maximal measurement-induced nonlocality (MIN). In fact, the value and dynamic behavior of the MIN for the MMESs are dependent on the mixed-state probability. In addition, we investigate the distributions of negativity and the MIN in a multipartite system, where the two types of correlations have different monogamous properties.

  16. The Design of Collectives of Agents to Control Non-Markovian Systems

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Wolpert, David H.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The 'Collective Intelligence' (COIN) framework concerns the design of collectives of reinforcement-learning agents such that their interaction causes a provided 'world' utility function concerning the entire collective to be maximized. Previously, we applied that framework to scenarios involving Markovian dynamics where no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. This approach sets the individual utility function of each agent to be both aligned with the world utility, and at the same time, easy for the associated agents to optimize. Here we extend that approach to systems involving non-Markovian dynamics. In computer simulations, we compare our techniques with each other and with conventional-'team games'. We show whereas in team games performance often degrades badly with time, it steadily improves when our techniques are used. We also investigate situations where the system's dimensionality is effectively reduced. We show that this leads to difficulties in the agents' ability to learn. The implication is that 'learning' is a property only of high-enough dimensional systems.

  17. The Design of Collectives of Agents to Control Non-Markovian Systems

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Wolpert, David H.

    2004-01-01

    The Collective Intelligence (COIN) framework concerns the design of collectives of reinforcement-learning agents such that their interaction causes a provided "world" utility function concerning the entire collective to be maximized. Previously, we applied that framework to scenarios involving Markovian dynamics where no re-evolution of the system from counter-factual initial conditions (an often expensive calculation) is permitted. This approach sets the individual utility function of each agent to be both aligned with the world utility, and at the same time, easy for the associated agents to optimize. Here we extend that approach to systems involving non-Markovian dynamics. In computer simulations, we compare our techniques with each other and with conventional "team games". We show whereas in team games performance often degrades badly with time, it steadily improves when our techniques are used. We also investigate situations where the system's dimensionality is effectively reduced. We show that this leads to difficulties in the agents ability to learn. The implication is that learning is a property only of high-enough dimensional systems.

  18. Entanglement Dynamics of Disordered Quantum XY Chains

    NASA Astrophysics Data System (ADS)

    Abdul-Rahman, Houssam; Nachtergaele, Bruno; Sims, Robert; Stolz, Günter

    2016-05-01

    We consider the dynamics of the quantum XY chain with disorder under the general assumption that the expectation of the eigenfunction correlator of the associated one-particle Hamiltonian satisfies a decay estimate typical of Anderson localization. We show that, starting from a broad class of product initial states, entanglement remains bounded for all times. For the XX chain, we also derive bounds on the particle transport which, in particular, show that the density profile of initial states that consist of fully occupied and empty intervals only have significant dynamics near the edges of those intervals, uniformly for all times.

  19. Dynamics of entanglement transfer through multipartite dissipative systems

    SciTech Connect

    Lopez, C. E.; Retamal, J. C.; Romero, G.

    2010-06-15

    We study the dynamics of entanglement transfer in a system composed of two initially correlated three-level atoms, each located in a cavity interacting with its own reservoir. Instead of tracing out reservoir modes to describe the dynamics using the master equation approach, we consider explicitly the dynamics of the reservoirs. In this situation, we show that the entanglement is completely transferred from atoms to reservoirs. Although the cavities mediate this entanglement transfer, we show that under certain conditions, no entanglement is found in cavities throughout the dynamics. Considering the entanglement dynamics of interacting and noninteracting bipartite subsystems, we found time windows where the entanglement can only flow through interacting subsystems, depending on the system parameters.

  20. Trace-distance correlations for X states and the emergence of the pointer basis in Markovian and non-Markovian regimes

    NASA Astrophysics Data System (ADS)

    Obando, Paola C.; Paula, Fagner M.; Sarandy, Marcelo S.

    2015-09-01

    We provide analytical expressions for classical and total trace-norm (Schatten 1-norm) geometric correlations in the case of two-qubit X states. As an application, we consider the open-system dynamical behavior of such correlations under phase and generalized amplitude damping evolutions. Then, we show that geometric classical correlations can characterize the emergence of the pointer basis of an apparatus subject to decoherence in either Markovian or non-Markovian regimes. In particular, as a non-Markovian effect, we obtain a time delay for the information to be retrieved from the apparatus by a classical observer. Moreover, we show that the set of initial X states exhibiting sudden transitions in the geometric classical correlation has nonzero measure.

  1. Interpretation of non-Markovian stochastic Schroedinger equations as a hidden-variable theory

    SciTech Connect

    Gambetta, Jay; Wiseman, H.M.

    2003-12-01

    Do diffusive non-Markovian stochastic Schroedinger equations (SSEs) for open quantum systems have a physical interpretation? In a recent paper [Phys. Rev. A 66, 012108 (2002)] we investigated this question using the orthodox interpretation of quantum mechanics. We found that the solution of a non-Markovian SSE represents the state the system would be in at that time if a measurement was performed on the environment at that time, and yielded a particular result. However, the linking of solutions at different times to make a trajectory is, we concluded, a fiction. In this paper we investigate this question using the modal (hidden variable) interpretation of quantum mechanics. We find that the noise function z(t) appearing in the non-Markovian SSE can be interpreted as a hidden variable for the environment. That is, some chosen property (beable) of the environment has a definite value z(t) even in the absence of measurement on the environment. The non-Markovian SSE gives the evolution of the state of the system 'conditioned' on this environment hidden variable. We present the theory for diffusive non-Markovian SSEs that have as their Markovian limit SSEs corresponding to homodyne and heterodyne detection, as well as one which has no Markovian limit.

  2. Tripartite entanglement dynamics of vibrations in triatomic molecules.

    PubMed

    Zhai, Liangjun; Zheng, Yujun

    2016-06-21

    In the present study, the dynamical behaviors of tripartite entanglement of vibrations in triatomic molecules are studied based on the Lie algebraic models of molecules. The dynamical behaviors of tripartite entanglement of the local mode molecule H2O and normal mode molecule NO2 are comparatively studied for different initial states by employing the general concurrence. Our results show that the dynamics of tripartite entanglement are relied on the dynamics of intramolecular energy distribution. The local mode molecule is more suitable to construct the tripartite entangled states. Also, the greater degree of tripartite entanglement can be obtained if the stretching vibration is first excited. These results shed new light on the understanding of quantum multipartite entanglement of vibrations in the polyatomic molecules.

  3. Cavity-based architecture to preserve quantum coherence and entanglement.

    PubMed

    Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario

    2015-09-09

    Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.

  4. Cavity-based architecture to preserve quantum coherence and entanglement.

    PubMed

    Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario

    2015-01-01

    Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability. PMID:26351004

  5. Cavity-based architecture to preserve quantum coherence and entanglement

    NASA Astrophysics Data System (ADS)

    Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario

    2015-09-01

    Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability.

  6. Exact decoherence-free state of two distant quantum systems in a non-Markovian environment

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Yang, Chun-Jie; An, Jun-Hong

    2016-06-01

    Decoherence-free-state (DFS) encoding supplies a useful way to avoid the detrimental influence of the environment on quantum information processing. The DFS was previously well established in either the two subsystems locating at the same spatial position or the dynamics under the Born-Markovian approximation. Here, we investigate the exact DFS of two spatially separated quantum systems consisting of two-level systems or harmonic oscillators coupled to a common non-Markovian zero-temperature bosonic environment. The exact distance-dependent DFS and the explicit criterion for forming the DFS are obtained analytically, which reveals that the DFS can arise only in one-dimensional environment. It is remarkable to further find that the DFS is just the system-reduced state of the famous bound state in the continuum (BIC) of the total system predicted by Wigner and von Neumann. On the one hand our result gives insight into the physical nature of the DFS, and on the other hand it supplies an experimentally accessible scheme to realize the mathematically curious BIC in the standard quantum optical systems.

  7. Optimal control-based states transfer for non-Markovian quantum system

    NASA Astrophysics Data System (ADS)

    Ying-Hua, Ji; Ju-ju, Hu; Jian-Hua, Huang; Qiang, Ke

    2016-07-01

    Utilizing the method of optimal control, we investigate the tactics of state transfer in the non-Markovian quantum system with phase relaxation and energy dissipative relaxation. The influence of Ohmic reservoir with Lorentz-Drude regularization is numerically studied. Owing to the decoherence and memory effects of non-Markovian channel, the purity of quantum state attenuates damply in the free evolution. The numerical simulations indicate that arbitrary state transfer for non-Markovian system can be realized under the optimal control function by a proper external control field with a success rate of more than 98 percent. When the right control field and function is implemented, not only the decoherence is compensated completely but also the purity of quantum states are maintained in the process of state transfer.

  8. Equivalence of the measures of non-Markovianity for open two-level systems

    SciTech Connect

    Zeng Haosheng; Tang Ning; Zheng Yanping; Wang Guoyou

    2011-09-15

    Different measures have been presented to depict the deviation of quantum time evolution in open systems from Markovian processes. We demonstrate that the measure proposed by Breuer, Laine, and Piilo [Phys. Rev. Lett. 103, 210401 (2009)] and the two measures proposed by Rivas, Huelga, and Plenio [Phys. Rev. Lett. 105, 050403 (2010)] have exactly the same non-Markovian time-evolution intervals and thus are really equivalent to each other when they are applied to open two-level systems coupled to environments via the Jaynes-Cummings or dephasing models. This equivalence implies that the three measures, in different ways, capture the intrinsic character of the non-Markovianity of quantum evolutional processes. We also show that the maximization in the definition of the first measure can be actually removed for the considered models without influencing the sensibility of the measure to detect non-Markovianity.

  9. Memory-effect-induced macroscopic-microscopic entanglement

    NASA Astrophysics Data System (ADS)

    Mu, Qingxia; Zhao, Xinyu; Yu, Ting

    2016-07-01

    We study optomechanical entanglement between an optical cavity field and a movable mirror coupled to a non-Markovian environment. The non-Markovian quantum-state diffusion approach and the non-Markovian master equation are shown to be useful in investigating entanglement generation between the cavity field and the movable mirror. The simple model presented in this paper demonstrates several interesting properties of optomechanical entanglement that are associated with environment memory effects. It is evident that the effective environment central frequency can be used to modulate the optomechanical entanglement. In addition, we show that the maximum entanglement may be achieved by properly choosing the effective detuning, which is significantly dependent on the strength of the memory effect of the environment.

  10. Minimal evolution time and quantum speed limit of non-Markovian open systems.

    PubMed

    Meng, Xiangyi; Wu, Chengjun; Guo, Hong

    2015-01-01

    We derive a sharp bound as the quantum speed limit (QSL) for the minimal evolution time of quantum open systems in the non-Markovian strong-coupling regime with initial mixed states by considering the effects of both renormalized Hamiltonian and dissipator. For a non-Markovian quantum open system, the possible evolution time between two arbitrary states is not unique, among the set of which we find that the minimal one and its QSL can decrease more steeply by adjusting the coupling strength of the dissipator, which thus provides potential improvements of efficiency in many quantum physics and quantum information areas.

  11. Non-Markovian Quantum Evolution: Time-Local Generators and Memory Kernels

    NASA Astrophysics Data System (ADS)

    Chruściński, Dariusz; Należyty, Paweł

    2016-06-01

    In this paper we provide a basic introduction to the topic of quantum non-Markovian evolution presenting both time-local and memory kernel approach to the evolution of open quantum systems. We start with the standard notion of a classical Markovian stochastic process and generalize it to classical Markovian stochastic evolution which in turn becomes a starting point of the quantum setting. Our approach is based on the notion of P-divisible, CP-divisible maps and their refinements to k-divisible maps. Basic methods enabling one to detect non-Markovianity of the quantum evolution are also presented. Our analysis is illustrated by several simple examples.

  12. A Study on Entanglement Sudden Death in the Open Bipartite Systems

    NASA Astrophysics Data System (ADS)

    Xiao, Jia Hua; Fang, Mao Fa; Huang, Guo Hui; Yang, Xiong

    2014-06-01

    Examining the relation between concurrence and energy in the open bipartite systems, we give an enlightening discussion about reason which causes the entanglement sudden death. We consider two two-level atoms A and B initially entangled to some extent and coupled individually to two cavities which are initially in their vacuum states. We analyze the dynamics of entanglement and energy for two atoms after tracing over the cavity degrees of freedom. By comparing with concurrence and energy, we obtain a conclusion, i.e., there is a critical value U C =0, when the energy U< U C =0, or, U'≤0, the concurrence must be zero and the ESD will occur for a period of time. Then, we discuss how non-Markovian effects and detunings influence the critical value. Finally, we point out the impact of initial degree of entanglement on the critical value of the energy.

  13. Dynamics of momentum entanglement in lowest-order QED

    SciTech Connect

    Lamata, L.; Leon, J.; Solano, E.

    2006-01-15

    We study the dynamics of momentum entanglement generated in the lowest-order QED interaction between two massive spin-(1/2) charged particles, which grows in time as the two fermions exchange virtual photons. We observe that the degree of generated entanglement between interacting particles with initial well-defined momentum can be infinite. We explain this divergence in the context of entanglement theory for continuous variables, and show how to circumvent this apparent paradox. Finally, we discuss two different possibilities of transforming momentum into spin entanglement, through dynamical operations or through Lorentz boosts.

  14. Entanglement Dynamics of Electrons and Photons

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Yao; Liu, Xiao-Jing; Lu, Jing-Bin; Li, Tian-Shun; Zhang, Si-Qi; Liang, Yu; Ma, Ji; Li, Hong

    2016-08-01

    Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.

  15. Dynamical entanglement purification using chains of atoms and optical cavities

    SciTech Connect

    Gonta, Denis; Loock, Peter van

    2011-10-15

    In the framework of cavity QED, we propose a practical scheme to purify dynamically a bipartite entangled state using short chains of atoms coupled to high-finesse optical cavities. In contrast to conventional entanglement purification protocols, we avoid controlled-not gates, thus reducing complicated pulse sequences and superfluous qubit operations. Our interaction scheme works in a deterministic way and, together with entanglement distribution and swapping, opens a route toward efficient quantum repeaters for long-distance quantum communication.

  16. Collapse–revival of quantum discord and entanglement

    SciTech Connect

    Yan, Xue-Qun Zhang, Bo-Ying

    2014-10-15

    In this paper the correlations dynamics of two atoms in the case of a micromaser-type system is investigated. Our results predict certain quasi-periodic collapse and revival phenomena for quantum discord and entanglement when the field is in Fock state and the two atoms are initially in maximally mixed state, which is a special separable state. Our calculations also show that the oscillations of the time evolution of both quantum discord and entanglement are almost in phase and they both have similar evolution behavior in some time range. The fact reveals the consistency of quantum discord and entanglement in some dynamical aspects. - Highlights: • The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. • A quasi-periodic collapse and revival phenomenon for quantum discord and entanglement is reported. • A phenomenon of correlations revivals different from that of non-Markovian dynamics is revealed. • The oscillations of time evolution of both quantum discord and entanglement are almost in phase in our system. • Quantum discord and entanglement have similar evolution behavior in some time range.

  17. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.

    PubMed

    Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob

    2015-09-18

    Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications.

  18. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-10-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.

  19. Non-equilibrium quantum phase transition via entanglement decoherence dynamics

    PubMed Central

    Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min

    2016-01-01

    We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556

  20. Entanglement dynamics in three-qubit X states

    SciTech Connect

    Weinstein, Yaakov S.

    2010-09-15

    I explore the entanglement dynamics of a three-qubit system in an initial X state undergoing decoherence including the possible exhibition of entanglement sudden death. To quantify entanglement I utilize negativity measures and make use of appropriate entanglement witnesses. The negativity results are then extended to X states with an arbitraty number of qubits. I also demonstrate nonstandard behavior of the tripartite negativity entanglement metric: its sudden appearance after some amount of decoherence, followed quickly by its disappearance. Finally, I solve for a lower bound on the three-qubit X-state concurrence, demonstrate when this bound goes to 0, and outline simplifcations for the calculation of higher-order X-state concurrences.

  1. Entanglement Dynamics in a Model Tripartite Quantum System

    NASA Astrophysics Data System (ADS)

    Laha, Pradip; Sudarsan, B.; Lakshmibala, S.; Balakrishnan, V.

    2016-09-01

    A Λ-type atom interacting with two radiation fields exhibits electromagnetically induced transparency and other nonclassical effects that appear in the entanglement dynamics of the atomic subsystem and in appropriate field observables. Both EIT and field-atom entanglement are important for quantum information processing. We investigate the roles played by specific initial field states, detuning parameters, field nonlinearities and intensity-dependent field-atom couplings on EIT and the entanglement between subsystems. Departure from coherence of the initial field states produces significant effects. We investigate these aspects in a model that exhibits the salient features of entangled tripartite systems. For initial photon-added coherent states, collapses and revivals of the atomic subsystem von Neumann entropy appear as the intensity parameter varies over a narrow range of values. These features could be useful in enabling entanglement.

  2. Nonlinear dynamics and quantum entanglement in optomechanical systems.

    PubMed

    Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2014-03-21

    To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.

  3. Non-Markovian diffusion over a potential barrier in the presence of periodic time modulation

    SciTech Connect

    Kolomietz, V. M.; Radionov, S. V.

    2011-11-15

    The diffusive non-Markovian motion over a single-well potential barrier in the presence of a weak sinusoidal time modulation is studied. We found nonmonotonic dependence of the mean escape time from the barrier on a frequency of the periodic modulation that is analogous to the stochastic resonance phenomenon. The resonant increase of diffusion over the barrier occurs at the frequency inversely proportional to the mean first-passage time for the motion in the absence of the time modulation.

  4. Quantum measurements in continuous time, non-Markovian evolutions and feedback.

    PubMed

    Barchielli, Alberto; Gregoratti, Matteo

    2012-11-28

    In this article, we reconsider a version of quantum trajectory theory based on the stochastic Schrödinger equation with stochastic coefficients, which was mathematically introduced in the 1990s, and we develop it in order to describe the non-Markovian evolution of a quantum system continuously measured and controlled, thanks to a measurement-based feedback. Indeed, realistic descriptions of a feedback loop have to include delay and thus need a non-Markovian theory. The theory allows us to put together non-Markovian evolutions and measurements in continuous time, in agreement with the modern axiomatic formulation of quantum mechanics. To illustrate the possibilities of such a theory, we apply it to a two-level atom stimulated by a laser. We introduce closed loop control too, via the stimulating laser, with the aim of enhancing the 'squeezing' of the emitted light, or other typical quantum properties. Note that here we change the point of view with respect to the usual applications of control theory. In our model, the 'system' is the two-level atom, but we do not want to control its state, to bring the atom to a final target state. Our aim is to control the 'Mandel Q-parameter' and the spectrum of the emitted light; in particular, the spectrum is not a property at a single time, but involves a long interval of times (a Fourier transform of the autocorrelation function of the observed output is needed).

  5. Solving non-Markovian open quantum systems with multi-channel reservoir coupling

    SciTech Connect

    Broadbent, Curtis J.; Jing, Jun; Yu, Ting; Eberly, Joseph H.

    2012-08-15

    We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically. - Highlights: Black-Right-Pointing-Pointer The concept of multi-channel vs. single-channel reservoir coupling is rigorously defined. Black-Right-Pointing-Pointer The non-Markovian quantum state diffusion equation for arbitrary multi-channel reservoir coupling is derived. Black-Right-Pointing-Pointer An exact time-local master equation is derived under certain conditions. Black-Right-Pointing-Pointer The analytical solution to the three-level system in a vee-type configuration is found. Black-Right-Pointing-Pointer The evolution of the three-level system under generalized Ornstein-Uhlenbeck noise is plotted for many parameter regimes.

  6. Quantum measurements in continuous time, non-Markovian evolutions and feedback.

    PubMed

    Barchielli, Alberto; Gregoratti, Matteo

    2012-11-28

    In this article, we reconsider a version of quantum trajectory theory based on the stochastic Schrödinger equation with stochastic coefficients, which was mathematically introduced in the 1990s, and we develop it in order to describe the non-Markovian evolution of a quantum system continuously measured and controlled, thanks to a measurement-based feedback. Indeed, realistic descriptions of a feedback loop have to include delay and thus need a non-Markovian theory. The theory allows us to put together non-Markovian evolutions and measurements in continuous time, in agreement with the modern axiomatic formulation of quantum mechanics. To illustrate the possibilities of such a theory, we apply it to a two-level atom stimulated by a laser. We introduce closed loop control too, via the stimulating laser, with the aim of enhancing the 'squeezing' of the emitted light, or other typical quantum properties. Note that here we change the point of view with respect to the usual applications of control theory. In our model, the 'system' is the two-level atom, but we do not want to control its state, to bring the atom to a final target state. Our aim is to control the 'Mandel Q-parameter' and the spectrum of the emitted light; in particular, the spectrum is not a property at a single time, but involves a long interval of times (a Fourier transform of the autocorrelation function of the observed output is needed). PMID:23091214

  7. Dynamics of entanglement between two atomic samples with spontaneous scattering

    SciTech Connect

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio

    2004-07-01

    We investigate the effects of spontaneous scattering on the evolution of entanglement of two atomic samples, probed by phase-shift measurements on optical beams interacting with both samples. We develop a formalism of conditional quantum evolutions and present a wave function analysis implemented in numerical simulations of the state vector dynamics. This method allows us to track the evolution of entanglement and to compare it with the predictions obtained when spontaneous scattering is neglected. We provide numerical evidence that the interferometric scheme to entangle atomic samples is only marginally affected by the presence of spontaneous scattering and should thus be robust even in more realistic situations.

  8. Data-driven non-Markovian closure models

    NASA Astrophysics Data System (ADS)

    Kondrashov, Dmitri; Chekroun, Mickaël D.; Ghil, Michael

    2015-03-01

    This paper has two interrelated foci: (i) obtaining stable and efficient data-driven closure models by using a multivariate time series of partial observations from a large-dimensional system; and (ii) comparing these closure models with the optimal closures predicted by the Mori-Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a generalization and a time-continuous limit of existing multilevel, regression-based approaches to closure in a data-driven setting; these approaches include empirical model reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the MZ formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are derived on the structure of the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a broad class of MSM applications, a class that includes non-polynomial predictors and nonlinearities that do not necessarily preserve quadratic energy invariants. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. It is shown that the resulting closure model with energy-conserving nonlinearities efficiently captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lotka-Volterra model of population dynamics in its chaotic regime. The challenges here include the rarity of strange attractors in the model's parameter

  9. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength

    SciTech Connect

    Ge, Ting; Robbins, Mark O.; Perahia, Dvora; Grest, Gary S.

    2014-07-25

    Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface. The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.

  10. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength

    DOE PAGES

    Ge, Ting; Robbins, Mark O.; Perahia, Dvora; Grest, Gary S.

    2014-07-25

    Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface.more » The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical

  11. Open-system dynamics of entanglement: a key issues review.

    PubMed

    Aolita, Leandro; de Melo, Fernando; Davidovich, Luiz

    2015-04-01

    One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and

  12. Open-system dynamics of entanglement: a key issues review.

    PubMed

    Aolita, Leandro; de Melo, Fernando; Davidovich, Luiz

    2015-04-01

    One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations.In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors.In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and

  13. Phase stability and dynamics of entangled polymer-nanoparticle composites

    SciTech Connect

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.

    2015-06-10

    Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  14. Entanglement dynamics in the Lipkin-Meshkov-Glick model

    SciTech Connect

    Vidal, Julien; Palacios, Guillaume; Aslangul, Claude

    2004-12-01

    The dynamics of the one-tangle and the concurrence is analyzed in the Lipkin-Meshkov-Glick model which describes many physical systems such as the two-mode Bose-Einstein condensates. We consider two different initial states which are physically relevant and show that their entanglement dynamics are very different. A semiclassical analysis is used to compute the one-tangle which measures the entanglement of one spin with all the others, whereas the frozen-spin approximation allows us to compute the concurrence using its mapping onto the spin squeezing parameter.

  15. Quantum discord of the two-atom system in non-Markovian environments

    NASA Astrophysics Data System (ADS)

    Zou, Hong-Mei; Fang, Mao-Fa; Guo, You-Neng; Yang, Bai-Yuan

    2015-03-01

    The quantum discord of the two-atom system, which is in two independent Lorentzian reservoirs and in two independent Ohmic reservoirs with the Lorentz-Drude cutoff function, respectively, and the reservoirs are at zero temperature, is studied by applying the time-convolutionless master-equation method. We find that the quantum discord of the two-atom system is dependent on the characteristics of non-Markovian environments. The results show that the quantum discord can be effectively protected not only in Lorentzian reservoirs, but also in ohmic reservoirs with the Lorentz-Drude cutoff function. Finally, the physical interpretations for these results are given via the correlation function.

  16. Density-matrix operatorial solution of the non-Markovian master equation for quantum Brownian motion

    SciTech Connect

    Intravaia, F.; Maniscalco, S.; Messina, A.

    2003-04-01

    An original method to exactly solve the non-Markovian master equation describing the interaction of a single harmonic oscillator with a quantum environment in the weak-coupling limit is reported. By using a superoperatorial approach, we succeed in deriving the operatorial solution for the density matrix of the system. Our method is independent of the physical properties of the environment. We show the usefulness of our solution deriving explicit expressions for the dissipative time evolution of some observables of physical interest for the system, such as, for example, its mean energy.

  17. Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex.

    PubMed

    Thilagam, A

    2012-05-01

    We investigate multipartite states in the Fenna-Matthews-Olson (FMO) pigment-protein complex of the green sulfur bacteria using a Lorentzian spectral density of the phonon reservoir fitted with typical parameter estimates of the species, Prosthecochloris aestuarii. The evolution of the entanglement measure of the excitonic W qubit states is evaluated in the picosecond time range, showing increased revivals in the non-Markovian regime. Similar trends are observed in the evolution dynamics of the Meyer-Wallach measure of the N-exciton multipartite state, with results showing that multipartite entanglement can last from 0.5 to 1 ps, between the bacteriochlorophylls of the FMO complex. The teleportation and quantum information splitting fidelities associated with the Greenberger-Horne-Zeilinger and W-like resource states formed by the excitonic qubit channels of the FMO complex show that revivals in fidelities increase with the degree of non-Markovian strength of the decoherent environment. Quantum information processing tasks involving teleportation followed by the decodification process involving W-like states of the FMO complex may play a critical role during coherent oscillations at physiological temperatures. PMID:22583269

  18. Dynamical generation of maximally entangled states in two identical cavities

    SciTech Connect

    Alexanian, Moorad

    2011-11-15

    The generation of entanglement between two identical coupled cavities, each containing a single three-level atom, is studied when the cavities exchange two coherent photons and are in the N=2,4 manifolds, where N represents the maximum number of photons possible in either cavity. The atom-photon state of each cavity is described by a qutrit for N=2 and a five-dimensional qudit for N=4. However, the conservation of the total value of N for the interacting two-cavity system limits the total number of states to only 4 states for N=2 and 8 states for N=4, rather than the usual 9 for two qutrits and 25 for two five-dimensional qudits. In the N=2 manifold, two-qutrit states dynamically generate four maximally entangled Bell states from initially unentangled states. In the N=4 manifold, two-qudit states dynamically generate maximally entangled states involving three or four states. The generation of these maximally entangled states occurs rather rapidly for large hopping strengths. The cavities function as a storage of periodically generated maximally entangled states.

  19. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase

    SciTech Connect

    Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.

    2013-12-07

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2{sup ′}-biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified.

  20. Non-Markovian response of ultrafast coherent electronic ring currents in chiral aromatic molecules in a condensed phase

    NASA Astrophysics Data System (ADS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.; Xu, J.; Xu, R. X.; Yan, Y. J.

    2013-12-01

    Results of a theoretical study on non-Markov response for femtosecond laser-driven coherent ring currents in chiral aromatic molecules embedded in a condensed phase are presented. Coherent ring currents are generated by coherent excitation of a pair of quasi-degenerated π-electronic excited states. The coherent electronic dynamical behaviors are strongly influenced by interactions between the electronic system and phonon bath in a condensed phase. Here, the bath correlation time is not instantaneous but should be taken to be a finite time in ultrashort time-resolved experiments. In such a case, Markov approximation breaks down. A hierarchical master equation approach for an improved semiclassical Drude dissipation model was adopted to examine the non-Markov effects on ultrafast coherent electronic ring currents of (P)-2,2'-biphenol in a condensed phase. Time evolution of the coherent ring current derived in the hierarchical master equation approach was calculated and compared with those in the Drude model in the Markov approximation and in the static limit. The results show how non-Markovian behaviors in quantum beat signals of ring currents depend on the Drude bath damping constant. Effects of temperatures on ultrafast coherent electronic ring currents are also clarified.

  1. Non-Markovian spiking statistics of a neuron with delayed feedback in presence of refractoriness.

    PubMed

    Kravchuk, Kseniia; Vidybida, Alexander

    2014-02-01

    Spiking statistics of a self-inhibitory neuron is considered. The neuron receives excitatory input from a Poisson stream and inhibitory impulses through a feedback line with a delay. After triggering, the neuron is in the refractory state for a positive period of time. Recently, [35,6], it was proven for a neuron with delayed feedback and without the refractory state, that the output stream of interspike intervals (ISI) cannot be represented as a Markov process. The refractory state presence, in a sense limits the memory range in the spiking process, which might restore Markov property to the ISI stream. Here we check such a possibility. For this purpose, we calculate the conditional probability density P (tn+1 l tn,...,t1,t0), and prove exactly that it does not reduce to P (tn+1 l tn,...,t1) for any n ⋝0. That means, that activity of the system with refractory state as well cannot be represented as a Markov process of any order. We conclude that it is namely the delayed feedback presence which results in non-Markovian statistics of neuronal firing. As delayed feedback lines are common for any realistic neural network, the non-Markovian statistics of the network activity should be taken into account in processing of experimental data.

  2. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength.

    PubMed

    Ge, Ting; Robbins, Mark O; Perahia, Dvora; Grest, Gary S

    2014-07-01

    Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface. The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is significantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.

  3. Influence of annealing on chain entanglement and molecular dynamics in weak dynamic asymmetry polymer blends.

    PubMed

    Lin, Yu; Tan, Yeqiang; Qiu, Biwei; Shangguan, Yonggang; Harkin-Jones, Eileen; Zheng, Qiang

    2013-01-17

    The influence of annealing above the glass transition temperature (T(g)) on chain entanglement and molecular dynamics of solution-cast poly(methyl methacrylate)/poly(styrene-co-maleic anhydride) (PMMA/SMA) blends was investigated via a combination of dynamic rheological measurement and broadband dielectric spectroscopy. Chain entanglement density increases when the annealing temperature and/or time increases, resulting from the increased efficiency of chain packing and entanglement recovery. The results of the annealing treatment without cooling revealed that the increase of the entanglement density occurred during the annealing process instead of the subsequent cooling procedure. Annealing above T(g) exerts a profound effect on segmental motion, including the transition temperature and dynamics. Namely, T(g) shifts to higher temperatures and the relaxation time (τ(max)) increases due to the increased entanglement density and decreased molecular mobility. Either T(g) or τ(max) approaches an equilibrium value gradually, corresponding to the equilibrium entanglement density that might be obtained through the theoretical predictions. However, no obvious distribution broadening is observed due to the unchanged heterogeneous dynamics. Furthermore, side group rotational motion could be freely achieved without overcoming the chain entanglement resistance. Hence, neither the dynamics nor the distribution width of the subglass relaxation (β- and γ-relaxation) processes is affected by chain entanglement resulting from annealing, indicating that the local environment of the segments is unchanged.

  4. Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model

    SciTech Connect

    Goan, Hsi-Sheng; Jian, Chung-Chin; Chen, Po-Wen

    2010-07-15

    We evaluate the non-Markovian finite-temperature two-time correlation functions (CF's) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evolution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CF's, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CF's of non-Markovian open systems. The two-time CF's obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CF's obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CF's for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.

  5. Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model

    NASA Astrophysics Data System (ADS)

    Goan, Hsi-Sheng; Jian, Chung-Chin; Chen, Po-Wen

    2010-07-01

    We evaluate the non-Markovian finite-temperature two-time correlation functions (CF’s) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evolution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CF’s, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CF’s of non-Markovian open systems. The two-time CF’s obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CF’s obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CF’s for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.

  6. Bell states and entanglement dynamics on two coupled quantum molecules

    SciTech Connect

    Oliveira, P.A.; Sanz, L.

    2015-05-15

    This work provides a complete description of entanglement properties between electrons inside coupled quantum molecules, nanoestructures which consist of two quantum dots. Each electron can tunnel between the two quantum dots inside the molecule, being also coupled by Coulomb interaction. First, it is shown that Bell states act as a natural basis for the description of this physical system, defining the characteristics of the energy spectrum and the eigenstates. Then, the entanglement properties of the eigenstates are discussed, shedding light on the roles of each physical parameters on experimental setup. Finally, a detailed analysis of the dynamics shows the path to generate states with a high degree of entanglement, as well as physical conditions associated with coherent oscillations between separable and Bell states.

  7. Reconstruction of time-dependent coefficients: A check of approximation schemes for non-Markovian convolutionless dissipative generators

    SciTech Connect

    Bellomo, Bruno; De Pasquale, Antonella; Gualdi, Giulia; Marzolino, Ugo

    2010-12-15

    We propose a procedure to fully reconstruct the time-dependent coefficients of convolutionless non-Markovian dissipative generators via a finite number of experimental measurements. By combining a tomography-based approach with a proper data sampling, our proposal allows to relate the time-dependent coefficients governing the dissipative evolution of a quantum system to experimentally accessible quantities. The proposed scheme not only provides a way to retrieve the full information about potentially unknown dissipative coefficients, but also, most valuably, can be employed as a reliable consistency test for the approximations involved in the theoretical derivation of a given non-Markovian convolutionless master equation.

  8. Emergence of non-Markovianity in the emission process of an atom in a half-cavity

    NASA Astrophysics Data System (ADS)

    Tufarelli, Tommaso; Kim, M. S.; Ciccarello, Francesco

    2014-04-01

    We study quantum non-Markovianity in the early stage of the emission process of a two-level atom coupled to a semi-infinite waveguide, where the waveguide termination behaves like a perfect mirror. Specifically, we restrict ourselves to analysis of the process for times shorter than twice the time delay td, where td is the duration of a round trip along the atom-mirror path. We show the emergence of a threshold in the parameter space separating the Markovian and non-Markovian regions.

  9. Segmental orientation dynamics in bidisperse entangled linear polymer melts

    NASA Astrophysics Data System (ADS)

    Wang, Zuowei; Cao, Jing; Likhtman, Alexei; Larson, Ronald

    2011-03-01

    Extensive molecular dynamics simulations were performed to investigate the segmental orientation dynamics in mono- and bidisperse entangled linear polymer melts. The binary blends consist of short probe chains diluted in long chain matrices of chain length up to 30 entanglements. With increase of the chain length in monodisperse melts, the bond vector autocorrelation function was found to approach a distinctive time-dependent power law, which is compared with recent NMR experiments. When introduced into long chain matrices, the segmental orientation relaxation and monomer diffusion of short probe chains slowed down strongly due to the suppression of constraint release (CR) effects. The same trend was observed for the end-to-end vector correlation function, reflecting the CR effects on contour length fluctuations. On the other hand, the time-dependent orientation coupling parameter in the entangled systems demonstrates the similar universal behaviour as that discovered in unentangled melts. Considering the stress-optical law was recovered in all simulated systems, our simulations should clarify the connection between rheology and other experimental techniques, which are essential for progress in modeling entangled polymers.

  10. Storing entanglement of nuclear spins via Uhrig dynamical decoupling

    SciTech Connect

    Roy, Soumya Singha; Mahesh, T. S.; Agarwal, G. S.

    2011-06-15

    Stroboscopic spin flips have already been shown to prolong the coherence times of quantum systems under noisy environments. Uhrig's dynamical decoupling scheme provides an optimal sequence for a quantum system interacting with a dephasing bath. Several experimental demonstrations have already verified the efficiency of such dynamical decoupling schemes in preserving single-qubit coherences. In this work we describe the experimental study of Uhrig's dynamical decoupling in preserving two-qubit entangled states using an ensemble of spin-1/2 nuclear pairs in solution state. We find that the performance of odd-order Uhrig sequences in preserving entanglement is superior to both even-order Uhrig sequences and periodic spin-flip sequences. We also find that there exists an optimal order of the Uhrig sequence in which a singlet state can be stored at high correlation for about 30 seconds.

  11. Non-Markovian model for the study of pitting corrosion in a water pipe system

    NASA Astrophysics Data System (ADS)

    Rosa, A. C. P.; Vaveliuk, P.; Moret, M. A.

    2015-03-01

    The main studies on pitting consist in proposing Markovian stochastic models, based on the statistics of extreme values and focused on growing the depth of wells, especially the deepest one. We show that a non-Markovian model, described by a nonlinear Fokker-Planck (nFP) equation, properly depicts the time evolution of a distribution of depth values of pits that were experimentally obtained. The solution of this equation in a steady-state regime is a q-Gaussian distribution, i.e. a long-tail probability distribution that is the main characteristic of a nonextensive statistical mechanics. The proposed model, that is applied to data from four inspections conducted on a section of a line of regular water service in power water reactor (PWR) nuclear power plants, is in agreement with experimental results.

  12. Robustness of the non-Markovian Alzheimer walk under stochastic perturbation

    NASA Astrophysics Data System (ADS)

    Cressoni, J. C.; da Silva, L. R.; Viswanathan, G. M.; da Silva, M. A. A.

    2012-12-01

    The elephant walk model originally proposed by Schütz and Trimper to investigate non-Markovian processes led to the investigation of a series of other random-walk models. Of these, the best known is the Alzheimer walk model, because it was the first model shown to have amnestically induced persistence —i.e. superdiffusion caused by loss of memory. Here we study the robustness of the Alzheimer walk by adding a memoryless stochastic perturbation. Surprisingly, the solution of the perturbed model can be formally reduced to the solutions of the unperturbed model. Specifically, we give an exact solution of the perturbed model by finding a surjective mapping to the unperturbed model.

  13. Theoretical approach to characterize the non-Markovianity and diffusion through the influx of the information

    NASA Astrophysics Data System (ADS)

    Berrada, K.

    2016-08-01

    In this paper, we study the Fisher information for a quantum system consisting of two identical qubits, each of them locally interacting with a bosonic reservoir in the same environment for non-Markovian open, dissipative quantum system. Based on the influx of the information, we propose an information-theoretical approach for characterizing the time-dependent memory effect of environment and diffusion function under the effect of the physical parameters. More precisely, an interesting monotonic relation between the time derivative of quantum Fisher information (QFI) and diffusion function behavior is observed during the time evolution. The phenomenon is that the QFI, namely the precision of estimation, changes dramatically with the environment structure. The dependence of the physical parameters shows that the increasing in the temperature will damage the amount of the QFI with respect of the ratio between the reservoir cutoff frequency and the system oscillation frequency.

  14. A Bohmian approach to the non-Markovian non-linear Schrödinger–Langevin equation

    SciTech Connect

    Vargas, Andrés F.; Morales-Durán, Nicolás; Bargueño, Pedro

    2015-05-15

    In this work, a non-Markovian non-linear Schrödinger–Langevin equation is derived from the system-plus-bath approach. After analyzing in detail previous Markovian cases, Bohmian mechanics is shown to be a powerful tool for obtaining the desired generalized equation.

  15. Entanglement evolution of two qubits under noisy environments

    SciTech Connect

    Li Jungang; Zou Jian; Shao Bin

    2010-10-15

    The entanglement evolution of two qubits under local, single-, and two-sided noisy channels is investigated. It is found that for all pure initial states, the entanglement under a one-sided noisy channel is completely determined by the maximal trace distance which is the main element to construct the measure of non-Markovianity. For the two-sided noisy channel case, when the qubits are initially prepared in a general class of states, either pure or mixed, the entanglement can be expressed as the product of the initial entanglement and the channels' action on the maximally entangled state.

  16. Simulations of the dynamics of entangled polymer melts

    NASA Astrophysics Data System (ADS)

    McCormick, Julie Ann

    2002-04-01

    The objective of this thesis is to increase our understanding of the basic physical principles governing the dynamics of entangled polymer melts. Discontinuous molecular dynamics simulations are performed on dense systems containing 32 hard chains of length 192 to investigate their dynamic properties. The mean squared displacements of the chain center of mass, the inner, outer, and intermediate segments along the chain, the end-to-end vector autocorrelation function, and the apparent self-diffusion coefficient are calculated over the course of the simulations. First, the relaxation and release of entanglements is compared with that predicted by the tube model and that associated with the release of interchain entanglements, or knots. The initial relaxation of chain segments occurs from the ends toward the middle as the tube model predicts; however, the final relaxation occurs at the chain ends, compatible with interchain entanglement release. The results provide evidence for a proposed mechanism of interchain entanglement relaxation consisting of initial relaxation, memory, and final release from a chain end. Next, the effect of position along the chain on the segmental mean squared displacement is investigated. The results reveal that small blocks provide a greater difference between the mean squared displacements of middle blocks, end blocks, and the whole chain than larger equal-sized blocks. A large portion of the chain displays middle behavior, while a small portion displays end behavior. The relaxation of small blocks of segments along the chain starts at the chain ends and progresses toward the chain middle. Finally, the time scale is extended, and the diffusive and stress relaxation behaviors of individual chains are explored. Increased time averaging causes the anomalous relaxation-memory-release behavior to smooth out of the system results; however, anomalous behavior is still exhibited by individual chains. They display super-diffusive, diffusive, and

  17. Geometry and dynamics of emergent spacetime from entanglement spectrum

    NASA Astrophysics Data System (ADS)

    Matsueda, Hiroaki

    We examine geometry and dynamics of classical spacetime derived from entanglement spectrum for 1D lattice free fermions. The spacetime is a kind of canonical parameter space defined by the Fisher information metric. The spectrum has exponential family form like thermal probability. Then, the metric is given by the second derivative of the Hessian potential that can be identified with the entanglement entropy. We emphasize that the canonical parameters are nontrivial functions of partial system size by the truncation, filling fraction of fermions, and time. We find that the emergent geometry becomes anti-de Sitter spacetime with imaginary time, and a radial axis as well as spacetime coordinates appears spontaneously. We also find that the information of the UV limit of the original fermions lives in the boundary of the anti-de Sitter spacetime. These findings strongly suggest that the Hessian potential for free fermions has enough geometrical meaning associated with gauge-gravity correspondence.

  18. Average entanglement dynamics in open two-qubit systems with continuous monitoring

    NASA Astrophysics Data System (ADS)

    Guevara, Ivonne; Viviescas, Carlos

    2014-07-01

    We present a comprehensive implementation of the quantum trajectory theory for the description of the entanglement dynamics in a Markovian open quantum system made of two qubits. We introduce the average concurrence to characterize the entanglement in the system and derive a deterministic evolution equation for it that depends on the ways in which information is read from the environment. This buildt-in flexibility of the method is used to address two actual issues in quantum information: entanglement protection and entanglement estimation. We identify general physical situations in which an entanglement protection protocol based on local monitoring of the environment can be implemented. Additionally, we methodically find unravelings of the system dynamics providing analytical tight bounds for the unmonitored entanglement in the system at all times. We conclude by showing the independence of the method from the choice of entanglement measure.

  19. Tube Dynamics Works for Randomly Entangled Rings.

    PubMed

    Qin, Jian; Milner, Scott T

    2016-02-12

    The tube model is the cornerstone of molecular theory for polymer rheology. We test its microscopic assumptions by simulating topologically equilibrated ring polymers, whose dynamics is free from end segment relaxation. We show that a closed-form expression derived from the tube model adapted to ring polymers quantitatively predicts the segmental mean squared displacements over the entire range of time scales from local motion to complete equilibration, with a time-independent local friction factor.

  20. Dynamics of two topologically entangled chains

    SciTech Connect

    Ferrari, F.; Paturej, J.; Piatek, M.; Vilgis, T. A.

    2011-04-15

    Starting from a given topological invariant, we argue that it is possible to construct a topological field theory with a finite number of Feynman diagrams and an amplitude of gauge invariant objects that is a function of that invariant. This is, for example, the case of the Gauss linking number and of the abelian BF models which have been already successfully applied in the statistical mechanics of polymers. In this work it is shown that a suitable generalization of the BF model can be applied also to polymer dynamics, where the polymer trajectories are not static, but change their shape during time.

  1. Quench of non-Markovian coherence in the deep sub-Ohmic spin–boson model: A unitary equilibration scheme

    SciTech Connect

    Yao, Yao

    2015-09-15

    The deep sub-Ohmic spin–boson model shows a longstanding non-Markovian coherence at low temperature. Motivating to quench this robust coherence, the thermal effect is unitarily incorporated into the time evolution of the model, which is calculated by the adaptive time-dependent density matrix renormalization group algorithm combined with the orthogonal polynomials theory. Via introducing a unitary heating operator to the bosonic bath, the bath is heated up so that a majority portion of the bosonic excited states is occupied. It is found in this situation the coherence of the spin is quickly quenched even in the coherent regime, in which the non-Markovian feature dominates. With this finding we come up with a novel way to implement the unitary equilibration, the essential term of the eigenstate-thermalization hypothesis, through a short-time evolution of the model.

  2. Firing statistics of inhibitory neuron with delayed feedback. II: Non-Markovian behavior.

    PubMed

    Kravchuk, K G; Vidybida, A K

    2013-06-01

    The instantaneous state of a neural network consists of both the degree of excitation of each neuron the network is composed of and positions of impulses in communication lines between the neurons. In neurophysiological experiments, the neuronal firing moments are registered, but not the state of communication lines. But future spiking moments depend essentially on the past positions of impulses in the lines. This suggests, that the sequence of intervals between firing moments (inter-spike intervals, ISIs) in the network could be non-Markovian. In this paper, we address this question for a simplest possible neural "net", namely, a single inhibitory neuron with delayed feedback. The neuron receives excitatory input from the driving Poisson stream and inhibitory impulses from its own output through the feedback line. We obtain analytic expressions for conditional probability density P(tn+1|tn, …, t1, t0), which gives the probability to get an output ISI of duration tn+1 provided the previous (n+1) output ISIs had durations tn, …, t1, t0. It is proven exactly, that P(tn+1|tn, …, t1, t0) does not reduce to P(tn+1|tn, …, t1) for any n≥0. This means that the output ISIs stream cannot be represented as a Markov chain of any finite order.

  3. Non-Markovian Property of Afterpulsing Effect in Single-Photon Avalanche Detector

    NASA Astrophysics Data System (ADS)

    Wang, Fang-Xiang; Chen, Wei; Li, Ya-Ping; He, De-Yong; Wang, Chao; Han, Yun-Guang; Wang, Shuang; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-08-01

    The single-photon avalanche photodiode(SPAD) has been widely used in research on quantum optics. The afterpulsing effect, which is an intrinsic character of SPAD, affects the system performance in most experiments and needs to be carefully handled. For a long time, afterpulsing has been presumed to be determined by the pre-ignition avalanche. We studied the afterpulsing effect of a commercial InGaAs/InP SPAD (The avalanche photodiode model is: Princeton Lightwave PGA-300) and demonstrated that its afterpulsing is non-Markovian, with a memory effect in the avalanching history. Theoretical analysis and experimental results clearly indicate that the embodiment of this memory effect is the afterpulsing probability, which increases as the number of ignition-avalanche pulses increase. This conclusion makes the principle of the afterpulsing effect clearer and is instructive to the manufacturing processes and afterpulsing evaluation of high-count-rate SPADs. It can also be regarded as a fundamental premise to handle the afterpulsing signals in many applications, such as quantum communication and quantum random number generation.

  4. Continuous Time Open Quantum Random Walks and Non-Markovian Lindblad Master Equations

    NASA Astrophysics Data System (ADS)

    Pellegrini, Clément

    2014-02-01

    A new type of quantum random walks, called Open Quantum Random Walks, has been developed and studied in Attal et al. (Open quantum random walks, preprint) and (Central limit theorems for open quantum random walks, preprint). In this article we present a natural continuous time extension of these Open Quantum Random Walks. This continuous time version is obtained by taking a continuous time limit of the discrete time Open Quantum Random Walks. This approximation procedure is based on some adaptation of Repeated Quantum Interactions Theory (Attal and Pautrat in Annales Henri Poincaré Physique Théorique 7:59-104, 2006) coupled with the use of correlated projectors (Breuer in Phys Rev A 75:022103, 2007). The limit evolutions obtained this way give rise to a particular type of quantum master equations. These equations appeared originally in the non-Markovian generalization of the Lindblad theory (Breuer in Phys Rev A 75:022103, 2007). We also investigate the continuous time limits of the quantum trajectories associated with Open Quantum Random Walks. We show that the limit evolutions in this context are described by jump stochastic differential equations. Finally we present a physical example which can be described in terms of Open Quantum Random Walks and their associated continuous time limits.

  5. Self-organized anomalous aggregation of particles performing nonlinear and non-Markovian random walks

    NASA Astrophysics Data System (ADS)

    Fedotov, Sergei; Korabel, Nickolay

    2015-12-01

    We present a nonlinear and non-Markovian random walks model for stochastic movement and the spatial aggregation of living organisms that have the ability to sense population density. We take into account social crowding effects for which the dispersal rate is a decreasing function of the population density and residence time. We perform stochastic simulations of random walks and discover the phenomenon of self-organized anomaly (SOA), which leads to a collapse of stationary aggregation pattern. This anomalous regime is self-organized and arises without the need for a heavy tailed waiting time distribution from the inception. Conditions have been found under which the nonlinear random walk evolves into anomalous state when all particles aggregate inside a tiny domain (anomalous aggregation). We obtain power-law stationary density-dependent survival function and define the critical condition for SOA as the divergence of mean residence time. The role of the initial conditions in different SOA scenarios is discussed. We observe phenomenon of transient anomalous bimodal aggregation.

  6. Entangled superfluids: Condensate dynamics of the entangled Bose-Einstein condensation

    SciTech Connect

    Shi Yu

    2010-07-15

    We study the condensate dynamics of the so-called entangled Bose-Einstein condensation (EBEC), which is the ground state of a mixture of two species of pseudospin-(1/2) atoms with interspecies spin-exchange scattering in certain parameter regimes. EBEC leads to four interdependent superfluid components, each corresponding to the orbital wave function associated with a spin component of a species. The four superflows have various counter-relations, and altogether lead to a conserved total supercurrent and a conserved total spin supercurrent. In the homogeneous case, we also obtain the elementary excitations due to variations of the single-particle orbital wave functions, by exactly solving the generalized time-dependent Bogoliubov equations. There are three gapless Bogoliubov modes and one Klein-Gordon-like gapped mode. The origin of these excitations are also discussed from the perspective of spontaneous breaking of the symmetries possessed by the system.

  7. Non-Markovian barotropic-type and Hall-type fluctuation relations in crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Jiménez-Aquino, J. I.; Romero-Bastida, M.

    2016-09-01

    In this paper we derive the non-Markovian barotropic-type and Hall-type fluctuation relations for noninteracting charged Brownian particles embedded in a memory heat bath and under the action of crossed electric and magnetic fields. We first obtain a more general non-Markovian fluctuation relation formulated within the context of a generalized Langevin equation with arbitrary friction memory kernel and under the action of a constant magnetic field and an arbitrary time-dependent electric field. It is shown that this fluctuation relation is related to the total amount of an effective work done on the charged particle as it is driven out of equilibrium by the applied time-dependent electric field. Both non-Markovian barotropic- and Hall-type fluctuation relations are then derived when the electric field is assumed to be also a constant vector pointing along just one axis. In the Markovian limit, we show explicitly that they reduce to the same results reported in the literature.

  8. Dynamics in Adsorbed Homopolymer Layers: Entanglements and Osmotic Effects

    NASA Astrophysics Data System (ADS)

    Santore, Maria; Mubarekyan, Ervin

    2001-03-01

    This work seeks the dynamic mechanism for the exchange of homopolymer chains between a dilute solution and a layer adsorbed at the solid-liquid interface. With the model system of polyethylene oxide (PEO) adsorbed onto silica from aqueous solution, it is shown that the behavior of saturated interfaces compared to starved layers reveals an interesting trend: The characteristic self exchange time is dependent only on coverage, not molecular weight, for chains of 100K or less. Therefore, it is concluded that classical entanglements do not play a role below 100K. For all molecular weights, when the coverage of 0.2 mg/m2 is exceeded, the interfacial dynamics become slow. At lower coverages, chains lie flat in train, with no loops or tails, and no lateral interactions either. The onset of slow dynamics at higher coverages may be a result of both surface crowding and the resistance of loops and tails to new chains approaching the layer.

  9. Entanglement and quantum discord dynamics of two atoms under practical feedback control

    SciTech Connect

    Li Yang; Luo Bin; Guo Hong

    2011-07-15

    We study the dynamics of two identical atoms resonantly coupled to a single-mode cavity under practical feedback control, and focus on the detection inefficiency. The entanglement is induced to vanish in finite time by the inefficiency of detection. Counterintuitively, the asymptotic entanglement and quantum discord can be increased by the inefficiency of detection. The noise of detection triggers the control field to create entanglement and discord when no photons are emitted from the atoms. Furthermore, sudden change happens to the dynamics of entanglement.

  10. Aneesur Rahman Prize Talk: Dynamics of Entangled Polymer Melts: Perceptive from Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.

    2008-03-01

    Twenty years ago at the APS March Meeting, Kurt Kremer and I presented the first numerical evidence from computer simulations that the reptation model of Edwards and de Gennes correctly describes the dynamics of entangled linear polymer melts. For chains longer than the entanglement length Ne, the monomers of a chain move predominantly along their own contour. The distinctive signature of reptation dynamics, which we observed, was that on intermediate time scales, the mean squared displacement of a monomer increases with time as t^ 1/4. Though these early simulations were limited to chains of a few Ne, they demonstrated the potential of computer simulations to contribute to our understanding of polymer dynamics. Here I will review the progress over the past twenty years and present an outlook for the future in modeling entangled polymer melts and networks. With present day computers coupled with efficient parallel molecular dynamics codes, it is now possible to follow the equilibrium dynamics of chains of length 10-20Ne from the early Rouse regime to the long time diffusive regime. Result of these simulations support the earlier results obtained on chains of only a few Ne. Further evidence for the tube models of polymer dynamics has been obtained by identifying the primitive path mesh that characterizes the microscopic topological state of the computer- generated conformations of the chains. In particular, the plateau moduli derived on the basis of this analysis quantitatively reproduce experimental data for a wide spectrum of entangled polymer liquids including semi-dilute theta solutions of synthetic polymers, the corresponding dense melts, and solutions of semi-flexible (bio)polymers such as f-actin or suspensions of rodlike viruses. We also find that in agreement with the reptation model, the stress, end-to-end distance and entanglement length of an entangled melt subjected to uniaxial elongation, all relax on the same time scale.

  11. Entanglement dynamics for a conditionally kicked harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Arrais, Eric G.; Sales, J. S.; de Almeida, N. G.

    2016-08-01

    The time evolution of the quantum kicked harmonic oscillator (KHO) is described by the Floquet operator which maps the state of the system immediately before one kick onto the state at a time immediately after the next. Quantum KHO is characterized by three parameters: the coupling strength V 0, the so-called Lamb–Dicke parameter η whose square is proportional to the effective Planck constant {{\\hslash }}{{eff}}, and the ratio T of the natural frequency of the oscillator and the kick frequency. To a given coupling strength and depending on T being a natural or irrational number, the phase space of the classical kicked oscillator can display different behaviors, as for example, stochastic webs or quasicrystal structures, thus showing a chaotic or localized behavior that is mirrored in the quantum phase space. On the other hand, the classical limit is studied letting {{\\hslash }}{{eff}} become negligible. In this paper we investigate how the ratio T, considered as integer, rational or irrational, influences the entanglement dynamics of the quantum KHO and study how the entanglement dynamics behaves when varying either V 0 or {{\\hslash }}{{eff}} parameters.

  12. Entanglement dynamics for a conditionally kicked harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Arrais, Eric G.; Sales, J. S.; de Almeida, N. G.

    2016-08-01

    The time evolution of the quantum kicked harmonic oscillator (KHO) is described by the Floquet operator which maps the state of the system immediately before one kick onto the state at a time immediately after the next. Quantum KHO is characterized by three parameters: the coupling strength V 0, the so-called Lamb-Dicke parameter η whose square is proportional to the effective Planck constant {{\\hslash }}{{eff}}, and the ratio T of the natural frequency of the oscillator and the kick frequency. To a given coupling strength and depending on T being a natural or irrational number, the phase space of the classical kicked oscillator can display different behaviors, as for example, stochastic webs or quasicrystal structures, thus showing a chaotic or localized behavior that is mirrored in the quantum phase space. On the other hand, the classical limit is studied letting {{\\hslash }}{{eff}} become negligible. In this paper we investigate how the ratio T, considered as integer, rational or irrational, influences the entanglement dynamics of the quantum KHO and study how the entanglement dynamics behaves when varying either V 0 or {{\\hslash }}{{eff}} parameters.

  13. A simple non-Markovian computational model of the statistics of soccer leagues: Emergence and scaling effects

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto; Vainstein, Mendeli H.; Lamb, Luis C.; Prado, Sandra D.

    2013-03-01

    We propose a novel probabilistic model that outputs the final standings of a soccer league, based on a simple dynamics that mimics a soccer tournament. In our model, a team is created with a defined potential (ability) which is updated during the tournament according to the results of previous games. The updated potential modifies a team future winning/losing probabilities. We show that this evolutionary game is able to reproduce the statistical properties of final standings of actual editions of the Brazilian tournament (Brasileirão) if the starting potential is the same for all teams. Other leagues such as the Italian (Calcio) and the Spanish (La Liga) tournaments have notoriously non-Gaussian traces and cannot be straightforwardly reproduced by this evolutionary non-Markovian model with simple initial conditions. However, we show that by setting the initial abilities based on data from previous tournaments, our model is able to capture the stylized statistical features of double round robin system (DRRS) tournaments in general. A complete understanding of these phenomena deserves much more attention, but we suggest a simple explanation based on data collected in Brazil: here several teams have been crowned champion in previous editions corroborating that the champion typically emerges from random fluctuations that partly preserve the Gaussian traces during the tournament. On the other hand, in the Italian and Spanish cases, only a few teams in recent history have won their league tournaments. These leagues are based on more robust and hierarchical structures established even before the beginning of the tournament. For the sake of completeness, we also elaborate a totally Gaussian model (which equalizes the winning, drawing, and losing probabilities) and we show that the scores of the Brazilian tournament “Brasileirão” cannot be reproduced. This shows that the evolutionary aspects are not superfluous and play an important role which must be considered in

  14. Microscopic theory for dynamics in entangled polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Yamamoto, Umi

    New microscopic theories for describing dynamics in polymer nanocomposites are developed and applied. The problem is addressed from two distinct perspectives and using two different theoretical approaches. The first half of this dissertation studies the long-time and intermediate-time dynamics of nanoparticles in entangled and unentangled polymer melts for dilute particle concentrations. Using a combination of mode-coupling, Brownian motion, and polymer physics ideas, the nanoparticle long-time diffusion coefficients is formulated in terms of multiple length-scales, packing microstructures, and spatially-resolved polymer density fluctuation dynamics. The key motional mechanism is described via the parallel relaxation of the force exerted on the particle controlled by collective polymer constraint-release and the particle self-motion. A sharp but smooth crossover from the hydrodynamic to the non-hydrodynamic regime is predicted based on the Stokes-Einstein violation ratio as a function of all the system variables. Quantitative predictions are made for the recovery of the Stokes-Einstein law, and the diffusivity in the crossover regime agrees surprisingly well with large-scale molecular dynamics simulations for all particle sizes and chain lengths studied. The approach is also extended to address intermediate-time anomalous transport of a single nanoparticle and two-particle relative diffusion. The second half of this dissertation focuses on developing a novel dynamical theory for a liquid of infinitely-thin rods in the presence of hard spherical obstacles, aiming at a technical and conceptual extension of the existing paradigm for entangled polymer dynamics. As a fundamental theoretical development, the two-component generalization of a first-principles dynamic meanfield approach is presented. The theory enforces inter-needle topological uncrossability and needlesphere impenetrability in a unified manner, leading to a generalized theory of entanglements that

  15. Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong

    2010-07-01

    This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.

  16. Entanglement Dynamics of the Mixed Two-qubit System in Different Noisy Channels

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Jiang, Li-Nan; Yu, Si-Yuan; Ran, Qi-Wen; Tan, Li-Ying

    2014-11-01

    We investigate the entanglement dynamics of the two-qubit entanglement quantum system when they transmitted through the Pauli channels and the depolarizing channel both independently or collectively. Making use of the concurrence we found that the entanglement of a kind of mixed two-qubit system defined in this paper can be preserved in the collective Pauli σ y noise channel, but the entanglement of the other kind of mixed two-qubit system can be preserved in the collective Pauli σ z noise channel. Meanwhile, our quantum systems will undergoing the entanglement sudden death (ESD) in collective depolarizing channel when they return to the maximally entangled Bell states. The reason is the Landblad operators in depolarizing channel are non-commuting operators and this finding is in accord with the previous study.

  17. Dynamical behavior of entanglements by means of the mean standard deviation

    NASA Astrophysics Data System (ADS)

    Wacha, Marcus; Kreitmeier, Stefan

    2005-07-01

    In this paper we present our results on the dynamical behavior within the interior parts of an entanglement. Therefore, we analyzed the mean standard deviation sm for each monomer of the entangled chains. The calculations were performed at two deformation ratios for three different basic systems—the cross, slant, and along systems—each of them representing a different structural orientation of the entanglement. Additionally, we varied the number of loops l, the distance a of the end monomers, and the inverse temperature β. Depending on the number of loops l we get different effects. Whereas a one time entangled system rather acts like a chemical cross link, a six times entangled system forms an unoriented entangled area and an orientated residual part.

  18. Simulating typical entanglement with many-body Hamiltonian dynamics

    SciTech Connect

    Nakata, Yoshifumi; Murao, Mio

    2011-11-15

    We study the time evolution of the amount of entanglement generated by one-dimensional spin-1/2 Ising-type Hamiltonians composed of many-body interactions. We investigate sets of states randomly selected during the time evolution generated by several types of time-independent Hamiltonians by analyzing the distributions of the amount of entanglement of the sets. We compare such entanglement distributions with that of typical entanglement, entanglement of a set of states randomly selected from a Hilbert space with respect to the unitarily invariant measure. We show that the entanglement distribution obtained by a time-independent Hamiltonian can simulate the average and standard deviation of the typical entanglement, if the Hamiltonian contains suitable many-body interactions. We also show that the time required to achieve such a distribution is polynomial in the system size for certain types of Hamiltonians.

  19. Saving entangled photons from sudden death in a single-mode fiber --- Interplay of decoherence and dynamical decoupling

    NASA Astrophysics Data System (ADS)

    Gupta, Manish K.; You, Chenglong; Lee, Hwang; Dowling, Jonathan P.

    We study the dynamics of decoherence in an optical fiber for the case of entangled photons. Such a study will allow us to increase the physical length of fiber for the transmission of entangled photon from the sources such as SPDC. We analytically derive the model for decoherence of entangled state photons in a single-mode fiber. We also show that entanglement lifetime can be increased with open loop control technique called dynamical decoupling.

  20. Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics

    SciTech Connect

    Li Wenan; Huang Guangyao

    2011-02-15

    A scheme is proposed for the generation of a three-dimensional entangled state for two atoms trapped in a cavity via quantum Zeno dynamics. Because the scheme is based on the resonant interaction, the time required to produce entanglement is very short compared with the dispersive protocols. We show that the resulting effective dynamics allows for the creation of robust qutrit-qutrit entanglement. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity of the entangled state is investigated. Numerical results show that the scheme is robust against the cavity decay since the evolution of the system is restricted to a subspace with null-excitation cavity fields. Furthermore, the present scheme has been generalized to realize N-dimensional entanglement for two atoms.

  1. Entanglement Dynamics and its Application for Two Qubits in Dissipative Environment

    NASA Astrophysics Data System (ADS)

    Chen, Z. Q.; Yu, X. G.; Fu, Guolan; Xu, Hualan; Yu, Yanxia

    2015-02-01

    An entanglement dynamics of two dissipative qubits under different situation of initial conditions is studied. We find that the periodic disentanglement and entanglement results from the interaction between two qubits, while the disentanglement is primarily caused by environmental perturbations. In the two cases of a pure dephasing environment and a normal environment, the sudden death of entanglement (ESD) is happened. For a simple dissipative environment, the sudden death of entanglement disappears for non-interacting qubits. The concurrence decreases gradually with the involving time, where the stronger the strength interacting with the environment is, the faster the attenuation of the amplitude of concurrence should be. Without the interaction with the environment, ESD would disappear. Furthermore, the applications of quantum entanglement are discussed in the rotating operator dynamics and the populations of quantum states.

  2. Dynamics of Entanglement in Qubit-Qutrit with x-Component of DM Interaction

    NASA Astrophysics Data System (ADS)

    Sharma, Kapil K.; Pandey, S. N.

    2016-03-01

    In this present paper, we study the entanglement dynamics in qubit A-qutrit B pair under x component of Dzyaloshinshkii–Moriya interaction (Dx) by taking an auxiliary qubit C. Here, we consider an entangled qubit-qutrit pair initially prepared in two parameter qubit-qutrit states and one auxiliary qubit prepared in pure state interacts with the qutrit of the pair through DM interaction. We trace away the auxiliary qubit and calculate the reduced dynamics in qubit A-qutrit B pair to study the influence of the state of auxiliary qubit C and Dx on entanglement. We find that the state (probability amplitude) of auxiliary qubit does not influence the entanglement, only Dx influences the same. The phenomenon of entanglement sudden death (ESD) induced by Dx has also been observed. We also present the affected and unaffected two parameter qubit-qutrit states by Dx.

  3. Entanglement Dynamics of Two Spins in Initially Correlated Wheel-Shaped Spin Baths

    NASA Astrophysics Data System (ADS)

    Sun, Kai-Le; Chen, Jun; Wang, Fa-Qiang; Yu, Ya-Fei; Zhang, Zhi-Ming

    2016-02-01

    We study the effects of the initial correlations in environment on the entanglement dynamics of spin system. The correlated environment is novelly simulated by two correlated wheel-shaped spin baths, each consisting of an intermediate spin interacting with a spin-ring. The correlations in environment are achieved by the entanglement between two intermediate spins. The spin system includes two system-spins, and the interaction between the spin system and the environment is implemented by the coupling between the system-spin and the intermediate spin. Firstly, we analyze the influences of the initial entanglement between the two intermediate spins, the coupling parameters and the temperature of the baths on the entanglement dynamics of the two system-spins in equivalent subsystems. It is demonstrated that the initial entanglement between the baths can act as a resource for the generation and the revivals of the entanglement of the system-spins. Moreover, the amount of the generation and the revivals of the entanglement of the system-spins can be enhanced by regulating the coupling constants and the temperature of the baths. In addition, we also investigate the influences of different coupling ratios in non-equivalent subsystems, it is found that changing the coupling ratios of two subsystems has a significant effect on the generation and revivals of entanglement of system-spins.

  4. Quantum coherence and entanglement control for atom-cavity systems

    NASA Astrophysics Data System (ADS)

    Shu, Wenchong

    Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have

  5. Non-Markovian models for migration-proliferation dichotomy of cancer cells: anomalous switching and spreading rate.

    PubMed

    Fedotov, Sergei; Iomin, Alexander; Ryashko, Lev

    2011-12-01

    Proliferation and migration dichotomy of the tumor cell invasion is examined within two non-Markovian models. We consider the tumor spheroid, which consists of the tumor core with a high density of cells and the outer invasive zone. We distinguish two different regions of the outer invasive zone and develop models for both zones. In model I we analyze the near-core-outer region, where biased migration away from the tumor spheroid core takes place. We suggest non-Markovian switching between the migrating and proliferating phenotypes of tumor cells. Nonlinear master equations for mean densities of cancer cells of both phenotypes are derived. In anomalous switching case we estimate the average size of the near-core-outer region that corresponds to sublinear growth (r(t)) ~ t(μ) for 0 < μ < 1. In model II we consider the outer zone, where the density of cancer cells is very low. We suggest an integrodifferential equation for the total density of cancer cells. For proliferation rate we use the classical logistic growth, while the migration of cells is subdiffusive. The exact formulas for the overall spreading rate of cancer cells are obtained by a hyperbolic scaling and Hamilton-Jacobi techniques. PMID:22304064

  6. Measures for the non-Markovianity of a harmonic oscillator coupled to a discrete bath derived from numerically exact references

    NASA Astrophysics Data System (ADS)

    Lorenz, Ulf; Saalfrank, Peter

    2015-02-01

    System-bath problems in physics and chemistry are often described by Markovian master equations. However, the Markov approximation, i.e., neglect of bath memory effects is not always justified, and different measures of non-Markovianity have been suggested in the literature to judge the validity of this approximation. Here we calculate several computable measures of non-Markovianity for the non-trivial problem of a harmonic oscillator coupled to a large number of bath oscillators. The Multi Configurational Time Dependent Hartree method is used to provide a numerically converged solution of the system-bath Schrödinger equation, from which the appropriate quantities can be calculated. In particular, we consider measures based on trace-distances and quantum discord for a variety of initial states. These quantities have proven useful in the case of two-level and other small model systems typically encountered in quantum optics, but are less straightforward to interpret for the more complex model systems that are relevant for chemical physics. Supplementary material in the form of one zip file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2014-50727-8

  7. Entanglement dynamics in Heisenberg spin chains coupled to a dissipative environment at finite temperature

    NASA Astrophysics Data System (ADS)

    Sadiek, Gehad; Almalki, Samaher

    2016-07-01

    We consider a finite one-dimensional Heisenberg XYZ spin chain under the influence of a dissipative Lindblad environment obeying the Born-Markovian constraint in presence of an external magnetic field with closed and open boundary conditions. We present an exact numerical solution for the Lindblad master equation of the system in the Liouville space. The dynamics and asymptotic behavior of the nearest-neighbor and beyond-nearest-neighbor pairwise entanglements in the system are investigated under the effect of spatial anisotropy, temperature, system size, and different initial states. The entanglements in the free spin system exhibit nonuniform oscillatory behavior that varies significantly depending on the system size, anisotropy, and initial state. The x y spatial anisotropy dictates the asymptotic behavior of the different entanglements in the system under the influence of the environment regardless of the initial state. Higher anisotropy yields higher steady-state value of the nearest-neighbor entanglement whereas a complete isotropy wipes it out. The longer range entanglements respond differently to the anisotropy variation. The anisotropy in the z direction may enhance the entanglements depending on the interplay with the magnetic field applied in the same direction. As the temperature is raised, the steady state of the short-range entanglements is found to be robust within very small nonzero temperature range that depends critically on the spatial anisotropy. Moreover, the end to end entanglement transfer time and speed through the open boundary chain vary considerably based on the degree of anisotropy and temperature of the environment.

  8. Large dynamic light-matter entanglement from driving neither too fast nor too slow

    NASA Astrophysics Data System (ADS)

    Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.

    2015-09-01

    A significant problem facing next-generation quantum technologies is how to generate and manipulate macroscopic entanglement in light and matter systems. Here we report a regime of dynamical light-matter behavior in which a giant, system-wide entanglement is generated by varying the light-matter coupling at intermediate velocities. This enhancement is far larger, broader ranged, and more experimentally accessible than that occurring near the quantum phase transition of the same model under adiabatic conditions. By appropriate choices of the coupling within this intermediate regime, the enhanced entanglement can be made to spread system-wide or to reside in each subsystem separately.

  9. Coherent dynamics of a telecom-wavelength entangled photon source

    NASA Astrophysics Data System (ADS)

    Ward, M. B.; Dean, M. C.; Stevenson, R. M.; Bennett, A. J.; Ellis, D. J. P.; Cooper, K.; Farrer, I.; Nicoll, C. A.; Ritchie, D. A.; Shields, A. J.

    2014-02-01

    Quantum networks can interconnect remote quantum information processors, allowing interaction between different architectures and increasing net computational power. Fibre-optic telecommunications technology offers a practical platform for routing weakly interacting photonic qubits, allowing quantum correlations and entanglement to be established between distant nodes. Although entangled photons have been produced at telecommunications wavelengths using spontaneous parametric downconversion in nonlinear media, as system complexity increases their inherent excess photon generation will become limiting. Here we demonstrate entangled photon pair generation from a semiconductor quantum dot at a telecommunications wavelength. Emitted photons are intrinsically anti-bunched and violate Bell’s inequality by 17 standard deviations High-visibility oscillations of the biphoton polarization reveal the time evolution of the emitted state with exceptional clarity, exposing long coherence times. Furthermore, we introduce a method to evaluate the fidelity to a time-evolving Bell state, revealing entanglement between photons emitted up to 5 ns apart, exceeding the exciton lifetime.

  10. Entanglement dynamics via geometric phases in quantum spin chains

    SciTech Connect

    Castro, C. S.; Sarandy, M. S.

    2011-04-15

    We introduce a connection between entanglement induced by interaction and geometric phases acquired by a composite quantum spin system. We begin by analyzing the evaluation of cyclic (Aharonov-Anandan) and noncyclic (Mukunda-Simon) geometric phases for general spin chains evolving in the presence of time-independent magnetic fields. Then, by considering Heisenberg chains, we show that the interaction geometric phase, namely, the total geometric phase with subtraction of free spin contributions, is directly related to the global (Meyer-Wallach) entanglement exhibited by an initially separable state during its evolution in Hilbert space. This is analytically shown for N=2 spins and numerically illustrated for larger chains. This relationship promotes the interaction geometric phase to an indicator of global entanglement in the system, which may constitute a useful tool for quantum tasks based on entanglement as a resource to their performance.

  11. Entanglement entropy in dynamic quantum-coherent conductors

    NASA Astrophysics Data System (ADS)

    Thomas, Konrad H.; Flindt, Christian

    2015-03-01

    We investigate the entanglement and the Rényi entropies of two electronic leads connected by a quantum point contact. For noninteracting electrons, the entropies can be related to the cumulants of the full counting statistics of transferred charge which in principle are measurable. We consider the entanglement entropy generated by operating the quantum point contact as a quantum switch which is opened and closed in a periodic manner. Using a numerically exact approach we analyze the conditions under which a logarithmic growth of the entanglement entropy predicted by conformal field theory should be observable in an electronic conductor. In addition, we consider clean single-particle excitations on top of the Fermi sea (levitons) generated by applying designed pulses to the leads. We identify a Hong-Ou-Mandel-like suppression of the entanglement entropy by interfering two levitons on a quantum point contact tuned to half transmission.

  12. Influences of Initial States on Entanglement Dynamics of Two Central Spins in a Spin Environment

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Jian; Xu, Bao-Ming; Li, Lin; Zou, Jian; Li, Hai; Shao, Bin

    2016-03-01

    We investigate the entanglement dynamics of two electronic spins coupled to a bath of nuclear spins for two special cases, one is that two central spins both interact with a common bath, and the other is that one of two spins interacts with a bath. We consider three types of initial states with different correlations between the system and the bath, i.e., quantum correlation, classical correlation, and no-correlation. We show that the initial correlations (no matter quantum correlations or classical correlations) can effectively avoid the occurrence of entanglement sudden death. Irrespective of whether both two spins or only one of the two spins interacts with the bath, the system can gain more entanglement in the process of the time evolution for initial quantum correlations. In addition, we find that the effects of the distribution of coupling constants on entanglement dynamics crucially depend on the initial state of the spin bath.

  13. Macroscopic Quantum Tunneling of Bose-Einstein Condensates: Quantum Fluctuations, Entanglement, and Dynamics

    NASA Astrophysics Data System (ADS)

    Alcala, Diego; Glick, Joseph; Carr, Lincoln D.

    2015-05-01

    The quantum escape problem is famous in the context of quasi-bound states and chemical and nuclear reactions. We address three outstanding questions in this form of quantum tunneling. (1) How are tunneling rates modified by many-body effects, in particular beyond the mean field? (2) What is the role of higher order quantum effects like entanglement and correlations? (3) What is the dynamics of the escape process? To this end we study both repulsive and attractive Bose-Einstein condensates via matrix-product state methods for entangled dynamics. We find that entanglement is maximized when about half the particles have escaped. We find preliminary evidence that the time derivative of number fluctuations serves as an entanglement witness. Funded by NSF.

  14. Entanglement dynamics of three interacting two-level atoms within a common structured environment

    SciTech Connect

    An, Nguyen Ba; Kim, Jaewan; Kim, Kisik

    2011-08-15

    We derive exact time evolution of three two-level atoms coupled to a common environment. The environment is structured and is modeled by a leaky cavity with Lorentzian spectral density. The atoms are initially prepared in a generalized W state and later on experience pairwise dipole-dipole interactions and couplings to the cavity. We study tripartite disentangling and entangling dynamics as well as protecting bipartite entanglement with both atom-atom interactions and atom-cavity couplings taken simultaneously into account.

  15. Entanglement dynamics of quantum states generated by a Kerr medium and a beam splitter

    NASA Astrophysics Data System (ADS)

    Rohith, M.; Sudheesh, C.; Rajeev, R.

    2016-01-01

    We study theoretically the dynamics of entangled states created in a beam splitter with a nonlinear Kerr medium placed into one input arm. Entanglement dynamics of initial classical and nonclassical states are studied and compared. Signatures of revival and fractional revival phenomena exhibited during the time evolution of states in the Kerr medium are captured in the entangled states produced by the beam splitter. Dynamics of entanglement shows local minima at the instants of fractional revivals. These minima correspond to the generation of two-component Schrödinger cat states or multi-component Schrödinger cat-like states if the initial state considered is a coherent state. Maximum entanglement is obtained at the instants of collapses of wave packets in the medium. Our analysis shows increase in entanglement with increase in the degree of nonclassicality of the initial states considered. We show that the states generated at the output of the beam splitter using initial nonclassical states are more robust against decoherence due to photon absorption by an environment than those formed by an initial classical state.

  16. Adiabatic passage for three-dimensional entanglement generation through quantum Zeno dynamics.

    PubMed

    Liang, Yan; Su, Shi-Lei; Wu, Qi-Cheng; Ji, Xin; Zhang, Shou

    2015-02-23

    We propose an adiabatic passage approach to generate two atoms three-dimensional entanglement with the help of quantum Zeno dynamics in a time-dependent interacting field. The atoms are trapped in two spatially separated cavities connected by a fiber, so that the individual addressing is needless. Because the scheme is based on the resonant interaction, the time required to generate entanglement is greatly shortened. Since the fields remain in vacuum state and all the atoms are in the ground states, the losses due to the excitation of photons and the spontaneous transition of atoms are suppressed efficiently compared with the dispersive protocols. Numerical simulation results show that the scheme is robust against the decoherences caused by the cavity decay and atomic spontaneous emission. Additionally, the scheme can be generalized to generate N-atom three-dimensional entanglement and high-dimensional entanglement for two spatially separated atoms.

  17. Dynamical generation and detection of entanglement in neutral leviton pairs

    NASA Astrophysics Data System (ADS)

    Dasenbrook, David; Flindt, Christian

    2015-10-01

    The entanglement of coherently split electron-hole pairs in an electronic conductor is typically not considered accessible due to particle number conservation and fermionic superselection rules. We demonstrate here that current cross-correlation measurements at the outputs of an electronic Mach-Zehnder interferometer can nevertheless provide a robust witness of electron-hole entanglement. Specifically, we consider neutral excitations generated by modulating the transmission of an unbiased quantum point contact periodically in time. For an optimized modulation profile, an entangled state with one positively-charged leviton (a hole) and one negatively-charged leviton (an electron) gets delocalized over the two paths of the interferometer and is detected at the output arms. We evaluate the influence of finite electronic temperatures and dephasing corresponding to recent experiments.

  18. Dynamical features of interference phenomena in the presence of entanglement

    SciTech Connect

    Kaufherr, T.; Aharonov, Y.; Nussinov, S.; Popescu, S.; Tollaksen, J.

    2011-05-15

    A strongly interacting, and entangling, heavy nonrecoiling external particle effects a significant change of the environment. Described locally, the corresponding entanglement event is a generalized electric Aharonov-Bohm effect, which differs from the original one in a crucial way. We propose a gedanken interference experiment. The predicted shift of the interference pattern is due to a self-induced or ''private'' potential difference experienced while the particle is in vacuum. We show that all nontrivial Born-Oppenheimer potentials are ''private'' potentials. We apply the Born-Oppenheimer approximation to interference states. Using our approach, we calculate the relative phase of the external heavy particle as well as its uncertainty throughout an interference experiment or entanglement event. We thus complement the Born-Oppenheimer approximation for interference states.

  19. Dynamics of entanglement of two electron spins interacting with nuclear spin baths in quantum dots

    NASA Astrophysics Data System (ADS)

    Bragar, Igor; Cywiński, Łukasz

    2015-04-01

    We study the dynamics of entanglement of two electron spins in two quantum dots, in which each electron is interacting with its nuclear spin environment. Focusing on the case of uncoupled dots, and starting from either Bell or Werner states of two qubits, we calculate the decay of entanglement due to the hyperfine interaction with the nuclei. We mostly focus on the regime of magnetic fields in which the bath-induced electron spin flips play a role, for example, their presence leads to the appearance of entanglement sudden death at finite time for two qubits initialized in a Bell state. For these fields, the intrabath dipolar interactions and spatial inhomogeneity of hyperfine couplings are irrelevant on the time scale of coherence (and entanglement) decay, and most of the presented calculations are performed using the uniform-coupling approximation to the exact hyperfine Hamiltonian. We provide a comprehensive overview of entanglement decay in this regime, considering both free evolution of the qubits, and an echo protocol with simultaneous application of π pulses to the two spins. All the currently relevant for experiments bath states are considered: the thermal state, narrowed states (characterized by diminished uncertainty of one of the components of the Overhauser field) of two uncorrelated baths, and a correlated narrowed state with a well-defined value of the z component of the Overhauser field interdot gradient. While we mostly use concurrence to quantify the amount of entanglement in a mixed state of the two electron spins, we also show that their entanglement dynamics can be reconstructed from measurements of the currently relevant for experiments entanglement witnesses and the fidelity of quantum teleportation, performed using a partially disentangled state as a resource.

  20. Entanglement dynamics of photon pairs emitted from quantum dots

    SciTech Connect

    Zou, Yang; Gong, Ming; Li, Chuan-Feng; Chen, Geng; Tang, Jian-Shun; Guo, Guang-Can

    2010-06-15

    We present a model that describes states of photon pairs, which have been generated by biexciton cascade decays of self-assembled quantum dots, the use of which yields a finding that agrees well with the experimental result. Furthermore, we calculate the concurrence and determine the temperature behavior associated with the so-called entanglement sudden death that prevents quantum dots emitting entangled photon pairs at raised temperatures. The relationship between the fine-structure splitting and the sudden death temperature is also provided.

  1. Dynamics of entanglement among the environment oscillators of a many-body system

    NASA Astrophysics Data System (ADS)

    de Paula, A. L.; Freitas, Dagoberto S.

    2016-06-01

    In this work, we extend the discussion that began in Ref. 16 [A. L. de Paula, Jr., J. G. G. de Oliveira, Jr., J. G. P. de Faria, D. S. Freitas and M. C. Nemes, Phys. Rev. A 89 (2014) 022303] to deal with the dynamics of the concurrence of a many-body system. In that previous paper, the discussion was focused on the residual entanglement between the partitions of the system. The purpose of the present contribution is to shed some light on the dynamical properties of entanglement among the environment oscillators. We consider a system consisting of a harmonic oscillator linearly coupled to N others and solve the corresponding dynamical problem analytically. We divide the environment into two arbitrary partitions and the entanglement dynamics between any of these partitions is quantified and it shows that in the case when excitations in each partition are equal, the concurrence reaches the value 1 and the two partitions of the environment are maximally entangled. For long times, the excitations of the main oscillator are completely transferred to environment and the environment oscillators are found entangled.

  2. Open-system dynamics of entanglement:a key issues review

    NASA Astrophysics Data System (ADS)

    Aolita, Leandro; de Melo, Fernando; Davidovich, Luiz

    2015-04-01

    One of the greatest challenges in the fields of quantum information processing and quantum technologies is the detailed coherent control over each and every constituent of quantum systems with an ever increasing number of particles. Within this endeavor, harnessing of many-body entanglement against the detrimental effects of the environment is a major pressing issue. Besides being an important concept from a fundamental standpoint, entanglement has been recognized as a crucial resource for quantum speed-ups or performance enhancements over classical methods. Understanding and controlling many-body entanglement in open systems may have strong implications in quantum computing, quantum simulations of many-body systems, secure quantum communication or cryptography, quantum metrology, our understanding of the quantum-to-classical transition, and other important questions of quantum foundations. In this paper we present an overview of recent theoretical and experimental efforts to underpin the dynamics of entanglement under the influence of noise. Entanglement is thus taken as a dynamic quantity on its own, and we survey how it evolves due to the unavoidable interaction of the entangled system with its surroundings. We analyze several scenarios, corresponding to different families of states and environments, which render a very rich diversity of dynamical behaviors. In contrast to single-particle quantities, like populations and coherences, which typically vanish only asymptotically in time, entanglement may disappear at a finite time. In addition, important classes of entanglement display an exponential decay with the number of particles when subject to local noise, which poses yet another threat to the already-challenging scaling of quantum technologies. Other classes, however, turn out to be extremely robust against local noise. Theoretical results and recent experiments regarding the difference between local and global decoherence are summarized. Control and

  3. Generalized uncertainty relations and entanglement dynamics in quantum Brownian motion models

    SciTech Connect

    Anastopoulos, C.; Kechribaris, S.; Mylonas, D.

    2010-10-15

    We study entanglement dynamics in quantum Brownian motion (QBM) models. Our main tool is the Wigner function propagator. Time evolution in the Wigner picture is physically intuitive and it leads to a simple derivation of a master equation for any number of system harmonic oscillators and spectral density of the environment. It also provides generalized uncertainty relations, valid for any initial state, that allow a characterization of the environment in terms of the modifications it causes to the system's dynamics. In particular, the uncertainty relations are very informative about the entanglement dynamics of Gaussian states, and to a lesser extent for other families of states. For concreteness, we apply these techniques to a bipartite QBM model, describing the processes of entanglement creation, disentanglement, and decoherence at all temperatures and time scales.

  4. Asymptotic entanglement dynamics phase diagrams for two electromagnetic field modes in a cavity

    SciTech Connect

    Drumond, R. C.; Souza, L. A. M.; Terra Cunha, M.

    2010-10-15

    We investigate theoretically an open dynamics for two modes of electromagnetic field inside a microwave cavity. The dynamics is Markovian and determined by two types of reservoirs: the ''natural'' reservoirs due to dissipation and temperature of the cavity, and an engineered one, provided by a stream of atoms passing trough the cavity, as devised by Pielawa et al. [Phys. Rev. Lett. 98, 240401 (2007)]. We found that, depending on the reservoir parameters, the system can have distinct ''phases'' for the asymptotic entanglement dynamics: it can disentangle at finite time or it can have persistent entanglement for large times, with the transition between them characterized by the possibility of asymptotical disentanglement. Incidentally, we also discuss the effects of dissipation on the scheme proposed in the above reference for generation of entangled states.

  5. Self-Similar Conformations and Dynamics of Non-Concatenated Entangled Ring Polymers

    NASA Astrophysics Data System (ADS)

    Ge, Ting

    A scaling model of self-similar conformations and dynamics of non-concatenated entangled ring polymers is developed. Topological constraints force these ring polymers into compact conformations with fractal dimension D =3 that we call fractal loopy globules (FLGs). This result is based on the conjecture that the overlap parameter of loops on all length scales is equal to the Kavassalis-Noolandi number 10-20. The dynamics of entangled rings is self-similar, and proceeds as loops of increasing sizes are rearranged progressively at their respective diffusion times. The topological constraints associated with smaller rearranged loops affect the dynamics of larger loops by increasing the effective friction coefficient, but have no influence on the tubes confining larger loops. Therefore, the tube diameter defined as the average spacing between relevant topological constraints increases with time, leading to ``tube dilation''. Analysis of the primitive paths in molecular dynamics (MD) simulations suggests complete tube dilation with the tube diameter on the order of the time-dependent characteristic loop size. A characteristic loop at time t is defined as a ring section that has diffused a distance of its size during time t. We derive dynamic scaling exponents in terms of fractal dimensions of an entangled ring and the underlying primitive path and a parameter characterizing the extent of tube dilation. The results reproduce the predictions of different dynamic models of a single non-concatenated entangled ring. We demonstrate that traditional generalization of single-ring models to multi-ring dynamics is not self-consistent and develop a FLG model with self-consistent multi-ring dynamics and complete tube dilation. Various dynamic scaling exponents predicted by the self-consistent FLG model are consistent with recent computer simulations and experiments. We also perform MD simulations of nanoparticle (NP) diffusion in melts of non-concatenated entangled ring polymers

  6. Entanglement dynamics and decoherence of an atom coupled to a dissipative cavity field

    NASA Astrophysics Data System (ADS)

    Akhtarshenas, S. J.; Khezrian, M.

    2010-04-01

    In this paper, we investigate the entanglement dynamics and decoherence in the interacting system of a strongly driven two-level atom and a single mode vacuum field in the presence of dissipation for the cavity field. Starting with an initial product state with the atom in a general pure state and the field in a vacuum state, we show that the final density matrix is supported on {mathbb C}^2⊗{mathbb C}^2 space, and therefore, the concurrence can be used as a measure of entanglement between the atom and the field. The influences of the cavity decay on the quantum entanglement of the system are also discussed. We also examine the Bell-CHSH violation between the atom and the field and show that there are entangled states for which the Bell-BCSH inequality is not violated. Using the above system as a quantum channel, we also investigate the quantum teleportation of a generic qubit state and also a two-qubit entangled state, and show that in both cases the atom-field entangled state can be useful to teleport an unknown state with fidelity better than any classical channel.

  7. Simulating Entanglement Dynamics of Singlet-Triplet Qubits Coupled to a Classical Transmission Line Resonator

    NASA Astrophysics Data System (ADS)

    Wolfe, Michael; Kestner, Jason

    Electrons confined in lateral quantum dots are promising candidates for scalable quantum bits. Particularly, singlet-triplet qubits can entangle electrostatically and offer long coherence times due to their weak interactions with the environment. However, fast two-qubit operations are challenging. We examine the dynamics of singlet triplet qubits capacitively coupled to a classical transmission line resonator driven near resonance. We numerically simulate the dynamics of the von Neumann entanglement entropy and investigate parameters of the coupling element that optimizes the operation time for the qubit.

  8. Saving entangled photons from sudden death is a single-mode fiber --- Interplay of Decoherence and dynamical decoupling

    NASA Astrophysics Data System (ADS)

    Gupta, Manish Kumar; You, Chenglong; Dowling, Jonathan P.; Lee, Hwang

    2016-05-01

    We study the dynamics of decoherence in an optical fiber for the case of entangled photons. Such a study will allow us to increase the physical length of fiber for transmission of entangled photon from the sources such as SPDC. We analytically derive the model for Decoherence of entangled state photons in a single-mode fiber. We also show that entanglement lifetime can be increased for Bell state and Werner state with open loop control technique called Dynamical decoupling. The authors would like to acknowledge support from the Air Force Office of Scientific Research, the Army Research Office, the National Science Foundation and the Northrop Grumman Corporation.

  9. Entanglement dynamics in one-dimensional quantum cellular automata

    SciTech Connect

    Brennen, Gavin K.; Williams, Jamie E.

    2003-10-01

    Several proposed schemes for the physical realization of a quantum computer consist of qubits arranged in a cellular array. In the quantum circuit model of quantum computation, an often complex series of two-qubit gate operations is required between arbitrarily distant pairs of lattice qubits. An alternative model of quantum computation based on quantum cellular automata (QCA) requires only homogeneous local interactions that can be implemented in parallel. This would be a huge simplification in an actual experiment. We find some minimal physical requirements for the construction of unitary QCA in a one-dimensional Ising spin chain and demonstrate optimal pulse sequences for information transport and entanglement distribution. We also introduce the theory of nonunitary QCA and show by example that nonunitary rules can generate environment assisted entanglement.

  10. Iterative path integral calculations of non-linear spectra and entanglement dynamics

    NASA Astrophysics Data System (ADS)

    Sahrapour, Mohammad Mehdi

    We review an iterative path integral method that allows the computation of exact, long-time dynamics of small systems interacting with a dissipative bath. The method takes advantage of the finite memory of large environments at finite temperature to allow an iterative evaluation of the dynamics, thereby replacing an exponential scaling in simulation time with a linear scaling. This method is applied to calculate the dynamics of two model systems. The first consists of two-qubits interacting with a common bath. In this case we observe a variety of entanglement effects. If the qubits are initially separable, through an indirect coupling, the bath can create steady state entanglement between the qubits. This effect is due to the existence of a decoherence-free subspace as a result of the form of the qubit Hamiltonian and system-bath coupling. Entanglement created by the bath is shown to decrease with increasing temperature and system-bath coupling strength. However large system-bath coupling causes a faster increase in the entanglement. Initially entangled qubits lose their entanglement as a result of interactions with the bath, an effect that is heightened at higher temperatures. Direct coupling between the qubits is shown to slow the decay of entanglement and preserve some entanglement at long times; however at high temperatures this steady state entanglement becomes negligible. The second system we consider is vibrational degree of freedom coupled to a bath of harmonic oscillators or two-level systems. We compute four-time correlation functions which are used to calculate response functions relevant to third order infrared or seventh order Raman experiments for harmonic, Morse, and quadratic-quartic potentials. Our calculations reveal the role of potential features (anharmonicity and eigenvalue spectrum), both on short and long time scales, on the response function. Further, thermal excitation causes dramatic changes in the appearance of the response function

  11. Dark-matter halo assembly bias: Environmental dependence in the non-Markovian excursion-set theory

    SciTech Connect

    Zhang, Jun; Ma, Chung-Pei; Riotto, Antonio

    2014-02-10

    In the standard excursion-set model for the growth of structure, the statistical properties of halos are governed by the halo mass and are independent of the larger-scale environment in which the halos reside. Numerical simulations, however, have found the spatial distributions of halos to depend not only on their mass but also on the details of their assembly history and environment. Here we present a theoretical framework for incorporating this 'assembly bias' into the excursion-set model. Our derivations are based on modifications of the path-integral approach of Maggiore and Riotto that models halo formation as a non-Markovian random-walk process. The perturbed density field is assumed to evolve stochastically with the smoothing scale and exhibits correlated walks in the presence of a density barrier. We write down conditional probabilities for multiple barrier crossings and derive from them analytic expressions for descendant and progenitor halo mass functions and halo merger rates as a function of both halo mass and the linear overdensity δ {sub e} of the larger-scale environment of the halo. Our results predict a higher halo merger rate and higher progenitor halo mass function in regions of higher overdensity, consistent with the behavior seen in N-body simulations.

  12. Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk

    NASA Astrophysics Data System (ADS)

    Schütz, Gunter M.; Trimper, Steffen

    2004-10-01

    We consider a discrete-time random walk where the random increment at time step t depends on the full history of the process. We calculate exactly the mean and variance of the position and discuss its dependence on the initial condition and on the memory parameter p . At a critical value pc(1)=1/2 where memory effects vanish there is a transition from a weakly localized regime [where the walker (elephant) returns to its starting point] to an escape regime. Inside the escape regime there is a second critical value where the random walk becomes superdiffusive. The probability distribution is shown to be governed by a non-Markovian Fokker-Planck equation with hopping rates that depend both on time and on the starting position of the walk. On large scales the memory organizes itself into an effective harmonic oscillator potential for the random walker with a time-dependent spring constant k=(2p-1)/t . The solution of this problem is a Gaussian distribution with time-dependent mean and variance which both depend on the initiation of the process.

  13. Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping

    NASA Astrophysics Data System (ADS)

    Strasberg, Philipp; Schaller, Gernot; Lambert, Neill; Brandes, Tobias

    2016-07-01

    We propose a method to study the thermodynamic behaviour of small systems beyond the weak coupling and Markovian approximation, which is different in spirit from conventional approaches. The idea is to redefine the system and environment such that the effective, redefined system is again coupled weakly to Markovian residual baths and thus, allows to derive a consistent thermodynamic framework for this new system-environment partition. To achieve this goal we make use of the reaction coordinate (RC) mapping, which is a general method in the sense that it can be applied to an arbitrary (quantum or classical and even time-dependent) system coupled linearly to an arbitrary number of harmonic oscillator reservoirs. The core of the method relies on an appropriate identification of a part of the environment (the RC), which is subsequently included as a part of the system. We demonstrate the power of this concept by showing that non-Markovian effects can significantly enhance the steady state efficiency of a three-level-maser heat engine, even in the regime of weak system-bath coupling. Furthermore, we show for a single electron transistor coupled to vibrations that our method allows one to justify master equations derived in a polaron transformed reference frame.

  14. Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping

    NASA Astrophysics Data System (ADS)

    Strasberg, Philipp; Schaller, Gernot; Lambert, Neill; Brandes, Tobias

    2016-07-01

    We propose a method to study the thermodynamic behaviour of small systems beyond the weak coupling and Markovian approximation, which is different in spirit from conventional approaches. The idea is to redefine the system and environment such that the effective, redefined system is again coupled weakly to Markovian residual baths and thus, allows to derive a consistent thermodynamic framework for this new system–environment partition. To achieve this goal we make use of the reaction coordinate (RC) mapping, which is a general method in the sense that it can be applied to an arbitrary (quantum or classical and even time-dependent) system coupled linearly to an arbitrary number of harmonic oscillator reservoirs. The core of the method relies on an appropriate identification of a part of the environment (the RC), which is subsequently included as a part of the system. We demonstrate the power of this concept by showing that non-Markovian effects can significantly enhance the steady state efficiency of a three-level-maser heat engine, even in the regime of weak system–bath coupling. Furthermore, we show for a single electron transistor coupled to vibrations that our method allows one to justify master equations derived in a polaron transformed reference frame.

  15. Entanglement dynamics of one-dimensional driven spin systems in time-varying magnetic fields

    SciTech Connect

    Alkurtass, Bedoor; Sadiek, Gehad; Kais, Sabre

    2011-08-15

    We study the dynamics of nearest-neighbor entanglement for a one-dimensional spin chain with a nearest-neighbor time-dependent Heisenberg coupling J(t) between the spins in the presence of a time-dependent external magnetic field h(t) at zero and finite temperatures. We consider different forms of time dependence for the coupling and magnetic field: exponential, hyperbolic, and periodic. Solving the system numerically, we examined the system-size effect on the entanglement asymptotic value. It was found that, for a small system size, the entanglement starts to fluctuate within a short period of time after applying the time-dependent coupling. The period of time increases as the system size increases and disappears completely as the size goes to infinity. Testing the effect of the transition constant for an exponential or hyperbolic coupling showed a direct impact on the asymptotic value of the entanglement; the larger the constant is, the lower the asymptotic value and the more rapid decay of entanglement are, which confirms the nonergodic character of the system. We also found that, when J(t) is periodic, the entanglement shows a periodic behavior with the same period, which disappears upon applying periodic magnetic field with the same frequency. Solving the case J(t)={lambda}h(t), for constant {lambda}, exactly, we showed that the time evolution and asymptotic value of entanglement are dictated solely by the parameter {lambda}=J/h rather than the individual values of J and h, not only when they are time independent and at zero temperature, but also when they are time dependent but proportional at zero and finite temperatures for all degrees of anisotropy.

  16. ATOMIC AND MOLECULAR PHYSICS: Dynamical entanglement for Fermi coupled stretching and bending modes

    NASA Astrophysics Data System (ADS)

    Hou, Xi-Wen; Cheng, Chuan-Ming

    2009-07-01

    The dynamical entanglement for Fermi coupled C-H stretch and bend vibrations in molecule CHD3 is studied in terms of two negativities and the reduced von Neumann entropy, where initial states are taken to be direct products of photon-added coherent states on each mode. It is demonstrated that the negativity defined by the sum of negative eigenvalues of the partial transpose of density matrices is positively correlated with the von Neumann entropy. The entanglement difference between photon-added coherent states and usual coherent states is discussed as well.

  17. Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems

    SciTech Connect

    Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.

    2010-11-15

    The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.

  18. Entanglement dynamics of spin systems in pure states

    NASA Astrophysics Data System (ADS)

    Furman, G. B.; Meerovich, V. M.; Sokolovsky, V. L.

    2009-09-01

    We investigate numerically the appearance and evolution of entanglement in spin systems prepared initially in a pure state. We consider the dipolar coupling spin systems of different molecular structures: benzene C6H6 , cyclopentane C5H10 , sodium butyrate CH3(CH2)2CO2Na , and calcium hydroxyapatite Ca5(OH)(PO4)3 . Numerical simulations show that the close relationship exists between the intensity of second order (2Q) coherences and concurrences of nearest spins in a cyclopentane molecule.

  19. Dynamics, synchronization, and quantum phase transitions of two dissipative spins

    SciTech Connect

    Orth, Peter P.; Le Hur, Karyn; Roosen, David; Hofstetter, Walter

    2010-10-01

    We analyze the static and dynamic properties of two Ising-coupled quantum spins embedded in a common bosonic bath as an archetype of dissipative quantum mechanics. First, we elucidate the ground-state phase diagram for an Ohmic and a sub-Ohmic bath using a combination of bosonic numerical renormalization group (NRG), analytical techniques, and intuitive arguments. Second, by employing the time-dependent NRG we investigate the system's rich dynamical behavior arising from the complex interplay between spin-spin and spin-bath interactions. Interestingly, spin oscillations can synchronize due to the proximity of the common non-Markovian bath and the system displays highly entangled steady states for certain nonequilibrium initial preparations. We complement our nonperturbative numerical results by exact analytical solutions when available and provide quantitative limits on the applicability of the perturbative Bloch-Redfield approach at weak coupling.

  20. Entanglement dynamics of a three-qubit system with different interatomic distances

    NASA Astrophysics Data System (ADS)

    Feng, Ling-Juan; Zhang, Ying-Jie; Zhang, Lu; Xia, Yun-Jie

    2015-11-01

    We investigate the tripartite entanglement dynamics of three two-level atoms in a multi-mode vacuum field. By considering the influences of the interatomic distance and the initial condition on the lower bound of concurrence and the tripartite negativity, we show that an optimal interatomic distance can be found to minimize the collective damping. Interestingly, at the same optimal distance, the tripartite entanglement would be maximized in the open dynamics process. In the case of shorter interatomic distance, the tripartite entanglement can display the oscillatory behavior in the initial short-time limit and be trapped in a stationary value in the long-time limit. In addition, the tripartite entanglement for the general situation with different interatomic distances is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012, 11204156, and 11304179), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20133705110001 and 20123705120002), and the Natural Science Foundation of Shandong Province, China (Grant Nos. BS2013DX034, ZR2012FQ024, and ZR2014AP009).

  1. Quantum spin dynamics and entanglement in systems with long-range interactions

    NASA Astrophysics Data System (ADS)

    Rey, Ana M.

    One of the fundamental goals of modern quantum sciences is to learn how to control and manipulate non-equilibrium many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, out-of-equilibrium systems are complex, typically strongly correlated and entangled, and thus to model them we are in an urgent need of new methodologies. In this talk I will discuss new theoretical methods that we have developed to investigate emergent non-equilibrium phenomena in driven-dissipative spin systems interacting via long-range interactions. I will show we can capture the dynamics of correlations and entanglement in close systems and the interplay between dissipation and entanglement in open quantum systems including spin-boson models. As a specific application I will discuss the use of our methods to model the spin dynamics exhibited by arrays of trapped ions with controllable long-range interactions. I will show that our predictions are consistent with recent experimental measurements. I will also discuss new protocols to diagnostic and characterize entanglement based on well-established NMR protocols This work is supported by NSF, ARO, AFOSR-MURI, and NIST.

  2. Dynamics of the area law of entanglement entropy

    NASA Astrophysics Data System (ADS)

    Leichenauer, Stefan; Moosa, Mudassir; Smolkin, Michael

    2016-09-01

    We study the evolution of the universal area law of entanglement entropy when the Hamiltonian of the system undergoes a time dependent perturbation. In particular, we derive a general formula for the time dependent first order correction to the area law under the assumption that the field theory resides in a vacuum state when a small time-dependent perturbation of a relevant coupling constant is turned on. Using this formula, we carry out explicit calculations in free field theories deformed by a time dependent mass, whereas for a generic QFT we show that the time dependent first order correction is governed by the spectral function defining the two-point correlation function of the trace of the energy-momentum tensor. We also carry out holographic calculations based on the HRT proposal and find qualitative and, in certain cases, quantitative agreement with the field theory calculations.

  3. Entanglement dynamics of the ultrastrong-coupling three-qubit Dicke model

    NASA Astrophysics Data System (ADS)

    Mao, Lijun; Liu, Yanxia; Zhang, Yunbo

    2016-05-01

    We give an analytical description of the dynamics of the three-qubit Dicke model using the adiabatic approximation in the parameter regime where the qubit transition frequencies are far off-resonance with the field frequency and the interaction strengths reach the ultrastrong-coupling regimes. Qualitative differences arise upon comparison to single- and two-qubit systems. Simple analytic formulas show that three revival sequences produce a three-frequency beat note in the time evolution of the population. We find an explicit way to estimate the dynamics for qubit-field and qubit-qubit entanglement inside the three-qubit system in the ultrastrong-coupling regime, and the resistance to sudden death proves that the entanglement in the Greenberger-Horne-Zeilinger state is more robust than that in the W state.

  4. Entangled valence electron-hole dynamics revealed by stimulated attosecond x-ray Raman scattering

    SciTech Connect

    Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; Mukamel, Shaul

    2012-09-06

    We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by resonant stimulated Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

  5. Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences

    SciTech Connect

    Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng; Gong, Jiangbin

    2010-11-15

    Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression can be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.

  6. A single particle model to simulate the dynamics of entangled polymer melts

    NASA Astrophysics Data System (ADS)

    Kindt, P.; Briels, W. J.

    2007-10-01

    We present a computer simulation model of polymer melts representing each chain as one single particle. Besides the position coordinate of each particle, we introduce a parameter nij for each pair of particles i and j within a specified distance from each other. These numbers, called entanglement numbers, describe the deviation of the system of ignored coordinates from its equilibrium state for the given configuration of the centers of mass of the polymers. The deviations of the entanglement numbers from their equilibrium values give rise to transient forces, which, together with the conservative forces derived from the potential of mean force, govern the displacements of the particles. We have applied our model to a melt of C800H1602 chains at 450K and have found good agreement with experiments and more detailed simulations. Properties addressed in this paper are radial distribution functions, dynamic structure factors, and linear as well as nonlinear rheological properties.

  7. Quantum entanglement between amide-I and amide-site in Davydov-Scott model

    NASA Astrophysics Data System (ADS)

    Liang, Xian-Ting; Fan, Heng

    2014-01-01

    In this paper, we firstly derive non-Markovian operator Langevin equations of the Davydov monomer in its environment. Next, we replace the equations with the c-number quantum general Langevin equations (QGLEs) by calculating statistical and quantum averages of the operator Langevin equations. Then, by using the c-number QGLEs we investigate the evolutions of the subsystems amide-I and amide-site. The evolution of a parameter θ describing quantum entanglement of the coupling subsystems with continuous variable Hamiltonian has also been investigated. It is shown that there is certain entanglement between the amide-I and amide-site in the Davydov-Scott monomer.

  8. Dynamics of ionisation and entanglement in the 'atom + quantum electromagnetic field' system

    SciTech Connect

    Sharapova, P R; Tikhonova, O V

    2012-03-31

    The dynamics of a model Rydberg atom in a strong nonclassical electromagnetic field is investigated. The field-induced transitions to the continuum involving different numbers of photons (with intermediate states in the discrete spectrum) are taken into account and the specific features of ionisation in 'squeezed' field states are considered in comparison with the case of classical light. A significant decrease in the ionisation rate is found, which is caused by the interference stabilisation of the atomic system. The entanglement of the atomic and field subsystems, the temporal dynamics of the correlations found, and the possibility of measuring them are analysed.

  9. Rheology of Entangled Polymer Melts: Recent Results from Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Larson, Ronald G.

    2010-03-01

    Models for the rheology of entangled polymers, based on the ``tube" model are now open to investigation by molecular dynamics simulations using the Kremer-Grest ``pearl necklace" model of polymers. Here, we present extensive molecular dynamics simulations of the dynamics and stress in entangled melts of branched polymers and of ``binary blends" of diluted long probe chains entangled with a matrix of shorter chains. Direct evidence of ``hierarchical relaxation" is obtained in diffusion of asymmetric star polymers, wherein the rate of slow diffusion of the branch point is controlled by the much faster motion of the attached arm. In studies of binary blends, the ratio of their lengths is varied over a wide range to cover the crossover from the chain reptation regime to tube Rouse motion regime of the long probe chains. Reducing the matrix chain length results in a faster decay of the dynamic structure factor of the probe chains, in good agreement with recent Neutron Spin Echo experiments. The diffusion of the long chains, measured by the mean square displacements of the monomers and the centers of mass of the chains, demonstrates a systematic speed-up relative to the pure reptation behavior expected for monodisperse melts of sufficiently long polymers. On the other hand, the diffusion of the matrix chains is only weakly perturbed by the diluted long probe chains. The simulation results are qualitatively consistent with the theoretical predictions based on constraint release Rouse model, but a detailed comparison reveals the existence of a broad distribution of the disentanglement rates, which is partly confirmed by an analysis of the packing and diffusion of the matrix chains in the tube region of the probe chains. A coarse-grained simulation model based on the tube Rouse motion model with incorporation of the probability distribution of the tube segment jump rates is developed and shows results qualitatively consistent with the fine scale molecular dynamics

  10. Non-Markovian reduced propagator, multiple-time correlation functions, and master equations with general initial conditions in the weak-coupling limit

    SciTech Connect

    Vega, Ines de; Alonso, Daniel

    2006-02-15

    In this paper we derive the evolution equation for the reduced propagator, an object that evolves vectors of the Hilbert space of a system S interacting with an environment B in a non-Markovian way. This evolution is conditioned to certain initial and final states of the environment. Once an average over these environmental states is made, reduced propagators permit the evaluation of multiple-time correlation functions of system observables. When this average is done stochastically the reduced propagator evolves according to a stochastic Schroedinger equation. In addition, it is possible to obtain the evolution equations of the multiple-time correlation functions which generalize the well-known quantum regression theorem to the non-Markovian case. Here, both methods, stochastic and evolution equations, are described by assuming a weak coupling between system and environment. Finally, we show that reduced propagators can be used to obtain a master equation with general initial conditions, and not necessarily an initial vacuum state for the environment. We illustrate the theory with several examples.

  11. Black holes as random particles: entanglement dynamics in infinite range and matrix models

    NASA Astrophysics Data System (ADS)

    Magán, Javier M.

    2016-08-01

    We first propose and study a quantum toy model of black hole dynamics. The model is unitary, displays quantum thermalization, and the Hamiltonian couples every oscillator with every other, a feature intended to emulate the color sector physics of large- {N} matrix models. Considering out of equilibrium initial states, we analytically compute the time evolution of every correlator of the theory and of the entanglement entropies, allowing a proper discussion of global thermalization/scrambling of information through the entire system. Microscopic non-locality causes factorization of reduced density matrices, and entanglement just depends on the time evolution of occupation densities. In the second part of the article, we show how the gained intuition extends to large- {N} matrix models, where we provide a gauge invariant entanglement entropy for `generalized free fields', again depending solely on the quasinormal frequencies. The results challenge the fast scrambling conjecture and point to a natural scenario for the emergence of the so-called brick wall or stretched horizon. Finally, peculiarities of these models in regards to the thermodynamic limit and the information paradox are highlighted.

  12. Dynamics of entanglement and quantum discord in the Tavis-Cummings model

    NASA Astrophysics Data System (ADS)

    Restrepo, Juliana; Rodríguez, Boris A.

    2016-06-01

    We revisit the problem of the dynamics of quantum correlations in the Tavis-Cummings model. Our results show that the dynamics of entanglement and quantum discord are far from being trivial or intuitive. We find states with the same entanglement but different discord and states where the two quantifiers give opposite information about correlations at a certain time. We furthermore show that many of the dynamical features of quantum discord attributed to dissipation are already present in the exact framework and are due to the characteristic quantum nonlinearity of the model and to the choice of initial conditions. Through a comprehensive analysis of pure and mixed initial conditions, we find a fascinating range of phenomena that can be used for experimental purposes. We propose an experiment called quantum discord gates where for a given pure initial condition discord is zero or non-zero depending on the number of photons in the cavity. Given the marginal character of states with zero discord this result is not only completely counterintuitive but is also useful as a way to count photons.

  13. Dynamic scaling in entangled mean-field gelation polymers.

    PubMed

    Das, Chinmay; Read, Daniel J; Kelmanson, Mark A; McLeish, Tom C B

    2006-07-01

    We present a simple reaction kinetics model to describe the polymer synthesis used by Lusignan et al. [Phys. Rev. E 60, 5657 (1999)] to produce randomly branched polymers in the vulcanization class. Numerical solution of the rate equations gives probabilities for different connections in the final product, which we use to generate a numerical ensemble of representative molecules. All structural quantities probed in the experiments are in quantitative agreement with our results for the entire range of molecular weights considered. However, with detailed topological information available in our calculations, our estimate of the "rheologically relevant" linear segment length is smaller than that estimated from the experimental results. We use a numerical method based on a tube model of polymer melts to calculate the rheological properties of such molecules. Results are in good agreement with experiment, except that in the case of the largest molecular weight samples our estimate of the zero-shear viscosity is significantly lower than the experimental findings. Using acid concentration as an indicator for closeness to the gelation transition, we show that the high-molecular-weight polymers considered are at the limit of mean-field behavior--which possibly is the reason for this disagreement. For a truly mean-field gelation class of model polymers, we numerically calculate the rheological properties for a range of segment lengths. Our calculations show that the tube theory with dynamical dilation predicts that, very close to the gelation limit, the contribution to viscosity for this class of polymers is dominated by the contribution from constraint-release Rouse motion and the final viscosity exponent approaches a Rouse-like value. PMID:16907093

  14. Zeno dynamics in quantum open systems

    PubMed Central

    Zhang, Yu-Ran; Fan, Heng

    2015-01-01

    Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states. PMID:26099840

  15. Zeno dynamics in quantum open systems.

    PubMed

    Zhang, Yu-Ran; Fan, Heng

    2015-06-23

    Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states.

  16. Evolution equation for entanglement of assistance

    SciTech Connect

    Li Zongguo; Liu, W. M.; Zhao Mingjing; Fei Shaoming

    2010-04-15

    We investigate the time evolution of the entanglement of assistance when one subsystem undergoes the action of local noisy channels. A general factorization law is presented for the evolution equation of entanglement of assistance. Our results demonstrate that the dynamics of the entanglement of assistance is determined by the action of a noisy channel on the pure maximally entangled state, in which the entanglement reduction turns out to be universal for all quantum states entering the channel. This single quantity will make it easy to characterize the entanglement dynamics of entanglement of assistance under unknown channels in the experimental process of producing entangled states by assisted entanglement.

  17. Two-photon-driven nonlinear dynamics and entanglement of an atom in a nonuniform cavity

    SciTech Connect

    Chotorlishvili, L.; Toklikishvili, Z.; Wimberger, S.; Berakdar, J.

    2011-07-15

    In this paper we study the dynamics in the general case for a Tavis-Cummings atom in a nonuniform cavity. In addition to the dynamical Stark shift, the center-of-mass motion of the atom and the recoil effect are considered in both the weak and the strong cavity-atom coupling regimes. It is shown that the spatial motion of the atom inside the cavity in the resonant case leads to a transition between topologically different solutions. This effect is manifested by a singularity in the interlevel transition spectrum. In the nonresonant case, the spatial motion of the atom leads to a switching of the spin orientation. In both effects, the key factor is the relation between the values of the Stark shift and the cavity-field coupling constant. We also investigate the entanglement of an atom in the cavity with the radiation field. It is shown that the entanglement between the atom and the field, usually quantified in terms of purity, decreases with increasing Stark shift.

  18. Differences between Mean-Field Dynamics and N-Particle Quantum Dynamics as a Signature of Entanglement

    SciTech Connect

    Weiss, Christoph; Teichmann, Niklas

    2008-04-11

    A Bose-Einstein condensate in a tilted double-well potential under the influence of time-periodic potential differences is investigated in the regime where the mean-field (Gross-Pitaevskii) dynamics become chaotic. For some parameters near stable regions, even averaging over several condensate oscillations does not remove the differences between mean-field and N-particle results. While introducing decoherence via piecewise deterministic processes reduces those differences, they are due to the emergence of mesoscopic entangled states in the chaotic regime.

  19. Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime

    SciTech Connect

    Tian, Zehua; Jing, Jiliang

    2014-11-15

    In the framework of open quantum systems, we study the internal dynamics of both freely falling and static two-level atoms interacting with quantized conformally coupled massless scalar field in de Sitter spacetime. We find that the atomic transition rates depend on both the nature of de Sitter spacetime and the motion of atoms, interestingly the steady states for both cases are always driven to being purely thermal, regardless of the atomic initial states. This thermalization phenomenon is structurally similar to what happens to an elementary quantum system immersed in a thermal field, and thus reveals the thermal nature of de Sitter spacetime. Besides, we find that the thermal baths will drive the entanglement shared by the freely falling atom (the static atom) and its auxiliary partner, a same two-level atom which is isolated from external fields, to being sudden death, and the proper time for the entanglement to be extinguished is computed. We also analyze that such thermalization and disentanglement phenomena, in principle, could be understood from the perspective of table-top simulation experiment.

  20. Relativistic quantum mechanics and relativistic entanglement in the rest-frame instant form of dynamics

    SciTech Connect

    Alba, David; Crater, Horace W.; Lusanna, Luca

    2011-06-15

    A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics, where the world-lines of the particles are parametrized in terms of the Fokker-Pryce center of inertia and of Wigner-covariant relative 3-coordinates inside the instantaneous Wigner 3-spaces, and where there is a decoupled (non-covariant and non-local) canonical relativistic center of mass. This approach: (a) allows us to make a consistent quantization in every inertial frame; (b) leads to a description of both bound and scattering states; (c) offers new insights on the relativistic localization problem; (d) leads to a non-relativistic limit with a Hamilton-Jacobi treatment of the Newton center of mass; (e) clarifies non-local aspects (spatial non-separability) of relativistic entanglement connected with Lorentz signature and not present in its non-relativistic treatment.

  1. Quantum spin dynamics and entanglement generation with hundreds of trapped ions.

    PubMed

    Bohnet, Justin G; Sawyer, Brian C; Britton, Joseph W; Wall, Michael L; Rey, Ana Maria; Foss-Feig, Michael; Bollinger, John J

    2016-06-10

    Quantum simulation of spin models can provide insight into problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. We studied quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of (9)Be(+) ions in a Penning trap. We verified entanglement in spin-squeezed states of up to 219 ions, directly observing 4.0 ± 0.9 decibels of spectroscopic enhancement, and observed states with non-Gaussian statistics consistent with oversqueezed states. The good agreement with ab initio theory that includes interactions and decoherence lays the groundwork for simulations of the transverse-field Ising model with variable-range interactions, which are generally intractable with classical methods.

  2. Quantum spin dynamics and entanglement generation with hundreds of trapped ions

    NASA Astrophysics Data System (ADS)

    Bohnet, Justin G.; Sawyer, Brian C.; Britton, Joseph W.; Wall, Michael L.; Rey, Ana Maria; Foss-Feig, Michael; Bollinger, John J.

    2016-06-01

    Quantum simulation of spin models can provide insight into problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. We studied quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of 9Be+ ions in a Penning trap. We verified entanglement in spin-squeezed states of up to 219 ions, directly observing 4.0 ± 0.9 decibels of spectroscopic enhancement, and observed states with non-Gaussian statistics consistent with oversqueezed states. The good agreement with ab initio theory that includes interactions and decoherence lays the groundwork for simulations of the transverse-field Ising model with variable-range interactions, which are generally intractable with classical methods.

  3. Quantum spin dynamics and entanglement generation with hundreds of trapped ions.

    PubMed

    Bohnet, Justin G; Sawyer, Brian C; Britton, Joseph W; Wall, Michael L; Rey, Ana Maria; Foss-Feig, Michael; Bollinger, John J

    2016-06-10

    Quantum simulation of spin models can provide insight into problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. We studied quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of (9)Be(+) ions in a Penning trap. We verified entanglement in spin-squeezed states of up to 219 ions, directly observing 4.0 ± 0.9 decibels of spectroscopic enhancement, and observed states with non-Gaussian statistics consistent with oversqueezed states. The good agreement with ab initio theory that includes interactions and decoherence lays the groundwork for simulations of the transverse-field Ising model with variable-range interactions, which are generally intractable with classical methods. PMID:27284189

  4. Thermalization of entanglement.

    PubMed

    Zhang, Liangsheng; Kim, Hyungwon; Huse, David A

    2015-06-01

    We explore the dynamics of the entanglement entropy near equilibrium in highly entangled pure states of two quantum-chaotic spin chains undergoing unitary time evolution. We examine the relaxation to equilibrium from initial states with either less or more entanglement entropy than the equilibrium value, as well as the dynamics of the spontaneous fluctuations of the entanglement that occur in equilibrium. For the spin chain with a time-independent Hamiltonian and thus an extensive conserved energy, we find slow relaxation of the entanglement entropy near equilibration. Such slow relaxation is absent in a Floquet spin chain with a Hamiltonian that is periodic in time and thus has no local conservation law. Therefore, we argue that slow diffusive energy transport is responsible for the slow relaxation of the entanglement entropy in the Hamiltonian system.

  5. Thermalization of entanglement.

    PubMed

    Zhang, Liangsheng; Kim, Hyungwon; Huse, David A

    2015-06-01

    We explore the dynamics of the entanglement entropy near equilibrium in highly entangled pure states of two quantum-chaotic spin chains undergoing unitary time evolution. We examine the relaxation to equilibrium from initial states with either less or more entanglement entropy than the equilibrium value, as well as the dynamics of the spontaneous fluctuations of the entanglement that occur in equilibrium. For the spin chain with a time-independent Hamiltonian and thus an extensive conserved energy, we find slow relaxation of the entanglement entropy near equilibration. Such slow relaxation is absent in a Floquet spin chain with a Hamiltonian that is periodic in time and thus has no local conservation law. Therefore, we argue that slow diffusive energy transport is responsible for the slow relaxation of the entanglement entropy in the Hamiltonian system. PMID:26172682

  6. Dynamics of different entanglement measures of two three-level atoms interacting nonlinearly with a single-mode field

    NASA Astrophysics Data System (ADS)

    Baghshahi, H. R.; Tavassoly, M. K.

    2015-03-01

    In this paper, we present a model which exhibits two identical Ξ-type three-level atoms interacting with a single-mode field with k-photon transition in an optical cavity enclosed by a Kerr medium. Considering full nonlinear formalism, it is assumed that the single-mode field, atom-field coupling and Kerr medium are all f-deformed. By using the adiabatic elimination method, it is shown that, the Hamiltonian of the considered system can be reduced to an effective Hamiltonian with two two-level atoms and f-deformed Stark shift. In spite of the fact that, the system seems to be complicated, under initial conditions which may be prepared for the atoms (coherent superposition of their ground and upper states) and the field (coherent state), the explicit form of the state vector of the entire system is analytically obtained. Then, the entanglement dynamics between different subsystems ( i.e. "field-two atoms", "atom-(field+atom)" and "atom-atom") are evaluated through appropriate measures like von Neumann entropy, tangle and concurrence. In addition, the effects of intensity-dependent coupling, deformed Kerr medium, detuning parameter, deformed Stark shift and multi-photon process on the considered entanglement measures are numerically analyzed, in detail. It is shown that the degree of entanglement between subsystems can be controlled by selecting the evolved parameters, suitably. Briefly, the Kerr medium highly decreases the amount of different considered measures of entanglement, especially for two-photon transition. This destructive effect preserves even when all other parameters are present, too. Furthermore, we find that the so-called entanglement sudden death and birth can occur in the atom-atom entanglement.

  7. Molecular dynamics simulations of constraint release effects in entangled binary blends of linear polymers

    NASA Astrophysics Data System (ADS)

    Wang, Zuowei; Larson, Ronald G.

    2008-03-01

    We present extensive molecular dynamics simulations of the dynamics of entangled binary blends consisting of long test chains diluted in shorter chain matrix. The ratio between the long and short chain lengths is varied by a factor of ten covering the crossover from the chain reptation regime to the tube Rouse relaxation regime. Consistent with Neutron Spin Echo experiments, the dynamic structure factor of the long chains is found to decay faster in the matrix with shorter chain lengths, owing to the stronger constraint release effect. Correspondingly the monomers and centers of mass of the long chains show a faster time-dependent diffusivity than that expected from pure reptation. The simulation results for the diffusion properties agree qualitatively with the predictions based on constraint release Rouse motion model at long time scales, but show deviations from the theoretical predictions in the intermediate time regime. Our preliminary analysis of diffusion of the matrix chains in the tube-region of the long chains indicates that this discrepancy results from neglect of the broad distribution of the lifetimes of constraint release events in the theoretical treatment.

  8. Microscopic Theory for Entangled Polymer Dynamics in Rod-Sphere Nanocomposites

    NASA Astrophysics Data System (ADS)

    Yamamoto, Umi; Schweizer, Kenneth

    2014-03-01

    We have developed a self-consistent microscopic theory for the long-time dynamics of needles in an array of static spherical fillers. The approach exactly enforces the dynamical two-body rod topological uncrossability and sphere impenetrability constraints, leading to a generalized concept of entanglements that includes the filler excluded volume effect. How the diffusion anisotropy (transverse versus longitudinal motion) depends on the filler-needle aspect ratio, polymer concentration, and filler volume fraction is established. Due to the steric blocking of the longitudinal reptative motion by obstacles, a literal localization transition is predicted that is generically controlled by the ratio of filler diameter to the pure polymer tube diameter or needle length. For a window of filler sizes and loadings, the needle is predicted to diffuse via a ``renormalized'' reptation dynamics where the tube is compressed and the longitudinal motion is retarded in a manner that depends on all system variables. At high filler volume fractions the needle diffusivity is strongly suppressed, and localization ultimately occurs in the unentangled needle regime. Generalization of the approach to treat mobile fillers, flexible chains, and nonrandom microstructure is also possible.

  9. Enhanced quantum nonlocality induced by the memory of a thermal-squeezed environment

    NASA Astrophysics Data System (ADS)

    Chen, Po-Wen; Manirul Ali, Md; Chen, Shiaw-Huei

    2016-09-01

    We investigate the transient non-Markovian dynamics of quantum nonlocality for a pair of two-level atoms coupled to a common thermal-squeezed environment. We use Bell-CHSH inequality, steering inequality, and entanglement as theoretical tools to investigate the nonlocality dynamics. We see significant differences between the non-Markovian nonlocality dynamics and its Markovian counterpart. We mainly focus on quantum steering nonlocality which has gained much interest recently. An enhanced quantum nonlocality is shown through the violation of steering inequality and entanglement in the non-Markovian regime of the structured environment. A close correspondence is shown between steering nonlocality and entanglement dynamics.

  10. In vivo dynamical behavior of yeast chromatin modeled as an entangled polymer network with constraint release

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Kilfoil, Maria L.

    2013-03-01

    The high fidelity segregation of chromatin is the central problem in cell mitosis. The role of mechanics underlying this, however, is undetermined. Work in this area has largely focused on cytoskeletal elements of the process. Preliminary work in our lab suggests the mechanical properties of chromatin are fundamental in this process. Nevertheless, the mechanical properties of chromatin in the cellular context are not well-characterized. For better understanding of the role of mechanics in this cellular process, and of the chromatin mechanics in vivo generally, a systematic dynamical description of chromatin in vivo is required. Accordingly, we label specific sites on chromatin with fluorescent proteins of different wave lengths, enabling us to detect multiple spots separately in 3D and track their displacements in time inside living yeast cells. We analyze the pairwise cross-correlated motion between spots as a function of relative distance along the DNA contour. Comparison between the reptation model and our data serves to test our conjecture that chromatin in the cell is basically an entangled polymer network under constraints to thermal motion, and removal of constraints by non-thermal cellular processes is expected to affect its dynamic behavior.

  11. What can we learn from the dynamics of entanglement and quantum discord in the Tavis-Cummings model?

    NASA Astrophysics Data System (ADS)

    Restrepo, Juliana; Rodriguez, Boris A.

    We revisit the problem of the dynamics of quantum correlations in the exact Tavis-Cummings model. We show that many of the dynamical features of quantum discord attributed to dissipation are already present in the exact framework and are due to the well known non-linearities in the model and to the choice of initial conditions. Through a comprehensive analysis, supported by explicit analytical calculations, we find that the dynamics of entanglement and quantum discord are far from being trivial or intuitive. In this context, we find states that are indistinguishable from the point of view of entanglement and distinguishable from the point of view of quantum discord, states where the two quantifiers give opposite information and states where they give roughly the same information about correlations at a certain time. Depending on the initial conditions, this model exhibits a fascinating range of phenomena that can be used for experimental purposes such as: Robust states against change of manifold or dissipation, tunable entanglement states and states with a counterintuitive sudden birth as the number of photons increase. We furthermore propose an experiment called quantum discord gates where discord is zero or non-zero depending on the number of photons. This work was supported by the Vicerrectoria de Investigacion of the Universidad Antonio Narino, Colombia under Project Number 20141031 and by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion (COLCIENCIAS) of Colombia under Grant Number.

  12. Dynamic Entangled Porous Framework for Hydrocarbon (C2-C3) Storage, CO2 Capture, and Separation.

    PubMed

    Sikdar, Nivedita; Bonakala, Satyanarayana; Haldar, Ritesh; Balasubramanian, Sundaram; Maji, Tapas Kumar

    2016-04-18

    Storage and separation of small (C1-C3) hydrocarbons are of great significance as these are alternative energy resources and also can be used as raw materials for many industrially important materials. Selective capture of greenhouse gas, CO2 from CH4 is important to improve the quality of natural gas. Among the available porous materials, MOFs with permanent porosity are the most suitable to serve these purposes. Herein, a two-fold entangled dynamic framework {[Zn2 (bdc)2 (bpNDI)]⋅4DMF}n with pore surface carved with polar functional groups and aromatic π clouds is exploited for selective capture of CO2 , C2, and C3 hydrocarbons at ambient condition. The framework shows stepwise CO2 and C2 H2 uptake at 195 K but type I profiles are observed at 298 K. The IAST selectivity of CO2 over CH4 is the highest (598 at 298 K) among the MOFs without open metal sites reported till date. It also shows high selectivity for C2 H2 , C2 H4 , C2 H6 , and C3 H8 over CH4 at 298 K. DFT calculations reveal that aromatic π surface and the polar imide (RNC=O) functional groups are the primary adsorption sites for adsorption. Furthermore, breakthrough column experiments showed CO2 /CH4 C2 H6 /CH4 and CO2 /N2 separation capability at ambient condition.

  13. Entangled polymer dynamics in equilibrium and flow modeled through slip links.

    PubMed

    Schieber, Jay D; Andreev, Marat

    2014-01-01

    The idea that the dynamics of concentrated, high-molecular weight polymers are largely governed by entanglements is now widely accepted and typically understood through the tube model. Here we review alternative approaches, slip-link models, that share some similarities to and offer some advantages over tube models. Although slip links were proposed at the same time as tubes, only recently have detailed, quantitative mathematical models arisen based on this picture. In this review, we focus on these models, with most discussion limited to mathematically well-defined objects that conform to state-of-the-art beyond-equilibrium thermodynamics. These models are connected to each other through successive coarse graining, using nonequilibrium thermodynamics along the way, and with a minimal parameter set. In particular, the most detailed level of description has four parameters, three of which can be determined directly from atomistic simulations. Once the remaining parameter is determined for any system, all parameters for all members of the hierarchy are determined. We show how, using this hierarchy of slip-link models combined with atomistic simulations, we can make predictions about the nonlinear rheology of monodisperse homopolymer melts, polydisperse melts, or blends of different architectures. Mathematical details are given elsewhere, so these are limited here, and physical ideas are emphasized. We conclude with an outlook on remaining challenges that might be tackled successfully using this approach, including complex flow fields and polymer blends. PMID:24655135

  14. Effects of detuning and atomic motion parameter on the dynamical behavior of the entanglement between two-level atom and SU(1,1) quantum system

    NASA Astrophysics Data System (ADS)

    Abdel-Khalek, S.; Quthami, M.; Ahmed, M. M. A.

    2015-02-01

    In this paper, we study the dynamics of the atomic inversion and von Neumann entropy for a moving and non-moving two-level atom interacting with multi SU(1,1) quantum system. The wave function and system density matrix using specific initial conditions are obtained. The effects of initial atomic state position and detuning parameters are examined in the absence and presence of the atomic motion effect. Important phenomena such as entanglement sudden death, sudden birth and long-living entanglement are explored during time evolution. The results show that the detuning parameter and excitation number is very useful in generating a high amount of entanglement.

  15. Bifurcation dynamics of the tempered fractional Langevin equation.

    PubMed

    Zeng, Caibin; Yang, Qigui; Chen, YangQuan

    2016-08-01

    Tempered fractional processes offer a useful extension for turbulence to include low frequencies. In this paper, we investigate the stochastic phenomenological bifurcation, or stochastic P-bifurcation, of the Langevin equation perturbed by tempered fractional Brownian motion. However, most standard tools from the well-studied framework of random dynamical systems cannot be applied to systems driven by non-Markovian noise, so it is desirable to construct possible approaches in a non-Markovian framework. We first derive the spectral density function of the considered system based on the generalized Parseval's formula and the Wiener-Khinchin theorem. Then we show that it enjoys interesting and diverse bifurcation phenomena exchanging between or among explosive-like, unimodal, and bimodal kurtosis. Therefore, our procedures in this paper are not merely comparable in scope to the existing theory of Markovian systems but also provide a possible approach to discern P-bifurcation dynamics in the non-Markovian settings. PMID:27586627

  16. Bifurcation dynamics of the tempered fractional Langevin equation

    NASA Astrophysics Data System (ADS)

    Zeng, Caibin; Yang, Qigui; Chen, YangQuan

    2016-08-01

    Tempered fractional processes offer a useful extension for turbulence to include low frequencies. In this paper, we investigate the stochastic phenomenological bifurcation, or stochastic P-bifurcation, of the Langevin equation perturbed by tempered fractional Brownian motion. However, most standard tools from the well-studied framework of random dynamical systems cannot be applied to systems driven by non-Markovian noise, so it is desirable to construct possible approaches in a non-Markovian framework. We first derive the spectral density function of the considered system based on the generalized Parseval's formula and the Wiener-Khinchin theorem. Then we show that it enjoys interesting and diverse bifurcation phenomena exchanging between or among explosive-like, unimodal, and bimodal kurtosis. Therefore, our procedures in this paper are not merely comparable in scope to the existing theory of Markovian systems but also provide a possible approach to discern P-bifurcation dynamics in the non-Markovian settings.

  17. Spatial and polarization entanglement of lasing patterns and related dynamic behaviors in laser-diode-pumped solid-state lasers.

    PubMed

    Otsuka, K; Chu, S-C; Lin, C-C; Tokunaga, K; Ohtomo, T

    2009-11-23

    To provide the underlying physical mechanism for formations of spatial- and polarization-entangled lasing patterns (namely, SPEPs), we performed experiments using a c-cut Nd:GdVO(4) microchip laser with off-axis laser-diode pumping. This extends recent work on entangled lasing pattern generation from an isotropic laser, where such a pattern was explained only in terms of generalized coherent states (GCSs) formed by mathematical manipulation. Here, we show that polarization-resolved transverse patterns can be well explained by the transverse mode-locking of distinct orthogonal linearly polarized Ince-Gauss (IG) mode pairs rather than GCSs. Dynamic properties of SPEPs were experimentally examined in both free-running and modulated conditions to identify long-term correlations of IG mode pairs over time. The complete chaos synchronization among IG mode pairs subjected to external perturbation is also demonstrated.

  18. NMR Approach to the Dynamic Screening Effect in Highly Entangled Polymers: Polyethylene Oxide

    NASA Astrophysics Data System (ADS)

    Cohen Addad, J. P.; Guillermo, A.; Lartigue, C.

    1995-05-01

    The transverse magnetic relaxation of protons linked to entangled polyethylene oxide chains is shown to be strongly related to the existence of a mean entanglement spacing. This is reflected by the residual spin-spin interaction which results from nonisotropic rotations of monomeric units. This standard NMR parameter is derived from a specific treatment of the relaxation; it is shown to be both independent of the chain molecular weight and proportional to the polymer concentration as expected from viscoelastic measurements.

  19. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator

    PubMed Central

    Liu, Yimin; You, Jiabin; Hou, Qizhe

    2016-01-01

    Exploration of macroscopic quantum entanglement is of great interest in both fundamental science and practical application. We investigate a hybrid quantum system that consists of two nitrogen-vacancy centers ensembles (NVE) coupled to a superconducting coplanar waveguide resonator (CPWR). The collective magnetic coupling between the NVE and the CPWR is employed to generate macroscopic entanglement between the NVEs, where the CPWR acts as the quantum bus. We find that, this NVE-CPWR hybrid system behaves as a system of three coupled harmonic oscillators, and the excitation prepared initially in the CPWR can be distributed into these two NVEs. In the nondissipative case, the entanglement of NVEs oscillates periodically and the maximal entanglement always keeps unity if the CPWR is initially prepared in the odd coherent state. Considering the dissipative effect from the CPWR and NVEs, the amount of entanglement between these two NVEs strongly depends on the initial state of the CPWR, and the maximal entanglement can be tuned by adjusting the initial states of the total system. The experimental feasibility and challenge with currently available technology are discussed. PMID:26902910

  20. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator.

    PubMed

    Liu, Yimin; You, Jiabin; Hou, Qizhe

    2016-02-23

    Exploration of macroscopic quantum entanglement is of great interest in both fundamental science and practical application. We investigate a hybrid quantum system that consists of two nitrogen-vacancy centers ensembles (NVE) coupled to a superconducting coplanar waveguide resonator (CPWR). The collective magnetic coupling between the NVE and the CPWR is employed to generate macroscopic entanglement between the NVEs, where the CPWR acts as the quantum bus. We find that, this NVE-CPWR hybrid system behaves as a system of three coupled harmonic oscillators, and the excitation prepared initially in the CPWR can be distributed into these two NVEs. In the nondissipative case, the entanglement of NVEs oscillates periodically and the maximal entanglement always keeps unity if the CPWR is initially prepared in the odd coherent state. Considering the dissipative effect from the CPWR and NVEs, the amount of entanglement between these two NVEs strongly depends on the initial state of the CPWR, and the maximal entanglement can be tuned by adjusting the initial states of the total system. The experimental feasibility and challenge with currently available technology are discussed.

  1. Entanglement dynamics of Nitrogen-vacancy centers spin ensembles coupled to a superconducting resonator

    NASA Astrophysics Data System (ADS)

    Liu, Yimin; You, Jiabin; Hou, Qizhe

    2016-02-01

    Exploration of macroscopic quantum entanglement is of great interest in both fundamental science and practical application. We investigate a hybrid quantum system that consists of two nitrogen-vacancy centers ensembles (NVE) coupled to a superconducting coplanar waveguide resonator (CPWR). The collective magnetic coupling between the NVE and the CPWR is employed to generate macroscopic entanglement between the NVEs, where the CPWR acts as the quantum bus. We find that, this NVE-CPWR hybrid system behaves as a system of three coupled harmonic oscillators, and the excitation prepared initially in the CPWR can be distributed into these two NVEs. In the nondissipative case, the entanglement of NVEs oscillates periodically and the maximal entanglement always keeps unity if the CPWR is initially prepared in the odd coherent state. Considering the dissipative effect from the CPWR and NVEs, the amount of entanglement between these two NVEs strongly depends on the initial state of the CPWR, and the maximal entanglement can be tuned by adjusting the initial states of the total system. The experimental feasibility and challenge with currently available technology are discussed.

  2. Quantum transitions and quantum entanglement from Dirac-like dynamics simulated by trapped ions

    NASA Astrophysics Data System (ADS)

    Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo

    2016-05-01

    Quantum transition probabilities and quantum entanglement for two-qubit states of a four-level trapped ion quantum system are computed for time-evolving ionic states driven by Jaynes-Cummings Hamiltonians with interactions mapped onto a SU(2 )⊗SU(2 ) group structure. Using the correspondence of the method of simulating a 3 +1 dimensional Dirac-like Hamiltonian for bispinor particles into a single trapped ion, one preliminarily obtains the analytical tools for describing ionic state transition probabilities as a typical quantum oscillation feature. For Dirac-like structures driven by generalized Poincaré classes of coupling potentials, one also identifies the SU(2 )⊗SU(2 ) internal degrees of freedom corresponding to intrinsic parity and spin polarization as an adaptive platform for computing the quantum entanglement between the internal quantum subsystems which define two-qubit ionic states. The obtained quantum correlational content is then translated into the quantum entanglement of two-qubit ionic states with quantum numbers related to the total angular momentum and to its projection onto the direction of the trapping magnetic field. Experimentally, the controllable parameters simulated by ion traps can be mapped into a Dirac-like system in the presence of an electrostatic field which, in this case, is associated to ionic carrier interactions. Besides exhibiting a complete analytical profile for ionic quantum transitions and quantum entanglement, our results indicate that carrier interactions actively drive an overall suppression of the quantum entanglement.

  3. Lindblad- and non-Lindblad-type dynamics of a quantum Brownian particle

    SciTech Connect

    Maniscalco, S.; Piilo, J.; Intravaia, F.; Petruccione, F.; Messina, A.

    2004-09-01

    The dynamics of a typical open quantum system, namely a quantum Brownian particle in a harmonic potential, is studied focusing on its non-Markovian regime. Both an analytic approach and a stochastic wave-function approach are used to describe the exact time evolution of the system. The border between two very different dynamical regimes, the Lindblad and non-Lindblad regimes, is identified and the relevant physical variables governing the passage from one regime to the other are singled out. The non-Markovian short-time dynamics is studied in detail by looking at the mean energy, the squeezing, the Mandel parameter, and the Wigner function of the system.

  4. The Lowe-Andersen thermostat as an alternative to the dissipative particle dynamics in the mesoscopic simulation of entangled polymers.

    PubMed

    Khani, Shaghayegh; Yamanoi, Mikio; Maia, Joao

    2013-05-01

    Dissipative Particle Dynamics (DPD) has shown a great potential in studying the dynamics and rheological properties of soft matter; however, it is associated with deficiencies in describing the characteristics of entangled polymer melts. DPD deficiencies are usually correlated to the time integrating method and the unphysical bond crossings due to utilization of soft potentials. One shortcoming of DPD thermostat is the inability to produce real values of Schmidt number for fluids. In order to overcome this, an alternative Lowe-Anderson (LA) method, which successfully stabilizes the temperature, is used in the present work. Additionally, a segmental repulsive potential was introduced to avoid unphysical bond crossings. The performance of the method in simulating polymer systems is discussed by monitoring the static and dynamic characteristics of polymer chains and the results from the LA method are compared to standard DPD simulations. The performance of the model is evaluated on capturing the main shear flow properties of entangled polymer systems. Finally the linear and nonlinear viscoelastic properties of such systems are discussed.

  5. Entanglement dynamics of two independent Jaynes-Cummings atoms without the rotating-wave approximation

    SciTech Connect

    Chen Qinghu; Yang Yuan; Liu Tao; Wang Kelin

    2010-11-15

    Entanglement evolution of two independent Jaynes-Cummings atoms without the rotating-wave approximation (RWA) is studied by a numerically exact approach. Previous results based on the RWA are essentially modified in the strong-coupling regime (g{>=}0.1), which has been reached in the recent experiments on the flux qubit coupled to the LC resonator. For the initial Bell state with anticorrelated spins, entanglement sudden death (ESD) is absent in the RWA but does appear in the present numerical calculation without the RWA. Aperiodic entanglement evolution in the strong-coupling regime is observed. The strong atom-cavity coupling facilitates the ESD. The sign of the detuning plays an essential role in the entanglement evolution for strong coupling, which is irrelevant in the RWA. Analytical results based on an unitary transformation are also given, which could not modify the RWA picture essentially. It is suggested that the activation of the photons may be the origin of ESD in this system.

  6. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  7. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing. PMID:21405382

  8. Up-conversion dynamics for temporally entangled two-photon pulses

    SciTech Connect

    Nakatani, Masatoshi; Shimizu, Ryosuke; Koshino, Kazuki

    2011-01-15

    We analyze the up conversion of a two-photon pulse having temporal entanglement on the basis of a full quantum formalism that treats both photons and optical media quantum mechanically. We derive a formula of the up-converted photon wave function, which is applicable to arbitrary input two-photon states for a three-level system, as the simplest second-order nonlinear optical system. As the input, we employ three kinds of temporally entangled two-photon pulses: correlated, uncorrelated, and anticorrelated. We observe the up-conversion efficiency and the temporal profile of the up-converted photon. Our results reveal the crossover behavior of the up conversion from anticorrelation to correlation and show how the temporal correlation in the input is reflected in the up-conversion process.

  9. Entangled entanglement: A construction procedure

    NASA Astrophysics Data System (ADS)

    Uchida, Gabriele; Bertlmann, Reinhold A.; Hiesmayr, Beatrix C.

    2015-10-01

    The familiar Greenberger-Horne-Zeilinger (GHZ) states can be rewritten by entangling the Bell states for two qubits with a third qubit state, which is dubbed entangled entanglement. We show that in a constructive way we obtain all eight independent GHZ states that form the simplex of entangled entanglement, the magic simplex. The construction procedure allows a generalization to higher dimensions both, in the degrees of freedom (considering qudits) as well as in the number of particles (considering n-partite states). Such bases of GHZ-type states exhibit a cyclic geometry, a Merry Go Round, that is relevant for experimental and quantum information theoretic applications.

  10. Delayed birth of distillable entanglement in the evolution of bound entangled states

    SciTech Connect

    Derkacz, Lukasz; Jakobczyk, Lech

    2010-08-15

    The dynamical creation of entanglement between three-level atoms coupled to the common vacuum is investigated. For the class of bound entangled initial states, we show that the dynamics of closely separated atoms generates stationary distillable entanglement of asymptotic states. We also find that the effect of delayed sudden birth of distillable entanglement occurs in the case of atoms separated by a distance comparable with the radiation wavelength.

  11. Multipartite entanglement for entanglement teleportation

    SciTech Connect

    Lee, Jinhyoung; Min, Hyegeun; Oh, Sung Dahm

    2002-11-01

    A scheme for entanglement teleportation is proposed to incorporate multipartite entanglement of four qubits as a quantum channel. Based on the invariance of entanglement teleportation under an arbitrary two-qubit unitary transformation, we derive relations for the separabilities of joint measurements at a sending station and of unitary operations at a receiving station. From the relations of the separabilities it is found that an inseparable quantum channel always leads to total teleportation of entanglement with an inseparable joint measurement and/or a nonlocal unitary operation.

  12. Sudden death of entanglement.

    PubMed

    Yu, Ting; Eberly, J H

    2009-01-30

    A new development in the dynamical behavior of elementary quantum systems is the surprising discovery that correlation between two quantum units of information called qubits can be degraded by environmental noise in a way not seen previously in studies of dissipation. This new route for dissipation attacks quantum entanglement, the essential resource for quantum information as well as the central feature in the Einstein-Podolsky-Rosen so-called paradox and in discussions of the fate of Schrödinger's cat. The effect has been labeled ESD, which stands for early-stage disentanglement or, more frequently, entanglement sudden death. We review recent progress in studies focused on this phenomenon.

  13. Population Dynamics of Excited Atoms in Dissipative Cavities

    NASA Astrophysics Data System (ADS)

    Zou, Hong-Mei; Liu, Yu; Fang, Mao-Fa

    2016-10-01

    Population dynamics of excited atoms in dissipative cavities is investigated in this work. We present a method of controlling populations of excited atoms in dissipative cavities. For the initial state | e e> A B |00> a b , the repopulation of excited atoms can be obtained by using atom-cavity couplings and non-Markovian effects after the atomic excited energy decays to zero. For the initial state | g g> A B |11> a b , the two atoms can also be populated to the excited states from the initial ground states by using atom-cavity couplings and non-Markovian effects. And the stronger the atom-cavity coupling or the non-Markovian effect is, the larger the number of repopulation of excited atoms is. Particularly, when the atom-cavity coupling or the non-Markovian effect is very strong, the number of repopulation of excited atoms can be close to one in a short time and will tend to a steady value in a long time.

  14. Entanglement versus energy in the entanglement transfer problem

    SciTech Connect

    Cavalcanti, Daniel; Oliveira, J. G. Jr.; Santos, Marcelo Franca; Peixoto de Faria, J. G.; Terra Cunha, Marcelo O.

    2006-10-15

    We study the relation between energy and entanglement in an entanglement transfer problem. We first analyze the general setup of two entangled qubits ('a' and 'b') exchanging this entanglement with two other independent qubits ('A' and 'B'). Qubit 'a' ('b') interacts with qubit 'A' ('B') via a spin-exchange-like unitary evolution. A physical realization of this scenario could be the problem of two-level atoms transferring entanglement to resonant cavities via independent Jaynes-Cummings interactions. We study the dynamics of entanglement and energy for the second pair of qubits (tracing out the originally entangled ones) and show that these quantities are closely related. For example, the allowed quantum states occupy a restricted area in a phase diagram entanglement vs energy. Moreover, the curve which bounds this area is exactly the one followed if both interactions are equal and the entire four qubit system is isolated. We also consider the case when the target pair of qubits is subjected to losses and can spontaneously decay.

  15. Dynamical memory effects in correlated quantum channels

    NASA Astrophysics Data System (ADS)

    Addis, Carole; Karpat, Göktuǧ; Macchiavello, Chiara; Maniscalco, Sabrina

    2016-09-01

    Memory effects play a fundamental role in the study of the dynamics of open quantum systems. There exist two conceptually distinct notions of memory discussed for quantum channels in the literature. In quantum information theory quantum channels with memory are characterized by the existence of correlations between successive applications of the channel on a sequence of quantum systems. In open quantum systems theory memory effects arise dynamically during the time evolution of quantum systems and define non-Markovian dynamics. Here we relate and combine these two different concepts of memory. In particular, we study the interplay between correlations between multiple uses of quantum channels and non-Markovianity as nondivisibility of the t -parametrized family of channels defining the dynamical map.

  16. Evolution of Quantum Entanglement in Open Systems

    SciTech Connect

    Isar, A.

    2010-08-04

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators interacting with a thermal environment. Using Peres-Simon necessary sufficient criterion for separability of two-mode Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse revival of entanglement take place.

  17. Approaches to measuring entanglement in chemical magnetometers.

    PubMed

    Tiersch, M; Guerreschi, G G; Clausen, J; Briegel, H J

    2014-01-01

    Chemical magnetometers are radical pair systems such as solutions of pyrene and N,N-dimethylaniline (Py-DMA) that show magnetic field effects in their spin dynamics and their fluorescence. We investigate the existence and decay of quantum entanglement in free geminate Py-DMA radical pairs and discuss how entanglement can be assessed in these systems. We provide an entanglement witness and propose possible observables for experimentally estimating entanglement in radical pair systems with isotropic hyperfine couplings. As an application, we analyze how the field dependence of the entanglement lifetime in Py-DMA could in principle be used for magnetometry and illustrate the propagation of measurement errors in this approach.

  18. Many-body entanglement in decoherence processes

    SciTech Connect

    McAneney, Helen; Lee, Jinhyoung; Kim, M.S.

    2003-12-01

    A pure state decoheres into a mixed state as it entangles with an environment. When an entangled two-mode system is embedded in a thermal environment, however, each mode may not be entangled with its environment by their simple linear interaction. We consider an exactly solvable model to study the dynamics of a total system, which is composed of an entangled two-mode system and a thermal environment. The Markovian interaction with the environment is concerned with an array of infinite number of beam splitters. It is shown that many-body entanglement of the system and the environment may play a crucial role in the process of disentangling the system.

  19. Entanglement replication in driven dissipative many-body systems.

    PubMed

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

  20. Entanglement replication in driven dissipative many-body systems.

    PubMed

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks. PMID:25166146

  1. Dynamic hysteresis modelling of entangled cross-linked fibres in shear

    NASA Astrophysics Data System (ADS)

    Piollet, Elsa; Poquillon, Dominique; Michon, Guilhem

    2016-11-01

    The objective of this paper is to characterize and model the vibration behaviour of entangled carbon fibres cross-linked with epoxy resin. The material is tested in shear, in a double lap configuration. Experimental testing is carried out for frequencies varying from 1 Hz to 80 Hz and for shear strain amplitudes ranging from 5 ·10-4 to 1 ·10-2. Measured shear stress-strain hysteresis loops show a nonlinear behaviour with a low frequency dependency. The hysteresis loops are decomposed in a linear part and three nonlinear parts: a dry friction hysteresis, a stiffening term and a stiction-like overshoot term. The Generalized Dahl Model is used in conjunction with other hysteresis models to develop an appropriate description of the measured hysteresis loops, based on the three nonlinear parts. In particular, a new one-state formulation of the Bliman-Sorine model is developed. A new identification procedure is also introduced for the Dahl model, based on the so-called backbone curve. The model is shown to capture well the complex shapes of the measured hysteresis loops at all amplitudes.

  2. Entanglement manipulation by atomic position in photonic crystals

    NASA Astrophysics Data System (ADS)

    Wu, Yunan; Wang, Jing; Mo, Minglun; Zhang, Hanzhuang

    2015-12-01

    We consider two entangled atoms, each of which is embedded in a coherent photonic-band-gap (PBG) reservoir. The effect of the atomic embedded position on the entanglement of the two-atom system is studied. We find that the embedded position of the atom plays an important role in the dynamics of entanglement. The variation of the atomic position can lead to the shift between entanglement sudden death and the entanglement trapping. We also consider the entanglement transfer between different subsystems. Our results could be applied to manipulation of entanglement in nanostructured materials.

  3. Entanglement invariant for the double Jaynes-Cummings model

    SciTech Connect

    Sainz, Isabel; Bjoerk, Gunnar

    2007-10-15

    We study entanglement dynamics between four qubits interacting through two isolated Jaynes-Cummings Hamiltonians, via an entanglement measure based on the wedge product. We compare the results with similar results obtained using bipartite concurrence resulting in what is referred to as 'entanglement sudden death'. We find a natural entanglement invariant under evolution, demonstrating that entanglement spreads out over all of the system's degrees of freedom that become entangled through the interaction. We also provide an analysis of why certain initial states lose all their entanglement in a finite time, although their excitation and coherence vanish only asymptotically with time.

  4. Optimizing quantum correlation dynamics by weak measurement in dissipative environment

    NASA Astrophysics Data System (ADS)

    Du, Shao-Jiang; Xia, Yun-Jie; Duan, De-Yang; Zhang, Lu; Gao, Qiang

    2015-04-01

    We investigate the protection of quantum correlations of two qubits in independent vacuum reservoirs by means of weak measurements. It is found that the weak measurement can reduce the amount of quantum correlation for one type of initial state at the beginning in a non-Markovian environment and meanwhile it can reduce the occurrence time of entanglement sudden death (ESD) in the process of time evolution. In a Markovian environment, the quantum entanglements of the two kinds of initial states decay rapidly and the weak measurement can further weaken the quantum entanglement, therefore in this case the entanglement cannot be optimized in the evolution process. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and No.11147019).

  5. Intermediate dynamics between Newton and Langevin.

    PubMed

    Bao, Jing-Dong; Zhuo, Yi-Zhong; Oliveira, Fernando A; Hänggi, Peter

    2006-12-01

    A dynamics between Newton and Langevin formalisms is elucidated within the framework of the generalized Langevin equation. For thermal noise yielding a vanishing zero-frequency friction the corresponding non-Markovian Brownian dynamics exhibits anomalous behavior which is characterized by ballistic diffusion and accelerated transport. We also investigate the role of a possible initial correlation between the system degrees of freedom and the heat-bath degrees of freedom for the asymptotic long-time behavior of the system dynamics. As two test beds we investigate (i) the anomalous energy relaxation of free non-Markovian Brownian motion that is driven by a harmonic velocity noise and (ii) the phenomenon of a net directed acceleration in noise-induced transport of an inertial rocking Brownian motor.

  6. Tube Concept for Entangled Stiff Fibers Predicts Their Dynamics in Space and Time.

    PubMed

    Leitmann, Sebastian; Höfling, Felix; Franosch, Thomas

    2016-08-26

    We study dynamically crowded solutions of stiff fibers deep in the semidilute regime, where the motion of a single constituent becomes increasingly confined to a narrow tube. The spatiotemporal dynamics for wave numbers resolving the motion in the confining tube becomes accessible in Brownian dynamics simulations upon employing a geometry-adapted neighbor list. We demonstrate that in such crowded environments the intermediate scattering function, characterizing the motion in space and time, can be predicted quantitatively by simulating a single freely diffusing phantom needle only, yet with very unusual diffusion coefficients.

  7. Tube Concept for Entangled Stiff Fibers Predicts Their Dynamics in Space and Time.

    PubMed

    Leitmann, Sebastian; Höfling, Felix; Franosch, Thomas

    2016-08-26

    We study dynamically crowded solutions of stiff fibers deep in the semidilute regime, where the motion of a single constituent becomes increasingly confined to a narrow tube. The spatiotemporal dynamics for wave numbers resolving the motion in the confining tube becomes accessible in Brownian dynamics simulations upon employing a geometry-adapted neighbor list. We demonstrate that in such crowded environments the intermediate scattering function, characterizing the motion in space and time, can be predicted quantitatively by simulating a single freely diffusing phantom needle only, yet with very unusual diffusion coefficients. PMID:27610885

  8. Tube Concept for Entangled Stiff Fibers Predicts Their Dynamics in Space and Time

    NASA Astrophysics Data System (ADS)

    Leitmann, Sebastian; Höfling, Felix; Franosch, Thomas

    2016-08-01

    We study dynamically crowded solutions of stiff fibers deep in the semidilute regime, where the motion of a single constituent becomes increasingly confined to a narrow tube. The spatiotemporal dynamics for wave numbers resolving the motion in the confining tube becomes accessible in Brownian dynamics simulations upon employing a geometry-adapted neighbor list. We demonstrate that in such crowded environments the intermediate scattering function, characterizing the motion in space and time, can be predicted quantitatively by simulating a single freely diffusing phantom needle only, yet with very unusual diffusion coefficients.

  9. Stationary entanglement achievable by environment-induced chain links

    SciTech Connect

    Memarzadeh, Laleh; Mancini, Stefano

    2011-04-15

    We investigate the possibility of chaining qubits by letting pairs of nearest-neighbor qubits dissipate into common environments. We then study entanglement dynamics within the chain and show that steady-state entanglement can be achieved.

  10. Entanglement from thermal blackbody radiation

    SciTech Connect

    Braun, Daniel

    2005-12-15

    Two noninteracting quantum systems which couple to a common environment with many degrees of freedom initially in thermal equilibrium can become entangled due to the indirect interaction mediated through this heat bath. I examine here the dynamics of reservoir-induced entanglement for a heat bath consisting of a thermal electromagnetic radiation field, such as blackbody radiation or the cosmic microwave background, and show how the effect can be understood as result of an effective induced interaction.

  11. Analysis of photon-atom entanglement generated by Faraday rotation in a cavity

    SciTech Connect

    Lee, S. K. Y.; Law, C. K.

    2006-05-15

    Faraday rotation based on ac Stark shifts is a mechanism that can entangle the polarization states of photons and atoms. We study the entanglement dynamics inside an optical cavity, and characterize the photon-atom entanglement by using the Schmidt decomposition method. The time dependence of entanglement entropy and the effective Schmidt number are examined. We show that the entanglement can be enhanced by the cavity, and the entanglement entropy can be controlled by the initial fluctuations of atoms and photons.

  12. Entanglement and chaos in the kicked top.

    PubMed

    Lombardi, M; Matzkin, A

    2011-01-01

    The standard kicked top involves a periodically kicked angular momentum. By considering this angular momentum as a collection of entangled spins, we compute the bipartite entanglement dynamics as a function of the dynamics of the classical counterpart. Our numerical results indicate that the entanglement of the quantum top depends on the specific details of the dynamics of the classical top rather than depending universally on the global properties of the classical regime. These results are grounded on linking the entanglement rate to averages involving the classical angular momentum, thereby explaining why regular dynamics can entangle as efficiently as the classically chaotic regime. The findings are in line with previous results obtained with a two-particle top model, and we show here that the standard kicked top can be obtained as a limiting case of the two-particle top.

  13. Relaxation Processes in Aqueous Systems upon X-ray Ionization: Entanglement of Electronic and Nuclear Dynamics.

    PubMed

    Slavíček, Petr; Kryzhevoi, Nikolai V; Aziz, Emad F; Winter, Bernd

    2016-01-21

    The knowledge of primary processes following the interaction of high-energy radiation with molecules in liquid phase is rather limited. In the present Perspective, we report on a newly discovered type of relaxation process involving simultaneous autoionization and proton transfer between adjacent molecules, so-called proton transfer mediated charge separation (PTM-CS) process. Within PTM-CS, transients with a half-transferred proton are formed within a few femtoseconds after the core-level ionization event. Subsequent nonradiative decay of the highly nonequilibrium transients leads to a series of reactive species, which have not been considered in any high-energy radiation process in water. Nonlocal electronic decay processes are surprisingly accelerated upon proton dynamics. Such strong coupling of electronic and nuclear dynamics is a general phenomenon for hydrogen-bonded systems, however, its probability correlates strongly with hydration geometry. We suggest that the newly observed processes will impact future high-energy radiation-chemistry-relevant modeling, and we envision application of autoionization spectroscopy for identification of solution structure details. PMID:26712083

  14. Internal entanglement amplification by external interactions

    SciTech Connect

    Peskin, Uri; Huang Zhen; Kais, Sabre

    2007-07-15

    We propose a scheme to control the level of entanglement between two fixed spin-1/2 systems by interaction with a third particle. For specific designs, entanglement is shown to be 'pumped' into the system from the surroundings even when the spin-spin interaction within the system is small or nonexistent. The effect of the external particle on the system is introduced by including a dynamic spinor in the Hamiltonian. Controlled amplification of the internal entanglement to its maximum value is demonstrated. The possibility of entangling noninteracting spins in a stationary state is also demonstrated by coupling each one of them to a flying qubit in a quantum wire.

  15. Detecting multiparticle entanglement of Dicke states.

    PubMed

    Lücke, Bernd; Peise, Jan; Vitagliano, Giuseppe; Arlt, Jan; Santos, Luis; Tóth, Géza; Klempt, Carsten

    2014-04-18

    Recent experiments demonstrate the production of many thousands of neutral atoms entangled in their spin degrees of freedom. We present a criterion for estimating the amount of entanglement based on a measurement of the global spin. It outperforms previous criteria and applies to a wider class of entangled states, including Dicke states. Experimentally, we produce a Dicke-like state using spin dynamics in a Bose-Einstein condensate. Our criterion proves that it contains at least genuine 28-particle entanglement. We infer a generalized squeezing parameter of -11.4(5)  dB.

  16. Electronic entanglement in late transition metal oxides.

    PubMed

    Thunström, Patrik; Di Marco, Igor; Eriksson, Olle

    2012-11-01

    We present a study of the entanglement in the electronic structure of the late transition metal monoxides--MnO, FeO, CoO, and NiO--obtained by means of density-functional theory in the local density approximation combined with dynamical mean-field theory. The impurity problem is solved through exact diagonalization, which grants full access to the thermally mixed many-body ground state density operator. The quality of the electronic structure is affirmed through a direct comparison between the calculated electronic excitation spectrum and photoemission experiments. Our treatment allows for a quantitative investigation of the entanglement in the electronic structure. Two main sources of entanglement are explicitly resolved through the use of a fidelity based geometrical entanglement measure, and additional information is gained from a complementary entropic entanglement measure. We show that the interplay of crystal field effects and Coulomb interaction causes the entanglement in CoO to take a particularly intricate form.

  17. Rank-dependant factorization of entanglement evolution

    NASA Astrophysics Data System (ADS)

    Siomau, Michael

    2016-05-01

    The description of the entanglement evolution of a complex quantum system can be significantly simplified due to the symmetries of the initial state and the quantum channels, which simultaneously affect parts of the system. Using concurrence as the entanglement measure, we study the entanglement evolution of few qubit systems, when each of the qubits is affected by a local unital channel independently on the others. We found that for low-rank density matrices of the final quantum state, such complex entanglement dynamics can be completely described by a combination of independent factors representing the evolution of entanglement of the initial state, when just one of the qubits is affected by a local channel. We suggest necessary conditions for the rank of the density matrices to represent the entanglement evolution through the factors. Our finding is supported with analytical examples and numerical simulations.

  18. Polygamy of distributed entanglement

    NASA Astrophysics Data System (ADS)

    Buscemi, Francesco; Gour, Gilad; Kim, Jeong San

    2009-07-01

    While quantum entanglement is known to be monogamous (i.e., shared entanglement is restricted in multipartite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multiqubit systems and several trade-offs between UE and other correlation measures.

  19. Polygamy of distributed entanglement

    SciTech Connect

    Buscemi, Francesco; Gour, Gilad; Kim, Jeong San

    2009-07-15

    While quantum entanglement is known to be monogamous (i.e., shared entanglement is restricted in multipartite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multiqubit systems and several trade-offs between UE and other correlation measures.

  20. Experimental entanglement redistribution under decoherence channels.

    PubMed

    Aguilar, G H; Valdés-Hernández, A; Davidovich, L; Walborn, S P; Souto Ribeiro, P H

    2014-12-12

    When an initially entangled pair of qubits undergoes local decoherence processes, there are a number of ways in which the original entanglement can spread throughout the multipartite system consisting of the two qubits and their environments. Here, we report theoretical and experimental results regarding the dynamics of the distribution of entanglement in this system. The experiment employs an all optical setup in which the qubits are encoded in the polarization degrees of freedom of two photons, and each local decoherence channel is implemented with an interferometer that couples the polarization to the path of each photon, which acts as an environment. We monitor the dynamics and distribution of entanglement and observe the transition from bipartite to multipartite entanglement and back, and show how these transitions are intimately related to the sudden death and sudden birth of entanglement. The multipartite entanglement is further analyzed in terms of three- and four-partite entanglement contributions, and genuine four-qubit entanglement is observed at some points of the evolution.

  1. Entanglement genesis under continuous parity measurement

    NASA Astrophysics Data System (ADS)

    Williams, Nathan S.; Jordan, Andrew N.

    2008-12-01

    We examine the stochastic dynamics of entanglement for an uncoupled two-qubit system, undergoing continuous parity measurement. Starting with a fully mixed state, the entanglement is zero for a finite amount of time, when it is suddenly created, which we refer to as entanglement genesis. There can be further entanglement sudden death or birth events culminating in the formation of a fully entangled state. We present numerical investigations of this effect together with statistics of the entanglement genesis time in the weak measurement limit as well as the quantum Zeno limit. An analytic treatment of the physics is presented, aided by the derivation of a simple concurrence equation for Bell basis X states. The probability of entanglement border crossing and mean first passage times are calculated for the case of measurement dynamics alone. We find that states with almost the same probability of entanglement border crossing can have very different average crossing times. Our results provide insight on the optimization of entanglement generation by measurement.

  2. Entanglement genesis under continuous parity measurement

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew

    2009-03-01

    We examine the stochastic dynamics of entanglement for an uncoupled two-qubit system, undergoing continuous parity measurement. Starting with a fully mixed state, the entanglement is zero for a finite amount of time, when it is suddenly created, which we refer to as entanglement genesis. There can be further entanglement sudden death/birth events culminating in the formation of a fully entangled state. We present numerical investigations of this effect together with statistics of the entanglement genesis time in the weak measurement limit as well as the quantum Zeno limit. An analytic treatment of the physics is presented, aided by the derivation of a simple concurrence equation for Bell basis X-states. The probability of entanglement border crossing and mean first passage times are calculated for the case of measurement dynamics alone. We find that states with almost the same probability of entanglement border crossing can have very different average crossing times. Our results provide insights on the optimization of entanglement generation by measurement. Reference: N. S. Williams and A. N. Jordan, arXiv:0809.3248

  3. Kinetics of the Dynamical Information Shannon Entropy for Complex Systems

    NASA Astrophysics Data System (ADS)

    Yulmetyev, R. M.; Yulmetyeva, D. G.

    1999-08-01

    Kinetic behaviour of dynamical information Shannon entropy is discussed for complex systems: physical systems with non-Markovian property and memory in correlation approximation, and biological and physiological systems with sequences of the Markovian and non-Markovian random noises. For the stochastic processes, a description of the information entropy in terms of normalized time correlation functions is given. The influence and important role of two mutually dependent channels of the entropy change, correlation (creation or generation of correlations) and anti-correlation (decay or annihilation of correlation) is discussed. The method developed here is also used in analysis of the density fluctuations in liquid cesium obtained from slow neutron scattering data, fractal kinetics of the long-range fluctuation in the short-time human memory and chaotic dynamics of R-R intervals of human ECG.

  4. Entanglement and thermodynamics in general probabilistic theories

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; Scandolo, Carlo Maria

    2015-10-01

    Entanglement is one of the most striking features of quantum mechanics, and yet it is not specifically quantum. More specific to quantum mechanics is the connection between entanglement and thermodynamics, which leads to an identification between entropies and measures of pure state entanglement. Here we search for the roots of this connection, investigating the relation between entanglement and thermodynamics in the framework of general probabilistic theories. We first address the question whether an entangled state can be transformed into another by means of local operations and classical communication. Under two operational requirements, we prove a general version of the Lo-Popescu theorem, which lies at the foundations of the theory of pure-state entanglement. We then consider a resource theory of purity where free operations are random reversible transformations, modelling the scenario where an agent has limited control over the dynamics of a closed system. Our key result is a duality between the resource theory of entanglement and the resource theory of purity, valid for every physical theory where all processes arise from pure states and reversible interactions at the fundamental level. As an application of the main result, we establish a one-to-one correspondence between entropies and measures of pure bipartite entanglement. The correspondence is then used to define entanglement measures in the general probabilistic framework. Finally, we show a duality between the task of information erasure and the task of entanglement generation, whereby the existence of entropy sinks (systems that can absorb arbitrary amounts of information) becomes equivalent to the existence of entanglement sources (correlated systems from which arbitrary amounts of entanglement can be extracted).

  5. Interface dynamics of a two-component Bose-Einstein condensate driven by an external force

    SciTech Connect

    Kobyakov, D.; Bychkov, V.; Lundh, E.; Bezett, A.; Marklund, M.; Akkerman, V.

    2011-04-15

    The dynamics of an interface in a two-component Bose-Einstein condensate driven by a spatially uniform time-dependent force is studied. Starting from the Gross-Pitaevskii Lagrangian, the dispersion relation for linear waves and instabilities at the interface is derived by means of a variational approach. A number of diverse dynamical effects for different types of driving force is demonstrated, which includes the Rayleigh-Taylor instability for a constant force, the Richtmyer-Meshkov instability for a pulse force, dynamic stabilization of the Rayleigh-Taylor instability and onset of the parametric instability for an oscillating force. Gaussian Markovian and non-Markovian stochastic forces are also considered. It is found that the Markovian stochastic force does not produce any average effect on the dynamics of the interface, while the non-Markovian force leads to exponential perturbation growth.

  6. Effect of entanglement on the decay dynamics of a pair of H(2p) atoms due to spontaneous emission

    SciTech Connect

    Tanabe, Takehiko; Odagiri, Takeshi; Nakano, Motoyoshi; Kumagai, Yoshiaki; Kitajima, Masashi; Kouchi, Noriyuki; Suzuki, Isao H.

    2010-10-15

    We have measured the coincidence time spectra of two Lyman-{alpha} photons emitted by a pair of H(2p) atoms in the photodissociation of H{sub 2} at the incident photon energy of 33.66 eV and at the hydrogen gas pressures of 0.40 and 0.02 Pa. The decay time constant at 0.02 Pa is approximately half the lifetime of a single H(2p) atom, 1.60 ns, while the decay time constant at 0.40 Pa is in agreement with the lifetime of a single H(2p) atom. It turns out that the decay faster than the lifetime of a single H(2p) atom originates from the entanglement in the pair of H(2p) atoms. We have demonstrated an effect of entanglement on atomic decay.

  7. Quantum Entanglement and Quantum Discord in Gaussian Open Systems

    SciTech Connect

    Isar, Aurelian

    2011-10-03

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.

  8. Negative entanglement measure for bipartite separable mixed states

    SciTech Connect

    Zhang Chengjie; Han Yongjian; Zhang Yongsheng; Wu Yuchun; Zhou Xiangfa; Guo Guangcan

    2010-12-15

    We define a negative entanglement measure for separable states which shows how much entanglement one should compensate the unentangled state, at the least, to change it into an entangled state. For two-qubit systems and some special classes of states in higher-dimensional systems, the explicit formula and the lower bounds for the negative entanglement measure (NEM) have been presented, and it always vanishes for bipartite separable pure states. The negative entanglement measure can be used as a useful quantity to describe the entanglement dynamics and the quantum phase transition. In the transverse Ising model, the first derivatives of negative entanglement measure diverge on approaching the critical value of the quantum phase transition, although these two-site reduced density matrices have no entanglement at all. In the one-dimensional (1D) Bose-Hubbard model, the NEM as a function of t/U changes from zero to negative on approaching the critical point of quantum phase transition.

  9. Brownian entanglement

    SciTech Connect

    Allahverdyan, A.E.; Khrennikov, A.; Nieuwenhuizen, Th.M.

    2005-09-15

    For two classical Brownian particles an analog of continuous-variable quantum entanglement is presented: The common probability distribution of the two coordinates and the corresponding coarse-grained velocities cannot always be prepared via mixing of any factorized distributions referring to the two particles separately. This is possible for particles which have interacted in the past, but do not interact at present. Three factors are crucial for the effect: (1) separation of time scales of coordinate and momentum which motivates the definition of coarse-grained velocities; (2) the resulting uncertainty relations between the coordinate of the Brownian particle and the change of its coarse-grained velocity; (3) the fact that the coarse-grained velocity, though pertaining to a single Brownian particle, is defined on a common context of two particles. The Brownian entanglement is a consequence of a coarse-grained description and disappears for a finer resolution of the Brownian motion. Analogies with the quantum situation are discussed, as well as possibilities of experimental realization of the effect in examples of macroscopic Brownian motion.

  10. Decoherence dynamics of coherent electronic excited states in the photosynthetic purple bacterium Rhodobacter sphaeroides.

    PubMed

    Liang, Xian-Ting; Zhang, Wei-Min; Zhuo, Yi-Zhong

    2010-01-01

    In this paper, we present a theoretical description to the quantum coherence and decoherence phenomena of energy transfer in photosynthesis observed in a recent experiment [Science 316, 1462 (2007)]. As a successive two-color laser pulses with selected frequencies cast on a sample of the photosynthetic purple bacterium Rb. sphaeroides two resonant excitations of electrons in chromophores can be generated. However, this effective two-level subsystem will interact with its protein environment and decoherence is inevitable. We describe this subsystem coupled with its environment as a dynamical spin-boson model. The non-Markovian decoherence dynamics is described using a quasiadiabatic propagator path integral (QUAPI) approach. With the photon-induced effective time-dependent level splitting energy and level flip coupling coefficient between the two excited states and the environment-induced non-Markovian decoherence dynamics, our theoretical result is in good agreement with the experimental data.

  11. Non-Markovian jump processes in lasers

    SciTech Connect

    Levine, A.M. ); Kofman, A.G.; Zaibel, R.; Prior, Y. )

    1989-10-20

    A new model for stochastic fluctuations in lasers is introduced where successive phase jumps are correlated to previous jumps. The model is applicable in the generalized phase diffusion limit, the generalized Kubo oscillator limit, and the generalized telegraph noise limit.

  12. Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator.

    PubMed

    Chen, Ming-Cheng; Wu, Dian; Su, Zu-En; Cai, Xin-Dong; Wang, Xi-Lin; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2016-02-19

    The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions.

  13. Measures of entanglement in multipartite bound entangled states

    SciTech Connect

    Wei, T.-C.; Altepeter, Joseph B.; Goldbart, Paul M.; Munro, William J.

    2004-08-01

    Bound entangled states are states that are entangled but from which no entanglement can be distilled if all parties are allowed only local operations and classical communication. However, in creating these states one needs nonzero entanglement resources to start with. Here, the entanglement of two distinct multipartite bound entangled states is determined analytically in terms of a geometric measure of entanglement and a related quantity. The results are compared with those for the negativity and the relative entropy of entanglement.

  14. Quantum-to-classical transition and entanglement sudden death in Gaussian states under local-heat-bath dynamics

    SciTech Connect

    Goyal, Sandeep K.; Ghosh, Sibasish

    2010-10-15

    Entanglement sudden death (ESD) in spatially separated two-mode Gaussian states coupled to local thermal and squeezed thermal baths is studied by mapping the problem to that of the quantum-to-classical transition. Using Simon's criterion concerning the characterization of classicality in Gaussian states, the time to ESD is calculated by analyzing the covariance matrices of the system. The results for the two-mode system at T=0 and T>0 for the two types of bath states are generalized to n modes, and are shown to be similar in nature to the results for the general discrete n-qubit system.

  15. Renormalizing Entanglement Distillation.

    PubMed

    Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T; Eisert, Jens

    2016-01-15

    Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics-ideas from renormalization and matrix-product states and operators-with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.

  16. Renormalizing Entanglement Distillation

    NASA Astrophysics Data System (ADS)

    Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens

    2016-01-01

    Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.

  17. Tripartite entanglement of fermionic system in accelerated frames

    SciTech Connect

    Khan, Salman

    2014-09-15

    The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. The degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes.

  18. Collision dynamics and entanglement generation of two initially independent and indistinguishable boson pairs in one-dimensional harmonic confinement

    NASA Astrophysics Data System (ADS)

    Holdaway, David I. H.; Weiss, Christoph; Gardiner, Simon A.

    2013-04-01

    We investigate finite-number effects in collisions between two states of an initially well-known number of identical bosons with contact interactions, oscillating in the presence of harmonic confinement in one dimension. We investigate two N/2 (interacting) ground states, which are initially displaced from the trap center, and the effects of varying interaction strength. The numerics focus on the simplest case of N=4. In the noninteracting case, such a system would display periodic oscillation with a half harmonic oscillator period (due to the left-right symmetry). With the addition of contact interactions between the bosons, collisions generate entanglement between each of the states and distribute energy into other modes of the oscillator. We study the system numerically via an exact diagonalization of the Hamiltonian with a finite basis, investigating left-right number uncertainty as our primary measure of entanglement. Additionally, we study the time evolution and equilibration of the single-body von Neumann entropy for both the attractive and repulsive cases. We identify parameter regimes for which attractive interactions create behavior qualitatively different from that of repulsive interactions, due to the presence of bound states (quantum solitons), and explain the processes behind this.

  19. Entangling two transportable neutral atoms via local spin exchange.

    PubMed

    Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A

    2015-11-12

    To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

  20. Entangling two transportable neutral atoms via local spin exchange

    NASA Astrophysics Data System (ADS)

    Kaufman, A. M.; Lester, B. J.; Foss-Feig, M.; Wall, M. L.; Rey, A. M.; Regal, C. A.

    2015-11-01

    To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

  1. Dynamical Change of Quantum Fisher Information of Cavity-Reservoir Systems

    NASA Astrophysics Data System (ADS)

    Huang, Jiang; Xie, Qin

    2016-04-01

    We study the quantum Fisher information (QFI) dynamics of the phase parameter in the enlarged cavity-reservoir systems at zero temperature under two situations of large N limit and non-Markovian environment, respectively. We find an important relation that the total quantities of QFI of the cavity and reservoir are equal to unit during the dynamical evolution. The lost QFI of the cavity transfers to its corresponding reservoir with the same quantities simultaneously. Moreover, we also find that the detuning parameter and non-Markovian effect are two significant factors to affect the preservation of QFI. Supported by the National Natural Science Foundation of China under Grant No. 11374096 and the Natural Science Foundation of Guangdong Province under Grant No. 2015A030310354 and the Projection of Enhancing School with Innovation of Guangdong Ocean University under Grant Nos. GDOU2014050251 and GDOU2014050252

  2. Spatial multipartite entanglement and localization of entanglement

    SciTech Connect

    Daems, D.; Cerf, N. J.

    2010-09-15

    We present a simple model together with its physical implementation which allows one to generate multipartite entanglement between several spatial modes of the electromagnetic field. It is based on parametric down-conversion with N pairs of symmetrically tilted plane waves serving as a pump. The characteristics of this spatial entanglement are investigated in the cases of zero as well as nonzero phase mismatch. Furthermore, the phenomenon of entanglement localization in just two spatial modes is studied in detail and shown to result in an enhancement of the entanglement by a factor {radical}(N).

  3. Measuring entanglement entropy in a quantum many-body system

    NASA Astrophysics Data System (ADS)

    Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M.; Eric Tai, M.; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus

    2015-12-01

    Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

  4. Measuring entanglement entropy in a quantum many-body system.

    PubMed

    Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus

    2015-12-01

    Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

  5. Generalized entanglement entropy

    NASA Astrophysics Data System (ADS)

    Taylor, Marika

    2016-07-01

    We discuss two measures of entanglement in quantum field theory and their holographic realizations. For field theories admitting a global symmetry, we introduce a global symmetry entanglement entropy, associated with the partitioning of the symmetry group. This quantity is proposed to be related to the generalized holographic entanglement entropy defined via the partitioning of the internal space of the bulk geometry. Thesecond measure of quantum field theory entanglement is the field space entanglement entropy, obtained by integrating out a subset of the quantum fields. We argue that field space entanglement entropy cannot be precisely realised geometrically in a holographic dual. However, for holographic geometries with interior decoupling regions, the differential entropy provides a close analogue to the field space entanglement entropy. We derive generic descriptions of such inner throat regions in terms of gravity coupled to massive scalars and show how the differential entropy in the throat captures features of the field space entanglement entropy.

  6. Charged topological entanglement entropy

    NASA Astrophysics Data System (ADS)

    Matsuura, Shunji; Wen, Xueda; Hung, Ling-Yan; Ryu, Shinsei

    2016-05-01

    A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry-protected topological (SPT) phases in (2+1)-dimensional space-time by using this charged entanglement entropy. SPT phases are short-range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is nonzero for nontrivial SPT phases and therefore it is a useful measure to detect short-range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles.

  7. Measurement-induced quantum entanglement recovery

    SciTech Connect

    Xu Xiaoye; Xu Jinshi; Li Chuanfeng; Guo Guangcan

    2010-08-15

    By using photon pairs created in parametric down-conversion, we report on an experiment, which demonstrates that measurement can recover the quantum entanglement of a two-qubit system in a pure dephasing environment. The concurrence of the final state with and without measurement is compared and is analyzed. Furthermore, we verify that recovered states can still violate the Bell inequality, that is, to say, such recovered states exhibit nonlocality. In the context of quantum entanglement, sudden death and rebirth provide clear evidence, which verifies that entanglement dynamics of the system is sensitive not only to its environment, but also to its initial state.

  8. Quantum entanglement and fixed-point bifurcations

    SciTech Connect

    Hines, Andrew P.; McKenzie, Ross H.; Milburn, G.J.

    2005-04-01

    How does the classical phase-space structure for a composite system relate to the entanglement characteristics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the corresponding quantum state--the ground state--achieves its maximum amount of entanglement near the critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a bifurcation.

  9. Freezing distributed entanglement in spin chains

    SciTech Connect

    D'Amico, Irene; Lovett, Brendon W.; Spiller, Timothy P.

    2007-09-15

    We show how to freeze distributed entanglement that has been created from the natural dynamics of spin chain systems. The technique that we propose simply requires single-qubit operations and isolates the entanglement in specific qubits at the ends of branches. Such frozen entanglement provides a useful resource, for example for teleportation or distributed quantum processing. The scheme can be applied to a wide range of systems--including actual spin systems and alternative qubit embodiments in strings of quantum dots, molecules, or atoms.

  10. Influence of external magnetic field on dynamics of open quantum systems

    SciTech Connect

    Kalandarov, Sh. A.; Kanokov, Z.; Adamian, G. G.; Antonenko, N. V.

    2007-03-15

    The influence of an external magnetic field on the non-Markovian dynamics of an open two-dimensional quantum system is investigated. The fluctuations of collective coordinate and momentum and transport coefficients are studied for a charged harmonic oscillator linearly coupled to a neutral bosonic heat bath. It is shown that the dissipation of collective energy slows down with increasing strength of the external magnetic field. The role of magnetic field in the diffusion processes is illustrated by several examples.

  11. Long distance entanglement distribution

    NASA Astrophysics Data System (ADS)

    Broadfoot, Stuart Graham

    Developments in the interdisciplinary field of quantum information open up previously impossible abilities in the realms of information processing and communication. Quantum entanglement has emerged as one property of quantum systems that acts as a resource for quantum information processing and, in particular, enables teleportation and secure cryptography. Therefore, the creation of entangled resources is of key importance for the application of these technologies. Despite a great deal of research the efficient creation of entanglement over long distances is limited by inevitable noise. This problem can be overcome by creating entanglement between nodes in a network and then performing operations to distribute the entanglement over a long distance. This thesis contributes to the field of entanglement distribution within such quantum networks. Entanglement distribution has been extensively studied for one-dimensional networks resulting in "quantum repeater" protocols. However, little work has been done on higher dimensional networks. In these networks a fundamentally different scaling, called "long distance entanglement distribution", can appear between the resources and the distance separating the systems to be entangled. I reveal protocols that enable long distance entanglement distribution for quantum networks composed of mixed state and give a few limitations to the capabilities of entanglement distribution. To aid in the implementation of all entanglement distribution protocols I finish by introducing a new system, composed of an optical nanofibre coupled to a carbon nanotube, that may enable new forms of photo-detectors and quantum memories.

  12. Extremal extensions of entanglement witnesses: Finding new bound entangled states

    SciTech Connect

    Sengupta, R.; Arvind

    2011-09-15

    In this paper, we discuss extremal extensions of entanglement witnesses based on Choi's map. The constructions are based on a generalization of the Choi map, from which we construct entanglement witnesses. These extremal extensions are powerful in terms of their capacity to detect entanglement of positive under partial transpose (PPT) entangled states and lead to unearthing of entanglement of new PPT states. We also use the Cholesky-like decomposition to construct entangled states which are revealed by these extremal entanglement witnesses.

  13. Gaussian entanglement of formation

    SciTech Connect

    Wolf, M.M.; Giedke, G.; Krueger, O.; Werner, R. F.; Cirac, J.I.

    2004-05-01

    We introduce a Gaussian version of the entanglement of formation adapted to bipartite Gaussian states by considering decompositions into pure Gaussian states only. We show that this quantity is an entanglement monotone under Gaussian operations and provide a simplified computation for states of arbitrary many modes. For the case of one mode per site the remaining variational problem can be solved analytically. If the considered state is in addition symmetric with respect to interchanging the two modes, we prove additivity of the considered entanglement measure. Moreover, in this case and considering only a single copy, our entanglement measure coincides with the true entanglement of formation.

  14. Entanglement monogamy and entanglement evolution in multipartite systems

    SciTech Connect

    Bai Yankui; Ye Mingyong; Wang, Z. D.

    2009-10-15

    We analyze the entanglement distribution and the two-qubit residual entanglement in multipartite systems. For a composite system consisting of two cavities interacting with independent reservoirs, it is revealed that the entanglement evolution is restricted by an entanglement monogamy relation derived here. Moreover, it is found that the initial cavity-cavity entanglement evolves completely to the genuine four-partite cavities-reservoirs entanglement in the time interval between the sudden death of cavity-cavity entanglement and the birth of reservoir-reservoir entanglement. In addition, we also address the relationship between the genuine block-block entanglement form and qubit-block form in the interval.

  15. Entanglement-saving channels

    NASA Astrophysics Data System (ADS)

    Lami, L.; Giovannetti, V.

    2016-03-01

    The set of Entanglement Saving (ES) quantum channels is introduced and characterized. These are completely positive, trace preserving transformations which when acting locally on a bipartite quantum system initially prepared into a maximally entangled configuration, preserve its entanglement even when applied an arbitrary number of times. In other words, a quantum channel ψ is said to be ES if its powers ψn are not entanglement-breaking for all integers n. We also characterize the properties of the Asymptotic Entanglement Saving (AES) maps. These form a proper subset of the ES channels that is constituted by those maps that not only preserve entanglement for all finite n but which also sustain an explicitly not null level of entanglement in the asymptotic limit n → ∞. Structure theorems are provided for ES and for AES maps which yield an almost complete characterization of the former and a full characterization of the latter.

  16. Simulating the flow of entangled polymers.

    PubMed

    Masubuchi, Yuichi

    2014-01-01

    To optimize automation for polymer processing, attempts have been made to simulate the flow of entangled polymers. In industry, fluid dynamics simulations with phenomenological constitutive equations have been practically established. However, to account for molecular characteristics, a method to obtain the constitutive relationship from the molecular structure is required. Molecular dynamics simulations with atomic description are not practical for this purpose; accordingly, coarse-grained models with reduced degrees of freedom have been developed. Although the modeling of entanglement is still a challenge, mesoscopic models with a priori settings to reproduce entangled polymer dynamics, such as tube models, have achieved remarkable success. To use the mesoscopic models as staging posts between atomistic and fluid dynamics simulations, studies have been undertaken to establish links from the coarse-grained model to the atomistic and macroscopic simulations. Consequently, integrated simulations from materials chemistry to predict the macroscopic flow in polymer processing are forthcoming.

  17. Entanglement - From Particles to Consciousness

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2007-06-01

    This book, which is entirely devoted to the description and discussion of the mechanism of quantum entanglement, is divided into three main parts: a) canonical entanglement in the realm of elementary particles; b) entanglement in the biological environment (DNA and microtubules); c) entanglement in the psychic realm. Cosmological entanglement and non-local SETI are discussed as well.

  18. Renormalized entanglement entropy

    NASA Astrophysics Data System (ADS)

    Taylor, Marika; Woodhead, William

    2016-08-01

    We develop a renormalization method for holographic entanglement entropy based on area renormalization of entangling surfaces. The renormalized entanglement en-tropy is derived for entangling surfaces in asymptotically locally anti-de Sitter spacetimes in general dimensions and for entangling surfaces in four dimensional holographic renor-malization group flows. The renormalized entanglement entropy for disk regions in AdS 4 spacetimes agrees precisely with the holographically renormalized action for AdS 4 with spherical slicing and hence with the F quantity, in accordance with the Casini-Huerta-Myers map. We present a generic class of holographic RG flows associated with deforma-tions by operators of dimension 3 /2 < Δ < 5 /2 for which the F quantity increases along the RG flow, hence violating the strong version of the F theorem. We conclude by explaining how the renormalized entanglement entropy can be derived directly from the renormalized partition function using the replica trick i.e. our renormalization method for the entangle-ment entropy is inherited directly from that of the partition function. We show explicitly how the entanglement entropy counterterms can be derived from the standard holographic renormalization counterterms for asymptotically locally anti-de Sitter spacetimes.

  19. General monogamy relation for the entanglement of formation in multiqubit systems.

    PubMed

    Bai, Yan-Kui; Xu, Yuan-Fei; Wang, Z D

    2014-09-01

    We prove exactly that the squared entanglement of formation, which quantifies the bipartite entanglement, obeys a general monogamy inequality in an arbitrary multiqubit mixed state. Based on this kind of exotic monogamy relation, we are able to construct two sets of useful entanglement indicators: the first one can detect all genuine multiqubit entangled states even in the case of the two-qubit concurrence and n-tangles being zero, while the second one can be calculated via quantum discord and applied to multipartite entanglement dynamics. Moreover, we give a computable and nontrivial lower bound for multiqubit entanglement of formation.

  20. Quantum entanglement in coupled harmonic oscillator systems: from micro to macro

    NASA Astrophysics Data System (ADS)

    Kao, Jhih-Yuan; Chou, Chung-Hsien

    2016-07-01

    We investigate the entanglement dynamics of several models of coupled harmonic oscillators, whereby a number of properties concerning entanglement have been scrutinized, such as how the environment affects entanglement of a system, and death and revival of entanglement. Among them, there are two models for which we are able to vary their particle numbers easily by assuming identicalness, thereby examining how the particle number affects entanglement. We have found that the upper bound of entanglement between identical oscillators is approximately inversely proportional to the particle number.

  1. Spectral conditions for entanglement witnesses versus bound entanglement

    SciTech Connect

    Chruscinski, Dariusz; Kossakowski, Andrzej; Sarbicki, Gniewomir

    2009-10-15

    It is shown that entanglement witnesses constructed via the family of spectral conditions are decomposable, i.e., cannot be used to detect bound entanglement. It supports several observations that bound entanglement reveals highly nonspectral features.

  2. Witnessing entanglement without entanglement witness operators

    PubMed Central

    Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto

    2016-01-01

    Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables. PMID:27681625

  3. Lorentz transformations that entangle spins and entangle momenta

    SciTech Connect

    Jordan, Thomas F.; Shaji, Anil; Sudarshan, E.C.G.

    2007-02-15

    Simple examples are presented of Lorentz transformations that entangle the spins and momenta of two particles with positive mass and spin 1/2. They apply to indistinguishable particles, produce maximal entanglement from finite Lorentz transformations of states for finite momenta, and describe entanglement of spins produced together with entanglement of momenta. From the entanglements considered, no sum of entanglements is found to be unchanged.

  4. Entanglement of spin waves among four quantum memories.

    PubMed

    Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J

    2010-11-18

    Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.

  5. Comment on ''Effect of entanglement on the decay dynamics of a pair of H(2p) atoms due to spontaneous emission''

    SciTech Connect

    Sancho, Pedro; Plaja, Luis

    2011-06-15

    T. Tanabe et al. [Phys. Rev. A 82, 040101(R) (2010)] have experimentally demonstrated that the emission properties of unstable atoms in entangled and product states are different. The authors define an apparent decay time as a fitting parameter which falls below the lifetime of the single atom for entangled pairs. We argue that their results about coincidence time spectra are correct, but those concerning lifetimes cannot be considered conclusive because they assume the emission of photons by the two atoms to be independent processes, a doubtful hypothesis for entangled states. We suggest an improved evaluation of the lifetimes based on a rigorous approach, which demands some modifications of the experimental procedure.

  6. Quantum Spin Baths Induced Transition of Decoherence and Entanglement

    SciTech Connect

    Chen Pochung; Lai Chengyan; Hung, J.-T.; Mou Chungyu

    2008-11-07

    We investigate the reduced dynamics of single or two qubits coupled to an interacting quantum spin bath modeled by a XXZ spin chain. By using the method of time-dependent density matrix renormalization group (t-DMRG), we evaluate nonperturbatively the induced decoherence and entanglement. We find that the behavior of both decoherence and entanglement strongly depend on the phase of the underlying spin bath. We show that spin baths can induce entanglement for an initially disentangled pair of qubits. We observe that entanglement sudden death only occurs in paramagnetic phase and discuss the effect of the coupling range.

  7. The Retarding Effect of Noise on Entanglement Sudden Death

    NASA Astrophysics Data System (ADS)

    Kayhan, Hünkar

    2015-10-01

    In this paper, we consider a system of two atoms in which one atom is in a JC cavity under the influence of a random phase telegraph noise and the other is an isolated atom. We obtain an exact solution to the time evolution of this system to investigate the effects of noise on the entanglement dynamics of the atoms. We show that the noise causes entanglement sudden death without recovery in a finite time interval. The time for this is independent of the initial state of the pure entangled atomic state. Moreover, an intensive noise delays the entanglement sudden death.

  8. Impurity entanglement through electron scattering in a magnetic field

    NASA Astrophysics Data System (ADS)

    Metavitsiadis, Alexandros; Dillenschneider, Raoul; Eggert, Sebastian

    2014-04-01

    We study the entanglement of magnetic impurities in an environment of electrons through successive scattering while an external magnetic field is applied. We show that the dynamics of the problem can be approximately described by a reduced model of three interacting spins, which reveals an intuitive view on how spins can be entangled by controlled electron scattering. The role of the magnetic field is rather crucial. Depending on the initial state configuration, the magnetic field can either increase or decrease the resulting entanglement but more importantly it can allow the impurities to be maximally entangled.

  9. Theory of entanglement and entanglement-assisted communication

    NASA Astrophysics Data System (ADS)

    Bennett, Charles H.

    2011-03-01

    Protocols such as quantum teleportation and measurement-based quantum computation highlight the importance of entanglement as a resource to be quantified and husbanded. Unlike classical shared randomness, entanglement has a profound effect on the capacity of quantum channels: a channel's entanglement-assisted capacity can be much greater than its unassisted capacity, and in any case is given by much a simpler formula, paralleling Shannon's original formula for the capacity of a classical channel. We review the differences between entanglement and weaker forms of correlation, and the theory of entanglement distillation and entanglement-assisted communication, including the role of strong forms of entanglement such as entanglement-embezzling states.

  10. Unlocking fermionic mode entanglement

    NASA Astrophysics Data System (ADS)

    Friis, Nicolai

    2016-06-01

    Aside from other puzzling features of entanglement, it has been debated whether a physically meaningful notion of entanglement requires two (or more) particles as carriers of the correlated degrees-of-freedom, or if a single particle could be considered to be entangled as well. While the usefulness of single-boson entanglement has been demonstrated some time ago, the restrictions of superselection rules have previously thwarted attempts at similar arguments for single fermions. In Dasenbrook et al (2016 New J. Phys. 18 043036) this obstacle is overcome. The authors propose a scheme for a Bell test on two copies of single-electron states whose entanglement is individually not accessible. The discussed scheme, which makes use of recent progress in electronic quantum optics, provides an experimentally viable and theoretically unambiguous way to assert that certain single-electron states can be considered to be entangled.

  11. Entanglement of two harmonic modes coupled by angular momentum

    SciTech Connect

    Rebon, L.; Rossignoli, R.

    2011-11-15

    We examine the entanglement induced by an angular momentum coupling between two harmonic systems. The Hamiltonian corresponds to that of a charged particle in a uniform magnetic field in an anisotropic quadratic potential or, equivalently, to that of a particle in a rotating quadratic potential. We analyze both the vacuum and thermal entanglement, thereby obtaining analytic expressions for the entanglement entropy and negativity through the Gaussian state formalism. It is shown that vacuum entanglement diverges at the edges of the dynamically stable sectors, increasing with the angular momentum and saturating for strong fields, whereas at finite temperature entanglement is nonzero just within a finite field or frequency window and no longer diverges. Moreover, the limit temperature for entanglement is finite in the whole stable domain. The thermal behavior of the Gaussian quantum discord and its difference from the negativity is also discussed.

  12. Entanglement of two-mode Bose-Einstein condensates

    SciTech Connect

    Hines, Andrew P.; McKenzie, Ross H.; Milburn, Gerard J.

    2003-01-01

    We investigate the entanglement characteristics of two general bimodal Bose-Einstein condensates--a pair of tunnel-coupled Bose-Einstein condensates and the atom-molecule Bose-Einstein condensate. We argue that the entanglement is only physically meaningful if the system is viewed as a bipartite system, where the subsystems are the two modes. The indistinguishibility of the particles in the condensate means that the atomic constituents are physically inaccessible and, thus, the degree of entanglement between individual particles, unlike the entanglement between the modes, is not experimentally relevant so long as the particles remain in the condensed state. We calculate the entanglement between the two modes for the exact ground state of the two bimodal condensates and consider the dynamics of the entanglement in the tunnel-coupled cas000.

  13. Generation of infrared entangled light in asymmetric semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Lü, Xin-You; Wu, Jing; Zheng, Li-Li; Huang, Pei

    2010-12-01

    We proposed a scheme to achieve two-mode CV entanglement with the frequencies of entangled modes in the infrared range in an asymmetric semiconductor double-quantum-wells (DQW), where the required quantum coherence is obtained by inducing the corresponding intersubband transitions (ISBTs) with a classical field. By numerically simulating the dynamics of system, we show that the entanglement period can be prolonged via enhancing the intensity of classical field, and the generation of entanglement doesn't depend intensively on the initial condition of system in our scheme. Moreover, we also show that a bipartite entanglement amplifier can be realized in our scheme. The present research provides an efficient approach to achieve infrared entangled light in the semiconductor nanostructure, which may have significant impact on the progress of solid-state quantum information theory.

  14. Entanglement beyond subsystems

    SciTech Connect

    Viola, L.

    2004-01-01

    We present a notion of generalized entanglement which goes beyond the conventional definition based on quantum subsystems. This is accomplished by directly defining entanglement as a property of quantum states relative to a distinguished set of observables singled out by Physics. While recovering standard entanglement as a special case, our notion allows for substantially broader generality and flexibility, being applicable, in particular, to situations where existing tools are not directly useful.

  15. Multipartite entanglement measures

    NASA Astrophysics Data System (ADS)

    Szalay, Szilárd

    2015-10-01

    The main concern of this paper is how to define proper measures of multipartite entanglement for mixed quantum states. Since the structure of partial separability and multipartite entanglement is getting complicated if the number of subsystems exceeds two, one cannot expect the existence of an ultimate scalar entanglement measure, which grasps even a small part of the rich hierarchical structure of multipartite entanglement, and some higher-order structure characterizing that is needed. In this paper we make some steps in this direction. First, we reveal the lattice-theoretic structure of the partial separability classification, introduced earlier [Sz. Szalay and Z. Kökényesi, Phys. Rev. A 86, 032341 (2012), 10.1103/PhysRevA.86.032341]. It turns out that, mathematically, the structure of the entanglement classes is the up-set lattice of the structure of the different kinds of partial separability, which is the down-set lattice of the lattice of the partitions of the subsystems. It also turns out that, physically, this structure is related to the local operations and classical communication convertibility: If a state from a class can be mapped into another one, then that class can be found higher in the hierarchy. Second, we introduce the notion of multipartite monotonicity, expressing that a given set of entanglement monotones, while measuring the different kinds of entanglement, shows also the same hierarchical structure as the entanglement classes. Then we construct such hierarchies of entanglement measures and propose a physically well-motivated one, being the direct multipartite generalization of the entanglement of formation based on the entanglement entropy, motivated by the notion of statistical distinguishability. The multipartite monotonicity shown by this set of measures motivates us to consider the measures to be the different manifestations of some "unified" notion of entanglement.

  16. Spin-Squeezing Entanglement of Second-Harmonic Generation

    NASA Astrophysics Data System (ADS)

    Shu, Jian

    2016-10-01

    An experimentally feasible scheme for generating spin-squeezing entanglement via second-harmonic generation was presented. Its shown that spin-squeezing entanglement can be generated rapidly in the dynamical process by adjusting coupling constant, detuning, the total number of particles and the evolution time.

  17. Collective uncertainty entanglement test.

    PubMed

    Rudnicki, Łukasz; Horodecki, Paweł; Zyczkowski, Karol

    2011-10-01

    For a given pure state of a composite quantum system we analyze the product of its projections onto a set of locally orthogonal separable pure states. We derive a bound for this product analogous to the entropic uncertainty relations. For bipartite systems the bound is saturated for maximally entangled states and it allows us to construct a family of entanglement measures, we shall call collectibility. As these quantities are experimentally accessible, the approach advocated contributes to the task of experimental quantification of quantum entanglement, while for a three-qubit system it is capable to identify the genuine three-party entanglement.

  18. Collective Uncertainty Entanglement Test

    NASA Astrophysics Data System (ADS)

    Rudnicki, Łukasz; Horodecki, Paweł; Życzkowski, Karol

    2011-10-01

    For a given pure state of a composite quantum system we analyze the product of its projections onto a set of locally orthogonal separable pure states. We derive a bound for this product analogous to the entropic uncertainty relations. For bipartite systems the bound is saturated for maximally entangled states and it allows us to construct a family of entanglement measures, we shall call collectibility. As these quantities are experimentally accessible, the approach advocated contributes to the task of experimental quantification of quantum entanglement, while for a three-qubit system it is capable to identify the genuine three-party entanglement.

  19. Detecting multipartite entanglement

    SciTech Connect

    Doherty, Andrew C.; Parrilo, Pablo A.; Spedalieri, Federico M.

    2005-03-01

    We discuss the problem of determining whether the state of several quantum mechanical subsystems is entangled. As in previous work on two subsystems we introduce a procedure for checking separability that is based on finding state extensions with appropriate properties and may be implemented as a semidefinite program. The main result of this work is to show that there is a series of tests of this kind such that if a multiparty state is entangled this will eventually be detected by one of the tests. The procedure also provides a means of constructing entanglement witnesses that could in principle be measured in order to demonstrate that the state is entangled.

  20. Multipartite entanglement of superpositions

    SciTech Connect

    Cavalcanti, D.; Terra Cunha, M. O.; Acin, A.

    2007-10-15

    The entanglement of superpositions [Linden et al., Phys. Rev. Lett. 97, 100502 (2006)]is generalized to the multipartite scenario: an upper bound to the multipartite entanglement of a superposition is given in terms of the entanglement of the superposed states and the superposition coefficients. This bound is proven to be tight for a class of states composed of an arbitrary number of qubits. We also extend the result to a large family of quantifiers, which includes the negativity, the robustness of entanglement, and the best separable approximation measure.

  1. Quantum entanglement in the multiverse

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, S.; González-Díaz, P. F.

    2014-01-01

    We show that the quantum state of a multiverse made up of classically disconnected regions of the space-time, whose dynamical evolution is dominated by a homogeneous and isotropic fluid, is given by a squeezed state. These are typical quantum states that have no classical counterpart and therefore allow analyzing the violation of classical inequalities as well as the EPR argument in the context of the quantum multiverse. The thermodynamical properties of entanglement are calculated for a composite quantum state of two universes whose states are quantum-mechanically correlated. The energy of entanglement between the positive and negative modes of a scalar field, which correspond to the expanding and contracting branches of a phantom universe, are also computed.

  2. Barycentric measure of quantum entanglement

    NASA Astrophysics Data System (ADS)

    Ganczarek, Wojciech; Kuś, Marek; Życzkowski, Karol

    2012-03-01

    Majorana representation of quantum states by a constellation of n “stars” (points on the sphere) can be used to describe any pure state of a simple system of dimension n+1 or a permutation symmetric pure state of a composite system consisting of n qubits. We analyze the variance of the distribution of the stars, which can serve as a measure of the degree of noncoherence for simple systems or an entanglement measure for composed systems. Dynamics of the Majorana points induced by a unitary dynamics of a pure state is investigated.

  3. Mean-field dynamics of two-mode Bose-Einstein condensates in highly anisotropic potentials: interference, dimensionality and entanglement

    NASA Astrophysics Data System (ADS)

    Tacla, Alexandre B.; Caves, Carlton M.

    2013-02-01

    We study the mean-field dynamics and the reduced-dimension character of two-mode Bose-Einstein condensates (BECs) in highly anisotropic traps. By means of perturbative techniques, we show that the tightly confined (transverse) degrees of freedom can be decoupled from the dynamical equations at the expense of introducing additional effective three-body, attractive, intra- and inter-mode interactions into the dynamics of the loosely confined (longitudinal) degrees of freedom. These effective interactions are mediated by changes in the transverse wave function. The perturbation theory is valid as long as the nonlinear scattering energy is small compared to the transverse energy scales. This approach leads to reduced-dimension mean-field equations that optimally describe the evolution of a two-mode condensate in general quasi-one-dimensional (1D) and quasi-two-dimensional geometries. We use this model to investigate the relative phase and density dynamics of a two-mode, cigar-shaped 87Rb BEC. We study the relative-phase dynamics in the context of a nonlinear Ramsey interferometry scheme, which has recently been proposed as a novel platform for high-precision interferometry. Numerical integration of the coupled, time-dependent, three-dimensional, two-mode Gross-Pitaevskii equations for various atom numbers shows that this model gives a considerably more refined analytical account of the mean-field evolution than an idealized quasi-1D description.

  4. Demonstration of Feasibility of X-Ray Free Electron Laser Studies of Dynamics of Nanoparticles in Entangled Polymer Melts

    PubMed Central

    Carnis, Jerome; Cha, Wonsuk; Wingert, James; Kang, Jinback; Jiang, Zhang; Song, Sanghoon; Sikorski, Marcin; Robert, Aymeric; Gutt, Christian; Chen, San-Wen; Dai, Yeling; Ma, Yicong; Guo, Hongyu; Lurio, Laurence B.; Shpyrko, Oleg; Narayanan, Suresh; Cui, Mengmeng; Kosif, Irem; Emrick, Todd; Russell, Thomas P.; Lee, Hae Cheol; Yu, Chung-Jong; Grübel, Gerhard; Sinha, Sunil K.; Kim, Hyunjung

    2014-01-01

    The recent advent of hard x-ray free electron lasers (XFELs) opens new areas of science due to their exceptional brightness, coherence, and time structure. In principle, such sources enable studies of dynamics of condensed matter systems over times ranging from femtoseconds to seconds. However, the studies of “slow” dynamics in polymeric materials still remain in question due to the characteristics of the XFEL beam and concerns about sample damage. Here we demonstrate the feasibility of measuring the relaxation dynamics of gold nanoparticles suspended in polymer melts using X-ray photon correlation spectroscopy (XPCS), while also monitoring eventual X-ray induced damage. In spite of inherently large pulse-to-pulse intensity and position variations of the XFEL beam, measurements can be realized at slow time scales. The X-ray induced damage and heating are less than initially expected for soft matter materials. PMID:25109363

  5. Quantum entanglement percolation

    NASA Astrophysics Data System (ADS)

    Siomau, Michael

    2016-09-01

    Quantum communication demands efficient distribution of quantum entanglement across a network of connected partners. The search for efficient strategies for the entanglement distribution may be based on percolation theory, which describes evolution of network connectivity with respect to some network parameters. In this framework, the probability to establish perfect entanglement between two remote partners decays exponentially with the distance between them before the percolation transition point, which unambiguously defines percolation properties of any classical network or lattice. Here we introduce quantum networks created with local operations and classical communication, which exhibit non-classical percolation transition points leading to striking communication advantages over those offered by the corresponding classical networks. We show, in particular, how to establish perfect entanglement between any two nodes in the simplest possible network—the 1D chain—using imperfectly entangled pairs of qubits.

  6. Multipartite entanglement percolation

    SciTech Connect

    Perseguers, S.; Cavalcanti, D.; Lapeyre, G. J. Jr.; Lewenstein, M.; Acin, A.

    2010-03-15

    We present a percolation strategy based on multipartite measurements to propagate entanglement in quantum networks. We consider networks spanned on regular lattices whose bonds correspond to pure but nonmaximally entangled pairs of qubits, with any quantum operation allowed at the nodes. Despite significant effort in the past, improvements over standard (classical) percolation have been found for only a few lattices, often with restrictions on the initial amount of entanglement in the bonds. In contrast, multipartite entanglement percolation outperform the classical percolation protocols, as well as all previously known quantum ones, over the entire range of initial entanglement and for every lattice that we considered. Finally, we briefly show that our ideas also find application in noisy networks.

  7. Entanglement as a Semantic Resource

    NASA Astrophysics Data System (ADS)

    Dalla Chiara, Maria Luisa; Giuntini, Roberto; Ledda, Antonio; Leporini, Roberto; Sergioli, Giuseppe

    2010-10-01

    The characteristic holistic features of the quantum theoretic formalism and the intriguing notion of entanglement can be applied to a field that is far from microphysics: logical semantics. Quantum computational logics are new forms of quantum logic that have been suggested by the theory of quantum logical gates in quantum computation. In the standard semantics of these logics, sentences denote quantum information quantities: systems of qubits ( quregisters) or, more generally, mixtures of quregisters ( qumixes), while logical connectives are interpreted as special quantum logical gates (which have a characteristic reversible and dynamic behavior). In this framework, states of knowledge may be entangled, in such a way that our information about the whole determines our information about the parts; and the procedure cannot be, generally, inverted. In spite of its appealing properties, the standard version of the quantum computational semantics is strongly “Hilbert-space dependent”. This certainly represents a shortcoming for all applications, where real and complex numbers do not generally play any significant role (as happens, for instance, in the case of natural and of artistic languages). We propose an abstract version of quantum computational semantics, where abstract qumixes, quregisters and registers are identified with some special objects (not necessarily living in a Hilbert space), while gates are reversible functions that transform qumixes into qumixes. In this framework, one can give an abstract definition of the notions of superposition and of entangled pieces of information, quite independently of any numerical values. We investigate three different forms of abstract holistic quantum computational logic.

  8. Entanglement Theories: Packing vs. Percolation

    NASA Astrophysics Data System (ADS)

    Wool, Richard

    2007-03-01

    There are two emergent theories of polymer entanglements, the Packing Model (Fetters, Lohse, Graessley, Milner, Whitten, ˜'98) and the Percolation Model (Wool ˜'93). The Packing model suggests that the entanglement molecular weight Me is determined by Me = K p^3, where the packing length parameter p = V/R^2 in which V is the volume of the chain (V=M/ρNa), R is the end-to end vector of the chain, and K 357 ρNa, is an empirical constant. The Percolation model states that an entanglement network develops when the number of chains per unit area σ, intersecting any load bearing plane, is equal to 3 times the number of chain segments (1/a cross-section), such that when 3aσ =1 at the percolation threshold, Me 31 MjC∞, in which Mj is the step molecular weight and C∞ is the characteristic ratio. There are no fitting parameters in the Percolation model. The Packing model predicts that Me decreases rapidly with chain stiffness, as Me˜1/C∞^3, while the Percolation model predicts that Me increases with C∞, as Me˜C∞. The Percolation model was found to be the correct model based on computer simulations (M. Bulacu et al) and a re-analysis of the Packing model experimental data. The Packing model can be derived from the Percolation model, but not visa versa, and reveals a surprising accidental relation between C∞ and Mj in the front factor K. This result significantly impacts the interpretation of the dynamics of rheology and fracture of entangled polymers.

  9. Entanglement of formation in two-mode Gaussian systems in a thermal environment

    NASA Astrophysics Data System (ADS)

    Dumitru, Irina; Isar, Aurelian

    2015-12-01

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in a separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.

  10. Entanglement of formation in two-mode Gaussian systems in a thermal environment

    SciTech Connect

    Dumitru, Irina Isar, Aurelian

    2015-12-07

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in a separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.

  11. Experimental activation of bound entanglement.

    PubMed

    Kaneda, Fumihiro; Shimizu, Ryosuke; Ishizaka, Satoshi; Mitsumori, Yasuyoshi; Kosaka, Hideo; Edamatsu, Keiichi

    2012-07-27

    Entanglement is one of the essential resources in quantum information and communication technology (QICT). The entanglement thus far explored and applied to QICT has been pure and distillable entanglement. Yet, there is another type of entanglement, called "bound entanglement," which is not distillable by local operations and classical communication. We demonstrate the experimental "activation" of the bound entanglement held in the four-qubit Smolin state, unleashing its immanent entanglement in distillable form, with the help of auxiliary two-qubit entanglement and local operations and classical communication. We anticipate that it opens the way to a new class of QICT applications that utilize more general classes of entanglement than ever, including bound entanglement.

  12. Entanglement negativity in the multiverse

    SciTech Connect

    Kanno, Sugumi; Shock, Jonathan P.; Soda, Jiro

    2015-03-10

    We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.

  13. Entanglement negativity in the multiverse

    SciTech Connect

    Kanno, Sugumi; Soda, Jiro E-mail: jonathan.shock@uct.ac.za

    2015-03-01

    We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.

  14. Multipartite Entanglement And Firewalls

    NASA Astrophysics Data System (ADS)

    Luo, Shengqiao; Stoltenberg, Henry; Albrecht, Andreas

    2016-03-01

    Black holes offer an exciting area to explore the nature of quantum gravity. The classic work on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-Sully AMPS have noted an apparent paradox in reconciling fundamental properties of quantum mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the existence of a ``firewall'' inside the black hole horizon which prevents objects from falling smoothly toward the singularity. A fundamental limitation on the behavior of quantum entanglement known as ``monogamy'' plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. We identified an example which could change the AMPS accounting of quantum entanglement and perhaps eliminating the need for a firewall. Looking at different many body entanglement measures and their monogamy properties can tell us subtle ways in which different subsystems can share their entanglement. Specific measures we consider include negativity, concurrence, and mutual information. Taking insights from these different measures, we constructed toy models for black hole decay which have different entanglement behaviors than those assumed by AMPS. We hope to use our effective toy model to demonstrate interesting new ways of thinking about black holes.

  15. Entangled mechanical oscillators.

    PubMed

    Jost, J D; Home, J P; Amini, J M; Hanneke, D; Ozeri, R; Langer, C; Bollinger, J J; Leibfried, D; Wineland, D J

    2009-06-01

    Hallmarks of quantum mechanics include superposition and entanglement. In the context of large complex systems, these features should lead to situations as envisaged in the 'Schrödinger's cat' thought experiment (where the cat exists in a superposition of alive and dead states entangled with a radioactive nucleus). Such situations are not observed in nature. This may be simply due to our inability to sufficiently isolate the system of interest from the surrounding environment-a technical limitation. Another possibility is some as-yet-undiscovered mechanism that prevents the formation of macroscopic entangled states. Such a limitation might depend on the number of elementary constituents in the system or on the types of degrees of freedom that are entangled. Tests of the latter possibility have been made with photons, atoms and condensed matter devices. One system ubiquitous to nature where entanglement has not been previously demonstrated consists of distinct mechanical oscillators. Here we demonstrate deterministic entanglement of separated mechanical oscillators, consisting of the vibrational states of two pairs of atomic ions held in different locations. We also demonstrate entanglement of the internal states of an atomic ion with a distant mechanical oscillator. These results show quantum entanglement in a degree of freedom that pervades the classical world. Such experiments may lead to the generation of entangled states of larger-scale mechanical oscillators, and offer possibilities for testing non-locality with mesoscopic systems. In addition, the control developed here is an important ingredient for scaling-up quantum information processing with trapped atomic ions.

  16. Do vortices entangle?

    PubMed

    Olson Reichhardt, C J; Hastings, M B

    2004-04-16

    We propose an experiment for directly constructing and locally probing topologically entangled states of superconducting vortices which can be performed with present-day technology. Calculations using an elastic string vortex model indicate that as the pitch (the winding angle divided by the vertical distance) increases, the vortices approach each other. At values of the pitch higher than a maximum value the entangled state becomes unstable to collapse via a singularity of the model. We provide predicted experimental signatures for both vortex entanglement and vortex cutting. The local probe we propose can also be used to explore a wide range of other quantities.

  17. Do Vortices Entangle?

    NASA Astrophysics Data System (ADS)

    Olson Reichhardt, C. J.; Hastings, M. B.

    2004-04-01

    We propose an experiment for directly constructing and locally probing topologically entangled states of superconducting vortices which can be performed with present-day technology. Calculations using an elastic string vortex model indicate that as the pitch (the winding angle divided by the vertical distance) increases, the vortices approach each other. At values of the pitch higher than a maximum value the entangled state becomes unstable to collapse via a singularity of the model. We provide predicted experimental signatures for both vortex entanglement and vortex cutting. The local probe we propose can also be used to explore a wide range of other quantities.

  18. Constructing optimal entanglement witnesses

    NASA Astrophysics Data System (ADS)

    Chruściński, Dariusz; Pytel, Justyna; Sarbicki, Gniewomir

    2009-12-01

    We provide a class of indecomposable entanglement witnesses. In 4×4 case, it reproduces the well-known Breuer-Hall witness. We prove that these witnesses are optimal and atomic, i.e., they are able to detect the “weakest” quantum entanglement encoded into states with positive partial transposition. Equivalently, we provide a construction of indecomposable atomic maps in the algebra of 2k×2k complex matrices. It is shown that their structural physical approximations give rise to entanglement breaking channels. This result supports recent conjecture by Korbicz [Phys. Rev. A 78, 062105 (2008)].

  19. Probabilistic Teleportation via Entanglement

    NASA Astrophysics Data System (ADS)

    Li, De-Chao; Shi, Zhong-Ke

    2008-10-01

    With an arbitrary bi-particle entangled mixed state which is shared by Alice (the sender) and Bob (the receiver) acted as a quantum channel, at first, a teleportation protocol that Alice successfully transmits an unknown mixed state to Bob based on a positive operator-valued measurement (POVM) is presented. The upper bound of probability to teleport successfully an unknown mixed state is then investigated, and conclude that it completely depends on the entanglement degree of the bi-particle entangled mixed state as a resource.

  20. Constructing optimal entanglement witnesses

    SciTech Connect

    Chruscinski, Dariusz; Pytel, Justyna; Sarbicki, Gniewomir

    2009-12-15

    We provide a class of indecomposable entanglement witnesses. In 4x4 case, it reproduces the well-known Breuer-Hall witness. We prove that these witnesses are optimal and atomic, i.e., they are able to detect the 'weakest' quantum entanglement encoded into states with positive partial transposition. Equivalently, we provide a construction of indecomposable atomic maps in the algebra of 2kx2k complex matrices. It is shown that their structural physical approximations give rise to entanglement breaking channels. This result supports recent conjecture by Korbicz et al. [Phys. Rev. A 78, 062105 (2008)].

  1. Chain entanglements. I. Theory

    NASA Astrophysics Data System (ADS)

    Fixman, Marshall

    1988-09-01

    A model of concentrated polymer solution dynamics is described. The forces in a linear generalized Langevin equation for the motion of a probe chain are derived on the assumption that all relaxation of the forces is due to motion of the surrounding matrix. Vicinal chain displacements are classified as viscoelastic deformation, reptation, and minor residual fluctuations. The latter provide a torsional relaxation of the primitive path that minimizes the significance of transverse forces on the probe chain. All displacements of vicinal segments are assumed proportional to the forces that they exert on the probe chain. In response to an external force, the displacement of the probe chain relative to a laboratory frame is increased by viscoelastic deformation of the matrix, but reptative diffusion relative to the deforming matrix is slowed down. The net effect on translational diffusion is negligible if the probe and vicinal chains have the same chain length N, but the friction constant for reptative motion is increased by a factor N1-xs. xs=1/2 if Gaussian conformational statistics applies during the disengagement process, while xs =0.6 if excluded volume statistics applies. The translational friction constant is βp ˜N2, as in reptation theory, but the viscosity is η˜N4-xs . The persistence of entanglements during the translational diffusion of the probe chain across many radii of gyration is rationalized pictorially in terms of correlated reptative motion of the probe and vicinal chains.

  2. Average entanglement for Markovian quantum trajectories

    SciTech Connect

    Vogelsberger, S.; Spehner, D.

    2010-11-15

    We study the evolution of the entanglement of noninteracting qubits coupled to reservoirs under monitoring of the reservoirs by means of continuous measurements. We calculate the average of the concurrence of the qubits wave function over all quantum trajectories. For two qubits coupled to independent baths subjected to local measurements, this average decays exponentially with a rate depending on the measurement scheme only. This contrasts with the known disappearance of entanglement after a finite time for the density matrix in the absence of measurements. For two qubits coupled to a common bath, the mean concurrence can vanish at discrete times. Our analysis applies to arbitrary quantum jump or quantum state diffusion dynamics in the Markov limit. We discuss the best measurement schemes to protect entanglement in specific examples.

  3. Entanglement from longitudinal and scalar photons

    SciTech Connect

    Franson, J. D

    2011-09-15

    The covariant quantization of the electromagnetic field in the Lorentz gauge gives rise to longitudinal and scalar photons in addition to the usual transverse photons. It is shown here that the exchange of longitudinal and scalar photons can produce entanglement between two distant atoms or harmonic oscillators. The form of the entangled states produced in this way is very different from that obtained in the Coulomb gauge, where the longitudinal and scalar photons do not exist. A generalized gauge transformation is used to show that all physically observable effects are the same in the two gauges, despite the differences in the form of the entangled states. An approach of this kind may be useful for a covariant description of the dynamics of quantum information processing.

  4. Entangled networks, synchronization, and optimal network topology.

    PubMed

    Donetti, Luca; Hurtado, Pablo I; Muñoz, Miguel A

    2005-10-28

    A new family of graphs, entangled networks, with optimal properties in many respects, is introduced. By definition, their topology is such that it optimizes synchronizability for many dynamical processes. These networks are shown to have an extremely homogeneous structure: degree, node distance, betweenness, and loop distributions are all very narrow. Also, they are characterized by a very interwoven (entangled) structure with short average distances, large loops, and no well-defined community structure. This family of nets exhibits an excellent performance with respect to other flow properties such as robustness against errors and attacks, minimal first-passage time of random walks, efficient communication, etc. These remarkable features convert entangled networks in a useful concept, optimal or almost optimal in many senses, and with plenty of potential applications in computer science or neuroscience.

  5. Multipartite entangled states in particle mixing

    SciTech Connect

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F.

    2008-05-01

    In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.

  6. Unexpected power-law stress relaxation of entangled ring polymers

    NASA Astrophysics Data System (ADS)

    Kapnistos, M.; Lang, M.; Vlassopoulos, D.; Pyckhout-Hintzen, W.; Richter, D.; Cho, D.; Chang, T.; Rubinstein, M.

    2008-12-01

    After many years of intense research, most aspects of the motion of entangled polymers have been understood. Long linear and branched polymers have a characteristic entanglement plateau and their stress relaxes by chain reptation or branch retraction, respectively. In both mechanisms, the presence of chain ends is essential. But how do entangled polymers without ends relax their stress? Using properly purified high-molar-mass ring polymers, we demonstrate that these materials exhibit self-similar dynamics, yielding a power-law stress relaxation. However, trace amounts of linear chains at a concentration almost two decades below their overlap cause an enhanced mechanical response. An entanglement plateau is recovered at higher concentrations of linear chains. These results constitute an important step towards solving an outstanding problem of polymer science and are useful for manipulating properties of materials ranging from DNA to polycarbonate. They also provide possible directions for tuning the rheology of entangled polymers.

  7. Auxiliary Entanglement in Photon Pairs for Multi-Photon Entanglement

    SciTech Connect

    Grice, Warren P; Bennink, Ryan S; Evans, Philip G; Humble, Travis S; Schaake, Jason

    2012-01-01

    A growing number of experiments make use of multiple pairs of photons generated in the process of spontaneous parametric down-conversion. We show that entanglement in unwanted degrees of freedom can adversely affect the results of these experiments. We also discuss techniques to reduce or eliminate spectral and spatial entanglement, and we present results from two-photon polarization-entangled source with almost no entanglement in these degrees of freedom. Finally, we present two methods for the generation of four-photon polarization- entangled states. In one of these methods, four-photon can be generated without the need for intermediate two-photon entanglement.

  8. Quantum entanglement of nanocantilevers

    SciTech Connect

    Joshi, C.; Andersson, E.; Oehberg, P.; Hutter, A.; Zimmer, F. E.; Jonson, M.

    2010-10-15

    We propose a scheme to entangle two mechanical nanocantilevers through indirect interactions mediated by a gas of ultracold atoms. We envisage a system of nanocantilevers magnetically coupled to a Bose-Einstein condensate of atoms and focus on studying the dark states of the system. These dark states are entangled states of the two nanocantilevers, with no coupling to the atomic condensate. In the absence of dissipation, the degree of entanglement is found to oscillate with time, while if dissipation is included, the system is found to relax to a statistical mixture of dark states which remains time independent until the inevitable thermal dephasing destroys the nanocantilever coherence. This opens up the possibility of achieving long-lived entangled nanocantilever states.

  9. Converting Nonclassicality into Entanglement.

    PubMed

    Killoran, N; Steinhoff, F E S; Plenio, M B

    2016-02-26

    Quantum mechanics exhibits a wide range of nonclassical features, of which entanglement in multipartite systems takes a central place. In several specific settings, it is well known that nonclassicality (e.g., squeezing, spin squeezing, coherence) can be converted into entanglement. In this work, we present a general framework, based on superposition, for structurally connecting and converting nonclassicality to entanglement. In addition to capturing the previously known results, this framework also allows us to uncover new entanglement convertibility theorems in two broad scenarios, one which is discrete and one which is continuous. In the discrete setting, the classical states can be any finite linearly independent set. For the continuous setting, the pertinent classical states are "symmetric coherent states," connected with symmetric representations of the group SU(K). These results generalize and link convertibility properties from the resource theory of coherence, spin coherent states, and optical coherent states, while also revealing important connections between local and nonlocal pictures of nonclassicality.

  10. Converting Nonclassicality into Entanglement.

    PubMed

    Killoran, N; Steinhoff, F E S; Plenio, M B

    2016-02-26

    Quantum mechanics exhibits a wide range of nonclassical features, of which entanglement in multipartite systems takes a central place. In several specific settings, it is well known that nonclassicality (e.g., squeezing, spin squeezing, coherence) can be converted into entanglement. In this work, we present a general framework, based on superposition, for structurally connecting and converting nonclassicality to entanglement. In addition to capturing the previously known results, this framework also allows us to uncover new entanglement convertibility theorems in two broad scenarios, one which is discrete and one which is continuous. In the discrete setting, the classical states can be any finite linearly independent set. For the continuous setting, the pertinent classical states are "symmetric coherent states," connected with symmetric representations of the group SU(K). These results generalize and link convertibility properties from the resource theory of coherence, spin coherent states, and optical coherent states, while also revealing important connections between local and nonlocal pictures of nonclassicality. PMID:26967398

  11. Spatiotemporal multipartite entanglement

    SciTech Connect

    Kolobov, Mikhail I.; Patera, Giuseppe

    2011-05-15

    In this Rapid Communication, we propose, following the spirit of quantum imaging, to generalize the theory of multipartite entanglement for the continuous-variable Gaussian states by considering, instead of the global covariance matrix, the local correlation matrix at two different spatiotemporal points ({rho}-vector,t) and ({rho}-vector{sup '},t{sup '}), with {rho}-vector being the transverse coordinate. Our approach makes it possible to introduce the characteristic spatial length and the characteristic time of the multipartite entanglement, which in general depend on the number of 'parties' in the system. As an example, we consider tripartite entanglement in spontaneous parametric down-conversion with a spatially structured pump. We investigate spatiotemporal properties of such entanglement and calculate its characteristic spatial length and time.

  12. Entanglement of mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Narnhofer, Heide; Thirring, Walter

    2002-11-01

    The entanglement of clouds of N=1011 atoms recently experimentally verified is expressed in terms of the fluctuation algebra introduced by [P. Goderis, A. Verbeure, and P. Vets, Commun. Phys. 128, 533 (1990)]. A mean-field Hamiltonian describing the coupling to a laser beam leads to different time evolutions if considered on microscopic or mesoscopic operators. Only the latter creates nontrivial correlations that finally after a measurement lead to entanglement between the clouds.

  13. Onset of polymer entanglement

    SciTech Connect

    Chitanvis, S.M.

    1998-09-01

    We have developed a theory of polymer entanglement using an extended Cahn-Hilliard functional with two extra terms. One is a nonlocal attractive term, operating over mesoscales, which is interpreted as giving rise to entanglement, and the other is a local repulsive term indicative of excluded volume interactions. This functional can be derived using notions from gauge theory. We go beyond the Gaussian approximation, to the one-loop level, to show that the system exhibits a crossover to a state of entanglement as the average chain length between points of entanglement decreases. This crossover is marked by {ital critical} slowing down, as the effective diffusion constant goes to zero. We have also computed the tensile modulus of the system, and we find a corresponding crossover to a regime of high modulus. The single parameter in our theory is obtained by fitting to available experimental data on polystyrene melts of various chain lengths. Extrapolation of this fit yields a model for the crossover to entanglement. The need for additional experiments detailing the crossover to the entangled state is pointed out. {copyright} {ital 1998} {ital The American Physical Society}

  14. Reliable Entanglement Verification

    NASA Astrophysics Data System (ADS)

    Arrazola, Juan; Gittsovich, Oleg; Donohue, John; Lavoie, Jonathan; Resch, Kevin; Lütkenhaus, Norbert

    2013-05-01

    Entanglement plays a central role in quantum protocols. It is therefore important to be able to verify the presence of entanglement in physical systems from experimental data. In the evaluation of these data, the proper treatment of statistical effects requires special attention, as one can never claim to have verified the presence of entanglement with certainty. Recently increased attention has been paid to the development of proper frameworks to pose and to answer these type of questions. In this work, we apply recent results by Christandl and Renner on reliable quantum state tomography to construct a reliable entanglement verification procedure based on the concept of confidence regions. The statements made do not require the specification of a prior distribution nor the assumption of an independent and identically distributed (i.i.d.) source of states. Moreover, we develop efficient numerical tools that are necessary to employ this approach in practice, rendering the procedure ready to be employed in current experiments. We demonstrate this fact by analyzing the data of an experiment where photonic entangled two-photon states were generated and whose entanglement is verified with the use of an accessible nonlinear witness.

  15. Entanglement swapping: entangling atoms that never interacted

    NASA Astrophysics Data System (ADS)

    Guerra, E. S.; Carvalho, C. R.

    2006-07-01

    In this paper we discuss four different proposals of entangling atomic states of particles which have never interacted. The experimental realization proposed makes use of the interaction of Rydberg atoms with a micromaser cavity prepared in either a coherent state or in a superposition of the field Fock states |0> and |1>. We consider atoms in either a three-level cascade or lambda configuration.

  16. Entanglement entropy and entanglement spectrum of the Kitaev model.

    PubMed

    Yao, Hong; Qi, Xiao-Liang

    2010-08-20

    In this letter, we obtain an exact formula for the entanglement entropy of the ground state and all excited states of the Kitaev model. Remarkably, the entanglement entropy can be expressed in a simple separable form S = SG+SF, with SF the entanglement entropy of a free Majorana fermion system and SG that of a Z2 gauge field. The Z2 gauge field part contributes to the universal "topological entanglement entropy" of the ground state while the fermion part is responsible for the nonlocal entanglement carried by the Z2 vortices (visons) in the non-Abelian phase. Our result also enables the calculation of the entire entanglement spectrum and the more general Renyi entropy of the Kitaev model. Based on our results we propose a new quantity to characterize topologically ordered states--the capacity of entanglement, which can distinguish the st ates with and without topologically protected gapless entanglement spectrum.

  17. Entanglement swapping of two arbitrarily degraded entangled states

    NASA Astrophysics Data System (ADS)

    Kirby, Brian T.; Santra, Siddhartha; Malinovsky, Vladimir S.; Brodsky, Michael

    2016-07-01

    We consider entanglement swapping, a key component of quantum network operations and entanglement distribution. Pure entangled states, which are the desired input to the swapping protocol, are typically mixed by environmental interactions, causing a reduction in their degree of entanglement. Thus an understanding of entanglement swapping with partially mixed states is of importance. Here we present a general analytical solution for entanglement swapping of arbitrary two-qubit states. Our result provides a comprehensive method for analyzing entanglement swapping in quantum networks. First, we show that the concurrence of a partially mixed state is conserved when this state is swapped with a Bell state. Then, we find upper and lower bounds on the concurrence of the state resulting from entanglement swapping for various classes of input states. Finally, we determine a general relationship between the ranks of the initial states and the rank of the final state after swapping.

  18. Deterministic polarization-entanglement purification using spatial entanglement

    SciTech Connect

    Li Xihan

    2010-10-15

    We present an efficient entanglement purification protocol with hyperentanglement in which additional spatial entanglement is utilized to purify the two-particle polarization-entangled state. The bit-flip error and phase-flip error can be corrected and eliminated in one step. Two remote parties can obtain maximally entangled polarization states deterministically and only passive linear optics are employed. We also discuss the protocol with practical quantum source and noisy channel.

  19. Entanglement, holography and causal diamonds

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Haehl, Felix M.; Heller, Michal P.; Myers, Robert C.

    2016-08-01

    We argue that the degrees of freedom in a d-dimensional CFT can be reorganized in an insightful way by studying observables on the moduli space of causal diamonds (or equivalently, the space of pairs of timelike separated points). This 2 d-dimensional space naturally captures some of the fundamental nonlocality and causal structure inherent in the entanglement of CFT states. For any primary CFT operator, we construct an observable on this space, which is defined by smearing the associated one-point function over causal diamonds. Known examples of such quantities are the entanglement entropy of vacuum excitations and its higher spin generalizations. We show that in holographic CFTs, these observables are given by suitably defined integrals of dual bulk fields over the corresponding Ryu-Takayanagi minimal surfaces. Furthermore, we explain connections to the operator product expansion and the first law of entanglemententropy from this unifying point of view. We demonstrate that for small perturbations of the vacuum, our observables obey linear two-derivative equations of motion on the space of causal diamonds. In two dimensions, the latter is given by a product of two copies of a two-dimensional de Sitter space. For a class of universal states, we show that the entanglement entropy and its spin-three generalization obey nonlinear equations of motion with local interactions on this moduli space, which can be identified with Liouville and Toda equations, respectively. This suggests the possibility of extending the definition of our new observables beyond the linear level more generally and in such a way that they give rise to new dynamically interacting theories on the moduli space of causal diamonds. Various challenges one has to face in order to implement this idea are discussed.

  20. Entanglement in the classical limit: Quantum correlations from classical probabilities

    SciTech Connect

    Matzkin, A.

    2011-08-15

    We investigate entanglement for a composite closed system endowed with a scaling property which allows the dynamics to be kept invariant while the effective Planck constant ({Dirac_h}/2{pi}){sub eff} of the system is varied. Entanglement increases as ({Dirac_h}/2{pi}){sub eff}{yields}0. Moreover, for sufficiently low ({Dirac_h}/2{pi}){sub eff} the evolution of the quantum correlations, encapsulated, for example, in the quantum discord, can be obtained from the mutual information of the corresponding classical system. We show this behavior is due to the local suppression of path interferences in the interaction that generates the entanglement.

  1. Measuring Entanglement in a Photonic Embedding Quantum Simulator.

    PubMed

    Loredo, J C; Almeida, M P; Di Candia, R; Pedernales, J S; Casanova, J; Solano, E; White, A G

    2016-02-19

    Measuring entanglement is a demanding task that usually requires full tomography of a quantum system, involving a number of observables that grows exponentially with the number of parties. Recently, it was suggested that adding a single ancillary qubit would allow for the efficient measurement of concurrence, and indeed any entanglement monotone associated with antilinear operations. Here, we report on the experimental implementation of such a device-an embedding quantum simulator-in photonics, encoding the entangling dynamics of a bipartite system into a tripartite one. We show that bipartite concurrence can be efficiently extracted from the measurement of merely two observables, instead of 15, without full tomographic information.

  2. Measuring Entanglement in a Photonic Embedding Quantum Simulator.

    PubMed

    Loredo, J C; Almeida, M P; Di Candia, R; Pedernales, J S; Casanova, J; Solano, E; White, A G

    2016-02-19

    Measuring entanglement is a demanding task that usually requires full tomography of a quantum system, involving a number of observables that grows exponentially with the number of parties. Recently, it was suggested that adding a single ancillary qubit would allow for the efficient measurement of concurrence, and indeed any entanglement monotone associated with antilinear operations. Here, we report on the experimental implementation of such a device-an embedding quantum simulator-in photonics, encoding the entangling dynamics of a bipartite system into a tripartite one. We show that bipartite concurrence can be efficiently extracted from the measurement of merely two observables, instead of 15, without full tomographic information. PMID:26943521

  3. Spin correlations and entanglement in partially magnetised ensembles of fermions

    NASA Astrophysics Data System (ADS)

    Thekkadath, G. S.; Jiang, Liang; Thywissen, J. H.

    2016-11-01

    We show that the singlet fraction p s and total magnetisation (or polarisation) m can bound the minimum concurrence in an ensemble of spins. We identify {p}{{s}}\\gt (1-{m}2)/2 as a sufficient and tight condition for bipartite entanglement. Our proof makes no assumptions about the state of the system or symmetry of the particles, and can therefore be used as a witness for spin entanglement between fermions. We discuss the implications for recent experiments in which spin correlations were observed, and the prospect to study entanglement dynamics in the demagnetisation of a cold Fermi gas.

  4. Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.

    2016-03-01

    that can lead to squeezed states of light under some optimal conditions that are analytically determined. These quantum correlations can persist regardless the dynamical state of the system (rolls or solitons), regardless of the spectral extension of the comb (number side modes) and regardless of the dispersion regime (normal or anomalous). We also explicitly determine the phase quadratures leading to photon entanglement and analytically calculate their quantum-noise spectra. For both the below- and above-threshold cases, we study with particular emphasis the two principal architectures for Kerr comb generation, namely the add-through and add-drop configurations. It is found that regardless of the configuration, an essential parameter is the ratio between out-coupling and total losses, which plays a key role as it directly determines the efficiency of the detected fluorescence or squeezing spectra. We finally discuss the relevance of Kerr combs for quantum information systems at optical telecommunication wavelengths below and above threshold.

  5. Extremal surfaces and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Pal, Shesansu Sekhar

    2014-05-01

    We have obtained the equation of the extremal hypersurface by considering the Jacobson-Myers functional and computed the entanglement entropy. In this context, we show that the higher derivative corrected extremal surfaces cannot penetrate the horizon. Also, we have studied the entanglement temperature and entanglement entropy for low excited states for such higher derivative theories when the entangling region is of the strip type.

  6. Electromagnetically Induced Entanglement.

    PubMed

    Yang, Xihua; Xiao, Min

    2015-08-28

    Quantum entanglement provides an essential resource for quantum computation, quantum communication, and quantum network. How to conveniently and efficiently produce entanglement between bright light beams presents a challenging task to build realistic quantum information processing networks. Here, we present an efficient and convenient way to realize a novel quantum phenomenon, named electromagnetically induced entanglement, in the conventional Λ-type three-level atomic system driven by a strong pump field and a relatively weak probe field. Nearly perfect entanglement between the two fields can be achieved with a low coherence decay rate between the two lower levels, high pump-field intensity, and large optical depth of the atomic ensemble. The physical origin is quantum coherence between the lower doublet produced by the pump and probe fields, similar to the well-known electromagnetically induced transparency. This method would greatly facilitate the generation of nondegenerate narrow-band continuous-variable entanglement between bright light beams by using only coherent laser fields, and may find potential and broad applications in realistic quantum information processing.

  7. Multipartite entanglement in quantum algorithms

    SciTech Connect

    Bruss, D.; Macchiavello, C.

    2011-05-15

    We investigate the entanglement features of the quantum states employed in quantum algorithms. In particular, we analyze the multipartite entanglement properties in the Deutsch-Jozsa, Grover, and Simon algorithms. Our results show that for these algorithms most instances involve multipartite entanglement.

  8. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2003-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  9. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2001-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  10. Estimating concurrence via entanglement witnesses

    SciTech Connect

    Jurkowski, Jacek; Chruscinski, Dariusz

    2010-05-15

    We show that each entanglement witness detecting a given bipartite entangled state provides an estimation of its concurrence. We illustrate our result with several well-known examples of entanglement witnesses and compare the corresponding estimation of concurrence with other estimations provided by the trace norm of partial transposition and realignment.

  11. Dissipative long-range entanglement generation between electronic spins

    NASA Astrophysics Data System (ADS)

    Benito, M.; Schuetz, M. J. A.; Cirac, J. I.; Platero, G.; Giedke, G.

    2016-09-01

    We propose a scheme for deterministic generation and long-term stabilization of entanglement between two electronic spin qubits confined in spatially separated quantum dots. Our approach relies on an electronic quantum bus, consisting either of quantum Hall edge channels or surface acoustic waves, that can mediate long-range coupling between localized spins over distances of tens of micrometers. Since the entanglement is actively stabilized by dissipative dynamics, our scheme is inherently robust against noise and imperfections.

  12. Quantum Entanglement and Information

    NASA Astrophysics Data System (ADS)

    Zeilinger, Anton

    2002-04-01

    The development of quantum entanglement presents a very interesting and typical case how fundamental reasearch leads to new technologically interesting concepts. Initially it was introduced by Einstein and Schroedinger because of its philosophical interest. This, together with Bell's theorem, led to experiments beginning in the early 1970-s which also were only motivated by their importance for the foundations of physics. Most remarkably, in recent years people discovered that quantum entanglement can be useful in completely novel ways of transmitting and processing of information with no analog in classical physics. Here the most developed areas are quantum communication, quantum cryptography, quantum teleportation and quantum computation. In the talk I will present the basics of these applications of entanglement and I will discuss some existing experimental realisations. Finally I will argue that, while it is impossible to foresee where the present development will lead us, it is very likely that in the end a novel kind of information technology will emerge.

  13. Entanglement and designs

    NASA Astrophysics Data System (ADS)

    Graydon, Matthew A.; Appleby, D. M.

    2016-08-01

    We describe a connection between entanglement and designs. It involves the conical two-designs introduced in a previous paper. These are a generalization of projective two-designs which includes full sets of arbitrary rank mutually unbiased measurements (mums) and arbitrary rank symmetric informationally complete measurements (sims), as well as the more familiar mubs and sics. We show that a povm is a conical two-design if and only if there exists what we call a regular entanglement monotone whose restriction to the pure states is a function of the norm of the probability vector. In that case the concurrence is such a monotone. We also generalize and develop previous work on designs and entanglement detection.

  14. Images in quantum entanglement

    NASA Astrophysics Data System (ADS)

    Bowden, G. J.

    2009-08-01

    A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction ΨO plus a portion of its own inverse image. Bell states can be defined in this way: \\Psi = 1/\\sqrt 2 (\\Psi _O \\pm \\Psi _I ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν123 entanglement, two-particle entanglements ν12, ν13, ν23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν12, ν13, ν23, ν123 and phi123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α1, β1), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.

  15. Entangling and assisted entangling power of bipartite unitary operations

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yu, Li

    2016-08-01

    Nonlocal unitary operations can create quantum entanglement between distributed particles, and the quantification of created entanglement is a hard problem. It corresponds to the concepts of entangling and assisted entangling power when the input states are, respectively, product and arbitrary pure states. We analytically derive them for Schmidt-rank-two bipartite unitary and some complex bipartite permutation unitaries. In particular, the entangling power of permutation unitary of Schmidt rank three can take only one of two values: log29 -16 /9 or log23 ebits. The entangling power, assisted entangling power, and disentangling power of 2 ×dB permutation unitaries of Schmidt rank four are all 2 ebits. These quantities are also derived for generalized Clifford operators. We further show that any bipartite permutation unitary of Schmidt rank greater than two has entangling power greater than 1.223 ebits. We construct the generalized controlled-not (cnot) gates whose assisted entangling power reaches the maximum. We quantitatively compare the entangling power and assisted entangling power for general bipartite unitaries and their connection to the disentangling power by proposing a probabilistic protocol for implementing bipartite unitaries.

  16. Atomic Entanglement in Carbon Nanotubes.

    NASA Astrophysics Data System (ADS)

    Bondarev, Igor; Vlahovic, Branislav

    2006-03-01

    The development of materials that may host quantum coherent states is a critical research problem for the nearest future. Recent progress in the growth of centimeter-long small-diameter single-walled carbon nanotubes (CNs)[1] and successful experiments on the encapsulation of single atoms into CNs[2], stimulate the study of dynamical quantum processes in atomically doped CN systems. We have recently shown[3] that atomic states may be strongly coupled to vacuum surface photonic modes in the CN, thus forming quasi-1D cavity polaritons similar to those observed for quantum dots in semiconductor nanocavities[4], which were recently suggested to be a possible way to produce the excitonic qubit entanglement[5]. Here, we show that, being strongly coupled to the (resonator-like) cylindrical nanotube environment, the two atomic quasi-1D polaritons can be easily entangled as well, thus challenging a novel alternative approach towards quantum information transfer over centimeter-long distances. [1]L.X.Zheng et al, Proc. Nanotech 2005 (May 8-12, 2005, Anaheim, CA, USA), vol.3, p.126. [2]G.-H.Jeong et al, Phys. Rev. B68,075410(2003). [3]I.V.Bondarev and Ph.Lambin, in: Trends in Nanotubes Reasearch (NovaScience, NY, 2005); Phys. Rev. B70,035407(2004); Phys. Rev. B72,035451(2005). [4]T.Yoshie et al, Nature 432,200(2004). [5]S.Hughes, Phys. Rev. Lett.94,227402(2005).

  17. Entangled granular media.

    PubMed

    Gravish, Nick; Franklin, Scott V; Hu, David L; Goldman, Daniel I

    2012-05-18

    We study the geometrically induced cohesion of ensembles of granular "u particles" that mechanically entangle through particle interpenetration. We vary the length-to-width ratio l/w of the u particles and form them into freestanding vertical columns. In a laboratory experiment, we monitor the response of the columns to sinusoidal vibration (with peak acceleration Γ). Column collapse occurs in a characteristic time τ which follows the relation τ∝exp(Γ/Δ). Δ resembles an activation energy and is maximal at intermediate l/w. A simulation reveals that optimal strength results from competition between packing and entanglement.

  18. Continuous Variable Entanglement Swapping

    NASA Astrophysics Data System (ADS)

    Polkinghorne, R. E. S.; Ralph, T. C.

    1999-09-01

    We investigate the efficacy with which polarization entanglement can be teleported using a continuous measurement scheme. We show that by using the correct gain for the classical channel the degree of violation of locality that can be demonstrated (using a CH-type inequality) is not a function of the level of entanglement squeezing used in the teleportation. This is possible because a gain condition can always be chosen such that passage through the teleporter is equivalent to pure attenuation of the input field.

  19. Sudden birth versus sudden death of entanglement for the extended Werner-like state in a dissipative environment

    NASA Astrophysics Data System (ADS)

    Shan, Chuan-Jia; Chen, Tao; Liu, Ji-Bing; Cheng, Wei-Wen; Liu, Tang-Kun; Huang, Yan-Xia; Li, Hong

    2010-06-01

    In this paper, we investigate the dynamical behaviour of entanglement in terms of concurrence in a bipartite system subjected to an external magnetic field under the action of dissipative environments in the extended Werner-like initial state. The interesting phenomenon of entanglement sudden death as well as sudden birth appears during the evolution process. We analyse in detail the effect of the purity of the initial entangled state of two qubits via Heisenberg XY interaction on the apparition time of entanglement sudden death and entanglement sudden birth. Furthermore, the conditions on the conversion of entanglement sudden death and entanglement sudden birth can be generalized when the initial entangled state is not pure. In particular, a critical purity of the initial mixed entangled state exists, above which entanglement sudden birth vanishes while entanglement sudden death appears. It is also noticed that stable entanglement, which is independent of different initial states of the qubits (pure or mixed state), occurs even in the presence of decoherence. These results arising from the combination of the extended Werner-like initial state and dissipative environments suggest an approach to control and enhance the entanglement even after purity induced sudden birth, death and revival.

  20. Quantum cost for sending entanglement.

    PubMed

    Streltsov, Alexander; Kampermann, Hermann; Bruß, Dagmar

    2012-06-22

    Establishing quantum entanglement between two distant parties is an essential step of many protocols in quantum information processing. One possibility for providing long-distance entanglement is to create an entangled composite state within a lab and then physically send one subsystem to a distant lab. However, is this the "cheapest" way? Here, we investigate the minimal "cost" that is necessary for establishing a certain amount of entanglement between two distant parties. We prove that this cost is intrinsically quantum, and is specified by quantum correlations. Our results provide an optimal protocol for entanglement distribution and show that quantum correlations are the essential resource for this task.

  1. Effect of entanglements on mechanical properties of glassy polymers

    NASA Astrophysics Data System (ADS)

    Hoy, Robert Scott

    Glass forming polymers are of great industrial importance and scientific interest because of their unique mechanical properties, which arise from the connectivity and random-walk-like structure of the constituent chains. In this thesis I study the relation of entanglements to the mechanical properties of model polymer glasses and brushes using molecular dynamics simulations. We perform extensive studies of glassy strain hardening, which stabilizes polymers against strain localization and fracture. Fundamental inconsistencies in existing entropic models of strain hardening imply that our understanding of its microscopic origins is far from complete. The dependence of stress on strain and entanglement density is consistent with experiment and entropic models. However, many of the assumptions of these models are totally inconsistent with our simulation results. The dependence on temperature, rate and interaction strength can be understood as reflecting changes in the plastic flow stress rather than a network entropy. A substantial energetic contribution to the stress rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic arrangements. The deformation of the entanglement network is not affine to the macroscopic stretch. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain. The entropic back stress responsible for shape recovery arises from chain orientation rather than entanglement. We also present some other results unrelated to strain hardening. We analyze the entanglement of polymer brushes embedded in long-chain melts and in implicit good and theta solvents. The melt-embedded brushes are more self-entangled than those in the solvents. The degree of self-entanglement of the brushes in the solvents follows a simple

  2. Entanglement in Quantum-Classical Hybrid

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.

  3. Entanglement in the Bogoliubov vacuum

    SciTech Connect

    Poulsen, U.V.; Meyer, T.; Lewenstein, M.

    2005-06-15

    We analyze the entanglement properties of the Bogoliubov vacuum, which is obtained as a second-order approximation to the ground state of an interacting Bose-Einstein condensate. We work on one- and two-dimensional lattices and study the entanglement between two groups of lattice sites as a function of the geometry of the configuration and the strength of the interactions. As our measure of entanglement we use the logarithmic negativity, supplemented by an algorithmic check [G. Giedke et al., Phys. Rev. Lett. 87, 167904 (2001)] for bound entanglement where appropriate. The short-range entanglement is found to grow approximately linearly with the group sizes and to be favored by strong interactions. Conversely, long-range entanglement is favored by relatively weak interactions. No examples of bound entanglement are found.

  4. Postcolonial Entanglements: Unruling Stories

    ERIC Educational Resources Information Center

    Pacini-Ketchabaw, Veronica

    2012-01-01

    In this article, I use Donna Haraway's philosophy to think about postcolonial encounters between different species. I follow entangled stories of the deer/settler-child figure to trouble colonialisms and untangle the histories and trajectories that we inhabit with other species through colonial histories. I shy away from generalizations and…

  5. Universal nonlinear entanglement witnesses

    SciTech Connect

    Kotowski, Marcin; Kotowski, Michal

    2010-06-15

    We give a universal recipe for constructing nonlinear entanglement witnesses able to detect nonclassical correlations in arbitrary systems of distinguishable and/or identical particles for an arbitrary number of constituents. The constructed witnesses are expressed in terms of expectation values of observables. As such, they are, at least in principle, measurable in experiments.

  6. Entanglement Created by Dissipation

    SciTech Connect

    Alharbi, Abdullah F.; Ficek, Zbigniew

    2011-10-27

    A technique for entangling closely separated atoms by the process of dissipative spontaneous emission is presented. The system considered is composed of two non-identical two-level atoms separated at the quarter wavelength of a driven standing wave laser field. At this atomic distance, only one of the atoms can be addressed by the laser field. In addition, we arrange the atomic dipole moments to be oriented relative to the inter-atomic axis such that the dipole-dipole interaction between the atoms is zero at this specific distance. It is shown that an entanglement can be created between the atoms on demand by tuning the Rabi frequency of the driving field to the difference between the atomic transition frequencies. The amount of the entanglement created depends on the ratio between the damping rates of the atoms, but is independent of the frequency difference between the atoms. We also find that the transient buildup of an entanglement between the atoms may differ dramatically for different initial atomic conditions.

  7. Entanglement with classical fields

    SciTech Connect

    Lee, K.F.; Thomas, J.E.

    2004-05-01

    We experimentally demonstrate a simple classical-field optical heterodyne method which employs postselection to reproduce the polarization correlations of a four-particle entangled state. We give a heuristic argument relating this method to the measurement of multiple quantum fields by correlated homodyne detection. We suggest that using multiple classical fields and postselection, one can reproduce the polarization correlations obtained in quantum experiments which employ multiple single-photon sources and linear optics to prepare multiparticle entangled states. Our experimental scheme produces four spatially separated beams which are separately detected by mixing with four independent optical local oscillators (LO) of variable polarization. Analog multiplication of the four beat signals enables projection onto a four-particle polarization-state basis. Appropriate band pass filtering is used to produce a signal proportional to the projections of the maximally entangled four-field polarization state, H{sub 1})H{sub 2})H{sub 3})H{sub 4})+V{sub 1})V{sub 2})V{sub 3})V{sub 4}), onto the product of the four LO polarizations. Since the data from multiple observers is combined prior to postselection, this method does not constitute a test of nonlocality. However, we reproduce the polarization correlations of the 32 elements in the truth table from the quantum mechanical Greenberger-Horne-Zeilinger experiments on the violation of local realism. We also demonstrate a form of classical entanglement swapping in a four-particle basis.

  8. Muon-fluorine entanglement in fluoropolymers.

    PubMed

    Lancaster, T; Pratt, F L; Blundell, S J; McKenzie, I; Assender, H E

    2009-08-26

    We present the results of muon spin relaxation measurements on the fluoropolymers polytetrafluoroethylene (PTFE), poly(vinylidene fluoride) (PVDF) and poly(vinyl fluoride) (PVF). Entanglement between the muon spin and the spins of the fluorine nuclei in the polymers allows us to identify the different muon stopping states that occur in each of these materials and provides a method of probing the local environment of the muon and the dynamics of the polymer chains.

  9. Are all maximally entangled states pure?

    NASA Astrophysics Data System (ADS)

    Cavalcanti, D.; Brandão, F. G. S. L.; Terra Cunha, M. O.

    2005-10-01

    We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.

  10. Are all maximally entangled states pure?

    SciTech Connect

    Cavalcanti, D.; Brandao, F.G.S.L.; Terra Cunha, M.O.

    2005-10-15

    We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.

  11. The generalized Langevin equation revisited: Analytical expressions for the persistence dynamics of a viscous fluid under a time dependent external force

    NASA Astrophysics Data System (ADS)

    Olivares-Rivas, Wilmer; Colmenares, Pedro J.

    2016-09-01

    The non-static generalized Langevin equation and its corresponding Fokker-Planck equation for the position of a viscous fluid particle were solved in closed form for a time dependent external force. Its solution for a constant external force was obtained analytically. The non-Markovian stochastic differential equation, associated to the dynamics of the position under a colored noise, was then applied to the description of the dynamics and persistence time of particles constrained within absorbing barriers. Comparisons with molecular dynamics were very satisfactory.

  12. Bipartite entanglement in continuous-variable tripartite systems

    NASA Astrophysics Data System (ADS)

    Olsen, M. K.; Corney, J. F.

    2016-11-01

    In the field of continuous-variable tripartite entanglement, the systems utilised can be either asymmetric or symmetric. It is therefore of interest to examine the differences in the entanglement properties of these two types of system, using two examples that are known to produce tripartite entanglement. We examine one asymmetric and one fully symmetric Gaussian continuous-variable system in terms of their tripartite and bipartite entanglement properties. We first treat pure states and are able to find analytic solutions using the undepleted pump approximation for the Hamiltonian models. Our symmetric system exhibits perfect tripartite correlations, but only in the unphysical limit of infinite squeezing. For more realistic squeezing parameters, the two systems exhibit both tripartite and bipartite entanglement. Secondly we treat the more experimentally reasonable situation where the interactions take place inside optical cavities and we are dealing with mixed states. In these cases, where the criteria for genuine tripartite entanglement are more stringent, we find that tripartite entanglement is still available, although over smaller bandwidths than three-mode inseparability. In general, the spectral results are consistent with the analytical solutions. We conclude that none of the outputs are completely analogous to either GHZ or W states, but there are parameter regions of the Hamiltonian dynamics where they produce T states as introduced by Adesso et al. [1,2]. In the intracavity cases, both bipartite entanglement and tripartite inseparability are always present, with genuine tripartite entanglement appearing as the pumping rate is increased. The qualitative differences in the output states for different interaction parameters indicate that continuous-variable tripartite quantum information systems offer a versatility not found in two-mode bipartite systems.

  13. General polygamy inequality of multiparty quantum entanglement

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2012-06-01

    Using entanglement of assistance, we establish a general polygamy inequality of multiparty entanglement in arbitrary-dimensional quantum systems. For multiparty closed quantum systems, we relate our result with the monogamy of entanglement, and clarify that the entropy of entanglement bounds both monogamy and polygamy of multiparty quantum entanglement.

  14. Measure of tripartite entanglement in bosonic and fermionic systems

    SciTech Connect

    Buscemi, Fabrizio

    2011-08-15

    We describe an efficient theoretical criterion suitable for the evaluation of the tripartite entanglement of any mixed three-boson or three-fermion state, based on the notion of the entanglement of particles for bipartite systems of identical particles. Our approach allows one to quantify the accessible number of quantum correlations in the systems without any violation of the local particle number superselection rule. A generalization of the tripartite negativity is here applied to some correlated systems including the continuous-time quantum walks of identical particles (for both bosons and fermions) and compared with other criteria recently proposed in the literature. Our results show the dependence of the entanglement dynamics upon the quantum statistics: The bosonic bunching results in a low number of quantum correlations while Fermi-Dirac statistics allows for higher values of the entanglement.

  15. Generation and detection of atomic spin entanglement in optical lattices

    NASA Astrophysics Data System (ADS)

    Dai, Han-Ning; Yang, Bing; Reingruber, Andreas; Xu, Xiao-Fan; Jiang, Xiao; Chen, Yu-Ao; Yuan, Zhen-Sheng; Pan, Jian-Wei

    2016-08-01

    Ultracold atoms in optical lattices hold promise for the creation of entangled states for quantum technologies. Here we report on the generation, manipulation and detection of atomic spin entanglement in an optical superlattice. Using a spin-dependent superlattice, atomic spins in the left or right sites can be individually addressed and coherently manipulated with near-unity fidelities by microwave pulses. The spin entanglement of the two atoms in the double wells of the superlattice is generated via the dynamical evolution governed by spin superexchange. By monitoring the collisional atom loss with in situ absorption imaging we measure the spin correlations of the atoms inside the double wells and obtain a lower bound on the entanglement fidelity of 0.79 +/- 0.06, and a violation of a Bell's inequality S = 2.21 +/- 0.08.

  16. Entanglement reactivation in separable environments

    NASA Astrophysics Data System (ADS)

    Pirandola, Stefano

    2013-11-01

    Combining two entanglement-breaking channels into a correlated-noise environment restores the distribution of entanglement. Surprisingly, this reactivation can be induced by the injection of separable correlations from the composite environment. In any dimension (finite or infinite), we can construct classically correlated ‘twirling’ environments which are entanglement-breaking in the transmission of single systems but entanglement-preserving when two systems are transmitted. Here entanglement is simply preserved by the existence of decoherence-free subspaces. Remarkably, even when such subspaces do not exist, a fraction of the input entanglement can still be distributed. This is found in separable Gaussian environments, where distillable entanglement is able to survive the two-mode transmission, despite being broken in any single-mode transmission by the strong thermal noise. In the Gaussian setting, entanglement restoration is a threshold process, occurring only after a critical amount of correlations has been injected. Such findings suggest new perspectives for distributing entanglement in realistic environments with extreme decoherence, identifying separable correlations and classical memory effects as physical resources for ‘breaking entanglement-breaking’.

  17. Entanglement polytopes: multiparticle entanglement from single-particle information.

    PubMed

    Walter, Michael; Doran, Brent; Gross, David; Christandl, Matthias

    2013-06-01

    Entangled many-body states are an essential resource for quantum computing and interferometry. Determining the type of entanglement present in a system usually requires access to an exponential number of parameters. We show that in the case of pure, multiparticle quantum states, features of the global entanglement can already be extracted from local information alone. This is achieved by associating any given class of entanglement with an entanglement polytope-a geometric object that characterizes the single-particle states compatible with that class. Our results, applicable to systems of arbitrary size and statistics, give rise to local witnesses for global pure-state entanglement and can be generalized to states affected by low levels of noise.

  18. Entanglement entropy in a periodically driven quantum Ising ring

    NASA Astrophysics Data System (ADS)

    Apollaro, Tony J. G.; Palma, G. Massimo; Marino, Jamir

    2016-10-01

    We numerically study the dynamics of entanglement entropy, induced by an oscillating time periodic driving of the transverse field, h (t ) , of a one-dimensional quantum Ising ring. We consider several realizations of h (t ) , and we find a number of results in analogy with entanglement entropy dynamics induced by a sudden quantum quench. After a short-time relaxation, the dynamics of entanglement entropy synchronizes with h (t ) , displaying an oscillatory behavior at the frequency of the driving. Synchronization in the dynamics of entanglement entropy is spoiled by the appearance of quasirevivals which fade out in the thermodynamic limit, and which we interpret using a quasiparticle picture adapted to periodic drivings. We show that the time-averaged entanglement entropy in the synchronized regime obeys a volume law scaling with the subsystem's size. Such result is reminiscent of a thermal state or a generalized Gibbs ensemble, although the system does not heat up towards infinite temperature as a consequence of the integrability of the model.

  19. Entanglement of mixed macroscopic superpositions: An entangling-power study

    SciTech Connect

    Paternostro, M.; Kim, M. S.; Jeong, H.

    2006-01-15

    We investigate entanglement properties of a recently introduced class of macroscopic quantum superpositions in two-mode mixed states. One of the tools we use in order to infer the entanglement in this non-Gaussian class of states is the power to entangle a qubit system. Our study reveals features which are hidden in a standard approach to entanglement investigation based on the uncertainty principle of the quadrature variables. We briefly describe the experimental setup corresponding to our theoretical scenario and a suitable modification of the protocol which makes our proposal realizable within the current experimental capabilities.

  20. Entanglement and quantum teleportation via decohered tripartite entangled states

    SciTech Connect

    Metwally, N.

    2014-12-15

    The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.