Science.gov

Sample records for non-mhc immune genes

  1. Non-MHC genes linked to autoimmune disease.

    PubMed

    Deitiker, Philip; Atassi, M Zouhair

    2012-01-01

    The genetic traits that result in autoimmune diseases represent complicating factors in explicating the molecular and cellular elements of autoimmune responses and how these responses can be overcome or manipulated. This article focuses on the major non-major histocompatibility complex genes that have been found to be linked to autoimmune diseases. A given gene may associate with a number of autoimmune diseases and, conversely, a given disease may link to a number of common autoimmune disease (AD) genes. Collaboration and interaction among genes and the number of diseases that develop and the extensive risk factors shared among ADs further complicate the outcome. This article describes the various relationships between gene regions associated with multiple ADs and the complexity of those relationships.

  2. Enhanced pathogenicity of diabetogenic T cells escaping a non-MHC gene-controlled near death experience.

    PubMed

    Choisy-Rossi, Caroline-Morgane; Holl, Thomas M; Pierce, Melissa A; Chapman, Harold D; Serreze, David V

    2004-09-15

    For unknown reasons, the common MHC class I variants encoded by the H2g7 haplotype (Kd, Db) aberrantly elicit autoreactive CD8 T cell responses essential to type 1 diabetes development when expressed in NOD mice, but not other strains. In this study, we show that interactive non-MHC genes allow a NOD-derived diabetogenic CD8 T cell clonotype (AI4) to be negatively selected at far greater efficiency in C57BL/6 mice congenically expressing H2g7 (B6.H2g7). However, the few AI4 T cells escaping negative selection in B6.H2g7 mice are exported from the thymus more efficiently, and are more functionally aggressive than those of NOD origin. This provides mechanistic insight to previous findings that resistant mouse strains carry some genes conferring greater diabetes susceptibility than the corresponding NOD allele. In the B6.H2g7 stock, non-MHC gene-controlled elevations in TCR expression are associated with both enhanced negative selection of diabetogenic CD8 T cells and increased aggressiveness of those escaping this process. An implication of this finding is that the same phenotype, in this case relatively high TCR expression levels, could have double-edged sword effects, contributing to type 1 diabetes resistance at one level of T cell development, but at another actually promoting pathogenesis.

  3. Two mechanisms for the non-MHC-linked resistance to spontaneous autoimmunity.

    PubMed

    Verdaguer, J; Amrani, A; Anderson, B; Schmidt, D; Santamaria, P

    1999-04-15

    Genetic susceptibility and resistance to most autoimmune disorders are associated with highly polymorphic genes of the MHC and with non-MHC-linked polygenic modifiers. It is known that non-MHC-linked polymorphisms can override or enhance the susceptibility to an autoimmune disease provided by pathogenic MHC genes, but the mechanisms remain elusive. In this study, we have followed the fate of two highly diabetogenic beta cell-specific T cell receptors (Kd and I-Ag7 restricted, respectively) in NOR/Lt mice, which are resistant to autoimmune diabetes despite expressing two copies of the diabetogenic MHC haplotype H-2g7. We show that at least two mechanisms of non-MHC-linked control of pathogenic T cells operate in these mice. One segregates as a recessive trait and is associated with a reduction in the peripheral frequency of diabetogenic CD8+ (but not CD4+) T cells. The other segregates as a dominant trait and is mediated by IL-4- and TGF-beta1-independent immune suppressive functions provided by lymphocytes that target diabetogenic CD4+ and CD8+ T cells, without causing their deletion, anergy, immune deviation, or ignorance. These results provide explanations as to how non-MHC-linked polymorphisms can override the susceptibility to an autoimmune disease provided by pathogenic MHC haplotypes, and demonstrate that protective non-MHC-linked genes may selectively target specific lymphoid cell types in cellularly complex autoimmune responses. PMID:10202001

  4. Cloning and characterization of the 2B4 gene encoding a molecule associated with non-MHC-restricted killing mediated by activated natural killer cells and T cells

    SciTech Connect

    Mathew, P.A.; Garni-Wagner, B.A.; Land, K.; Takashima, A.; Stoneman, E.; Bennett, M.; Kumar, V. )

    1993-11-15

    The authors have recently described a signal transducing molecule, 2B4, expressed on all NK and T cells that mediate non-MHC-restricted killing. The gene encoding this molecule was cloned and its nucleotide sequence determined. The encoded protein of 398 amino acids has a leader peptide of 18 amino acids and a transmembrane region of 24 amino acids. The predicted protein has eight N-linked glycosylation sites, suggesting that it is highly glycosylated. Comparison of 2B4 with sequences in the databanks indicates that 2B4 is a member of the Ig supergene family, and it shows homology to murine and rat CD48 and human LFA-3. Northern blot analysis has shown at least three transcripts for 2B4 in adherent lymphokine-activated killer cells of several mouse strains and TCR-[gamma]/[delta] dendritic epidermal T cell lines but not in allospecific T cell clones. These three mRNA are the products of differential splicing of heterogeneous nuclear RNA. Southern blot analysis of genomic DNA from several mouse strains revealed that 2B4 belongs to a family of closely related genes. The 2B4 gene has been mapped to mouse chromosome 1 by analysis of 2B4 expression in recombinant inbred mouse strains. 48 refs., 6 figs., 2 tabs.

  5. Selective decreases in T cell receptor V beta expression. Decreased expression of specific V beta families is associated with expression of multiple MHC and non-MHC gene products

    PubMed Central

    1989-01-01

    Previous reports of TCR V beta usage, studying either expression of a single V beta in a wide panel of strains (6, 7, 10, 12, 13), or expression of multiple V beta s in a very limited strain distribution (14, 15), have identified instances of clonal deletion of potentially autoreactive T cells specific for either self E alpha E beta or minor lymphocyte stimulatory (Mls) antigens. The present study has investigated the range of self antigens that can influence V beta usage by evaluating expression of 16 V beta families in 30 strains of mice. It was found that significant decreases in expression occur in at least 8 of the 16 V beta families and that dominant influences on the T cell V beta repertoire are exerted by expression of Mlsa, Mlsc, and MHC gene products. Decreased expressions of V beta 5, -11, -12, and -16 were influenced by MHC gene products. The patterns of decreased expression seen in intra-MHC recombinant strains and strains of different non-MHC background were distinct for V beta 11, -12, and -16, suggesting that different ligands are involved in the deletion of T cells expressing each of these V beta genes. Mice expressing Mlsa show decreased expression of V beta 9 as well as V beta 6. Mlsc mice lacked V beta 3 expression in those strains where the expressed MHC type was compatible with a strongly stimulatory Mlsc phenotype. V beta 7 was strongly influenced by both MHC and non-MHC products that are not yet identified. These results demonstrate that strain-specific decreases of mRNA expression occur in a major portion of the TCR repertoire. Self antigens including Mlsa, Mlsc, and E alpha E beta, as well as additional MHC and non-MHC products, appear to induce these decreases in expression in the process of eliminating self-reactive T cells from the mature T cell pool. PMID:2529341

  6. Patterns of T cell receptor gamma gene rearrangements in human CD3+ clones derived from WT31- or Leu7+ cells in relation to non-MHC-restricted cytotoxic activity.

    PubMed

    Christmas, S E

    1989-01-01

    Clones were obtained from human peripheral blood WT31-, WT31-CD4-8-, CD4-8- or Leu 7+ cells in the presence of interleukin 2 and phytohaemagglutinin. Almost all clones were CD3+, about 50% were CD4-8- and all clones tested derived from WT31- remained WT31-, indicating that they were expressing a gamma/delta heterodimer in association with CD3. Some clones derived from CD4-8- cells expressing CD3 were WT31- and some were WT31+. All CD3+ clones had T cell receptor (TCR) gamma gene rearrangements; most also had their TCR beta genes rearranged, including all clones derived from Leu 7+ cells. TCR gamma gene rearrangements were noted involving all five known J segments. There was a tendency for V gene segments from the VII and VIII subgroups to be rearranged to J gamma 2 less often than those from the more 5' VI subgroup. Two clones definitely had one rearrangement to C gamma 1 and one to C gamma 2. When clones derived from WT31- cells were considered, the only obvious relationship which emerged was that all clones with both chromosomes rearranged to C gamma 2 had low or negligible cytotoxic activity against natural killer (NK)-sensitive and NK-resistant targets. Several of these clones were expressing CD8 on about 30% of cells. Most clones with rearrangements involving only C gamma 1 had high non-MHC-restricted cytotoxicity while those with at least one C gamma 1 rearrangement had either high or low activity. The only exceptions noted were a clone with a single V9JP rearrangement and a clone with a V9JP and a VI/IIIJP1 rearrangement, which both had low activity. A similar pattern was also found with most clones derived from Leu 7+ cells. The data are consistent with the participation of most types of disulphide-linked (C gamma 1) gamma/delta heterodimers in non-MHC-restricted cytotoxic activity mediated by CD3+ gamma/delta + T cell clones.

  7. Autophagy genes in immunity

    PubMed Central

    Virgin, Herbert W; Levine, Beth

    2009-01-01

    In its classical form, autophagy is a pathway by which cytoplasmic constituents, including intracellular pathogens, are sequestered in a double-membrane–bound autophagosome and delivered to the lysosome for degradation. This pathway has been linked to diverse aspects of innate and adaptive immunity, including pathogen resistance, production of type I interferon, antigen presentation, tolerance and lymphocyte development, as well as the negative regulation of cytokine signaling and inflammation. Most of these links have emerged from studies in which genes encoding molecules involved in autophagy are inactivated in immune effector cells. However, it is not yet known whether all of the critical functions of such genes in immunity represent ‘classical autophagy’ or possible as-yet-undefined autophagolysosome-independent functions of these genes. This review summarizes phenotypes that result from the inactivation of autophagy genes in the immune system and discusses the pleiotropic functions of autophagy genes in immunity. PMID:19381141

  8. T-cell receptor gene expression by human gamma delta T-cell clones from peripheral blood and reproductive tissues in relation to non-MHC-restricted cytotoxic function.

    PubMed

    Christmas, S E

    1991-06-01

    T-cell receptor gamma and delta gene expression was determined using V-region-specific monoclonal antibodies in conjunction with Southern blot analysis in panels of gamma delta T-cell clones from human peripheral blood (n = 77) and reproductive tissue (n = 9). Whereas 53 out of 77 (69%) clones from peripheral blood expressed V gamma 9 and V delta 2J1, only 2 out of 9 (22%) from reproductive tissues expressed V delta 2J1. Two out of eight decidual clones expressed both V gamma 9 and V delta 1J1, while this configuration was rare in clones from peripheral blood. The majority of clones from the peripheral blood of one donor expressed V gamma 8 and V delta 3J1. Clones were identified which expressed V delta 1J1 in the disulphide-linked C gamma 1 form of the receptor and which expressed a gene other than V delta 1 in the non-disulphide-linked C gamma 2 form, indicating incomplete concordance between expression of V delta 1 and C gamma 2. V delta 3 could be expressed in the disulphide-linked or non-disulphide-linked form of the receptor. At least 5 out of 77 peripheral clones were expressing V delta genes other than V delta 1, V delta 2, or V delta 3 in conjunction with C gamma 1 or C gamma 2. There was a strong but incomplete correlation between high non-NHC-restricted cytotoxic function and C gamma 1 expression. Clones from the same donor expressing both V gamma 9JPC gamma 1 and V delta 2J1 showed either high or negligible cytotoxicity, and cytotoxic clones expressing C gamma 2 were found. Thus no complete correlation between cytotoxic function and expression of a particular form of the gamma delta heterodimer was identified. The results also suggest that gamma delta T cells from reproductive tissues are less likely to express V delta 2J1 than those from peripheral blood.

  9. Dominant, non-MHC genetic control of food allergy in an adjuvant-free mouse model.

    PubMed

    Parvataneni, S; Birmingham, N P; Gonipeta, B; Gangur, V

    2009-10-01

    Food allergy is a potentially fatal immune-mediated disorder with incompletely understood mechanisms. We studied the genetic control of food allergy using major histocompatibility complex-identical mice (H2(s)) and an adjuvant-free method of sensitization. Whereas, transdermal exposure to hazelnut - a model allergenic food, elicited robust IgG1 response in both strains, an IgE response was evident only in A.SW mice. Following oral challenge, only A.SW but not SJL mice exhibited signs of systemic anaphylaxis and hypothermia. In addition, (A.SW x SJL) F1 hybrids exhibited IgE responsiveness, systemic anaphylaxis and hypothermia similar to A.SW, indicating dominant inheritance of these traits. Furthermore, whereas A.SW and F1 mice but not SJL elicited robust interleukin (IL)-4 response, all three strains elicited IL-5 and IL-13 responses by spleen cells. These data demonstrate for the first time, dominant non-MHC genetic control of food allergy and a critical role of IL-4 but not IL-5 or IL-13 in this model. PMID:19624800

  10. T cell receptor junctional regions of V gamma 9+/V delta 2+ T cell clones in relation to non-MHC restricted cytotoxic activity.

    PubMed

    Flanagan, B F; Wheatcroft, N J; Thornton, S M; Christmas, S E

    1993-05-01

    Human gamma delta T cell clones having V gamma 9JP and V delta 2DJ1 T cell receptor (TCR) gene rearrangements were isolated form an individual donor and tested for non-MHC restricted cytotoxicity against the B lymphoblastoid cell line, BSM. Most clones were highly cytotoxic but 3/9 clones had very low activity, comparable to that of CD4+ alpha beta T cell clones. Although there was a tendency for clones with low cytotoxic function to produce high levels of interferon-gamma and tumor necrosis factor-alpha, this correlation was not complete. TCR gamma and delta junctional sequences were obtained and were found to be different for all clones. There were no consistent structural differences between gamma delta TCRs of cytotoxic and non-cytotoxic clones, but gamma or delta junctional regions of all three non-cytotoxic clones had unusual features. One clone had a particularly short gamma chain junctional sequence, one had a short delta chain junctional sequence and the third clone was the only one of the panel which failed to utilise the D delta 3 segment. If the gamma delta TCR is involved in target cell recognition in this model of non-MHC restricted killing, such variations in receptor structure may be sufficient to inhibit recognition and thereby reduce the cytotoxic capacity of a minority of V gamma 9+/V delta 2+ clones. Also, a panel of gamma delta T cell clones expressing V gamma 8/V delta 3 isolated from a different donor, were all highly cytotoxic against BSM, indicating that these target cells can be recognised by effector cells expressing a TCR other than the V gamma 9/V delta 2 receptor. The possible influence of other cell surface molecules on non-MHC restricted cytotoxic function is discussed.

  11. Identification of a novel feline large granular lymphoma cell line (S87) as non-MHC-restricted cytotoxic T-cell line and assessment of its genetic instability.

    PubMed

    Rydzewski, Lena; Scheffold, Svenja; Hecht, Werner; Burkhardt, Eberhard; Kerner, Katharina; Klymiuk, Michele C; Deinzer, Renate; Reinacher, Manfred; Henrich, Manfred

    2016-09-01

    Feline large granular lymphocyte lymphomas are rare but very aggressive tumors with a poor prognosis. In this study, a cell line from an abdominal effusion of a cat with large granular lymphoma was characterized. Immunophenotype staining was positive for CD3 and CD45R, and negative for CD4, CD8, CD56, CD79α, BLA.36 and NK1. A TCR γ gene rearrangement was detectable by PARR. Neither FeLV antigen nor exogenous FeLV provirus could be detected. A chromosomal instability associated with a centrosome hyperamplification could also be determined. The cell line is able to lyse target cells without antigen presentation or interaction with antigen presenting cells. Therefore, these cells were classified as genetically instable non-MHC-restricted cytotoxic T cells with large granular lymphocyte morphology. PMID:27436441

  12. Gene expression profiling of anticancer immune responses.

    PubMed

    Wang, Ena; Panelli, Monica C; Monsurró, Vladia; Marincola, Francesco M

    2004-06-01

    Anticancer immune responses can be enhanced by immune manipulation, however, the biological mechanism responsible for these immune responses remains largely unexplained. Conventional immunology researchers have extensively studied specific interactions between immune and cancer cells, and additional investigations have identified co-factors that may enhance the effectiveness of such interactions. As the molecular understanding of individual interactions increases, it is becoming apparent that no single mechanism can explain the phenomenon of tumor rejection. The contribution of several components of the innate and adaptive immune response is likely to be required for successful tumor rejection. These components may be variably recruited and activated by molecules with immune modulatory properties being produced by tumor and bystander cells within the tumor micro-environment. Such complexity can only be appreciated and solved by high-throughput tools capable of providing a global view of biological processes as they occur. This review will present selected examples of how high-throughput gene expression profiling may contribute to the understanding of anticancer immune responses. As reviews on technological aspects of the genomic analysis of cancer are already available, this review will provide a speculative discussion about their potential usefulness.

  13. Innate Immune Gene Polymorphisms in Tuberculosis

    PubMed Central

    Sadee, Wolfgang

    2012-01-01

    Tuberculosis (TB) is a leading cause worldwide of human mortality attributable to a single infectious agent. Recent studies targeting candidate genes and “case-control” association have revealed numerous polymorphisms implicated in host susceptibility to TB. Here, we review current progress in the understanding of causative polymorphisms in host innate immune genes associated with TB pathogenesis. We discuss genes encoding several types of proteins: macrophage receptors, such as the mannose receptor (MR, CD206), dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209), Dectin-1, Toll-like receptors (TLRs), complement receptor 3 (CR3, CD11b/CD18), nucleotide oligomerization domain 1 (NOD1) and NOD2, CD14, P2X7, and the vitamin D nuclear receptor (VDR); soluble C-type lectins, such as surfactant protein-A (SP-A), SP-D, and mannose-binding lectin (MBL); phagocyte cytokines, such as tumor necrosis factor (TNF), interleukin-1β (IL-1β), IL-6, IL-10, IL-12, and IL-18; chemokines, such as IL-8, monocyte chemoattractant protein 1 (MCP-1), RANTES, and CXCL10; and other important innate immune molecules, such as inducible nitric oxide synthase (iNOS) and solute carrier protein 11A1 (SLC11A1). Polymorphisms in these genes have been variably associated with susceptibility to TB among different populations. This apparent variability is probably accounted for by evolutionary selection pressure as a result of long-term host-pathogen interactions in certain regions or populations and, in part, by lack of proper study design and limited knowledge of molecular and functional effects of the implicated genetic variants. Finally, we discuss genomic technologies that hold promise for resolving questions regarding the evolutionary paths of the human genome, functional effects of polymorphisms, and corollary impacts of adaptation on human health, ultimately leading to novel approaches to controlling TB. PMID:22825450

  14. Gene silencing below the immune radar.

    PubMed

    Hartmann, Gunther

    2009-03-01

    In vertebrates, the detection of viral nucleic acids is the first step toward innate and subsequent adaptive antiviral immune responses. A sophisticated,protein receptor-based sensor system has evolved to recognize viral nucleic acids and to trigger a variety of antiviral defense mechanisms. The more we learn about this elaborate sensor system, the more it becomes evident how difficult it is to introduce exogenous nucleic acids such as siRNA into cells without triggering antiviral immunoreceptors. In this issue of the JCI, Judge and colleagues provide evidence that siRNA can be designed and delivered in a way that allows specific and successful silencing of target genes in tumor cells in vivo, leading to tumor cell death and prolonged survival of tumor-bearing mice in the absence of immune activation. This study represents a major technological advance, setting new standards for well-controlled siRNA applications in vivo, and has the potential to guide clinical development toward siRNA therapeutics with well-defined and selective gene-silencing activities.

  15. Drift and selection influence geographic variation at immune loci of prairie-chickens.

    PubMed

    Bollmer, Jennifer L; Ruder, Elizabeth A; Johnson, Jeff A; Eimes, John A; Dunn, Peter O

    2011-11-01

    Previous studies of immunity in wild populations have focused primarily on genes of the major histocompatibility complex (MHC); however, studies of model species have identified additional immune-related genes that also affect fitness. In this study, we sequenced five non-MHC immune genes in six greater prairie-chicken (Tympanuchus cupido) populations that have experienced varying degrees of genetic drift as a consequence of population bottlenecks and fragmentation. We compared patterns of geographic variation at the immune genes with six neutral microsatellite markers to investigate the relative effects of selection and genetic drift. Global F(ST) outlier tests identified positive selection on just one of five immune genes (IAP-1) in one population. In contrast, at other immune genes, standardized G'(ST) values were lower than those at microsatellites for a majority of pairwise population comparisons, consistent with balancing selection or with species-wide positive or purifying selection resulting in similar haplotype frequencies across populations. The effects of genetic drift were also evident as summary statistics (e.g., Tajima's D) did not differ from neutrality for the majority of cases, and immune gene diversity (number of haplotypes per gene) was correlated positively with population size. In summary, we found that both genetic drift and selection shaped variation at the five immune genes, and the strength and type of selection varied among genes. Our results caution that neutral forces, such as drift, can make it difficult to detect current selection on genes.

  16. Immune responses and immune-related gene expression profile in orange-spotted grouper after immunization with Cryptocaryon irritans vaccine.

    PubMed

    Dan, Xue-Ming; Zhang, Tuan-Wei; Li, Yan-Wei; Li, An-Xing

    2013-03-01

    In order to elucidate the immune-protective mechanisms of inactivated Cryptocaryon irritans vaccine, different doses of C. irritans theronts were used to immunize orange-spotted grouper (Epinephelus coioides). We measured serum immobilization titer, blood leukocyte respiratory burst activity, serum alternative complement activity, and serum lysozyme activity weekly. In addition, the expression levels of immune-related genes such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), major histocompatibility complexes I and II (MHC I and II), and transforming growth factor-β1 (TGF-β1) were determined in spleen and gills. The results showed that the immobilization titer, respiratory burst activity, and alternative complement activity of immunized fish were significantly increased, and the levels of the last two immune parameters in the high-dose vaccine group were significantly higher than in the low-dose vaccine group. Serum lysozyme activity in the high-dose vaccine group was significantly higher than in the PBS control group. Vaccination also regulated host immune-related gene expression. For example, at 2- and 3- weeks post immunization, IL-1β expression in the high-dose vaccine group spleen was significantly increased. At 4-weeks post immunization, the fish were challenged with a lethal dose of parasite, and the survival rates of high-dose vaccine group, low-dose vaccine group, PBS control group, and adjuvant control group were 80%, 40%, 0%, and 10% respectively. These results demonstrate that inactivated C. irritans vaccination improves specific and nonspecific immune responses in fish, enhancing their anti-parasite ability. These effects are vaccine antigen dose-dependent.

  17. Genetics of gene expression in immunity to infection

    PubMed Central

    Fairfax, Benjamin P; Knight, Julian C

    2015-01-01

    Mapping gene expression as a quantitative trait (eQTL mapping) can reveal local and distant associations with functionally important genetic variation informative for disease. Recent studies are reviewed which have demonstrated that this approach is particularly informative when applied to diverse immune cell populations and situations relevant to infection and immunity. Context-specific eQTL have now been characterised following endotoxin activation, induction with interferons, mycobacteria, and influenza, together with genetic determinants of response to vaccination. The application of genetical genomic approaches offers new opportunities to advance our understanding of gene–environment interactions and fundamental processes in innate and adaptive immunity. PMID:25078545

  18. big bang gene modulates gut immune tolerance in Drosophila

    PubMed Central

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y.; Boulianne, Gabrielle L.; Hoffmann, Jules A.; Matt, Nicolas; Reichhart, Jean-Marc

    2013-01-01

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases. PMID:23378635

  19. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases.

  20. big bang gene modulates gut immune tolerance in Drosophila.

    PubMed

    Bonnay, François; Cohen-Berros, Eva; Hoffmann, Martine; Kim, Sabrina Y; Boulianne, Gabrielle L; Hoffmann, Jules A; Matt, Nicolas; Reichhart, Jean-Marc

    2013-02-19

    Chronic inflammation of the intestine is detrimental to mammals. Similarly, constant activation of the immune response in the gut by the endogenous flora is suspected to be harmful to Drosophila. Therefore, the innate immune response in the gut of Drosophila melanogaster is tightly balanced to simultaneously prevent infections by pathogenic microorganisms and tolerate the endogenous flora. Here we describe the role of the big bang (bbg) gene, encoding multiple membrane-associated PDZ (PSD-95, Discs-large, ZO-1) domain-containing protein isoforms, in the modulation of the gut immune response. We show that in the adult Drosophila midgut, BBG is present at the level of the septate junctions, on the apical side of the enterocytes. In the absence of BBG, these junctions become loose, enabling the intestinal flora to trigger a constitutive activation of the anterior midgut immune response. This chronic epithelial inflammation leads to a reduced lifespan of bbg mutant flies. Clearing the commensal flora by antibiotics prevents the abnormal activation of the gut immune response and restores a normal lifespan. We now provide genetic evidence that Drosophila septate junctions are part of the gut immune barrier, a function that is evolutionarily conserved in mammals. Collectively, our data suggest that septate junctions are required to maintain the subtle balance between immune tolerance and immune response in the Drosophila gut, which represents a powerful model to study inflammatory bowel diseases. PMID:23378635

  1. Measuring Immune Responses to recombinant AAV Gene Transfer

    PubMed Central

    Martino, Ashley T.; Herzog, Roland W.; Anegon, Ignacio; Adjali, Oumeya

    2013-01-01

    Following AAV-based gene transfer, the occurrence of adaptive immune responses specific to the vector or the transgene product is a major roadblock to successful clinical translation. These responses include antibodies against the AAV capsid, which can be neutralizing and therefore prevent the ability to repeatedly administer the vector, and CD8+ cytotoxic T lymphocytes, which can eliminate transduced cells. In addition, humans may have both humoral and cellular pre-existing immunity, as a result from natural infection with parent virus or related serotypes. The need for assays to detect and measure these anti-capsid immune responses in humans and in experimental animals is profound. Here, ELISPOT, immunocapture (ELISA), and neutralization assays are explained and provided in detail. Furthermore, such techniques can readily be adapted to monitor and quantify immune responses against therapeutic transgene products encoded by the vector genome. PMID:22034034

  2. The evolution of secondary organization in immune system gene libraries

    SciTech Connect

    Hightower, R.; Forrest, S.; Perelson, A.S.

    1993-02-01

    A binary model of the immune system is used to study the effects of evolution on the genetic encoding for antibody molecules. We report experiments which show that the evolution of immune system genes, simulated by the genetic algorithm, can induce a high degree of genetic organization even though that organization is not explicitly required by the fitness function. This secondary organization is related to the true fitness of an individual, in contrast to the sampled fitness which is the explicit fitness measure used to drive the process of evolution.

  3. The evolution of secondary organization in immune system gene libraries

    SciTech Connect

    Hightower, R.; Forrest, S. . Dept. of Computer Science); Perelson, A.S. )

    1993-01-01

    A binary model of the immune system is used to study the effects of evolution on the genetic encoding for antibody molecules. We report experiments which show that the evolution of immune system genes, simulated by the genetic algorithm, can induce a high degree of genetic organization even though that organization is not explicitly required by the fitness function. This secondary organization is related to the true fitness of an individual, in contrast to the sampled fitness which is the explicit fitness measure used to drive the process of evolution.

  4. Importance of immune response genes in hemophilia A

    PubMed Central

    de Alencar, Josiane Bazzo; Macedo, Luciana Conci; de Barros, Morgana Ferreira; Rodrigues, Camila; Cadide, Renata Campos; Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2013-01-01

    Hemophilia A is a disease caused by a deficiency of coagulation factor VIII resulting from genetic inheritance linked to chromosome X. One treatment option is the administration of plasma or recombinant FVIII. However, some patients develop inhibitors or antibodies against this factor. Inhibitors are alloantibodies that bind to the epitope of factor VIII causing it to be recognized by the immune system as a foreign peptide. This is the most serious complication in hemophilia patients in respect to replacement therapy. Some studies have suggested that genetic factors influence the development of factor VIII inhibitors such as ethnicity, family history, mutations in the factor VIII gene and in genes of the immune system. The aim of this study was to conduct a literature review to assess the influence of genetic factors of immune response genes, especially genes of the major histocompatibility complex and cytokines, which may be related to the development of factor VIII inhibitors in hemophilia A patients. Understanding these risk factors will help to determine future differential treatment in the control and prevention of the development of inhibitors. PMID:24106448

  5. B lymphocyte immune response gene phenotype is genetically determined

    SciTech Connect

    Tse, H.Y.; Mond, J.J.; Longo, D.L.

    1982-04-01

    We examined the effects of the developmental milieu on the capacity of B cells to undergo immune response gene-controlled, T cell-dependent polyclonal proliferation. Although I-Aq poly(Glu60 Ala30 Tyr10)n (GAT)-nonresponder T cells developing in a responder environment become phenotypic GAT-responders, I-Aq B cells remain unresponsive to GAT, even after maturation in a GAT-responder animal. Conversely, (B10.A x B10.Q)F1 ((GAT responder x GAT nonresponder)F1) T cells developing in a B10.Q GAT nonresponder host fail to respond to GAT, but F1 B cells from the same F1 leads to parent chimeras make excellent proliferative responses in the presence of GAT and responder T cells. Thus, by this assay, B cell immune response gene function is genetically determined and is not affected by the developmental milieu.

  6. Passive immunization against HIV/AIDS by antibody gene transfer.

    PubMed

    Yang, Lili; Wang, Pin

    2014-01-27

    Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP), which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs) for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics.

  7. Identifying genes that mediate anthracyline toxicity in immune cells.

    PubMed

    Frick, Amber; Suzuki, Oscar T; Benton, Cristina; Parks, Bethany; Fedoriw, Yuri; Richards, Kristy L; Thomas, Russell S; Wiltshire, Tim

    2015-01-01

    The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS), we identified four genome-wide significant quantitative trait loci (QTL) that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01 × 10(-8)). Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05). In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies.

  8. Molecular Population Genetics of Drosophila Immune System Genes

    PubMed Central

    Clark, A. G.; Wang, L.

    1997-01-01

    A striking aspect of many vertebrate immune system genes is the exceptionally high level of polymorphism they harbor. A convincing case can be made that this polymorphism is driven by the diversity of pathogens that face selective pressures to evade attack by the host immune system. Different organisms accomplish a defense against diverse pathogens through mechanisms that differ widely in their requirements for specific recognition. It has recently been shown that innate defense mechanisms, which use proteins with broad-spectrum bactericidal properties, are common to both primitive and advanced organisms. In this study we characterize DNA sequence variation in six pathogen defense genes of Drosophila melanogaster and D. mauritiana, including Andropin; cecropin genes CecA1, CecA2, CecB, and CecC; and Diptericin. The necessity for protection against diverse pathogens, which themselves may evolve resistance to insect defenses, motivates a population-level analysis. Estimates of variation levels show that the genes are not exceptionally polymorphic, but Andropin and Diptericin have patterns of variation that differ significantly from neutrality. Patterns of interpopulation and interspecific differentiation also reveal differences among the genes in evolutionary forces. PMID:9335607

  9. Transferred interbacterial antagonism genes augment eukaryotic innate immune function.

    PubMed

    Chou, Seemay; Daugherty, Matthew D; Peterson, S Brook; Biboy, Jacob; Yang, Youyun; Jutras, Brandon L; Fritz-Laylin, Lillian K; Ferrin, Michael A; Harding, Brittany N; Jacobs-Wagner, Christine; Yang, X Frank; Vollmer, Waldemar; Malik, Harmit S; Mougous, Joseph D

    2015-02-01

    Horizontal gene transfer allows organisms to rapidly acquire adaptive traits. Although documented instances of horizontal gene transfer from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce antibacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years through purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the aetiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for co-option by eukaryotic innate immune systems. PMID:25470067

  10. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts.

    PubMed

    Zhu, Lv-yun; Nie, Li; Zhu, Guan; Xiang, Li-xin; Shao, Jian-zhong

    2013-01-01

    Fish is considered to be an important model in comparative immunology studies because it is a representative population of lower vertebrates serving as an essential link to early vertebrate evolution. Fish immune-relevant genes have received considerable attention due to its role in improving understanding of both fish immunology and the evolution of immune systems. In this review, we discuss the current understanding of teleost immune-relevant genes for both innate and adaptive immunity, including pattern recognition receptors, antimicrobial peptides, complement molecules, lectins, interferons and signaling factors, inflammatory cytokines, chemokines, adaptive immunity relevant cytokines and negative regulators, major histocompatibility complexes, immunoglobulins, and costimulatory molecules. The implications of these factors on the evolutionary history of immune systems were discussed and a perspective outline of innate and adaptive immunity of teleost fish was described. This review may provide clues on the evolution of the essential defense system in vertebrates.

  11. Molecular population genetics of Drosophila immune system genes.

    PubMed

    Clark, A G; Wang, L

    1997-10-01

    A striking aspect of many vertebrate immune system is the exceptionally high level of polymorphism they harbor. A convincing case can be made that this polymorphism is driven by the diversity of pathogens that face selective pressures to evade attack by the host immune system. Different organisms accomplish a defense against diverse pathogens through mechanisms that differ widely in their requirements for specific recognition. It has recently been shown that innate defense mechanisms, which use proteins with broad-spectrum bactericidal properties, are common to both primitive and advanced organisms. In this study we characterize DNA sequence variation in six pathogen defense genes of Drosophila melanogaster and D. mauritiana, including Andropin; cecropin genes CecA1, CecA2, CecB, and CecC; and Diptericin. The necessity for protection against diverse pathogens, which themselves may evolve resistance to insect defenses, motivates a population-level analysis. Estimates of variation levels show that the genes are not exceptionally polymorphic, but Andropin and Diptericin have patterns of variation that differ significantly from neutrality. Patterns of interpopulation and interspecific differentiation also reveal differences among the genes in evolutionary forces.

  12. Tailoring the Immune Response via Customization of Pathogen Gene Expression.

    PubMed

    Runco, Lisa M; Stauft, Charles B; Coleman, J Robert

    2014-01-01

    The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development. PMID:24719769

  13. Gene Expression by PBMC in Primary Sclerosing Cholangitis: Evidence for Dysregulation of Immune Mediated Genes

    PubMed Central

    Aoki, Christopher A.; Dawson, Kevin; Kenny, Thomas P.; Gershwin, M. Eric; Bowlus, Christopher L.

    2006-01-01

    Primary sclerosing cholangitis (PSC) is a chronic disease of the bile ducts characterized by an inflammatory infiltrate and obliterative fibrosis. The precise role of the immune system in the pathogenesis of PSC remains unknown. We used RNA microarray analysis to identify immune-related genes and pathways that are differentially expressed in PSC. Messenger RNA (mRNA) from peripheral blood mononuclear cells (PBMC) was isolated from both patients with PSC and age and sex matched healthy controls. Samples from 5 PSC patients and 5 controls were analyzed by microarray and based upon rigorous statistical analysis of the data, relevant genes were chosen for confirmation by RT-PCR in 10 PSC patients and 10 controls. Using unsupervised hierarchical clustering, gene expression in PSC was statistically different from our control population. Interestingly, genes within the IL-2 receptor beta, IL-6 and MAP Kinase pathways were found to be differently expressed in patients with PSC compared to controls. Further, individual genes, TNF-α induced protein 6 (TNFaip6) and membrane-spanning 4-domains, subfamily A (ms4a) were found to be upregulated in PSC while similar to Mothers against decapentaplegic homolog 5 (SMAD 5) was downregulated. In conclusion, several immune-related pathways and genes were differentially expressed in PSC compared to control patients, giving further evidence that this disease is systemic and immune-mediated. PMID:17162367

  14. Among-lake reciprocal transplants induce convergent expression of immune genes in threespine stickleback.

    PubMed

    Stutz, William E; Schmerer, Matthew; Coates, Jessica L; Bolnick, Daniel I

    2015-09-01

    Geographic variation in parasite communities can drive evolutionary divergence in host immune genes. However, biotic and abiotic environmental variation can also induce plastic differences in immune function among populations. At present, there is little information concerning the relative magnitudes of heritable vs. induced immune divergence in natural populations. We examined immune gene expression profiles of threespine stickleback (Gasterosteus aculeatus) from six lakes on Vancouver Island, British Columbia. Parasite community composition differs between lake types (large or small, containing limnetic- or benthic-like stickleback) and between watersheds. We observed corresponding differences in immune gene expression profiles among wild-caught stickleback, using a set of seven immune genes representing distinct branches of the immune system. To evaluate the role of environmental effects on this differentiation, we experimentally transplanted wild-caught fish into cages in their native lake, or into a nearby foreign lake. Transplanted individuals' immune gene expression converged on patterns typical of their destination lake, deviating from their native expression profile. Transplant individuals' source population had a much smaller effect, suggesting relatively weak genetic underpinning of population differences in immunity, as viewed through gene expression. This strong environmental regulation of immune gene expression provides a counterpoint to the large emerging literature documenting microevolution and genetic diversification of immune function. Our findings illustrate the value of studying immunity in natural environmental settings where the immune system has evolved and actively functions. PMID:26118468

  15. Among-lake reciprocal transplants induce convergent expression of immune genes in threespine stickleback.

    PubMed

    Stutz, William E; Schmerer, Matthew; Coates, Jessica L; Bolnick, Daniel I

    2015-09-01

    Geographic variation in parasite communities can drive evolutionary divergence in host immune genes. However, biotic and abiotic environmental variation can also induce plastic differences in immune function among populations. At present, there is little information concerning the relative magnitudes of heritable vs. induced immune divergence in natural populations. We examined immune gene expression profiles of threespine stickleback (Gasterosteus aculeatus) from six lakes on Vancouver Island, British Columbia. Parasite community composition differs between lake types (large or small, containing limnetic- or benthic-like stickleback) and between watersheds. We observed corresponding differences in immune gene expression profiles among wild-caught stickleback, using a set of seven immune genes representing distinct branches of the immune system. To evaluate the role of environmental effects on this differentiation, we experimentally transplanted wild-caught fish into cages in their native lake, or into a nearby foreign lake. Transplanted individuals' immune gene expression converged on patterns typical of their destination lake, deviating from their native expression profile. Transplant individuals' source population had a much smaller effect, suggesting relatively weak genetic underpinning of population differences in immunity, as viewed through gene expression. This strong environmental regulation of immune gene expression provides a counterpoint to the large emerging literature documenting microevolution and genetic diversification of immune function. Our findings illustrate the value of studying immunity in natural environmental settings where the immune system has evolved and actively functions.

  16. Ipr1 gene mediates innate immunity to tuberculosis

    PubMed Central

    Pan, Hui; Yan, Bo-Shiun; Rojas, Mauricio; Shebzukhov, Yuriy V.; Zhou, Hongwei; Kobzik, Lester; Higgins, Darren; Daly, Mark; Bloom, Barry R.; Kramnik, Igor

    2005-01-01

    An estimated 8 million people are infected each year with the pathogen, Mycobacterium tuberculosis, and over 2 million die annually1. Yet only about 10% of those infected develop tuberculosis. Genetic variation within host populations is known to play a significant role in humans and animals 2,3, but the nature of genetic control of host resistance to tuberculosis remains poorly understood. Previously we mapped a new genetic locus on mouse chromosome 1, designated sst1 (for supersusceptibility to tuberculosis1)4. Here we demonstrate in sst1 congenic mouse strains that this locus mediates innate immunity, and identify a candidate gene, Intracellular Pathogen Resistance 1 (Ipr1), within the sst1 locus. The Ipr1 gene is upregulated in the sst1 resistant macrophages upon activation and infection, but is not expressed in the sst1 susceptible macrophages. Expression of the Ipr1 transgene in the sst1 susceptible macrophages limits multiplication not only of MTB but also Listeria monocytogenes and switches a cell death pathway of the infected macrophages from necrosis to apoptosis. Our data suggest that the Ipr1 gene product may play a novel role in integrating signals generated by intracellular pathogens with mechanisms controlling innate immunity, cell death and pathogenesis. PMID:15815631

  17. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    PubMed Central

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC’s effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  18. Y-linked variation for autosomal immune gene regulation has the potential to shape sexually dimorphic immunity.

    PubMed

    Kutch, Ian C; Fedorka, Kenneth M

    2015-12-01

    Sexually dimorphic phenotypes arise from the differential expression of male and female shared genes throughout the genome. Unfortunately, the underlying molecular mechanisms by which dimorphic regulation manifests and evolves are unclear. Recent work suggests that Y-chromosomes may play an important role, given that Drosophila melanogaster Ys were shown to influence the regulation of hundreds of X and autosomal genes. For Y-linked regulatory variation (YRV) to facilitate sexually dimorphic evolution, however, it must exist within populations (where selection operates) and influence male fitness. These criteria have seldom been investigated, leaving the potential for dimorphic evolution via YRV unclear. Interestingly, male and female D. melanogaster differ in immune gene regulation. Furthermore, immune gene regulation appears to be influenced by the Y-chromosome, suggesting it may contribute to dimorphic immune evolution. We address this possibility by introgressing Y-chromosomes from a single wild population into an isogenic background (to create Y-lines) and assessing immune gene regulation and bacterial defence. We found that Y-line males differed in their immune gene regulation and their ability to defend against Serratia marcescens. Moreover, gene expression and bacterial defence were positively genetically correlated. These data indicate that the Y-chromosome has the potential to shape the evolution of sexually dimorphic immunity in this system.

  19. Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a Primary Immune Response

    PubMed Central

    Schmid-Hempel, Paul; Sadd, Ben M.

    2016-01-01

    Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming), preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker) gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters’ immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways. PMID:27442590

  20. Royal Decree: Gene Expression in Trans-Generationally Immune Primed Bumblebee Workers Mimics a Primary Immune Response.

    PubMed

    Barribeau, Seth M; Schmid-Hempel, Paul; Sadd, Ben M

    2016-01-01

    Invertebrates lack the cellular and physiological machinery of the adaptive immune system, but show specificity in their immune response and immune priming. Functionally, immune priming is comparable to immune memory in vertebrates. Individuals that have survived exposure to a given parasite are better protected against subsequent exposures. Protection may be cross-reactive, but demonstrations of persistent and specific protection in invertebrates are increasing. This immune priming can cross generations ("trans-generational" immune priming), preparing offspring for the prevailing parasite environment. While these phenomena gain increasing support, the mechanistic foundations underlying such immune priming, both within and across generations, remain largely unknown. Using a transcriptomic approach, we show that exposing bumblebee queens with an injection of heat-killed bacteria, known to induce trans-generational immune priming, alters daughter (worker) gene expression. Daughters, even when unexposed themselves, constitutively express a core set of the genes induced upon direct bacterial exposure, including high expression of antimicrobial peptides, a beta-glucan receptor protein implicated in bacterial recognition and the induction of the toll signaling pathway, and slit-3 which is important in honeybee immunity. Maternal exposure results in a distinct upregulation of their daughters' immune system, with a signature overlapping with the induced individual response to a direct exposure. This will mediate mother-offspring protection, but also associated costs related to reconfiguration of constitutive immune expression. Moreover, identification of conserved immune pathways in memory-like responses has important implications for our understanding of the innate immune system, including the innate components in vertebrates, which share many of these pathways. PMID:27442590

  1. Multiple common variants for celiac disease influencing immune gene expression

    PubMed Central

    Dubois, Patrick CA; Trynka, Gosia; Franke, Lude; Hunt, Karen A; Romanos, Jihane; Curtotti, Alessandra; Zhernakova, Alexandra; Heap, Graham AR; Ádány, Róza; Aromaa, Arpo; Bardella, Maria Teresa; van den Berg, Leonard H; Bockett, Nicholas A; de la Concha, Emilio G.; Dema, Bárbara; Fehrmann, Rudolf SN; Fernández-Arquero, Miguel; Fiatal, Szilvia; Grandone, Elvira; Green, Peter M; Groen, Harry JM; Gwilliam, Rhian; Houwen, Roderick HJ; Hunt, Sarah E; Kaukinen, Katri; Kelleher, Dermot; Korponay-Szabo, Ilma; Kurppa, Kalle; MacMathuna, Padraic; Mäki, Markku; Mazzilli, Maria Cristina; McCann, Owen T; Mearin, M Luisa; Mein, Charles A; Mirza, Muddassar M; Mistry, Vanisha; Mora, Barbara; Morley, Katherine I; Mulder, Chris J; Murray, Joseph A; Núñez, Concepción; Oosterom, Elvira; Ophoff, Roel A; Polanco, Isabel; Peltonen, Leena; Platteel, Mathieu; Rybak, Anna; Salomaa, Veikko; Schweizer, Joachim J; Sperandeo, Maria Pia; Tack, Greetje J; Turner, Graham; Veldink, Jan H; Verbeek, Wieke HM; Weersma, Rinse K; Wolters, Victorien M; Urcelay, Elena; Cukrowska, Bozena; Greco, Luigi; Neuhausen, Susan L.; McManus, Ross; Barisani, Donatella; Deloukas, Panos; Barrett, Jeffrey C; Saavalainen, Paivi; Wijmenga, Cisca; van Heel, David A

    2010-01-01

    We performed a second-generation genome wide association study of 4,533 celiac disease cases and 10,750 controls. We genotyped 113 selected SNPs with PGWAS<10−4, and 18 SNPs from 14 known loci, in a further 4,918 cases and 5,684 controls. Variants from 13 new regions reached genome wide significance (Pcombined<5×10−8), most contain immune function genes (BACH2, CCR4, CD80, CIITA/SOCS1/CLEC16A, ICOSLG, ZMIZ1) with ETS1, RUNX3, THEMIS and TNFRSF14 playing key roles in thymic T cell selection. A further 13 regions had suggestive association evidence. In an expression quantitative trait meta-analysis of 1,469 whole blood samples, 20 of 38 (52.6%) tested loci had celiac risk variants correlated (P<0.0028, FDR 5%) with cis gene expression. PMID:20190752

  2. Characterization of rainbow trout (Oncorhynchus mykiss) spleen transcriptome and identification of immune-related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance against specific diseases is affecting profitability in fish production systems including rainbow trout. Limited information is known about functions and mechanisms of the immune gene pathways in teleosts. Immunogenomics are powerful tools to determine immune-related genes/gene pathways a...

  3. Gene Therapy for the Treatment of Primary Immune Deficiencies.

    PubMed

    Kuo, Caroline Y; Kohn, Donald B

    2016-05-01

    The use of gene therapy in the treatment of primary immune deficiencies (PID) has advanced significantly in the last decade. Clinical trials for X-linked severe combined immunodeficiency, adenosine deaminase deficiency (ADA), chronic granulomatous disease, and Wiskott-Aldrich syndrome have demonstrated that gene transfer into hematopoietic stem cells and autologous transplant can result in clinical improvement and is curative for many patients. Unfortunately, early clinical trials were complicated by vector-related insertional mutagenic events for several diseases with the exception of ADA-deficiency SCID. These results prompted the current wave of clinical trials for primary immunodeficiency using alternative retro- or lenti-viral vector constructs that are self-inactivating, and they have shown clinical efficacy without leukemic events thus far. The field of gene therapy continues to progress, with improvements in viral vector profiles, stem cell culturing techniques, and site-specific genome editing platforms. The future of gene therapy is promising, and we are quickly moving towards a time when it will be a standard cellular therapy for many forms of PID.

  4. Genes related to immunity, as expressed in the alfalfa leafcutting bee, Megachile rotundata, during pathogen challenge.

    PubMed

    Xu, J; James, R

    2009-11-01

    Virtually nothing is known about disease resistance in solitary bees, so expressed sequence tag (EST) databases were developed to search for immune response genes in the alfalfa leafcutting bee. We identified 104 putative immunity-related genes from both healthy and pathogen-challenged bee larvae, and 12 more genes using PCR amplification. The genes identified coded for proteins with a wide variety of innate immune response functions, including pathogen recognition, phagocytosis, the prophenoloxidase cascade, melanization, coagulation and several signalling pathways. Some immune response genes were highly conserved with honey bee genes, and more distantly related to other insects. The data presented provides the first analysis of immune function in a solitary bee and provides a foundation for the further analysis of gene expression patterns in bees. PMID:19863668

  5. The identification of immune genes in the milk transcriptome of the Tasmanian devil (Sarcophilus harrisii)

    PubMed Central

    Hewavisenti, Rehana V.; Morris, Katrina M.; O’Meally, Denis; Cheng, Yuanyuan; Papenfuss, Anthony T.

    2016-01-01

    Tasmanian devil (Sarcophilus harrisii) pouch young, like other marsupials, are born underdeveloped and immunologically naïve, and are unable to mount an adaptive immune response. The mother’s milk provides nutrients for growth and development as well as providing passive immunity. To better understand immune response in this endangered species, we set out to characterise the genes involved in passive immunity by sequencing and annotating the transcriptome of a devil milk sample collected during mid-lactation. At mid-lactation we expect the young to have heightened immune responses, as they have emerged from the pouch, encountering new pathogens. A total of 233,660 transcripts were identified, including approximately 17,827 unique protein-coding genes and 846 immune genes. The most highly expressed transcripts were dominated by milk protein genes such as those encoding early lactation protein, late lactation proteins, α-lactalbumin, α-casein and β-casein. There were numerous highly expressed immune genes including lysozyme, whey acidic protein, ferritin and major histocompatibility complex I and II. Genes encoding immunoglobulins, antimicrobial peptides, chemokines and immune cell receptors were also identified. The array of immune genes identified in this study reflects the importance of the milk in providing immune protection to Tasmanian devil young and provides the first insight into Tasmanian devil milk. PMID:26793426

  6. The identification of immune genes in the milk transcriptome of the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Hewavisenti, Rehana V; Morris, Katrina M; O'Meally, Denis; Cheng, Yuanyuan; Papenfuss, Anthony T; Belov, Katherine

    2016-01-01

    Tasmanian devil (Sarcophilus harrisii) pouch young, like other marsupials, are born underdeveloped and immunologically naïve, and are unable to mount an adaptive immune response. The mother's milk provides nutrients for growth and development as well as providing passive immunity. To better understand immune response in this endangered species, we set out to characterise the genes involved in passive immunity by sequencing and annotating the transcriptome of a devil milk sample collected during mid-lactation. At mid-lactation we expect the young to have heightened immune responses, as they have emerged from the pouch, encountering new pathogens. A total of 233,660 transcripts were identified, including approximately 17,827 unique protein-coding genes and 846 immune genes. The most highly expressed transcripts were dominated by milk protein genes such as those encoding early lactation protein, late lactation proteins, α-lactalbumin, α-casein and β-casein. There were numerous highly expressed immune genes including lysozyme, whey acidic protein, ferritin and major histocompatibility complex I and II. Genes encoding immunoglobulins, antimicrobial peptides, chemokines and immune cell receptors were also identified. The array of immune genes identified in this study reflects the importance of the milk in providing immune protection to Tasmanian devil young and provides the first insight into Tasmanian devil milk. PMID:26793426

  7. Contrasting patterns of selection and drift between two categories of immune genes in prairie-chickens.

    PubMed

    Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A; Dunn, Peter O

    2015-12-01

    Immune-receptor genes of the adaptive immune system, such as the major histocompatibility complex (MHC), are involved in recognizing specific pathogens and are known to have high rates of adaptive evolution, presumably as a consequence of rapid co-evolution between hosts and pathogens. In contrast, many 'mediating' genes of the immune system do not interact directly with specific pathogens and are involved in signalling (e.g. cytokines) or controlling immune cell growth. As a consequence, we might expect stronger selection at immune-receptor than mediating genes, but these two types of genes have not been compared directly in wild populations. Here, we tested the hypothesis that selection differs between MHC (class I and II) and mediating genes by comparing levels of population differentiation across the range of greater prairie-chickens (Tympanuchus cupido). As predicted, there was stronger population differentiation and isolation by distance at immune receptor (MHC) than at either mediating genes or neutral microsatellites, suggesting a stronger role of local adaptation at the MHC. In contrast, mediating genes displayed weaker differentiation between populations than neutral microsatellites, consistent with selection favouring similar alleles across populations for mediating genes. In addition to selection, drift also had a stronger effect on immune receptor (MHC) than mediating genes as indicated by the stronger decline of MHC variation in relation to population size. This is the first study in the wild to show that the effects of selection and drift on immune genes vary across populations depending on their functional role. PMID:26547898

  8. Contrasting patterns of selection and drift between two categories of immune genes in prairie-chickens.

    PubMed

    Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A; Dunn, Peter O

    2015-12-01

    Immune-receptor genes of the adaptive immune system, such as the major histocompatibility complex (MHC), are involved in recognizing specific pathogens and are known to have high rates of adaptive evolution, presumably as a consequence of rapid co-evolution between hosts and pathogens. In contrast, many 'mediating' genes of the immune system do not interact directly with specific pathogens and are involved in signalling (e.g. cytokines) or controlling immune cell growth. As a consequence, we might expect stronger selection at immune-receptor than mediating genes, but these two types of genes have not been compared directly in wild populations. Here, we tested the hypothesis that selection differs between MHC (class I and II) and mediating genes by comparing levels of population differentiation across the range of greater prairie-chickens (Tympanuchus cupido). As predicted, there was stronger population differentiation and isolation by distance at immune receptor (MHC) than at either mediating genes or neutral microsatellites, suggesting a stronger role of local adaptation at the MHC. In contrast, mediating genes displayed weaker differentiation between populations than neutral microsatellites, consistent with selection favouring similar alleles across populations for mediating genes. In addition to selection, drift also had a stronger effect on immune receptor (MHC) than mediating genes as indicated by the stronger decline of MHC variation in relation to population size. This is the first study in the wild to show that the effects of selection and drift on immune genes vary across populations depending on their functional role.

  9. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    NASA Astrophysics Data System (ADS)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  10. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    PubMed Central

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-01-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring. PMID:27731423

  11. Identification of pleiotropic genes and gene sets underlying growth and immunity traits: a case study on Meishan pigs.

    PubMed

    Zhang, Z; Wang, Z; Yang, Y; Zhao, J; Chen, Q; Liao, R; Chen, Z; Zhang, X; Xue, M; Yang, H; Zheng, Y; Wang, Q; Pan, Y

    2016-04-01

    Both growth and immune capacity are important traits in animal breeding. The animal quantitative trait loci (QTL) database is a valuable resource and can be used for interpreting the genetic mechanisms that underlie growth and immune traits. However, QTL intervals often involve too many candidate genes to find the true causal genes. Therefore, the aim of this study was to provide an effective annotation pipeline that can make full use of the information of Gene Ontology terms annotation, linkage gene blocks and pathways to further identify pleiotropic genes and gene sets in the overlapping intervals of growth-related and immunity-related QTLs. In total, 55 non-redundant QTL overlapping intervals were identified, 1893 growth-related genes and 713 immunity-related genes were further classified into overlapping intervals and 405 pleiotropic genes shared by the two gene sets were determined. In addition, 19 pleiotropic gene linkage blocks and 67 pathways related to immunity and growth traits were discovered. A total of 343 growth-related genes and 144 immunity-related genes involved in pleiotropic pathways were also identified, respectively. We also sequenced and genotyped 284 individuals from Chinese Meishan pigs and European pigs and mapped the single nucleotide polymorphisms (SNPs) to the pleiotropic genes and gene sets that we identified. A total of 971 high-confidence SNPs were mapped to the pleiotropic genes and gene sets that we identified, and among them 743 SNPs were statistically significant in allele frequency between Meishan and European pigs. This study explores the relationship between growth and immunity traits from the view of QTL overlapping intervals and can be generalized to explore the relationships between other traits.

  12. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease susceptibility affects production efficiency and profitability in rainbow trout aquaculture. There is limited information available regarding the functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful approaches to identify disease resistance genes/gene pathway...

  13. Integrated enrichment analysis of variants and pathways in genome-wide association studies indicates central role for IL-2 signaling genes in type 1 diabetes, and cytokine signaling genes in Crohn's disease.

    PubMed

    Carbonetto, Peter; Stephens, Matthew

    2013-01-01

    Pathway analyses of genome-wide association studies aggregate information over sets of related genes, such as genes in common pathways, to identify gene sets that are enriched for variants associated with disease. We develop a model-based approach to pathway analysis, and apply this approach to data from the Wellcome Trust Case Control Consortium (WTCCC) studies. Our method offers several benefits over existing approaches. First, our method not only interrogates pathways for enrichment of disease associations, but also estimates the level of enrichment, which yields a coherent way to promote variants in enriched pathways, enhancing discovery of genes underlying disease. Second, our approach allows for multiple enriched pathways, a feature that leads to novel findings in two diseases where the major histocompatibility complex (MHC) is a major determinant of disease susceptibility. Third, by modeling disease as the combined effect of multiple markers, our method automatically accounts for linkage disequilibrium among variants. Interrogation of pathways from eight pathway databases yields strong support for enriched pathways, indicating links between Crohn's disease (CD) and cytokine-driven networks that modulate immune responses; between rheumatoid arthritis (RA) and "Measles" pathway genes involved in immune responses triggered by measles infection; and between type 1 diabetes (T1D) and IL2-mediated signaling genes. Prioritizing variants in these enriched pathways yields many additional putative disease associations compared to analyses without enrichment. For CD and RA, 7 of 8 additional non-MHC associations are corroborated by other studies, providing validation for our approach. For T1D, prioritization of IL-2 signaling genes yields strong evidence for 7 additional non-MHC candidate disease loci, as well as suggestive evidence for several more. Of the 7 strongest associations, 4 are validated by other studies, and 3 (near IL-2 signaling genes RAF1, MAPK14, and

  14. Genome-Wide RNAi Screens in C. elegans to Identify Genes Influencing Lifespan and Innate Immunity.

    PubMed

    Sinha, Amit; Rae, Robbie

    2016-01-01

    RNA interference is a rapid, inexpensive, and highly effective tool used to inhibit gene function. In C. elegans, whole genome screens have been used to identify genes involved with numerous traits including aging and innate immunity. RNAi in C. elegans can be carried out via feeding, soaking, or injection. Here we outline protocols used to maintain, grow, and carry out RNAi via feeding in C. elegans and determine whether the inhibited genes are essential for lifespan or innate immunity. PMID:27581293

  15. Identification and evolution of an NFAT gene involving Branchiostoma belcheri innate immunity.

    PubMed

    Song, Xiaojun; Hu, Jing; Jin, Ping; Chen, Liming; Ma, Fei

    2013-10-01

    The Nuclear Factor of Activated T cells (NFAT) plays an important role in innate and adaptive immunity, but no NFAT genes have yet been identified in amphioxus species. Here we identified and characterized an NFAT-like gene from Branchiostoma belcheri, and also studied extensively the evolutionary history of NFAT family genes. We found that the amphioxus genome contains an AmphiNFAT gene encoding an NFAT homolog. The AmphiNFAT gene was found to be involved in the innate immune response to LPS stimulation in B. belcheri and was ubiquitously and differentially expressed in all investigated tissues. The NFAT family genes were present in a common ancestor with cnidaria, and NFAT1-4 paralogs were lost early in Branchiostoma and Strongylocentrotus genomes. We discovered that NFAT family genes underwent strong purifying selection. Taken together, our findings provide an insight into the innate immune response of amphioxus and the evolution of the NFAT gene family.

  16. Identification and evolution of an NFAT gene involving Branchiostoma belcheri innate immunity.

    PubMed

    Song, Xiaojun; Hu, Jing; Jin, Ping; Chen, Liming; Ma, Fei

    2013-10-01

    The Nuclear Factor of Activated T cells (NFAT) plays an important role in innate and adaptive immunity, but no NFAT genes have yet been identified in amphioxus species. Here we identified and characterized an NFAT-like gene from Branchiostoma belcheri, and also studied extensively the evolutionary history of NFAT family genes. We found that the amphioxus genome contains an AmphiNFAT gene encoding an NFAT homolog. The AmphiNFAT gene was found to be involved in the innate immune response to LPS stimulation in B. belcheri and was ubiquitously and differentially expressed in all investigated tissues. The NFAT family genes were present in a common ancestor with cnidaria, and NFAT1-4 paralogs were lost early in Branchiostoma and Strongylocentrotus genomes. We discovered that NFAT family genes underwent strong purifying selection. Taken together, our findings provide an insight into the innate immune response of amphioxus and the evolution of the NFAT gene family. PMID:23657135

  17. Massive expansion and functional divergence of innate immune genes in a protostome

    PubMed Central

    Zhang, Linlin; Li, Li; Guo, Ximing; Litman, Gary W.; Dishaw, Larry J.; Zhang, Guofan

    2015-01-01

    The molecules that mediate innate immunity are encoded by relatively few genes and exhibit broad specificity. Detailed annotation of the Pacific oyster (Crassostrea gigas) genome, a protostome invertebrate, reveals large-scale duplication and divergence of multigene families encoding molecules that effect innate immunity. Transcriptome analyses indicate dynamic and orchestrated specific expression of numerous innate immune genes in response to experimental challenge with pathogens, including bacteria, and a pathogenic virus. Variable expression of individual members of the multigene families encoding these genes also occurs during different types of abiotic stress (environmentally-equivalent conditions of temperature, salinity and desiccation). Multiple families of immune genes are responsive in concert to certain biotic and abiotic challenges. Individual members of expanded families of immune genes are differentially expressed under both biotic challenge and abiotic stress conditions. Members of the same families of innate immune molecules also are transcribed in developmental stage- and tissue-specific manners. An integrated, highly complex innate immune system that exhibits remarkable discriminatory properties and responses to different pathogens as well as environmental stress has arisen through the adaptive recruitment of tandem duplicated genes. The co-adaptive evolution of stress and innate immune responses appears to have an ancient origin in phylogeny. PMID:25732911

  18. Comparative tissue expression of American lobster (Homarus americanus) immune genes during bacterial and scuticociliate challenge.

    PubMed

    Clark, K Fraser; Acorn, Adam R; Wang, Haili; Greenwood, Spencer J

    2015-12-01

    The American lobster (Homarus americanus) fishery is the most economically significant fishery in Canada; although comparatively little is known about the lobsters' response to pathogenic challenge. This is the first study to investigate the expression of immune genes in tissues outside of the lobster hepatopancreas in response to challenges by the Gram-positive bacteria, Aerococcus viridans var. homari or the scuticociliate parasite, Anophryoides haemophila. The hepatopancreas has been regarded as the major humoral immune organ in crustaceans, but the contribution of other organs and tissues to the molecular immune response has largely been overlooked. This study used RT-qPCR to monitor the gene expression of several immune genes including three anti-lipopolysaccharide isoforms (ALF) Homame ALF-B1, Homame ALF-C1 and ALFHa-1, acute phase serum amyloid protein A (SAA), as well as thioredoxin and hexokinase, in antennal gland and gill tissues. Our findings indicate that the gene expression of the SAA and all ALF isoforms in the antennal gland and gill tissues increased in response to pathogenic challenge. However, there was differential expression of individual ALF isoforms that were dependent on both the tissue, and the pathogen used in the challenge. The gene expression changes of several immune genes were found to be higher in the antennal gland than have been previously reported for the hepatopancreas. This study demonstrates that increased immune gene expression from the gill and antennal gland over the course of pathogen induced disease contributes to the immune response of H. americanus.

  19. Comparative tissue expression of American lobster (Homarus americanus) immune genes during bacterial and scuticociliate challenge.

    PubMed

    Clark, K Fraser; Acorn, Adam R; Wang, Haili; Greenwood, Spencer J

    2015-12-01

    The American lobster (Homarus americanus) fishery is the most economically significant fishery in Canada; although comparatively little is known about the lobsters' response to pathogenic challenge. This is the first study to investigate the expression of immune genes in tissues outside of the lobster hepatopancreas in response to challenges by the Gram-positive bacteria, Aerococcus viridans var. homari or the scuticociliate parasite, Anophryoides haemophila. The hepatopancreas has been regarded as the major humoral immune organ in crustaceans, but the contribution of other organs and tissues to the molecular immune response has largely been overlooked. This study used RT-qPCR to monitor the gene expression of several immune genes including three anti-lipopolysaccharide isoforms (ALF) Homame ALF-B1, Homame ALF-C1 and ALFHa-1, acute phase serum amyloid protein A (SAA), as well as thioredoxin and hexokinase, in antennal gland and gill tissues. Our findings indicate that the gene expression of the SAA and all ALF isoforms in the antennal gland and gill tissues increased in response to pathogenic challenge. However, there was differential expression of individual ALF isoforms that were dependent on both the tissue, and the pathogen used in the challenge. The gene expression changes of several immune genes were found to be higher in the antennal gland than have been previously reported for the hepatopancreas. This study demonstrates that increased immune gene expression from the gill and antennal gland over the course of pathogen induced disease contributes to the immune response of H. americanus. PMID:26551049

  20. Protective Immunity against Eimeria acervulina following In Ovo Immunization with a Recombinant Subunit Vaccine and Cytokine Genes

    PubMed Central

    Ding, Xicheng; Lillehoj, Hyun S.; Quiroz, Marco A.; Bevensee, Erich; Lillehoj, Erik P.

    2004-01-01

    A purified recombinant protein from Eimeria acervulina (3-1E) was used to vaccinate chickens in ovo against coccidiosis both alone and in combination with expression plasmids encoding the interleukin 1 (IL-1), IL-2, IL-6, IL-8, IL-15, IL-16, IL-17, IL-18, or gamma interferon (IFN-γ) gene. When used alone, vaccination with 100 or 500 μg of 3-1E resulted in significantly decreased oocyst shedding compared with that in nonvaccinated chickens. Simultaneous vaccination of the 3-1E protein with the IL-1, -15, -16, or -17 gene induced higher serum antibody responses than 3-1E alone. To evaluate protective intestinal immunity, vaccinated birds were challenged with live E. acervulina oocysts 14 days posthatch, and fecal-oocyst shedding and body weight gain were determined as parameters of coccidiosis. Chickens vaccinated with 3-1E protein showed significantly lower oocyst shedding and normal body weight gain than nonvaccinated and infected controls. Simultaneous immunization with 3-1E and the IL-2, -15, -17, or -18 or IFN-γ gene further reduced oocyst shedding compared with that achieved with 3-1E alone. These results provide the first evidence that in ovo vaccination with the recombinant 3-1E Eimeria protein induces protective intestinal immunity against coccidiosis, and this effect was enhanced by coadministration of genes encoding immunity-related cytokines. PMID:15557615

  1. Innate immunity gene polymorphisms and the risk of colorectal neoplasia

    PubMed Central

    Berndt, Sonja I.

    2013-01-01

    Inherited variation in genes that regulate innate immunity and inflammation may contribute to colorectal neoplasia risk. To evaluate this association, we conducted a nested case–control study of 451 colorectal cancer cases, 694 colorectal advanced adenoma cases and 696 controls of European descent within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. A total of 935 tag single-nucleotide polymorphisms (SNPs) in 98 genes were evaluated. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association with colorectal neoplasia. Sixteen SNPs were associated with colorectal neoplasia risk at P < 0.01, but after adjustment for multiple testing, only rs2838732 (ITGB2) remained suggestively associated with colorectal neoplasia (ORper T allele = 0.68, 95% CI: 0.57–0.83, P = 7.7 × 10–5, adjusted P = 0.07). ITGB2 codes for the CD18 protein in the integrin beta chain family. The ITGB2 association was stronger for colorectal cancer (ORper T allele = 0.41, 95% CI: 0.30–0.55, P = 2.4 × 10− 9) than for adenoma (ORper T allele = 0.84, 95%CI: 0.69–1.03, P = 0.08), but it did not replicate in the validation study. The ITGB2 rs2838732 association was significantly modified by smoking status (P value for interaction = 0.003). Among never and former smokers, it was inversely associated with colorectal neoplasia (ORper T allele = 0.5, 95% CI: 0.37–0.69 and ORper T allele = 0.72, 95% CI: 0.54–0.95, respectively), but no association was seen among current smokers. Other notable findings were observed for SNPs in BPI/LBP and MYD88. Although the results need to be replicated, our findings suggest that genetic variation in inflammation-related genes may be related to the risk of colorectal neoplasia. PMID:23803696

  2. Repeated observation of immune gene sets enrichment in women with non-small cell lung cancer

    PubMed Central

    Araujo, Jhajaira M.; Prado, Alexandra; Cardenas, Nadezhda K.; Zaharia, Mayer; Dyer, Richard; Doimi, Franco; Bravo, Leny; Pinillos, Luis; Morante, Zaida; Aguilar, Alfredo; Mas, Luis A.; Gomez, Henry L.; Vallejos, Carlos S.; Rolfo, Christian; Pinto, Joseph A.

    2016-01-01

    There are different biological and clinical patterns of lung cancer between genders indicating intrinsic differences leading to increased sensitivity to cigarette smoke-induced DNA damage, mutational patterns of KRAS and better clinical outcomes in women while differences between genders at gene-expression levels was not previously reported. Here we show an enrichment of immune genes in NSCLC in women compared to men. We found in a GSEA analysis (by biological processes annotated from Gene Ontology) of six public datasets a repeated observation of immune gene sets enrichment in women. “Immune system process”, “immune response”, “defense response”, “cellular defense response” and “regulation of immune system process” were the gene sets most over-represented while APOBEC3G, APOBEC3F, LAT, CD1D and CCL5 represented the top-five core genes. Characterization of immune cell composition with the platform CIBERSORT showed no differences between genders; however, there were differences when tumor tissues were compared to normal tissues. Our results suggest different immune responses in NSCLC between genders that could be related with the different clinical outcome. PMID:26958810

  3. Repeated observation of immune gene sets enrichment in women with non-small cell lung cancer.

    PubMed

    Araujo, Jhajaira M; Prado, Alexandra; Cardenas, Nadezhda K; Zaharia, Mayer; Dyer, Richard; Doimi, Franco; Bravo, Leny; Pinillos, Luis; Morante, Zaida; Aguilar, Alfredo; Mas, Luis A; Gomez, Henry L; Vallejos, Carlos S; Rolfo, Christian; Pinto, Joseph A

    2016-04-12

    There are different biological and clinical patterns of lung cancer between genders indicating intrinsic differences leading to increased sensitivity to cigarette smoke-induced DNA damage, mutational patterns of KRAS and better clinical outcomes in women while differences between genders at gene-expression levels was not previously reported. Here we show an enrichment of immune genes in NSCLC in women compared to men. We found in a GSEA analysis (by biological processes annotated from Gene Ontology) of six public datasets a repeated observation of immune gene sets enrichment in women. "Immune system process", "immune response", "defense response", "cellular defense response" and "regulation of immune system process" were the gene sets most over-represented while APOBEC3G, APOBEC3F, LAT, CD1D and CCL5 represented the top-five core genes. Characterization of immune cell composition with the platform CIBERSORT showed no differences between genders; however, there were differences when tumor tissues were compared to normal tissues. Our results suggest different immune responses in NSCLC between genders that could be related with the different clinical outcome.

  4. Resolving misassembled cattle immune gene clusters with hierarchical, long read sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal health is a critical component of productivity; however, current genomic selection genotyping tools have a paucity of genetic markers within key immune gene clusters (IGC) involved in the cattle innate and adaptive immune systems. With diseases such as Bovine Tuberculosis and Johne’s disease ...

  5. Immunization

    MedlinePlus

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  6. Immunizations

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Immunizations KidsHealth > For Teens > Immunizations Print A A A ... That Shot? en español Las vacunas Why Are Vaccinations Important? Measles, mumps, and whooping cough may seem ...

  7. Electronic Sorting of Immune Cell Subpopulations Based on Highly Plastic Genes.

    PubMed

    Wang, Pingzhang; Han, Wenling; Ma, Dalong

    2016-07-15

    Immune cells are highly heterogeneous and plastic with regard to gene expression and cell phenotype. In this study, we categorized genes into those with low and high gene plasticity, and those categories revealed different functions and applications. We proposed that highly plastic genes could be suited for the labeling of immune cell subpopulations; thus, novel immune cell subpopulations could be identified by gene plasticity analysis. For this purpose, we systematically analyzed highly plastic genes in human and mouse immune cells. In total, 1,379 human and 883 mouse genes were identified as being extremely plastic. We also expanded our previous immunoinformatic method, electronic sorting, which surveys big data to perform virtual analysis. This approach used correlation analysis and took dosage changes into account, which allowed us to identify the differentially expressed genes. A test with human CD4(+) T cells supported the method's feasibility, effectiveness, and predictability. For example, with the use of human nonregulatory T cells, we found that FOXP3(hi)CD4(+) T cells were highly expressive of certain known molecules, such as CD25 and CTLA4, and that this process of investigation did not require isolating or inducing these immune cells in vitro. Therefore, the sorting process helped us to discover the potential signature genes or marker molecules and to conduct functional evaluations for immune cell subpopulations. Finally, in human CD4(+) T cells, 747 potential immune cell subpopulations and their candidate signature genes were identified, which provides a useful resource for big data-driven knowledge discoveries. PMID:27288532

  8. Manipulating the in vivo immune response by targeted gene knockdown

    PubMed Central

    Lieberman, Judy

    2015-01-01

    Aptamers, nucleic acids selected for high affinity binding to proteins, can be used to activate or antagonize immune mediators or receptors in a location and cell-type specific manner and to enhance antigen presentation. They can also be linked to other molecules (other aptamers, siRNAs or miRNAs, proteins, toxins) to produce multifunctional compounds for targeted immune modulation in vivo. Aptamer-siRNA chimeras (AsiCs) that induce efficient cell-specific knockdown in immune cells in vitro and in vivo can be used as an immunological research tool or potentially as an immunomodulating therapeutic. PMID:26149459

  9. Identification of Immunity Related Genes to Study the Physalis peruviana – Fusarium oxysporum Pathosystem

    PubMed Central

    Enciso-Rodríguez, Felix E.; González, Carolina; Rodríguez, Edwin A.; López, Camilo E.; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC–NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance. PMID:23844210

  10. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes.

    PubMed

    Waterhouse, Robert M; Kriventseva, Evgenia V; Meister, Stephan; Xi, Zhiyong; Alvarez, Kanwal S; Bartholomay, Lyric C; Barillas-Mury, Carolina; Bian, Guowu; Blandin, Stephanie; Christensen, Bruce M; Dong, Yuemei; Jiang, Haobo; Kanost, Michael R; Koutsos, Anastasios C; Levashina, Elena A; Li, Jianyong; Ligoxygakis, Petros; Maccallum, Robert M; Mayhew, George F; Mendes, Antonio; Michel, Kristin; Osta, Mike A; Paskewitz, Susan; Shin, Sang Woon; Vlachou, Dina; Wang, Lihui; Wei, Weiqi; Zheng, Liangbiao; Zou, Zhen; Severson, David W; Raikhel, Alexander S; Kafatos, Fotis C; Dimopoulos, George; Zdobnov, Evgeny M; Christophides, George K

    2007-06-22

    Mosquitoes are vectors of parasitic and viral diseases of immense importance for public health. The acquisition of the genome sequence of the yellow fever and Dengue vector, Aedes aegypti (Aa), has enabled a comparative phylogenomic analysis of the insect immune repertoire: in Aa, the malaria vector Anopheles gambiae (Ag), and the fruit fly Drosophila melanogaster (Dm). Analysis of immune signaling pathways and response modules reveals both conservative and rapidly evolving features associated with different functional gene categories and particular aspects of immune reactions. These dynamics reflect in part continuous readjustment between accommodation and rejection of pathogens and suggest how innate immunity may have evolved.

  11. Genes of the adaptive immune system are expressed early in zebrafish larval development following lipopolysaccharide stimulation

    NASA Astrophysics Data System (ADS)

    Li, Fengling; Zhang, Shicui; Wang, Zhiping; Li, Hongyan

    2011-03-01

    Information regarding immunocompetence of the adaptive immune system (AIS) in zebrafish Danio rerio remains limited. Here, we stimulated an immune response in fish embryos, larvae and adults using lipopolysaccharide (LPS) and measured the upregulation of a number of AIS-related genes ( Rag2, AID, TCRAC, IgLC-1, mIg, sIg, IgZ and DAB) 3 and 18 h later. We found that all of the genes evaluated were strongly induced following LPS stimulation, with most of them responding at 8 d post fertilization. This confirms that a functional adaptive immune response is present in D. rerio larvae, and provides a window for further functional analyses.

  12. A screen for immunity genes evolving under positive selection in Drosophila.

    PubMed

    Jiggins, F M; Kim, K W

    2007-05-01

    Genes involved in the immune system tend to have higher rates of adaptive evolution than other genes in the genome, probably because they are coevolving with pathogens. We have screened a sample of Drosophila genes to identify those evolving under positive selection. First, we identified rapidly evolving immunity genes by comparing 140 loci in Drosophila erecta and D. yakuba. Secondly, we resequenced 23 of the fastest evolving genes from the independent species pair D. melanogaster and D. simulans, and identified those under positive selection using a McDonald-Kreitman test. There was strong evidence of adaptive evolution in two serine proteases (persephone and spirit) and a homolog of the Anopheles serpin SRPN6, and weaker evidence in another serine protease and the death domain protein dFADD. These results add to mounting evidence that immune signalling pathway molecules often evolve rapidly, possibly because they are sites of host-parasite coevolution.

  13. Immunity-related genes in Ixodes scapularis--perspectives from genome information.

    PubMed

    Smith, Alexis A; Pal, Utpal

    2014-01-01

    Ixodes scapularis, commonly known as the deer tick, transmits a wide array of human and animal pathogens including Borrelia burgdorferi. Despite substantial advances in our understanding of immunity in model arthropods, including other disease vectors, precisely how I. scapularis immunity functions and influences persistence of invading pathogens remains largely unknown. This review provides a comprehensive analysis of the recently sequenced I. scapularis genome for the occurrence of immune-related genes and related pathways. We will also discuss the potential influence of immunity-related genes on the persistence of tick-borne pathogens with an emphasis on the Lyme disease pathogen B. burgdorferi. Further enhancement of our knowledge of tick immune responses is critical to understanding the molecular basis of the persistence of tick-borne pathogens and development of novel interventions against the relevant infections. PMID:25202684

  14. Immunity-related genes in Ixodes scapularis--perspectives from genome information.

    PubMed

    Smith, Alexis A; Pal, Utpal

    2014-01-01

    Ixodes scapularis, commonly known as the deer tick, transmits a wide array of human and animal pathogens including Borrelia burgdorferi. Despite substantial advances in our understanding of immunity in model arthropods, including other disease vectors, precisely how I. scapularis immunity functions and influences persistence of invading pathogens remains largely unknown. This review provides a comprehensive analysis of the recently sequenced I. scapularis genome for the occurrence of immune-related genes and related pathways. We will also discuss the potential influence of immunity-related genes on the persistence of tick-borne pathogens with an emphasis on the Lyme disease pathogen B. burgdorferi. Further enhancement of our knowledge of tick immune responses is critical to understanding the molecular basis of the persistence of tick-borne pathogens and development of novel interventions against the relevant infections.

  15. Sequential Infection with Common Pathogens Promotes Human-like Immune Gene Expression and Altered Vaccine Response.

    PubMed

    Reese, Tiffany A; Bi, Kevin; Kambal, Amal; Filali-Mouhim, Ali; Beura, Lalit K; Bürger, Matheus C; Pulendran, Bali; Sekaly, Rafick-Pierre; Jameson, Stephen C; Masopust, David; Haining, W Nicholas; Virgin, Herbert W

    2016-05-11

    Immune responses differ between laboratory mice and humans. Chronic infection with viruses and parasites are common in humans, but are absent in laboratory mice, and thus represent potential contributors to inter-species differences in immunity. To test this, we sequentially infected laboratory mice with herpesviruses, influenza, and an intestinal helminth and compared their blood immune signatures to mock-infected mice before and after vaccination against yellow fever virus (YFV-17D). Sequential infection altered pre- and post-vaccination gene expression, cytokines, and antibodies in blood. Sequential pathogen exposure induced gene signatures that recapitulated those seen in blood from pet store-raised versus laboratory mice, and adult versus cord blood in humans. Therefore, basal and vaccine-induced murine immune responses are altered by infection with agents common outside of barrier facilities. This raises the possibility that we can improve mouse models of vaccination and immunity by selective microbial exposure of laboratory animals to mimic that of humans. PMID:27107939

  16. Immunity-related genes in Ixodes scapularis—perspectives from genome information

    PubMed Central

    Smith, Alexis A.; Pal, Utpal

    2014-01-01

    Ixodes scapularis, commonly known as the deer tick, transmits a wide array of human and animal pathogens including Borrelia burgdorferi. Despite substantial advances in our understanding of immunity in model arthropods, including other disease vectors, precisely how I. scapularis immunity functions and influences persistence of invading pathogens remains largely unknown. This review provides a comprehensive analysis of the recently sequenced I. scapularis genome for the occurrence of immune-related genes and related pathways. We will also discuss the potential influence of immunity-related genes on the persistence of tick-borne pathogens with an emphasis on the Lyme disease pathogen B. burgdorferi. Further enhancement of our knowledge of tick immune responses is critical to understanding the molecular basis of the persistence of tick-borne pathogens and development of novel interventions against the relevant infections. PMID:25202684

  17. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.

    PubMed

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2014-06-01

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. PMID:24318927

  18. Genomic Signatures of Selective Pressures and Introgression from Archaic Hominins at Human Innate Immunity Genes.

    PubMed

    Deschamps, Matthieu; Laval, Guillaume; Fagny, Maud; Itan, Yuval; Abel, Laurent; Casanova, Jean-Laurent; Patin, Etienne; Quintana-Murci, Lluis

    2016-01-01

    Human genes governing innate immunity provide a valuable tool for the study of the selective pressure imposed by microorganisms on host genomes. A comprehensive, genome-wide study of how selective constraints and adaptations have driven the evolution of innate immunity genes is missing. Using full-genome sequence variation from the 1000 Genomes Project, we first show that innate immunity genes have globally evolved under stronger purifying selection than the remainder of protein-coding genes. We identify a gene set under the strongest selective constraints, mutations in which are likely to predispose individuals to life-threatening disease, as illustrated by STAT1 and TRAF3. We then evaluate the occurrence of local adaptation and detect 57 high-scoring signals of positive selection at innate immunity genes, variation in which has been associated with susceptibility to common infectious or autoimmune diseases. Furthermore, we show that most adaptations targeting coding variation have occurred in the last 6,000-13,000 years, the period at which populations shifted from hunting and gathering to farming. Finally, we show that innate immunity genes present higher Neandertal introgression than the remainder of the coding genome. Notably, among the genes presenting the highest Neandertal ancestry, we find the TLR6-TLR1-TLR10 cluster, which also contains functional adaptive variation in Europeans. This study identifies highly constrained genes that fulfill essential, non-redundant functions in host survival and reveals others that are more permissive to change-containing variation acquired from archaic hominins or adaptive variants in specific populations-improving our understanding of the relative biological importance of innate immunity pathways in natural conditions.

  19. Genomic Signatures of Selective Pressures and Introgression from Archaic Hominins at Human Innate Immunity Genes

    PubMed Central

    Deschamps, Matthieu; Laval, Guillaume; Fagny, Maud; Itan, Yuval; Abel, Laurent; Casanova, Jean-Laurent; Patin, Etienne; Quintana-Murci, Lluis

    2016-01-01

    Human genes governing innate immunity provide a valuable tool for the study of the selective pressure imposed by microorganisms on host genomes. A comprehensive, genome-wide study of how selective constraints and adaptations have driven the evolution of innate immunity genes is missing. Using full-genome sequence variation from the 1000 Genomes Project, we first show that innate immunity genes have globally evolved under stronger purifying selection than the remainder of protein-coding genes. We identify a gene set under the strongest selective constraints, mutations in which are likely to predispose individuals to life-threatening disease, as illustrated by STAT1 and TRAF3. We then evaluate the occurrence of local adaptation and detect 57 high-scoring signals of positive selection at innate immunity genes, variation in which has been associated with susceptibility to common infectious or autoimmune diseases. Furthermore, we show that most adaptations targeting coding variation have occurred in the last 6,000–13,000 years, the period at which populations shifted from hunting and gathering to farming. Finally, we show that innate immunity genes present higher Neandertal introgression than the remainder of the coding genome. Notably, among the genes presenting the highest Neandertal ancestry, we find the TLR6-TLR1-TLR10 cluster, which also contains functional adaptive variation in Europeans. This study identifies highly constrained genes that fulfill essential, non-redundant functions in host survival and reveals others that are more permissive to change—containing variation acquired from archaic hominins or adaptive variants in specific populations—improving our understanding of the relative biological importance of innate immunity pathways in natural conditions. PMID:26748513

  20. Genomic Signatures of Selective Pressures and Introgression from Archaic Hominins at Human Innate Immunity Genes.

    PubMed

    Deschamps, Matthieu; Laval, Guillaume; Fagny, Maud; Itan, Yuval; Abel, Laurent; Casanova, Jean-Laurent; Patin, Etienne; Quintana-Murci, Lluis

    2016-01-01

    Human genes governing innate immunity provide a valuable tool for the study of the selective pressure imposed by microorganisms on host genomes. A comprehensive, genome-wide study of how selective constraints and adaptations have driven the evolution of innate immunity genes is missing. Using full-genome sequence variation from the 1000 Genomes Project, we first show that innate immunity genes have globally evolved under stronger purifying selection than the remainder of protein-coding genes. We identify a gene set under the strongest selective constraints, mutations in which are likely to predispose individuals to life-threatening disease, as illustrated by STAT1 and TRAF3. We then evaluate the occurrence of local adaptation and detect 57 high-scoring signals of positive selection at innate immunity genes, variation in which has been associated with susceptibility to common infectious or autoimmune diseases. Furthermore, we show that most adaptations targeting coding variation have occurred in the last 6,000-13,000 years, the period at which populations shifted from hunting and gathering to farming. Finally, we show that innate immunity genes present higher Neandertal introgression than the remainder of the coding genome. Notably, among the genes presenting the highest Neandertal ancestry, we find the TLR6-TLR1-TLR10 cluster, which also contains functional adaptive variation in Europeans. This study identifies highly constrained genes that fulfill essential, non-redundant functions in host survival and reveals others that are more permissive to change-containing variation acquired from archaic hominins or adaptive variants in specific populations-improving our understanding of the relative biological importance of innate immunity pathways in natural conditions. PMID:26748513

  1. Ontogenetic onset of immune-relevant genes in the common sole (Solea solea).

    PubMed

    Ferraresso, Serena; Bonaldo, Alessio; Parma, Luca; Buonocore, Francesco; Scapigliati, Giuseppe; Gatta, Pier Paolo; Bargelloni, Luca

    2016-10-01

    Fish are free-living organisms since initial stages of development and are exposed to numerous pathogens before their lymphoid organs have matured and adaptive immunity has developed. Susceptibility to diseases and juvenile mortality represent key critical factors for aquaculture. In this context, the characterization of the appearance kinetics of the immune system key members will be useful in understanding the ability of a particular species in generating immune protection against invading pathogens at different developmental stages. The present study characterized, for the first time, the transcriptional onset of un-explored relevant genes of both innate and adaptive immune system during the Solea solea ontogenesis. Gene expression profiles of immune relevant genes was investigated, by means of DNA microarray, in ten developmental stages, from hatching (1 day post-hatching, dph) to accomplishment of the juvenile form (33 dph). The obtained results revealed that transcripts encoding relevant members of innate immune repertoire, such as lysozyme, AMPs (hepcidin, β-defensin), PPRs and complement components are generally characterized by high expression levels at first stages (i.e. hatch and first feeding) indicating protection from environmental pathogens even at early development. Transcription of adaptive immune genes (i.e. Class I and class II MHC, TCRs) differs from that of the innate immune system. Their onset coincides with metamorphosis and larvae-to-juvenile transition, and likely overlaps with the appearance and maturation of the main lymphoid organs. Finally, data collected suggest that at the end of metamorphosis S. solea cell-mediated immune system hasn't still undergone full maturation.

  2. Ontogenetic onset of immune-relevant genes in the common sole (Solea solea).

    PubMed

    Ferraresso, Serena; Bonaldo, Alessio; Parma, Luca; Buonocore, Francesco; Scapigliati, Giuseppe; Gatta, Pier Paolo; Bargelloni, Luca

    2016-10-01

    Fish are free-living organisms since initial stages of development and are exposed to numerous pathogens before their lymphoid organs have matured and adaptive immunity has developed. Susceptibility to diseases and juvenile mortality represent key critical factors for aquaculture. In this context, the characterization of the appearance kinetics of the immune system key members will be useful in understanding the ability of a particular species in generating immune protection against invading pathogens at different developmental stages. The present study characterized, for the first time, the transcriptional onset of un-explored relevant genes of both innate and adaptive immune system during the Solea solea ontogenesis. Gene expression profiles of immune relevant genes was investigated, by means of DNA microarray, in ten developmental stages, from hatching (1 day post-hatching, dph) to accomplishment of the juvenile form (33 dph). The obtained results revealed that transcripts encoding relevant members of innate immune repertoire, such as lysozyme, AMPs (hepcidin, β-defensin), PPRs and complement components are generally characterized by high expression levels at first stages (i.e. hatch and first feeding) indicating protection from environmental pathogens even at early development. Transcription of adaptive immune genes (i.e. Class I and class II MHC, TCRs) differs from that of the innate immune system. Their onset coincides with metamorphosis and larvae-to-juvenile transition, and likely overlaps with the appearance and maturation of the main lymphoid organs. Finally, data collected suggest that at the end of metamorphosis S. solea cell-mediated immune system hasn't still undergone full maturation. PMID:27554393

  3. Tissue-Specific Immune Gene Expression in the Migratory Locust, Locusta Migratoria.

    PubMed

    Pulpitel, Tamara; Pernice, Mathieu; Simpson, Stephen J; Ponton, Fleur

    2015-01-01

    The ability of hosts to respond to infection involves several complex immune recognition pathways. Broadly conserved pathogen-associated molecular patterns (PAMPs) allow individuals to target a range of invading microbes. Recently, studies on insect innate immunity have found evidence that a single pathogen can activate different immune pathways across species. In this study, expression changes in immune genes encoding peptidoglycan-recognition protein SA (PGRP-SA), gram-negative binding protein 1 (GNBP1) and prophenoloxidase (ProPO) were investigated in Locusta migratoria, following an immune challenge using injected lipopolysaccharide (LPS) solution from Escherichia coli. Since immune activation might also be tissue-specific, gene expression levels were followed across a range of tissue types. For PGRP-SA, expression increased in response to LPS within all seven of the tissue-types assayed and differed significantly between tissues. Expression of GNBP1 similarly varied across tissue types, yet showed no clear expression difference between LPS-injected and uninfected locusts. Increases in ProPO expression in response to LPS, however, could only be detected in the gut sections. This study has revealed tissue-specific immune response to add a new level of complexity to insect immune studies. In addition to variation in recognition pathways identified in previous works, tissue-specificity should be carefully considered in similar works. PMID:26463191

  4. Intradermal Gene Immunization: The Possible Role of DNA Uptake in the Induction of Cellular Immunity to Viruses

    NASA Astrophysics Data System (ADS)

    Raz, Eyal; Carson, Dennis A.; Parker, Suezanne E.; Parr, Tyler B.; Abai, Anna M.; Aichinger, Gerald; Gromkowski, Stanislaw H.; Singh, Malini; Lew, Denise; Yankauckas, Michelle A.; Baird, Stephen M.; Rhodes, Gary H.

    1994-09-01

    The skin and mucous membranes are the anatomical sites where most viruses are first encountered by the immune system. Previous experiments have suggested that striated muscle cells are unique among mammalian cell types in their capacity to take up and express free DNA in the absence of a viral vector or physical carrier. However, we have found that mice injected into the superficial skin with free (naked) plasmid DNA encoding the influenza nucleoprotein gene had discrete foci of epidermal and dermal cells, including cells with dendritic morphology, that contained immunoreactive nucleoprotein antigen. A single intradermal administration of 0.3-15 μ g of free plasmid DNA induced anti-nucleoprotein-specific antibody and cytotoxic T lymphocytes that persisted for at least 68-70 weeks after vaccination. Intradermal gene administration induced higher antibody titers than did direct gene injection into skeletal muscle and did not cause local inflammation or necrosis. Compared with control animals, the gene-injected mice were resistant to challenge with a heterologous strain of influenza virus. These results indicate that the cells of the skin can take up and express free foreign DNA and induce cellular and humoral immune responses against the encoded protein. We suggest that DNA uptake by the skin-associated lymphoid tissues may play a role in the induction of cytotoxic T cells against viruses and other intracellular pathogens.

  5. Revealing Shared and Distinct Gene Network Organization in Arabidopsis Immune Responses by Integrative Analysis1

    PubMed Central

    Dong, Xiaobao; Jiang, Zhenhong; Peng, You-Liang; Zhang, Ziding

    2015-01-01

    Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are two main plant immune responses to counter pathogen invasion. Genome-wide gene network organizing principles leading to quantitative differences between PTI and ETI have remained elusive. We combined an advanced machine learning method and modular network analysis to systematically characterize the organizing principles of Arabidopsis (Arabidopsis thaliana) PTI and ETI at three network resolutions. At the single network node/edge level, we ranked genes and gene interactions based on their ability to distinguish immune response from normal growth and successfully identified many immune-related genes associated with PTI and ETI. Topological analysis revealed that the top-ranked gene interactions tend to link network modules. At the subnetwork level, we identified a subnetwork shared by PTI and ETI encompassing 1,159 genes and 1,289 interactions. This subnetwork is enriched in interactions linking network modules and is also a hotspot of attack by pathogen effectors. The subnetwork likely represents a core component in the coordination of multiple biological processes to favor defense over development. Finally, we constructed modular network models for PTI and ETI to explain the quantitative differences in the global network architecture. Our results indicate that the defense modules in ETI are organized into relatively independent structures, explaining the robustness of ETI to genetic mutations and effector attacks. Taken together, the multiscale comparisons of PTI and ETI provide a systems biology perspective on plant immunity and emphasize coordination among network modules to establish a robust immune response. PMID:25614062

  6. Feminizing Wolbachia: a transcriptomics approach with insights on the immune response genes in Armadillidium vulgare

    PubMed Central

    2012-01-01

    Background Wolbachia are vertically transmitted bacteria known to be the most widespread endosymbiont in arthropods. They induce various alterations of the reproduction of their host, including feminization of genetic males in isopod crustaceans. In the pill bug Armadillidium vulgare, the presence of Wolbachia is also associated with detrimental effects on host fertility and lifespan. Deleterious effects have been demonstrated on hemocyte density, phenoloxidase activity, and natural hemolymph septicemia, suggesting that infected individuals could have defective immune capacities. Since nothing is known about the molecular mechanisms involved in Wolbachia-A. vulgare interactions and its secondary immunocompetence modulation, we developed a transcriptomics strategy and compared A. vulgare gene expression between Wolbachia-infected animals (i.e., “symbiotic” animals) and uninfected ones (i.e., “asymbiotic” animals) as well as between animals challenged or not challenged by a pathogenic bacteria. Results Since very little genetic data is available on A. vulgare, we produced several EST libraries and generated a total of 28 606 ESTs. Analyses of these ESTs revealed that immune processes were over-represented in most experimental conditions (responses to a symbiont and to a pathogen). Considering canonical crustacean immune pathways, these genes encode antimicrobial peptides or are involved in pathogen recognition, detoxification, and autophagy. By RT-qPCR, we demonstrated a general trend towards gene under-expression in symbiotic whole animals and ovaries whereas the same gene set tends to be over-expressed in symbiotic immune tissues. Conclusion This study allowed us to generate the first reference transcriptome ever obtained in the Isopoda group and to identify genes involved in the major known crustacean immune pathways encompassing cellular and humoral responses. Expression of immune-related genes revealed a modulation of host immunity when females are

  7. Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter.

    PubMed

    Shaughnessy, Ronan G; Meade, Kieran G; Cahalane, Sarah; Allan, Brenda; Reiman, Carla; Callanan, John J; O'Farrelly, Cliona

    2009-12-15

    Salmonella enterica serovar Typhimurium and Campylobacter jejuni are major human pathogens, yet colonise chickens without causing pathology. The aim of this study was to compare intestinal innate immune responses to both bacterial species, in a 4-week-old broiler chicken model. Challenged and control birds were sacrificed and tissue samples taken for histopathology and RNA extraction. No significant clinical or pathological changes were observed in response to infection with either bacterial species. Expression of selected genes involved in pathogen detection and the innate immune response were profiled in caecal tissues by quantitative real-time PCR. TLR4 and TLR21 gene expression was transiently increased in response to both bacterial species (P<0.05). Significant increases in TLR5 and TLR15 gene expression were detected in response to S. Typhimurium but not to C. jejuni. Transient increases of proinflammatory cytokine (IL6 and IFNG) and chemokine (IL8 and K60) genes increased as early as 6h in response to S. Typhimurium. Minimal cytokine gene expression was detected in response to C. jejuni after 20h. IL8 gene expression however, was significantly increased by 24-fold (P<0.01). The differential expression profiles of innate immune genes in both infection models shed light on the tailored responses of the host immune system to specific microbes. It is further evidence that innate regulation of these responses is an important prerequisite to preventing development of disease.

  8. Clustering of Drosophila melanogaster Immune Genes in Interplay with Recombination Rate

    PubMed Central

    Wegner, K. Mathias

    2008-01-01

    Background Gene order in eukaryotic chromosomes is not random and has been linked to coordination of gene expression, chromatin structure and also recombination rate. The evolution of recombination rate is especially relevant for genes involved in immunity because host-parasite co-evolution could select for increased recombination rate (Red Queen hypothesis). To identify patterns left by the intimate interaction between hosts and parasites, I analysed the genomic parameters of the immune genes from 24 gene families/groups of Drosophila melanogaster. Principal Findings Immune genes that directly interact with the pathogen (i.e. recognition and effector genes) clustered in regions of higher recombination rates. Out of these, clustered effector genes were transcribed fastest indicating that transcriptional control might be one major cause for cluster formation. The relative position of clusters to each other, on the other hand, cannot be explained by transcriptional control per se. Drosophila immune genes that show epistatic interactions can be found at an average distance of 15.44±2.98 cM, which is considerably closer than genes that do not interact (30.64±1.95 cM). Conclusions Epistatically interacting genes rarely belong to the same cluster, which supports recent models of optimal recombination rates between interacting genes in antagonistic host-parasite co-evolution. These patterns suggest that formation of local clusters might be a result of transcriptional control, but that in the condensed genome of D. melanogaster relative position of these clusters may be a result of selection for optimal rather than maximal recombination rates between these clusters. PMID:18665272

  9. Reporter Gene Imaging of Immune Responses to Cancer: Progress and Challenges

    PubMed Central

    Dubey, Purnima

    2012-01-01

    Immune responses to cancer are dynamic processes which take place through the concerted activity of innate and adaptive cell populations. In order to fully understand the efficacy of immune therapies for cancer, it is critical to understand how the treatment modulates the function of each cell type involved in the anti-tumor immune response. Molecular imaging is a versatile method for longitudinal studies of cellular localization and function. The development of reporter genes for tracking cell movement and function was a powerful addition to the immunologist's toolbox. This review will highlight the advances and challenges in the use of reporter gene imaging to track immune cell localization and function in cancer. PMID:22509199

  10. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes

    PubMed Central

    Ali, Ali; Rexroad, Caird E.; Thorgaard, Gary H.; Yao, Jianbo; Salem, Mohamed

    2014-01-01

    Resistance against diseases affects profitability of rainbow trout. Limited information is available about functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful tools to determine disease resistance genes/gene pathways and develop genetic markers for genomic selection. RNA-Seq sequencing of the rainbow trout spleen yielded 93,532,200 reads (100 bp). High quality reads were assembled into 43,047 contigs. 26,333 (61.17%) of the contigs had hits to the NR protein database and 7024 (16.32%) had hits to the KEGG database. Gene ontology showed significant percentages of transcripts assigned to binding (51%), signaling (7%), response to stimuli (9%) and receptor activity (4%) suggesting existence of many immune-related genes. KEGG annotation revealed 2825 sequences belonging to “organismal systems” with the highest number of sequences, 842 (29.81%), assigned to immune system. A number of sequences were identified for the first time in rainbow trout belonging to Toll-like receptor signaling (35), B cell receptor signaling pathway (44), T cell receptor signaling pathway (56), chemokine signaling pathway (73), Fc gamma R-mediated phagocytosis (52), leukocyte transendothelial migration (60) and NK cell mediated cytotoxicity (42). In addition, 51 transcripts were identified as spleen-specific genes. The list includes 277 full-length cDNAs. The presence of a large number of immune-related genes and pathways similar to other vertebrates suggests that innate and adaptive immunity in fish are conserved. This study provides deep-sequence data of rainbow trout spleen transcriptome and identifies many new immune-related genes and full-length cDNAs. This data will help identify allelic variations suitable for genomic selection and genetic manipulation in aquaculture. PMID:25352861

  11. Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies

    PubMed Central

    Sitzia, Clementina; Erratico, Silvia; Torrente, Yvan

    2014-01-01

    Muscular dystrophies (MDs) are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs. PMID:24959590

  12. [The relationship between the polymorphism of immunity genes and both aging and age-related diseases].

    PubMed

    Ruan, Qing-Wei; Yu, Zhuo-Wei; Bao, Zhi-Jun; Ma, Yong-Xing

    2013-07-01

    Aging is acommon, progressive and irreversible state of multi-cell dysfunction. Immune aging mainly includes the declines of regenerative capacity and lymphoid lineage differentiation potential, the hyporesponsive to infection and vaccination, the hyperresponsive in the context of inflammatory pathology, and the increased risk of autoimmunity. The dysfunction of aged immune system accelerates the occurrence of aging and age-related diseases. The mutation of immunity genes that affect immune responses accelerates or slows aging process and age-related diseases. The frequencies of acquired immunity genes, such as immune protective HLA II DRB1*11 and DRB*16-associated haplotype, are increased in the longevity populations. The increased susceptibility of immune inflammatory response, morbidity and mortality in the elderly is often associated with decreased frequencies of anti-inflammatory factor IL-10 -1082G allele, TNF-β1 haplotype cnd10T/C, cnd25G/G, -988C/C, -800G/A, low proinflammatory fator TNFa level related extended TNF-A genotype -1031C/C, -863C/A, -857C/C, IL-6-174 CC and IFN-γ+874 T allele as well. The innate immunity genes, such as highly expressed anti-inflammatory +896 G KIR4 allele, CCR5Δ32 variant, -765 C Cox-2 allele, -1708 G and 21 C 5-Lox alleles are detected in centenarians. In age-related diseases, a higher CMV-specific IgG antibody level in elderly individuals is associated with a decreased frequency of KIR haplotypes KIR2DS5 and A1B10 and an increased frequency of MBL2 haplotypes LYPB, LYQC and HYPD that result in the absence of MBL2 protein. The increased frequencies of CRP ATG haplotypes and CFH 402 His allele indicate high mortality in the elderly. In the present study, we review the advances in the polymorphism and haplotype of innate and adoptive immunity genes, and their association with both aging and age-related diseases. To strengthen the analysis of extended haplotypes, epigenetic studies of immunity genes and genetic study of

  13. Expression of Putative Immune Response Genes during Early Ontogeny in the Coral Acropora millepora

    PubMed Central

    Puill-Stephan, Eneour; Seneca, François O.; Miller, David J.; van Oppen, Madeleine J. H.; Willis, Bette L.

    2012-01-01

    Background Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Methodology/Principal Findings Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A.millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Conclusions/Significance Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of

  14. De novo annotation of the immune-enriched transcriptome provides insights into immune system genes of Chinese sturgeon (Acipenser sinensis).

    PubMed

    Zhu, Rong; Du, He-Jun; Li, Shun-Yi; Li, Ya-Dong; Ni, Hong; Yu, Xue-Jing; Yang, Yan-Yan; Fan, Yu-Ding; Jiang, Nan; Zeng, Ling-Bing; Wang, Xing-Guo

    2016-08-01

    Chinese sturgeon (Acipenser sinensis), one of the oldest extant actinopterygian fishes with very high evolutionary, economical and conservation interest, is considered to be one of the critically endangered aquatic animals in China. Up to date, the immune system of this species remains largely undetermined with little sequence information publicly available. Herein, the first comprehensive transcriptome of immune tissues for Chinese sturgeon was characterized using Illumina deep sequencing. Over 67 million high-quality reads were generated and de novo assembled into the final set of 91,739 unique sequences. The annotation pipeline revealed that 25,871 unigenes were successfully annotated in the public databases, of which only 2002 had significant match to the existing sequences for the genus Acipenser. Overall 22,827 unigenes were categorized into 52 GO terms, 12,742 were classified into 26 KOG categories, and 4968 were assigned to 339 KEGG pathways. A more detailed annotation search showed the presence of a notable representation of immune-related genes, which suggests that this non-teleost actinopterygian fish harbors the same intermediates as in the well known immune pathways from mammals and teleosts, such as pattern recognition receptor (PRR) signaling pathway, JAK-STAT signaling pathway, complement and coagulation pathway, T-cell receptor (TCR) and B-cell receptor (BCR) signaling pathways. Additional genetic marker discovery led to the retrieval of 20,056 simple sequence repeats (SSRs) and 327,140 single nucleotide polymorphisms (SNPs). This immune-enriched transcriptome of Chinese sturgeon represents a rich resource that adds to the currently nascent field of chondrostean fish immunogenetics and furthers the conservation and management of this valuable fish.

  15. De novo annotation of the immune-enriched transcriptome provides insights into immune system genes of Chinese sturgeon (Acipenser sinensis).

    PubMed

    Zhu, Rong; Du, He-Jun; Li, Shun-Yi; Li, Ya-Dong; Ni, Hong; Yu, Xue-Jing; Yang, Yan-Yan; Fan, Yu-Ding; Jiang, Nan; Zeng, Ling-Bing; Wang, Xing-Guo

    2016-08-01

    Chinese sturgeon (Acipenser sinensis), one of the oldest extant actinopterygian fishes with very high evolutionary, economical and conservation interest, is considered to be one of the critically endangered aquatic animals in China. Up to date, the immune system of this species remains largely undetermined with little sequence information publicly available. Herein, the first comprehensive transcriptome of immune tissues for Chinese sturgeon was characterized using Illumina deep sequencing. Over 67 million high-quality reads were generated and de novo assembled into the final set of 91,739 unique sequences. The annotation pipeline revealed that 25,871 unigenes were successfully annotated in the public databases, of which only 2002 had significant match to the existing sequences for the genus Acipenser. Overall 22,827 unigenes were categorized into 52 GO terms, 12,742 were classified into 26 KOG categories, and 4968 were assigned to 339 KEGG pathways. A more detailed annotation search showed the presence of a notable representation of immune-related genes, which suggests that this non-teleost actinopterygian fish harbors the same intermediates as in the well known immune pathways from mammals and teleosts, such as pattern recognition receptor (PRR) signaling pathway, JAK-STAT signaling pathway, complement and coagulation pathway, T-cell receptor (TCR) and B-cell receptor (BCR) signaling pathways. Additional genetic marker discovery led to the retrieval of 20,056 simple sequence repeats (SSRs) and 327,140 single nucleotide polymorphisms (SNPs). This immune-enriched transcriptome of Chinese sturgeon represents a rich resource that adds to the currently nascent field of chondrostean fish immunogenetics and furthers the conservation and management of this valuable fish. PMID:27368537

  16. Systemic protein delivery by muscle-gene transfer is limited by a local immune response

    PubMed Central

    Wang, Lixin; Dobrzynski, Eric; Schlachterman, Alexander; Cao, Ou; Herzog, Roland W.

    2005-01-01

    Adeno-associated viral (AAV) vectors have been successfully used for therapeutic expression of systemic transgene products (such as factor IX or erythropoietin) following in vivo administration to skeletal muscle of animal models of inherited hematologic disorders. However, an immune response may be initiated if the transgene product represents a neoantigen. Here, we use ovalbumin (OVA) as a model antigen and demonstrate immune-mediated elimination of expression on muscle-directed AAV-2 gene transfer. Administration to immune competent mice resulted in transient systemic OVA expression. Within 10 days, OVA-specific T-helper cells had been activated in draining lymph nodes, an inflammatory immune response ensued, and OVA-expressing muscle fibers were destroyed by a cytotoxic CD8+ T-cell response. Use of a muscle-specific promoter did not prevent this immune response. Adoptively transferred CD4+ cells transgenic for a T-cell receptor specific to OVA peptide-major histocompatibility complex class II showed antigen-specific, vector dose-dependent proliferation confined to the draining lymph nodes of AAV-OVA–transduced muscle within 5 days after gene transfer and subsequently participated in lymphocytic infiltration of transduced muscle. This study documents that a local immune response limits sustained expression of a secreted protein in muscle gene transfer, a finding that may have consequences for design of clinical protocols. PMID:15713796

  17. Exploiting Gene-Expression Deconvolution to Probe the Genetics of the Immune System

    PubMed Central

    Steuerman, Yael; Gat-Viks, Irit

    2016-01-01

    Sequence variation can affect the physiological state of the immune system. Major experimental efforts targeted at understanding the genetic control of the abundance of immune cell subpopulations. However, these studies are typically focused on a limited number of immune cell types, mainly due to the use of relatively low throughput cell-sorting technologies. Here we present an algorithm that can reveal the genetic basis of inter-individual variation in the abundance of immune cell types using only gene expression and genotyping measurements as input. Our algorithm predicts the abundance of immune cell subpopulations based on the RNA levels of informative marker genes within a complex tissue, and then provides the genetic control on these predicted immune traits as output. A key feature of the approach is the integration of predictions from various sets of marker genes and refinement of these sets to avoid spurious signals. Our evaluation of both synthetic and real biological data shows the significant benefits of the new approach. Our method, VoCAL, is implemented in the freely available R package ComICS. PMID:27035464

  18. Exploiting Gene-Expression Deconvolution to Probe the Genetics of the Immune System.

    PubMed

    Steuerman, Yael; Gat-Viks, Irit

    2016-04-01

    Sequence variation can affect the physiological state of the immune system. Major experimental efforts targeted at understanding the genetic control of the abundance of immune cell subpopulations. However, these studies are typically focused on a limited number of immune cell types, mainly due to the use of relatively low throughput cell-sorting technologies. Here we present an algorithm that can reveal the genetic basis of inter-individual variation in the abundance of immune cell types using only gene expression and genotyping measurements as input. Our algorithm predicts the abundance of immune cell subpopulations based on the RNA levels of informative marker genes within a complex tissue, and then provides the genetic control on these predicted immune traits as output. A key feature of the approach is the integration of predictions from various sets of marker genes and refinement of these sets to avoid spurious signals. Our evaluation of both synthetic and real biological data shows the significant benefits of the new approach. Our method, VoCAL, is implemented in the freely available R package ComICS.

  19. Selection and Evaluation of Tissue Specific Reference Genes in Lucilia sericata during an Immune Challenge

    PubMed Central

    Baumann, Andre; Lehmann, Rüdiger; Beckert, Annika; Vilcinskas, Andreas; Franta, Zdeněk

    2015-01-01

    The larvae of the common green bottle fly Lucilia sericata (Diptera: Calliphoridae) have been used for centuries to promote wound healing, but the molecular basis of their antimicrobial, debridement and healing functions remains largely unknown. The analysis of differential gene expression in specific larval tissues before and after immune challenge could be used to identify key molecular factors, but the most sensitive and reproducible method qRT-PCR requires validated reference genes. We therefore selected 10 candidate reference genes encoding products from different functional classes (18S rRNA, 28S rRNA, actin, β-tubulin, RPS3, RPLP0, EF1α, PKA, GAPDH and GST1). Two widely applied algorithms (GeNorm and Normfinder) were used to analyze reference gene candidates in different larval tissues associated with secretion, digestion, and antimicrobial activity (midgut, hindgut, salivary glands, crop and fat body). The Gram-negative bacterium Pseudomonas aeruginosa was then used to boost the larval immune system and the stability of reference gene expression was tested in comparison to three immune genes (lucimycin, defensin-1 and attacin-2), which target different pathogen classes. We observed no differential expression of the antifungal peptide lucimycin, whereas the representative targeting Gram-positive bacteria (defensin-1) was upregulated in salivary glands, crop, nerve ganglion and reached its maximum in fat body (up to 300-fold). The strongest upregulation in all immune challenged tissues (over 50,000-fold induction in the fat body) was monitored for attacin-2, the representative targeting Gram-negative bacteria. Here we identified and validated a set of reference genes that allows the accurate normalization of gene expression in specific tissues of L. sericata after immune challenge. PMID:26252388

  20. Selection and Evaluation of Tissue Specific Reference Genes in Lucilia sericata during an Immune Challenge.

    PubMed

    Baumann, Andre; Lehmann, Rüdiger; Beckert, Annika; Vilcinskas, Andreas; Franta, Zdeněk

    2015-01-01

    The larvae of the common green bottle fly Lucilia sericata (Diptera: Calliphoridae) have been used for centuries to promote wound healing, but the molecular basis of their antimicrobial, debridement and healing functions remains largely unknown. The analysis of differential gene expression in specific larval tissues before and after immune challenge could be used to identify key molecular factors, but the most sensitive and reproducible method qRT-PCR requires validated reference genes. We therefore selected 10 candidate reference genes encoding products from different functional classes (18S rRNA, 28S rRNA, actin, β-tubulin, RPS3, RPLP0, EF1α, PKA, GAPDH and GST1). Two widely applied algorithms (GeNorm and Normfinder) were used to analyze reference gene candidates in different larval tissues associated with secretion, digestion, and antimicrobial activity (midgut, hindgut, salivary glands, crop and fat body). The Gram-negative bacterium Pseudomonas aeruginosa was then used to boost the larval immune system and the stability of reference gene expression was tested in comparison to three immune genes (lucimycin, defensin-1 and attacin-2), which target different pathogen classes. We observed no differential expression of the antifungal peptide lucimycin, whereas the representative targeting Gram-positive bacteria (defensin-1) was upregulated in salivary glands, crop, nerve ganglion and reached its maximum in fat body (up to 300-fold). The strongest upregulation in all immune challenged tissues (over 50,000-fold induction in the fat body) was monitored for attacin-2, the representative targeting Gram-negative bacteria. Here we identified and validated a set of reference genes that allows the accurate normalization of gene expression in specific tissues of L. sericata after immune challenge.

  1. Lack of association between genetic variation in 9 innate immunity genes and baseline CRP levels.

    PubMed

    Kozlowski, Piotr; Miller, David T; Zee, Robert Y L; Danik, Jacqueline Suk; Chasman, Daniel I; Lazarus, Ross; Cook, Nancy R; Ridker, Paul M; Kwiatkowski, David J

    2006-09-01

    It is well-known that baseline levels of C-reactive protein (CRP) are an independent cardiovascular risk factor. We hypothesized that genetic variation with significant influence on CRP levels might be found in genes of the innate immunity system. We performed a candidate gene association study examining common single nucleotide polymorphisms in 9 innate immunity genes (CARD15, IRAK1, IRAK4, LBP, LY86, MEFV, TLR2, TLR4 and NFKB1) in relation to CRP levels. Seven hundred and seventeen subjects from the Women's Health Study population were studied: 359 and 358 samples with extremely low (<0.2 mg/liter) and high (>5 mg/liter) CRP levels, respectively. SNPs were identified from publicly available resequencing data, using a minor allele frequency threshold of >5% and a linkage disequilibrium (LD)-based strategy (r(2) > 0.8) to select 63 LD-independent markers. One non-synonymous SNP in TLR4 and two non-synonymous SNPs in CARD15, previously associated with atherosclerosis and Crohn's disease, respectively, were also studied. Univariate, haplotype and gene-gene interaction analyses all indicated no significant association with CRP levels. Although this work excludes a significant association of common SNPs in these nine genes with CRP levels, it is possible that rarer alleles in these genes, or variation in other innate immunity genes, could be associated with variation in CRP. PMID:16907704

  2. Complement C3 gene: Expression characterization and innate immune response in razor clam Sinonovacula constricta.

    PubMed

    Peng, Maoxiao; Niu, Donghong; Wang, Fei; Chen, Zhiyi; Li, Jiale

    2016-08-01

    Complement component 3 (C3) is central to the complement system, playing an important role in immune defense, immune regulation and immune pathology. Several C3 genes have been characterized in invertebrates but very few in shellfish. The C3 gene was identified from the razor clam Sinonovacula constricta, referred to here as Sc-C3. It was found to be highly homologous with the C3 gene of Ruditapes decussatus. All eight model motifs of the C3 gene were found to be included in the thiolester bond and the C345C region. Sc-C3 was widely expressed in all healthy tissues with expression being highest in hemolymph. A significant difference in expression was revealed at the umbo larvae development stage. The expression of Sc-C3 was highly regulated in the hemolymph and liver, with a distinct response pattern being noted after a challenge with Micrococcus lysodeikticus and Vibrio parahemolyticus. It is therefore suggested that a complicated and unique response pathway may be present in S. constricta. Further, serum of S. constricta containing Sc-C3 was extracted. This was activated by LPS or bacterium for verification for function. The more obvious immune function of Sc-C3 was described as an effective membrane rupture in hemocyte cells of rabbit, V. parahemolyticus and Vibrio anguillarum. Thus, Sc-C3 plays an essential role in the immune defense of S. constricta. PMID:27231190

  3. Microgravity and Immunity: Changes in Lymphocyte Gene Expression

    NASA Technical Reports Server (NTRS)

    Risin, D.; Pellis, N. R.; Ward, N. E.; Risin, S. A.

    2006-01-01

    Earlier studies had shown that modeled and true microgravity (MG) cause multiple direct effects on human lymphocytes. MG inhibits lymphocyte locomotion, suppresses polyclonal and antigen-specific activation, affects signal transduction mechanisms, as well as activation-induced apoptosis. In this study we assessed changes in gene expression associated with lymphocyte exposure to microgravity in an attempt to identify microgravity-sensitive genes (MGSG) in general and specifically those genes that might be responsible for the functional and structural changes observed earlier. Two sets of experiments targeting different goals were conducted. In the first set, T-lymphocytes from normal donors were activated with antiCD3 and IL2 and then cultured in 1g (static) and modeled MG (MMG) conditions (Rotating Wall Vessel bioreactor) for 24 hours. This setting allowed searching for MGSG by comparison of gene expression patterns in zero and 1 g gravity. In the second set - activated T-cells after culturing for 24 hours in 1g and MMG were exposed three hours before harvesting to a secondary activation stimulus (PHA) thus triggering the apoptotic pathway. Total RNA was extracted using the RNeasy isolation kit (Qiagen, Valencia, CA). Affymetrix Gene Chips (U133A), allowing testing for 18,400 human genes, were used for microarray analysis. In the first set of experiments MMG exposure resulted in altered expression of 89 genes, 10 of them were up-regulated and 79 down-regulated. In the second set, changes in expression were revealed in 85 genes, 20 were up-regulated and 65 were down-regulated. The analysis revealed that significant numbers of MGS genes are associated with signal transduction and apoptotic pathways. Interestingly, the majority of genes that responded by up- or down-regulation in the alternative sets of experiments were not the same, possibly reflecting different functional states of the examined T-lymphocyte populations. The responder genes (MGSG) might play an

  4. Novel Innate Immune Genes Regulating the Macrophage Response to Gram Positive Bacteria.

    PubMed

    Alper, Scott; Warg, Laura A; De Arras, Lesly; Flatley, Brenna R; Davidson, Elizabeth J; Adams, Jenni; Smith, Keith; Wohlford-Lenane, Christine L; McCray, Paul B; Pedersen, Brent S; Schwartz, David A; Yang, Ivana V

    2016-09-01

    Host variation in Toll-like receptors and other innate immune signaling molecules alters infection susceptibility. However, only a portion of the variability observed in the innate immune response is accounted for by known genes in these pathways. Thus, the identification of additional genes that regulate the response to Gram positive bacteria is warranted. Bone marrow-derived macrophages (BMMs) from 43 inbred mouse strains were stimulated with lipotechoic acid (LTA), a major component of the Gram positive bacterial cell wall. Concentrations of the proinflammatory cytokines IL-6, IL-12, and TNF-α were measured. In silico whole genome association (WGA) mapping was performed using cytokine responses followed by network analysis to prioritize candidate genes. To determine which candidate genes could be responsible for regulating the LTA response, candidate genes were inhibited using RNA interference (RNAi) and were overexpressed in RAW264.7 macrophages. BMMs from Bdkrb1-deficient mice were used to assess the effect of Bdkrb1 gene deletion on the response to LTA, heat-killed Streptococcus pneumoniae, and heat-killed Staphylococcus aureus WGA mapping identified 117 loci: IL-6 analysis yielded 20 loci (average locus size = 0.133 Mb; 18 genes), IL-12 analysis produced 5 loci (0.201 Mb average; 7 genes), and TNF-α analysis yielded 92 loci (0.464 Mb average; 186 genes of which 46 were prioritized by network analysis). The follow-up small interfering RNA screen of 71 target genes identified four genes (Bdkrb1, Blnk, Fbxo17, and Nkx6-1) whose inhibition resulted in significantly reduced cytokine production following LTA stimulation. Overexpression of these four genes resulted in significantly increased cytokine production in response to LTA. Bdkrb1-deficient macrophages were less responsive to LTA and heat-killed S. aureus, validating the genetic and RNAi approach to identify novel regulators of the response to LTA. We have identified four innate immune response genes that

  5. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    PubMed

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  6. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing

    PubMed Central

    Vannette, Rachel L.; Mohamed, Abbas; Johnson, Brian R.

    2015-01-01

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging. PMID:26549293

  7. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Morris, Katrina M; Wright, Belinda; Grueber, Catherine E; Hogg, Carolyn; Belov, Katherine

    2015-08-01

    The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll-like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome-level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole-genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29-220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long-term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad-scale immunogenetic diversity analysis in threatened species. PMID:26119928

  8. Regulation of chicken immunity-related genes and host response profiles against Avibacterium paragallinarum pathogen challenge.

    PubMed

    Boucher, Charlotte E; Theron, Chrispian W; Hitzeroth, Arina C; Bragg, Robert R

    2015-09-15

    Infectious coryza (IC) is a well-recognised and commonly encountered upper respiratory tract disease in chickens. The aim of this study was to monitor aspects of the immune response of chickens infected with Avibacterium paragallinarum. Gene expression profiling of 30 genes was carried out for 11 chicken nasal area samples belonging to four groups, including one non-infected control group. For this purpose, 30 biomarker transcripts were selected for comparative gene expression analysis and were analysed by real-time PCR using TaqMan(®) assays. The biomarkers included three reference genes. The reference genes were used to normalise the results in a relative quantification approach. The gene expression changes of the 27 biomarker transcripts (genes of interest) were quantified between all treated groups in six pair-wise comparisons. It was concluded from the data that immune response initiation is via TLR4, which leads to a Th2 dominant type response. Furthermore, TLR4 results in signalling via the MyD88-dependent pathway, resulting in early onset of NF-kβ leading to the production of inflammatory cytokines. This work provides an informative outlay of immune response initiation upon infection with this pathogen.

  9. Specific alleles at immune genes, rather than genome-wide heterozygosity, are related to immunity and survival in the critically endangered Attwater's prairie-chicken.

    PubMed

    Bateson, Zachary W; Hammerly, Susan C; Johnson, Jeff A; Morrow, Michael E; Whittingham, Linda A; Dunn, Peter O

    2016-10-01

    The negative effects of inbreeding on fitness are serious concerns for populations of endangered species. Reduced fitness has been associated with lower genome-wide heterozygosity and immune gene diversity in the wild; however, it is rare that both types of genetic measures are included in the same study. Thus, it is often unclear whether the variation in fitness is due to the general effects of inbreeding, immunity-related genes or both. Here, we tested whether genome-wide heterozygosity (20 990 SNPs) and diversity at nine immune genes were better predictors of two measures of fitness (immune response and survival) in the endangered Attwater's prairie-chicken (Tympanuchus cupido attwateri). We found that postrelease survival of captive-bred birds was related to alleles of the innate (Toll-like receptors, TLRs) and adaptive (major histocompatibility complex, MHC) immune systems, but not to genome-wide heterozygosity. Likewise, we found that the immune response at the time of release was related to TLR and MHC alleles, and not to genome-wide heterozygosity. Overall, this study demonstrates that immune genes may serve as important genetic markers when monitoring fitness in inbred populations and that in some populations specific functional genes may be better predictors of fitness than genome-wide heterozygosity.

  10. Characterizing the Infection-Induced Transcriptome of Nasonia vitripennis Reveals a Preponderance of Taxonomically-Restricted Immune Genes

    PubMed Central

    Sackton, Timothy B.; Werren, John H.; Clark, Andrew G.

    2013-01-01

    The innate immune system in insects consists of a conserved core signaling network and rapidly diversifying effector and recognition components, often containing a high proportion of taxonomically-restricted genes. In the absence of functional annotation, genes encoding immune system proteins can thus be difficult to identify, as homology-based approaches generally cannot detect lineage-specific genes. Here, we use RNA-seq to compare the uninfected and infection-induced transcriptome in the parasitoid wasp Nasonia vitripennis to identify genes regulated by infection. We identify 183 genes significantly up-regulated by infection and 61 genes significantly down-regulated by infection. We also produce a new homology-based immune catalog in N. vitripennis, and show that most infection-induced genes cannot be assigned an immune function from homology alone, suggesting the potential for substantial novel immune components in less well-studied systems. Finally, we show that a high proportion of these novel induced genes are taxonomically restricted, highlighting the rapid evolution of immune gene content. The combination of functional annotation using RNA-seq and homology-based annotation provides a robust method to characterize the innate immune response across a wide variety of insects, and reveals significant novel features of the Nasonia immune response. PMID:24386321

  11. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae.

    PubMed

    Chaimanee, Veeranan; Chantawannakul, Panuwan; Chen, Yanping; Evans, Jay D; Pettis, Jeffery S

    2012-08-01

    Nosema ceranae is a microsporidium parasite infecting adult honey bees (Apis mellifera) and is known to affects at both the individual and colony level. In this study, the expression levels were measured for four antimicrobial peptide encoding genes that are associated with bee humoral immunity (defensin, abaecin, apidaecin, and hymenoptaecin), eater gene which is a transmembrane protein involved cellular immunity and gene encoding female-specific protein (vitellogenin) in honey bees when inoculated by N. ceranae. The results showed that four of these genes, defensin, abaecin, apidaecin and hymenoptaecin were significantly down-regulated 3 and 6days after inoculations. Additionally, antimicrobial peptide expressions did not significantly differ between control and inoculated bees after 12days post inoculation. Moreover, our results revealed that the mRNA levels of eater and vitellogenin did not differ significantly following N. ceranae inoculation. Therefore, in this study we reaffirmed that N. ceranae infection induces host immunosuppression.

  12. An MHC class I immune evasion gene of Marek׳s disease virus.

    PubMed

    Hearn, Cari; Preeyanon, Likit; Hunt, Henry D; York, Ian A

    2015-01-15

    Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years.

  13. Identification of immune inducible genes from the velvet worm Epiperipatus biolleyi (Onychophora).

    PubMed

    Altincicek, Boran; Vilcinskas, Andreas

    2008-01-01

    Onychophora are the next relatives of Arthropoda and, hence, represent an important taxon to unravel relationships among Insecta, Crustacea, Arachnida, and Myriapoda. Here, we screened for immune inducible genes from the onychophoran Epiperipatus biolleyi (Peripatidae) by injecting crude bacterial LPS and applying the suppression subtractive hybridization technique. Our analysis of 288 cDNAs resulted in identification of 36 novel genes in E. biolleyi whose potential homologues from other animals are known to mediate immune-related signaling (e.g. mitogen-activated protein kinase kinase 1 and immunoglobulin enhancer binding protein), to be involved in cellular processes (e.g. perilipin and myosin light chain), or to act as immune effector molecules (e.g. lysosomal beta-galactosidase, a putative antimicrobial peptide and a potential thiolester containing protein). Comparisons with homologous genes from other animals including the two most favored ecdysozoan model organisms of innate immunity research, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, provide further insights into the origin and evolution of Arthropoda immunity. PMID:18598713

  14. Expression analysis of immune response genes in fish epithelial cells following ranavirus infection.

    PubMed

    Holopainen, Riikka; Tapiovaara, Hannele; Honkanen, Jarno

    2012-06-01

    Ranaviruses (family Iridoviridae) are a growing threat to fish and amphibian populations worldwide. The immune response to ranavirus infection has been studied in amphibians, but little is known about the responses elicited in piscine hosts. In this study, the immune response and apoptosis induced by ranaviruses were investigated in fish epithelial cells. Epithelioma papulosum cyprini (EPC) cells were infected with four different viral isolates: epizootic haematopoietic necrosis virus (EHNV), frog virus 3 (FV3), European catfish virus (ECV) and doctor fish virus (DFV). Quantitative real-time PCR (qPCR) assays were developed to measure the mRNA expression of immune response genes during ranavirus infection. The target genes included tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), β2-microglobulin (β2M), interleukin-10 (IL-10) and transforming growth factor β (TGF-β). All ranaviruses elicited changes in immune gene expression. EHNV and FV3 caused a strong pro-inflammatory response with an increase in the expression of both IL-1β and TNF-α, whereas ECV and DFV evoked transient up-regulation of regulatory cytokine TGF-β. Additionally, all viral isolates induced increased β2M expression as well as apoptosis in the EPC cells. Our results indicate that epithelial cells can serve as an in vitro model for studying the mechanisms of immune response in the piscine host in the first stages of ranavirus infection.

  15. Identification of immune inducible genes from the velvet worm Epiperipatus biolleyi (Onychophora).

    PubMed

    Altincicek, Boran; Vilcinskas, Andreas

    2008-01-01

    Onychophora are the next relatives of Arthropoda and, hence, represent an important taxon to unravel relationships among Insecta, Crustacea, Arachnida, and Myriapoda. Here, we screened for immune inducible genes from the onychophoran Epiperipatus biolleyi (Peripatidae) by injecting crude bacterial LPS and applying the suppression subtractive hybridization technique. Our analysis of 288 cDNAs resulted in identification of 36 novel genes in E. biolleyi whose potential homologues from other animals are known to mediate immune-related signaling (e.g. mitogen-activated protein kinase kinase 1 and immunoglobulin enhancer binding protein), to be involved in cellular processes (e.g. perilipin and myosin light chain), or to act as immune effector molecules (e.g. lysosomal beta-galactosidase, a putative antimicrobial peptide and a potential thiolester containing protein). Comparisons with homologous genes from other animals including the two most favored ecdysozoan model organisms of innate immunity research, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, provide further insights into the origin and evolution of Arthropoda immunity.

  16. Temperature stress affects the expression of immune response genes in the alfalfa leafcutting bee, Megachile rotundata.

    PubMed

    Xu, J; James, Rosalind R

    2012-04-01

    Environmental stresses are thought to be associated with increases in disease suceptibility, attributable to evolutionary trade-offs between the energy demands required to deal with stress vs pathogens. We compared the effects of temperature stress and pathogen exposure on the immune response of a solitary bee, Megachile rotundata. Using an oligonucleotide microarray with 125 genes (375 probes), we determined that both high and low temperatures increased the expression of immune response genes in M. rotundata and reduced levels of a disease called chalkbrood. In the absence of the pathogen, trypsin-like serine and pathogen recognition proteases were most highly expressed at the lowest rearing temperature (20°C), while immune response signalling pathways and melanization were highly expressed at the warmest temperature tested (35°C). In pathogen-exposed bees, immune response genes tended to be most highly expressed at moderate temperatures, where we also saw the greatest infection levels. Temperature stress appears to have activated immunity before the pathogen elicited a response from the host, and this early activity prevented infection under stressful conditions. In this insect, the trade-off in energetic costs associated with stress and infection may be partially avoided by the use of conserved responses that reduce the effects of both. PMID:22356318

  17. A gene associated with social immunity in the burying beetle Nicrophorus vespilloides

    PubMed Central

    Palmer, William J.; Duarte, Ana; Schrader, Matthew; Day, Jonathan P.; Kilner, Rebecca; Jiggins, Francis M.

    2016-01-01

    Some group-living species exhibit social immunity, where the immune response of one individual can protect others in the group from infection. In burying beetles, this is part of parental care. Larvae feed on vertebrate carcasses which their parents smear with exudates that inhibit microbial growth. We have sequenced the transcriptome of the burying beetle Nicrophorus vespilloides and identified six genes that encode lysozymes—a type of antimicrobial enzyme that has previously been implicated in social immunity in burying beetles. When females start breeding and producing antimicrobial anal exudates, we found that the expression of one of these genes was increased by approximately 1000 times to become one of the most abundant transcripts in the transcriptome. Females varied considerably in the antimicrobial properties of their anal exudates, and this was strongly correlated with the expression of this lysozyme. We conclude that we have likely identified a gene encoding a key effector molecule in social immunity and that it was recruited during evolution from a function in personal immunity. PMID:26817769

  18. Immunization.

    ERIC Educational Resources Information Center

    Guerin, Nicole; And Others

    1986-01-01

    Contents of this double journal issue concern immunization and primary health care of children. The issue decribes vaccine storage and sterilization techniques, giving particular emphasis to the role of the cold chain, i.e., the maintenance of a specific temperature range to assure potency of vaccines as they are moved from a national storage…

  19. TGFβ receptor 1: an immune susceptibility gene in HPV-associated cancer.

    PubMed

    Levovitz, Chaya; Chen, Dan; Ivansson, Emma; Gyllensten, Ulf; Finnigan, John P; Alshawish, Sara; Zhang, Weijia; Schadt, Eric E; Posner, Marshal R; Genden, Eric M; Boffetta, Paolo; Sikora, Andrew G

    2014-12-01

    Only a minority of those exposed to human papillomavirus (HPV) develop HPV-related cervical and oropharyngeal cancer. Because host immunity affects infection and progression to cancer, we tested the hypothesis that genetic variation in immune-related genes is a determinant of susceptibility to oropharyngeal cancer and other HPV-associated cancers by performing a multitier integrative computational analysis with oropharyngeal cancer data from a head and neck cancer genome-wide association study (GWAS). Independent analyses, including single-gene, gene-interconnectivity, protein-protein interaction, gene expression, and pathway analysis, identified immune genes and pathways significantly associated with oropharyngeal cancer. TGFβR1, which intersected all tiers of analysis and thus selected for validation, replicated significantly in the head and neck cancer GWAS limited to HPV-seropositive cases and an independent cervical cancer GWAS. The TGFβR1 containing p38-MAPK pathway was significantly associated with oropharyngeal cancer and cervical cancer, and TGFβR1 was overexpressed in oropharyngeal cancer, cervical cancer, and HPV(+) head and neck cancer tumors. These concordant analyses implicate TGFβR1 signaling as a process dysregulated across HPV-related cancers. This study demonstrates that genetic variation in immune-related genes is associated with susceptibility to oropharyngeal cancer and implicates TGFβR1/TGFβ signaling in the development of both oropharyngeal cancer and cervical cancer. Better understanding of the immunogenetic basis of susceptibility to HPV-associated cancers may provide insight into host/virus interactions and immune processes dysregulated in the minority of HPV-exposed individuals who progress to cancer. PMID:25273091

  20. TGFβ Receptor 1: An Immune Susceptibility Gene in HPV-Associated Cancer

    PubMed Central

    Levovitz, Chaya; Chen, Dan; Ivansson, Emma; Gyllensten, Ulf; Finnigan, John P.; Alshawish, Sara; Zhang, Weijia; Schadt, Eric E.; Posner, Marshal R.; Genden, Eric M.; Boffetta, Paolo; Sikora, Andrew G.

    2015-01-01

    Only a minority of those exposed to human papillomavirus (HPV) develop HPV-related cervical and oropharyngeal cancer. Because host immunity affects infection and progression to cancer, we tested the hypothesis that genetic variation in immune-related genes is a determinant of susceptibility to oropharyngeal cancer and other HPV-associated cancers by performing a multitier integrative computational analysis with oropharyngeal cancer data from a head and neck cancer genome-wide association study (GWAS). Independent analyses, including single-gene, gene-interconnectivity, protein–protein interaction, gene expression, and pathway analysis, identified immune genes and pathways significantly associated with oropharyngeal cancer. TGFβR1, which intersected all tiers of analysis and thus selected for validation, replicated significantly in the head and neck cancer GWAS limited to HPV-seropositive cases and an independent cervical cancer GWAS. The TGFβR1 containing p38–MAPK pathway was significantly associated with oropharyngeal cancer and cervical cancer, and TGFβR1 was overexpressed in oropharyngeal cancer, cervical cancer, and HPV+ head and neck cancer tumors. These concordant analyses implicate TGFβR1 signaling as a process dysregulated across HPV-related cancers. This study demonstrates that genetic variation in immune-related genes is associated with susceptibility to oropharyngeal cancer and implicates TGFβR1/TGFβ signaling in the development of both oropharyngeal cancer and cervical cancer. Better understanding of the immunogenetic basis of susceptibility to HPV-associated cancers may provide insight into host/virus interactions and immune processes dysregulated in the minority of HPV-exposed individuals who progress to cancer. PMID:25273091

  1. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris.

    PubMed

    Brunner, Franziska S; Schmid-Hempel, Paul; Barribeau, Seth M

    2014-07-01

    Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host-parasite interactions. PMID:24850921

  2. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris.

    PubMed

    Brunner, Franziska S; Schmid-Hempel, Paul; Barribeau, Seth M

    2014-07-01

    Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host-parasite interactions.

  3. Protein-poor diet reduces host-specific immune gene expression in Bombus terrestris

    PubMed Central

    Brunner, Franziska S.; Schmid-Hempel, Paul; Barribeau, Seth M.

    2014-01-01

    Parasites infect hosts non-randomly as genotypes of hosts vary in susceptibility to the same genotypes of parasites, but this specificity may be modulated by environmental factors such as nutrition. Nutrition plays an important role for any physiological investment. As immune responses are costly, resource limitation should negatively affect immunity through trade-offs with other physiological requirements. Consequently, nutritional limitation should diminish immune capacity in general, but does it also dampen differences among hosts? We investigated the effect of short-term pollen deprivation on the immune responses of our model host Bombus terrestris when infected with the highly prevalent natural parasite Crithidia bombi. Bumblebees deprived of pollen, their protein source, show reduced immune responses to infection. They failed to upregulate a number of genes, including antimicrobial peptides, in response to infection. In particular, they also showed less specific immune expression patterns across individuals and colonies. These findings provide evidence for how immune responses on the individual-level vary with important elements of the environment and illustrate how nutrition can functionally alter not only general resistance, but also alter the pattern of specific host–parasite interactions. PMID:24850921

  4. Candidate Gene Approach for Parasite Resistance in Sheep – Variation in Immune Pathway Genes and Association with Fecal Egg Count

    PubMed Central

    Periasamy, Kathiravan; Pichler, Rudolf; Poli, Mario; Cristel, Silvina; Cetrá, Bibiana; Medus, Daniel; Basar, Muladno; A. K., Thiruvenkadan; Ramasamy, Saravanan; Ellahi, Masroor Babbar; Mohammed, Faruque; Teneva, Atanaska; Shamsuddin, Mohammed; Podesta, Mario Garcia; Diallo, Adama

    2014-01-01

    Sheep chromosome 3 (Oar3) has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs) within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF) did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05) in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have potential for

  5. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.

    PubMed

    Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C

    2014-03-01

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.

  6. Innate Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte Gene Expression

    PubMed Central

    Fairfax, Benjamin P.; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C.

    2014-01-01

    To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor–modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants. PMID:24604202

  7. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    PubMed Central

    Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another

  8. Borrelia burgdorferi sensu lato infection pressure shapes innate immune gene evolution in natural rodent populations across Europe

    PubMed Central

    Tschirren, Barbara

    2015-01-01

    Although parasite-mediated selection is assumed to be the main driver of immune gene evolution, empirical evidence that parasites induce allele frequency changes at host immune genes in time and/or space remains scarce. Here, I show that the frequency of a protective gene variant of the innate immune receptor Toll-like receptor 2 in natural bank vole (Myodes glareolus) populations is positively associated with the strength of Borrelia burgdorferi sensu lato infection risk across the European continent. Thereby, this study provides rare evidence for the role of spatially variable infection pressures in moulding the vertebrate immune system. PMID:26018834

  9. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing.

    PubMed

    Cooper, Bret; Campbell, Kimberly B; McMahon, Michael B; Luster, Douglas G

    2013-01-01

    Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars.

  10. Repurposed transcriptomic data facilitate discovery of innate immunity toll-like receptor (TLR) Genes across Lophotrochozoa.

    PubMed

    Halanych, Kenneth M; Kocot, Kevin M

    2014-10-01

    The growing volume of genomic data from across life represents opportunities for deriving valuable biological information from data that were initially collected for another purpose. Here, we use transcriptomes collected for phylogenomic studies to search for toll-like receptor (TLR) genes in poorly sampled lophotrochozoan clades (Annelida, Mollusca, Brachiopoda, Phoronida, and Entoprocta) and one ecdysozoan clade (Priapulida). TLR genes are involved in innate immunity across animals by recognizing potential microbial infection. They have an extracellular leucine-rich repeat (LRR) domain connected to a transmembrane domain and an intracellular toll/interleukin-1 receptor (TIR) domain. Consequently, these genes are important in initiating a signaling pathway to trigger defense. We found at least one TLR ortholog in all but two taxa examined, suggesting that a broad array of lophotrochozoans may have innate immune systems similar to those observed in vertebrates and arthropods. Comparison to the SMART database confirmed the presence of both the LRR and the TIR protein motifs characteristic of TLR genes. Because we looked at only one transcriptome per species, discovery of TLR genes was limited for most taxa. However, several TRL-like genes that vary in the number and placement of LRR domains were found in phoronids. Additionally, several contigs contained LRR domains but lacked TIR domains, suggesting they were not TLRs. Many of these LRR-containing contigs had other domains (e.g., immunoglobin) and are likely involved in innate immunity.

  11. Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization.

    PubMed

    Liu, Qiu-Ning; Zhu, Bao-Jian; Wang, Lei; Wei, Guo-Qing; Dai, Li-Shang; Lin, Kun-Zhang; Sun, Yu; Qiu, Jian-Feng; Fu, Wei-Wei; Liu, Chao-Liang

    2013-11-01

    Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi. PMID:24076149

  12. Innate immune-stimulating and immune genes up-regulating activities of three types of alginate from Sargassum siliquosum in Pacific white shrimp, Litopenaeus vannamei.

    PubMed

    Yudiati, Ervia; Isnansetyo, Alim; Murwantoko; Ayuningtyas; Triyanto; Handayani, Christina Retna

    2016-07-01

    The Total Haemocyte Count (THC), phenoloxidase (PO), Superoxide Dismutase (SOD) activity, Phagocytic Activity/Index and Total Protein Plasma (TPP) were examined after feeding the white shrimp Litopenaeus vannamei with diets supplemented with three different types of alginates (acid, calcium and sodium alginates). Immune-related genes expression was evaluated by quantitative Real Time PCR (qRT-PCR). Results indicated that the immune parameters directly increased according to the doses of alginates and time. The 2.0 g kg(-1) of acid and sodium alginate treatments were gave better results. Four immune-related genes expression i.e. LGBP, Toll, Lectin, proPO were up regulated. It is therefore concluded that the supplementation of alginate of Sargassum siliquosum on the diet of L. vannamei enhanced the innate immunity as well as the expression of immune-related genes. It is the first report on the simultaneous evaluation of three alginate types to enhance innate immune parameters and immune-related genes expression in L. vannamei. PMID:26993614

  13. Innate immune-stimulating and immune genes up-regulating activities of three types of alginate from Sargassum siliquosum in Pacific white shrimp, Litopenaeus vannamei.

    PubMed

    Yudiati, Ervia; Isnansetyo, Alim; Murwantoko; Ayuningtyas; Triyanto; Handayani, Christina Retna

    2016-07-01

    The Total Haemocyte Count (THC), phenoloxidase (PO), Superoxide Dismutase (SOD) activity, Phagocytic Activity/Index and Total Protein Plasma (TPP) were examined after feeding the white shrimp Litopenaeus vannamei with diets supplemented with three different types of alginates (acid, calcium and sodium alginates). Immune-related genes expression was evaluated by quantitative Real Time PCR (qRT-PCR). Results indicated that the immune parameters directly increased according to the doses of alginates and time. The 2.0 g kg(-1) of acid and sodium alginate treatments were gave better results. Four immune-related genes expression i.e. LGBP, Toll, Lectin, proPO were up regulated. It is therefore concluded that the supplementation of alginate of Sargassum siliquosum on the diet of L. vannamei enhanced the innate immunity as well as the expression of immune-related genes. It is the first report on the simultaneous evaluation of three alginate types to enhance innate immune parameters and immune-related genes expression in L. vannamei.

  14. Translation of Two Nested Genes in Bacteriophage P4 Controls Immunity-Specific Transcription Termination

    PubMed Central

    Forti, Francesca; Polo, Simona; Lane, Kirk B.; Six, Erich W.; Sironi, Gianpiero; Dehò, Gianni; Ghisotti, Daniela

    1999-01-01

    In phage P4, transcription of the left operon may occur from both the constitutive PLE promoter and the regulated PLL promoter, about 400 nucleotides upstream of PLE. A strong Rho-dependent termination site, timm, is located downstream of both promoters. When P4 immunity is expressed, transcription starting at PLE is efficiently terminated at timm, whereas transcription from PLL is immunity insensitive and reads through timm. We report the identification of two nested genes, kil and eta, located in the P4 left operon. The P4 kil gene, which encodes a 65-amino-acid polypeptide, is the first translated gene downstream of the PLE promoter, and its expression is controlled by P4 immunity. Overexpression of kil causes cell killing. This gene is the terminal part of a longer open reading frame, eta, which begins upstream of PLE. The eta gene is expressed when transcription starts from the PLL promoter. Three likely start codons predict a size between 197 and 199 amino acids for the Eta gene product. Both kil and eta overlap the timm site. By cloning kil upstream of a tRNA reporter gene, we demonstrated that translation of the kil region prevents premature transcription termination at timm. This suggests that P4 immunity might negatively control kil translation, thus enabling transcription termination at timm. Transcription starting from PLL proceeds through timm. Mutations that create nonsense codons in eta caused premature termination of transcription starting from PLL. Suppression of the nonsense mutation restored transcription readthrough at timm. Thus, termination of transcription from PLL is prevented by translation of eta. PMID:10464191

  15. Pyrosequencing and characterization of immune response genes from the American dog tick, Dermacentor variabilis (L.).

    PubMed

    Jaworski, D C; Zou, Z; Bowen, C J; Wasala, N B; Madden, R; Wang, Y; Kocan, K M; Jiang, H; Dillwith, J W

    2010-10-01

    Ticks continue to be a threat to animal and human health, and new and novel control strategies are needed for ticks and tick-borne pathogens. The characterization of the tick-pathogen interface and the tick immune response to microbial infections is fundamental toward the formulation of new control strategies for ticks and the pathogens they transmit. Our overall hypothesis for this research is that the tick immune system manages the maintenance of pathogens. Therefore, discovery of tick immune response genes may provide targets for novel control strategies directed toward reducing vector competency and pathogen transmission. In these studies, 454 pyrosequencing, a high-throughput genomic sequencing method was used to discover tick genes expressed in response to bacterial and fungal infections. Expressed sequence tags (ESTs) were analysed from Dermacentor variabilis ticks that had been injected with bacteria (Escherichia coli, Bacillus subtilis, Micrococcus luteus) or fungi (Saccharomyces cerevisiae and Candida albicans) and ticks that were naturally infected with the intracellular bacterium, Anaplasma marginale. By this approach, ESTs were assembled into 5995 contigs. Contigs fell into the five main functional categories of metabolism, genetic information processing, environmental information processing, cellular processes and human diseases. We identified more than 30 genes that are likely to encode for proteins involved in tick immune function. We further analysed by reverse transcriptase PCR (RT-PCR) the expression of 22 of these genes in each of our bacterial or fungal treatment groups and found that seven were up-regulated. Up-regulation of these seven genes was confirmed for bacterial, but not fungal treatment by quantitative PCR (qPCR). One of these products was novel, encoding a new tick defensin. Our results clearly demonstrate the complexities of the tick immune system and mark new directions for further study and characterization of proteins that

  16. Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus)

    PubMed Central

    Dalton, Desiré Lee; Vermaak, Elaine; Roelofse, Marli; Kotze, Antoinette

    2016-01-01

    The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP) diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14) being reduced in comparison to in situ populations (n = 16). Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations. PMID:27760133

  17. Widespread Decreased Expression of Immune Function Genes in Human Peripheral Blood Following Radiation Exposure

    PubMed Central

    Paul, Sunirmal; Smilenov, Lubomir B.; Amundson, Sally A.

    2014-01-01

    We report a large-scale reduced expression of genes in pathways related to cell-type specific immunity functions that emerges from microarray analysis 48 h after ex vivo γ-ray irradiation (0, 0.5, 2, 5, 8 Gy) of human peripheral blood from five donors. This response is similar to that seen in patients at 24 h after the start of total-body irradiation and strengthens the rationale for the ex vivo model as an adjunct to human in vivo studies. The most marked response was in genes associated with natural killer (NK) cell immune functions, reflecting a relative loss of NK cells from the population. T- and B-cell mediated immunity genes were also significantly represented in the radiation response. Combined with our previous studies, a single gene expression signature was able to predict radiation dose range with 97% accuracy at times from 6–48 h after exposure. Gene expression signatures that may report on the loss or functional deactivation of blood cell subpopulations after radiation exposure may be particularly useful both for triage biodosimetry and for monitoring the effect of radiation mitigating treatments. PMID:24168352

  18. Identification of Toxoplasma gondii Genes Responsive to the Host Immune Response during In Vivo Infection

    PubMed Central

    Skariah, Sini; Mordue, Dana G.

    2012-01-01

    Toxoplasma gondii is an obligate intracellular protozoa parasite that causes the disease toxoplasmosis. It resides within host cells in a parasitophorous vacuole distinct from the host cell endocytic system. T. gondii was used as a model to investigate how obligate intracellular parasites alter their gene expression in response to the host immune response during infection compared to growth in host cells in vitro. While bacterial pathogens clearly alter gene expression to adapt to the host environment during infection, the degree to which the external environment affects gene expression by obligate intracellular pathogens sequestered within host cells is less clear. The global transcriptome of T. gondii was analyzed in vivo in the presence and absence of the IFN-γ-dependent host innate immune response. The parasites' in vivo transcriptome was also compared to its transcriptome in vitro in fibroblast cells. Our results indicate that the parasite transcriptome is significantly altered during in vivo infection in the presence, but not absence, of IFN–γ-dependent immunity compared with fibroblasts infected in vitro. Many of the parasite genes increased in vivo appear to be common to an early general stress response by the parasite; surprisingly putative oocyst stage specific genes were also disproportionately increased during infection. PMID:23071600

  19. DNA Vaccines: Protective Immunizations by Parenteral, Mucosal, and Gene-Gun Inoculations

    NASA Astrophysics Data System (ADS)

    Fynan, Ellen F.; Webster, Robert G.; Fuller, Deborah H.; Haynes, Joel R.; Santoro, Joseph C.; Robinson, Harriet L.

    1993-12-01

    Plasmid DNAs expressing influenza virus hemagglutinin glycoproteins have been tested for their ability to raise protective immunity against lethal influenza challenges of the same subtype. In trials using two inoculations of from 50 to 300 μg of purified DNA in saline, 67-95% of test mice and 25-63% of test chickens have been protected against a lethal influenza challenge. Parenteral routes of inoculation that achieved good protection included intramuscular and intravenous injections. Successful mucosal routes of vaccination included DNA drops administered to the nares or trachea. By far the most efficient DNA immunizations were achieved by using a gene gun to deliver DNA-coated gold beads to the epidermis. In mice, 95% protection was achieved by two immunizations with beads loaded with as little as 0.4 μg of DNA. The breadth of routes supporting successful DNA immunizations, coupled with the very small amounts of DNA required for gene-gun immunizations, highlight the potential of this remarkably simple technique for the development of subunit vaccines.

  20. Non-coding RNAs revealed during identification of genes involved in chicken immune responses.

    PubMed

    Ahanda, Marie-Laure Endale; Ruby, Thomas; Wittzell, Håkan; Bed'Hom, Bertrand; Chaussé, Anne-Marie; Morin, Veronique; Oudin, Anne; Chevalier, Catherine; Young, John R; Zoorob, Rima

    2009-01-01

    Recent large-scale cDNA cloning studies have shown that a significant proportion of the transcripts expressed from vertebrate genomes do not appear to encode protein. Moreover, it was reported in mammals (human and mice) that these non-coding transcripts are expressed and regulated by mechanisms similar to those involved in the control of protein-coding genes. We have produced a collection of cDNA sequences from immunologically active tissues with the aim of discovering chicken genes involved in immune mechanisms, and we decided to explore the non-coding component of these immune-related libraries. After finding known non-coding RNAs (miRNA, snRNA, snoRNA), we identified new putative mRNA-like non-coding RNAs. We characterised their expression profiles in immune-related samples. Some of them showed changes in expression following viral infections. As they exhibit patterns of expression that parallel the behaviour of protein-coding RNAs in immune tissues, our study suggests that they could play an active role in the immune response.

  1. Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency

    PubMed Central

    Chinen, Javier; Davis, Joie; De Ravin, Suk See; Hay, Beverly N.; Hsu, Amy P.; Linton, Gilda F.; Naumann, Nora; Nomicos, Effie Y. H.; Silvin, Christopher; Ulrick, Jean; Whiting-Theobald, Narda L.; Puck, Jennifer M.

    2007-01-01

    Retroviral gene therapy can restore immunity to infants with X-linked severe combined immunodeficiency (XSCID) caused by mutations in the IL2RG gene encoding the common gamma chain (γc) of receptors for interleukins 2 (IL-2), −4, −7, −9, −15, and −21. We investigated the safety and efficacy of gene therapy as salvage treatment for older XSCID children with inadequate immune reconstitution despite prior bone marrow transplant from a parent. Subjects received retrovirus-transduced autologous peripherally mobilized CD34+ hematopoietic cells. T-cell function significantly improved in the youngest subject (age 10 years), and multilineage retroviral marking occurred in all 3 children. PMID:17369490

  2. Immunogenic Subtypes of Breast Cancer Delineated by Gene Classifiers of Immune Responsiveness.

    PubMed

    Miller, Lance D; Chou, Jeff A; Black, Michael A; Print, Cristin; Chifman, Julia; Alistar, Angela; Putti, Thomas; Zhou, Xiaobo; Bedognetti, Davide; Hendrickx, Wouter; Pullikuth, Ashok; Rennhack, Jonathan; Andrechek, Eran R; Demaria, Sandra; Wang, Ena; Marincola, Francesco M

    2016-07-01

    The abundance and functional orientation of tumor-infiltrating lymphocytes in breast cancer is associated with distant metastasis-free survival, yet how this association is influenced by tumor phenotypic heterogeneity is poorly understood. Here, a bioinformatics approach defined tumor biologic attributes that influence this association and delineated tumor subtypes that may differ in their ability to sustain durable antitumor immune responses. A large database of breast tumor expression profiles and associated clinical data was compiled, from which the ability of phenotypic markers to significantly influence the prognostic performance of a classification model that incorporates immune cell-specific gene signatures was ascertained. Markers of cell proliferation and intrinsic molecular subtype reproducibly distinguished two breast cancer subtypes that we refer to as immune benefit-enabled (IBE) and immune benefit-disabled (IBD). The IBE tumors, comprised mostly of highly proliferative tumors of the basal-like, HER2-enriched, and luminal B subtypes, could be stratified by the immune classifier into significantly different prognostic groups, while IBD tumors could not, indicating the potential for productive engagement of metastasis-protective immunity in IBE tumors, but not in IBD tumors. The prognostic stratification in IBE was independent of conventional variables. Gene network analysis predicted the activation of TNFα/IFNγ signaling pathways in IBE tumors and the activation of the transforming growth factor-β pathway in IBD tumors. This prediction supports a model in which breast tumors can be distinguished on the basis of their potential for metastasis-protective immune responsiveness. Whether IBE and IBD represent clinically relevant contexts for evaluating sensitivity to immunotherapeutic agents warrants further investigation. Cancer Immunol Res; 4(7); 600-10. ©2016 AACR. PMID:27197066

  3. The dynamic impact of hydrodynamic gene transfer on the immune system

    PubMed Central

    Wu, Yan; Ma, Shoubao; Liu, Yonghao; Lei, Lei; Hu, Bo; Liu, Haiyan

    2015-01-01

    Hydrodynamic gene transfer (HGT) has been used as an effective and convenient way to achieve gene expressions in vivo. However, its time-dependent impact on the immune system is unknown. The aim of the current study is to investigate the dynamic changes of the immune parameters after HGT. Plasmids were delivered to BALB/c mice by HGT. Each group of mice was sacrificed on day 1, 2, 3, 4 and 5 after HGT. The immune cell subsets from spleens and livers were analyzed by flow cytometry. IFN-γ, IL-6 and TNF-α in the serum were quantitated by cytometric bead array. The mice without HGT injection were used as control group on day 0. Compared to the normal mice (day 0), the T lymphocyte infiltrations in the spleen and liver were increased starting from day 1 after HGT. T cells. NK cells and myeloid cells such as dendritic cells, neutrophils and macrophages were also significantly expanded and peaked around day 2-3. Both T cells and NK cells were greatly activated. Serum levels of IFN-γ and IL-6 increased and peaked on day 1 after HGT. Most of the increased immune parameters returned to normal levels after day 4. However, the activated T cells remained at a high level, especially in the liver. In conclusion, HGT significantly increased the immune cell infiltration in the spleen and liver and activated T cells and NK cells. The immune response induced by HGT should be taken into consideration when evaluating the functions of the over-expressed genes using this strategy. PMID:26309505

  4. Identification of a vir-orthologous immune evasion gene family from primate malaria parasites.

    PubMed

    Prajapati, Surendra Kumar; Singh, Om Prakash

    2014-04-01

    The immune evasion gene family of malaria parasites encodes variant surface proteins that are expressed at the surface of infected erythrocytes and help the parasite in evading the host immune response by means of antigenic variation. The identification of Plasmodium vivax vir orthologous immune evasion gene family from primate malaria parasites would provide new insight into the evolution of virulence and pathogenesis. Three vir subfamilies viz. vir-B, vir-D and vir-G were successfully PCR amplified from primate malaria parasites, cloned and sequenced. DNA sequence analysis confirmed orthologues of vir-D subfamily in Plasmodium cynomolgi, Plasmodium simium, Plasmodium simiovale and Plasmodium fieldi. The identified vir-D orthologues are 1-9 distinct members of the immune evasion gene family which have 68-83% sequence identity with vir-D and 71.2-98.5% sequence identity within the members identified from primate malaria parasites. The absence of other vir subfamilies among primate malaria parasites reflects the limitations in the experimental approach. This study clearly identified the presence of vir-D like sequences in four species of Plasmodium infecting primates that would be useful in understanding the evolution of virulence in malaria parasites.

  5. The surprisingly complex immune gene repertoire of a simple sponge, exemplified by the NLR genes: a capacity for specificity?

    PubMed

    Degnan, Sandie M

    2015-02-01

    Most bacteria are not pathogenic to animals, and may instead serve beneficial functions. The requisite need for animals to differentiate between microbial friend and foe is likely borne from a deep evolutionary imperative to recognise self from non-self, a service ably provided by the innate immune system. Recent findings from an ancient lineage of simple animals - marine sponges - have revealed an unexpectedly large and diverse suite of genes belonging to one family of pattern recognition receptors, namely the NLR genes. Because NLRs can recognise a broad spectrum of microbial ligands, they may play a critical role in mediating the animal-bacterial crosstalk needed for sophisticated discrimination between microbes of various relationships. The building blocks for an advanced NLR-based immune specificity encoded in the genome of the coral reef sponge Amphimedon queenslandica may provide a specialisation and diversity of responses that equals, or even exceeds, that of vertebrate NLRs.

  6. Effects of date palm fruit extracts on skin mucosal immunity, immune related genes expression and growth performance of common carp (Cyprinus carpio) fry.

    PubMed

    Hoseinifar, Seyed Hossein; Khalili, Mohsen; Rufchaei, Rudabeh; Raeisi, Mojtaba; Attar, Marzieh; Cordero, Héctor; Esteban, M Ángeles

    2015-12-01

    The aim of this study was to investigate the effects of date palm fruit extracts (DPFE) on skin mucosal immunity, immune related genes expression and growth performance of fry common carp (Cyprinus carpio). One hundred and twenty specimens (4.06 ± 0.13 g) were supplied and allocated into six aquaria; specimens in three aquaria were fed non-supplemented diet (control) while the fish in the other 3 aquaria were fed with DPFE at 200 ml kg(-1). At the end of feeding trial (8 weeks) skin mucus immune parameters (total immunoglobulins, lysozyme, protease and alkaline phosphatase activity) and immune related gene expression (tumor necrosis factor α [tnfa], lysozyme [ly] and interleukin-1-beta, [il1b]) in the head-kidney were studied. The results revealed that feeding carp fry with 200 ml kg(-1) DPFE remarkably elevated the three skin mucus immune parameters tested (P < 0.05). However, evaluation of immune related gene expression demonstrated that the expression of tnfa and il1b was considerably decreased (P < 0.05) in fish fed DPFE diet, while the expression of ly remained similar (P > 0.05) compared to control fish (fed control diet). Furthermore, growth performance parameters were significantly improved in fry fed DPFE (P < 0.05). More studies are needed to understand different aspects of DPFE administration in fry mucosal immunity. PMID:26439417

  7. Pretransplant Immune- and Apoptosis-Related Gene Expression Is Associated with Kidney Allograft Function

    PubMed Central

    Kamińska, Dorota; Kościelska-Kasprzak, Katarzyna; Chudoba, Paweł; Mazanowska, Oktawia; Banasik, Mirosław; Żabinska, Marcelina; Boratyńska, Maria; Lepiesza, Agnieszka; Gomółkiewicz, Agnieszka; Dzięgiel, Piotr; Klinger, Marian

    2016-01-01

    Renal transplant candidates present immune dysregulation, caused by chronic uremia. The aim of the study was to investigate whether pretransplant peripheral blood gene expression of immune factors affects clinical outcome of renal allograft recipients. Methods. In a prospective study, we analyzed pretransplant peripheral blood gene expression in87 renal transplant candidates with real-time PCR on custom-designed low density arrays (TaqMan). Results. Immediate posttransplant graft function (14-day GFR) was influenced negatively by TGFB1 (P = 0.039) and positively by IL-2 gene expression (P = 0.040). Pretransplant blood mRNA expression of apoptosis-related genes (CASP3, FAS, and IL-18) and Th1-derived cytokine gene IFNG correlated positively with short- (6-month GFR CASP3: P = 0.027, FAS: P = 0.021, and IFNG: P = 0.029) and long-term graft function (24-month GFR CASP3: P = 0.003, FAS: P = 0.033, IL-18: P = 0.044, and IFNG: P = 0.04). Conclusion. Lowered pretransplant Th1-derived cytokine and apoptosis-related gene expressions were a hallmark of subsequent worse kidney function but not of acute rejection rate. The pretransplant IFNG and CASP3 and FAS and IL-18 genes' expression in the recipients' peripheral blood is the possible candidate for novel biomarker of short- and long-term allograft function. PMID:27382192

  8. Blood gene expression profiles suggest altered immune function associated with symptoms of generalized anxiety disorder.

    PubMed

    Wingo, Aliza P; Gibson, Greg

    2015-01-01

    Prospective epidemiological studies found that generalized anxiety disorder (GAD) can impair immune function and increase risk for cardiovascular disease or events. Mechanisms underlying the physiological reverberations of anxiety, however, are still elusive. Hence, we aimed to investigate molecular processes mediating effects of anxiety on physical health using blood gene expression profiles of 336 community participants (157 anxious and 179 control). We examined genome-wide differential gene expression in anxiety, as well as associations between nine major modules of co-regulated transcripts in blood gene expression and anxiety. No significant differential expression was observed in women, but 631 genes were differentially expressed between anxious and control men at the false discovery rate of 0.1 after controlling for age, body mass index, race, and batch effect. Gene set enrichment analysis (GSEA) revealed that genes with altered expression levels in anxious men were involved in response of various immune cells to vaccination and to acute viral and bacterial infection, and in a metabolic network affecting traits of metabolic syndrome. Further, we found one set of 260 co-regulated genes to be significantly associated with anxiety in men after controlling for the relevant covariates, and demonstrate its equivalence to a component of the stress-related conserved transcriptional response to adversity profile. Taken together, our results suggest potential molecular pathways that can explain negative effects of GAD observed in epidemiological studies. Remarkably, even mild anxiety, which most of our participants had, was associated with observable changes in immune-related gene expression levels. Our findings generate hypotheses and provide incremental insights into molecular mechanisms mediating negative physiological effects of GAD. PMID:25300922

  9. Immune gene discovery by expressed sequence tag (EST) analysis of hemocytes in the ridgetail white prawn Exopalaemon carinicauda

    PubMed Central

    Duan, Yafei; Liu, Ping; Li, Jitao; Li, Jian; Chen, Ping

    2013-01-01

    The ridgetail white prawn Exopalaemon carinicauda is one of the most important commercial species in eastern China. However, little information of immune genes in E. carinicauda has been reported. To identify distinctive genes associated with immunity, an expressed sequence tag (EST) library was constructed from hemocytes of E. carinicauda. A total of 3411 clones were sequenced, yielding 2853 ESTs and the average sequence length is 436 bp. The cluster and assembly analysis yielded 1053 unique sequences including 329 contigs and 724 singletons. Blast analysis identified 593 (56.3%) of the unique sequences as orthologs of genes from other organisms (E-value < 1e-5). Based on the COG and Gene Ontology (GO), 593 unique sequences were classified. Through comparison with previous studies, 153 genes assembled from 367 ESTs have been identified as possibly involved in defense or immune functions. These genes are categorized into seven categories according to their putative functions in shrimp immune system: antimicrobial peptides, prophenoloxidase activating system, antioxidant defense systems, chaperone proteins, clottable proteins, pattern recognition receptors and other immune-related genes. According to EST abundance, the major immune-related genes were thioredoxin (141, 4.94% of all ESTs) and calmodulin (14, 0.49% of all ESTs). The EST sequences of E. carinicauda hemocytes provide important information of the immune system and lay the groundwork for development of molecular markers related to disease resistance in prawn species. PMID:23092732

  10. Functional analysis of an immune gene of Spodoptera littoralis by RNAi.

    PubMed

    Di Lelio, Ilaria; Varricchio, Paola; Di Prisco, Gennaro; Marinelli, Adriana; Lasco, Valentina; Caccia, Silvia; Casartelli, Morena; Giordana, Barbara; Rao, Rosa; Gigliotti, Silvia; Pennacchio, Francesco

    2014-05-01

    Insect immune defences rely on cellular and humoral responses targeting both microbial pathogens and metazoan parasites. Accumulating evidence indicates functional cross-talk between these two branches of insect immunity, but the underlying molecular mechanisms are still largely unknown. We recently described, in the tobacco budworm Heliothis virescens, the presence of amyloid fibers associated with melanogenesis in immune capsules formed by hemocytes, and identified a protein (P102) involved in their assembly. Non-self objects coated by antibodies directed against this protein escaped hemocyte encapsulation, suggesting that P102 might coordinate humoral and cellular defence responses at the surface of foreign invaders. Here we report the identification of a cDNA coding for a protein highly similar to P102 in a related Lepidoptera species, Spodoptera littoralis. Its transcript was abundant in the hemocytes and the protein accumulated in large cytoplasmic compartments, closely resembling the localization pattern of P102 in H. virescens. RNAi-mediated gene silencing provided direct evidence for the role played by this protein in the immune response. Oral delivery of dsRNA molecules directed against the gene strongly suppressed the encapsulation and melanization response, while hemocoelic injections did not result in evident phenotypic alterations. Shortly after their administration, dsRNA molecules were found in midgut cells, en route to the hemocytes where the target gene was significantly down-regulated. Taken together, our data demonstrate that P102 is a functionally conserved protein with a key role in insect immunity. Moreover, the ability to target this gene by dsRNA oral delivery may be exploited to develop novel technologies of pest control, based on immunosuppression as a strategy for enhancing the impact of natural antagonists. PMID:24662467

  11. Functional Annotation of Cotesia congregata Bracovirus: Identification of Viral Genes Expressed in Parasitized Host Immune Tissues

    PubMed Central

    Thézé, Julien; Cambier, Sébastien; Poulain, Julie; Da Silva, Corinne; Bézier, Annie; Musset, Karine; Moreau, Sébastien J. M.; Drezen, Jean-Michel

    2014-01-01

    ABSTRACT Bracoviruses (BVs) from the Polydnaviridae family are symbiotic viruses used as biological weapons by parasitoid wasps to manipulate lepidopteran host physiology and induce parasitism success. BV particles are produced by wasp ovaries and injected along with the eggs into the caterpillar host body, where viral gene expression is necessary for wasp development. Recent sequencing of the proviral genome of Cotesia congregata BV (CcBV) identified 222 predicted virulence genes present on 35 proviral segments integrated into the wasp genome. To date, the expressions of only a few selected candidate virulence genes have been studied in the caterpillar host, and we lacked a global vision of viral gene expression. In this study, a large-scale transcriptomic analysis by 454 sequencing of two immune tissues (fat body and hemocytes) of parasitized Manduca sexta caterpillar hosts allowed the detection of expression of 88 CcBV genes expressed 24 h after the onset of parasitism. We linked the expression profiles of these genes to several factors, showing that different regulatory mechanisms control viral gene expression in the host. These factors include the presence of signal peptides in encoded proteins, diversification of promoter regions, and, more surprisingly, gene position on the proviral genome. Indeed, most genes for which expression could be detected are localized in particular proviral regions globally producing higher numbers of circles. Moreover, this polydnavirus (PDV) transcriptomic analysis also reveals that a majority of CcBV genes possess at least one intron and an arthropod transcription start site, consistent with an insect origin of these virulence genes. IMPORTANCE Bracoviruses (BVs) are symbiotic polydnaviruses used by parasitoid wasps to manipulate lepidopteran host physiology, ensuring wasp offspring survival. To date, the expressions of only a few selected candidate BV virulence genes have been studied in caterpillar hosts. We performed a large

  12. Construction and comparison of gene co-expression networks shows complex plant immune responses

    PubMed Central

    López, Camilo; López-Kleine, Liliana

    2014-01-01

    Gene co-expression networks (GCNs) are graphic representations that depict the coordinated transcription of genes in response to certain stimuli. GCNs provide functional annotations of genes whose function is unknown and are further used in studies of translational functional genomics among species. In this work, a methodology for the reconstruction and comparison of GCNs is presented. This approach was applied using gene expression data that were obtained from immunity experiments in Arabidopsis thaliana, rice, soybean, tomato and cassava. After the evaluation of diverse similarity metrics for the GCN reconstruction, we recommended the mutual information coefficient measurement and a clustering coefficient-based method for similarity threshold selection. To compare GCNs, we proposed a multivariate approach based on the Principal Component Analysis (PCA). Branches of plant immunity that were exemplified by each experiment were analyzed in conjunction with the PCA results, suggesting both the robustness and the dynamic nature of the cellular responses. The dynamic of molecular plant responses produced networks with different characteristics that are differentiable using our methodology. The comparison of GCNs from plant pathosystems, showed that in response to similar pathogens plants could activate conserved signaling pathways. The results confirmed that the closeness of GCNs projected on the principal component space is an indicative of similarity among GCNs. This also can be used to understand global patterns of events triggered during plant immune responses. PMID:25320678

  13. Differential expression of Toll-like receptor pathway genes in chicken embryo fibroblasts from chickens resistant and susceptible to Marek’s disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Toll-like receptor (TLR) signaling pathway is one of the innate immune defense mechanisms against pathogens in vertebrates and invertebrates. However, the role of TLR in non-MHC genetic resistance or susceptibility to Marek’s disease (MD) in the chicken is yet to be elucidated. Chicken embryo fi...

  14. ImmuCo: a database of gene co-expression in immune cells.

    PubMed

    Wang, Pingzhang; Qi, Huiying; Song, Shibin; Li, Shuang; Huang, Ningyu; Han, Wenling; Ma, Dalong

    2015-01-01

    Current gene co-expression databases and correlation networks do not support cell-specific analysis. Gene co-expression and expression correlation are subtly different phenomena, although both are likely to be functionally significant. Here, we report a new database, ImmuCo (http://immuco.bjmu.edu.cn), which is a cell-specific database that contains information about gene co-expression in immune cells, identifying co-expression and correlation between any two genes. The strength of co-expression of queried genes is indicated by signal values and detection calls, whereas expression correlation and strength are reflected by Pearson correlation coefficients. A scatter plot of the signal values is provided to directly illustrate the extent of co-expression and correlation. In addition, the database allows the analysis of cell-specific gene expression profile across multiple experimental conditions and can generate a list of genes that are highly correlated with the queried genes. Currently, the database covers 18 human cell groups and 10 mouse cell groups, including 20,283 human genes and 20,963 mouse genes. More than 8.6 × 10(8) and 7.4 × 10(8) probe set combinations are provided for querying each human and mouse cell group, respectively. Sample applications support the distinctive advantages of the database. PMID:25326331

  15. ImmuCo: a database of gene co-expression in immune cells.

    PubMed

    Wang, Pingzhang; Qi, Huiying; Song, Shibin; Li, Shuang; Huang, Ningyu; Han, Wenling; Ma, Dalong

    2015-01-01

    Current gene co-expression databases and correlation networks do not support cell-specific analysis. Gene co-expression and expression correlation are subtly different phenomena, although both are likely to be functionally significant. Here, we report a new database, ImmuCo (http://immuco.bjmu.edu.cn), which is a cell-specific database that contains information about gene co-expression in immune cells, identifying co-expression and correlation between any two genes. The strength of co-expression of queried genes is indicated by signal values and detection calls, whereas expression correlation and strength are reflected by Pearson correlation coefficients. A scatter plot of the signal values is provided to directly illustrate the extent of co-expression and correlation. In addition, the database allows the analysis of cell-specific gene expression profile across multiple experimental conditions and can generate a list of genes that are highly correlated with the queried genes. Currently, the database covers 18 human cell groups and 10 mouse cell groups, including 20,283 human genes and 20,963 mouse genes. More than 8.6 × 10(8) and 7.4 × 10(8) probe set combinations are provided for querying each human and mouse cell group, respectively. Sample applications support the distinctive advantages of the database.

  16. Gene Expression in Peripheral Immune Cells following Cardioembolic Stroke Is Sexually Dimorphic

    PubMed Central

    Stamova, Boryana; Jickling, Glen C.; Ander, Bradley P.; Zhan, Xinhua; Liu, DaZhi; Turner, Renee; Ho, Carolyn; Khoury, Jane C.; Bushnell, Cheryl; Pancioli, Arthur; Jauch, Edward C.; Broderick, Joseph P.; Sharp, Frank R.

    2014-01-01

    Aims Epidemiological studies suggest that sex has a role in the pathogenesis of cardioembolic stroke. Since stroke is a vascular disease, identifying sexually dimorphic gene expression changes in blood leukocytes can inform on sex-specific risk factors, response and outcome biology. We aimed to examine the sexually dimorphic immune response following cardioembolic stroke by studying the differential gene expression in peripheral white blood cells. Methods and Results Blood samples from patients with cardioembolic stroke were obtained at ≤3 hours (prior to treatment), 5 hours and 24 hours (after treatment) after stroke onset (n = 23; 69 samples) and compared with vascular risk factor controls without symptomatic vascular diseases (n = 23, 23 samples) (ANCOVA, false discovery rate p≤0.05, |fold change| ≥1.2). mRNA levels were measured on whole-genome Affymetrix microarrays. There were more up-regulated than down-regulated genes in both sexes, and females had more differentially expressed genes than males following cardioembolic stroke. Female gene expression was associated with cell death and survival, cell-cell signaling and inflammation. Male gene expression was associated with cellular assembly, organization and compromise. Immune response pathways were over represented at ≤3, 5 and 24 h after stroke in female subjects but only at 24 h in males. Neutrophil-specific genes were differentially expressed at 3, 5 and 24 h in females but only at 5 h and 24 h in males. Conclusions There are sexually dimorphic immune cell expression profiles following cardioembolic stroke. Future studies are needed to confirm the findings using qRT-PCR in an independent cohort, to determine how they relate to risk and outcome, and to compare to other causes of ischemic stroke. PMID:25036109

  17. Changes in immune gene expression and resistance to bacterial infection in lobster (Homarus gammarus) post-larval stage VI following acute or chronic exposure to immune stimulating compounds.

    PubMed

    Hauton, C; Brockton, V; Smith, V J

    2007-01-01

    Real-time PCR was used to measure changes in transcript abundance of genes encoding important immune proteins, namely prophenoloxidase (proPO gene), beta-1,3-glucan binding protein (betaGBP gene) and a 12.2 kDa antimicrobial peptide (amp gene) in post-larval stage VI (PLVI) juveniles of the European lobster, Homarus gammarus. Gene expression was studied in both healthy PLVI and following single or repeat exposure to a range of compounds claimed to induce immune reactivity. A single acute (3-h) exposure to any of the tested stimulants did not produce a significant increase in expression of either the proPO or betaGBP genes, measured 6h after stimulation. However, there were a small sub-group of positive responders, identified mainly from betaGBP expression, within the experimental groups stimulated with either a beta-1,3-glucan or an alginate. There was also no significant increase in the expression of any of the three genes tested 24 h after repeated weekly (3-h) exposures to a either the beta-1,3-glucan or the alginate over the longer (36-day) period. The results do show that amp is expressed at an extremely high level compared to proPO or betaGBP in healthy animals and a significant correlation was found between the expression of proPO and both betaGBP and amp, irrespective of whether or not the larvae were stimulated. None of the immune stimulated compounds improved survival of PLVI challenged with the opportunistic pathogen, Listonella anguillarum, or the lobster pathogen, Aerococcus viridans var. homari. Thus, we found no evidence to support recent claims that immunity and disease resistance can be primed or promoted within a given population of crustaceans or that these animals exhibit functional immune memory to some soluble immune elicitors. PMID:16569431

  18. Immune-related gene expression in nurse honey bees (Apis mellifera) exposed to synthetic acaricides.

    PubMed

    Garrido, Paula Melisa; Antúnez, Karina; Martín, Mariana; Porrini, Martín Pablo; Zunino, Pablo; Eguaras, Martín Javier

    2013-01-01

    The mite Varroa destructor is an ectoparasite affecting honey bees worldwide. Synthetic acaricides have been among the principal tools available to beekeepers for its control, although several studies have shown its negative effects on honey bee physiology. Recent research suggests that those molecules strongly impact on immune signaling cascades and cellular immunity. In the present work, LC(50) in six-day-old bees were determined for the following acaricides: tau-fluvalinate, flumethrin, amitraz and coumaphos. According to this obtained value, a group of individuals was treated with each acaricide and then processed for qPCR analysis. Transcript levels for genes encoding antimicrobial peptides and immune-related proteins were assessed. Flumethrin increased the expression of hymenoptaecin when comparing treated and control bees. Significant differences were recorded between coumaphos and flumethrin treatments, while the first one reduced the expression of hymenoptaecin and abaecin, the last one up-regulated their expressions. No significant statistically changes were recorded in the expression levels of vitellogenin, lysozyme or glucose dehydrogenase among bees treated with acaricides and control bees. This work constitutes the first report, under laboratory conditions, about induction of immune related genes in response to synthetic miticides.

  19. Cellular Immune Response Against Firefly Luciferase After Sleeping Beauty–Mediated Gene Transfer In Vivo

    PubMed Central

    Podetz-Pedersen, Kelly M.; Vezys, Vaiva; Somia, Nikunj V.; Russell, Stephen J.

    2014-01-01

    Abstract The Sleeping Beauty (SB) transposon system has been shown to mediate new gene sequence integration resulting in long-term expression. Here the effectiveness of hyperactive SB100X transposase was tested, and we found that hydrodynamic co-delivery of a firefly luciferase transposon (pT2/CaL) along with SB100X transposase (pCMV-SB100X) resulted in remarkably sustained, high levels of luciferase expression. However, after 4 weeks there was a rapid, animal-by-animal loss of luciferase expression that was not observed in immunodeficient mice. We hypothesized that this sustained, high-level luciferase expression achieved using the SB100X transposase elicits an immune response in pT2/CaL co-administered mice, which was supported by the rapid loss of luciferase expression upon challenge of previously treated animals and in naive animals adoptively transferred with splenocytes from previously treated animals. Specificity of the immune response to luciferase was demonstrated by increased cytokine expression in splenocytes after exposure to luciferase peptide in parallel with MHC I–luciferase peptide tetramer binding. This anti-luciferase immune response observed following continuous, high-level luciferase expression in vivo clearly impacts its use as an in vivo reporter. As both an immunogen and an extremely sensitive reporter, luciferase is also a useful model system for the study of immune responses following in vivo gene transfer and expression. PMID:25093708

  20. Evolution of a polydnavirus gene in relation to parasitoid-host species immune resistance.

    PubMed

    Dupas, Stéphane; Gitau, Catherine Wanjiru; Branca, Antoine; Le Rü, Bruno Pierre; Silvain, Jean-François

    2008-01-01

    CrV1, a polydisperse DNA virus (polydnavirus or PDV) gene contributes to the suppression of host immunity in Cotesia genus parasitoids. Its molecular evolution was analyzed in relation to levels of resistance in the sympatric host species. Natural selection for nonsynonymous substitutions (positive Darwinian selection) was observed at specific amino acid sites among CrV1 variants; particularly, between parasitoid strains immune suppressive and nonimmune suppressive to the main resistant stem borer host, Busseola fusca. In Cotesia sesamiae, geographic distribution of CrV1 alleles in Kenya was correlated to the relative abundance of B. fusca. These results suggest that PDV genes evolve through natural selection and are genetically linked to factors of suppression of local host resistance. We discuss the forces driving the evolution of CrV1 and its use as a marker to understand parasitoid adaptation to host resistance in biological control.

  1. Antibody study in canine distemper virus nucleocapsid protein gene-immunized mice.

    PubMed

    Yuan, B; Li, X Y; Zhu, T; Yuan, L; Hu, J P; Chen, J; Gao, W; Ren, W Z

    2015-01-01

    The gene for the nucleocapsid (N) protein of canine distemper virus was cloned into the pMD-18T vector, and positive recombinant plasmids were obtained by enzyme digestion and sequencing. After digestion by both EcoRI and KpnI, the plasmid was directionally cloned into the eukaryotic expression vector pcDNA; the positive clone pcDNA-N was screened by electrophoresis and then transfected into COS-7 cells. Immunofluorescence analysis results showed that the canine distemper virus N protein was expressed in the cytoplasm of transfected COS-7 cells. After emulsification in Freund's adjuvant, the recombinant plasmid pcDNA-N was injected into the abdominal cavity of 8-week-old BABL/c mice, with the pcDNA original vector used as a negative control. Mice were immunized 3 times every 2 weeks. The blood of immunized mice was drawn 2 weeks after completing the immunizations to measure titer levels. The antibody titer in the pcDNA-N test was 10(1.62 ± 0.164), while in the control group this value was 10(0.52 ± 0.56), indicating that specific humoral immunity was induced in canine distemper virus nucleocapsid protein-immunized mice. PMID:25966074

  2. Genome-wide characterization and expression profiling of immune genes in the diamondback moth, Plutella xylostella (L.)

    PubMed Central

    Xia, Xiaofeng; Yu, Liying; Xue, Minqian; Yu, Xiaoqiang; Vasseur, Liette; Gurr, Geoff M.; Baxter, Simon W.; Lin, Hailan; Lin, Junhan; You, Minsheng

    2015-01-01

    The diamondback moth, Plutella xylostella (L.), is a destructive pest that attacks cruciferous crops worldwide. Immune responses are important for interactions between insects and pathogens and information on these underpins the development of strategies for biocontrol-based pest management. Little, however, is known about immune genes and their regulation patterns in P. xylostella. A total of 149 immune-related genes in 20 gene families were identified through comparison of P. xylostella genome with the genomes of other insects. Complete and conserved Toll, IMD and JAK-STAT signaling pathways were found in P. xylostella. Genes involved in pathogen recognition were expanded and more diversified than genes associated with intracellular signal transduction. Gene expression profiles showed that the IMD pathway may regulate expression of antimicrobial peptide (AMP) genes in the midgut, and be related to an observed down-regulation of AMPs in experimental lines of insecticide-resistant P. xylostella. A bacterial feeding study demonstrated that P. xylostella could activate different AMPs in response to bacterial infection. This study has established a framework of comprehensive expression profiles that highlight cues for immune regulation in a major pest. Our work provides a foundation for further studies on the functions of P. xylostella immune genes and mechanisms of innate immunity. PMID:25943446

  3. [Roles of N-glycosylation in immunity of prME and NS1 gene of JEV].

    PubMed

    Zhang, Zi-Zhong; Wang, Xue; Zai, Jun-Jie; Sun, Le-Qiang; Song, Yun-Feng; Chen, Huan-Chun

    2012-05-01

    PrME and NS1 gene were the two main immuneprotect proteins of Japanese encephalitis virus (JEV), and they were also N-linked glycosylation proteins. To clear the effect of N-glycosylation on JEV immunity, the N-glycosylation site of prME and NS1 gene were eliminated by site-directed mutant PCR, subtituting the N to Q. And the the mutant genes were subcloned into eukaryotic expression plasmid. Four-weeks female mice were immuned with the wildtype and mutant gene by twice. The antibodies against prME were detected by ELISA and the neutralization antibodies were tested by viral neutralizing assay. The immunoprotection were determined by attack with JEV virulent strain. Compare with the wild-type gene immuned-groups, one N-glycan eliminated prME gene could induce a little higher ELISA antibody, neutralization antibody and immunoprotection, but the immunity of gene with both N-glycan absence was decreased. The similar status were observed in the wildtype and mutant NS1 groups. Thus these results show that the N-linked glycosylation in the prME and NS1 gene were correlated with the immunity, one glycan absent would enhance the immunity but both two loss would impair it. PMID:22764522

  4. Genome-Wide Association Studies Suggest Limited Immune Gene Enrichment in Schizophrenia Compared to 5 Autoimmune Diseases.

    PubMed

    Pouget, Jennie G; Gonçalves, Vanessa F; Spain, Sarah L; Finucane, Hilary K; Raychaudhuri, Soumya; Kennedy, James L; Knight, Jo

    2016-09-01

    There has been intense debate over the immunological basis of schizophrenia, and the potential utility of adjunct immunotherapies. The major histocompatibility complex is consistently the most powerful region of association in genome-wide association studies (GWASs) of schizophrenia and has been interpreted as strong genetic evidence supporting the immune hypothesis. However, global pathway analyses provide inconsistent evidence of immune involvement in schizophrenia, and it remains unclear whether genetic data support an immune etiology per se. Here we empirically test the hypothesis that variation in immune genes contributes to schizophrenia. We show that there is no enrichment of immune loci outside of the MHC region in the largest genetic study of schizophrenia conducted to date, in contrast to 5 diseases of known immune origin. Among 108 regions of the genome previously associated with schizophrenia, we identify 6 immune candidates (DPP4, HSPD1, EGR1, CLU, ESAM, NFATC3) encoding proteins with alternative, nonimmune roles in the brain. While our findings do not refute evidence that has accumulated in support of the immune hypothesis, they suggest that genetically mediated alterations in immune function may not play a major role in schizophrenia susceptibility. Instead, there may be a role for pleiotropic effects of a small number of immune genes that also regulate brain development and plasticity. Whether immune alterations drive schizophrenia progression is an important question to be addressed by future research, especially in light of the growing interest in applying immunotherapies in schizophrenia. PMID:27242348

  5. Genome-Wide Association Studies Suggest Limited Immune Gene Enrichment in Schizophrenia Compared to 5 Autoimmune Diseases.

    PubMed

    Pouget, Jennie G; Gonçalves, Vanessa F; Spain, Sarah L; Finucane, Hilary K; Raychaudhuri, Soumya; Kennedy, James L; Knight, Jo

    2016-09-01

    There has been intense debate over the immunological basis of schizophrenia, and the potential utility of adjunct immunotherapies. The major histocompatibility complex is consistently the most powerful region of association in genome-wide association studies (GWASs) of schizophrenia and has been interpreted as strong genetic evidence supporting the immune hypothesis. However, global pathway analyses provide inconsistent evidence of immune involvement in schizophrenia, and it remains unclear whether genetic data support an immune etiology per se. Here we empirically test the hypothesis that variation in immune genes contributes to schizophrenia. We show that there is no enrichment of immune loci outside of the MHC region in the largest genetic study of schizophrenia conducted to date, in contrast to 5 diseases of known immune origin. Among 108 regions of the genome previously associated with schizophrenia, we identify 6 immune candidates (DPP4, HSPD1, EGR1, CLU, ESAM, NFATC3) encoding proteins with alternative, nonimmune roles in the brain. While our findings do not refute evidence that has accumulated in support of the immune hypothesis, they suggest that genetically mediated alterations in immune function may not play a major role in schizophrenia susceptibility. Instead, there may be a role for pleiotropic effects of a small number of immune genes that also regulate brain development and plasticity. Whether immune alterations drive schizophrenia progression is an important question to be addressed by future research, especially in light of the growing interest in applying immunotherapies in schizophrenia.

  6. Identification and characterization of a TAB1 gene involved in innate immunity of amphioxus (Branchiostoma belcheri).

    PubMed

    Yin, Denghua; Li, Wenjuan; Fu, Meili; Chen, Liming; Ma, Fei; Jin, Ping

    2016-01-10

    Transforming growth factor-β activated kinase-1 (TAK1) is an essential regulator in toll-like receptor (TLR), tumor necrosis factor (TNF) and interleukin-1 (IL-1) signaling pathways, and plays very important roles in animal innate immunity. TAK1-binding protein, TAB1, can specifically regulate the activation of TAK1. However, the TAB1 gene in amphioxus has not yet been identified to date. In this study, we identified and characterized a TAB1 gene from Branchiostoma belcheri (designed as AmphiTAB1). Our results showed that the full-length cDNA of AmphiTAB1 is 2281bp long with an open reading frame (ORF) of 1659bp that encodes a predicted protein of 553 amino acids containing a typical PP2Cc domain. Phylogenetic analysis indicated that the AmphiTAB1 gene was located between invertebrates and vertebrates, suggesting that the AmphiTAB1 gene is a member of the TAB1 gene family. Real-time PCR analysis indicated that the AmphiTAB1 was ubiquitously and differentially expressed in six investigated tissues (gills, hepatic cecum, intestine, muscles, notochord and gonad). After lipopolysaccharide stimulation, the expression of AmphiTAB1 was significantly up-regulated at 6h, which shows that AmphiTAB1 may be involved in the host immune response. In addition, the recombinant TAB1 expressed in vitro shows a molecular mass of 62kDa and Western blot confirmed it, which proved it is an encoding isoform. Taken together, our findings provide an insight into innate immune response of amphioxus and evolution of the TAB1 gene family.

  7. Identification and characterization of a TAB1 gene involved in innate immunity of amphioxus (Branchiostoma belcheri).

    PubMed

    Yin, Denghua; Li, Wenjuan; Fu, Meili; Chen, Liming; Ma, Fei; Jin, Ping

    2016-01-10

    Transforming growth factor-β activated kinase-1 (TAK1) is an essential regulator in toll-like receptor (TLR), tumor necrosis factor (TNF) and interleukin-1 (IL-1) signaling pathways, and plays very important roles in animal innate immunity. TAK1-binding protein, TAB1, can specifically regulate the activation of TAK1. However, the TAB1 gene in amphioxus has not yet been identified to date. In this study, we identified and characterized a TAB1 gene from Branchiostoma belcheri (designed as AmphiTAB1). Our results showed that the full-length cDNA of AmphiTAB1 is 2281bp long with an open reading frame (ORF) of 1659bp that encodes a predicted protein of 553 amino acids containing a typical PP2Cc domain. Phylogenetic analysis indicated that the AmphiTAB1 gene was located between invertebrates and vertebrates, suggesting that the AmphiTAB1 gene is a member of the TAB1 gene family. Real-time PCR analysis indicated that the AmphiTAB1 was ubiquitously and differentially expressed in six investigated tissues (gills, hepatic cecum, intestine, muscles, notochord and gonad). After lipopolysaccharide stimulation, the expression of AmphiTAB1 was significantly up-regulated at 6h, which shows that AmphiTAB1 may be involved in the host immune response. In addition, the recombinant TAB1 expressed in vitro shows a molecular mass of 62kDa and Western blot confirmed it, which proved it is an encoding isoform. Taken together, our findings provide an insight into innate immune response of amphioxus and evolution of the TAB1 gene family. PMID:26341057

  8. Molecular clock of HIV-1 envelope genes under early immune selection

    DOE PAGES

    Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.; Mack, Wendy J.; Lee, Ha Youn

    2016-06-01

    Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.

  9. Expression of immune-related genes in goldfish gills induced by Dactylogyrus intermedius infections.

    PubMed

    Lu, Cheng; Ling, Fei; Ji, Jie; Kang, Yu-Jun; Wang, Gao-Xue

    2013-01-01

    Dactylogyrus intermedius, an oviparous monogenean parasite, is regarded as a devastating pathogen in freshwater aquaculture and ornamental fish trade, and accounts for significant economic losses worldwide. The study was undertaken to determine the differential expression of immune-related genes TNFα1, TNFα2, IL-1β2, TGFβ, iNOSa and iNOSb in goldfish gills during D. intermedius infection by real-time quantitative PCR. The results show that the expression of the pro-inflammatory cytokines (IL-1β2, TNFα1 and TNFα2) and the anti-inflammatory cytokine (TGFβ) were up-regulated at day 7 p.i. (post infection). The mRNA levels of these cytokines returned to normal levels or were down-regulated at day 21 p.i. In the cases of iNOSa and iNOSb, a significant up-regulation in iNOSa transcription levels were seen at day 14 p.i. while the expression of iNOSb gene showed a distinct up-regulation at day 7 p.i. Additionally, this study was conducted to investigate the expression of immune-related genes in different degrees of goldfish experimentally infected with the monogenean D. intermedius. The results indicated that D. intermedius infection might regulate the fish immunity by showing differential expression levels of immune-related gene. The study confirms goldfish gill acts as an important source of inflammatory molecules, as well as an active modulator of local inflammation after initially infected with D. intermedius. Moreover, the results obtained in this study could be useful towards understanding the susceptibility of goldfish to D. intermedius and mechanisms involved in protection of goldfish to ectoparasitic infections.

  10. Non-major histocompatibility complex rheumatoid arthritis susceptibility genes.

    PubMed

    Kunz, Manfred; Ibrahim, Saleh M

    2011-01-01

    Recent results from genetic and treatment studies have shed new light on chronic inflammatory and autoimmune diseases such as rheumatoid arthritis (RA). In particular, genome-wide association studies (GWAS) have provided supportive evidence that RA is a disease with a strong genetic background. Interestingly, a series of candidate genes have been identified outside of the classical major histocompatibility (MHC) locus, which had long been regarded as the major contributor to the pathogenesis of this disease. Among these genes, PTPN22 plays an outstanding role. CD40, STAT4, PRM1, and TNFAIP3 also seem to be of relevance. Interestingly, there is a significant overlap between RA susceptibility genes and those of other autoimmune diseases such as systemic lupus erythematosus (SLE) and type 1 diabetes, which suggests common pathogenic mechanisms. Genetic analyses may not only provide new insights into the pathogenesis of RA, but may also open new avenues for therapeutic approaches, because overactive immune-signaling pathways might specifically be addressed by biologic therapies. However, the predictive value of many of the recent findings of large-scale genetic analyses in identifying new genetic polymorphisms remains low. We describe the current knowledge about the role of non-MHC genes in the pathogenesis of rheumatoid arthritis. PMID:21542789

  11. Insect parents improve the anti-parasitic and anti-bacterial defence of their offspring by priming the expression of immune-relevant genes.

    PubMed

    Trauer-Kizilelma, Ute; Hilker, Monika

    2015-09-01

    Insect parents that experienced an immune challenge are known to prepare (prime) the immune activity of their offspring for improved defence. This phenomenon has intensively been studied by analysing especially immunity-related proteins. However, it is unknown how transgenerational immune priming affects transcript levels of immune-relevant genes of the offspring upon an actual threat. Here, we investigated how an immune challenge of Manduca sexta parents affects the expression of immune-related genes in their eggs that are attacked by parasitoids. Furthermore, we addressed the question whether the transgenerational immune priming of expression of genes in the eggs is still traceable in adult offspring. Our study revealed that a parental immune challenge did not affect the expression of immune-related genes in unparasitised eggs. However, immune-related genes in parasitised eggs of immune-challenged parents were upregulated to a higher level than those in parasitised eggs of unchallenged parents. Hence, this transgenerational immune priming of the eggs was detected only "on demand", i.e. upon parasitoid attack. The priming effects were also traceable in adult female progeny of immune-challenged parents which showed higher transcript levels of several immune-related genes in their ovaries than non-primed progeny. Some of the primed genes showed enhanced expression even when the progeny was left unchallenged, whereas other genes were upregulated to a greater extent in primed female progeny than non-primed ones only when the progeny itself was immune-challenged. Thus, the detection of transgenerational immune priming strongly depends on the analysed genes and the presence or absence of an actual threat for the offspring. We suggest that M. sexta eggs laid by immune-challenged parents "afford" to upregulate the transcription of immunity-related genes only upon attack, because they have the chance to be endowed by parentally directly transferred protective proteins

  12. Dietary fermentable fiber upregulated immune related genes expression, increased innate immune response and resistance of rainbow trout (Oncorhynchus mykiss) against Aeromonas hydrophila.

    PubMed

    Yarahmadi, Peyman; Kolangi Miandare, Hamed; Farahmand, Hamid; Mirvaghefi, Alireza; Hoseinifar, Seyed Hossein

    2014-12-01

    This trial was carried out to investigate the effects of dietary administration of Vitacel(®), a commercial fermentable fiber, on immune related genes (Lysozyme, TNFα and HSP70) expression, innate immune response and resistance of rainbow trout against Aeromonas hydrophila. 120 healthy rainbow trout (81.65 ± 1.49 g) were distributed in six fiberglass tanks assigned to two treatments. The treatments were feeding rainbow trout with diets supplemented with 0 (control) or 10 g kg(-1) Vitacel(®) for 45 days. The results revealed that administration of fermentable fiber significantly (P < 0.05) upregulated lysozyme and TNFα gene expression. HSP70 gene expression was significantly lower in Vitacel(®) fed fish at the end of trial (P < 0.05). Furthermore dietary administrations of Vitacel(®) remarkably elevated rainbow trout innate immune parameters include serum lysozyme, ACH50, bactericidal activity and agglutination antibody titer (P < 0.05). Administration of 10 g kg(-1) Vitacel(®) significantly increased rainbow trout resistance against A. hydrophila (P < 0.05). The results of present study revealed that dietary Vitacel(®) can upregulates immune related genes expression and elevates innate immune response and disease resistance of rainbow trout.

  13. Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks.

    PubMed

    Huang, Yun; Chain, Frédéric J J; Panchal, Mahesh; Eizaguirre, Christophe; Kalbe, Martin; Lenz, Tobias L; Samonte, Irene E; Stoll, Monika; Bornberg-Bauer, Erich; Reusch, Thorsten B H; Milinski, Manfred; Feulner, Philine G D

    2016-02-01

    The observation of habitat-specific phenotypes suggests the action of natural selection. The three-spined stickleback (Gasterosteus aculeatus) has repeatedly colonized and adapted to diverse freshwater habitats across the northern hemisphere since the last glaciation, while giving rise to recurring phenotypes associated with specific habitats. Parapatric lake and river populations of sticklebacks harbour distinct parasite communities, a factor proposed to contribute to adaptive differentiation between these ecotypes. However, little is known about the transcriptional response to the distinct parasite pressure of those fish in a natural setting. Here, we sampled wild-caught sticklebacks across four geographical locations from lake and river habitats differing in their parasite load. We compared gene expression profiles between lake and river populations using 77 whole-transcriptome libraries from two immune-relevant tissues, the head kidney and the spleen. Differential expression analyses revealed 139 genes with habitat-specific expression patterns across the sampled population pairs. Among the 139 differentially expressed genes, eight are annotated with an immune function and 42 have been identified as differentially expressed in previous experimental studies in which fish have been immune challenged. Together, these findings reinforce the hypothesis that parasites contribute to adaptation of sticklebacks in lake and river habitats.

  14. Mutanome and expression of immune response genes in microsatellite stable colon cancer

    PubMed Central

    Sanz-Pamplona, Rebeca; Gil-Hoyos, Raúl; López-Doriga, Adriana; Alonso, M. Henar; Aussó, Susanna; Molleví, David G.; Santos, Cristina; Sanjuán, Xavier; Salazar, Ramón; Alemany, Ramón; Moreno, Víctor

    2016-01-01

    The aim of this study was to analyze the impact of the mutanome in the prognosis of microsatellite stable stage II CRC tumors. The exome of 42 stage II, microsatellite stable, colon tumors (21 of them relapse) and their paired mucosa were sequenced and analyzed. Although some pathways accumulated more mutations in patients exhibiting good or poor prognosis, no single somatic mutation was associated with prognosis. Exome sequencing data is also valuable to infer tumor neoantigens able to elicit a host immune response. Hence, putative neoantigens were identified by combining information about missense mutations in each tumor and HLAs genotypes of the patients. Under the hypothesis that neoantigens should be correctly presented in order to activate the immune response, expression levels of genes involved in the antigen presentation machinery were also assessed. In addition, CD8A level (as a marker of T-cell infiltration) was measured. We found that tumors with better prognosis showed a tendency to generate a higher number of immunogenic epitopes, and up-regulated genes involved in the antigen processing machinery. Moreover, tumors with higher T-cell infiltration also showed better prognosis. Stratifying by consensus molecular subtype, CMS4 tumors showed the highest association of expression levels of genes involved in the antigen presentation machinery with prognosis. Thus, we hypothesize that a subset of stage II microsatellite stable CRC tumors are able to generate an immune response in the host via MHC class I antigen presentation, directly related with a better prognosis. PMID:26871478

  15. Immune responses to adenoviral vectors during gene transfer in the brain.

    PubMed

    Kajiwara, K; Byrnes, A P; Charlton, H M; Wood, M J; Wood, K J

    1997-02-10

    We have investigated the immune response to E1-deleted adenovirus vectors encoding the lacZ gene introduced into the brains of adult mice. Injection of these nonreplicating vectors caused a marked inflammatory response in the brain as assessed by immunocytochemistry and flow cytometry of leukocytes. Infiltrating leukocytes were detectable within 2 days of injection and reached a maximum by 9 days. Thereafter, the number of infiltrating cells decreased, but a small number persisted in the brain until day 60. Between 2 and 4 days after injection, the percentage of CD8+ cells detectable increased whereas the percentage of CD4+ cells present in the infiltrating population did not significantly increase until day 6, peaking on day 15. Activated CD25+ T cells were detectable between days 6 and 15. beta-Galactosidase (beta-Gal), the product of the lacZ gene encoded by the vector, was also detected, both at the injection site in the striatum and also in the substantia nigra. Expression peaked between 4 and 6 days but a small number of beta-Gal+ cells was still seen at 60 days after injection. This study demonstrates that a quantitative analysis of the immune responses caused by a nonreplicating adenovirus vector is possible in the brain. E1-deleted adenoviral vectors trigger a strong inflammatory response in the brain, but this immune response is not sufficient to eliminate completely expression of genes encoded by the adenoviral construct. PMID:9048192

  16. Allele frequency net: a database and online repository for immune gene frequencies in worldwide populations.

    PubMed

    Gonzalez-Galarza, Faviel F; Christmas, Stephen; Middleton, Derek; Jones, Andrew R

    2011-01-01

    The allele frequency net database (http://www.allelefrequencies.net) is an online repository that contains information on the frequencies of immune genes and their corresponding alleles in different populations. The extensive variability observed in genes and alleles related to the immune system response and its significance in transplantation, disease association studies and diversity in populations led to the development of this electronic resource. At present, the system contains data from 1133 populations in 608,813 individuals on the frequency of genes from different polymorphic regions such as human leukocyte antigens, killer-cell immunoglobulin-like receptors, major histocompatibility complex Class I chain-related genes and a number of cytokine gene polymorphisms. The project was designed to create a central source for the storage of frequency data and provide individuals with a set of bioinformatics tools to analyze the occurrence of these variants in worldwide populations. The resource has been used in a wide variety of contexts, including clinical applications (histocompatibility, immunology, epidemiology and pharmacogenetics) and population genetics. Demographic information, frequency data and searching tools can be freely accessed through the website.

  17. Identification of upregulated immune-related genes in Vibrio harveyi challenged Penaeus monodon postlarvae.

    PubMed

    Nayak, S; Singh, S K; Ramaiah, N; Sreepada, R A

    2010-09-01

    A subtracted cDNA library was constructed and analyzed to elucidate the response of Penaeus monodon postlarvae challenged with Vibrio harveyi. As many as 960 randomly selected cDNA fragments generated through suppression subtractive hybridization were single pass sequenced. Forty five genes and 20 hypothetical proteins were identified, a few being first reports from shrimps. The most abundant immune relevant genes were ferritin, hemocyanin, and TCTP (translationally controlled tumor protein) indicating their upregulation as also confirmed through qPCR. Post-infection qPCR analyses confirmed 2.04, 2.09, 3.28, 5.49, 6.47, and 11.63 fold rise respectively in ferritin, penaeidin, MnSOD, lysozyme, TCTP, and hemocyanin genes. These genes may be involved in the regulation of the host defense against V. harveyi.

  18. Gene Models, Expression Repertoire, and Immune Response of Plasmodium vivax Reticulocyte Binding Proteins.

    PubMed

    Hietanen, Jenni; Chim-Ong, Anongruk; Chiramanewong, Thanprakorn; Gruszczyk, Jakub; Roobsoong, Wanlapa; Tham, Wai-Hong; Sattabongkot, Jetsumon; Nguitragool, Wang

    2016-03-01

    Members of the Plasmodium vivax reticulocyte binding protein (PvRBP) family are believed to mediate specific invasion of reticulocytes by P. vivax. In this study, we performed molecular characterization of genes encoding members of this protein family. Through cDNA sequencing, we constructed full-length gene models and verified genes that are protein coding and those that are pseudogenes. We also used quantitative PCR to measure their in vivo transcript abundances in clinical P. vivax isolates. Like genes encoding related invasion ligands of P. falciparum, Pvrbp expression levels vary broadly across different parasite isolates. Through antibody measurements, we found that host immune pressure may be the driving force behind the distinctly high diversity of one of the family members, PvRBP2c. Mild yet significant negative correlation was found between parasitemia and the PvRBP2b antibody level, suggesting that antibodies to the protein may interfere with invasion. PMID:26712206

  19. Gene networks specific for innate immunity define post-traumatic stress disorder.

    PubMed

    Breen, M S; Maihofer, A X; Glatt, S J; Tylee, D S; Chandler, S D; Tsuang, M T; Risbrough, V B; Baker, D G; O'Connor, D T; Nievergelt, C M; Woelk, C H

    2015-12-01

    The molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD.

  20. Innate immunity gene expression changes in critically ill patients with sepsis and disease-related malnutrition

    PubMed Central

    Sarnecka, Agnieszka; Dąbrowska, Aleksandra; Kosałka, Katarzyna; Wachowska, Ewelina; Bałan, Barbara J.; Jankowska, Marta; Korta, Teresa; Niewiński, Grzegorz; Kański, Andrzej; Mikaszewska-Sokolewicz, Małgorzata; Omidi, Mohammad; Majewska, Krystyna; Słotwińska, Sylwia M.

    2015-01-01

    The aim of this study was an attempt to determine whether the expression of genes involved in innate antibacterial response (TL R2, NOD 1, TRAF6, HMGB 1 and Hsp70) in peripheral blood leukocytes in critically ill patients, may undergo significant changes depending on the severity of the infection and the degree of malnutrition. The study was performed in a group of 128 patients with infections treated in the intensive care and surgical ward. In 103/80.5% of patients, infections had a severe course (sepsis, severe sepsis, septic shock, mechanical ventilation of the lungs). Clinical monitoring included diagnosis of severe infection (according to the criteria of the ACC P/SCC M), assessment of severity of the patient condition and risk of death (APACHE II and SAPS II), nutritional assessment (NRS 2002 and SGA scales) and the observation of the early results of treatment. Gene expression at the mRNA level was analyzed by real-time PCR. The results of the present study indicate that in critically ill patients treated in the IC U there are significant disturbances in the expression of genes associated with innate antimicrobial immunity, which may have a significant impact on the clinical outcome. The expression of these genes varies depending on the severity of the patient condition, severity of infection and nutritional status. Expression disorders of genes belonging to innate antimicrobial immunity should be diagnosed as early as possible, monitored during the treatment and taken into account during early therapeutic treatment (including early nutrition to support the functions of immune cells). PMID:26648775

  1. The immune response induced by DNA vaccine expressing nfa1 gene against Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Lee, Sang-Hee; Sohn, Hae-Jin; Lee, Jinyoung; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2012-12-01

    The pathogenic free-living amoeba, Naegleria fowleri, causes fatal primary amoebic meningoencephalitis in experimental animals and in humans. The nfa1 gene that was cloned from N. fowleri is located on pseudopodia, especially amoebic food cups and plays an important role in the pathogenesis of N. fowleri. In this study, we constructed and characterized retroviral vector and lentiviral vector systems for nfa1 DNA vaccination in mice. We constructed the retroviral vector (pQCXIN) and the lentiviral vector (pCDH) cloned with the egfp-nfa1 gene. The expression of nfa1 gene in Chinese hamster ovary cell and human primary nasal epithelial cell transfected with the pQCXIN/egfp-nfa1 vector or pCDH/egfp-nfa1 vector was observed by fluorescent microscopy and Western blotting analysis. Our viral vector systems effectively delivered the nfa1 gene to the target cells and expressed the Nfa1 protein within the target cells. To evaluate immune responses of nfa1-vaccinated mice, BALB/c mice were intranasally vaccinated with viral particles of each retro- or lentiviral vector expressing nfa1 gene. DNA vaccination using viral vectors expressing nfa1 significantly stimulated the production of Nfa1-specific IgG subclass, as well as IgG levels. In particular, both levels of IgG2a (Th1) and IgG1 (Th2) were significantly increased in mice vaccinated with viral vectors. These results show the nfa1-vaccination induce efficiently Th1 type, as well as Th2 type immune responses. This is the first report to construct viral vector systems and to evaluate immune responses as DNA vaccination in N. fowleri infection. Furthermore, these results suggest that nfal vaccination may be an effective method for treatment of N. fowleri infection.

  2. Major Histocompatibility Complex and Background Genes in Chickens Influence Susceptibility to High Pathogenicity Avian Influenza Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chicken’s major histocompatibility complex (MHC) haplotype has profound influence on the resistance or susceptibility to certain pathogens such as B21 MHC haplotype confers resistance to Marek’s disease (MD). However, non-MHC genes are also important in disease resistance. For example, both line...

  3. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression.

    PubMed

    Kast, Alene; Voges, Raphael; Schroth, Michael; Schaffrath, Raffael; Klassen, Roland; Meinhardt, Friedhelm

    2015-05-01

    Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle. PMID:25973601

  4. Immune response-associated gene analysis of 1,000 cancer patients using whole-exome sequencing and gene expression profiling-Project HOPE.

    PubMed

    Akiyama, Yasuto; Kondou, Ryota; Iizuka, Akira; Ohshima, Keiichi; Urakami, Kenichi; Nagashima, Takeshi; Shimoda, Yuji; Tanabe, Tomoe; Ohnami, Sumiko; Ohnami, Shumpei; Kusuhara, Masatoshi; Mochizuki, Tohru; Yamaguchi, Ken

    2016-01-01

    Project HOPE (High-tech Omics-based Patient Evaluation) has been progressing since its implementation in 2014 using whole-exome sequencing (WES) and gene expression profiling (GEP). With the aim of evaluating immune status in cancer patients, a gene panel consisting of 164 immune response-associated genes (56 antigen-presenting cell and T-cell-associated genes, 34 cytokine- and metabolism-associated genes, 47 TNF and TNF receptor superfamily genes, and 27 regulatory T-cell-associated genes) was established, and its expression and mutation status were investigated using 1,000 cancer patient-derived tumors. Regarding WES, sequencing and variant calling were performed using the Ion Proton system. The average number of single-nucleotide variants (SNVs) detected per sample was 183 ± 507, and the number of hypermutators with more than 500 total SNVs was 51 cases. Regarding GEP, seven immune response-associated genes (VTCN1, IL2RA, ULBP2, TREM1, MSR1, TNFSF9 and TNFRSF12A) were more than 2-fold overexpressed compared with normal tissues in more than 2 organs. Specifically, the positive rate of PD-L1 expression in all patients was 25.8%, and PD-L1 expression was significantly upregulated in hypermutators. The simultaneous analyses of WES and GEP based on immune response-associated genes are very intriguing tools to screen cancer patients suitable for immune checkpoint antibody therapy. PMID:27544999

  5. Perforin gene transfer into hematopoietic stem cells improves immune dysregulation in murine models of perforin deficiency.

    PubMed

    Carmo, Marlene; Risma, Kimberly A; Arumugam, Paritha; Tiwari, Swati; Hontz, Adrianne E; Montiel-Equihua, Claudia A; Alonso-Ferrero, Maria E; Blundell, Michael P; Schambach, Axel; Baum, Christopher; Malik, Punam; Thrasher, Adrian J; Jordan, Michael B; Gaspar, H Bobby

    2015-04-01

    Defects in perforin lead to the failure of T and NK cell cytotoxicity, hypercytokinemia, and the immune dysregulatory condition known as familial hemophagocytic lymphohistiocytosis (FHL). The only curative treatment is allogeneic hematopoietic stem cell transplantation which carries substantial risks. We used lentiviral vectors (LV) expressing the human perforin gene, under the transcriptional control of the ubiquitous phosphoglycerate kinase promoter or a lineage-specific perforin promoter, to correct the defect in different murine models. Following LV-mediated gene transfer into progenitor cells from perforin-deficient mice, we observed perforin expression in mature T and NK cells, and there was no evidence of progenitor cell toxicity when transplanted into irradiated recipients. The resulting perforin-reconstituted NK cells showed partial recovery of cytotoxicity, and we observed full recovery of cytotoxicity in polyclonal CD8(+) T cells. Furthermore, reconstituted T cells with defined antigen specificity displayed normal cytotoxic function against peptide-loaded targets. Reconstituted CD8(+) lymphoblasts had reduced interferon-γ secretion following stimulation in vitro, suggesting restoration of normal immune regulation. Finally, upon viral challenge, mice with >30% engraftment of gene-modified cells exhibited reduction of cytokine hypersecretion and cytopenias. This study demonstrates the potential of hematopoietic stem cell gene therapy as a curative treatment for perforin-deficient FHL.

  6. Polymorphisms in innate immunity genes and lung cancer risk in Xuanwei, China

    SciTech Connect

    Shen, M.; Vermeulen, R.; Rajaraman, P.; Menashe, I.; He, X.Z.; Chapman, R.S.; Yeager, M.; Thomas, G.; Burdett, L.; Hutchinson, A.; Yuenger, J.; Chanock, S.; Lan, Q.

    2009-05-15

    The high incidence of lung cancer in Xuanwei County, China has been attributed to exposure to indoor smoky coal emissions that contain polycyclic aromatic hydrocarbons (PAHs). The inflammatory response induced by coal smoke components may promote lung tumor development. We studied the association between single nucleotide polymorphisms (SNPs) in genes involved in innate immunity and lung cancer risk in a population-based case-control study (122 cases and 122 controls) in Xuanwei. A total of 1,360 tag SNPs in 149 gene regions were included in the analysis. FCER2 rs7249320 was the most significant SNP (OR: 0.30; 95% Cl: 0.16-0.55; P: 0.0001; false discovery rate value, 0.13) for variant carriers. The gene regions ALOX12B/ALOX15B and KLK2 were associated with increased lung cancer risk globally (false discovery rate value < 0.15). In addition, there were positive interactions between KLK15 rs3745523 and smoky coal use (OR: 9.40; P-interaction = 0.07) and between FCER2 rs7249320 and KLK2 rs2739476 (OR: 10.77; P-interaction = 0.003). Our results suggest that genetic polymorphisms in innate immunity genes may play a role in the genesis of lung cancer caused by PAH-containing coal smoke. Integrin/receptor and complement pathways as well as IgE regulation are particularly noteworthy.

  7. Perforin gene transfer into hematopoietic stem cells improves immune dysregulation in murine models of perforin deficiency.

    PubMed

    Carmo, Marlene; Risma, Kimberly A; Arumugam, Paritha; Tiwari, Swati; Hontz, Adrianne E; Montiel-Equihua, Claudia A; Alonso-Ferrero, Maria E; Blundell, Michael P; Schambach, Axel; Baum, Christopher; Malik, Punam; Thrasher, Adrian J; Jordan, Michael B; Gaspar, H Bobby

    2015-04-01

    Defects in perforin lead to the failure of T and NK cell cytotoxicity, hypercytokinemia, and the immune dysregulatory condition known as familial hemophagocytic lymphohistiocytosis (FHL). The only curative treatment is allogeneic hematopoietic stem cell transplantation which carries substantial risks. We used lentiviral vectors (LV) expressing the human perforin gene, under the transcriptional control of the ubiquitous phosphoglycerate kinase promoter or a lineage-specific perforin promoter, to correct the defect in different murine models. Following LV-mediated gene transfer into progenitor cells from perforin-deficient mice, we observed perforin expression in mature T and NK cells, and there was no evidence of progenitor cell toxicity when transplanted into irradiated recipients. The resulting perforin-reconstituted NK cells showed partial recovery of cytotoxicity, and we observed full recovery of cytotoxicity in polyclonal CD8(+) T cells. Furthermore, reconstituted T cells with defined antigen specificity displayed normal cytotoxic function against peptide-loaded targets. Reconstituted CD8(+) lymphoblasts had reduced interferon-γ secretion following stimulation in vitro, suggesting restoration of normal immune regulation. Finally, upon viral challenge, mice with >30% engraftment of gene-modified cells exhibited reduction of cytokine hypersecretion and cytopenias. This study demonstrates the potential of hematopoietic stem cell gene therapy as a curative treatment for perforin-deficient FHL. PMID:25523759

  8. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder

    PubMed Central

    Torres, Anthony R.; Sweeten, Thayne L.; Johnson, Randall C.; Odell, Dennis; Westover, Jonna B.; Bray-Ward, Patricia; Ward, David C.; Davies, Christopher J.; Thomas, Aaron J.; Croen, Lisa A.; Benson, Michael

    2016-01-01

    The “common variant—common disease” hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased vs. matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the “common variant—common disease” hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics. Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14 bp-indel) frequencies are significantly increased by more than 5% over control populations (Table 2). The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2). Three activating KIR genes: 3DS1, 2DS1, and 2DS2 have increased frequencies of 15, 22, and 14% in autism populations, respectively. There is a 6% increase in total activating KIR genes in

  9. Expression of Immune-Related Genes of Ducks Infected with Avian Pathogenic Escherichia coli (APEC)

    PubMed Central

    Li, Rong; Li, Ning; Zhang, Jinzhou; Wang, Yao; Liu, Jiyuan; Cai, Yumei; Chai, Tongjie; Wei, Liangmeng

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) can cause severe disease in ducks, characterized by perihepatitis, pericarditis, and airsacculitis. Although the studies of bacteria isolation and methods of detection have been reported, host immune responses to APEC infection remain unclear. In response, we systemically examined the expression of immune-related genes and bacteria distribution in APEC-infected ducks. Results demonstrated that APEC can quickly replicate in the liver, spleen, and brain, with the highest bacteria content at 2 days post infection. The expression of toll-like receptors (TLRs), avian β-defensins (AvBDs) and major histocompatibility complex (MHC) were tested in the liver, spleen, and brain of infected ducks. TLR2, TLR4, TLR5, and TLR15 showed different expression patterns, which indicated that they all responded to APEC infection. The expression of AvBD2 was upregulated in all tested tissues during the 3 days of testing, whereas the expression of AvBD4, AvBD5, AvBD7, and AvBD9 were downregulated, and though MHC-I was upregulated on all test days, MHC-II was dramatically downregulated. Overall, our results suggest that APEC can replicate in various tissues in a short time, and the activation of host immune responses begins at onset of infection. These findings thus clarify duck immune responses to APEC infection and offer insights into its pathogenesis. PMID:27199963

  10. Expression of Immune-Related Genes of Ducks Infected with Avian Pathogenic Escherichia coli (APEC).

    PubMed

    Li, Rong; Li, Ning; Zhang, Jinzhou; Wang, Yao; Liu, Jiyuan; Cai, Yumei; Chai, Tongjie; Wei, Liangmeng

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) can cause severe disease in ducks, characterized by perihepatitis, pericarditis, and airsacculitis. Although the studies of bacteria isolation and methods of detection have been reported, host immune responses to APEC infection remain unclear. In response, we systemically examined the expression of immune-related genes and bacteria distribution in APEC-infected ducks. Results demonstrated that APEC can quickly replicate in the liver, spleen, and brain, with the highest bacteria content at 2 days post infection. The expression of toll-like receptors (TLRs), avian β-defensins (AvBDs) and major histocompatibility complex (MHC) were tested in the liver, spleen, and brain of infected ducks. TLR2, TLR4, TLR5, and TLR15 showed different expression patterns, which indicated that they all responded to APEC infection. The expression of AvBD2 was upregulated in all tested tissues during the 3 days of testing, whereas the expression of AvBD4, AvBD5, AvBD7, and AvBD9 were downregulated, and though MHC-I was upregulated on all test days, MHC-II was dramatically downregulated. Overall, our results suggest that APEC can replicate in various tissues in a short time, and the activation of host immune responses begins at onset of infection. These findings thus clarify duck immune responses to APEC infection and offer insights into its pathogenesis. PMID:27199963

  11. Oral immunization of rainbow trout to infectious pancreatic necrosis virus (Ipnv) induces different immune gene expression profiles in head kidney and pyloric ceca.

    PubMed

    Ballesteros, Natalia A; Saint-Jean, Sylvia S Rodriguez; Encinas, Paloma A; Perez-Prieto, Sara I; Coll, Julio M

    2012-08-01

    Induction of neutralizing antibodies and protection by oral vaccination with DNA-alginates of rainbow trout Oncorhynchus mykiss against infectious pancreatic necrosis virus (IPNV) was recently reported. Because orally induced immune response transcript gene profiles had not been described yet neither in fish, nor after IPNV vaccination, we studied them in head kidney (an immune response internal organ) and a vaccine entry tissue (pyloric ceca). By using an oligo microarray enriched in immune-related genes validated by RTqPCR, the number of increased transcripts in head kidney was higher than in pyloric ceca while the number of decreased transcripts was higher in pyloric ceca than in head kidney. Confirming previous reports on intramuscular DNA vaccination or viral infection, mx genes increased their transcription in head kidney. Other transcript responses such as those corresponding to interferons, their receptors and induced proteins (n=91 genes), VHSV-induced genes (n=25), macrophage-related genes (n=125), complement component genes (n=176), toll-like receptors (n=31), tumor necrosis factors (n=32), chemokines and their receptors (n=121), interleukines and their receptors (n=119), antimicrobial peptides (n=59), and cluster differentiation antigens (n=58) showed a contrasting and often complementary behavior when head kidney and pyloric ceca were compared. For instance, classical complement component transcripts increased in head kidney while only alternative pathway transcripts increased in pyloric ceca, different β-defensins increased in head kidney but remained constant in pyloric ceca. The identification of new gene markers on head kidney/pyloric ceca could be used to follow up and/or to improve immunity during fish oral vaccination.

  12. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity

    PubMed Central

    Freeman, Gordon J.; Casasnovas, Jose M.; Umetsu, Dale T.; DeKruyff, Rosemarie H.

    2010-01-01

    Summary The TIM (T cell/transmembrane, immunoglobulin, and mucin) gene family plays a critical role in regulating immune responses, including allergy, asthma, transplant tolerance, autoimmunity, and the response to viral infections. The unique structure of TIM immunoglobulin variable region domains allows highly specific recognition of phosphatidylserine (PtdSer), exposed on the surface of apoptotic cells. TIM-1, TIM-3, and TIM-4 all recognize PtdSer but differ in expression, suggesting that they have distinct functions in regulating immune responses. TIM-1, an important susceptibility gene for asthma and allergy, is preferentially expressed on T-helper 2 (Th2) cells and functions as a potent costimulatory molecule for T-cell activation. TIM-3 is preferentially expressed on Th1 and Tc1 cells, and generates an inhibitory signal resulting in apoptosis of Th1 and Tc1 cells. TIM-3 is also expressed on some dendritic cells and can mediate phagocytosis of apoptotic cells and cross-presentation of antigen. In contrast, TIM-4 is exclusively expressed on antigen-presenting cells, where it mediates phagocytosis of apoptotic cells and plays an important role in maintaining tolerance. TIM molecules thus provide a functional repertoire for recognition of apoptotic cells, which determines whether apoptotic cell recognition leads to immune activation or tolerance, depending on the TIM molecule engaged and the cell type on which it is expressed. PMID:20536563

  13. Role of passive and adaptive immunity in influencing enterocyte-specific gene expression.

    PubMed

    Jenkins, Shannon L; Wang, Jiafang; Vazir, Mukta; Vela, Jose; Sahagun, Omar; Gabbay, Peter; Hoang, Lisa; Diaz, Rosa L; Aranda, Richard; Martín, Martín G

    2003-10-01

    Numerous genes expressed by intestinal epithelial cells are developmentally regulated, and the influence that adaptive (AI) and passive (PI) immunity have in controlling their expression has not been evaluated. In this study, we tested the hypothesis that both PI and AI influenced enterocyte gene expression by developing a breeding scheme that used T and B cell-deficient recombination-activating gene (RAG) mice. RNA was isolated from the liver and proximal/distal small intestine at various ages, and the steady-state levels of six different transcripts were evaluated by RNase protection assay. In wild-type (WT) pups, all transcripts [Fc receptor of the neonate (FcRn), polymeric IgA receptor (pIgR), GLUT5, lactase-phlorizin hydrolase (lactase), apical sodium-dependent bile acid transporter (ASBT), and Na+/glucose cotransporter (SGLT1)] studied were developmentally regulated at the time of weaning, and all transcripts except ASBT had the highest levels of expression in the proximal small intestine. In WT suckling pups reared in the absence of PI, pIgR mRNA levels were increased 100% during the early phase of development. In mice lacking AI, the expression of pIgR and lactase were significantly attenuated, whereas FcRn and GLUT5 levels were higher compared with WT mice. Finally, in the absence of both passive and active immunity, expression levels of pIgR and lactase were significantly lower than similarly aged WT mice. In summary, we report that the adaptive and passive immune status of mice influences steady-state mRNA levels of several important, developmentally regulated enterocyte genes during the suckling and weaning periods of life.

  14. Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication

    PubMed Central

    Korithoski, Bryan; Kolaczkowski, Oralia; Mukherjee, Krishanu; Kola, Reema; Earl, Chandra; Kolaczkowski, Bryan

    2015-01-01

    The RIG-like receptors (RLRs) are related proteins that identify viral RNA in the cytoplasm and activate cellular immune responses, primarily through direct protein-protein interactions with the signal transducer, IPS1. Although it has been well established that the RLRs, RIG-I and MDA5, activate IPS1 through binding between the twin caspase activation and recruitment domains (CARDs) on the RLR and a homologous CARD on IPS1, it is less clear which specific RLR CARD(s) are required for this interaction, and almost nothing is known about how the RLR-IPS1 interaction evolved. In contrast to what has been observed in the presence of immune-modulating K63-linked polyubiquitin, here we show that—in the absence of ubiquitin—it is the first CARD domain of human RIG-I and MDA5 (CARD1) that binds directly to IPS1 CARD, and not the second (CARD2). Although the RLRs originated in the earliest animals, both the IPS1 gene and the twin-CARD domain architecture of RIG-I and MDA5 arose much later in the deuterostome lineage, probably through a series of tandem partial-gene duplication events facilitated by tight clustering of RLRs and IPS1 in the ancestral deuterostome genome. Functional differentiation of RIG-I CARD1 and CARD2 appears to have occurred early during this proliferation of RLR and related CARDs, potentially driven by adaptive coevolution between RIG-I CARD domains and IPS1 CARD. However, functional differentiation of MDA5 CARD1 and CARD2 occurred later. These results fit a general model in which duplications of protein-protein interaction domains into novel gene contexts could facilitate the expansion of signaling networks and suggest a potentially important role for functionally-linked gene clusters in generating novel immune-signaling pathways. PMID:26356745

  15. Tamoxifen Induces Expression of Immune Response-Related Genes in Cultured Normal Human Mammary Epithelial Cells

    PubMed Central

    Schild-Hay, Laura J.; Leil, Tarek A.; Divi, Rao L.; Olivero, Ofelia, A.; Weston, Ainsley; Poirier, Miriam C.

    2008-01-01

    Use of tamoxifen (TAM) is associated with a 50% reduction in breast cancer incidence and an increase in endometrial cancer incidence. Here, we documented TAM-induced gene expression changes in cultured normal human mammary epithelial cells (NHMEC strains numbered 5, 16 and 40), established from tissue taken at reduction mammoplasty from 3 individuals. Cells exposed to 0, 10 or 50 μM TAM for 48 hours were evaluated for (E)-α-(deoxyguanosin-N2-yl)-tamoxifen (dG-N2-TAM) adduct formation by TAM-DNA (DNA modified with dG-N2-TAM) chemiluminescence immunoassay (CIA), gene expression changes using NCI DNA-oligonucleotide microarray, and real time (RT)-PCR. At 48 hr, cells exposed to 10 μM and 50 μM TAM were 85.6% and 48.4% viable, respectively, and there were no measurable dG-N2-TAM adducts. For microarray, cells were exposed to 10 μM TAM and genes with expression changes of ≥ 3-fold were as follows: thirteen genes up-regulated and one down-related for strain 16; seventeen genes up-regulated for strain 5; and eleven genes up-regulated for strain 40. Interferon-inducible genes (IFITM1, IFIT1, IFNA1, MXI and GIP3), and a potassium ion channel (KCNJ1) were up-regulated in all 3 strains. No significant expression changes were found for genes related to estrogen or xenobiotic metabolism. RT-PCR revealed up-regulation of interferon α (IFNA1) and confirmed the TAM-induced up-regulation of the genes identified by microarray, with the exception of GIP3 and MX1, which were not up-regulated in strain 40. Induction of interferon-related genes in the three NHMEC strains suggests that, in addition to hormonal effects, TAM exposure may enhance immune response in normal breast tissue. PMID:19155303

  16. Evolution of African swine fever virus genes related to evasion of host immune response.

    PubMed

    Frączyk, Magdalena; Woźniakowski, Grzegorz; Kowalczyk, Andrzej; Bocian, Łukasz; Kozak, Edyta; Niemczuk, Krzysztof; Pejsak, Zygmunt

    2016-09-25

    African swine fever (ASF) is a notifiable and one of the most complex and devastating infectious disease of pigs, wild boars and other representatives of Suidae family. African swine fever virus (ASFV) developed various molecular mechanisms to evade host immune response including alteration of interferon production by multigene family protein (MGF505-2R), inhibition of NF-κB and nuclear activating factor in T-cells by the A238L protein, or modulation of host defense by CD2v lectin-like protein encoded by EP402R and EP153R genes. The current situation concerning ASF in Poland seems to be stable in comparison to other eastern European countries but up-to-date in total 106 ASF cases in wild boar and 5 outbreaks in pigs were identified. The presented study aimed to reveal and summarize the genetic variability of genes related to inhibition or modulation of infected host response among 67 field ASF isolates collected from wild boar and pigs. The nucleotide sequences derived from the analysed A238L and EP153R regions showed 100% identity. However, minor but remarkable genetic diversity was found within EP402R and MGF505-2R genes suggesting slow molecular evolution of circulating ASFV isolates and the important role of this gene in modulation of interferon I production and hemadsorption phenomenon. The obtained nucleotide sequences of Polish ASFV isolates were closely related to Georgia 2007/1 and Odintsovo 02/14 isolates suggesting their common Caucasian origin. In the case of EP402R and partially in MGF505-2R gene the identified genetic variability was related to spatio-temporal occurrence of particular cases and outbreaks what may facilitate evolution tracing of ASFV isolates. This is the first report indicating identification of genetic variability within the genes related to evasion of host immune system which may be used to trace the direction of ASFV isolates molecular evolution. PMID:27599940

  17. Inactivation of conserved genes induces microbial aversion, drug detoxification, and innate immunity in C.elegans

    PubMed Central

    Melo, Justine A.; Ruvkun, Gary

    2012-01-01

    Summary The nematode C. elegans consumes benign bacteria such as E. coli and is repelled by pathogens and toxins. Here we show that RNAi and toxin-mediated disruption of core cellular activities, including translation, respiration, and protein turnover, stimulates behavioral avoidance of attractive E. coli. RNAi of such essential processes also induces expression of detoxification and innate immune response genes in the absence of toxins or pathogens. Disruption of core processes in non-neuronal tissues can stimulate aversion behavior, revealing a neuroendocrine axis of control. Microbial avoidance requires serotonergic and Jnk kinase signaling. We propose that surveillance pathways oversee critical cellular activities to detect pathogens, many of which deploy toxins and virulence factors to disrupt these same host pathways. Variation in cellular surveillance and endocrine pathways controlling behavior, detoxification and immunity selected by past toxin or microbial interactions could underlie aberrant responses to foods, medicines, and microbes. PMID:22500807

  18. Effects of excretory/secretory products from Anisakis simplex (Nematoda) on immune gene expression in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Bahlool, Qusay Z M; Skovgaard, Alf; Kania, Per W; Buchmann, Kurt

    2013-09-01

    Excretory/secretory (ES) products are molecules produced by parasitic nematodes, including larval Anisakis simplex, a parasite occurring in numerous marine fish hosts. The effects of these substances on host physiology have not been fully described. The present work elucidates the influence of ES substances on the fish immune system by measuring immune gene expression in spleen and liver of rainbow trout (Oncorhynchus mykiss) injected intraperitoneally with ES products isolated from A. simplex third stage larvae. The overall gene expression profile of exposed fish showed a generalized down-regulation of the immune genes tested, suggesting a role of ES proteins in immunomodulation. We also tested the enzymatic activity of the ES proteins and found that lipase, esterase/lipase, valine and cysteine arylamidases, naphthol-AS-BI-phosphohydrolase and α-galactosidase activities were present in the ES solution. This type of hydrolytic enzyme activity may play a role in nematode penetration of host tissue. In addition, based on the notion that A. simplex ES products may have an immune-depressive effect (by minimizing immune gene expression) it could also be suggested that worm enzymes directly target host immune molecules which would add to a decreased host immune response and increased worm survival.

  19. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    PubMed

    Rady, Hamada F; Dai, Guixiang; Huang, Weitao; Shellito, Judd E; Ramsay, Alistair J

    2016-01-01

    Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad) vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC). DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route.

  20. Calmodulin is a stress and immune response gene in Chinese mitten crab Eriocheir sinensis.

    PubMed

    Li, Shuo; Jia, Zirui; Li, Xuejing; Geng, Xuyun; Sun, Jinsheng

    2014-09-01

    Calmodulin (CaM) is a multifunctional calcium sensor protein that participates in various cellular processes under normal, stress and pathological conditions. In crabs, however, the involvement of CaM in response to environmental stress and immune challenges has not been revealed yet. In the present study, a CaM cDNA (EsCaM) was identified from Chinese mitten crab Eriocheir sinensis and its mRNA expression patterns in response to ambient (salinity and pH) stress and immune challenges was examined. EsCaM encodes a 149-amino-acid protein with a calculated molecular mass of 16.8 kDa and an isoelectric point of 4.09. In unstimulated healthy E. sinensis, EsCaM mRNA transcript was detected in all tested tissues with predominant expression in hepatopancreas and the lowest expression in haemocytes. Ambient salinity (15‰ and 30‰ salinities) and pH (pH 6 and 8.5) stress significantly altered EsCaM mRNA expression in gill, hepatopancreas, haemocytes, intestine and muscle in Chinese mitten crab. In addition, EsCaM gene expression was significantly and rapidly induced as early as 2 h after LPS and Poly(I:C) immune stimulations in haemocytes in vitro. Furthermore, EsCaM expression was significantly up-regulated in E. sinensis haemocytes, gill, hepatopancreas, intestine and muscle in response to Edwardsiella tarda and Vibrio anguillarum challenges. Collectively, our findings suggest that EsCaM is an important stress and immune response gene in Chinese mitten crab.

  1. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant

    PubMed Central

    Rady, Hamada F.; Dai, Guixiang; Huang, Weitao; Shellito, Judd E.; Ramsay, Alistair J.

    2016-01-01

    Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad) vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC). DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route. PMID:26844553

  2. Salmonella enterica Serovar Typhimurium Lacking hfq Gene Confers Protective Immunity against Murine Typhoid

    PubMed Central

    Lahiri, Amit; Joy, Omana; Chakravortty, Dipshikha

    2011-01-01

    Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4+ T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate. PMID:21347426

  3. Flagellin Encoded in Gene-Based Vector Vaccines Is a Route-Dependent Immune Adjuvant.

    PubMed

    Rady, Hamada F; Dai, Guixiang; Huang, Weitao; Shellito, Judd E; Ramsay, Alistair J

    2016-01-01

    Flagellin has been tested as a protein-based vaccine adjuvant, with the majority of studies focused on antibody responses. Here, we evaluated the adjuvant activity of flagellin for both cellular and humoral immune responses in BALB/c mice in the setting of gene-based immunization, and have made several novel observations. DNA vaccines and adenovirus (Ad) vectors were engineered to encode mycobacterial protein Ag85B, with or without flagellin of Salmonella typhimurium (FliC). DNA-encoded flagellin given IM enhanced splenic CD4+ and CD8+ T cell responses to co-expressed vaccine antigen, including memory responses. Boosting either IM or intranasally with Ad vectors expressing Ag85B without flagellin led to durable enhancement of Ag85B-specific antibody and CD4+ and CD8+ T cell responses in both spleen and pulmonary tissues, correlating with significantly improved protection against challenge with pathogenic aerosolized M. tuberculosis. However, inclusion of flagellin in both DNA prime and Ad booster vaccines induced localized pulmonary inflammation and transient weight loss, with route-dependent effects on vaccine-induced T cell immunity. The latter included marked reductions in levels of mucosal CD4+ and CD8+ T cell responses following IM DNA/IN Ad mucosal prime-boosting, although antibody responses were not diminished. These findings indicate that flagellin has differential and route-dependent adjuvant activity when included as a component of systemic or mucosally-delivered gene-based prime-boost immunization. Clear adjuvant activity for both T and B cell responses was observed when flagellin was included in the DNA priming vaccine, but side effects occurred when given in an Ad boosting vector, particularly via the pulmonary route. PMID:26844553

  4. Social environment is associated with gene regulatory variation in the rhesus macaque immune system

    PubMed Central

    Tung, Jenny; Barreiro, Luis B.; Johnson, Zachary P.; Hansen, Kasper D.; Michopoulos, Vasiliki; Toufexis, Donna; Michelini, Katelyn; Wilson, Mark E.; Gilad, Yoav

    2012-01-01

    Variation in the social environment is a fundamental component of many vertebrate societies. In humans and other primates, adverse social environments often translate into lasting physiological costs. The biological mechanisms associated with these effects are therefore of great interest, both for understanding the evolutionary impacts of social behavior and in the context of human health. However, large gaps remain in our understanding of the mechanisms that mediate these effects at the molecular level. Here we addressed these questions by leveraging the power of an experimental system that consisted of 10 social groups of female macaques, in which each individual's social status (i.e., dominance rank) could be experimentally controlled. Using this paradigm, we show that dominance rank results in a widespread, yet plastic, imprint on gene regulation, such that peripheral blood mononuclear cell gene expression data alone predict social status with 80% accuracy. We investigated the mechanistic basis of these effects using cell type-specific gene expression profiling and glucocorticoid resistance assays, which together contributed to rank effects on gene expression levels for 694 (70%) of the 987 rank-related genes. We also explored the possible contribution of DNA methylation levels to these effects, and identified global associations between dominance rank and methylation profiles that suggest epigenetic flexibility in response to status-related behavioral cues. Together, these results illuminate the importance of the molecular response to social conditions, particularly in the immune system, and demonstrate a key role for gene regulation in linking the social environment to individual physiology. PMID:22493251

  5. Major histocompatibility lineages and immune gene function in teleost fishes: the road not taken.

    PubMed

    Stet, René J M; Kruiswijk, Corine P; Dixon, Brian

    2003-01-01

    It has become increasingly clear over the course of the past decade that the immune system genes of teleosts and tetrapods are plainly derived from common ancestral genes. The last 5 years, however, have also made it abundantly clear that in the teleost genome some of these genes are organized in a manner very different from that seen in mammals. These differences are probably the result of differences in life history traits, such as fecundancy, within each group of species when faced with an evolutionary fork in the road shortly after their divergence from each other. One group, the tetrapods, including mammals, chose a highly organized linked major histocompatibility complex, while in teleosts the major histocompatibility genes remained unlinked. In this review we will discuss the structural and functional implications of this different organization, particularly for major histocompatibility genes, but drawing on the current knowledge of some other genes for further support for the hypothesis that each group took a different road, one more traveled and one less taken.

  6. Immune and inflammatory gene signature in rat cerebrum in subarachnoid hemorrhage with microarray analysis.

    PubMed

    Lee, Chu-I; Chou, An-Kuo; Lin, Ching-Chih; Chou, Chia-Hua; Loh, Joon-Khim; Lieu, Ann-Shung; Wang, Chih-Jen; Huang, Chi-Ying F; Howng, Shen-Long; Hong, Yi-Ren

    2012-01-01

    Cerebral vasospasm following subarachnoid hemorrhage (SAH) has been studied in terms of a contraction of the major cerebral arteries, but the effect of cerebrum tissue in SAH is not yet well understood. To gain insight into the biology of SAH-expressing cerebrum, we employed oligonucleotide microarrays to characterize the gene expression profiles of cerebrum tissue at the early stage of SAH. Functional gene expression in the cerebrum was analyzed 2 h following stage 1-hemorrhage in Sprague-Dawley rats. mRNA was investigated by performing microarray and quantitative real-time PCR analyses, and protein expression was determined by Western blot analysis. In this study, 18 upregulated and 18 downregulated genes displayed at least a 1.5-fold change. Five genes were verified by real-time PCR, including three upregulated genes [prostaglandin E synthase (PGES), CD14 antigen, and tissue inhibitor of metalloproteinase 1 (TIMP1)] as well as two downregulated genes [KRAB-zinc finger protein-2 (KZF-2) and γ-aminobutyric acid B receptor 1 (GABA B receptor)]. Notably, there were functional implications for the three upregulated genes involved in the inflammatory SAH process. However, the mechanisms leading to decreased KZF-2 and GABA B receptor expression in SAH have never been characterized. We conclude that oligonucleotide microarrays have the potential for use as a method to identify candidate genes associated with SAH and to provide novel investigational targets, including genes involved in the immune and inflammatory response. Furthermore, understanding the regulation of MMP9/TIMP1 during the early stages of SAH may elucidate the pathophysiological mechanisms in SAH rats.

  7. Local gene expression and immune responses of vaginal DNA vaccination using a needle-free injector.

    PubMed

    Kanazawa, Takanori; Takashima, Yuuki; Tamura, Toshiaki; Tsuchiya, Miki; Shibata, Yasunori; Udagawa, Haruhide; Okada, Hiroaki

    2010-08-30

    The vaginal mucosa is the most common site of initiation of virus infections that are transmitted through heterosexual intercourse, including HIV and papillomavirus. Thus, in order to prevent or treat these infections, strong vaginal immunity is required as the first line of defense. In this study, to establish a less invasive, safe, convenient and effective immunization method, we examined the local (skin and vagina) gene transfection efficiency of a non-needle jet injector for daily insulin injection. In the skin experiment, the needle-free injector resulted in a marked increase in marker gene expression, compared to the conventional needle-syringe injection. In addition, intradermal DNA vaccination using the needle-free injector dramatically induced IFN-gamma and antibody systemic responses in mice. Furthermore, we investigated the applicability of the needle-free injector as a vaginal vaccination tool in rabbits. Vaginal gene expression using the needle-free injector was significantly greater than that using needle-syringe injection. Moreover, intravaginal vaccination by the needle-free injector promoted vaginal IgA secretion and IFN-gamma mRNA expression in the blood lymphocytes, to a degree significantly higher than that by needle-syringe injection. In conclusion, local vaginal DNA vaccination using a needle-free jet injector is a promising approach for the prevention and treatment of mucosal infectious diseases.

  8. A recombinant varicella vaccine harboring a respiratory syncytial virus gene induces humoral immunity.

    PubMed

    Murakami, Kouki; Matsuura, Masaaki; Ota, Megumi; Gomi, Yasuyuki; Yamanishi, Koichi; Mori, Yasuko

    2015-11-01

    The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is highly efficient and causes few adverse events; therefore, it is used worldwide. We previously constructed recombinant vOka (rvOka) harboring the mumps virus gene. Immunizing guinea pigs with rvOka induced the production of neutralizing antibodies against the mumps virus and VZV. Here, we constructed recombinant vOka viruses containing either the respiratory syncytial virus (RSV) subgroup A fusion glycoprotein (RSV A-F) gene or RSV subgroup B fusion glycoprotein (RSV B-F) gene (rvOka-RSV A-F or rvOka-RSV B-F). Indirect immunofluorescence and Western blot analyses confirmed the expression of each recombinant RSV protein in virus-infected cells. Immunizing guinea pigs with rvOka-RSV A-F or rvOka-RSV B-F led to the induction of antibodies against RSV proteins. These results suggest that the current varicella vaccine genome can be used to generate custom-made vaccine vectors to develop the next generation of live vaccines.

  9. RNA-Seq analysis of immune-relevant genes in Lateolabrax japonicus during Vibrio anguillarum infection.

    PubMed

    Zhao, Chao; Fu, Mingjun; Wang, Chengyang; Jiao, Zongyao; Qiu, Lihua

    2016-05-01

    Lateolabrax japonicus is one of the main marine aquatic fish species, and is popularly cultured in East Asia due to its highly commercial value. In recent years, because of large-scale and intensive farming and seawater pollution, fish diseases keep breaking out. However, systematic study on L. japonicus immunogenetics is limited due to the deficiency of deep sequencing technologies and genome backgrounds. In this study, the widely analysis at the transcriptome level for L. japonicus that infected with Vibrio anguillarum was performed. In total, 334,388,688 high quality reads were obtained in six libraries (HK-VA, HK-PBS, LI-VA, LI-PBS, SP-VA and SP-PBS) and de novo assembled into 101,860 Unigenes with an average unigene length of 879 bp. Based on sequence similarity 30,142 unigenes (29.59%) were annotated in the public databases. Comparative analysis revealed, 1,202, 3034 and 3519 differentially expressed genes (DEGs) were identified in three comparisons (HK-PBS VS HK-VA, LI-PBS VS LI-VA and SP-PBS VS SP-VA). Enrichment and pathway analysis of the DEGs was also carried out to excavate the candidate genes related to immunity. In conclusion, this study identifies and evaluates dozen of potential immune related pathways and candidate genes, which are indispensable for padding genomic resources of L. japonicus, and would lay the foundation for further studying and illuminating the mechanism of host-pathogen interactions. PMID:26945936

  10. RNA-Seq analysis of immune-relevant genes in Lateolabrax japonicus during Vibrio anguillarum infection.

    PubMed

    Zhao, Chao; Fu, Mingjun; Wang, Chengyang; Jiao, Zongyao; Qiu, Lihua

    2016-05-01

    Lateolabrax japonicus is one of the main marine aquatic fish species, and is popularly cultured in East Asia due to its highly commercial value. In recent years, because of large-scale and intensive farming and seawater pollution, fish diseases keep breaking out. However, systematic study on L. japonicus immunogenetics is limited due to the deficiency of deep sequencing technologies and genome backgrounds. In this study, the widely analysis at the transcriptome level for L. japonicus that infected with Vibrio anguillarum was performed. In total, 334,388,688 high quality reads were obtained in six libraries (HK-VA, HK-PBS, LI-VA, LI-PBS, SP-VA and SP-PBS) and de novo assembled into 101,860 Unigenes with an average unigene length of 879 bp. Based on sequence similarity 30,142 unigenes (29.59%) were annotated in the public databases. Comparative analysis revealed, 1,202, 3034 and 3519 differentially expressed genes (DEGs) were identified in three comparisons (HK-PBS VS HK-VA, LI-PBS VS LI-VA and SP-PBS VS SP-VA). Enrichment and pathway analysis of the DEGs was also carried out to excavate the candidate genes related to immunity. In conclusion, this study identifies and evaluates dozen of potential immune related pathways and candidate genes, which are indispensable for padding genomic resources of L. japonicus, and would lay the foundation for further studying and illuminating the mechanism of host-pathogen interactions.

  11. Lack of strong anti-viral immune gene stimulation in Torque Teno Sus Virus1 infected macrophage cells.

    PubMed

    Singh, P; Ramamoorthy, S

    2016-08-01

    While recent findings suggest that swine TTVs (TTSuVs) can act as primary or co-infecting pathogens, very little is known about viral immunity. To determine whether TTSuVs downregulate key host immune responses to facilitate their own survival, a swine macrophage cell line, 3D4/31, was used to over-express recombinant TTSuV1 viral particles or the ORF3 protein. Immune gene expression profiles were assessed by a quantitative PCR panel consisting of 22 immune genes, in cell samples collected at 6, 12, 24 and 48h post-transfection. Despite the upregulation of IFN-β and TLR9, interferon stimulated innate genes and pro-inflammatory genes were not upregulated in virally infected cells. The adaptive immune genes, IL-4 and IL-13, were significantly downregulated at 6h post-transfection. The ORF3 protein did not appear do not have a major immuno-suppressive effect, nor did it stimulate anti-viral immunity. Data from this study warrants further investigation into the mechanisms of TTV related immuno-pathogenesis. PMID:27179346

  12. Major histocompatibility complex and host background genes in chickens influence resistance to high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chicken’s major histocompatibility complex (MHC) haplotype has a profound influence on the resistance or susceptibility to certain pathogens such as B21 MHC haplotype confers resistance to Marek’s disease (MD). However, non-MHC genes are also important in disease resistance. For example, both li...

  13. Transciptomic study of mucosal immune, antioxidant and growth related genes and non-specific immune response of common carp (Cyprinus carpio) fed dietary Ferula (Ferula assafoetida).

    PubMed

    Safari, Roghieh; Hoseinifar, Seyed Hossein; Nejadmoghadam, Shabnam; Jafar, Ali

    2016-08-01

    A 8-weeks feeding trial was conducted to examine the effects of different levels (0, 0.5, 1 and 2%) of dietary Ferula (Ferula assafoetida) on expression of antioxidant enzymes (GSR, GPX and GSTA), immune (TNF-alpha, IL1B, IL- 8 and LYZ) and growth (GH, IGF1 and Ghrl) genes as well as cutaneous mucus and serum non-specific immune response in common carp. The results revealed Ferula significantly increased antioxidant gene expression (GSR and GSTA) in a dose dependent manner (P < 0.05). The expression of immune growth related genes were significantly higher in Ferula fed fish compared control group (P < 0.05). The effects of Ferula on expression of genes was more pronounced in higher doses. Feeding on Ferula supplemented diet remarkably increased skin mucus lysozyme activity (P < 0.05). However, evaluation of mucus total Ig and protease activity revealed no significant difference between control and treated groups (P > 0.05). Regarding non-specific humoral response, serum total Ig, lysozyme and ACH50 showed no remarkable variation between Ferula fed carps and control group (P > 0.05). These results indicated up-regulation of growth and health related genes in Ferula fed common carp. Further studies using pathogen or stress challenge is required to conclude that transcriptional modulation is beneficial in common carp. PMID:27241284

  14. Novel immune genes associated with excessive inflammatory and antiviral responses to rhinovirus in COPD

    PubMed Central

    2013-01-01

    Background Rhinovirus (RV) is a major cause of chronic obstructive pulmonary disease (COPD) exacerbations, and primarily infects bronchial epithelial cells. Immune responses from BECs to RV infection are critical in limiting viral replication, and remain unclear in COPD. The objective of this study is to investigate innate immune responses to RV infection in COPD primary BECs (pBECs) in comparison to healthy controls. Methods Primary bronchial epithelial cells (pBECs) from subjects with COPD and healthy controls were infected with RV-1B. Cells and cell supernatant were collected and analysed using gene expression microarray, qPCR, ELISA, flow cytometry and titration assay for viral replication. Results COPD pBECs responded to RV-1B infection with an increased expression of antiviral and pro-inflammatory genes compared to healthy pBECs, including cytokines, chemokines, RNA helicases, and interferons (IFNs). Similar levels of viral replication were observed in both disease groups; however COPD pBECs were highly susceptible to apoptosis. COPD pBECs differed at baseline in the expression of 9 genes, including calgranulins S100A8/A9, and 22 genes after RV-1B infection including the signalling proteins pellino-1 and interleukin-1 receptor associated kinase 2. In COPD, IFN-β/λ1 pre-treatment did not change MDA-5/RIG-I and IFN-β expression, but resulted in higher levels IFN-λ1, CXCL-10 and CCL-5. This led to reduced viral replication, but did not increase pro-inflammatory cytokines. Conclusions COPD pBECs elicit an exaggerated pro-inflammatory and antiviral response to RV-1B infection, without changing viral replication. IFN pre-treatment reduced viral replication. This study identified novel genes and pathways involved in potentiating the inflammatory response to RV in COPD. PMID:23384071

  15. Trans-species polymorphism at antimicrobial innate immunity cathelicidin genes of Atlantic cod and related species

    PubMed Central

    Árnason, Einar

    2015-01-01

    Natural selection, the most important force in evolution, comes in three forms. Negative purifying selection removes deleterious variation and maintains adaptations. Positive directional selection fixes beneficial variants, producing new adaptations. Balancing selection maintains variation in a population. Important mechanisms of balancing selection include heterozygote advantage, frequency-dependent advantage of rarity, and local and fluctuating episodic selection. A rare pathogen gains an advantage because host defenses are predominantly effective against prevalent types. Similarly, a rare immune variant gives its host an advantage because the prevalent pathogens cannot escape the host’s apostatic defense. Due to the stochastic nature of evolution, neutral variation may accumulate on genealogical branches, but trans-species polymorphisms are rare under neutrality and are strong evidence for balancing selection. Balanced polymorphism maintains diversity at the major histocompatibility complex (MHC) in vertebrates. The Atlantic cod is missing genes for both MHC-II and CD4, vital parts of the adaptive immune system. Nevertheless, cod are healthy in their ecological niche, maintaining large populations that support major commercial fisheries. Innate immunity is of interest from an evolutionary perspective, particularly in taxa lacking adaptive immunity. Here, we analyze extensive amino acid and nucleotide polymorphisms of the cathelicidin gene family in Atlantic cod and closely related taxa. There are three major clusters, Cath1, Cath2, and Cath3, that we consider to be paralogous genes. There is extensive nucleotide and amino acid allelic variation between and within clusters. The major feature of the results is that the variation clusters by alleles and not by species in phylogenetic trees and discriminant analysis of principal components. Variation within the three groups shows trans-species polymorphism that is older than speciation and that is suggestive of

  16. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity.

    PubMed

    Nguyen-Hoai, Tam; Kobelt, Dennis; Hohn, Oliver; Vu, Minh D; Schlag, Peter M; Dörken, Bernd; Norley, Steven; Lipp, Martin; Walther, Wolfgang; Pezzutto, Antonio; Westermann, Jörg

    2012-12-01

    DNA vaccines are potential tools for the induction of immune responses against both infectious disease and cancer. The dermal application of DNA vaccines is of particular interest since the epidermal and dermal layers of the skin are characterized by an abundance of antigen-presenting cells (APCs). The aim of our study was to compare tumor protection as obtained by two different methods of intradermal DNA delivery (gene gun and jet injector) in a well-established HER2/neu mouse tumor model. BALB/c mice were immunized twice with a HER2/neu-coding plasmid by gene gun or jet injector. Mice were then subcutaneously challenged with HER2/neu(+) syngeneic D2F2/E2 tumor cells. Protection against subsequent challenges with tumor cells as well as humoral and T-cell immune responses induced by the vaccine were monitored. Gene gun immunization was far superior to jet injector both in terms of tumor protection and induction of HER2/neu-specific immune responses. After gene gun immunization, 60% of the mice remained tumor-free until day 140 as compared with 25% after jet injector immunization. Furthermore, gene gun vaccination was able to induce both a strong T(H)1-polarized T-cell response with detectable cytotoxic T-lymphocyte (CTL) activity and a humoral immune response against HER2/neu, whereas the jet injector was not. Although the disadvantages that were associated with the use of the jet injector in our model may be overcome with methodological modifications and/or in larger animals, which exhibit a thicker skin and/or subcutaneous muscle tissue, we conclude that gene gun delivery constitutes the method of choice for intradermal DNA delivery in preclinical mouse models and possibly also for the clinical development of DNA-based vaccines.

  17. Cia27 is a novel non-MHC arthritis severity locus on rat chromosome 10 syntenic to the rheumatoid arthritis 17q22-q25 locus.

    PubMed

    Brenner, M; Laragione, T; Yarlett, N C; Li, W; Mello, A; Gulko, P S

    2006-07-01

    Cia27 on rat chromosome 10 is a collagen-induced arthritis (CIA) severity quantitative trait locus originally identified in a study of (DA x ACI) F2. As an initial step towards the positional cloning of the Cia27 gene, a 17 cM (21 Mb) interval from the DA strain (arthritis-susceptible) containing the two-logarithm of odds support interval comprising Cia27 was introgressed into the ACI (arthritis-resistant) background through genotype-guided congenic breeding. ACI.DA(Cia27) congenics developed a significantly more severe form of arthritis (CIA), with a 5.9-fold increase in median arthritis severity index, a parameter known to correlate with synovial inflammation, and cartilage and bone erosions, compared with ACI (P< or =0.001). The arthritis severity enhancing effect could be detected from day 21 onwards. Rats heterozygous at the congenic interval developed a disease similar to ACI rats, suggesting that DA alleles operate in a recessive manner. Levels of autoantibodies anti-rat type II collagen did not correlate with arthritis severity. Synovial tissue mRNA levels of interleukin-1beta (IL-1beta) were significantly increased in ACI.DA(Cia27) congenics compared with ACI. These results demonstrate that Cia27 harbors a novel arthritis severity regulatory gene. The identification of this gene should facilitate the identification of the rheumatoid arthritis gene mapped to the human syntenic region on chromosome 17q22-q25. PMID:16691185

  18. De Novo Transcriptomic Analysis of Peripheral Blood Lymphocytes from the Chinese Goose: Gene Discovery and Immune System Pathway Description

    PubMed Central

    Tariq, Mansoor; Chen, Rong; Yuan, Hongyu; Liu, Yanjie; Wu, Yanan; Wang, Junya; Xia, Chun

    2015-01-01

    Background The Chinese goose is one of the most economically important poultry birds and is a natural reservoir for many avian viruses. However, the nature and regulation of the innate and adaptive immune systems of this waterfowl species are not completely understood due to limited information on the goose genome. Recently, transcriptome sequencing technology was applied in the genomic studies focused on novel gene discovery. Thus, this study described the transcriptome of the goose peripheral blood lymphocytes to identify immunity relevant genes. Principal Findings De novo transcriptome assembly of the goose peripheral blood lymphocytes was sequenced by Illumina-Solexa technology. In total, 211,198 unigenes were assembled from the 69.36 million cleaned reads. The average length, N50 size and the maximum length of the assembled unigenes were 687 bp, 1,298 bp and 18,992 bp, respectively. A total of 36,854 unigenes showed similarity by BLAST search against the NCBI non-redundant (Nr) protein database. For functional classification, 163,161 unigenes were comprised of three Gene Ontology (Go) categories and 67 subcategories. A total of 15,334 unigenes were annotated into 25 eukaryotic orthologous groups (KOGs) categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotated 39,585 unigenes into six biological functional groups and 308 pathways. Among the 2,757 unigenes that participated in the 15 immune system KEGG pathways, 125 of the most important immune relevant genes were summarized and analyzed by STRING analysis to identify gene interactions and relationships. Moreover, 10 genes were confirmed by PCR and analyzed. Of these 125 unigenes, 109 unigenes, approximately 87%, were not previously identified in the goose. Conclusion This de novo transcriptome analysis could provide important Chinese goose sequence information and highlights the value of new gene discovery, pathways investigation and immune system gene identification, and comparison with

  19. Identification of immune system and response genes, and novel mutations causing melanotic tumor formation in Drosophila melanogaster

    SciTech Connect

    Rodriguez, A.; Zhou, Zhijian; Tang, My Lien

    1996-06-01

    We are using Drosophila as a model system for analysis of immunity and tumor formation and have conducted two types of screens using enhancer detector strains to find genes related to these processes: genes expressed in the immune system (type A; hemocytes, lymph glands and fat body) and genes increased in expression by bacterial infection (type B). For type A, tissue-specific reporter gene activity was determined. For type B, a variation of enhancer detection was devised in which {beta}-galactosidase is assayed spectrophotometrically with and without bacterial infection. Because of immune system involvement in melanotic tumor formation, a third type was hypothesized to be found among types A and B: genes that, when mutated, have a melanotic tumor phenotype. Enhancer detector strains (2800) were screened for type A, 900 for B, and 11 retained for further analysis. Complementation tests, cytological mapping, P-element mobilization, and determination of lethal phase and mutant phenotype have identified six novel genes, Dorothy, wizard, toto, viking, Thor and dappled, and one previously identified gene, Collagen IV. All are associated with reporter gene expression in at least one immune system tissue. Thor has increased expression upon infection. Mutations of wizard and dappled have a melanotic tumor phenotype. 72 refs., 6 figs., 3 tabs.

  20. Immune signatures and disorder-specific patterns in a cross-disorder gene expression analysis

    PubMed Central

    de Jong, Simone; Newhouse, Stephen J.; Patel, Hamel; Lee, Sanghyuck; Dempster, David; Curtis, Charles; Paya-Cano, Jose; Murphy, Declan; Wilson, C. Ellie; Horder, Jamie; Mendez, M. Andreina; Asherson, Philip; Rivera, Margarita; Costello, Helen; Maltezos, Stefanos; Whitwell, Susannah; Pitts, Mark; Tye, Charlotte; Ashwood, Karen L.; Bolton, Patrick; Curran, Sarah; McGuffin, Peter; Dobson, Richard; Breen, Gerome

    2016-01-01

    Background Recent studies point to overlap between neuropsychiatric disorders in symptomatology and genetic aetiology. Aims To systematically investigate genomics overlap between childhood and adult attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and major depressive disorder (MDD). Method Analysis of whole-genome blood gene expression and genetic risk scores of 318 individuals. Participants included individuals affected with adult ADHD (n = 93), childhood ADHD (n = 17), MDD (n = 63), ASD (n = 51), childhood dual diagnosis of ADHD–ASD (n = 16) and healthy controls (n = 78). Results Weighted gene co-expression analysis results reveal disorder-specific signatures for childhood ADHD and MDD, and also highlight two immune-related gene co-expression modules correlating inversely with MDD and adult ADHD disease status. We find no significant relationship between polygenic risk scores and gene expression signatures. Conclusions Our results reveal disorder overlap and specificity at the genetic and gene expression level. They suggest new pathways contributing to distinct pathophysiology in psychiatric disorders and shed light on potential shared genomic risk factors. PMID:27151072

  1. RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways

    PubMed Central

    Jiang, Lulu; Hindmarch, Charles C. T.; Rogers, Mark; Campbell, Colin; Waterfall, Christy; Coghill, Jane; Mathieson, Peter W.; Welsh, Gavin I.

    2016-01-01

    Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or ‘podocytes’, the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes. PMID:27774996

  2. KIR Genes and Patterns Given by the A Priori Algorithm: Immunity for Haematological Malignancies

    PubMed Central

    Rodríguez-Escobedo, J. Gilberto; García-Sepúlveda, Christian A.; Cuevas-Tello, Juan C.

    2015-01-01

    Killer-cell immunoglobulin-like receptors (KIRs) are membrane proteins expressed by cells of innate and adaptive immunity. The KIR system consists of 17 genes and 614 alleles arranged into different haplotypes. KIR genes modulate susceptibility to haematological malignancies, viral infections, and autoimmune diseases. Molecular epidemiology studies rely on traditional statistical methods to identify associations between KIR genes and disease. We have previously described our results by applying support vector machines to identify associations between KIR genes and disease. However, rules specifying which haplotypes are associated with greater susceptibility to malignancies are lacking. Here we present the results of our investigation into the rules governing haematological malignancy susceptibility. We have studied the different haplotypic combinations of 17 KIR genes in 300 healthy individuals and 43 patients with haematological malignancies (25 with leukaemia and 18 with lymphomas). We compare two machine learning algorithms against traditional statistical analysis and show that the “a priori” algorithm is capable of discovering patterns unrevealed by previous algorithms and statistical approaches. PMID:26495028

  3. Gene expression responses in larvae of the fleshfly Sarcophaga bullata after immune stimulation.

    PubMed

    Másová, A; Sindelka, R; Kubista, M; Kindl, J; Jirácek, J

    2009-01-01

    Insect larvae develop in decaying organic matter and their defence against various microorganisms must therefore be highly efficient. In the present study, we explored the transcriptional kinetics and induction levels of eight genes in Sarcophaga bullata larvae after infection or aseptic injury. Using real-time PCR, we studied the time-dependent immune response of larvae of the fleshfly S. bullata. We compared the mRNA levels of eight selected genes in induced and non-induced larvae. The third-instar larvae of S. bullata were induced by injecting a bacterial suspension of Escherichia coli, Staphylococcus aureus or Pseudomonas aeruginosa, or by simple aseptic injury with an entomological pin. We used intact larvae as a control for basal mRNA expression. Total RNA was isolated from the whole body, fat body and haemocytes. We determined the mRNA levels of genes encoding sapecin, transferrin, prophenoloxidase 1 and 2, storage-binding protein, cathe psin L, sarcocystatin, and 26/29 kDa protease. We found that there was massive up-regulation of genes encoding the fleshfly peptide sapecin, as well as the protein transferrin. We also detected down-regulation of, or no change in, the expression of genes that encode prophenoloxidase 1 and 2, storage-binding protein, cathepsin L, sarcocystatin, and 26/29 kDa protease.

  4. A Computational Gene Expression Score for Predicting Immune Injury in Renal Allografts

    PubMed Central

    Tran, Tim Q.; Hsieh, Szu-Chuan; Roedder, Silke; Damm, Izabella; Vincenti, Flavio; Sarwal, Minnie M.

    2015-01-01

    Background Whole genome microarray meta-analyses of 1030 kidney, heart, lung and liver allograft biopsies identified a common immune response module (CRM) of 11 genes that define acute rejection (AR) across different engrafted tissues. We evaluated if the CRM genes can provide a molecular microscope to quantify graft injury in acute rejection (AR) and predict risk of progressive interstitial fibrosis and tubular atrophy (IFTA) in histologically normal kidney biopsies. Methods Computational modeling was done on tissue qPCR based gene expression measurements for the 11 CRM genes in 146 independent renal allografts from 122 unique patients with AR (n = 54) and no-AR (n = 92). 24 demographically matched patients with no-AR had 6 and 24 month paired protocol biopsies; all had histologically normal 6 month biopsies, and 12 had evidence of progressive IFTA (pIFTA) on their 24 month biopsies. Results were correlated with demographic, clinical and pathology variables. Results The 11 gene qPCR based tissue CRM score (tCRM) was significantly increased in AR (5.68 ± 0.91) when compared to STA (1.29 ± 0.28; p < 0.001) and pIFTA (7.94 ± 2.278 versus 2.28 ± 0.66; p = 0.04), with greatest significance for CXCL9 and CXCL10 in AR (p <0.001) and CD6 (p<0.01), CXCL9 (p<0.05), and LCK (p<0.01) in pIFTA. tCRM was a significant independent correlate of biopsy confirmed AR (p < 0.001; AUC of 0.900; 95% CI = 0.705–903). Gene expression modeling of 6 month biopsies across 7/11 genes (CD6, INPP5D, ISG20, NKG7, PSMB9, RUNX3, and TAP1) significantly (p = 0.037) predicted the development of pIFTA at 24 months. Conclusions Genome-wide tissue gene expression data mining has supported the development of a tCRM-qPCR based assay for evaluating graft immune inflammation. The tCRM score quantifies injury in AR and stratifies patients at increased risk of future pIFTA prior to any perturbation of graft function or histology. PMID:26367000

  5. Transcriptome profiling analysis of naked carp (Gymnocypris przewalskii) provides insights into the immune-related genes in highland fish.

    PubMed

    Tong, Chao; Zhang, Cunfang; Zhang, Renyi; Zhao, Kai

    2015-10-01

    The naked carp, Gymnocypris przewalskii, is one of the dominant aquaculture fish species in Qinghai Province, China. Its wild stocks have severely suffered from overfishing, and the farming species are vulnerable to various pathogens infections. Here we report the first immune-related tissues transcriptome of a wild naked carp using a deep sequencing approach. A total of 158,087 unigenes are generated, 2687 gill-specific gene and 3215 kidney-specific genes are identified, respectively. Gene ontology analysis shows that 51,671 unigenes are involved in three major functional categories: biological process, cellular component, and molecular function. Further analysis shows that numerous consensus sequences are homologous to known immune-related genes. Pathways mapping annotate 56,270 unigenes and identify a large number of immune-related pathways. In addition, we focus on the immune-related genes and gene family in Toll-like receptor signaling pathway involved in innate immunity, including toll-like receptors (TLRs), interferon regulatory factors (IRFs), interleukins (ILs) and tumor necrosis factors (TNFs). Eventually, we identify 5 TLRs, 4 IRFs, 3 ILs and 2 TNFs with a completed coding sequence though mining the transcriptome data. Phylogeny analysis shows these genes of naked carp are mostly close to zebrafish. Protein domain and selection pressure analyses together show that all these genes are highly conserved in gene sequence and protein domain structure with other species, and purifying selection underwent in these genes, implied functionally important features are conserved in the genes above. Intriguingly, we detect positive selection signals in naked carp TLR4, and significant divergence occurred among tested species TLR4, suggested that naked carp TLR4 function may be affected. Finally, we identify 23,867 simple sequence repeat (SSR) marks in this transcriptome. Taken together, this study not only contributes a large number of candidate genes in naked carp

  6. Transcriptome profiling analysis of naked carp (Gymnocypris przewalskii) provides insights into the immune-related genes in highland fish.

    PubMed

    Tong, Chao; Zhang, Cunfang; Zhang, Renyi; Zhao, Kai

    2015-10-01

    The naked carp, Gymnocypris przewalskii, is one of the dominant aquaculture fish species in Qinghai Province, China. Its wild stocks have severely suffered from overfishing, and the farming species are vulnerable to various pathogens infections. Here we report the first immune-related tissues transcriptome of a wild naked carp using a deep sequencing approach. A total of 158,087 unigenes are generated, 2687 gill-specific gene and 3215 kidney-specific genes are identified, respectively. Gene ontology analysis shows that 51,671 unigenes are involved in three major functional categories: biological process, cellular component, and molecular function. Further analysis shows that numerous consensus sequences are homologous to known immune-related genes. Pathways mapping annotate 56,270 unigenes and identify a large number of immune-related pathways. In addition, we focus on the immune-related genes and gene family in Toll-like receptor signaling pathway involved in innate immunity, including toll-like receptors (TLRs), interferon regulatory factors (IRFs), interleukins (ILs) and tumor necrosis factors (TNFs). Eventually, we identify 5 TLRs, 4 IRFs, 3 ILs and 2 TNFs with a completed coding sequence though mining the transcriptome data. Phylogeny analysis shows these genes of naked carp are mostly close to zebrafish. Protein domain and selection pressure analyses together show that all these genes are highly conserved in gene sequence and protein domain structure with other species, and purifying selection underwent in these genes, implied functionally important features are conserved in the genes above. Intriguingly, we detect positive selection signals in naked carp TLR4, and significant divergence occurred among tested species TLR4, suggested that naked carp TLR4 function may be affected. Finally, we identify 23,867 simple sequence repeat (SSR) marks in this transcriptome. Taken together, this study not only contributes a large number of candidate genes in naked carp

  7. Administration of DNA Encoding the Interleukin-27 Gene Augments Antitumour Responses through Non-adaptive Immunity.

    PubMed

    Li, Q; Sato, A; Shimozato, O; Shingyoji, M; Tada, Y; Tatsumi, K; Shimada, H; Hiroshima, K; Tagawa, M

    2015-10-01

    DNA-mediated immunization of a tumour antigen is a possible immunotherapy for cancer, and interleukin (IL)-27 has diverse functions in adaptive immunity. In this study, we examined whether IL-27 DNA administration enhanced antitumour effects in mice vaccinated with DNA encoding a putative tumour antigen, β-galactosidase (β-gal). An intramuscular injection of cardiotoxin before DNA administration facilitated the exogenous gene expression. In mice received β-gal and IL-27 DNA, growth of β-gal-positive P815 tumours was retarded and survival of the mice was prolonged. Development of β-gal-positive Colon 26 tumours was suppressed by vaccination of β-gal DNA and further inhibited by additional IL-27 DNA administration or IL-12 family cytokines. Nevertheless, a population of β-gal-specific CD8(+) T cells did not increase, and production of anti-β-gal antibody was not enhanced by IL-27 DNA administration. Spleen cells from mice bearing IL-27-expressing Colon 26 tumours showed greater YAC-1-targeted cytotoxicity although CD3(-)/DX5(+) natural killer (NK) cell numbers remained unchanged. Recombinant IL-27 enhanced YAC-1-targeted cytotoxicity of IL-2-primed splenic NK cells and augmented a phosphorylation of signal transducer and activator of transcription 3 and an expression of perforin. These data collectively indicate that IL-27 DNA administration activates NK cells and augments vaccination effects of DNA encoding a tumour antigen through non-adaptive immune responses. PMID:26095954

  8. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens.

    PubMed

    Zink, Steven D; Van Slyke, Greta A; Palumbo, Michael J; Kramer, Laura D; Ciota, Alexander T

    2015-10-01

    Complex interactions between microbial residents of mosquitoes and arboviruses are likely to influence many aspects of vectorial capacity and could potentially have profound effects on patterns of arbovirus transmission. Such interactions have not been well studied for West Nile virus (WNV; Flaviviridae, Flavivirus) and Culex spp. mosquitoes. We utilized next-generation sequencing of 16S ribosomal RNA bacterial genes derived from Culex pipiens Linnaeus following WNV exposure and/or infection and compared bacterial populations and broad immune responses to unexposed mosquitoes. Our results demonstrate that WNV infection increases the diversity of bacterial populations and is associated with up-regulation of classical invertebrate immune pathways including RNA interference (RNAi), Toll, and Jak-STAT (Janus kinase-Signal Transducer and Activator of Transcription). In addition, WNV exposure alone, without the establishment of infection, results in similar alterations to microbial and immune signatures, although to a lesser extent. Multiple bacterial genera were found in greater abundance inWNV-exposed and/or infected mosquitoes, yet the most consistent and notable was the genus Serratia. PMID:26516902

  9. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens

    PubMed Central

    Zink, Steven D.; Van Slyke, Greta A.; Palumbo, Michael J.; Kramer, Laura D.; Ciota, Alexander T.

    2015-01-01

    Complex interactions between microbial residents of mosquitoes and arboviruses are likely to influence many aspects of vectorial capacity and could potentially have profound effects on patterns of arbovirus transmission. Such interactions have not been well studied for West Nile virus (WNV; Flaviviridae, Flavivirus) and Culex spp. mosquitoes. We utilized next-generation sequencing of 16S ribosomal RNA bacterial genes derived from Culex pipiens Linnaeus following WNV exposure and/or infection and compared bacterial populations and broad immune responses to unexposed mosquitoes. Our results demonstrate that WNV infection increases the diversity of bacterial populations and is associated with up-regulation of classical invertebrate immune pathways including RNA interference (RNAi), Toll, and Jak-STAT (Janus kinase-Signal Transducer and Activator of Transcription). In addition, WNV exposure alone, without the establishment of infection, results in similar alterations to microbial and immune signatures, although to a lesser extent. Multiple bacterial genera were found in greater abundance in WNV-exposed and/or infected mosquitoes, yet the most consistent and notable was the genus Serratia. PMID:26516902

  10. Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis

    PubMed Central

    Assas, Bakri M.; Pennock, Joanne I.; Miyan, Jaleel A.

    2014-01-01

    The question of how the neural and immune systems interact in host defense is important, integrating a system that senses the whole body with one that protects. Understanding the mechanisms and routes of control could produce novel and powerful ways of promoting and enhancing normal functions as well as preventing or treating abnormal functions. Fragmentation of biological research into specialities has resulted in some failures in recognizing and understanding interactions across different systems and this is most striking across immunology, hematology, and neuroscience. This reductionist approach does not allow understanding of the in vivo orchestrated response generated through integration of all systems. However, many factors make the understanding of multisystem cross-talk in response to a threat difficult, for instance the nervous and immune systems share communication molecules and receptors for a wide range of physiological signals. But, it is clear that physical, hard-wired connections exist between the two systems, with the key link involving sensory, unmyelinated nerve fibers (c fibers) containing the neuropeptide calcitonin gene-related peptide (CGRP), and modified macrophages, mast cells and other immune and host defense cells in various locations throughout the body. In this review we will therefore focus on the induction of CGRP and its key role in the neuroimmune axis. PMID:24592205

  11. Characterization of two thymosins as immune-related genes in common carp (Cyprinus carpio L.).

    PubMed

    Xiao, Zhangang; Shen, Jing; Feng, Hong; Liu, Hong; Wang, Yaping; Huang, Rong; Guo, Qionglin

    2015-05-01

    Prothymosin alpha (ProTα) and thymosin beta (Tβ) belong to thymosin family, which consists of a series of highly conserved peptides involved in stimulating immune responses. ProTα b and Tβ are still poorly studied in teleost. Here, the full-length cDNAs of ProTα b and Tβ-like (Tβ-l) were cloned and identified in common carp (Cyprinus carpio L.). The expressions of carp ProTα b and Tβ-l exhibited rise-fall pattern and then trended to be stable during early development. After spring viraemia of carp virus (SVCV) infection, the carp ProTα b and Tβ-l transcripts were significantly up-regulated in some immune-related organs. When transiently over-expressed carp ProTα b and Tβ-l in zebrafish, these two proteins up-regulated the expressions of T lymphocytes-related genes (Rag 1, TCR-γ, CD4 and CD8α). These results suggest that carp ProTα b and Tβ may ultimately enhance the immune response during viral infection and modulate the development of T lymphocytes in teleost. PMID:25596145

  12. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti

    PubMed Central

    Bottino-Rojas, Vanessa; Talyuli, Octávio A. C.; Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George; Venancio, Thiago M.; Bahia, Ana C.; Sorgine, Marcos H.; Oliveira, Pedro L.; Paiva-Silva, Gabriela O.

    2015-01-01

    Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells. PMID:26275150

  13. Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti.

    PubMed

    Bottino-Rojas, Vanessa; Talyuli, Octávio A C; Jupatanakul, Natapong; Sim, Shuzhen; Dimopoulos, George; Venancio, Thiago M; Bahia, Ana C; Sorgine, Marcos H; Oliveira, Pedro L; Paiva-Silva, Gabriela O

    2015-01-01

    Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells.

  14. Transcriptome Analysis of the White Body of the Squid Euprymna tasmanica with Emphasis on Immune and Hematopoietic Gene Discovery

    PubMed Central

    Salazar, Karla A.; Joffe, Nina R.; Dinguirard, Nathalie; Houde, Peter; Castillo, Maria G.

    2015-01-01

    In the mutualistic relationship between the squid Euprymna tasmanica and the bioluminescent bacterium Vibrio fischeri, several host factors, including immune-related proteins, are known to interact and respond specifically and exclusively to the presence of the symbiont. In squid and octopus, the white body is considered to be an immune organ mainly due to the fact that blood cells, or hemocytes, are known to be present in high numbers and in different developmental stages. Hence, the white body has been described as the site of hematopoiesis in cephalopods. However, to our knowledge, there are no studies showing any molecular evidence of such functions. In this study, we performed a transcriptomic analysis of white body tissue of the Southern dumpling squid, E. tasmanica. Our primary goal was to gain insights into the functions of this tissue and to test for the presence of gene transcripts associated with hematopoietic and immune processes. Several hematopoiesis genes including CPSF1, GATA 2, TFIID, and FGFR2 were found to be expressed in the white body. In addition, transcripts associated with immune-related signal transduction pathways, such as the toll-like receptor/NF-κβ, and MAPK pathways were also found, as well as other immune genes previously identified in E. tasmanica’s sister species, E. scolopes. This study is the first to analyze an immune organ within cephalopods, and to provide gene expression data supporting the white body as a hematopoietic tissue. PMID:25775132

  15. Transcriptome analysis of the white body of the squid Euprymna tasmanica with emphasis on immune and hematopoietic gene discovery.

    PubMed

    Salazar, Karla A; Joffe, Nina R; Dinguirard, Nathalie; Houde, Peter; Castillo, Maria G

    2015-01-01

    In the mutualistic relationship between the squid Euprymna tasmanica and the bioluminescent bacterium Vibrio fischeri, several host factors, including immune-related proteins, are known to interact and respond specifically and exclusively to the presence of the symbiont. In squid and octopus, the white body is considered to be an immune organ mainly due to the fact that blood cells, or hemocytes, are known to be present in high numbers and in different developmental stages. Hence, the white body has been described as the site of hematopoiesis in cephalopods. However, to our knowledge, there are no studies showing any molecular evidence of such functions. In this study, we performed a transcriptomic analysis of white body tissue of the Southern dumpling squid, E. tasmanica. Our primary goal was to gain insights into the functions of this tissue and to test for the presence of gene transcripts associated with hematopoietic and immune processes. Several hematopoiesis genes including CPSF1, GATA 2, TFIID, and FGFR2 were found to be expressed in the white body. In addition, transcripts associated with immune-related signal transduction pathways, such as the toll-like receptor/NF-κβ, and MAPK pathways were also found, as well as other immune genes previously identified in E. tasmanica's sister species, E. scolopes. This study is the first to analyze an immune organ within cephalopods, and to provide gene expression data supporting the white body as a hematopoietic tissue.

  16. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees.

    PubMed

    Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin

    2015-01-01

    The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee's susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions.

  17. Comparative transcriptomics of stickleback immune gene responses upon infection by two helminth parasites, Diplostomum pseudospathaceum and Schistocephalus solidus.

    PubMed

    Haase, David; Rieger, Jenny K; Witten, Anika; Stoll, Monika; Bornberg-Bauer, Erich; Kalbe, Martin; Schmidt-Drewello, Alexander; Scharsack, Jörn P; Reusch, Thorsten B H

    2016-08-01

    Immune systems of vertebrates are much more diverse than previously thought, in particular at the base of the vertebrate clade. RNA-seq was used to describe in detail the transcriptomic response of stickleback hosts to infection by two helminth parasites, the trematode Diplostomum pseudospathaceum (2 genotypes plus a genotype mix) and the cestode Schistocephalus solidus. Based on a global transcription profiling, we present immune genes that are active during chronic or multiple repeated infection. We found that the transcription profiles of D. pseudospathaceum genotypes were as divergent as those of the two parasite species. When comparing the host immune response, only 5 immune genes were consistently upregulated upon infection by both species. These genes indicated a role for enhanced toll like receptor (TLR) activity (CTSK, CYP27B1) and an associated positive regulation of macrophages (CYP27B1, THBS1) for general helminth defense. We interpret the largely differentiated gene expression response among parasite species as general redundancy of the vertebrate immune system, which was also visible in genotype-specific responses among the different D. pseudospathaceum infections. The present study provides the first evidence that IL4-mediated activation of T-helper lymphocyte cells is also important in anti-helminthic immune responses of teleost fish.

  18. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination.

    PubMed

    Zimmermann, Michael T; Oberg, Ann L; Grill, Diane E; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A

    2016-01-01

    Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens. PMID:27031986

  19. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination.

    PubMed

    Zimmermann, Michael T; Oberg, Ann L; Grill, Diane E; Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Poland, Gregory A

    2016-01-01

    Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50-74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant's propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens.

  20. System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination

    PubMed Central

    Zimmermann, Michael T.; Oberg, Ann L.; Grill, Diane E.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Kennedy, Richard B.; Poland, Gregory A.

    2016-01-01

    Failure to achieve a protected state after influenza vaccination is poorly understood but occurs commonly among aged populations experiencing greater immunosenescence. In order to better understand immune response in the elderly, we studied epigenetic and transcriptomic profiles and humoral immune response outcomes in 50–74 year old healthy participants. Associations between DNA methylation and gene expression reveal a system-wide regulation of immune-relevant functions, likely playing a role in regulating a participant’s propensity to respond to vaccination. Our findings show that sites of methylation regulation associated with humoral response to vaccination impact known cellular differentiation signaling and antigen presentation pathways. We performed our analysis using per-site and regionally average methylation levels, in addition to continuous or dichotomized outcome measures. The genes and molecular functions implicated by each analysis were compared, highlighting different aspects of the biologic mechanisms of immune response affected by differential methylation. Both cis-acting (within the gene or promoter) and trans-acting (enhancers and transcription factor binding sites) sites show significant associations with measures of humoral immunity. Specifically, we identified a group of CpGs that, when coordinately hypo-methylated, are associated with lower humoral immune response, and methylated with higher response. Additionally, CpGs that individually predict humoral immune responses are enriched for polycomb-group and FOXP2 transcription factor binding sites. The most robust associations implicate differential methylation affecting gene expression levels of genes with known roles in immunity (e.g. HLA-B and HLA-DQB2) and immunosenescence. We believe our data and analysis strategy highlight new and interesting epigenetic trends affecting humoral response to vaccination against influenza; one of the most common and impactful viral pathogens. PMID:27031986

  1. Gene expression profiling of coelomic cells and discovery of immune-related genes in the earthworm, Eisenia andrei, using expressed sequence tags.

    PubMed

    Tak, Eun Sik; Cho, Sung-Jin; Park, Soon Cheol

    2015-01-01

    The coelomic cells of the earthworm consist of leukocytes, chlorogocytes, and coelomocytes, which play an important role in innate immunity reactions. To gain insight into the expression profiles of coelomic cells of the earthworm, Eisenia andrei, we analyzed 1151 expressed sequence tags (ESTs) derived from the cDNA library of the coelomic cells. Among the 1151 ESTs analyzed, 493 ESTs (42.8%) showed a significant similarity to known genes and represented 164 unique genes, of which 93 ESTs were singletons and 71 ESTs manifested as two or more ESTs. From the 164 unique genes sequenced, we found 24 immune-related and cell defense genes. Furthermore, real-time PCR analysis showed that levels of lysenin-related proteins mRNA in coelomic cells of E. andrei were upregulated after the injection of Bacillus subtilis bacteria. This EST data-set would provide a valuable resource for future researches of earthworm immune system.

  2. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene.

    PubMed

    Fang, Qi; Wang, Lei; Zhu, Yangkeng; Stanley, David W; Chen, Xuexin; Hu, Cui; Ye, Gongyin

    2011-11-01

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we report on a newly discovered immune-disabling mechanism in the Pieris rapae/Pteromalus puparum host/parasitoid system. Because venom injections and parasitization suppresses host phagocytosis, we turned attention to the P. rapae scavenger receptor (Pr-SR), posing the hypothesis that P. puparum venom suppresses expression of the host Pr-SR gene. To test our hypothesis, we cloned a full-length cDNA of the Pr-SR. Multiple sequences alignment showed the deduced amino acid sequence of Pr-SR is similar to scavenger receptors of other lepidopterans. Bacterial and bead injections induced Pr-SR mRNA and protein expression, which peaked at 4h post-bead injection. Venom injection inhibited Pr-SR expression. Pr-SR was specifically expressed in granulocytes compared to plasmatocytes. We localized the Pr-SR protein in cytoplasm and cellular membrane, with no evidence of secretion into host plasma. Double-strand RNA designed to Pr-SR mRNA silenced expression of Pr-SR and significantly impaired host phagocytosis and encapsulation reactions. Venom injections similarly silenced Pr-SR expression during the first 8h post-treatment, after which the silencing effects gradually abated. We infer from these findings that one mechanism of impairing P. rapae hemocytic immune reactions is by silencing expression of Pr-SR.

  3. Expression of Immune-Related Genes during Loach (Misgurnus anguillicaudatus) Embryonic and Early Larval Development

    PubMed Central

    Lee, Jang Wook; Kim, Jung Eun; Goo, In Bon; Hwang, Ju-Ae; Im, Jea Hyun; Choi, Hye-Sung; Lee, Jeong-Ho

    2015-01-01

    Early life stage mortality in fish is one of the problems faced by loach aquaculture. However, our understanding of immune system in early life stage fish is still incomplete, and the information available is restricted to a few fish species. In the present work, we investigated the expression of immune-related transcripts in loach during early development. In fishes, recombination-activating gene 1 (RAG-1) and sacsin (SACS) have been considered as immunological function. In this study, the expression of the both genes was assessed throughout the early developmental stages of loach using real-time PCR method. maRAG-1 mRNA was first detected in 0 dph, observed the increased mostly until 40 dph. Significant expression of maRAG-1 was detected in 0 to 40 dph. These patterns of expression may suggest that the loach start to develop its function after hatching. On the other hand, maSACS was detected in unfertilized oocyte to molura stages and 0 to 40 dph. maSACS mRNA transcripts were detected in unfertilized oocytes, suggesting that they are maternally transferred. PMID:26973969

  4. Transportin-SR Is Required for Proper Splicing of Resistance Genes and Plant Immunity

    PubMed Central

    Xu, Shaohua; Zhang, Zhibin; Jing, Beibei; Gannon, Patrick; Ding, Jinmei; Xu, Fang; Li, Xin; Zhang, Yuelin

    2011-01-01

    Transportin-SR (TRN-SR) is a member of the importin-β super-family that functions as the nuclear import receptor for serine-arginine rich (SR) proteins, which play diverse roles in RNA metabolism. Here we report the identification and cloning of mos14 (modifier of snc1-1, 14), a mutation that suppresses the immune responses conditioned by the auto-activated Resistance (R) protein snc1 (suppressor of npr1-1, constitutive 1). MOS14 encodes a nuclear protein with high similarity to previously characterized TRN-SR proteins in animals. Yeast two-hybrid assays showed that MOS14 interacts with AtRAN1 via its N-terminus and SR proteins via its C-terminus. In mos14-1, localization of several SR proteins to the nucleus was impaired, confirming that MOS14 functions as a TRN-SR. The mos14-1 mutation results in altered splicing patterns of SNC1 and another R gene RPS4 and compromised resistance mediated by snc1 and RPS4, suggesting that nuclear import of SR proteins by MOS14 is required for proper splicing of these two R genes and is important for their functions in plant immunity. PMID:21738492

  5. Identification, gene expression and immune function of the novel Bm-STAT gene in virus-infected Bombyx mori.

    PubMed

    Zhang, Xiaoli; Guo, Rui; Kumar, Dhiraj; Ma, Huanyan; Liu, Jiabin; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2016-02-10

    Genes in the signal transducer and activator of transcription (STAT) family are vital for activities including gene expression and immune response. To investigate the functions of the silkworm Bombyx mori STAT (Bm-STAT) gene in antiviral immunity, two Bm-STAT gene isoforms, Bm-STAT-L for long form and Bm-STAT-S for short form, were cloned. Sequencing showed that the open reading frames were 2313 bp encoding 770 amino acid residues for Bm-STAT-L and 2202 bp encoding 734 amino acid residues for Bm-STAT-S. The C-terminal 42 amino acid residues of Bm-STAT-L were different from the last 7 amino acid residues of Bm-STAT-S. Immunofluorescence showed that Bm-STAT was primarily distributed in the nucleus. Transcription levels of Bm-STAT in different tissues were determined by quantitative PCR, and the results revealed Bm-STAT was mainly expressed in testes. Western blots showed two bands with molecular weights of 70 kDa and 130 kDa in testes, but no bands were detected in ovaries by using anti-Bm-STAT antibody as the primary antibody. Expression of Bm-STAT in hemolymph at 48 h post infection with B. mori macula-like virus (BmMLV) was slightly enhanced compared with controls, suggesting a weak response induced by infection with BmMLV. Hemocyte immunofluorescence showed that Bm-STAT expression was elevated in B. mori nucleopolyhedrovirus (BmNPV)-infected cells. Moreover, resistance of BmN cells to BmNPV was reduced by downregulation of Bm-STAT expression and increased by upregulation. Resistance of BmN cells to BmCPV was not significantly improved by upregulating Bm-STAT expression. Therefore, we concluded that Bm-STAT is a newly identified insect gene of the STAT family. The JAK-STAT pathway has a more specialized role in antiviral defense in silkworms, but JAK-STAT pathway is not triggered in response to all viruses. PMID:26592694

  6. Identification of Immune Related LRR-Containing Genes in Maize (Zea mays L.) by Genome-Wide Sequence Analysis

    PubMed Central

    Song, Wei; Wang, Baoqiang; Li, Xinghua; Wei, Jianfen; Chen, Ling; Zhang, Dongmin; Zhang, Wenying; Li, Ronggai

    2015-01-01

    A large number of immune receptors consist of nucleotide binding site-leucine rich repeat (NBS-LRR) proteins and leucine rich repeat-receptor-like kinases (LRR-RLK) that play a crucial role in plant disease resistance. Although many NBS-LRR genes have been previously identified in Zea mays, there are no reports on identifying NBS-LRR genes encoded in the N-terminal Toll/interleukin-1 receptor (TIR) motif and identifying genome-wide LRR-RLK genes. In the present study, 151 NBS-LRR genes and 226 LRR-RLK genes were identified after performing bioinformatics analysis of the entire maize genome. Of these identified genes, 64 NBS-LRR genes and four TIR-NBS-LRR genes were identified for the first time. The NBS-LRR genes are unevenly distributed on each chromosome with gene clusters located at the distal end of each chromosome, while LRR-RLK genes have a random chromosomal distribution with more paired genes. Additionally, six LRR-RLK/RLPs including FLS2, PSY1R, PSKR1, BIR1, SERK3, and Cf5 were characterized in Zea mays for the first time. Their predicted amino acid sequences have similar protein structures with their respective homologues in other plants, indicating that these maize LRR-RLK/RLPs have the same functions as their homologues act as immune receptors. The identified gene sequences would assist in the study of their functions in maize. PMID:26609518

  7. Regulation of Lipid Specific and Vitamin Specific Non-MHC Restricted T Cells by Antigen Presenting Cells and Their Therapeutic Potentials

    PubMed Central

    Salio, Mariolina; Cerundolo, Vincenzo

    2015-01-01

    Since initial reports, more than 25 years ago, that T cells recognize lipids in the context on non-polymorphic CD1 molecules, our understanding of antigen presentation to non-peptide-specific T cell populations has deepened. It is now clear that αβ T cells bearing semi-invariant T cell receptor, as well as subsets of γδ T cells, recognize a variety of self and non-self lipids and contribute to shaping immune responses via cross talk with dendritic cells and B cells. Furthermore, it has been demonstrated that small molecules derived from the microbial riboflavin biosynthetic pathway (vitamin B2) bind monomorphic MR1 molecules and activate mucosal-associated invariant T cells, another population of semi-invariant T cells. Novel insights in the biological relevance of non-peptide-specific T cells have emerged with the development of tetrameric CD1 and MR1 molecules, which has allowed accurate enumeration and functional analysis of CD1- and MR1-restricted T cells in humans and discovery of novel populations of semi-invariant T cells. The phenotype and function of non-peptide-specific T cells will be discussed in the context of the known distribution of CD1 and MR1 molecules by different subsets of antigen-presenting cells at steady state and following infection. Concurrent modulation of CD1 transcription and lipid biosynthetic pathways upon TLR stimulation, coupled with efficient lipid antigen processing, result in the increased cell surface expression of antigenic CD1–lipid complexes. Similarly, MR1 expression is almost undetectable in resting APC and it is upregulated following bacterial infection, likely due to stabilization of MR1 molecules by microbial antigens. The tight regulation of CD1 and MR1 expression at steady state and during infection may represent an important mechanism to limit autoreactivity, while promoting T cell responses to foreign antigens. PMID:26284072

  8. Immune response genes and pathogen presence predict migration survival in wild salmon smolts.

    PubMed

    Jeffries, Ken M; Hinch, Scott G; Gale, Marika Kirstin; Clark, Timothy D; Lotto, Andrew G; Casselman, Matthew T; Li, Shaorong; Rechisky, Erin L; Porter, Aswea D; Welch, David W; Miller, Kristina M

    2014-12-01

    We present the first data to link physiological responses and pathogen presence with subsequent fate during migration of wild salmonid smolts. We tagged and non-lethally sampled gill tissue from sockeye salmon (Oncorhynchus nerka) smolts as they left their nursery lake (Chilko Lake, BC, Canada) to compare gene expression profiles and freshwater pathogen loads with migration success over the first ~1150 km of their migration to the North Pacific Ocean using acoustic telemetry. Fifteen per cent of smolts were never detected again after release, and these fish had gene expression profiles consistent with an immune response to one or more viral pathogens compared with fish that survived their freshwater migration. Among the significantly upregulated genes of the fish that were never detected postrelease were MX (interferon-induced GTP-binding protein Mx) and STAT1 (signal transducer and activator of transcription 1-alpha/beta), which are characteristic of a type I interferon response to viral pathogens. The most commonly detected pathogen in the smolts leaving the nursery lake was infectious haematopoietic necrosis virus (IHNV). Collectively, these data show that some of the fish assumed to have died after leaving the nursery lake appeared to be responding to one or more viral pathogens and had elevated stress levels that could have contributed to some of the mortality shortly after release. We present the first evidence that changes in gene expression may be predictive of some of the freshwater migration mortality in wild salmonid smolts. PMID:25354752

  9. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  10. Haplotype Structure and Expression Divergence at the Drosophila Cellular Immune Gene eater

    PubMed Central

    Juneja, Punita; Lazzaro, Brian P.

    2010-01-01

    The protein Eater plays an important role in microbial recognition and defensive phagocytosis in Drosophila melanogaster. We sequenced multiple alleles of the eater gene from an African and a North American population of D. melanogaster and found signatures of a partial selective sweep in North America that is localized around the second intron. This pattern is consistent with local adaptation to novel selective pressures during range expansion out of Africa. The North American sample is divided into two predominant haplotype groups, and the putatively selected haplotype is associated with a significantly higher gene expression level, suggesting that gene regulation is a possible target of selection. The eater alleles contain from 22 to 40 repeat units that are characterized by the presence of a cysteine-rich NIM motif. NIM repeats in the structural stalk of the protein exhibit concerted evolution as a function of physical location in the repeat array. Several NIM repeats within eater have previously been implicated in binding to microbial ligands, a function which in principle might subject them to special evolutionary pressures. However, we find no evidence of elevated positive selection on these pathogen-interacting units. Our study presents an instance where gene expression rather than protein structure is thought to drive the adaptive evolution of a pathogen recognition molecule in the immune system. PMID:20444883

  11. Immune response genes and pathogen presence predict migration survival in wild salmon smolts.

    PubMed

    Jeffries, Ken M; Hinch, Scott G; Gale, Marika Kirstin; Clark, Timothy D; Lotto, Andrew G; Casselman, Matthew T; Li, Shaorong; Rechisky, Erin L; Porter, Aswea D; Welch, David W; Miller, Kristina M

    2014-12-01

    We present the first data to link physiological responses and pathogen presence with subsequent fate during migration of wild salmonid smolts. We tagged and non-lethally sampled gill tissue from sockeye salmon (Oncorhynchus nerka) smolts as they left their nursery lake (Chilko Lake, BC, Canada) to compare gene expression profiles and freshwater pathogen loads with migration success over the first ~1150 km of their migration to the North Pacific Ocean using acoustic telemetry. Fifteen per cent of smolts were never detected again after release, and these fish had gene expression profiles consistent with an immune response to one or more viral pathogens compared with fish that survived their freshwater migration. Among the significantly upregulated genes of the fish that were never detected postrelease were MX (interferon-induced GTP-binding protein Mx) and STAT1 (signal transducer and activator of transcription 1-alpha/beta), which are characteristic of a type I interferon response to viral pathogens. The most commonly detected pathogen in the smolts leaving the nursery lake was infectious haematopoietic necrosis virus (IHNV). Collectively, these data show that some of the fish assumed to have died after leaving the nursery lake appeared to be responding to one or more viral pathogens and had elevated stress levels that could have contributed to some of the mortality shortly after release. We present the first evidence that changes in gene expression may be predictive of some of the freshwater migration mortality in wild salmonid smolts.

  12. Echinoderm immunity.

    PubMed

    Smith, L Courtney; Ghosh, Julie; Buckley, Katherine M; Clow, Lori A; Dheilly, Nolwenn M; Haug, Tor; Henson, John H; Li, Chun; Lun, Cheng Man; Majeske, Audrey J; Matranga, Valeria; Nair, Sham V; Rast, Jonathan P; Raftos, David A; Roth, Mattias; Sacchi, Sandro; Schrankel, Catherine S; Stensvåg, Klara

    2010-01-01

    A survey for immune genes in the genome for the purple sea urchin has shown that the immune system is complex and sophisticated. By inference, immune responses of all echinoderms maybe similar. The immune system is mediated by several types of coelomocytes that are also useful as sensors of environmental stresses. There are a number of large gene families in the purple sea urchin genome that function in immunity and of which at least one appears to employ novel approaches for sequence diversification. Echinoderms have a simpler complement system, a large set of lectin genes and a number of antimicrobial peptides. Profiling the immune genes expressed by coelomocytes and the proteins in the coelomic fluid provide detailed information about immune functions in the sea urchin. The importance of echinoderms in maintaining marine ecosystem stability and the disastrous effects of their removal due to disease will require future collaborations between ecologists and immunologists working towards understanding and preserving marine habitats. PMID:21528703

  13. Evaluation of ToxA and Vibrio parahaemolyticus lysate on humoral immune response and immune-related genes in Pacific red snapper.

    PubMed

    Reyes-Becerril, Martha; Maldonado-García, Minerva; Guluarte, Crystal; León-Gallo, Amalia; Rosales-Mendoza, Sergio; Ascencio, Felipe; Hirono, Ikuo; Angulo, Carlos

    2016-09-01

    Immunogenicity of ToxA and Vibrio parahaemolyticus lysate was evaluated in a double immunostimulation scheme in Pacific red snapper after V. parahaemolyticus infection. Three groups of Pacific red snapper were intraperitonealy (i.p.) injected with phosphate-buffered saline (PBS group), ToxA of V. parahaemolyticus (ToxA-Vp group) or V. parahaemolyticus lysate (lysate-Vp group) (first injection, day 1; second injection, day 7). Fish were subsequently infected with live V. parahaemolyticus. Humoral immune parameters in skin mucus and serum were evaluated on days 1, 7, 8 and 14 days post-immunostimulation and 7 days post-infection. Moreover expression of immune-related genes was quantified by real time PCR in head-kidney leukocytes, spleen, liver, and intestine. The ToxA-Vp-treated group showed a higher anti-protease and catalase activity in skin mucus when compared with the PBS group. Measurements of SOD and CAT activities showed an increment in both activities a day after the second boost with ToxA-Vp or lysate-Vp. Interestingly, IgM levels in mucus and transcripts were enhanced followed the ToxA-Vp treatment even after challenge. Furthermore, IL-1β was strongly expressed in all analyzed cell or tissues followed ToxA-Vp or Vp-lysate treatments. Finally, SOD and CAT gene expression was up-regulated in fish immunostimulated with either treatment ToxA-Vp or lysate-Vp, mainly after infection in head-kidney leukocytes and intestine. This is the first study where the effects of ToxA from V. parahaemolyticus in the immune system of Pacific red snapper was evaluated. These results suggest that ToxA-Vp would positively affect humoral immune response and up-regulate expression of genes involved in the immune system function; and could help in the control of V. parahaemolyticus infection in Pacific red snapper Lutjanus peru, an economic important fish in Mexico.

  14. Evaluation of ToxA and Vibrio parahaemolyticus lysate on humoral immune response and immune-related genes in Pacific red snapper.

    PubMed

    Reyes-Becerril, Martha; Maldonado-García, Minerva; Guluarte, Crystal; León-Gallo, Amalia; Rosales-Mendoza, Sergio; Ascencio, Felipe; Hirono, Ikuo; Angulo, Carlos

    2016-09-01

    Immunogenicity of ToxA and Vibrio parahaemolyticus lysate was evaluated in a double immunostimulation scheme in Pacific red snapper after V. parahaemolyticus infection. Three groups of Pacific red snapper were intraperitonealy (i.p.) injected with phosphate-buffered saline (PBS group), ToxA of V. parahaemolyticus (ToxA-Vp group) or V. parahaemolyticus lysate (lysate-Vp group) (first injection, day 1; second injection, day 7). Fish were subsequently infected with live V. parahaemolyticus. Humoral immune parameters in skin mucus and serum were evaluated on days 1, 7, 8 and 14 days post-immunostimulation and 7 days post-infection. Moreover expression of immune-related genes was quantified by real time PCR in head-kidney leukocytes, spleen, liver, and intestine. The ToxA-Vp-treated group showed a higher anti-protease and catalase activity in skin mucus when compared with the PBS group. Measurements of SOD and CAT activities showed an increment in both activities a day after the second boost with ToxA-Vp or lysate-Vp. Interestingly, IgM levels in mucus and transcripts were enhanced followed the ToxA-Vp treatment even after challenge. Furthermore, IL-1β was strongly expressed in all analyzed cell or tissues followed ToxA-Vp or Vp-lysate treatments. Finally, SOD and CAT gene expression was up-regulated in fish immunostimulated with either treatment ToxA-Vp or lysate-Vp, mainly after infection in head-kidney leukocytes and intestine. This is the first study where the effects of ToxA from V. parahaemolyticus in the immune system of Pacific red snapper was evaluated. These results suggest that ToxA-Vp would positively affect humoral immune response and up-regulate expression of genes involved in the immune system function; and could help in the control of V. parahaemolyticus infection in Pacific red snapper Lutjanus peru, an economic important fish in Mexico. PMID:27417232

  15. Analysis of immune gene expression modulated by benzo[a]pyrene in head kidney of olive flounder (Paralichthys olivaceus).

    PubMed

    Hur, Deokhwe; Jeon, Joong-Kyun; Hong, Suhee

    2013-05-01

    Poly aromatic hydrocarbons (PAHs) are known to cause functional disorder of fish immune responses. Alteration of inflammatory cytokines and other immune gene expressions by PAHs in immune organs may play a pivotal role in immunotoxicity. Thus this study aimed to elucidate the immunotoxic mechanism of PAH using benzo[a]pyrene (BaP) by analyzing the gene expression of cytokines (IL-1β, TNFα, IL-6, IL-8, IFNγ, Mx), apoptosis (FasL, SOD) and other immune related substances (Lysozyme, IgM) in head kidney and macrophage in olive flounder. In Q-PCR analysis, proinflammatory cytokine (IL-1β, IL-6, IL-8, TNFα) gene expressions were significantly upregulated by BaP while Mx and IgM gene expressions were significantly downregulated in head kidney by a longer exposure to BaP in vivo and in vitro. Lysozyme gene expression was initially upregulated but later downregulated in head kidney in vivo and in vitro. Inhibition test revealed that TNFα gene expression was upregulated by BaP via the AHR pathway as blocked by ANF while IL-6 and IFNγ gene expressions were upregulated by a calcium dependent pathway (i.e. NFAT) as blocked by EGTA. In primary macrophage cells, only IL-8 gene expression was significantly upregulated among proinflammatory cytokines while IFNγ, lysozyme and IgM gene expressions were downregulated by BaP. FasL and SOD expressions were not altered in head kidney cells but significantly upregulated in macrophage cells, indicating apoptosis and oxidative stress. These results indicate that exposure to BaP causes the downregulation of immune response by triggering the death of macrophage cells, the reduction of effectors like IgM and lysozyme, and the decrease of macrophage cell activity.

  16. Transcriptome analysis of immune response genes induced by pathogen agonists in the Antarctic bullhead notothen Notothenia coriiceps.

    PubMed

    Ahn, Do-Hwan; Kang, Seunghyun; Park, Hyun

    2016-08-01

    Fish are a representative population of lower vertebrates that serve as an essential link to early vertebrate evolution, and this has fueled academic interest in studying ancient vertebrate immune defense mechanisms in teleosts. Notothenia coriiceps, a typical Antarctic notothenioid teleost, has evolved to adapt to the cold and thermally stable Antarctic sea. In this study, we examined adaptive signaling pathways and immune responses to bacterial and viral pathogenic exposure in N. coriiceps. Using RNA sequencing, we investigated transcriptional differences in the liver tissues of N. coriiceps challenged with two pathogen-mimicking agonists, a bacterial ligand (heat-killed Escherichia coli, HKEB) and a viral ligand (polyinosinic:polycytidylic acid, Poly I:C). We found that 567 unique genes were up-regulated two-fold in the HKEB-exposed group, whereas 392 unique genes, including 124 immune-relevant genes, were up-regulated two-fold in the Poly I:C-exposed group. A KEGG pathway analysis of the 124 immune-relevant genes revealed that they exhibited major features of antigen processing and presentation bacterial ligand exposure, but they were down-regulated after viral ligand exposure. A quantitative real time RT-PCR analysis revealed that TNFα and TNF2, major inducers of apoptosis, were highly up-regulated after exposure to the viral ligand but not the bacterial ligand. The results suggest that the bacterial and viral ligands up-regulate inducers of different immune mechanisms in N. coriiceps liver tissue. N. coriiceps has an immune response defense strategy that uses antigen presentation against bacterial infection, but it may use a different defense, such as TNF-mediated apoptosis, against viral infection. The specific immune responses of N. coriiceps may be adaptations to the Antarctic environment and pathogens. These results will help define the characteristics of Antarctic fish and increase our understanding of their immune response mechanisms.

  17. Ontology based molecular signatures for immune cell types via gene expression analysis

    PubMed Central

    2013-01-01

    Background New technologies are focusing on characterizing cell types to better understand their heterogeneity. With large volumes of cellular data being generated, innovative methods are needed to structure the resulting data analyses. Here, we describe an ‘Ontologically BAsed Molecular Signature’ (OBAMS) method that identifies novel cellular biomarkers and infers biological functions as characteristics of particular cell types. This method finds molecular signatures for immune cell types based on mapping biological samples to the Cell Ontology (CL) and navigating the space of all possible pairwise comparisons between cell types to find genes whose expression is core to a particular cell type’s identity. Results We illustrate this ontological approach by evaluating expression data available from the Immunological Genome project (IGP) to identify unique biomarkers of mature B cell subtypes. We find that using OBAMS, candidate biomarkers can be identified at every strata of cellular identity from broad classifications to very granular. Furthermore, we show that Gene Ontology can be used to cluster cell types by shared biological processes in order to find candidate genes responsible for somatic hypermutation in germinal center B cells. Moreover, through in silico experiments based on this approach, we have identified genes sets that represent genes overexpressed in germinal center B cells and identify genes uniquely expressed in these B cells compared to other B cell types. Conclusions This work demonstrates the utility of incorporating structured ontological knowledge into biological data analysis – providing a new method for defining novel biomarkers and providing an opportunity for new biological insights. PMID:24004649

  18. De Novo Assembly of the Japanese Flounder (Paralichthys olivaceus) Spleen Transcriptome to Identify Putative Genes Involved in Immunity

    PubMed Central

    Huang, Lin; Li, Guiyang; Mo, Zhaolan; Xiao, Peng; Li, Jie; Huang, Jie

    2015-01-01

    Background Japanese flounder (Paralichthys olivaceus) is an economically important marine fish in Asia and has suffered from disease outbreaks caused by various pathogens, which requires more information for immune relevant genes on genome background. However, genomic and transcriptomic data for Japanese flounder remain scarce, which limits studies on the immune system of this species. In this study, we characterized the Japanese flounder spleen transcriptome using an Illumina paired-end sequencing platform to identify putative genes involved in immunity. Methodology/Principal Findings A cDNA library from the spleen of P. olivaceus was constructed and randomly sequenced using an Illumina technique. The removal of low quality reads generated 12,196,968 trimmed reads, which assembled into 96,627 unigenes. A total of 21,391 unigenes (22.14%) were annotated in the NCBI Nr database, and only 1.1% of the BLASTx top-hits matched P. olivaceus protein sequences. Approximately 12,503 (58.45%) unigenes were categorized into three Gene Ontology groups, 19,547 (91.38%) were classified into 26 Cluster of Orthologous Groups, and 10,649 (49.78%) were assigned to six Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, 40,928 putative simple sequence repeats and 47, 362 putative single nucleotide polymorphisms were identified. Importantly, we identified 1,563 putative immune-associated unigenes that mapped to 15 immune signaling pathways. Conclusions/Significance The P. olivaceus transciptome data provides a rich source to discover and identify new genes, and the immune-relevant sequences identified here will facilitate our understanding of the mechanisms involved in the immune response. Furthermore, the plentiful potential SSRs and SNPs found in this study are important resources with respect to future development of a linkage map or marker assisted breeding programs for the flounder. PMID:25723398

  19. Human Leukocyte Antigen and Cytokine Receptor Gene Polymorphisms Associated With Heterogeneous Immune Responses to Mumps Viral Vaccine

    PubMed Central

    Ovsyannikova, Inna G.; Jacobson, Robert M.; Dhiman, Neelam; Vierkant, Robert A.; Pankratz, V. Shane; Poland, Gregory A.

    2009-01-01

    OBJECTIVES Mumps outbreaks continue to occur throughout the world, including in highly vaccinated populations. Vaccination against mumps has been successful; however, humoral and cellular immune responses to mumps vaccines vary significantly from person to person. We set out to assess whether HLA and cytokine gene polymorphisms are associated with variations in the immune response to mumps viral vaccine. METHODS To identify genetic factors that might contribute to variations in mumps vaccine–induced immune responses, we performed HLA genotyping in a group of 346 healthy schoolchildren (12–18 years of age) who previously received 2 doses of live mumps vaccine. Single-nucleotide polymorphisms (minor allele frequency of >5%) in cytokine and cytokine receptor genes were genotyped for a subset of 118 children. RESULTS Median values for mumps-specific antibody titers and lymphoproliferative stimulation indices were 729 IU/mL and 4.8, respectively. Girls demonstrated significantly higher mumps antibody titers than boys, indicating gender-linked genetic differences in humoral immune response. Significant associations were found between the HLA-DQB1*0303 alleles and lower mumps-specific antibody titers. An interesting finding was the association of several HLA class II alleles with mumps-specific lymphoproliferation. Alleles of the DRB1 (*0101, *0301, *0801, *1001, *1201, and *1302), DQA1 (*0101, *0105, *0401, and *0501), and DQB1 (*0201, *0402, and *0501) loci were associated with significant variations in lymphoproliferative immune responses to mumps vaccine. Additional associations were observed with single-nucleotide polymorphisms in the interleukin-10RA, interleukin-12RB1, and interleukin-12RB2 cytokine receptor genes. Minor alleles for 4 single-nucleotide polymorphisms within interleukin-10RA and interleukin-12RB genes were associated with variations in humoral and cellular immune responses to mumps vaccination. CONCLUSIONS These data suggest the important role of

  20. Systems Biology Analysis of Gene Expression during In Vivo Mycobacterium avium paratuberculosis Enteric Colonization Reveals Role for Immune Tolerance

    PubMed Central

    Khare, Sangeeta; Lawhon, Sara D.; Drake, Kenneth L.; Nunes, Jairo E. S.; Figueiredo, Josely F.; Rossetti, Carlos A.; Gull, Tamara; Everts, Robin E.; Lewin, Harris A.; Galindo, Cristi L.; Garner, Harold R.; Adams, Leslie Garry

    2012-01-01

    Survival and persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in the intestinal mucosa is associated with host immune tolerance. However, the initial events during MAP interaction with its host that lead to pathogen survival, granulomatous inflammation, and clinical disease progression are poorly defined. We hypothesize that immune tolerance is initiated upon initial contact of MAP with the intestinal Peyer's patch. To test our hypothesis, ligated ileal loops in neonatal calves were infected with MAP. Intestinal tissue RNAs were collected (0.5, 1, 2, 4, 8 and 12 hrs post-infection), processed, and hybridized to bovine gene expression microarrays. By comparing the gene transcription responses of calves infected with the MAP, informative complex patterns of expression were clearly visible. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis, and genes were grouped into the specific pathways and gene ontology categories to create a holistic model. This model revealed three different phases of responses: i) early (30 min and 1 hr post-infection), ii) intermediate (2, 4 and 8 hrs post-infection), and iii) late (12 hrs post-infection). We describe here the data that include expression profiles for perturbed pathways, as well as, mechanistic genes (genes predicted to have regulatory influence) that are associated with immune tolerance. In the Early Phase of MAP infection, multiple pathways were initiated in response to MAP invasion via receptor mediated endocytosis and changes in intestinal permeability. During the Intermediate Phase, perturbed pathways involved the inflammatory responses, cytokine-cytokine receptor interaction, and cell-cell signaling. During the Late Phase of infection, gene responses associated with immune tolerance were initiated at the level of T-cell signaling. Our study provides evidence that MAP infection resulted in differentially regulated genes, perturbed pathways

  1. Immune gene expression in the spleen of chickens experimentally infected with Ascaridia galli.

    PubMed

    Dalgaard, Tina S; Skovgaard, Kerstin; Norup, Liselotte R; Pleidrup, Janne; Permin, Anders; Schou, Torben W; Vadekær, Dorte F; Jungersen, Gregers; Juul-Madsen, Helle R

    2015-03-15

    Ascaridia galli is a gastrointestinal nematode infecting chickens. Chickens kept in alternative rearing systems or at free-range experience increased risk for infection with resulting high prevalences. A. galli infection causes reduced weight gain, decreased egg production and in severe cases increased mortality. More importantly, the parasitised chickens are more susceptible to secondary infections and their ability to develop vaccine-induced protective immunity against other diseases may be compromised. Detailed information about the immune response to the natural infection may be exploited to enable future vaccine development. In the present study, expression of immune genes in the chicken spleen during an experimental infection with A. galli was investigated using the Fluidigm(®) BioMark™ microfluidic qPCR platform which combines automatic high-throughput with attractive low sample and reagent consumption. Spleenic transcription of immunological genes was compared between infected chickens and non-infected controls at week 2, 6, and 9 p.i. corresponding to different stages of parasite development/maturation. At week 2 p.i. increased expression of IL-13 was observed in infected chickens. Increased expression of MBL, CRP, IFN-α, IL-1β, IL-8, IL-12β and IL-18 followed at week 6 p.i. and at both week 6 and 9 p.i. expression of DEFβ1 was highly increased in infected chickens. In summary, apart from also earlier reported increased expression of the Th2 signature cytokine IL-13 we observed only few differentially expressed genes at week 2 p.i. which corresponds to the larvae histotrophic phase. In contrast, we observed increased expression of pro-inflammatory cytokines and acute phase proteins in infected chickens, by week 6 p.i. where the larvae re-enter the intestinal lumen. Increased expression of DEFβ1 was observed in infected chickens at week 6 p.i. but also at week 9 p.i. which corresponds to a matured stage where adult worms are present in the

  2. Molecular characterization and immune response expression of the QM gene from the scallop Chlamys farreri.

    PubMed

    Chen, Guofu; Zhang, Chunyun; Wang, Yue; Wang, Yuanyuan; Guo, Changlu; Wang, Chongming

    2015-08-01

    The scallop Chlamys farreri is an important aquaculture species in northern China. However, the sustainable development of the scallop industry is currently threatened by several pathogens that cause mass mortality of this mollusk. Therefore, a complete understanding of the immune response mechanisms involved in host-virus interactions is necessary. This study reports a novel QM gene from C. farreri. This gene was first identified as a putative tumor suppressor gene from human and then confirmed to participate in several functions, including immune response. The QM gene from C. farreri (CfQM) was identified by suppression subtractive hybridization, and its full-length (763 bp) cDNA was obtained through rapid amplification of cDNA ends. The cDNA of CfQM contained a short 5'-UTR of 22 bp and a 3'-UTR of 84 bp. Its ORF comprised 657 nucleotides that encode 218 amino acids with a molecular weight of approximately 28.3 kDa and an isoelectric point of 10.06. The deduced amino acid sequence of CfQM contained a series of conserved functional motifs that belong to the QM family. Phylogenetic analysis revealed that CfQM was closely related to other mollusk QM proteins, and altogether they form a mollusk QM protein subfamily that displays evolutionary conservation from yeast to human. The tissue-specific expression and transcriptional regulation of CfQM were investigated by quantitative real-time PCR in response to bacterial (Vibrio anguillarum) and viral (acute viral necrobiotic virus) challenges. The transcript level of CfQM was high in all of the examined tissues in a constitutive manner. The highest and lowest expression levels of CfQM were measured in the hepatopancreas and hemocyte, respectively. Upon bacterial and viral challenges, the relative mRNA expression of CfQM sharply increased at 6 h post-infection (hpi) and then normalized at 48 hpi. These findings suggest that CfQM can respond to and protect against pathogen challenge. To the best of our knowledge, this

  3. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera

    PubMed Central

    Mao, Wenfu; Schuler, Mary A.; Berenbaum, May R.

    2013-01-01

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses. PMID:23630255

  4. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses.

  5. Immunosenescence is associated with altered gene expression and epigenetic regulation in primary and secondary immune organs

    PubMed Central

    Sidler, Corinne; Wóycicki, Rafał; Ilnytskyy, Yaroslav; Metz, Gerlinde; Kovalchuk, Igor; Kovalchuk, Olga

    2013-01-01

    Deterioration of the immune system (immunosenescence) with age is associated with an increased susceptibility to infection, autoimmune disease and cancer, and reduced responsiveness to vaccination. Immunosenescence entails a reduced supply of naïve T cells from the thymus and increased specialization of peripheral T cell clones. Both thymic involution and peripheral T cell homeostasis are thought to involve cellular senescence. In order to analyze this at the molecular level, we studied gene expression profiles, epigenetic status, and genome stability in the thymus and spleen of 1-, 4-, and 18-month-old Long Evans rats. In the thymus, altered gene expression, DNA and histone H3K9 hypomethylation, increased genome instability, and apoptosis were observed in 18-month-old animals compared to 1- and 4-month-old animals. In the spleen, alterations in gene expression and epigenetic regulation occurred already by the age of 4 months compared to 1 month and persisted in 18-month-old compared to 1-month-old rats. In both organs, these changes were accompanied by the altered composition of resident T cell populations. Our study suggests that both senescence and apoptosis may be involved in altered organ function. PMID:24151501

  6. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera.

    PubMed

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2013-05-28

    As a managed pollinator, the honey bee Apis mellifera is critical to the American agricultural enterprise. Recent colony losses have thus raised concerns; possible explanations for bee decline include nutritional deficiencies and exposures to pesticides and pathogens. We determined that constituents found in honey, including p-coumaric acid, pinocembrin, and pinobanksin 5-methyl ether, specifically induce detoxification genes. These inducers are primarily found not in nectar but in pollen in the case of p-coumaric acid (a monomer of sporopollenin, the principal constituent of pollen cell walls) and propolis, a resinous material gathered and processed by bees to line wax cells. RNA-seq analysis (massively parallel RNA sequencing) revealed that p-coumaric acid specifically up-regulates all classes of detoxification genes as well as select antimicrobial peptide genes. This up-regulation has functional significance in that that adding p-coumaric acid to a diet of sucrose increases midgut metabolism of coumaphos, a widely used in-hive acaricide, by ∼60%. As a major component of pollen grains, p-coumaric acid is ubiquitous in the natural diet of honey bees and may function as a nutraceutical regulating immune and detoxification processes. The widespread apicultural use of honey substitutes, including high-fructose corn syrup, may thus compromise the ability of honey bees to cope with pesticides and pathogens and contribute to colony losses. PMID:23630255

  7. Venom of Parasitoid, Pteromalus puparum, Suppresses Host, Pieris rapae, Immune Promotion by Decreasing Host C-Type Lectin Gene Expression

    PubMed Central

    Fang, Qi; Wang, Fei; Gatehouse, John A.; Gatehouse, Angharad M. R.; Chen, Xue-xin; Hu, Cui; Ye, Gong-yin

    2011-01-01

    Background Insect hosts have evolved immunity against invasion by parasitoids, and in co-evolutionary response parasitoids have also developed strategies to overcome host immune systems. The mechanisms through which parasitoid venoms disrupt the promotion of host immunity are still unclear. We report here a new mechanism evolved by parasitoid Pteromalus puparum, whose venom inhibited the promotion of immunity in its host Pieris rapae (cabbage white butterfly). Methodology/Principal Findings A full-length cDNA encoding a C-type lectin (Pr-CTL) was isolated from P. rapae. Quantitative PCR and immunoblotting showed that injection of bacterial and inert beads induced expression of Pr-CTL, with peaks of mRNA and Pr-CTL protein levels at 4 and 8 h post beads challenge, respectively. In contrast, parasitoid venom suppressed Pr-CTL expression when co-injected with beads, in a time and dose-dependent manner. Immunolocalization and immunoblotting results showed that Pr-CTL was first detectable in vesicles present in cytoplasm of granulocytes in host hemolymph, and was then secreted from cells into circulatory fluid. Finally, the secreted Pr-CTL bound to cellular membranes of both granulocytes and plasmatocytes. Injection of double-stranded RNA specific for target gene decreased expression of Pr-CTL, and a few other host immune-related genes. Suppression of Pr-CTL expression also down-regulated antimicrobial and phenoloxidase activities, and reducing phagocytotic and encapsulation rates in host. The inhibitory effect of parasitoid venom on host encapsulation is consistent with its effect in suppressing Pr-CTL expression. Binding assay results showed that recombinant Pr-CTL directly attached to the surface of P. puparum egges. We infer that Pr-CTL may serve as an immune signalling co-effector, first binding to parasitoid eggs, regulating expression of a set of immune-related genes and promoting host immunity. Conclusions/Significance P. puparum venom inhibits promotion of host

  8. Expression of immune-related genes in larval stages of the giant tiger shrimp, Penaeus monodon.

    PubMed

    Jiravanichpaisal, Pikul; Puanglarp, Narongsak; Petkon, Sasithon; Donnuea, Seri; Söderhäll, Irene; Söderhäll, Kenneth

    2007-10-01

    Shrimp undergo several morphologically different stages during development and therefore the expression of some immune-related genes such as prophenoloxidase (proPO), peroxinectin (Prx), crustin (Crus), penaeidin (Pen), transglutaminase (TGase), haemocyanin (Hc) and astakine (Ak) were determined during larval development of the shrimp (Penaeus monodon), i.e. nauplius 4 (N4), protozoea 1 and 3 (Z1 and 3), mysis 3 (My 3), post-larvae 3 (PL3) and also in haemocytes of juveniles. Semi-quantitative RT-PCR analysis showed that all transcripts were already present in the early larval stage of N4 but at different levels. The transcript of proPO was found to be extremely low or even absent at N4, whereas Prx, Crus, Pen, TGase, Hc and Ak were significantly expressed at all larval stages. Up to now expression of proPO and Prx has only been reported from haemocytes in crustaceans and in this study Prx also appeared to be expressed in stages which appear to lack haemocytes. Thus, this may suggest that Prx is expressed in other cells than haemocytes. It is well known among invertebrates that the proPO system plays a crucial role as an immune effector molecule against microbes. However, in this study, the transcript of proPO was low during the larval stages and hardly present at all at N4. This might indicate that the development of immune-competent haemocytes during the larval stages is not completed and as a consequence they are likely to be more susceptible to infectious diseases during these stages.

  9. Immunization with the cysteine proteinase Ldccys1 gene from Leishmania (Leishmania) chagasi and the recombinant Ldccys1 protein elicits protective immune responses in a murine model of visceral leishmaniasis.

    PubMed

    Ferreira, Josie Haydée L; Gentil, Luciana Girotto; Dias, Suzana Souza; Fedeli, Carlos Eduardo C; Katz, Simone; Barbiéri, Clara Lúcia

    2008-01-30

    The gene Ldccys1 encoding a cysteine proteinase of 30 kDa from Leishmania (Leishmania) chagasi, as well as the recombinant cysteine proteinase rLdccys1, obtained by cloning and expression of the Ldccys1 gene in the pHIS vector, were used to evaluate their ability to induce immune protective responses in BALB/c mice against L. (L.) chagasi infection. Mice were immunized subcutaneously with rLdccys1 plus Bacille Calmette Guerin (BCG) or Propionibacterium acnes as adjuvants or intramuscularly with a plasmid carrying the Ldccys1 gene (Ldccys1/pcDNA3) and CpG ODN as the adjuvant, followed by a booster with rLdccys1 plus CpG ODN. Two weeks after immunization the animals were challenged with 1 x 10(7) amastigotes of L. (L.) chagasi. Both immunization protocols induced significant protection against L. (L.) chagasi infection as shown by a very low parasite load in the spleen of immunized mice compared to the non-immunized controls. However, DNA immunization was 10-fold more protective than immunization with the recombinant protein. Whereas rLdccys1 induced a significant secretion of IFN-gamma and nitric oxide (NO), animals immunized with the Ldccys1 gene increased the production of IgG2a antibodies, IFN-gamma and NO. These results indicated that protection triggered by the two immunization protocols was correlated to a predominant Th1 response.

  10. Expression profiling analysis of immune-related genes in channel catfish (Ictalurus punctatus) skin mucus following Flavobacterium columnare challenge.

    PubMed

    Ren, Yichao; Zhao, Honggang; Su, Baofeng; Peatman, Eric; Li, Chao

    2015-10-01

    Fish are covered by a watery gel-mucus, mainly secreted by the goblet cells, serving as the physical and biochemical barrier between the external environment and the interior milieu, playing more important roles in fish that without scale. Despite the important roles of mucus in fish immunity, the knowledge of detailed molecular events happened during infection process is still limited. While most studies were focused on characterizing the protein and enzyme activities in the mucus following challenge, no studies have examined the gene expression profiles in fish mucus. In this regard, herein we carried out the first gene profiling analysis in catfish mucus using real-time PCR. Ten important immune-related genes were selected according to our previous studies. Their expression levels were examined in the early timepoints (namely, 1 h, 2 h, 4 h, 8 h, and 24 h) following Flavobacterium columnare challenge. Notably, expression levels of most of the selected genes were rapidly altered by the challenge. Seven genes were down-regulated, while only three genes were up-regulated. In addition, the gene expression patterns in mucus were very different from the mucosal surfaces (skin, gill and intestine) and the classical immune organs (liver, spleen and kidney). The unique expression patterns obtained here may be resulted from the great advantage of the large amount of attached bacteria in the mucus than the internal tissues, and resulted from the bacteria virulent actors to suppress the host immune response. Taken together, our results can expand our knowledge of fish mucosal immunity, and the un-lethal mucus sampling can provide early insight for developing the strategies for selection of disease resistant families and strains in catfish as well as other fish species. PMID:26220643

  11. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells

    PubMed Central

    Vellasamy, Kumutha Malar; Mariappan, Vanitha; Shankar, Esaki M.; Vadivelu, Jamuna

    2016-01-01

    Background Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. Methods We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). Results We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. Conclusion Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections. PMID:27367858

  12. Widespread seasonal gene expression reveals annual differences in human immunity and physiology

    PubMed Central

    Dopico, Xaquin Castro; Evangelou, Marina; Ferreira, Ricardo C.; Guo, Hui; Pekalski, Marcin L.; Smyth, Deborah J.; Cooper, Nicholas; Burren, Oliver S.; Fulford, Anthony J.; Hennig, Branwen J.; Prentice, Andrew M.; Ziegler, Anette-G.; Bonifacio, Ezio; Wallace, Chris; Todd, John A.

    2015-01-01

    Seasonal variations are rarely considered a contributing component to human tissue function or health, although many diseases and physiological process display annual periodicities. Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue to have seasonal expression profiles, with inverted patterns observed between Europe and Oceania. We also find the cellular composition of blood to vary by season, and these changes, which differ between the United Kingdom and The Gambia, could explain the gene expression periodicity. With regards to tissue function, the immune system has a profound pro-inflammatory transcriptomic profile during European winter, with increased levels of soluble IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require further exploration as contributors to various aspects of human physiology and disease. PMID:25965853

  13. Effects of perfluorooctane sulfonate on the immune responses and expression of immune-related genes in Chinese mitten-handed crab Eriocheir sinensis.

    PubMed

    Zhang, Fan; Wei, Jianjun; Li, Qi; Jiang, Runlan; Yu, Na; Qin, Jianguang; Chen, Liqiao

    2015-01-01

    Perfluorooctane sulfonate (PFOS) has been widely studied due to its global distribution, slow degradation, high bioaccumulation and toxicological effects on vertebrates. However, the potential toxicity of PFOS to crustaceans is little known. The present study investigated the effects of PFOS on the immune responses and expression of immune-related genes in the Chinese mitten-handed crab Eriocheir sinensis. Crabs were exposed to 0, 0.01, 0.1, 1.0 and 10mg/L of PFOS, and sampled on 1, 4, 7, 14 and 21days respectively. The total hemocyte count and lysozyme activity in PFOS-treated crab were significantly lower than in the control. The exposure to 10mg/L of PFOS led to a marked inhibition in phenoloxidase and superoxide dismutase activities. At other PFOS levels, phenoloxidase and superoxide dismutase showed an initial increase and a subsequent decrease over time. The alkaline and acid phosphatase activities were stimulated in 10mg/L PFOS until 21days. The mRNA expression of immune related genes including hepatopancreas-specific C-type lectin and prophenoloxidase activating factors were up-regulated after the exposure to the concentrations of 1 and 10mg/L of PFOS, while the expression of lysozyme gene was up-regulated only in the crab exposed to 0.1mg/L PFOS. The results demonstrate that the high dose of PFOS leads to immune toxicity and the hepatopancreas is a major target organ for PFOS accumulation and immunotoxicity. Hemocyte counts, phenoloxidase and acid phosphatase are useful biomarkers for the risk assessment of PFOS toxicity to crustaceans.

  14. Finding immune gene expression differences induced by marine bacterial pathogens in the Deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    NASA Astrophysics Data System (ADS)

    Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.

    2013-11-01

    The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterised by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio bacteria. Flavobacterium suspensions were also used as a non-pathogenic bacterium. Gene expression analyses were carried out using gill samples from infected animals by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h to 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the bacterium inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly evident for proteins of 18-20 KDa molecular mass, where most dissimilarity was found. Multivariate analyses demonstrated that immune genes, as well as experimental

  15. Finding immune gene expression differences induced by marine bacterial pathogens in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    NASA Astrophysics Data System (ADS)

    Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.

    2013-02-01

    The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterized by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio strains. Flavobacterium suspensions were also used as an irrelevant bacterium. Gene expression analyses were carried out using gill samples from animals dissected at 12 h and 24 h post-infection times by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h and 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the microorganism species inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly around a protein area, of 18 KDa molecular mass, where most dissimilarities were found. Multivariate analyses

  16. Expression analysis of immune related genes identified from the coelomocytes of sea cucumber (Apostichopus japonicus) in response to LPS challenge.

    PubMed

    Dong, Ying; Sun, Hongjuan; Zhou, Zunchun; Yang, Aifu; Chen, Zhong; Guan, Xiaoyan; Gao, Shan; Wang, Bai; Jiang, Bei; Jiang, Jingwei

    2014-01-01

    The sea cucumber (Apostichopus japonicus) occupies a basal position during the evolution of deuterostomes and is also an important aquaculture species. In order to identify more immune effectors, transcriptome sequencing of A. japonicus coelomocytes in response to lipopolysaccharide (LPS) challenge was performed using the Illumina HiSeq™ 2000 platform. One hundred and seven differentially expressed genes were selected and divided into four functional categories including pathogen recognition (25 genes), reorganization of cytoskeleton (27 genes), inflammation (41 genes) and apoptosis (14 genes). They were analyzed to elucidate the mechanisms of host-pathogen interactions and downstream signaling transduction. Quantitative real-time polymerase chain reactions (qRT-PCRs) of 10 representative genes validated the accuracy and reliability of RNA sequencing results with the correlation coefficients from 0.88 to 0.98 and p-value <0.05. Expression analysis of immune-related genes after LPS challenge will be useful in understanding the immune response mechanisms of A. japonicus against pathogen invasion and developing strategies for resistant markers selection.

  17. Expression Analysis of Immune Related Genes Identified from the Coelomocytes of Sea Cucumber (Apostichopus japonicus) in Response to LPS Challenge

    PubMed Central

    Dong, Ying; Sun, Hongjuan; Zhou, Zunchun; Yang, Aifu; Chen, Zhong; Guan, Xiaoyan; Gao, Shan; Wang, Bai; Jiang, Bei; Jiang, Jingwei

    2014-01-01

    The sea cucumber (Apostichopus japonicus) occupies a basal position during the evolution of deuterostomes and is also an important aquaculture species. In order to identify more immune effectors, transcriptome sequencing of A. japonicus coelomocytes in response to lipopolysaccharide (LPS) challenge was performed using the Illumina HiSeq™ 2000 platform. One hundred and seven differentially expressed genes were selected and divided into four functional categories including pathogen recognition (25 genes), reorganization of cytoskeleton (27 genes), inflammation (41 genes) and apoptosis (14 genes). They were analyzed to elucidate the mechanisms of host-pathogen interactions and downstream signaling transduction. Quantitative real-time polymerase chain reactions (qRT-PCRs) of 10 representative genes validated the accuracy and reliability of RNA sequencing results with the correlation coefficients from 0.88 to 0.98 and p-value <0.05. Expression analysis of immune-related genes after LPS challenge will be useful in understanding the immune response mechanisms of A. japonicus against pathogen invasion and developing strategies for resistant markers selection. PMID:25421239

  18. TLR agonist–Stat3 siRNA conjugates: cell-specific gene silencing and enhanced antitumor immune responses

    PubMed Central

    Kortylewski, Marcin; Swiderski, Piotr; Herrmann, Andreas; Wang, Lin; Kowolik, Claudia; Kujawski, Maciej; Lee, Heehyoung; Scuto, Anna; Liu, Yong; Yang, Chunmei; Deng, Jiehui; Soifer, Harris S.; Raubitschek, Andrew; Forman, Stephen; Rossi, John J.; Pardoll, Drew M.; Jove, Richard; Yu, Hua

    2010-01-01

    Efficient delivery of siRNA to specific cell populations in vivo remains a formidable challenge to its successful therapeutic application. We describe a novel siRNA-based approach – synthetically linking siRNA to an oligonucleotide TLR9 agonist – that targets and silences genes in TLR9+ myeloid cells and B cells, both of which are key components of the tumor microenvironment. Because Stat3 in tumor-associated immune cells suppresses antitumor immune responses and hinders TLR9-induced immune stimulation, we tested CpG-Stat3siRNA conjugates for anti-tumor effects. When injected locally at the tumor site or systemically through an intravenous route, the CpG-Stat3siRNA conjugates access tumor-associated dendritic cells, macrophages and B cells, inhibit Stat3 expression, leading to activation of tumor-associated immune cells, and ultimately potent anti-tumor immune responses. Our findings demonstrate the potential of TLR agonist-siRNA conjugates for targeted gene silencing coupled with TLR stimulation and immune activation in the tumor microenvironment. PMID:19749770

  19. Gene Therapy for Mucopolysaccharidosis Type VI Is Effective in Cats Without Pre-Existing Immunity to AAV8

    PubMed Central

    Ferla, Rita; O'Malley, Thomas; Calcedo, Roberto; O'Donnell, Patricia; Wang, Ping; Cotugno, Gabriella; Claudiani, Pamela; Wilson, James M.; Haskins, Mark

    2013-01-01

    Abstract Liver gene transfer with adeno-associated viral (AAV) 2/8 vectors is being considered for therapy of systemic diseases like mucopolysaccharidosis type VI (MPS VI), a lysosomal storage disease due to deficiency of arylsulfatase B (ARSB). We have previously reported that liver gene transfer with AAV2/8 results in sustained yet variable expression of ARSB. We hypothesized that the variability we observed could be due to pre-existing immunity to wild-type AAV8. To test this, we compared the levels of AAV2/8-mediated transduction in MPS VI cats with and without pre-existing immunity to AAV8. In addition, since levels of lysosomal enzymes as low as 5% of normal are expected to be therapeutic, we evaluated the impact of pre-existing immunity on MPS VI phenotypic rescue. AAV2/8 administration to MPS VI cats without pre-existing neutralizing antibodies to AAV8 resulted in consistent and dose-dependent expression of ARSB, urinary glycosaminoglycan (GAG) reduction, and femur length amelioration. Conversely, animals with pre-existing immunity to AAV8 showed low levels of ARSB expression and limited phenotypic improvement. Our data support the use of AAV2/8-mediated gene transfer for MPS VI and other systemic diseases, and highlight that pre-existing immunity to AAV8 should be considered in determining subject eligibility for therapy. PMID:23194248

  20. Multi-species protein similarity clustering reveals novel expanded immune gene families in the eastern oyster Crassostrea virginica.

    PubMed

    McDowell, Ian C; Modak, Tejashree H; Lane, Chris E; Gomez-Chiarri, Marta

    2016-06-01

    Comparative genomics research in non-model species has highlighted how invertebrate hosts possess complex diversified repertoires of immune molecules. The levels of diversification in particular immune gene families appear to differ between invertebrate lineages and even between species within lineages, reflecting differences not only in evolutionary histories, but also in life histories, environmental niches, and pathogen exposures. The goal of this research was to identify immune-related gene families experiencing high levels of diversification in eastern oysters, Crassostrea virginica. Families containing 1) transcripts differentially expressed in eastern oysters in response to bacterial challenge and 2) a larger number of transcripts compared to other species included those coding for the C1q and C-type lectin domain containing proteins (C1qDC and CTLDC), GTPase of the immune-associated proteins (GIMAP), scavenger receptors (SR), fibrinogen-C domain containing proteins (also known as FREPs), dopamine beta-hydrolase (DBH), interferon-inducible 44 (IFI44), serine protease inhibitors, apextrin, and dermatopontin. Phylogenetic analysis of two of the families significantly expanded in bivalves, IFI44 and GIMAP, showed a patchy distribution within both protostomes and deuterostomes, suggesting multiple independent losses and lineage-specific expansions. Increased availability of genomic information for a broader range of non-model species broadly distributed through vertebrate and invertebrate phyla will likely lead to improved knowledge on mechanisms of immune-gene diversification. PMID:27033806

  1. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum

    PubMed Central

    2010-01-01

    Background The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids are widely used as biological control agents in sustainable agricultural programs. Females of the gregarious endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae) inject venom along with eggs into their hosts. P. puparum does not inject polydnaviruses during oviposition. For this reason, P. puparum and its pupal host, the small white butterfly Pieris rapae (Lepidoptera: Pieridae), comprise an excellent model system for studying the influence of an endoparasitoid venom on the biology of the pupal host. P. puparum venom suppresses the immunity of its host, although the suppressive mechanisms are not fully understood. In this study, we tested our hypothesis that P. puparum venom influences host gene expression in the two main immunity-conferring tissues, hemocytes and fat body. Results At 1 h post-venom injection, we recorded significant decreases in transcript levels of 217 EST clones (revealing 113 genes identified in silico, including 62 unknown contigs) derived from forward subtractive libraries of host hemocytes and in transcript levels of 288 EST clones (221 genes identified in silico, including 123 unknown contigs) from libraries of host fat body. These genes are related to insect immune response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, stress response and transcriptional and translational regulation. We verified the reliability of the suppression subtractive hybridization (SSH) data with semi-quantitative RT-PCR analysis of a set of randomly selected genes. This analysis showed that most of the selected genes were down-regulated after venom injection. Conclusions Our findings support our hypothesis that P. puparum venom influences gene expression in host hemocytes and fat body. Specifically, the venom treatments led

  2. [Fusion expression of O type foot-and-mouth diseases virus VP1 gene and HSP70 gene and induction of immune responses in mice].

    PubMed

    Su, Chun-Xia; Duan, Xiang-Guo; Wang, Xiu-Qing; Ren, Xue-Feng; Cao, Rui-Bing; Zhou, Bin; Chen, Pu-Yan

    2006-09-01

    Vp1 gene of O type foot-and-mouth diseases virus and M. tuberculosis HSP70 were expressed in methylotrophic yeast Pichia pastoris expression system. The results of cellular immune responses and humoral immune response were examined after BALB/c mice were immunized with fusion protein expressed in methylotrophic yeast Pichia pastoris. The genes was cloned into the vector pPICZalpha-A by routine molecular technique. The plasmid fusion (pPICZalphaA-vp1-HSP70) was created that HSP70 located downstream of VP1 gene of O type foot-and-mouth disease virus. Vp1 was expressed by fusing to the amino terminus of M. tuberculosis hsp70 in yeast Pichia pastoris. The recombined fusion plasmid was transformed into methylotrophic yeast Pichia pastoris X-33 by electrophoration. The recombinant transformants were selected by Zeocin and induced by the addition of methanol every 24h. The expressived product analyzed by SDS-PAGE and Western blotting. The result indicated that the fusion protein(vp1-HSP70) has specific antigenicity. Mice were inoculated transcutaneous three times at a two-weeks interval with fusion protein, PBS and conventional inactivated vaccines. To evaluate the prophylaxtic efficacy of fusion protein, Titers of antibodies was detected by ELISA and proliferation of lymphocytes were determined by MTT. The results indicated that fusion protein could elicit specific humoral immune and cellular immune responses. Compared with conventional inactivated vaccines, fusion protein elicited slightly lower FMDV antibody level but stronger T cell proliferation.

  3. Identification of Immunity-Related Genes in Dialeurodes citri against Entomopathogenic Fungus Lecanicillium attenuatum by RNA-Seq Analysis

    PubMed Central

    Yu, Shijiang; Ding, Lili; Luo, Ren; Li, Xiaojiao; Yang, Juan; Liu, Haoqiang; Cong, Lin; Ran, Chun

    2016-01-01

    Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri. PMID:27644092

  4. Identification of Immunity-Related Genes in Dialeurodes citri against Entomopathogenic Fungus Lecanicillium attenuatum by RNA-Seq Analysis.

    PubMed

    Yu, Shijiang; Ding, Lili; Luo, Ren; Li, Xiaojiao; Yang, Juan; Liu, Haoqiang; Cong, Lin; Ran, Chun

    2016-01-01

    Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri. PMID:27644092

  5. Associations between Single Nucleotide Polymorphisms and Haplotypes in Cytokine and Cytokine Receptor Genes and Immunity to Measles Vaccination

    PubMed Central

    Haralambieva, Iana H.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Vierkant, Robert A.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2011-01-01

    Identification of host genetic determinants of measles vaccine-induced immunity can be used to design better vaccines and ultimately predict immune responses to vaccination. We performed a comprehensive candidate gene association study across 801 genetic markers in 56 cytokine/cytokine receptor genes, in a racially diverse cohort of 745 schoolchildren after two doses of MMR vaccine. Using linear regression methodologies we examined associations between SNPs/haplotypes and measles virus-specific immunity. Forty-eight significant SNP associations with variations in neutralizing antibodies and measles-specific IFNγ Elispot responses were identified (p<0.05). Our study replicated an important previously found association of a functional IL12B genetic variant rs3212227 with variations in measles-specific humoral immunity (p=0.037). Similarly, two previously reported promoter IL10 and IL2 polymorphisms (rs1800890 and rs2069762) demonstrated associations with measles-specific cellular immunity in Caucasians (p≤0.034). Multiple IL7R polymorphisms, including a non-synonymous functional SNP (rs6897932/Thr244Ile), were associated with humoral (p≤0.024) and/or cellular (IFNγ Elispot, p≤0.023) measles-specific immune responses in Caucasians, but not African-Americans. Haplotype level analysis confirmed the association of IL7R genetic variants with measles vaccine-induced immunity in the Caucasian group (global p-value=0.003). Our results validate previous findings and identify new plausible genetic determinants, including IL7R polymorphisms, regulating measles vaccine-induced immunity in a race-specific manner. PMID:21875636

  6. Targeted Deletion of Regions Rich in Immune-Evasive Genes from the Cytomegalovirus Genome as a Novel Vaccine Strategy▿

    PubMed Central

    Čičin-Šain, Luka; Bubić, Ivan; Schnee, Margit; Ruzsics, Zsolt; Mohr, Christian; Jonjić, Stipan; Koszinowski, Ulrich H.

    2007-01-01

    Human cytomegalovirus (CMV), a ubiquitous human pathogen, is a leading cause of congenital infections and represents a serious health risk for the immunosuppressed patient. A vaccine against CMV is currently not available. CMV is characterized by its large genome and by multiple genes modulating the immunity of the host, which cluster predominantly at genome termini. Here, we tested whether the deletion of gene blocks rich in immunomodulatory genes could be used as a novel concept in the generation of immunogenic but avirulent, herpesvirus vaccines. To generate an experimental CMV vaccine, we selectively deleted 32 genes from the mouse cytomegalovirus (MCMV) genome. The resulting mutant grew to titers similar to that of wild-type MCMV in vitro. In vivo, the mutant was 10,000-fold attenuated and well tolerated, even by highly susceptible mice deficient for B, T, and NK cells or for the interferon type I receptor. Equally relevant for safety concerns, immune suppression did not lead to the mutant's reactivation from latency. Immunization with the replication-competent mutant, but not with inactivated virus, resulted in protective immunity, which increased over time. Vaccination induced MCMV-specific antibodies and a strong T-cell response. We propose that a targeted and rational approach can improve future herpesvirus vaccines and vaccine vectors. PMID:17913824

  7. Comparative assessment of the pig, mouse, and human genomes: A structural and functional analysis of genes involved in immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed analysis was conducted on portions of the porcine, murine, and human genome associated with the immune response. It was found that non-protein coding RNA/DNA that potentially interact and regulate gene expression, nucleotide similarity, isochore type, and the similarity of 5’ and 3’ UTR ...

  8. SNP discovery and development of genetic markers for mapping immune response genes in common carp (Cyprinus carpio)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphisms (SNPs) in immune response genes have been reported as markers for susceptibility to infectious diseases in human and livestock. A disease caused by cyprinid herpesvirus 3 (CyHV-3) is highly contagious and virulent in common carp (Cyprinus carpio). With the aim to de...

  9. Overwintering Is Associated with Reduced Expression of Immune Genes and Higher Susceptibility to Virus Infection in Honey Bees

    PubMed Central

    Steinmann, Nadja; Corona, Miguel; Neumann, Peter; Dainat, Benjamin

    2015-01-01

    The eusocial honey bee, Apis mellifera, has evolved remarkable abilities to survive extreme seasonal differences in temperature and availability of resources by dividing the worker caste into two groups that differ in physiology and lifespan: summer and winter bees. Most of the recent major losses of managed honey bee colonies occur during the winter, suggesting that winter bees may have compromised immune function and higher susceptibility to diseases. We tested this hypothesis by comparing the expression of eight immune genes and naturally occurring infection levels of deformed wing virus (DWV), one of the most widespread viruses in A. mellifera populations, between summer and winter bees. Possible interactions between immune response and physiological activity were tested by measuring the expression of vitellogenin and methyl farnesoate epoxidase, a gene coding for the last enzyme involved in juvenile hormone biosynthesis. Our data show that high DWV loads in winter bees correlate with reduced expression of genes involved in the cellular immune response and physiological activity and high expression of humoral immune genes involved in antibacterial defense compared with summer bees. This expression pattern could reflect evolutionary adaptations to resist bacterial pathogens and economize energy during the winter under a pathogen landscape with reduced risk of pathogenic viral infections. The outbreak of Varroa destructor infestation could have overcome these adaptations by promoting the transmission of viruses. Our results suggest that reduced cellular immune function during the winter may have increased honey bee’s susceptibility to DWV. These results contribute to our understanding of honey bee colony losses in temperate regions. PMID:26121358

  10. Caste-specific expression patterns of immune response and chemosensory related genes in the leaf-cutting ant, Atta vollenweideri.

    PubMed

    Koch, Sarah I; Groh, Katrin; Vogel, Heiko; Hansson, Bill S; Hannson, Bill S; Kleineidam, Christoph J; Grosse-Wilde, Ewald

    2013-01-01

    Leaf-cutting ants are evolutionary derived social insects with elaborated division of labor and tremendous colony sizes with millions of workers. Their social organization is mainly based on olfactory communication using different pheromones and is promoted by a pronounced size-polymorphism of workers that perform different tasks within the colony. The size polymorphism and associated behaviors are correlated to distinct antennal lobe (AL) phenotypes. Two worker phenotypes differ in number of olfactory glomeruli in the AL and the presence or absence of an extremely large glomerulus (macroglomerulus), involved in trail-pheromone reception. The males' AL contains three macroglomeruli which are presumably involved in detection of sex-pheromone components. We investigated the antennal transcriptome data of all major castes (males, queens and workers) and two worker subcastes (large and tiny workers). In order to identify putative odorant receptor genes involved in pheromone detection, we identified differentially expressed odorant receptor genes (OR-genes) using custom microarrays. In total, we found 185 OR-gene fragments that are clearly related to ORs and we identified orthologs for 70 OR-genes. Among them one OR-gene differs in relative expression between the two worker subcastes by a factor of >3 and thus is a very promising candidate gene for the trail-pheromone receptor. Using the relative expression of OR-genes in males versus queens, we identified 2 candidates for sex-pheromone receptor genes in males. In addition, we identified genes from all other chemosensory related gene families (13 chemosensory protein genes, 8 odorant binding protein genes, 2 sensory-neuron membrane protein genes, 7 ionotropic receptor genes, 2 gustatory receptor genes), and we found ant-specific expansions in the chemosensory protein gene family. In addition, a large number of genes involved in immune defense exhibited differential expression across the three different castes, and some

  11. Caste-Specific Expression Patterns of Immune Response and Chemosensory Related Genes in the Leaf-Cutting Ant, Atta vollenweideri

    PubMed Central

    Koch, Sarah I.; Groh, Katrin; Vogel, Heiko; Hannson, Bill S.; Kleineidam, Christoph J.; Grosse-Wilde, Ewald

    2013-01-01

    Leaf-cutting ants are evolutionary derived social insects with elaborated division of labor and tremendous colony sizes with millions of workers. Their social organization is mainly based on olfactory communication using different pheromones and is promoted by a pronounced size-polymorphism of workers that perform different tasks within the colony. The size polymorphism and associated behaviors are correlated to distinct antennal lobe (AL) phenotypes. Two worker phenotypes differ in number of olfactory glomeruli in the AL and the presence or absence of an extremely large glomerulus (macroglomerulus), involved in trail-pheromone reception. The males' AL contains three macroglomeruli which are presumably involved in detection of sex-pheromone components. We investigated the antennal transcriptome data of all major castes (males, queens and workers) and two worker subcastes (large and tiny workers). In order to identify putative odorant receptor genes involved in pheromone detection, we identified differentially expressed odorant receptor genes (OR-genes) using custom microarrays. In total, we found 185 OR-gene fragments that are clearly related to ORs and we identified orthologs for 70 OR-genes. Among them one OR-gene differs in relative expression between the two worker subcastes by a factor of >3 and thus is a very promising candidate gene for the trail-pheromone receptor. Using the relative expression of OR-genes in males versus queens, we identified 2 candidates for sex-pheromone receptor genes in males. In addition, we identified genes from all other chemosensory related gene families (13 chemosensory protein genes, 8 odorant binding protein genes, 2 sensory-neuron membrane protein genes, 7 ionotropic receptor genes, 2 gustatory receptor genes), and we found ant-specific expansions in the chemosensory protein gene family. In addition, a large number of genes involved in immune defense exhibited differential expression across the three different castes, and some

  12. The full-of-bacteria gene is required for phagosome maturation during immune defense in Drosophila

    PubMed Central

    Akbar, Mohammed Ali; Tracy, Charles; Kahr, Walter H.A.

    2011-01-01

    Arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome is a fatal recessive disorder caused by mutations in the VPS33B or VPS16B genes. Both encode homologues of the Vps33p and Vps16p subunits of the HOPS complex necessary for fusions of vacuoles in yeast. Here, we describe a mutation in the full-of-bacteria (fob) gene, which encodes Drosophila Vps16B. Flies null for fob are homozygous viable and fertile. They exhibit, however, a defect in their immune defense that renders them hypersensitive to infections with nonpathogenic bacteria. fob hemocytes (fly macrophages) engulf bacteria but fail to digest them. Phagosomes undergo early steps of maturation and transition to a Rab7-positive stage, but do not mature to fully acidified phagolysosomes. This reflects a specific requirement of fob in the fusion of phagosomes with late endosomes/lysosomes. In contrast, cargo of autophagosomes as well as endosomes exhibit normal lysosomal delivery in fob cells. These findings suggest that defects in phagosome maturation may contribute to symptoms of ARC patients including recurring infections. PMID:21282466

  13. Diversity and evolutionary patterns of immune genes in free-ranging Namibian leopards (Panthera pardus pardus).

    PubMed

    Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Sommer, Simone

    2011-01-01

    The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for fitness-related genetic variation in wildlife populations. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, we isolated and characterized genetic variation at the adaptively most important region of MHC class I and MHC class II-DRB genes in 25 free-ranging African leopards from Namibia and investigated the mechanisms that generate and maintain MHC polymorphism in the species. Using single-stranded conformation polymorphism analysis and direct sequencing, we detected 6 MHC class I and 6 MHC class II-DRB sequences, which likely correspond to at least 3 MHC class I and 3 MHC class II-DRB loci. Amino acid sequence variation in both MHC classes was higher or similar in comparison to other reported felids. We found signatures of positive selection shaping the diversity of MHC class I and MHC class II-DRB loci during the evolutionary history of the species. A comparison of MHC class I and MHC class II-DRB sequences of the leopard to those of other felids revealed a trans-species mode of evolution. In addition, the evolutionary relationships of MHC class II-DRB sequences between African and Asian leopard subspecies are discussed.

  14. Differential response of immune-related genes to peptidoglycan and lipoteichoic acid challenge in vitro

    PubMed Central

    Sulabh, Sourabh; Bhushan, Bharat; Panigrahi, Manjit; Verma, Ankita; Baba, Naseer Ahmad; Kumar, Pushpendra

    2016-01-01

    Aim: To study the effect of Staphylococcus aureus cell wall antigens, peptidoglycan (PGN) and lipoteichoic acid (LTA) challenge on immune cells present in bovine peripheral blood mononuclear cells (PBMCs). Materials and Methods: In this study, efforts have been made to investigate the effects of three combinations (10+10, 20+20 and 30+30 μg/ml) of PGN and LTA obtained from S. aureus. These antigens were used to challenge the bovine PBMCs. After 6 h of incubation quantitative, real time-polymerase chain reaction was used to study toll-like receptor 2 (TLR-2) and major cytokine mRNA expression in bovine PBMC challenged with three different antigen blends. Results: The results indicated that mRNA level of interferon gamma is influenced by the expression of TLR-2 gene. Tumor necrosis factor-alpha (TNF-α), interleukin 10 (IL-10), and IL-8 genes showed a maximum response at a dose of 10 μg of PGN and 10 μg of LTA challenge per ml of culture medium. The outcome also suggests that both IL-10 and IL-8 followed the expression pattern of TNF-α. Conclusion: A dose of 10 μg of PGN and 10 μg of LTA per ml of culture medium was found to be most suitable for challenging PBMC. PMID:27733800

  15. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia.

    PubMed

    Hwang, Y; Kim, J; Shin, J Y; Kim, J Ii; Seo, J S; Webster, M J; Lee, D; Kim, S

    2013-01-01

    Whole-genome expression profiling in postmortem brain tissue has recently provided insight into the pathophysiology of schizophrenia. Previous microarray and RNA-Seq studies identified several biological processes including synaptic function, mitochondrial function and immune/inflammation response as altered in the cortex of subjects with schizophrenia. Now using RNA-Seq data from the hippocampus, we have identified 144 differentially expressed genes in schizophrenia cases as compared with unaffected controls. Immune/inflammation response was the main biological process over-represented in these genes. The upregulation of several of these genes, IFITM1, IFITM2, IFITM3, APOL1 (Apolipoprotein L1), ADORA2A (adenosine receptor 2A), IGFBP4 and CD163 were validated in the schizophrenia subjects using data from the SNCID database and with quantitative RT-PCR. We identified a co-expression module associated with schizophrenia that includes the majority of differentially expressed genes related to immune/inflammation response as well as with the density of parvalbumin-containing neurons in the hippocampus. The results indicate that abnormal immune/inflammation response in the hippocampus may underlie the pathophysiology of schizophrenia and may be associated with abnormalities in the parvalbumin-containing neurons that lead to the cognitive deficits of the disease. PMID:24169640

  16. Transcription profiling of immune genes during parasite infection in susceptible and resistant strains of the flour beetles (Tribolium castaneum).

    PubMed

    Zhong, Daibin; Wang, Mei-Hui; Pai, Aditi; Yan, Guiyun

    2013-05-01

    The flour beetle, Tribolium castaneum, is an intermediate host for the tapeworm Hymenolepis diminuta and has become an important genetic model to explore immune responses to parasite infection in insect hosts. The present study examined the immune responses to tapeworm infection in resistant (TIW1) and susceptible (cSM) strains of the red flour beetle, T. castaneum, using real-time quantitative reverse transcription PCR on 29 immunity-related genes that exhibit antimicrobial properties. Thirteen of the 29 genes showed constitutive differences in expression between the two strains. Fourteen to fifteen of the 29 genes exhibited significant differences in transcription levels when beetles were challenged with tapeworm parasite in the resistant and susceptible strains. Nine genes (GNBP3, cSPH2, lysozyme4, defensin1, PGRP-SA, defensin2, coleoptericin1, attacin2 and serpin29) in cSM and 13 genes (lysozyme2, proPO1, GNBP3, cSPH2, lysozyme4, defensin1, PGRP-SA, defensin2, coleoptericin1, attacin2, proPO2/3, PGRP-LE and PGRP-SB) in TIW1 were up-regulated by infections or showed parasite infection-induced expression. Seven genes (attacin2, coleoptericin1, defensin1, defensin2, lysozyme2, PGRP-SA and PGRP-SB) were more than 10 folds higher in the resistant TIW1 strain than in the susceptible cSM strain after exposure to tapeworm parasites. This study demonstrated the effects of genetic background, the transcription profile to parasite infection, and identified the immunity-related genes that were significantly regulated by the infection of tapeworms in Tribolium beetles.

  17. Expression of immune response genes in peripheral blood of cattle infested with Rhipicephalus microplus.

    PubMed

    Domingues, R; Wohlres-Viana, S; Reis, D R L; Teixeira, H C; Ferreira, A P; Guimarães, S E F; Prata, M C A; Furlong, J; Verneque, R S; Machado, M A

    2014-01-01

    The bovine tick Rhipicephalus microplus is responsible for severe economic losses in tropical cattle production. Bos indicus breeds are more resistant to tick infestations than are Bos taurus breeds, and the understanding of the physiological mechanisms involved in this difference is important for the development of new methods of parasite control. We evaluated differences in the transcript expression of genes related to the immune response in the peripheral blood of cattle previously characterized as resistant or susceptible to tick infestation. Crossbreed F2 Gir x Holstein animals (resistant, N = 6; susceptible, N = 6) were artificially submitted to tick infestation. Blood samples were collected at 0, 24, and 48 h after tick infestation and evaluated for transcript expression of the CD25, CXCL8, CXCL10, FoxP3, interleukin (IL)-10, and tumor necrosis factor alpha (TNFα) genes. Gene expression of CD25 (6.00, P < 0.01), IL-10 (31.62, P < 0.01), FoxP3 (35.48, P < 0.01), and CXCL10 (3.38, P < 0.05) was altered in the resistant group at 48 h compared with samples collected before infestation. In the susceptible group, CXCL8 (-2.02, P < 0.05) and CXCL10 (2.20, P < 0.05) showed altered expression 24 h after infestation. CXCL8 (-5.78, P < 0.05) also showed altered expression at 48 h after infestation when compared with samples collected before infestation. We detected a correlation between T γδ cell activity and the immunological mechanisms that result in a higher resistance to R. microplus in cattle. PMID:24938612

  18. Chromium(VI) stimulates Fyn to initiate innate immune gene induction in human airway epithelial cells

    PubMed Central

    Nemec, Antonia A.; Zubritsky, Lindsey M.; Barchowsky, Aaron

    2009-01-01

    Mechanisms for pathogenic metal signaling in airway injury or disease promotion are poorly understood. It is widely believed that one mechanism for pathogenic and possible carcinogenic effects of inhaled chromium (Cr(VI)) is inhibition of inducible gene transactivation. However, we recently reported that Cr(VI) inhibition of Sp1-dependent transactivation required signal transducer and activator of transcription 1 (STAT1)-dependent expression of an inhibitory protein in airway epithelium. Thus, Cr(VI) exposures can induce genes and we hypothesized this induction resulted from Cr(VI) signaling through an innate immune-like STAT1-dependent pathway initiated by Fyn. Exposure of human airway epithelial (BEAS-2B) cells to Cr(VI) selectively transactivated STAT-responsive interferon-stimulated response element (ISRE) and induced ISRE-driven transactivation of interferon regulatory factor 7 (IRF7), without affecting the gamma interferon-activated site (GAS)-driven IRF1 expression. Cr(VI)-induced IRF7 was absent or greatly reduced in cells that lacked STAT1, were treated with the Src family kinase inhibitor, PP2, or lacked Fyn. Expressing Fyn, but not Src, in mouse embryonic fibroblasts cells null for Src, Yes, and Fyn restored Cr(VI)-stimulated STAT1 tyrosine phosphorylation and IRF7 expression. Finally, shRNA knockdown of Fyn in BEAS-2B cells prevented Cr(VI)-activated STAT1 transactivation of IRF7. These data support a novel mechanism through which Cr(VI) stimulates Fyn to initiate interferon-like signaling for STAT1-dependent gene transactivation. PMID:19994902

  19. Expression of immune response genes in peripheral blood of cattle infested with Rhipicephalus microplus.

    PubMed

    Domingues, R; Wohlres-Viana, S; Reis, D R L; Teixeira, H C; Ferreira, A P; Guimarães, S E F; Prata, M C A; Furlong, J; Verneque, R S; Machado, M A

    2014-01-01

    The bovine tick Rhipicephalus microplus is responsible for severe economic losses in tropical cattle production. Bos indicus breeds are more resistant to tick infestations than are Bos taurus breeds, and the understanding of the physiological mechanisms involved in this difference is important for the development of new methods of parasite control. We evaluated differences in the transcript expression of genes related to the immune response in the peripheral blood of cattle previously characterized as resistant or susceptible to tick infestation. Crossbreed F2 Gir x Holstein animals (resistant, N = 6; susceptible, N = 6) were artificially submitted to tick infestation. Blood samples were collected at 0, 24, and 48 h after tick infestation and evaluated for transcript expression of the CD25, CXCL8, CXCL10, FoxP3, interleukin (IL)-10, and tumor necrosis factor alpha (TNFα) genes. Gene expression of CD25 (6.00, P < 0.01), IL-10 (31.62, P < 0.01), FoxP3 (35.48, P < 0.01), and CXCL10 (3.38, P < 0.05) was altered in the resistant group at 48 h compared with samples collected before infestation. In the susceptible group, CXCL8 (-2.02, P < 0.05) and CXCL10 (2.20, P < 0.05) showed altered expression 24 h after infestation. CXCL8 (-5.78, P < 0.05) also showed altered expression at 48 h after infestation when compared with samples collected before infestation. We detected a correlation between T γδ cell activity and the immunological mechanisms that result in a higher resistance to R. microplus in cattle.

  20. Increased stocking density causes changes in expression of selected stress- and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Yarahmadi, Peyman; Miandare, Hamed Kolangi; Fayaz, Sahel; Caipang, Christopher Marlowe A

    2016-01-01

    The present study investigated the effects of various stocking densities on the health status (stress and immune responses) of rainbow trout (Onchorhynchus mykiss). Juvenile rainbow trout were acclimated, placed in circular tanks under stocking densities of 10, 40 and 80 kg m(-3) and reared for 30 days. The relative expression of genes involved in stress and immunity such as HSP70, LyzII, TNF-1α, IL-1β, IL-8 and IFN-γ1 in the head kidney was determined. Serum cortisol, ACTH, total antioxidant capacity, osmolality and lactate were measured after 30 days of culture at different stocking densities (D1:10 kg m(-3), D2: 40 kg m(-3) and D3: 80 kg m(-3)) as indices of stress responses. In addition, the effects of stocking densities on serum complement, bactericidal activity, agglutinating antibody titers, serum IgM, anti-protease activity, serum total protein and alkaline phosphatase of the fish were measured. HSP70 gene expression was significantly density-dependent upregulated in D2 and D3 densities compared to D1 (P < 0.05). Also, there was significant downregulation in expression of LyzII, TNF-1α, IL-1β, IL-8 and IFN-γ1 in fish reared at density of either D2 or D3 (P < 0.05). In terms of stress responses, serum ACTH, cortisol and lactate level showed significant density-dependent increase (P < 0.05) while serum osmolality and total antioxidant capacity showed significant decline (P < 0.05) in fish reared at higher densities (D2 and D3) compared to fish reared at lower density (D1) (P < 0.05). Concordant with the expression of the immune-related genes, the serum complement and bactericidal activity as well as specific antibody titer against Aeromonas hydrophila, IgM and anti-protease activity decreased along with elevation of stocking density from D1 to D3 (P < 0.05). However, different stocking densities had no significant effect on serum total protein level and alkaline phosphatase activity. These results suggested that elevation of stocking

  1. Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model.

    PubMed

    Wang, Z; Halbert, C L; Lee, D; Butts, T; Tapscott, S J; Storb, R; Miller, A D

    2014-04-01

    Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.

  2. A developmental characterization of mesolimbocortical serotonergic gene expression changes following early immune challenge.

    PubMed

    Sidor, M M; Amath, A; MacQueen, G; Foster, J A

    2010-12-15

    An immunogenic challenge during early postnatal development leads to long-term changes in behavioural and physiological measures reflecting enhanced emotionality and anxiety. Altered CNS serotonin (5-HT) signalling during the third postnatal week is thought to modify the developing neurocircuitry governing anxiety-like behaviour. Changes in 5-HT signalling during this time window may underlie increased emotionality reported in early immune challenge rodents. Here we examine both the spatial and temporal profile of 5-HT related gene expression, including 5HT1A, 2A, 2C receptors, the 5-HT transporter (5HTT), and tryptophan hydroxylase 2 (TPH2) during early development (postnatal day [P]14, P17, P21, P28) in mice challenged with lipopolysaccharide (LPS) during the first postnatal week. Expression levels were measured using in situ hybridization in regions associated with mediating emotive behaviours: the dorsal raphe (DR), hippocampus, amygdala, and prefrontal cortex (PFC). Increased TPH2 and 5HTT expression in the ventrolateral region of the DR of LPS-mice accompanied decreased expression of ventral DR 5HT1A and dorsal DR 5HTT. In the forebrain, 5HT1A and 2A receptors were increased, whereas 5HT2C receptors were decreased in the hippocampus. Decreased mRNA expression of 5HT2C was detected in the amygdala and PFC of LPS-treated pups; 5HT1A was increased in the PFC. The majority of these changes were restricted to P14-21. These transient changes in 5-HT expression coincide with the critical time window in which 5-HT disturbance leads to permanent modification of anxiety-related behaviours. This suggests that alterations in CNS 5-HT during development may underlie the enhanced emotionality associated with an early immune challenge. PMID:20816924

  3. Mismatch repair gene defects in sporadic colorectal cancer enhance immune surveillance

    PubMed Central

    Canal, Fabio; Scarpa, Melania; Basato, Silvia; Erroi, Francesca; Fiorot, Alain; Dall'Agnese, Lucia; Pozza, Anna; Porzionato, Andrea; Castagliuolo, Ignazio; Dei Tos, Angelo P.; Bassi, Nicolò; Castoro, Carlo

    2015-01-01

    Background There is evidence that colorectal cancers (CRC) with DNA mismatch repair deficiency (MMR-D) are associated with a better prognosis than the generality of large bowel malignancies. Since an active immune surveillance process has been demonstrated to influence CRC outcome, we investigated whether MMR-D can enhance the immune response in CRC. Patients and Methods A group of 113 consecutive patients operated for CRC (42 stage I or II and 71 with stage III or IV) was retrospectively analyzed. The expression of MMR genes (MSH2, MLH1, MSH6 and PSM2) and co-stimulatory molecule CD80 was assessed by tissue microarray immunohistochemistry. In addition, tumor infiltrating mononuclear cells (TIMC) and T cell subpopulations (CD4, CD8, T-bet and FoxP-3) were quantified. The effect of specific siRNA (siMSH2, siMLH1, siMSH6 and siPSM2) transfection in HT29 on CD80 expression was quantified by flow cytometry. Non parametric statistics and survival analysis were used. Results Patients with MMR-D showed a higher T-bet/CD4 ratio (p = 0.02), a higher rate of CD80 expression and CD8 lymphocyte infiltration compared to those with no MMR-D. Moreover, in the MMR-D group, the Treg marker FoxP-3 was not expressed (p = 0.05). MMR-D patients with stage I or II and T-bet expression had a significant better survival (p = 0.009). Silencing of MSH2, MLH1 and MSH6, but not PSM2, significantly increased the rate of CD80+ HT29 cells (p = 0.007, p = 0.023 and p = 0.015, respectively). Conclusions CRC with MMR-D showed a higher CD80 expression, and CD8+ and Th1 T-cell infiltration. In vitro silencing of MSH2, MLH1 and MSH6 significantly increased CD80+ cell rate. These results suggest an enhanced immune surveillance mechanism in presence of MMR-D. PMID:26496037

  4. Seasonal changes and human chorionic gonadotrophin (hCG) effects on innate immune genes expression in goldfish (Carassius auratus).

    PubMed

    Zhong, Huan; Zhou, Yi; Yu, Fan; Xiao, Jun; Gan, Xi; Zhang, Ming

    2014-06-01

    We profiled the expression of a group of proinflammatory immune genes, comprising TNFα-1, TNFα-2, IFN-γ, IL1β-1, IL1β-2, CCL-1, and CXCL-8 in liver, head kidney, gills, and spleen of goldfish, during the reproductive cycle and in response to injection of the hormone human chorionic gonadotrophin (hCG). Most genes showed higher expression during the breeding season in both sexes. However, activation of immune responses was much stronger in female goldfish. Injection with hCG, an analog of luteinizing hormone (LH), which is involved in numerous reproductive functions, markedly changed gene expression in most studied organs, in both male and female goldfish. Again, female goldfish were found to be more responsive than male goldfish. The strongest activation of these genes was seen 7 days post-injection; the effect was dose dependent with a lower dose being in general more effective. For several of the genes, the gills were the most responsive tissue and, in male goldfish, gills were often the only responsive tissue, suggesting an important immunological role for gills during breeding. The data suggest that increasing expression levels are regulated by LH arising during the breeding season, with greater sensitivity in female goldfish than in male goldfish. These data support an interaction between the innate immune system and the reproductive axis. PMID:24709628

  5. The effects of feeding β-glucan to Pangasianodon hypophthalmus on immune gene expression and resistance to Edwardsiella ictaluri.

    PubMed

    Sirimanapong, Wanna; Thompson, Kim D; Ooi, Ei Lin; Bekaert, Michaël; Collet, Bertrand; Taggart, John B; Bron, James E; Green, Darren M; Shinn, Andrew P; Adams, Alexandra; Leaver, Michael J

    2015-11-01

    Pangasianodon hypophthalmus (striped catfish) is an important aquaculture species and intensification of farming has increased disease problems, particularly Edwardsiella ictaluri. The effects of feeding β-glucans on immune gene expression and resistance to E. ictaluri in P. hypophthalmus were explored. Fish were fed 0.1% fungal-derived β-glucan or 0.1% commercial yeast-derived β-glucan or a basal control diet without glucan. After 14 days of feeding, the mRNA expression of immune genes (transferrin, C-reactive protein, precerebellin-like protein, Complement C3 and factor B, 2a MHC class II and interleukin-1 beta) in liver, kidney and spleen were determined. Following this fish from each of the three diet treatment groups were infected with E. ictaluri and further gene expression measured 24 h post-infection (h.p.i.), while the remaining fish were monitored over 2 weeks for mortalities. Cumulative percentage mortality at 14 days post-infection (d.p.i.) was less in β-glucan fed fish compared to controls. There was no difference in gene expression between dietary groups after feeding for 14 days, but there was a clear difference between infected and uninfected fish at 24 h.p.i., and based on principal component analysis β-glucans stimulated the overall expression of immune genes in the liver, kidney and spleen at 24 h.p.i. PMID:26439415

  6. Seasonal changes and human chorionic gonadotrophin (hCG) effects on innate immune genes expression in goldfish (Carassius auratus).

    PubMed

    Zhong, Huan; Zhou, Yi; Yu, Fan; Xiao, Jun; Gan, Xi; Zhang, Ming

    2014-06-01

    We profiled the expression of a group of proinflammatory immune genes, comprising TNFα-1, TNFα-2, IFN-γ, IL1β-1, IL1β-2, CCL-1, and CXCL-8 in liver, head kidney, gills, and spleen of goldfish, during the reproductive cycle and in response to injection of the hormone human chorionic gonadotrophin (hCG). Most genes showed higher expression during the breeding season in both sexes. However, activation of immune responses was much stronger in female goldfish. Injection with hCG, an analog of luteinizing hormone (LH), which is involved in numerous reproductive functions, markedly changed gene expression in most studied organs, in both male and female goldfish. Again, female goldfish were found to be more responsive than male goldfish. The strongest activation of these genes was seen 7 days post-injection; the effect was dose dependent with a lower dose being in general more effective. For several of the genes, the gills were the most responsive tissue and, in male goldfish, gills were often the only responsive tissue, suggesting an important immunological role for gills during breeding. The data suggest that increasing expression levels are regulated by LH arising during the breeding season, with greater sensitivity in female goldfish than in male goldfish. These data support an interaction between the innate immune system and the reproductive axis.

  7. The immune microenvironment of the colorectal tumor: Involvement of immunity genes and microRNAs belonging to the TH17 pathway.

    PubMed

    Omrane, Inés; Benammar-Elgaaied, Amel

    2015-08-01

    Colorectal cancer is a complex and multifactorial disease. Various factors such as genetic, immunological, epigenetic and environmental constitute minor risk factors with their additive effects contributing to the advent of colorectal cancer. In order to evaluate the role of innate and adaptive immunity in the susceptibility, the presentation and the development of colorectal cancer, we considered an immunogenetic approach on polymorphisms in the TLR4 gene and NOD2/CARD15 gene (receptors of innate immunity) as well as in cytokine genes of the TH17 pathway IL17A, IL17F and cytokine receptor IL23R. Then, we evaluated the expression of microRNAs regulated by TLR4 and NOD2/CARD15 or targeting TLR4, IL17 and proinflammatory cytokines (IL-6, TNF) induced by IL17. Through a case-control study, we showed that the polymorphism of IL17A is associated with its susceptibility to colorectal cancer. Considering the tumor location, we found that the mutated alleles of IL17A, IL17F and IL23R are rather associated with colon cancer and not with rectum cancer. This result confirms that the colon and rectum are two different physiological entities. This study shows that TLR4, IL17A/F and IL23R polymorphisms are involved in the presentation of the disease with regard to tumor architecture, histology, and differentiation, advanced stage of the disease and lymph node and metastasis. Overall, these polymorphisms are associated with a poor prognosis of the disease. Furthermore, in order to evaluate the involvement of epigenetic mechanisms in the occurrence of colorectal cancer, we aimed at analyzing the tumor compared to a normal adjacent tissue and the expression of miRNAs (miR21, miR146a, miR135a, miR147b and miR155) that regulate immunity genes especially the cytokines of the TH17 pathway. This research has shown that microRNAs 21, 135a and 146a are associated with colorectal cancer. Indeed, these three miRs are overexpressed in cancer tissue compared to healthy tissue. These results

  8. Profiling of a few immune responsive genes expressed in postlarvae of Fenneropenaeus indicus challenged with Vibrio harveyi D3.

    PubMed

    Nayak, S; Ajay, K M; Ramaiah, N; Meena, Ram M; Sreepada, R A

    2011-06-01

    We identified 38 genes and eight hypothetical proteins by sequencing of 1200 clones from a Vibrio harveyi challenged Fenneropenaeus indicus subtracted cDNA library. Based on physiological roles and functions these genes were categorized into 10 groups with ∼29% of the sequences having no matches in the databases. Immune related transcripts in the library were carboxypeptidase B, ferritin, translationally controlled tumor proteins (TCTP), hemocyanin, chitinase and serine carboxy peptidase. Remarkably, qPCR results imply 4.15, 3.45 and 1.86-fold rises in expression of ferritin, TCTP and hemocyanin transcripts respectively. Additionally, minor upregulation of other immune relevant genes lectin, penaeidin, crustin, MnSOD was observed in the challenged postlarvae.

  9. Sulfated galactans from Gracilaria fisheri bind to shrimp haemocyte membrane proteins and stimulate the expression of immune genes.

    PubMed

    Rudtanatip, Tawut; Withyachumnarnkul, Boonsirm; Wongprasert, Kanokpan

    2015-11-01

    Previous studies demonstrated that sulfated galactans (SG) from Gracilaria fisheri (G. fisheri) exhibit immunostimulant activity in shrimp. The present study was conducted to test the hypothesis that SG stimulates signaling molecules of the immune response of shrimp by binding to receptors on the host cell membrane. Accordingly, we evaluated the ability of SG to bind to shrimp haemocytes and showed that SG bound to the shrimp haemocyte membrane (SHM), potentially to specific receptors. Furthermore, this binding was associated with an activation of immune response genes of shrimp. Data from confocal laser scanning micrographs revealed that FITC-labeled SG bound to haemocytes. Far western blot analysis demonstrated that SHM peptides, with molecular sizes of 13, 14, 15, 17, and 25 kDa, were associated with SG. Peptide sequence analysis of the isolated bands using LC-MS/MS and NCBI blast search revealed the identity of the 13, 14, and 17 kDa peptides as lipopolysaccharide and β-1,3-glucan binding protein (LGBP). SG induced the expression of immune related genes and downstream signaling mediators of LGBP including IMD, IKKs, NF-κB, antimicrobial peptides (crustin and PEN-4), the antiviral immunity (dicer), and proPO system (proPO-I and proPO-II). A LGBP neutralizing assay with anti-LGBP antibody indicated a decrease in SG-induced expression of LGBP downstream signaling mediators and the immune related genes. In conclusion, this study demonstrated that the SG-stimulated immune activity in haemocytes is mediated, in part, through the LGBP, and IMD-NF-κB pathway.

  10. Possible influence of B chromosomes on genes included in immune response and parasite burden in Apodemus flavicollis.

    PubMed

    Adnađević, Tanja; Jovanović, Vladimir M; Blagojević, Jelena; Budinski, Ivana; Cabrilo, Borislav; Bjelić-Čabrilo, Olivera; Bijelić-Čabrilo, Olivera; Vujošević, Mladen

    2014-01-01

    Genetic background underlying wild populations immune response to different parasites is still not well understood. We studied immune response to multiple infections and to competition between different parasite species at different developmental stages in population of yellow-necked mouse, Apodemus flavicollis. Quantitative real-time PCR was used to investigate associations of MHC II-DRB, IL-10 and Tgf-β genes expressions with presence of intestinal parasites at different developmental stages. Furthermore, we were interested whether the host related characteristics (sex, age, body condition, presence of B chromosomes or expression of other genes) or characteristics of present parasites (number of adult parasites of each identified species, egg count of each parasite genus, total number of nematode individuals) affect differential expression of the studied genes. A significant invert association between the expression of MHC II-DRB and Tgf-β gene was found, which together with absence of IL-10 association confirmed modified Th2 as the main type of immune response to nematode infections. Effect of recorded parasites and parasite life-cycle stage on expression levels of MHC II-DRB gene was detected only through interactions with host-related characteristics such as sex, age, and the presence of B chromosomes. The presence of B chromosomes is associated with lower expression level of Tgf-β gene. Although the influence of host genetic background on parasite infection has already been well documented, this is the first study in mammals that gave presence of B chromosomes on immune response full consideration. PMID:25372668

  11. Hepatic Expression Patterns of Inflammatory and Immune Response Genes Associated with Obesity and NASH in Morbidly Obese Patients

    PubMed Central

    Bertola, Adeline; Bonnafous, Stéphanie; Anty, Rodolphe; Patouraux, Stéphanie; Saint-Paul, Marie-Christine; Iannelli, Antonio; Gugenheim, Jean; Barr, Jonathan; Mato, José M.; Le Marchand-Brustel, Yannick; Tran, Albert; Gual, Philippe

    2010-01-01

    Background Obesity modulates inflammation and activation of immune pathways which can lead to liver complications. We aimed at identifying expression patterns of inflammatory and immune response genes specifically associated with obesity and NASH in the liver of morbidly obese patients. Methodology/Principal Findings Expression of 222 genes was evaluated by quantitative RT-PCR in the liver of morbidly obese patients with histologically normal liver (n = 6), or with severe steatosis without (n = 6) or with NASH (n = 6), and in lean controls (n = 5). Hepatic expression of 58 out of 222 inflammatory and immune response genes was upregulated in NASH patients. The most notable changes occurred in genes encoding chemokines and chemokine receptors involved in leukocyte recruitment, CD and cytokines involved in the T cell activation towards a Th1 phenotype, and immune semaphorins. This regulation seems to be specific for the liver since visceral adipose tissue expression and serum levels of MCP1, IP10, TNFα and IL6 were not modified. Importantly, 47 other genes were already upregulated in histologically normal liver (e.g. CRP, Toll-like receptor (TLR) pathway). Interestingly, serum palmitate, known to activate the TLR pathway, was increased with steatosis. Conclusion/Significance The liver of obese patients without histological abnormalities already displayed a low-grade inflammation and could be more responsive to activators of the TLR pathway. NASH was then characterized by a specific gene signature. These findings help to identify new potential actors of the pathogenesis of NAFLD. PMID:21042596

  12. Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity

    PubMed Central

    2013-01-01

    Background Microbe-associated molecular patterns, such as those present in bacterial flagellin, are powerful inducers of the innate immune response in plants. Successful pathogens deliver virulence proteins, termed effectors, into the plant cell where they can interfere with the immune response and promote disease. Engineering the plant immune system to enhance disease resistance requires a thorough understanding of its components. Results We describe a high-throughput screen, using RNA sequencing and virus-induced gene silencing, to identify tomato genes whose expression is enhanced by the flagellin microbe-associated molecular pattern flgII-28, but reduced by activities of the Pseudomonas syringae pv. tomato (Pst) type III effectors AvrPto and AvrPtoB. Gene ontology terms for this category of Flagellin-induced repressed by effectors (FIRE) genes showed enrichment for genes encoding certain subfamilies of protein kinases and transcription factors. At least 25 of the FIRE genes have been implicated previously in plant immunity. Of the 92 protein kinase-encoding FIRE genes, 33 were subjected to virus-induced gene silencing and their involvement in pattern-triggered immunity was tested with a leaf-based assay. Silencing of one FIRE gene, which encodes the cell wall-associated kinase SlWAK1, compromised the plant immune response resulting in increased growth of Pst and enhanced disease symptoms. Conclusions Our transcriptomic approach identifies FIRE genes that represent a pathogen-defined core set of immune-related genes. The analysis of this set of candidate genes led to the discovery of a cell wall-associated kinase that participates in plant defense. The FIRE genes will be useful for further elucidation of the plant immune system. PMID:24359686

  13. Expression Profiling of Innate Immune Genes in Milk Somatic Cells During Subclinical Mastitis in Crossbred Dairy Cows.

    PubMed

    Karthikeyan, A; Radhika, G; Aravindhakshan, T V; Anilkumar, K

    2016-10-01

    Innate immune mechanism plays a key role in mammary defense, from recognition of pathogens to activation of nonspecific and specific immunity involved in elimination of pathogens. Expression profiles of innate immune response genes namely Toll like receptor 2 (TLR-2), Peptidoglycan recognition protein 1 (PGLYRP-1), Interleukin 8 receptor (IL-8 R), L-Selectin (SELL), and Osteopontin (OPN) in milk somatic cells of subclinical mastitis (SCM) affected crossbred cows were investigated under this study at transcript level using quantitative real time polymerase chain reaction (qRT-PCR). Dairy cows in mid lactation were screened for SCM using California Mastitis Test (CMT), Somatic Cell Count (SCC) and Electrical Conductivity test (EC). Based on results of SCM screening tests, crossbred cows were clustered into two groups with four Staphylococcus aureus infected SCM cows and four apparently healthy cows. The expressions levels of TLR-2, PGLYRP-1, IL-8 R, SELL, and OPN in milk somatic cells of SCM affected cows were significantly higher (p < 0.05) than healthy cows. These genes could be considered as candidate genes for innate immune response against S. aureus SCM infection.

  14. Immune responses and gene expression in hepatopancreas from Macrobrachium rosenbergii challenged by a novel pathogen spiroplasma MR-1008.

    PubMed

    Du, Jie; Zhu, Huanxi; Liu, Peng; Chen, Jing; Xiu, Yunji; Yao, Wei; Wu, Ting; Ren, Qian; Meng, Qingguo; Gu, Wei; Wang, Wen

    2013-01-01

    Freshwater prawn Macrobrachium rosenbergii inoculated with 100 μl novel pathogen spiroplasma strain MR-1008 in logarithmic phase (10(8) spiroplasmas ml(-1)) were examined for alkaline phosphatase (AKP) activity, acid phosphatase (ACP) activity, superoxide dismutase (SOD) activity, catalase (CAT) activity, as well as expressions of 7 immune related genes in hepatopancreas after 1-28 d. Hematoxylin-eosin (HE) staining showed obvious pathological features in hepatopancreas connective and epithelial tissue. Enzyme activity analyze showed that hepatopancreas AKP and ACP activity increased markedly (P < 0.05) when inoculated with spiroplasma MR-1008 after 5 d and 10 d, respectively. SOD enzyme activity changed less obviously and slightly increased at 1 day post-inoculation, but CAT activity decreased significantly after 5 d inoculation. The expression levels of lipopolysaccharide and β-1,3-glucan-binding protein (LGBP), peroxinectin (PE), α2-macroglobulin (α2M), AKP, ACP, CAT, and copper/zinc SOD (Cu, Zn-SOD) genes in the hepatopancreas were examined by Real-Time PCR (qRT-PCR) and the results demonstrated that these immune related genes were induced by challenge with spiroplasma MR-1008. The results suggested that the prawn immune responses could be activated or inhibited by spiroplasma MR-1008, and that the hepatopancreas also plays key roles in innate immunity for defense against the pathogen.

  15. Expression Profiling of Innate Immune Genes in Milk Somatic Cells During Subclinical Mastitis in Crossbred Dairy Cows.

    PubMed

    Karthikeyan, A; Radhika, G; Aravindhakshan, T V; Anilkumar, K

    2016-10-01

    Innate immune mechanism plays a key role in mammary defense, from recognition of pathogens to activation of nonspecific and specific immunity involved in elimination of pathogens. Expression profiles of innate immune response genes namely Toll like receptor 2 (TLR-2), Peptidoglycan recognition protein 1 (PGLYRP-1), Interleukin 8 receptor (IL-8 R), L-Selectin (SELL), and Osteopontin (OPN) in milk somatic cells of subclinical mastitis (SCM) affected crossbred cows were investigated under this study at transcript level using quantitative real time polymerase chain reaction (qRT-PCR). Dairy cows in mid lactation were screened for SCM using California Mastitis Test (CMT), Somatic Cell Count (SCC) and Electrical Conductivity test (EC). Based on results of SCM screening tests, crossbred cows were clustered into two groups with four Staphylococcus aureus infected SCM cows and four apparently healthy cows. The expressions levels of TLR-2, PGLYRP-1, IL-8 R, SELL, and OPN in milk somatic cells of SCM affected cows were significantly higher (p < 0.05) than healthy cows. These genes could be considered as candidate genes for innate immune response against S. aureus SCM infection. PMID:27565875

  16. Functional similarities between pigeon 'milk' and mammalian milk: induction of immune gene expression and modification of the microbiota.

    PubMed

    Gillespie, Meagan J; Stanley, Dragana; Chen, Honglei; Donald, John A; Nicholas, Kevin R; Moore, Robert J; Crowley, Tamsyn M

    2012-01-01

    Pigeon 'milk' and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon 'milk'. Therefore, using a chicken model, we investigated the effect of pigeon 'milk' on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of the caecal microbiota. Chickens fed pigeon 'milk' had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon 'milk'-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon 'milk'-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon 'milk', as well as being directly seeded by bacteria present in pigeon 'milk'. Our results demonstrate that pigeon 'milk' has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon 'lactation' and mammalian lactation evolved independently but resulted in similarly functional products.

  17. Transcriptome Analysis and Identification of Differentially Expressed Transcripts of Immune-Related Genes in Spleen of Gosling and Adult Goose

    PubMed Central

    Wang, Anqi; Liu, Fei; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2015-01-01

    The goose (Anser cygnoides), having high nutritional value, high-quality feathers and high economic benefit, is an economically important poultry species. However, the molecular mechanisms underlying the higher susceptibility to pathogens in goslings than in adult geese remains poorly understood. In this study, the histological sections of spleen tissue from a two-week-old gosling and an adult goose, respectively, were subjected to comparative analysis. The spleen of gosling was mainly composed of mesenchyma, accompanied by scattered lymphocytes, whereas the spleen parenchyma was well developed in the adult goose. To investigate goose immune-related genes, we performed deep transcriptome and gene expression analyses of the spleen samples using paired-end sequencing technology (Illumina). In total, 50,390 unigenes were assembled using Trinity software and TGICL software. Moreover, these assembled unigenes were annotated with gene descriptions and gene ontology (GO) analysis was performed. Through Kyoto encyclopedia of genes and genomes (KEGG) analysis, we investigated 558 important immune-relevant unigenes and 23 predicted cytokines. In addition, 22 immune-related genes with differential expression between gosling and adult goose were identified, among which the three genes showing largest differences in expression were immunoglobulin alpha heavy chain (IgH), mannan-binding lectin serine protease 1 isoform X1 (MASP1) and C–X–C chemokine receptor type 4 (CXCR4). Finally, of these 22 differentially expressed immune-related genes, seven genes, including tumor necrosis factor receptor superfamily member 13B (TNFRSF13B), C-C motif chemokine 4-like (CCL4), CXCR4, interleukin 2 receptor alpha (IL2RA), MHC class I heavy chain (MHCIα), transporter of antigen processing 2 (TAP2) IgH, were confirmed by quantitative real-time PCR (qRT-PCR). The expression levels of all the candidate unigenes were up-regulated in adult geese other than that of TNFRSF13B. The comparative

  18. Transcriptome Analysis and Identification of Differentially Expressed Transcripts of Immune-Related Genes in Spleen of Gosling and Adult Goose.

    PubMed

    Wang, Anqi; Liu, Fei; Chen, Shun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Wu, Ying; Chen, Xiaoyue; Cheng, Anchun

    2015-09-22

    The goose (Anser cygnoides), having high nutritional value, high-quality feathers and high economic benefit, is an economically important poultry species. However, the molecular mechanisms underlying the higher susceptibility to pathogens in goslings than in adult geese remains poorly understood. In this study, the histological sections of spleen tissue from a two-week-old gosling and an adult goose, respectively, were subjected to comparative analysis. The spleen of gosling was mainly composed of mesenchyma, accompanied by scattered lymphocytes, whereas the spleen parenchyma was well developed in the adult goose. To investigate goose immune-related genes, we performed deep transcriptome and gene expression analyses of the spleen samples using paired-end sequencing technology (Illumina). In total, 50,390 unigenes were assembled using Trinity software and TGICL software. Moreover, these assembled unigenes were annotated with gene descriptions and gene ontology (GO) analysis was performed. Through Kyoto encyclopedia of genes and genomes (KEGG) analysis, we investigated 558 important immune-relevant unigenes and 23 predicted cytokines. In addition, 22 immune-related genes with differential expression between gosling and adult goose were identified, among which the three genes showing largest differences in expression were immunoglobulin alpha heavy chain (IgH), mannan-binding lectin serine protease 1 isoform X1 (MASP1) and C-X-C chemokine receptor type 4 (CXCR4). Finally, of these 22 differentially expressed immune-related genes, seven genes, including tumor necrosis factor receptor superfamily member 13B (TNFRSF13B), C-C motif chemokine 4-like (CCL4), CXCR4, interleukin 2 receptor alpha (IL2RA), MHC class I heavy chain (MHCIα), transporter of antigen processing 2 (TAP2) IgH, were confirmed by quantitative real-time PCR (qRT-PCR). The expression levels of all the candidate unigenes were up-regulated in adult geese other than that of TNFRSF13B. The comparative

  19. Dietary vegetable oils: effects on the expression of immune-related genes in Senegalese sole (Solea senegalensis) intestine.

    PubMed

    Montero, Daniel; Benitez-Dorta, Vanessa; Caballero, María José; Ponce, Marian; Torrecillas, Silvia; Izquierdo, Marisol; Zamorano, María Jesús; Manchado, Manuel

    2015-05-01

    The decreased availability of fish oil, traditionally used as oil source in marine aquafeeds, has lead to the search for alternatives oils. Vegetable oils (VO) are being extensively used as lipid sources in marine fish diets, inducing an imbalance on certain dietary fatty acids. Alteration on the dietary ratio of w-6/w-3 has been described to have detrimental effects on fish immunity. Senegalese sole has high susceptibility to stress and diseases, and little is known on the effects of dietary VO on its immunity. In this study, Senegalese sole juveniles were fed diets (56% crude protein, 12% crude lipid) containing linseed (100LO), soybean (100SO) or fish (100FO) oils as unique oil source. Growth, cortisol and intestinal fatty acid composition were determined after 90 days. Moreover, at the final of the experiment a stress test (5 min of net chasing) was carried out. To evaluate the effect of diets and stress on intestine immunology, expression profiles of a set of 53 immune-related genes using RT-qPCR was also performed. The use of VO did not induced changes in fish growth, but affected fatty acid profile of intestine and expression of immune-related genes. The use of SO (rich in n-6 fatty acids) induced an over-expression of those genes related to complement pathway, recognizing pathogen associated to molecular patterns, defensive response against bacteria, defensive response against viruses, antigen differentiation, cytokines and their receptors. This general over-expression could indicate an activation of inflammatory processes in fish gut. When a stress was applied, a decrease of mRNA levels of different immune-related genes with respect to the unstressed control could be observed in fish fed 100FO. However, fish fed 100LO, with a higher ALA/LA ratio, seemed to ameliorate the effects of combined effects of FO substitution plus stressful situation whereas fish fed 100SO did not show this type of response.

  20. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response

    PubMed Central

    Oskvig, Devon B.; Elkahloun, Abdel G.; Johnson, Kory R.; Phillips, Terry M.; Herkenham, Miles

    2012-01-01

    Maternal immune activation (MIA) is a risk factor for the development of schizophrenia and autism. Infections during pregnancy activate the mother’s immune system and alter the fetal environment, with consequential effects on CNS function and behavior in the offspring, but the cellular and molecular links between infection-induced altered fetal development and risk for neuropsychiatric disorders are unknown. We investigated the immunological, molecular, and behavioral effects of MIA in the offspring of pregnant Sprague-Dawley rats given an intraperitoneal (0.25 mg/kg) injection of lipopolysaccharide (LPS) on gestational day 15. LPS significantly elevated pro-inflammatory cytokine levels in maternal serum, amniotic fluid, and fetal brain at 4 h, and levels decreased but remained elevated at 24 h. Offspring born to LPS-treated dams exhibited reduced social preference and exploration behaviors as juveniles and young adults. Whole genome microarray analysis of the fetal brain at 4 h post maternal LPS was performed to elucidate the possible molecular mechanisms by which MIA affects the fetal brain. We observed dysregulation of 3,285 genes in restricted functional categories, with increased mRNA expression of cellular stress and cell death genes and reduced expression of developmentally-regulated and brain-specific genes, specifically those that regulate neuronal migration of GABAergic interneurons, including the Distal-less (Dlx) family of transcription factors required for tangential migration from progenitor pools within the ganglionic eminences into the cerebral cortex. Our results provide a novel mechanism by which MIA induces the widespread down-regulation of critical neurodevelopmental genes, including those previously associated with autism. PMID:22310921

  1. Wild-type Escherichia coli producing microcins B17, D93, J25, and L; cloning of genes for microcin L production and immunity.

    PubMed

    Sablé, S; Duarte, M; Bravo, D; Lanneluc, I; Pons, A M; Cottenceau, G; Moreno, F

    2003-05-01

    For the first time, an Escherichia coli strain producing four microcins (Mcc), B17, D93, J25, and L, and showing immunity to Mcc V was isolated and characterized. Each of the gene clusters encoding the production of Mcc B17, D93, and L was cloned separately. The gene cluster for Mcc L was cloned within a 13.5-kb HindIII-SalI fragment, which includes the Mcc V immunity gene, cvi.

  2. Single nucleotide polymorphisms of the inflammatory cytokine genes in adults with chronic immune thrombocytopenic purpura.

    PubMed

    Satoh, Takashi; Pandey, Janardan P; Okazaki, Yuka; Yasuoka, Hidekata; Kawakami, Yutaka; Ikeda, Yasuo; Kuwana, Masataka

    2004-03-01

    Single nucleotide polymorphisms (SNPs) of inflammatory cytokine genes were examined in 84 adult Japanese patients with chronic immune thrombocytopenic purpura (ITP) and 56 race-matched healthy controls. The SNPs examined were within the genes encoding tumour necrosis factor (TNF)-alpha (-238 G/A and -308 G/A), TNF-beta (+252 G/A), and interleukin (IL)-1beta (-511 C/T and +3953 T/C). Of these SNPs, the frequency of the TNF-beta (+252) G/G phenotype was significantly higher in ITP patients than in healthy controls (21% vs. 7%, P = 0.04, odds ratio = 3.6, 95% confidence interval 1.1-11.1), while no significant association was detected for the other SNPs. The distribution of the TNF-beta (+252) phenotype was not associated with human leucocyte antigen class II alleles or the therapeutic response in ITP patients. The frequency of circulating anti-glycoprotein IIb/IIIa antibody-producing B cells was significantly higher in ITP patients with the TNF-beta (+252) G/G phenotype than in those with the G/A or A/A phenotype (11.9 +/- 4.9 vs. 6.8 +/- 4.9 and 3.7 +/- 2.8 per 10(5) peripheral blood mononuclear cells; P = 0.02 and P < 0.001, respectively). These findings suggest that the SNP located at TNF-beta (+252) contributes to susceptibility to chronic ITP by controlling the autoreactive B-cell responses to platelet membrane glycoproteins.

  3. Polymorphisms of Immunity Genes and Susceptibility to Otitis Media in Children

    PubMed Central

    Nokso-Koivisto, Johanna; Chonmaitree, Tasnee; Jennings, Kristofer; Matalon, Reuben; Block, Stan; Patel, Janak A.

    2014-01-01

    Background Acute otitis media (OM) is a common disease which often develops through complex interactions between the host, the pathogen and environmental factors. We studied single nucleotide polymorphisms (SNPs) of genes involved in innate and adaptive immunity, and other host and environmental factors for their role in OM. Methods Using Sequenom Massarray platform, 21 SNPs were studied in 653 children from prospective (n = 202) and retrospective (n = 451) cohorts. Data were analyzed for the relationship between SNPs and upper respiratory infection (URI) frequency, risk of acute OM during URI episodes, and proneness to recurrent OM. Results Increased risk for OM proneness was associated with CX3CR1 (Thr280Met) SNP and with a jointly interactive group of IL-10 (−1082) SNP, IL-1β (−511) wild type genotype and white race. Family history of OM proneness independently increased the risk for frequent URIs, OM occurrence during URI, and OM proneness. Additionally, IL-1β (−31) SNP was associated with increased risk for frequent URIs, but IL-10 (−592), IL-1β (−511), IL-5 (−746) and IL-8 (−251) SNPs were associated with decreased risk of URI. Conclusion IL-1β (−31), CX3CR1 (Thr280Met), IL-10 (−1082) and IL-1β (−511) SNPs were associated with increased risk for frequent URIs or OM proneness. PMID:24718616

  4. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes.

    PubMed

    Sutton, Jolene T; Nakagawa, Shinichi; Robertson, Bruce C; Jamieson, Ian G

    2011-11-01

    The major histocompatibility complex (MHC) forms an integral component of the vertebrate immune response and, due to strong selection pressures, is one of the most polymorphic regions of the entire genome. Despite over 15 years of research, empirical studies offer highly contradictory explanations of the relative roles of different evolutionary forces, selection and genetic drift, acting on MHC genes during population bottlenecks. Here, we take a meta-analytical approach to quantify the results of studies into the effects of bottlenecks on MHC polymorphism. We show that the consequences of selection acting on MHC loci prior to a bottleneck event, combined with drift during the bottleneck, will result in overall loss of MHC polymorphism that is ∼15% greater than loss of neutral genetic diversity. These results are counter to general expectations that selection should maintain MHC polymorphism, but do agree with the results of recent simulation models and at least two empirical studies. Notably, our results suggest that negative frequency-dependent selection could be more important than overdominance for maintaining high MHC polymorphism in pre-bottlenecked populations.

  5. Landscape-scale variation in an anthropogenic factor shapes immune gene variation within a wild population.

    PubMed

    Gonzalez-Quevedo, Catalina; Davies, Richard G; Phillips, Karl P; Spurgin, Lewis G; Richardson, David S

    2016-09-01

    Understanding the spatial scale at which selection acts upon adaptive genetic variation in natural populations is fundamental to our understanding of evolutionary ecology, and has important ramifications for conservation. The environmental factors to which individuals of a population are exposed can vary at fine spatial scales, potentially generating localized patterns of adaptation. Here, we compared patterns of neutral and major histocompatibility complex (MHC) variation within an island population of Berthelot's pipit (Anthus berthelotii) to assess whether landscape-level differences in pathogen-mediated selection generate fine-scale spatial structuring in these immune genes. Specifically, we tested for spatial associations between the distribution of avian malaria, and the factors previously shown to influence that distribution, and MHC variation within resident individuals. Although we found no overall genetic structure across the population for either neutral or MHC loci, we did find localized associations between environmental factors and MHC variation. One MHC class I allele (ANBE48) was directly associated with malaria infection risk, while the presence of the ANBE48 and ANBE38 alleles within individuals correlated (positively and negatively, respectively) with distance to the nearest poultry farm, an anthropogenic factor previously shown to be an important determinant of disease distribution in the study population. Our findings highlight the importance of considering small spatial scales when studying the patterns and processes involved in evolution at adaptive loci. PMID:27411090

  6. Landscape-scale variation in an anthropogenic factor shapes immune gene variation within a wild population.

    PubMed

    Gonzalez-Quevedo, Catalina; Davies, Richard G; Phillips, Karl P; Spurgin, Lewis G; Richardson, David S

    2016-09-01

    Understanding the spatial scale at which selection acts upon adaptive genetic variation in natural populations is fundamental to our understanding of evolutionary ecology, and has important ramifications for conservation. The environmental factors to which individuals of a population are exposed can vary at fine spatial scales, potentially generating localized patterns of adaptation. Here, we compared patterns of neutral and major histocompatibility complex (MHC) variation within an island population of Berthelot's pipit (Anthus berthelotii) to assess whether landscape-level differences in pathogen-mediated selection generate fine-scale spatial structuring in these immune genes. Specifically, we tested for spatial associations between the distribution of avian malaria, and the factors previously shown to influence that distribution, and MHC variation within resident individuals. Although we found no overall genetic structure across the population for either neutral or MHC loci, we did find localized associations between environmental factors and MHC variation. One MHC class I allele (ANBE48) was directly associated with malaria infection risk, while the presence of the ANBE48 and ANBE38 alleles within individuals correlated (positively and negatively, respectively) with distance to the nearest poultry farm, an anthropogenic factor previously shown to be an important determinant of disease distribution in the study population. Our findings highlight the importance of considering small spatial scales when studying the patterns and processes involved in evolution at adaptive loci.

  7. Sublethal effects of acaricides and Nosema ceranae infection on immune related gene expression in honeybees.

    PubMed

    Garrido, Paula Melisa; Porrini, Martín Pablo; Antúnez, Karina; Branchiccela, Belén; Martínez-Noël, Giselle María Astrid; Zunino, Pablo; Salerno, Graciela; Eguaras, Martín Javier; Ieno, Elena

    2016-04-26

    Nosema ceranae is an obligate intracellular parasite and the etiologic agent of Nosemosis that affects honeybees. Beside the stress caused by this pathogen, honeybee colonies are exposed to pesticides under beekeeper intervention, such as acaricides to control Varroa mites. These compounds can accumulate at high concentrations in apicultural matrices. In this work, the effects of parasitosis/acaricide on genes involved in honeybee immunity and survival were evaluated. Nurse bees were infected with N. ceranae and/or were chronically treated with sublethal doses of coumaphos or tau-fluvalinate, the two most abundant pesticides recorded in productive hives. Our results demonstrate the following: (1) honeybee survival was not affected by any of the treatments; (2) parasite development was not altered by acaricide treatments; (3) coumaphos exposure decreased lysozyme expression; (4) N. ceranae reduced levels of vitellogenin transcripts independently of the presence of acaricides. However, combined effects among stressors on imagoes were not recorded. Sublethal doses of acaricides and their interaction with other ubiquitous parasites in colonies, extending the experimental time, are of particular interest in further research work.

  8. Sublethal effects of acaricides and Nosema ceranae infection on immune related gene expression in honeybees.

    PubMed

    Garrido, Paula Melisa; Porrini, Martín Pablo; Antúnez, Karina; Branchiccela, Belén; Martínez-Noël, Giselle María Astrid; Zunino, Pablo; Salerno, Graciela; Eguaras, Martín Javier; Ieno, Elena

    2016-01-01

    Nosema ceranae is an obligate intracellular parasite and the etiologic agent of Nosemosis that affects honeybees. Beside the stress caused by this pathogen, honeybee colonies are exposed to pesticides under beekeeper intervention, such as acaricides to control Varroa mites. These compounds can accumulate at high concentrations in apicultural matrices. In this work, the effects of parasitosis/acaricide on genes involved in honeybee immunity and survival were evaluated. Nurse bees were infected with N. ceranae and/or were chronically treated with sublethal doses of coumaphos or tau-fluvalinate, the two most abundant pesticides recorded in productive hives. Our results demonstrate the following: (1) honeybee survival was not affected by any of the treatments; (2) parasite development was not altered by acaricide treatments; (3) coumaphos exposure decreased lysozyme expression; (4) N. ceranae reduced levels of vitellogenin transcripts independently of the presence of acaricides. However, combined effects among stressors on imagoes were not recorded. Sublethal doses of acaricides and their interaction with other ubiquitous parasites in colonies, extending the experimental time, are of particular interest in further research work. PMID:27118545

  9. Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling

    PubMed Central

    2010-01-01

    Background There was a large scale outbreak of the highly pathogenic porcine reproductive and respiratory syndrome (PRRS) in China and Vietnam during 2006 and 2007 that resulted in unusually high morbidity and mortality among pigs of all ages. The mechanisms underlying the molecular pathogenesis of the highly virulent PRRS virus (H-PRRSV) remains unknown. Therefore, the relationship between pulmonary gene expression profiles after H-PRRSV infection and infection pathology were analyzed in this study using high-throughput deep sequencing and histopathology. Results H-PRRSV infection resulted in severe lung pathology. The results indicate that aberrant host innate immune responses to H-PRRSV and induction of an anti-apoptotic state could be responsible for the aggressive replication and dissemination of H-PRRSV. Prolific rapid replication of H-PRRSV could have triggered aberrant sustained expression of pro-inflammatory cytokines and chemokines leading to a markedly robust inflammatory response compounded by significant cell death and increased oxidative damage. The end result was severe tissue damage and high pathogenicity. Conclusions The systems analysis utilized in this study provides a comprehensive basis for better understanding the pathogenesis of H-PRRSV. Furthermore, it allows the genetic components involved in H-PRRSV resistance/susceptibility in swine populations to be identified. PMID:20929578

  10. De novo characterization of Larimichthys crocea transcriptome for growth-/immune-related gene identification and massive microsatellite (SSR) marker development

    NASA Astrophysics Data System (ADS)

    Han, Zhaofang; Xiao, Shijun; Liu, Xiande; Liu, Yang; Li, Jiakai; Xie, Yangjie; Wang, Zhi Yong

    2016-04-01

    The large yellow croaker, Larimichthys crocea is an important marine fish in China with a high economic value. In the last decade, the stock conservation and aquaculture industry of this species have been facing severe challenges because of wild population collapse and degeneration of important economic traits. However, genes contributing to growth and immunity in L. crocea have not been thoroughly analyzed, and available molecular markers are still not sufficient for genetic resource management and molecular selection. In this work, we sequenced the transcriptome in L. crocea liver tissue with a Roche 454 sequencing platform and assembled the transcriptome into 93 801 transcripts. Of them, 38 856 transcripts were successfully annotated in nt, nr, Swiss-Prot, InterPro, COG, GO and KEGG databases. Based on the annotation information, 3 165 unigenes related to growth and immunity were identified. Additionally, a total of 6 391 simple sequence repeats (SSRs) were identified from the transcriptome, among which 4 498 SSRs had enough flanking regions to design primers for polymerase chain reactions (PCR). To access the polymorphism of these markers, 30 primer pairs were randomly selected for PCR amplification and validation in 30 individuals, and 12 primer pairs (40.0%) exhibited obvious length polymorphisms. This work applied RNA-Seq to assemble and analyze a live transcriptome in L. crocea. With gene annotation and sequence information, genes related to growth and immunity were identified and massive SSR markers were developed, providing valuable genetic resources for future gene functional analysis and selective breeding of L. crocea.

  11. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus

    PubMed Central

    Graham, Deborah S Cunninghame; Pinder, Christopher L; Tombleson, Philip; Behrens, Timothy W; Martín, Javier; Fairfax, Benjamin P; Knight, Julian C; Chen, Lingyan; Replogle, Joseph; Syvänen, Ann-Christine; Rönnblom, Lars; Graham, Robert R; Wither, Joan E; Rioux, John D; Alarcón-Riquelme, Marta E; Vyse, Timothy J

    2015-01-01

    Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry: a new GWAS, meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including 10 novel associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n=16) of transcription factors among SLE susceptibility genes. This supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE. PMID:26502338

  12. Heligmosomoides polygyrus infection is associated with lower MHC class II gene expression in Apodemus flavicollis: indication for immune suppression?

    PubMed

    Axtner, Jan; Sommer, Simone

    2011-12-01

    Due to their key role in recognizing foreign antigens and triggering the subsequent immune response the genes of the major histocompatibility complex (MHC) provide a potential target for parasites to attack in order to evade detection and expulsion from the host. A diminished MHC gene expression results in less activated T cells and might serve as a gateway for pathogens and parasites. Some parasites are suspected to be immune suppressors and promote co-infections of other parasites even in other parts of the body. In our study we found indications that the gut dwelling nematode Heligmosomoides polygyrus might exert a systemic immunosuppressive effect in yellow-necked mice (Apodemus flavicollis). The amount of hepatic MHC class II DRB gene RNA transcripts in infected mice was negatively associated with infection intensity with H. polygyrus. The hepatic expression of immunosuppressive cytokines, such as transforming growth factor β and interleukin 10 was not associated with H. polygyrus infection. We did not find direct positive associations of H. polygyrus with other helminth species. But the prevalence and infection intensity of the nematodes Syphacia stroma and Trichuris muris were higher in multiple infected individuals. Furthermore, our data indicated antagonistic effects in the helminth community of A. flavicollis as cestode infection correlated negatively with H. polygyrus and helminth species richness. Our study shows that expression analyses of immune relevant genes can also be performed in wildlife, opening new aspects and possibilities for future ecological and evolutionary research. PMID:21983561

  13. Transcriptome Signatures Reveal Rapid Induction of Immune-Responsive Genes in Human Memory CD8+ T Cells

    PubMed Central

    Yang, Cheng; Khanniche, Asma; DiSpirito, Joanna R.; Ji, Ping; Wang, Shujun; Wang, Ying; Shen, Hao

    2016-01-01

    Memory T cells (TM) play a prominent role in protection and auto-immunity due to their ability to mount a more effective response than naïve T cells (TN). However, the molecular mechanisms underlying enhanced functionality of TM are not well defined, particularly in human TM. We examined the global gene expression profiles of human CD8+ TN and TM before and after stimulation. There were 1,284, 1,373 and 1,629 differentially expressed genes between TN and TM at 0 hr, 4 hr and 24 hr after stimulation, respectively, with more genes expressed to higher levels in TM. Genes rapidly up-regulated in TN cells were largely involved in nitrogen, nucleoside and amino acid metabolisms. In contrast, those in CD8+ TM were significantly enriched for immune-response-associated processes, including cytokine production, lymphocyte activation and chemotaxis. Multiple cytokines were rapidly up-regulated in TM cells, including effector cytokines known to be produced by CD8+ T cells and important for their functions, as well as regulatory cytokines, both pro- and anti-inflammatory, that are not typically produced by CD8+ T cells. These results provide new insights into molecular mechanisms that contribute to the enhanced functionality of human CD8+ TM and their prominent role in protection and auto-immunity. PMID:27243788

  14. Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet‐induced obese mice

    PubMed Central

    Takahashi, Yumiko; Sakurai, Mutsumi; Akimoto, Yukari; Tsushida, Tojiro; Oike, Hideaki; Ippoushi, Katsunari

    2015-01-01

    Scope To examine the effect of dietary quercetin on the function of epididymal adipose tissue (EAT) in Western diet‐induced obese mice. Methods and results C57BL/6J mice were fed a control diet; a Western diet high in fat, cholesterol, and sucrose; or the same Western diet containing 0.05% quercetin for 18 weeks. Supplementation with quercetin suppressed the increase in the number of macrophages, the decrease in the ratio of CD4+ to CD8+ T cells in EAT, and the elevation of plasma leptin and tumor necrosis factor α levels in mice fed the Western diet. Comprehensive gene expression analysis revealed that quercetin suppressed gene expression associated with the accumulation and activation of immune cells, including macrophages and lymphocytes in EAT. It also improved the expression of the oxidative stress‐sensitive transcription factor NFκB, NADPH oxidases, and antioxidant enzymes. Quercetin markedly increased gene expression associated with mitochondrial oxidative phosphorylation and mitochondrial DNA content. Conclusion Quercetin most likely universally suppresses the accumulation and activation of immune cells, including antiinflammatory cells, whereas it specifically increased gene expression associated with mitochondrial oxidative phosphorylation. Suppression of oxidative stress and NFκB activity likely contributed to the prevention of the accumulation and activation of immune cells and resulting chronic inflammation. PMID:26499876

  15. Transcriptome Signatures Reveal Rapid Induction of Immune-Responsive Genes in Human Memory CD8(+) T Cells.

    PubMed

    Yang, Cheng; Khanniche, Asma; DiSpirito, Joanna R; Ji, Ping; Wang, Shujun; Wang, Ying; Shen, Hao

    2016-01-01

    Memory T cells (TM) play a prominent role in protection and auto-immunity due to their ability to mount a more effective response than naïve T cells (TN). However, the molecular mechanisms underlying enhanced functionality of TM are not well defined, particularly in human TM. We examined the global gene expression profiles of human CD8(+) TN and TM before and after stimulation. There were 1,284, 1,373 and 1,629 differentially expressed genes between TN and TM at 0 hr, 4 hr and 24 hr after stimulation, respectively, with more genes expressed to higher levels in TM. Genes rapidly up-regulated in TN cells were largely involved in nitrogen, nucleoside and amino acid metabolisms. In contrast, those in CD8(+) TM were significantly enriched for immune-response-associated processes, including cytokine production, lymphocyte activation and chemotaxis. Multiple cytokines were rapidly up-regulated in TM cells, including effector cytokines known to be produced by CD8(+) T cells and important for their functions, as well as regulatory cytokines, both pro- and anti-inflammatory, that are not typically produced by CD8(+) T cells. These results provide new insights into molecular mechanisms that contribute to the enhanced functionality of human CD8(+) TM and their prominent role in protection and auto-immunity. PMID:27243788

  16. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus.

    PubMed

    Bentham, James; Morris, David L; Cunninghame Graham, Deborah S; Pinder, Christopher L; Tombleson, Philip; Behrens, Timothy W; Martín, Javier; Fairfax, Benjamin P; Knight, Julian C; Chen, Lingyan; Replogle, Joseph; Syvänen, Ann-Christine; Rönnblom, Lars; Graham, Robert R; Wither, Joan E; Rioux, John D; Alarcón-Riquelme, Marta E; Vyse, Timothy J

    2015-12-01

    Systemic lupus erythematosus (SLE) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry, constituting a new GWAS, a meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including ten new associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n = 16) of transcription factors among SLE susceptibility genes. This finding supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE. PMID:26502338

  17. Characterisation of immune-related gene expression in clam (Venerupis philippinarum) under exposure to di(2-ethylhexyl) phthalate.

    PubMed

    Lu, Yali; Zhang, Peng; Li, Chenghua; Su, Xiurong; Jin, Chunhua; Li, Ye; Xu, Yongjian; Li, Taiwu

    2013-01-01

    Di(2-ethylhexyl) phthalate (DEHP) mediates the immune system mainly by triggering the production of reactive oxygen species (ROS) and nitric oxide (NO) in higher animals. In the present study, spatial variation in the expression of immune-related genes in clam (Venerupis philippinarum) under acute short-term DEHP treatment was assessed by qPCR. The expression of six genes including glutamine synthetase (GS), IkB (IK), transcription factor activator protein-1 (AP-1), cyclophilin A-1 (CypA-1), heat shock protein 90 (HSP90) and superoxide dismutase (SOD) was dose-dependent. A negative correlation between expression and DEHP treatment was observed for big defensin (BD), glutathione S-transferase (GST), and thioredoxin peroxidase (TP). Surprisingly, lysozyme (LYZ) exhibited two distinct expression patterns at two DEHP doses. Significant differences between the experimental and control groups were observed for all tested genes at the various time points. Overall, our results revealed that DEHP mediates immune responses in clams by various means, and certain genes are promising candidate for biomarkers in DEHP monitoring.

  18. Vaccination with lentiviral vector expressing the nfa1 gene confers a protective immune response to mice infected with Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Yang, Hee-Jong; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun; Shin, Ho-Joon

    2013-07-01

    Naegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and animals. The nfa1 gene (360 bp), cloned from a cDNA library of N. fowleri, produces a 13.1-kDa recombinant protein which is located on pseudopodia, particularly the food cup structure. The nfa1 gene plays an important role in the pathogenesis of N. fowleri infection. To examine the effect of nfa1 DNA vaccination against N. fowleri infection, we constructed a lentiviral vector (pCDH) expressing the nfa1 gene. For the in vivo mouse study, BALB/c mice were intranasally vaccinated with viral particles of a viral vector expressing the nfa1 gene. To evaluate the effect of vaccination and immune responses of mice, we analyzed the IgG levels (IgG, IgG1, and IgG2a), cytokine induction (interleukin-4 [IL-4] and gamma interferon [IFN-γ]), and survival rates of mice that developed PAM. The levels of both IgG and IgG subclasses (IgG1 and IgG2a) in vaccinated mice were significantly increased. The cytokine analysis showed that vaccinated mice exhibited greater IL-4 and IFN-γ production than the other control groups, suggesting a Th1/Th2 mixed-type immune response. In vaccinated mice, high levels of Nfa1-specific IgG antibodies continued until 12 weeks postvaccination. The mice vaccinated with viral vector expressing the nfa1 gene also exhibited significantly higher survival rates (90%) after challenge with N. fowleri trophozoites. Finally, the nfa1 vaccination effectively induced protective immunity by humoral and cellular immune responses in N. fowleri-infected mice. These results suggest that DNA vaccination using a viral vector may be a potential tool against N. fowleri infection. PMID:23677321

  19. Vaccination with lentiviral vector expressing the nfa1 gene confers a protective immune response to mice infected with Naegleria fowleri.

    PubMed

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Yang, Hee-Jong; Chwae, Yong-Joon; Kim, Kyongmin; Park, Sun; Shin, Ho-Joon

    2013-07-01

    Naegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and animals. The nfa1 gene (360 bp), cloned from a cDNA library of N. fowleri, produces a 13.1-kDa recombinant protein which is located on pseudopodia, particularly the food cup structure. The nfa1 gene plays an important role in the pathogenesis of N. fowleri infection. To examine the effect of nfa1 DNA vaccination against N. fowleri infection, we constructed a lentiviral vector (pCDH) expressing the nfa1 gene. For the in vivo mouse study, BALB/c mice were intranasally vaccinated with viral particles of a viral vector expressing the nfa1 gene. To evaluate the effect of vaccination and immune responses of mice, we analyzed the IgG levels (IgG, IgG1, and IgG2a), cytokine induction (interleukin-4 [IL-4] and gamma interferon [IFN-γ]), and survival rates of mice that developed PAM. The levels of both IgG and IgG subclasses (IgG1 and IgG2a) in vaccinated mice were significantly increased. The cytokine analysis showed that vaccinated mice exhibited greater IL-4 and IFN-γ production than the other control groups, suggesting a Th1/Th2 mixed-type immune response. In vaccinated mice, high levels of Nfa1-specific IgG antibodies continued until 12 weeks postvaccination. The mice vaccinated with viral vector expressing the nfa1 gene also exhibited significantly higher survival rates (90%) after challenge with N. fowleri trophozoites. Finally, the nfa1 vaccination effectively induced protective immunity by humoral and cellular immune responses in N. fowleri-infected mice. These results suggest that DNA vaccination using a viral vector may be a potential tool against N. fowleri infection.

  20. Identification of Immune-Related Genes and Development of SSR/SNP Markers from the Spleen Transcriptome of Schizothorax prenanti

    PubMed Central

    Zhang, Zhengshi; Lv, Changhuan; Zheng, Shuming; Wang, Zhiyong; Wang, Xiaoqing

    2016-01-01

    Schizothorax prenanti (S. prenanti) is mainly distributed in the upstream regions of the Yangtze River and its tributaries in China. This species is indigenous and commercially important. However, in recent years, wild populations and aquacultures have faced the serious challenges of germplasm variation loss and an increased susceptibility to a range of pathogens. Currently, the genetics and immune mechanisms of S. prenanti are unknown, partly due to a lack of genome and transcriptome information. Here, we sought to identify genes related to immune functions and to identify molecular markers to study the function of these genes and for trait mapping. To this end, the transcriptome from spleen tissues of S. prenanti was analyzed and sequenced. Using paired-end reads from the Illumina Hiseq2500 platform, 48,517 transcripts were isolated from the spleen transcriptome. These transcripts could be clustered into 37,785 unigenes with an N50 length of 2,539 bp. The majority of the unigenes (35,653, 94.4%) were successfully annotated using non-redundant nucleotide sequence analysis (nt), and the non-redundant protein (nr), Swiss-Prot, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. KEGG pathway assignment identified more than 500 immune-related genes. Furthermore, 7,545 putative simple sequence repeats (SSRs), 857,535 single nucleotide polymorphisms (SNPs), and 53,481 insertion/deletion (InDels) were detected from the transcriptome. This is the first reported high-throughput transcriptome analysis of S. prenanti, and it provides valuable genetic resources for the investigation of immune mechanisms, conservation of germplasm, and molecular marker-assisted breeding of S. prenanti. PMID:27019203

  1. Expression of Mytilus immune genes in response to experimental challenges varied according to the site of collection.

    PubMed

    Li, Hui; Venier, Paola; Prado-Alvárez, María; Gestal, Camino; Toubiana, Mylène; Quartesan, Rosita; Borghesan, Fabio; Novoa, Beatriz; Figueras, Antonio; Roch, Philippe

    2010-04-01

    Mussels live in diverse coastal environments experience various physical, chemical and biological conditions, which they counteract with functional adjustments and heritable adaptive changes. In order to investigate possible differences in immune system capabilities, we analyzed by qPCR the expression levels of 4 immune genes (defensin, mytilin B, myticin B, lysozyme) and HSP70 in the Mediterranean mussel, Mytilus galloprovincialis collected in 3 European farming areas {Atlantic Ocean-Ría de Vigo-Spain (RV), French Mediterranean Gulf of Lion-Palavas-Prévost lagoon (PP) and Northern Adriatic Sea-Venice-Italy (VI)} in response to one injection of one of the 3 bacterial species (Vibrio splendidus LGP32, Vibrio anguillarum, Micrococcus lysodeikticus), and to heat shock or cold stress. We confirmed that the 5 genes are constitutively expressed in hemocytes, defensin being the less expressed, myticin B the highest. As suspected, the same gene resulted differently expressed according to mussel group, with the biggest difference being for HSP70 and lysozyme and lowest expression of all the 5 genes in mussels from RV. In addition, gene expression levels varied according to the challenge. Most frequent effect of bacterial injections was down-regulation, especially for mytilin B and myticin B. Heat shock enhanced transcript levels, particularly in mussels from RV, whereas cold stress had no effect. In situ hybridization of labelled probes on mussel hemocytes indicated that bacterial injections did not change the mRNA patterns of defensin and myticin B whereas mytilin B mRNA almost disappeared. In conclusion, these results demonstrated that constitutive level, nature and intensity of immune gene expression regulations strongly depended from mussel group, and support the concept of gene-environment interactions. PMID:20045066

  2. Patients with genetically heterogeneous synchronous colorectal cancer carry rare damaging germline mutations in immune-related genes.

    PubMed

    Cereda, Matteo; Gambardella, Gennaro; Benedetti, Lorena; Iannelli, Fabio; Patel, Dominic; Basso, Gianluca; Guerra, Rosalinda F; Mourikis, Thanos P; Puccio, Ignazio; Sinha, Shruti; Laghi, Luigi; Spencer, Jo; Rodriguez-Justo, Manuel; Ciccarelli, Francesca D

    2016-01-01

    Synchronous colorectal cancers (syCRCs) are physically separated tumours that develop simultaneously. To understand how the genetic and environmental background influences the development of multiple tumours, here we conduct a comparative analysis of 20 syCRCs from 10 patients. We show that syCRCs have independent genetic origins, acquire dissimilar somatic alterations, and have different clone composition. This inter- and intratumour heterogeneity must be considered in the selection of therapy and in the monitoring of resistance. SyCRC patients show a higher occurrence of inherited damaging mutations in immune-related genes compared to patients with solitary colorectal cancer and to healthy individuals from the 1,000 Genomes Project. Moreover, they have a different composition of immune cell populations in tumour and normal mucosa, and transcriptional differences in immune-related biological processes. This suggests an environmental field effect that promotes multiple tumours likely in the background of inflammation. PMID:27377421

  3. Patients with genetically heterogeneous synchronous colorectal cancer carry rare damaging germline mutations in immune-related genes

    PubMed Central

    Cereda, Matteo; Gambardella, Gennaro; Benedetti, Lorena; Iannelli, Fabio; Patel, Dominic; Basso, Gianluca; Guerra, Rosalinda F.; Mourikis, Thanos P.; Puccio, Ignazio; Sinha, Shruti; Laghi, Luigi; Spencer, Jo; Rodriguez-Justo, Manuel; Ciccarelli, Francesca D.

    2016-01-01

    Synchronous colorectal cancers (syCRCs) are physically separated tumours that develop simultaneously. To understand how the genetic and environmental background influences the development of multiple tumours, here we conduct a comparative analysis of 20 syCRCs from 10 patients. We show that syCRCs have independent genetic origins, acquire dissimilar somatic alterations, and have different clone composition. This inter- and intratumour heterogeneity must be considered in the selection of therapy and in the monitoring of resistance. SyCRC patients show a higher occurrence of inherited damaging mutations in immune-related genes compared to patients with solitary colorectal cancer and to healthy individuals from the 1,000 Genomes Project. Moreover, they have a different composition of immune cell populations in tumour and normal mucosa, and transcriptional differences in immune-related biological processes. This suggests an environmental field effect that promotes multiple tumours likely in the background of inflammation. PMID:27377421

  4. Eliciting specific humoral immunity from a plasmid DNA encoding infectious bursal disease virus polyprotein gene fused with avian influenza virus hemagglutinin gene.

    PubMed

    Mosley, Yung-Yi C; Hsieh, Ming Kun; Wu, Ching Ching; Lin, Tsang Long

    2015-01-01

    DNA vaccine coding for infectious bursal disease virus (IBDV) polyprotein gene and that for avian influenza virus (AIV) hemagglutinin (HA) gene have been shown to induce immunity and provide protection against the respective disease. The present study was carried out to determine whether an IBDV polyprotein gene-based DNA fused with AIV HA gene could trigger immune response to both IBDV and AIV. After transfection, VP2 and HA were detected in the cytoplasm and at cell membrane, respectively, by immunofluorescent antibody double staining method, suggesting the fusion strategy did not affect the location of protein expression. VP4 cleavage between VP2 and HA was confirmed by Western blot, indicating the fusion strategy did not affect VP4 function in transfected cells. After vaccination in chickens, the DNA construct VP24-HA/pcDNA induced ELISA and virus neutralizing antibodies against VP2 and hemagglutination inhibition antibody against the HA subtype. The results indicated that a single plasmid construct carrying IBDV VP243 gene-based DNA fused with AIV HA gene can elicit specific antibody responses to both IBDV and AIV by DNA vaccination.

  5. Dactylogyrus intermedius parasitism enhances Flavobacterium columnare invasion and alters immune-related gene expression in Carassius auratus.

    PubMed

    Zhang, Chao; Li, Dong-liang; Chi, Cheng; Ling, Fei; Wang, Gao-xue

    2015-09-17

    The monogenean Dactylogyrus intermedius and the bacterium Flavobacterium columnare are 2 common pathogens in aquaculture. The objective of the present study was to examine the effect of prior parasitism by D. intermedius on the susceptibility of goldfish to F. columnare and to explore the potential immune mechanisms related to the parasite infection. A F. columnare challenge trial was conducted between D. intermedius-parasitized and non-parasitized goldfish. The F. columnare load in gill, kidney, spleen and liver were compared. The expression of immune-related genes (IL-1β2, TNF-α1, TGF-β, iNOS-a, C3 and Lyz) in gill and kidney of D. intermedius-only infected and uninfected control fish were evaluated. D. intermedius-parasitized goldfish exhibited higher mortality and significantly higher loads (3051 to 537,379 genome equivalents [GEs] mg(-1)) of F. columnare, which were 1.13 to 50.82-fold higher than non-parasitized fish (389 to 17,829 GEs mg(-1)). Furthermore, the immune genes IL-1β2, TNF-α1, iNOS-a and Lyz were up-regulated while the TGF-β and C3 were down-regulated in the gill and kidney of parasite-infected fish compared to the non-parasitized controls. The down-regulation TGF-β and C3 was especially noteworthy, as this might indicate the suppression of the host immune functions due to the parasitism by D. intermedius. Taken together, these data demonstrate that parasite infection can enhance bacterial invasion and presents a hypothesis, based on gene expression data, that modulation of host immune response could play a role.

  6. An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer

    PubMed Central

    Teschendorff, Andrew E; Miremadi, Ahmad; Pinder, Sarah E; Ellis, Ian O; Caldas, Carlos

    2007-01-01

    Background Estrogen receptor (ER)-negative breast cancer specimens are predominantly of high grade, have frequent p53 mutations, and are broadly divided into HER2-positive and basal subtypes. Although ER-negative disease has overall worse prognosis than does ER-positive breast cancer, not all ER-negative breast cancer patients have poor clinical outcome. Reliable identification of ER-negative tumors that have a good prognosis is not yet possible. Results We apply a recently proposed feature selection method in an integrative analysis of three major microarray expression datasets to identify molecular subclasses and prognostic markers in ER-negative breast cancer. We find a subclass of basal tumors, characterized by over-expression of immune response genes, which has a better prognosis than the rest of ER-negative breast cancers. Moreover, we show that, in contrast to ER-positive tumours, the majority of prognostic markers in ER-negative breast cancer are over-expressed in the good prognosis group and are associated with activation of complement and immune response pathways. Specifically, we identify an immune response related seven-gene module and show that downregulation of this module confers greater risk for distant metastasis (hazard ratio 2.02, 95% confidence interval 1.2-3.4; P = 0.009), independent of lymph node status and lymphocytic infiltration. Furthermore, we validate the immune response module using two additional independent datasets. Conclusion We show that ER-negative basal breast cancer is a heterogeneous disease with at least four main subtypes. Furthermore, we show that the heterogeneity in clinical outcome of ER-negative breast cancer is related to the variability in expression levels of complement and immune response pathway genes, independent of lymphocytic infiltration. PMID:17683518

  7. Diversity and evolution of 11 innate immune genes in Bos taurus taurus and Bos taurus indicus cattle

    PubMed Central

    Seabury, Christopher M.; Seabury, Paul M.; Decker, Jared E.; Schnabel, Robert D.; Taylor, Jeremy F.; Womack, James E.

    2009-01-01

    The Toll-like receptor (TLR) and peptidoglycan recognition protein 1 (PGLYRP1) genes play key roles in the innate immune systems of mammals. While the TLRs recognize a variety of invading pathogens and induce innate immune responses, PGLYRP1 is directly microbicidal. We used custom allele-specific assays to genotype and validate 220 diallelic variants, including 54 nonsynonymous SNPs in 11 bovine innate immune genes (TLR1-TLR10, PGLYRP1) for 37 cattle breeds. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and we were unable to differentiate between the specialized B. t. taurus beef and dairy breeds, despite an average polymorphism density of one locus per 219 bp. Ninety-nine tagSNPs and one tag insertion-deletion polymorphism were sufficient to predict 100% of the variation at all 11 innate immune loci in both subspecies and their hybrids, whereas 58 tagSNPs captured 100% of the variation at 172 loci in B. t. taurus. PolyPhen and SIFT analyses of nonsynonymous SNPs encoding amino acid replacements indicated that the majority of these substitutions were benign, but up to 31% were expected to potentially impact protein function. Several diversity-based tests provided support for strong purifying selection acting on TLR10 in B. t. taurus cattle. These results will broadly impact efforts related to bovine translational genomics. PMID:20018671

  8. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity.

    PubMed

    Wang, Yaya; Shaked, Iftach; Stanford, Stephanie M; Zhou, Wenbo; Curtsinger, Julie M; Mikulski, Zbigniew; Shaheen, Zachary R; Cheng, Genhong; Sawatzke, Kristy; Campbell, Amanda M; Auger, Jennifer L; Bilgic, Hatice; Shoyama, Fernanda M; Schmeling, David O; Balfour, Henry H; Hasegawa, Kiminori; Chan, Andrew C; Corbett, John A; Binstadt, Bryce A; Mescher, Matthew F; Ley, Klaus; Bottini, Nunzio; Peterson, Erik J

    2013-07-25

    Immune cells sense microbial products through Toll-like receptors (TLR), which trigger host defense responses including type 1 interferons (IFNs) secretion. A coding polymorphism in the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is a susceptibility allele for human autoimmune and infectious disease. We report that Ptpn22 selectively regulated type 1 IFN production after TLR engagement in myeloid cells. Ptpn22 promoted host antiviral responses and was critical for TLR agonist-induced, type 1 IFN-dependent suppression of inflammation in colitis and arthritis. PTPN22 directly associated with TNF receptor-associated factor 3 (TRAF3) and promotes TRAF3 lysine 63-linked ubiquitination. The disease-associated PTPN22W variant failed to promote TRAF3 ubiquitination, type 1 IFN upregulation, and type 1 IFN-dependent suppression of arthritis. The findings establish a candidate innate immune mechanism of action for a human autoimmunity "risk" gene in the regulation of host defense and inflammation.

  9. Immune gene expression profiling of PBMC isolated from horses vaccinated with attenuated African horsesickness virus serotype 4.

    PubMed

    Pretorius, A; Faber, F E; van Kleef, M

    2016-02-01

    Development of African horsesickness (AHS) subunit vaccines will have to include a rational approach that uses knowledge of how the virus interacts with the host immune system. The global in vivo immune response induced by attenuated AHSV serotype 4 in horses was characterised using transcriptome sequencing. PBMC were collected with 24h intervals for four days after inoculation and four days after a second boost, 21 days later. Transcriptome data were normalised to the day 0 naïve transcriptome and up- or down-regulated immune genes identified using the CLC workbench. Peak expression was observed 24h after each inoculation. Innate immunity was up-regulated after both inoculations and was characterised by type-1 interferon activation via the RIG-1/MDA5 pathway and the up-regulation of complement cascade components. After the second boost an adaptive immune response could be identified that included the production of cytokines indicative of T helper (Th)1, Th2 and Th17 responses.

  10. Adult midgut expressed sequence tags from the tsetse fly Glossina morsitans morsitans and expression analysis of putative immune response genes

    PubMed Central

    Lehane, M J; Aksoy, S; Gibson, W; Kerhornou, A; Berriman, M; Hamilton, J; Soares, M B; Bonaldo, M F; Lehane, S; Hall, N

    2003-01-01

    Background Tsetse flies transmit African trypanosomiasis leading to half a million cases annually. Trypanosomiasis in animals (nagana) remains a massive brake on African agricultural development. While trypanosome biology is widely studied, knowledge of tsetse flies is very limited, particularly at the molecular level. This is a serious impediment to investigations of tsetse-trypanosome interactions. We have undertaken an expressed sequence tag (EST) project on the adult tsetse midgut, the major organ system for establishment and early development of trypanosomes. Results A total of 21,427 ESTs were produced from the midgut of adult Glossina morsitans morsitans and grouped into 8,876 clusters or singletons potentially representing unique genes. Putative functions were ascribed to 4,035 of these by homology. Of these, a remarkable 3,884 had their most significant matches in the Drosophila protein database. We selected 68 genes with putative immune-related functions, macroarrayed them and determined their expression profiles following bacterial or trypanosome challenge. In both infections many genes are downregulated, suggesting a malaise response in the midgut. Trypanosome and bacterial challenge result in upregulation of different genes, suggesting that different recognition pathways are involved in the two responses. The most notable block of genes upregulated in response to trypanosome challenge are a series of Toll and Imd genes and a series of genes involved in oxidative stress responses. Conclusions The project increases the number of known Glossina genes by two orders of magnitude. Identification of putative immunity genes and their preliminary characterization provides a resource for the experimental dissection of tsetse-trypanosome interactions. PMID:14519198

  11. MIrExpress: A Database for Gene Coexpression Correlation in Immune Cells Based on Mutual Information and Pearson Correlation

    PubMed Central

    Wang, Luman; Mo, Qiaochu; Wang, Jianxin

    2015-01-01

    Most current gene coexpression databases support the analysis for linear correlation of gene pairs, but not nonlinear correlation of them, which hinders precisely evaluating the gene-gene coexpression strengths. Here, we report a new database, MIrExpress, which takes advantage of the information theory, as well as the Pearson linear correlation method, to measure the linear correlation, nonlinear correlation, and their hybrid of cell-specific gene coexpressions in immune cells. For a given gene pair or probe set pair input by web users, both mutual information (MI) and Pearson correlation coefficient (r) are calculated, and several corresponding values are reported to reflect their coexpression correlation nature, including MI and r values, their respective rank orderings, their rank comparison, and their hybrid correlation value. Furthermore, for a given gene, the top 10 most relevant genes to it are displayed with the MI, r, or their hybrid perspective, respectively. Currently, the database totally includes 16 human cell groups, involving 20,283 human genes. The expression data and the calculated correlation results from the database are interactively accessible on the web page and can be implemented for other related applications and researches. PMID:26881263

  12. (Lack of) genetic diversity in immune genes predates glacial isolation in the North American mountain goat (Oreamnos americanus).

    PubMed

    Shafer, Aaron B A; Fan, Chia Wei; Côté, Steeve D; Coltman, David W

    2012-01-01

    The major histocompatibility complex (MHC) plays an important role in an organism's ability to respond to pathogens. Immunogenetic diversity is advantageous as it permits the recognition of more external antigens. For this reason, MHC and immune gene variation are considered a barometer for the genetic health of wild populations. Mountain goats (Oreamnos americanus) were previously shown to have little variation at the MHC Class II Oram-DRB locus, which was attributed to population bottlenecks during the last glacial maximum (LGM). In this paper, we extended the analysis of immunogenetic variability in mountain goats to 5 genes representing the 3 classes of MHC gene (Class I OLA, Class II DRA and DRB, and Class III TNF-α) and the natural resistance-associated macrophage protein. We sequenced approximately 3000 bp from 31 individuals sampled across the range of mountain goats and found very low levels of diversity (1-3 polymorphic sites per gene) with the exception of the Class I Oram-OLA gene. Oram-OLA was nearly 30 times more diverse than the other immune genes and appears to represent a source of increased immunogenetic diversity. This diversity may be attributed to multiple loci, mediated by pathogen exposure, or potentially influenced by social factors. The distribution of SNPs was not associated with refugial history, suggesting that the current distribution of immunogenetic diversity was present prior to the LGM. These data suggest that although they have low levels of diversity at the 4 of 5 immune loci, mountain goats may be better equipped for future climate oscillations and pathogen exposure than previously thought. PMID:22268162

  13. (Lack of) genetic diversity in immune genes predates glacial isolation in the North American mountain goat (Oreamnos americanus).

    PubMed

    Shafer, Aaron B A; Fan, Chia Wei; Côté, Steeve D; Coltman, David W

    2012-01-01

    The major histocompatibility complex (MHC) plays an important role in an organism's ability to respond to pathogens. Immunogenetic diversity is advantageous as it permits the recognition of more external antigens. For this reason, MHC and immune gene variation are considered a barometer for the genetic health of wild populations. Mountain goats (Oreamnos americanus) were previously shown to have little variation at the MHC Class II Oram-DRB locus, which was attributed to population bottlenecks during the last glacial maximum (LGM). In this paper, we extended the analysis of immunogenetic variability in mountain goats to 5 genes representing the 3 classes of MHC gene (Class I OLA, Class II DRA and DRB, and Class III TNF-α) and the natural resistance-associated macrophage protein. We sequenced approximately 3000 bp from 31 individuals sampled across the range of mountain goats and found very low levels of diversity (1-3 polymorphic sites per gene) with the exception of the Class I Oram-OLA gene. Oram-OLA was nearly 30 times more diverse than the other immune genes and appears to represent a source of increased immunogenetic diversity. This diversity may be attributed to multiple loci, mediated by pathogen exposure, or potentially influenced by social factors. The distribution of SNPs was not associated with refugial history, suggesting that the current distribution of immunogenetic diversity was present prior to the LGM. These data suggest that although they have low levels of diversity at the 4 of 5 immune loci, mountain goats may be better equipped for future climate oscillations and pathogen exposure than previously thought.

  14. Transcriptome Profiling Analysis on Whole Bodies of Microbial Challenged Eriocheir sinensis Larvae for Immune Gene Identification and SNP Development

    PubMed Central

    Cui, Zhaoxia; Li, Xihong; Liu, Yuan; Song, Chengwen; Hui, Min; Shi, Guohui; Luo, Danli; Li, Yingdong

    2013-01-01

    To study crab immunogenetics of individuals, newly hatched Eriocheir sinensis larvae were stimulated with a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 108 cfu·mL-1). A total of 44,767,566 Illumina clean reads corresponding to 4.52 Gb nucleotides were generated and assembled into 100,252 unigenes (average length: 1,042 bp; range: 201-19,357 bp). 17,097 (26.09%) of 65,535 non-redundant unigenes were annotated in NCBI non-redundant protein (Nr) database. Moreover, 23,188 (35.38%) unigenes were assigned to three Gene Ontology (GO) categories, 15,071 (23.00%) to twenty-six Clusters of orthologous Groups (COG) and 8,574 (13.08%) to six Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. Numerous genes were further identified to be associated with multiple immune pathways, including Toll, immune deficiency (IMD), janus kinase (JAK)-signal transducers and activators of transcription (STAT) and mitogen-activated protein kinase (MAPK) pathways. Some of them, such as tumor necrosis factor receptor associated factor 6 (TRAF6), fibroblast growth factor (FGF), protein-tyrosine phosphatase (PTP), JNK-interacting protein 1 (JIP1), were first identified in E. sinensis. TRAF6 was even first discovered in crabs. Additionally, 49,555 single nucleotide polymorphisms (SNPs) were developed from over 13,309 unigenes. This is the first transcriptome report of whole bodies of E. sinensis larvae after immune challenge. Data generated here not only provide detail information to identify novel genes in genome reference-free E. sinensis, but also facilitate our understanding on host immunity and defense mechanism of the crab at whole transcriptome level. PMID:24324760

  15. [Relation between Ia antigens and Ir gene products. A theory on the development of the immune response].

    PubMed

    Seignalet, J

    1983-11-01

    To explain the relations between Ia and Ir, we propose the following hypothesis. It would exist an antigen specific factor released by T lymphocytes. This factor would be constituted by two parts: a variable fragment forming the antigenic receptor of T cells and coded by Ir genes, a constant fragment transmitting a helper or suppressor signal and carrying Ia antigens. Ia antigens would allow a mutual recognition between macrophages, T lymphocytes and B lymphocytes and a recognition by these cells of some mediators released during immune response. Ir genes products would allow the antigen recognition, if they correspond to the antigenic receptor of T lymphocytes.

  16. [Relations between Ia antigens and the products of Ir genes. A theory of the evolution of the immune response].

    PubMed

    Seignalet, J

    1983-01-01

    To explain the relations between Ia and Ir, we propose the following hypothesis. It would exist an antigen specific factor released by T lymphocytes. This factor would be constituted by two parts: a variable fragment forming the antigenic receptor of T cells and coded by Ir genes, a constant fragment transmitting an helper or suppressor signal and carrying Ia antigens. Ia antigens would allow a mutual recognition between macrophages, T lymphocytes and B lymphocytes and a recognition by these cells of some mediators released during immune response. Ir genes products would allow the antigen recognition, if they correspond to the antigenic receptor of T lymphocytes.

  17. The dorsal-related immunity factor, Dif, is a sequence-specific trans-activator of Drosophila Cecropin gene expression.

    PubMed Central

    Petersen, U M; Björklund, G; Ip, Y T; Engström, Y

    1995-01-01

    A new member of the Rel family of transcription factors, the dorsal-related immunity factor, Dif, was recently cloned and suggested to be involved in regulating the immune response in Drosophila. Despite its classification as a Rel family member, the Dif cDNA-encoded product has not been proven previously to be a transcription factor. We now present evidence that the Dif gene product trans-activates the Drosophila Cecropin A1 gene in co-transfection assays. The transactivation requires a 40 bp upstream element including an insect kappa B-like motif. A dimer of the kappa B-like motif 5'-GGGGATTTTT inserted into a minimal promoter conferred high levels of reporter gene expression by Dif, while a multimer of several mutated versions of this motif was not activated, demonstrating the sequence specificity of Dif. Full trans-activation by Dif requires the C-terminal part of the protein. The morphogen dorsal (dl) can also activate the Cecropin A1 promoter, but to a lesser extent and in a less sequence-specific manner than Dif. Simultaneous overexpression of Dif and dl in co-transfection assays revealed that dl possesses a dominant negative effect on Dif transactivation. This study establishes that Dif is a sequence-specific transcription factor and is probably a key activator of the immune response in Drosophila. Images PMID:7621828

  18. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection.

    PubMed

    Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung

    2016-01-01

    Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It's therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection. PMID:27088873

  19. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection.

    PubMed

    Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung

    2016-01-01

    Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It's therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection.

  20. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection

    PubMed Central

    Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung

    2016-01-01

    Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It’s therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection. PMID:27088873

  1. Germline variation in NCF4, an innate immunity gene, is associated with an increased risk of colorectal cancer

    PubMed Central

    Ryan, Bríd M.; Zanetti, Krista A.; Robles, Ana I.; Schetter, Aaron J.; Goodman, Julie; Hayes, Richard B.; Huang, Wen-Yi; Gunter, Marc J.; Yeager, Meredith; Burdette, Laurie; Berndt, Sonja I.; Harris, Curtis C.

    2013-01-01

    Chronic inflammation has been implicated in the etiology of colorectal adenoma and cancer; however, few key inflammatory genes mediating this relationship have been identified. In this study, we investigated the association of germline variation in innate immunity genes in relation to the risk of colorectal neoplasia. Our study was based on the analysis of samples collected from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. We investigated the association between 196 tag single nucleotide polymorphisms (SNPs) in 20 key innate immunity genes with risk of advanced colorectal adenoma and cancer in 719 adenoma cases, 481 cancer cases and 719 controls. Logistic regression was used to estimate odds ratios and 95% confidence intervals. After Bonferroni correction, the AG/GG genotype of rs5995355, which is upstream of NCF4, was associated with an increased risk of colorectal cancer (odds ratio [OR] 2.43, 95% confidence interval [95% CI] 1.73 – 3.39; P<0.0001). NCF4 is part of the NAPDH complex, a key factor in biochemical pathways and the innate immune response. While not definitive, our analyses suggest that the variant allele does not affect expression of NCF4, but rather modulates activity of the NADPH complex. Additional studies on the functional consequences of rs5995355 in NCF4 may help to clarify the mechanistic link between inflammation and colorectal cancer. PMID:23982929

  2. De novo RNA-Seq Analysis of the Venus Clam, Cyclina sinensis, and the Identification of Immune-Related Genes

    PubMed Central

    Pan, Baoping; Ren, Yipeng; Gao, Jing; Gao, Hong

    2015-01-01

    The Venus clam, Cyclina sinensis, is one of the most important bivalves in China. In recent years, increasing expansive morbidity has occurred in breeding areas, imposing significant losses on the national economy. To understand the molecular mechanisms of immune-related genes, we analyzed and sequenced hemolymph samples that were injected with two pathogenic microorganisms using the Illumina Miseq system. After trimming, more than 12 M PE reads with an average length greater than 410 bp were assembled into 70,079 transcripts with a mean length of 980 bp. Using a homology analysis, 102 (135 transcripts) potentially immune-related genes were identified, and most of them exhibited a similar pattern in both samples. These data indicated that the response of the clam to both types of bacterial infection might follow a similar molecular mechanism. Using the TreeFam method, 9,904 gene families and 1,031 unique families of the clam were preliminarily classified in comparison to five related species. A significant number of SSRs were identified, which could facilitate the identification of polymorphisms in Venus clam populations. These datasets will improve our knowledge of the molecular mechanisms driving the immune response to bacterial infection in clam populations and will provide basic data about clam breeding and disease control. PMID:25853714

  3. De novo RNA-Seq analysis of the venus clam, Cyclina sinensis, and the identification of immune-related genes.

    PubMed

    Pan, Baoping; Ren, Yipeng; Gao, Jing; Gao, Hong

    2015-01-01

    The Venus clam, Cyclina sinensis, is one of the most important bivalves in China. In recent years, increasing expansive morbidity has occurred in breeding areas, imposing significant losses on the national economy. To understand the molecular mechanisms of immune-related genes, we analyzed and sequenced hemolymph samples that were injected with two pathogenic microorganisms using the Illumina Miseq system. After trimming, more than 12 M PE reads with an average length greater than 410 bp were assembled into 70,079 transcripts with a mean length of 980 bp. Using a homology analysis, 102 (135 transcripts) potentially immune-related genes were identified, and most of them exhibited a similar pattern in both samples. These data indicated that the response of the clam to both types of bacterial infection might follow a similar molecular mechanism. Using the TreeFam method, 9,904 gene families and 1,031 unique families of the clam were preliminarily classified in comparison to five related species. A significant number of SSRs were identified, which could facilitate the identification of polymorphisms in Venus clam populations. These datasets will improve our knowledge of the molecular mechanisms driving the immune response to bacterial infection in clam populations and will provide basic data about clam breeding and disease control.

  4. Sensory and immune genes identification and analysis in a widely used parasitoid wasp Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae).

    PubMed

    Zhang, Su-Fang; Kong, Xiang-Bo; Wang, Hong-Bin; Zhou, Gang; Yu, Jin-Xiu; Liu, Fu; Zhang, Zhen

    2016-06-01

    Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) is one of the preponderant egg parasitoids of Dendrolimus spp., which are important defoliators of coniferous forests. This parasitoid wasp has been widely released to control pine caterpillar and other lepidopteran pests, but its control efficiency needs to be improved. Sensory systems are crucial for T. dendrolimi to locate hosts, and immunity is probably involved after egg deposition in the host cavity; however, few reports have focused on the molecular mechanism of olfactory detection and survival of T. dendrolimi. It is necessary to identify these genes before further functional research is conducted. In this study, we assembled and analyzed the transcriptome of T. dendrolimi using next-generation sequencing technology. The sequencing and assembly resulted in 38 565 contigs with N50 of 3422 bp. Sequence comparison indicate that T. dendrolimi sequences are very similar to those of another parasitoid Nasonia vitripennis. Then the olfactory, vision, and immune-related gene families were identified, and phylogenetic analyses were performed with these genes from T. dendrolimi and other model insect species. Furthermore, phylogenetic tree with odorant binding proteins of T. dendrolimi and their host Dendrolimus was constructed to determine whether convergent evolution exists. These genes can be valid targets for further gene function research. The present study may help us to understand host location and survival mechanisms of T. dendrolimi and to use them more efficiently for pest control in the future. PMID:26940718

  5. Model-based genotype-phenotype mapping used to investigate gene signatures of immune sensitivity and resistance in melanoma micrometastasis

    PubMed Central

    Santos, Guido; Nikolov, Svetoslav; Lai, Xin; Eberhardt, Martin; Dreyer, Florian S.; Paul, Sushmita; Schuler, Gerold; Vera, Julio

    2016-01-01

    In this paper, we combine kinetic modelling and patient gene expression data analysis to elucidate biological mechanisms by which melanoma becomes resistant to the immune system and to immunotherapy. To this end, we systematically perturbed the parameters in a kinetic model and performed a mathematical analysis of their impact, thereby obtaining signatures associated with the emergence of phenotypes of melanoma immune sensitivity and resistance. Our phenotypic signatures were compared with published clinical data on pretreatment tumor gene expression in patients subjected to immunotherapy against metastatic melanoma. To this end, the differentially expressed genes were annotated with standard gene ontology terms and aggregated into metagenes. Our method sheds light on putative mechanisms by which melanoma may develop immunoresistance. Precisely, our results and the clinical data point to the existence of a signature of intermediate expression levels for genes related to antigen presentation that constitutes an intriguing resistance mechanism, whereby micrometastases are able to minimize the combined anti-tumor activity of complementary responses mediated by cytotoxic T cells and natural killer cells, respectively. Finally, we computationally explored the efficacy of cytokines used as low-dose co-adjuvants for the therapeutic anticancer vaccine to overcome tumor immunoresistance. PMID:27113331

  6. Identification of Immunity-Related Genes in Ostrinia furnacalis against Entomopathogenic Fungi by RNA-Seq Analysis

    PubMed Central

    Zhou, Fan; Wang, Guirong; An, Chunju

    2014-01-01

    Background The Asian corn borer (Ostrinia furnacalis (Guenée)) is one of the most serious corn pests in Asia. Control of this pest with entomopathogenic fungus Beauveria bassiana has been proposed. However, the molecular mechanisms involved in the interactions between O. furnacalis and B. bassiana are unclear, especially under the conditions that the genomic information of O. furnacalis is currently unavailable. So we sequenced and characterized the transcriptome of O. furnacalis larvae infected by B. bassiana with special emphasis on immunity-related genes. Methodology/Principal Findings Illumina Hiseq2000 was used to sequence 4.64 and 4.72 Gb of the transcriptome from water-injected and B. bassiana-injected O. furnacalis larvae, respectively. De novo assembly generated 62,382 unigenes with mean length of 729 nt. All unigenes were searched against Nt, Nr, Swiss-Prot, COG, and KEGG databases for annotations using BLASTN or BLASTX algorithm with an E-value cut-off of 10−5. A total of 35,700 (57.2%) unigenes were annotated to at least one database. Pairwise comparisons resulted in 13,890 differentially expressed genes, with 5,843 up-regulated and 8,047 down-regulated. Based on sequence similarity to homologs known to participate in immune responses, we totally identified 190 potential immunity-related unigenes. They encode 45 pattern recognition proteins, 33 modulation proteins involved in the prophenoloxidase activation cascade, 46 signal transduction molecules, and 66 immune responsive effectors, respectively. The obtained transcriptome contains putative orthologs for nearly all components of the Toll, Imd, and JAK/STAT pathways. We randomly selected 24 immunity-related unigenes and investigated their expression profiles using quantitative RT-PCR assay. The results revealed variant expression patterns in response to the infection of B. bassiana. Conclusions/Significance This study provides the comprehensive sequence resource and expression profiles of the

  7. Identification of quantitative trait loci controlling gene expression during the innate immunity response of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbe associated molecular pattern (MAMP)-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we re...

  8. Interleukin-18 gene promoter--607 A/C polymorphism and the risk of immune thrombocytopenia.

    PubMed

    Zhao, Haifeng; Zhang, Yizhuo; Xiao, Gangfeng; Wu, Ningning; Xu, Jianfen; Fang, Zhi

    2014-11-01

    Interleukin-18 (IL-18) is a T helper 1 cytokine, which is postulated to play a role in immune thrombocytopenia (ITP). The aim of this study was to determine whether IL-18 promoter gene -607 A/C polymorphism was associated with ITP. Three-hundred and fifty-four Chinese ITP patients and 300 Chinese healthy individuals were enrolled. Genomic DNA was extracted from the peripheral blood. Polymerase chain reaction-restriction fragment length polymorphism (RFLP) was used to genotype the DNA samples for single nucleotide polymorphism (SNP)-607. Allelic and genotypic frequencies were compared between the case-control groups by the chi-square test. The results showed that the frequencies of the CC, CA and AA genotypes and C and A allele were 32.4, 47.8, 19.8, 56.4 and 43.6% in ITP patients and 32.3, 50.4, 17.3, 57.5 and 42.5% in the controls, respectively. There was no significant difference in either genotypes or allelic distribution between ITP patients and the controls. Furthermore, stratified analysis by the platelet count, age and disease course including ITP with severe thrombocytopenia (sITP), non-sITP, acute adult, chronic adult, acute childhood and chronic childhood revealed no significant difference in genotype and alleles distribution. In conclusion, this polymorphism was almost equally distributed between ITP patients and the controls. These data showed that this SNP may not be used as a stratification marker to predict the susceptibility to Chinese ITP.

  9. Altered signalling and gene expression associated with the immune system and the inflammatory response in obesity.

    PubMed

    Gil, Angel; María Aguilera, Concepción; Gil-Campos, Mercedes; Cañete, Ramón

    2007-10-01

    White adipose tissue functions not only as an energy store but also as an important endocrine organ and is involved in the regulation of many pathological processes. The obese state is characterised by a low-grade systemic inflammation, mainly a result of increased adipocyte as well as fat resident- and recruited-macrophage activity. In the past few years, various products of adipose tissue including adipokines and cytokines have been characterised and a number of pathways linking adipose tissue metabolism with the immune system have been identified. In obesity, the pro- and anti-inflammatory effects of adipokines and cytokines through intracellular signalling pathways mainly involve the nuclear factor kappa B (NF-kappaB) and the Jun N-terminal kinase (JNK) systems as well as the I kappa B kinase beta (IKK-beta). Mitogen-activated protein kinase (MAPK) and extracellular-signal-regulated kinase (ERK) pathways, which lead to signal transducer and activator of transcription 3 (STAT3) activation, are also important in the production of pro-inflammatory cytokines. Obesity increases the expression of leptin and other cytokines, as well as some macrophage and inflammatory markers, and decreases adiponectin expression in adipose tissue. A number of cytokines, e.g. tumour necrosis factor alpha (TNF-alpha) and monocyte chemotactic protein 1 (MCP-1), and some pro-inflammatory interleukins, leuckocyte antigens, chemochines, surface adhesion molecules and metalloproteases are up-regulated whereas other factors are down-regulated. The present paper will focus on the molecular mechanisms linking obesity and inflammation with emphasis on the alteration of signalling and gene expression in adipose cell components.

  10. Polymorphisms in pattern-recognition genes in the innate immunity system and risk of non-Hodgkin lymphoma.

    PubMed

    Hu, Wei; Bassig, Bryan A; Xu, Jun; Zheng, Tongzhang; Zhang, Yawei; Berndt, Sonja I; Holford, Theodore R; Hosgood, H Dean; Leaderer, Brian; Yeager, Meredith; Menashe, Idan; Boyle, Peter; Zou, Kaiyong; Zhu, Yong; Chanock, Stephen; Lan, Qing; Rothman, Nathaniel

    2013-01-01

    The pattern-recognition pathway plays an important role in infection recognition and immune responses, and previous studies have suggested an association between genetic variation in innate immunity genes and non-Hodgkin lymphoma (NHL). We evaluated NHL risk associated with genetic variation in pattern-recognition genes using data from a case-control study of NHL conducted in Connecticut women. Single nucleotide polymorphisms (SNPs) in 27 pattern-recognition genes were genotyped in 432 Caucasian incident NHL cases and 494 frequency-matched controls. Unconditional logistic regression was used to compute odds ratios (ORs) for NHL and common NHL subtypes in relation to individual SNPs and haplotypes. A gene-based analysis that adjusted for the number of tagSNPs genotyped in each gene showed a significant association with overall NHL for the MBP gene (P = 0.028), with the diffuse large B-cell lymphoma (DLBCL) subtype for the MASP2 gene (P = 0.011), and with the follicular lymphoma (FL) subtype for DEFB126 (P = 0.041). A SNP-based analysis showed that MBP rs8094402 was associated with decreased risks of overall NHL (allele risk OR = 0.72, P-trend = 0.0018), DLBCL (allele risk OR = 0.72, P-trend = 0.036), and FL (allele risk OR = 0.67, P-trend = 0.021), while MASP2 rs12711521 was associated with a decreased risk of DLBCL (allele risk OR = 0.57, P-trend = 0.0042). We also observed an increased risk of FL for DEFB126 rs6054706 (allele risk OR = 1.39, P-trend = 0.033). Our results suggest that genetic variation in pattern-recognition genes is associated with the risk of NHL or specific NHL subtypes, but these preliminary findings require replication in larger studies.

  11. Expression profile of immune-associated genes in the kidney of cultured large yellow croaker Larimichthys crocea in the East China Sea area

    NASA Astrophysics Data System (ADS)

    Zhao, Shujiang; Zhao, Qian; Chen, Yinghua; Lv, Baoqiang; Wu, Xiongfei; Liu, Huihui; Zhu, Aiyi; Wu, Changwen

    2016-08-01

    To explore the effect of environment conditions on immune activity of fish, eight immune-associated genes responsible for innate immunity were selected from the GenBank, i.e. Pgrn-a, Ifit2, P-hepcidin, Lect2, β2m, Irf1, Il25 and Hsp96, and the mRNA expressions of them in the kidney of cultured large yellow croaker Larimichthys crocea in different sea areas in the East China Sea were examined with qPCR techniques. In the contrasts of immune-associated gene expression between areas and populations, significant differences were found, expression levels of these immune-associated genes were lower in the clear water area than in the poor water quantity area, and lower in May than in October. MY was more sensitive to environmental factors than DQ, which was coincident with the water quality in the culturing areas. Differential analyses of the expression levels of these immune-associated genes showed that significant up-regulation could be triggered by poor environmental factors. The expression patterns indicated that the expression levels of these genes were sensitive to ecological changes, thereby the immune-associated genes, especially Pgrn-a, Ifit2, β2m, Il25 and Hsp96, might serve as immediate and sensitive indicators of population immunologic vigor and ecosystem health. But the expression of immunity-associated genes at the level of gene transcription is highly influenced by multiple factors, and the exact causes or influencing factors of the up-regulation or down-regulation of these genes still need further thorough investigation.

  12. Humoral immune response and TLR9 gene expression in Pacific red snapper (Lutjanus peru) experimentally exposed to Aeromonas veronii.

    PubMed

    Reyes-Becerril, Martha; Angulo, Carlos; Ascencio, Felipe

    2015-02-01

    Aquaculture production of Pacific red snapper Lutjanus peru is growing rapidly in Mexico, especially in Gulf of California. As it is a relatively new aquaculture species there are few reports evaluating its immune response to pathogens. The Gram-negative bacteria Aeromonas veronii is a heterogeneous organism that causes the disease known as motile aeromonad septicemia, which is responsible for serious economic loss in seabream culture due to bacterial infections. For the purpose of this study, juvenile Pacific red snapper specimens were intraperitoneally injected with low doses of A. veronii (1 × 10(6) CFU ml(-1)). Changes in humoral immune parameters (total protein, myeloperoxidase, lisozyme and antiprotease activities and IgM levels), as well as superoxide dismutase and catalase activities, and TLR9 gene expression were evaluated 24 and 48 h after injection. Overall, the results showed an enhanced in humoral immune parameters and SOD and CAT activities in fish infected with A. veronii compared with control group at 24 or 48 h. By real time PCR assays, the basal mRNA transcripts of TLR9 showed that were highly expressed in intestine and leucocytes compared to skin, head kidney, liver and gill. Then, the mRNA expression levels of TLR9 in head kidney, skin, liver and intestine were analyzed in non-infected and experimentally infected fish 24 and 48 h after injection. A. veronii up-regulated the expression of TLR9 at 24 or 48 h of exposure in all samples analyzed except in liver. Interestingly, intestine produced the greatest increase in transcript levels upon exposure (48 h) to A. veronii. Taken together, our results suggest that low doses of A. veronii infection inducing humoral immune system and TLR9 immune gene in Pacific red snapper that can be useful in the health control of this species.

  13. Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity

    PubMed Central

    2011-01-01

    Background Celiac disease (CD) is an autoimmune enteropathy triggered by the ingestion of gluten. Gluten-sensitive individuals (GS) cannot tolerate gluten and may develop gastrointestinal symptoms similar to those in CD, but the overall clinical picture is generally less severe and is not accompanied by the concurrence of tissue transglutaminase autoantibodies or autoimmune comorbidities. By studying and comparing mucosal expression of genes associated with intestinal barrier function, as well as innate and adaptive immunity in CD compared with GS, we sought to better understand the similarities and differences between these two gluten-associated disorders. Methods CD, GS and healthy, gluten-tolerant individuals were enrolled in this study. Intestinal permeability was evaluated using a lactulose and mannitol probe, and mucosal biopsy specimens were collected to study the expression of genes involved in barrier function and immunity. Results Unlike CD, GS is not associated with increased intestinal permeability. In fact, this was significantly reduced in GS compared with controls (P = 0.0308), paralleled by significantly increased expression of claudin (CLDN) 4 (P = 0.0286). Relative to controls, adaptive immunity markers interleukin (IL)-6 (P = 0.0124) and IL-21 (P = 0.0572) were expressed at higher levels in CD but not in GS, while expression of the innate immunity marker Toll-like receptor (TLR) 2 was increased in GS but not in CD (P = 0.0295). Finally, expression of the T-regulatory cell marker FOXP3 was significantly reduced in GS relative to controls (P = 0.0325) and CD patients (P = 0.0293). Conclusions This study shows that the two gluten-associated disorders, CD and GS, are different clinical entities, and it contributes to the characterization of GS as a condition associated with prevalent gluten-induced activation of innate, rather than adaptive, immune responses in the absence of detectable changes in mucosal barrier function. PMID:21392369

  14. RNA-seq profiles of immune related genes in the staghorn coral Acropora cervicornis infected with white band disease.

    PubMed

    Libro, Silvia; Kaluziak, Stefan T; Vollmer, Steven V

    2013-01-01

    Coral diseases are among the most serious threats to coral reefs worldwide, yet most coral diseases remain poorly understood. How the coral host responds to pathogen infection is an area where very little is known. Here we used next-generation RNA-sequencing (RNA-seq) to produce a transcriptome-wide profile of the immune response of the Staghorn coral Acropora cervicornis to White Band Disease (WBD) by comparing infected versus healthy (asymptomatic) coral tissues. The transcriptome of A. cervicornis was assembled de novo from A-tail selected Illumina mRNA-seq data from whole coral tissues, and parsed bioinformatically into coral and non-coral transcripts using existing Acropora genomes in order to identify putative coral transcripts. Differentially expressed transcripts were identified in the coral and non-coral datasets to identify genes that were up- and down-regulated due to disease infection. RNA-seq analyses indicate that infected corals exhibited significant changes in gene expression across 4% (1,805 out of 47,748 transcripts) of the coral transcriptome. The primary response to infection included transcripts involved in macrophage-mediated pathogen recognition and ROS production, two hallmarks of phagocytosis, as well as key mediators of apoptosis and calcium homeostasis. The strong up-regulation of the enzyme allene oxide synthase-lipoxygenase suggests a key role of the allene oxide pathway in coral immunity. Interestingly, none of the three primary innate immune pathways--Toll-like receptors (TLR), Complement, and prophenoloxydase pathways, were strongly associated with the response of A. cervicornis to infection. Five-hundred and fifty differentially expressed non-coral transcripts were classified as metazoan (n = 84), algal or plant (n = 52), fungi (n = 24) and protozoans (n = 13). None of the 52 putative Symbiodinium or algal transcript had any clear immune functions indicating that the immune response is driven by the coral host, and not its algal

  15. RNA-seq profiles of immune related genes in the staghorn coral Acropora cervicornis infected with white band disease.

    PubMed

    Libro, Silvia; Kaluziak, Stefan T; Vollmer, Steven V

    2013-01-01

    Coral diseases are among the most serious threats to coral reefs worldwide, yet most coral diseases remain poorly understood. How the coral host responds to pathogen infection is an area where very little is known. Here we used next-generation RNA-sequencing (RNA-seq) to produce a transcriptome-wide profile of the immune response of the Staghorn coral Acropora cervicornis to White Band Disease (WBD) by comparing infected versus healthy (asymptomatic) coral tissues. The transcriptome of A. cervicornis was assembled de novo from A-tail selected Illumina mRNA-seq data from whole coral tissues, and parsed bioinformatically into coral and non-coral transcripts using existing Acropora genomes in order to identify putative coral transcripts. Differentially expressed transcripts were identified in the coral and non-coral datasets to identify genes that were up- and down-regulated due to disease infection. RNA-seq analyses indicate that infected corals exhibited significant changes in gene expression across 4% (1,805 out of 47,748 transcripts) of the coral transcriptome. The primary response to infection included transcripts involved in macrophage-mediated pathogen recognition and ROS production, two hallmarks of phagocytosis, as well as key mediators of apoptosis and calcium homeostasis. The strong up-regulation of the enzyme allene oxide synthase-lipoxygenase suggests a key role of the allene oxide pathway in coral immunity. Interestingly, none of the three primary innate immune pathways--Toll-like receptors (TLR), Complement, and prophenoloxydase pathways, were strongly associated with the response of A. cervicornis to infection. Five-hundred and fifty differentially expressed non-coral transcripts were classified as metazoan (n = 84), algal or plant (n = 52), fungi (n = 24) and protozoans (n = 13). None of the 52 putative Symbiodinium or algal transcript had any clear immune functions indicating that the immune response is driven by the coral host, and not its algal

  16. RNA-seq Profiles of Immune Related Genes in the Staghorn Coral Acropora cervicornis Infected with White Band Disease

    PubMed Central

    Libro, Silvia; Kaluziak, Stefan T.; Vollmer, Steven V.

    2013-01-01

    Coral diseases are among the most serious threats to coral reefs worldwide, yet most coral diseases remain poorly understood. How the coral host responds to pathogen infection is an area where very little is known. Here we used next-generation RNA-sequencing (RNA-seq) to produce a transcriptome-wide profile of the immune response of the Staghorn coral Acropora cervicornis to White Band Disease (WBD) by comparing infected versus healthy (asymptomatic) coral tissues. The transcriptome of A. cervicornis was assembled de novo from A-tail selected Illumina mRNA-seq data from whole coral tissues, and parsed bioinformatically into coral and non-coral transcripts using existing Acropora genomes in order to identify putative coral transcripts. Differentially expressed transcripts were identified in the coral and non-coral datasets to identify genes that were up- and down-regulated due to disease infection. RNA-seq analyses indicate that infected corals exhibited significant changes in gene expression across 4% (1,805 out of 47,748 transcripts) of the coral transcriptome. The primary response to infection included transcripts involved in macrophage-mediated pathogen recognition and ROS production, two hallmarks of phagocytosis, as well as key mediators of apoptosis and calcium homeostasis. The strong up-regulation of the enzyme allene oxide synthase-lipoxygenase suggests a key role of the allene oxide pathway in coral immunity. Interestingly, none of the three primary innate immune pathways - Toll-like receptors (TLR), Complement, and prophenoloxydase pathways, were strongly associated with the response of A. cervicornis to infection. Five-hundred and fifty differentially expressed non-coral transcripts were classified as metazoan (n = 84), algal or plant (n = 52), fungi (n = 24) and protozoans (n = 13). None of the 52 putative Symbiodinium or algal transcript had any clear immune functions indicating that the immune response is driven by the coral host, and not its algal

  17. Deficient Innate Immunity, Thymopoiesis, and Gene Expression Response to Radiation in Survivors of Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Leung, Wing; Neale, Geoffrey; Behm, Fred; Iyengar, Rekha; Finkelstein, David; Kastan, Michael B.; Pui, Ching-Hon

    2010-01-01

    Background Survivors of childhood acute lymphoblastic leukemia (ALL) are at an increased risk of developing secondary malignant neoplasms. Radiation and chemotherapy can cause mutations and cytogenetic abnormalities and induce genomic instability. Host immunity and appropriate DNA damage responses are critical inhibitors of carcinogenesis. Therefore, we sought to determine the long-term effects of ALL treatment on immune function and response to DNA damage. Methods Comparative studies on 14 survivors in first complete remission and 16 siblings were conducted. Results In comparison to siblings on the cells that were involved in adaptive immunity, the patients had either higher numbers (CD19+ B cells and CD4+CD25+ T regulatory cells) or similar numbers (αβT cells and CD45RO+/RA− memory T cells) in the blood. In contrast, patients had lower numbers of all lymphocyte subsets involved in innate immunity (γδT cells and all NK subsets, including KIR2DL1+ cells, KIR2DL2/L3+ cells, and CD16+ cells), and lower natural cytotoxicity against K562 leukemia cells. Thymopoiesis was lower in patients, as demonstrated by less CD45RO−/RA+ Naïve T cell and less SjTREC levels in the blood, whereas the Vβ spectratype complexity score was similar. Array of gene expression response to low-dose radiation showed that about 70% of the probesets had a reduced response in patients. One of these genes, SCHIP-1, was also among the top-ranked single nucleotide polymorphisms (SNPs) during the whole genome scanning by SNP microarray analysis. Conclusion ALL survivors were deficient in innate immunity, thymopoiesis, and DNA damage responses to radiation. These defects may contribute to their increased likelihood of second malignancy. PMID:20413363

  18. Expression and Putative Function of Innate Immunity Genes under in situ Conditions in the Symbiotic Hydrothermal Vent Tubeworm Ridgeia piscesae

    PubMed Central

    Nyholm, Spencer V.; Song, Pengfei; Dang, Jeanne; Bunce, Corey; Girguis, Peter R.

    2012-01-01

    The relationships between hydrothermal vent tubeworms and sulfide-oxidizing bacteria have served as model associations for understanding chemoautotrophy and endosymbiosis. Numerous studies have focused on the physiological and biochemical adaptations that enable these symbioses to sustain some of the highest recorded carbon fixation rates ever measured. However, far fewer studies have explored the molecular mechanisms underlying the regulation of host and symbiont interactions, specifically those mediated by the innate immune system of the host. To that end, we conducted a series of studies where we maintained the tubeworm, Ridgeia piscesae, in high-pressure aquaria and examined global and quantitative changes in gene expression via high-throughput transcriptomics and quantitative real-time PCR (qPCR). We analyzed over 32,000 full-length expressed sequence tags as well as 26 Mb of transcript sequences from the trophosome (the organ that houses the endosymbiotic bacteria) and the plume (the gas exchange organ in contact with the free-living microbial community). R. piscesae maintained under conditions that promote chemoautotrophy expressed a number of putative cell signaling and innate immunity genes, including pattern recognition receptors (PRRs), often associated with recognizing microbe-associated molecular patterns (MAMPs). Eighteen genes involved with innate immunity, cell signaling, cell stress and metabolite exchange were further analyzed using qPCR. PRRs, including five peptidoglycan recognition proteins and a Toll-like receptor, were expressed significantly higher in the trophosome compared to the plume. Although PRRs are often associated with mediating host responses to infection by pathogens, the differences in expression between the plume and trophosome also implicate similar mechanisms of microbial recognition in interactions between the host and symbiont. We posit that regulation of this association involves a molecular “dialogue” between the

  19. SLC gene-modified dendritic cells mediate T cell-dependent anti-gastric cancer immune responses in vitro.

    PubMed

    Xue, Gang; Cheng, Ying; Ran, Feng; Li, Xianhui; Huang, Tao; Yang, Yong; Zhang, Yanbiao

    2013-02-01

    Dendritic cells (DCs) are potent professional antigen-presenting cells (APCs) with the ability to prime naïve T cells, and play an important role in the initiation and regulation of immune responses. In this study, we constructed a recombinant adenovirus carrying the SLC gene (Ad-SLC), and detected the biological effects of Ad-SLC-modified DCs as an adjuvant for the initiation of gastric cancer immune responses. Human DCs were transfected with Ad-SLC and the recombinant adenovirus carrying the β-galactosidase gene, Ad-LacZ, respectively. Modified DCs were pulsed with the cell lysate antigen of SGC-7901 cells (a type of gastric cancer cell line) and co-cultured with autologous T cells. The T cells were harvested and incubated with SGC-7901 cells and the cytotoxic function of the T cells was detected. Based on the data, the expression of mature DC phenotypes CD83 and CCR7 was upregulated after transfection with Ad-SLC and the chemotaxis function of DCs was augmented after transfection with Ad-SLC. Moreover, the expression of RANTES in DCs was upregulated by Ad-SLC transfection, while expression levels of IL-12p70 and IL-10 were not significantly altered. When co-cultured with autologous T cells, DCs modified with the SLC gene and pulsed with SGC-7901 cell lysates significantly promoted the proliferation of autologous T cells and induced Th1 differentiation, and displayed a strong cytotoxicity to SGC-7901 cells. In conclusion, Ad-SLC promoted DC maturation, enhancing the ability of DCs for T-cell chemotaxis and T-cell stimulation, and induced specific anti-gastric cancer cellular immunity. Recombinant Ad-SLC-modified DCs may be used as an adjuvant to induce an effective anti-gastric cancer immune response.

  20. Genomic Analysis Reveals That Immune Function Genes Are Strongly Linked to Clinical Outcome in the North Central Cancer Treatment Group N9831 Adjuvant Trastuzumab Trial

    PubMed Central

    Perez, Edith A.; Thompson, E. Aubrey; Ballman, Karla V.; Anderson, S. Keith; Asmann, Yan W.; Kalari, Krishna R.; Eckel-Passow, Jeanette E.; Dueck, Amylou C.; Tenner, Kathleen S.; Jen, Jin; Fan, Jian-Bing; Geiger, Xochiquetzal J.; McCullough, Ann E.; Chen, Beiyun; Jenkins, Robert B.; Sledge, George W.; Winer, Eric P.; Gralow, Julie R.; Reinholz, Monica M.

    2015-01-01

    Purpose To develop a genomic signature that predicts benefit from trastuzumab in human epidermal growth factor receptor 2–positive breast cancer. Patients and Methods DASL technology was used to quantify mRNA in samples from 1,282 patients enrolled onto the Combination Chemotherapy With or Without Trastuzumab in Treating Women With Breast Cancer (North Central Cancer Treatment Group N9831 [NCCTG-N9831]) adjuvant trastuzumab trial. Cox proportional hazard ratios (HRs), adjusted for significant clinicopathologic risk factors, were used to determine the association of each gene with relapse-free survival (RFS) for 433 patients who received chemotherapy alone (arm A) and 849 patients who received chemotherapy plus trastuzumab (arms B and C). Network and pathway analyses were used to identify key biologic processes linked to RFS. The signature was built by using a voting scheme. Results Network and functional ontology analyses suggested that increased RFS was linked to a subset of immune function genes. A voting scheme model was used to define immune gene enrichment based on the expression of any nine or more of 14 immune function genes at or above the 0.40 quantile for the population. This model was used to identify immune gene–enriched tumors in arm A and arms B and C. Immune gene enrichment was linked to increased RFS in arms B and C (HR, 0.35; 95% CI, 0.22 to 0.55; P < .001), whereas arm B and C patients who did not exhibit immune gene enrichment did not benefit from trastuzumab (HR, 0.89; 95% CI, 0.62 to 1.28; P = .53). Enriched immune function gene expression as defined by our predictive signature was not associated with increased RFS in arm A (HR, 0.90; 95% CI, 0.60 to 1.37; P = .64). Conclusion Increased expression of a subset of immune function genes may provide a means of predicting benefit from adjuvant trastuzumab. PMID:25605861

  1. Transdermal immunization with low-pressure-gene-gun mediated chitosan-based DNA vaccines against Japanese encephalitis virus.

    PubMed

    Huang, Han-Ning; Li, Tsung-Lin; Chan, Yi-Lin; Chen, Chien-Lung; Wu, Chang-Jer

    2009-10-01

    DNA vaccine is a milestone in contemporary vaccine development. It has considerably offset many shortcomings in conventional vaccines. Although DNA vaccines applied through 'traditional' high-pressure gene guns generally elicit high titers of protective immunity, such a practice however requires enormous investment in daunting instruments that often discourage vaccines due to an inevitable pain-eliciting effect. In this study, we exploited a less expensive yet low-pressure-gene-gun that can alleviate such phobia of pain. DNA vaccines were prepared by using the associative feature of cationic chitosan and anionic DNAs. The optimized N/P ratio is 3. The formulized complex sizes to nano-scale. The vaccine complexes were tested in C3H/HeN mice. The expression of GFP reporter gene was observable and traceable in epidermis and spleen over 3 days. The expressions of GFP and the activation of dendritic cells (DCs) were evident and co-localized in hair follicles and epidermis. C3H/HeN mice immunized with the developed chitosan-JEV DNA vaccines can elicit desired JEV specific antibodies, whereby the mice maintained high survival rates against 50xLD(50) JEV challenge. The low-pressure-gene-gun mediated chitosan-based JEV DNA vaccines have proven to be convenient and efficacious, thereby with high capacity in deployment for future prophylaxis against JEV outbreaks.

  2. The association of the immune response genes to human papillomavirus-related cervical disease in a Brazilian population.

    PubMed

    Marangon, Amanda Vansan; Guelsin, Gláucia Andreia Soares; Visentainer, Jeane Eliete Laguila; Borelli, Sueli Donizete; Watanabe, Maria Angélica Ehara; Consolaro, Márcia Edilaine Lopes; Caleffi-Ferracioli, Katiany Rizzieri; Rudnick, Cristiane Conceição Chagas; Sell, Ana Maria

    2013-01-01

    The genetic variability of the host contributes to the risk of human papillomavirus (HPV)-related cervical disease. Immune response genes to HPV must be investigated to define patients with the highest risk of developing malignant disease. The aim of this study was to investigate the association of polymorphic immune response genes, namely KIR, HLA class I and II, and single-nucleotide polymorphisms (SNPs) of cytokines with HPV-related cervical disease. We selected 79 non-related, admixed Brazilian women from the state of Paraná, southern region of Brazil, who were infected with high carcinogenic risk HPV and present cervical intraepithelial neoplasia grade 3 (CIN3), and 150 HPV-negative women from the same region matched for ethnicity. KIR genes were genotyped using an in-house PCR-SSP. HLA alleles were typed using a reverse sequence-specific oligonucleotide technique. SNPs of TNF -308G>A, IL6 -174G>C, IFNG +874T>A, TGFB1 +869T>C +915G>C, and IL10 -592C>A -819C>T -1082G>A were evaluated using PCR-SSP. The KIR genes were not associated with HPV, although some pairs of i(inhibitory)KIR-ligands occurred more frequently in patients, supporting a role for NK in detrimental chronic inflammatory and carcinogenesis. Some HLA haplotypes were associated with HPV. The associations of INFG and IL10 SNPs potentially reflect impaired or invalid responses in advanced lesions. PMID:23936772

  3. Characterization of the Miiuy Croaker (Miichthys miiuy) Transcriptome and Development of Immune-Relevant Genes and Molecular Markers

    PubMed Central

    Che, Rongbo; Sun, Yueyan; Sun, Dianqiao; Xu, Tianjun

    2014-01-01

    Background The miiuy croaker (Miichthys miiuy) is an important species of marine fish that supports capture fisheries and aquaculture. At present commercial scale aquaculture of this species is limited due to diseases caused by pathogens and parasites which restrict production and limit commercial value. The lack of transcriptomic and genomic information for the miiuy croaker limits the ability of researchers to study the pathogenesis and immune system of this species. In this study we constructed a cDNA library from liver, spleen and kidney which was sequenced using Illumina paired-end sequencing to enable gene discovery and molecular marker development. Principal Findings In our study, a total of 69,071 unigenes with an average length of 572 bp were obtained. Of these, 45,676 (66.13%) were successfully annotated in public databases. The unigenes were also annotated with Gene Ontology, Clusters of Orthologous Groups and KEGG pathways. Additionally, 498 immune-relevant genes were identified and classified. Furthermore, 14,885 putative simple sequence repeats (cSSRs) and 8,510 putative single nucleotide polymorphisms (SNPs) were identified from the 69,071 unigenes. Conclusion The miiuy croaker (Miichthys miiuy) transcriptome data provides a large resource to identify new genes involved in many processes including those involved in the response to pathogens and diseases. Furthermore, the thousands of potential cSSR and SNP markers found in this study are important resources with respect to future development of molecular marker assisted breeding programs for the miiuy croaker. PMID:24714210

  4. AAV-based Neonatal Gene Therapy for Hemophilia A: Long-Term Correction and Avoidance of Immune Responses in Mice

    PubMed Central

    Hu, Chuhong; Lipshutz, Gerald S.

    2012-01-01

    Hemophilia A gene therapy has been hampered by immune responses to vector-associated antigens and by neutralizing antibodies or inhibitors to the factor VIII (FVIII) protein; these ‘inhibitors’ more commonly effect hemophilia A patients than those with hemophilia B. A gene replacement strategy beginning in the neonatal period may avoid the development of these immune responses and lead to prolonged expression with correction of phenotype thereby avoiding long-term consequences. Serotype rh10 AAV was developed splitting the FVIII coding sequence into heavy and light chains with the chicken β-actin promoter/CMV enhancer for dual recombinant AAV vector delivery. Coinjection of virions of each FVIII chain intravenously to mice on the second day of life was performed. Mice express sustained FVIII antigen levels of ≥5% to 22 months of life without the development of antibodies to FVIII. Phenotypic correction was manifest in all AAV-FVIII-treated mice as demonstrated by functional assay and reduction in bleeding time. This study demonstrates the use of AAV in a gene replacement strategy in neonatal mice that establishes both long-term phenotypic correction of hemophilia A and lack of antibody development to FVIII in this disease model where AAV is administered shortly after birth. These studies support consideration of gene replacement therapy for diseases that are diagnosed in utero or in the early neonatal period. PMID:22241178

  5. Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection

    PubMed Central

    Wong, Mun-Teng; Chen, Steve S-L

    2016-01-01

    Infection with hepatitis C virus (HCV), a major viral cause of chronic liver disease, frequently progresses to steatosis and cirrhosis, which can lead to hepatocellular carcinoma. HCV infection strongly induces host responses, such as the activation of the unfolded protein response, autophagy and the innate immune response. Upon HCV infection, the host induces the interferon (IFN)-mediated frontline defense to limit virus replication. Conversely, HCV employs diverse strategies to escape host innate immune surveillance. Type I IFN elicits its antiviral actions by inducing a wide array of IFN-stimulated genes (ISGs). Nevertheless, the mechanisms by which these ISGs participate in IFN-mediated anti-HCV actions remain largely unknown. In this review, we first outline the signaling pathways known to be involved in the production of type I IFN and ISGs and the tactics that HCV uses to subvert innate immunity. Then, we summarize the effector mechanisms of scaffold ISGs known to modulate IFN function in HCV replication. We also highlight the potential functions of emerging ISGs, which were identified from genome-wide siRNA screens, in HCV replication. Finally, we discuss the functions of several cellular determinants critical for regulating host immunity in HCV replication. This review will provide a basis for understanding the complexity and functionality of the pleiotropic IFN system in HCV infection. Elucidation of the specificity and the mode of action of these emerging ISGs will also help to identify novel cellular targets against which effective HCV therapeutics can be developed. PMID:25544499

  6. Activation of innate immune-response genes in little brown bats (Myotis lucifugus) infected with the fungus Pseudogymnoascus destructans.

    PubMed

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M; Bollinger, Trent K; Willis, Craig K R; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes.

  7. Plasmid DNA immunization with Trypanosoma cruzi genes induces cardiac and clinical protection against Chagas disease in the canine model

    PubMed Central

    2012-01-01

    The only existing preventive measure against American trypanosomosis, or Chagas disease, is the control of the transmitting insect, which has only been effective in a few South American regions. Currently, there is no vaccine available to prevent this disease. Here, we present the clinical and cardiac levels of protection induced by expression to Trypanosoma cruzi genes encoding the TcSP and TcSSP4 proteins in the canine model. Physical examination, diagnostic chagasic serology, and serial electrocardiograms were performed before and after immunization, as well as after experimental infection. We found that immunization with recombinant plasmids prevented hyperthermia in the acute phase of experimental infection and produced lymphadenomegaly as an immunological response against the parasite and additionally prevented heart rate elevation (tachycardia) in the acute and/or chronic stages of infection. Immunization with T. cruzi genes encoding the TcSP and TcSSP4 antigens diminished the quality and quantity of the electrocardiographic abnormalities, thereby avoiding progression to more severe developments such as right bundle branch block or ventricular premature complexes in a greater number of dogs. PMID:23148870

  8. Activation of Innate Immune-Response Genes in Little Brown Bats (Myotis lucifugus) Infected with the Fungus Pseudogymnoascus destructans

    PubMed Central

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M.; Bollinger, Trent K.; Willis, Craig K. R.; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes. PMID:25391018

  9. Plasmid DNA immunization with Trypanosoma cruzi genes induces cardiac and clinical protection against Chagas disease in the canine model.

    PubMed

    Rodríguez-Morales, Olivia; Pérez-Leyva, M Magdalena; Ballinas-Verdugo, Martha A; Carrillo-Sánchez, Silvia C; Rosales-Encina, J Luis; Alejandre-Aguilar, Ricardo; Reyes, Pedro A; Arce-Fonseca, Minerva

    2012-01-01

    The only existing preventive measure against American trypanosomosis, or Chagas disease, is the control of the transmitting insect, which has only been effective in a few South American regions. Currently, there is no vaccine available to prevent this disease. Here, we present the clinical and cardiac levels of protection induced by expression to Trypanosoma cruzi genes encoding the TcSP and TcSSP4 proteins in the canine model. Physical examination, diagnostic chagasic serology, and serial electrocardiograms were performed before and after immunization, as well as after experimental infection. We found that immunization with recombinant plasmids prevented hyperthermia in the acute phase of experimental infection and produced lymphadenomegaly as an immunological response against the parasite and additionally prevented heart rate elevation (tachycardia) in the acute and/or chronic stages of infection. Immunization with T. cruzi genes encoding the TcSP and TcSSP4 antigens diminished the quality and quantity of the electrocardiographic abnormalities, thereby avoiding progression to more severe developments such as right bundle branch block or ventricular premature complexes in a greater number of dogs. PMID:23148870

  10. Activation of innate immune-response genes in little brown bats (Myotis lucifugus) infected with the fungus Pseudogymnoascus destructans.

    PubMed

    Rapin, Noreen; Johns, Kirk; Martin, Lauren; Warnecke, Lisa; Turner, James M; Bollinger, Trent K; Willis, Craig K R; Voyles, Jamie; Misra, Vikram

    2014-01-01

    Recently bats have been associated with the emergence of diseases, both as reservoirs for several new viral diseases in humans and other animals and, in the northern Americas, as hosts for a devastating fungal disease that threatens to drive several bat species to regional extinction. However, despite these catastrophic events little Information is available on bat defences or how they interact with their pathogens. Even less is known about the response of bats to infection during torpor or long-term hibernation. Using tissue samples collected at the termination of an experiment to explore the pathogenesis of White Nose Syndrome in Little Brown Bats, we determined if hibernating bats infected with the fungus Pseudogymnoascus destructans could respond to infection by activating genes responsible for innate immune and stress responses. Lesions due to fungal infection and, in some cases, secondary bacterial infections, were restricted to the skin. However, we were unable to obtain sufficient amounts of RNA from these sites. We therefore examined lungs for response at an epithelial surface not linked to the primary site of infection. We found that bats responded to infection with a significant increase in lungs of transcripts for Cathelicidin (an anti-microbial peptide) as well as the immune modulators tumor necrosis factor alpha and interleukins 10 and 23. In conclusion, hibernating bats can respond to experimental P. destructans infection by activating expression of innate immune response genes. PMID:25391018

  11. Chronic Exposure to Arsenic in the Drinking Water Alters the Expression of Immune Response Genes in Mouse Lung

    PubMed Central

    Kozul, Courtney D.; Hampton, Thomas H.; Davey, Jennifer C.; Gosse, Julie A.; Nomikos, Athena P.; Eisenhauer, Phillip L.; Weiss, Daniel J.; Thorpe, Jessica E.; Ihnat, Michael A.; Hamilton, Joshua W.

    2009-01-01

    Background Chronic exposure to drinking water arsenic is a significant worldwide environmental health concern. Exposure to As is associated with an increased risk of lung disease, which may make it a unique toxicant, because lung toxicity is usually associated with inhalation rather than ingestion. Objectives The goal of this study was to examine mRNA and protein expression changes in the lungs of mice exposed chronically to environmentally relevant concentrations of As in the food or drinking water, specifically examining the hypothesis that As may preferentially affect gene and protein expression related to immune function as part of its mechanism of toxicant action. Methods C57BL/6J mice fed a casein-based AIN-76A defined diet were exposed to 10 or 100 ppb As in drinking water or food for 5–6 weeks. Results Whole genome transcriptome profiling of animal lungs revealed significant alterations in the expression of many genes with functions in cell adhesion and migration, channels, receptors, differentiation and proliferation, and, most strikingly, aspects of the innate immune response. Confirmation of mRNA and protein expression changes in key genes of this response revealed that genes for interleukin 1β, interleukin 1 receptor, a number of toll-like receptors, and several cytokines and cytokine receptors were significantly altered in the lungs of As-exposed mice. Conclusions These findings indicate that chronic low-dose As exposure at the current U.S. drinking-water standard can elicit effects on the regulation of innate immunity, which may contribute to altered disease risk, particularly in lung. PMID:19654921

  12. Effect of in ovo administration of inulin and Lactococcus lactis on immune-related gene expression in broiler chickens.

    PubMed

    Płowiec, Arkadiusz; Sławińska, Anna; Siwek, Maria Z; Bednarczyk, Marek F

    2015-11-01

    OBJECTIVE To evaluate the effect of in ovo administration of inulin and Lactococcus lactis on immune-related gene expression in broiler chickens. ANIMALS 45 Ross broilers. PROCEDURES On day 12 of embryonic development, 360 eggs were equally allocated among 3 treatment groups and injected with 0.2 mL of a solution that contained 1.76 mg of inulin (prebiotic group) or 1.76 mg of inulin enriched with 1,000 CFUs of L lactis subsp lactis 2955 (synbiotic group), or they were injected with 0.2 mL of saline (0.9% NaCl) solution (control). At 1, 14, and 35 days after hatching, 5 male birds from each group were euthanized, and the spleen and cecal tonsils were harvested for determination of interleukin (IL)-4, IL-6, IL-8, IL-12p40, IL-18, cluster of differentiation 80, interferon-β, and interferon-γ expression by means of a reverse transcription quantitative PCR assay. Gene expressions in the cecal tonsils and spleens of chickens in the prebiotic and synbiotic groups were compared with those of control chickens at each tissue collection time. RESULTS Compared with control birds, immune-related gene expression was downregulated in birds in the prebiotic and synbiotic groups, and the magnitude of that downregulation was more pronounced in the cecal tonsils than in the spleen and increased with age. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that in ovo administration of a prebiotic or synbiotic to broilers was associated with downregulation of immune-related gene expression in the cecal tonsils and spleen. The magnitude of that downregulation increased with age and was most likely caused by stabilization of the gastrointestinal microbiota.

  13. A Unique Virulence Gene Occupies a Principal Position in Immune Evasion by the Malaria Parasite Plasmodium falciparum.

    PubMed

    Ukaegbu, Uchechi E; Zhang, Xu; Heinberg, Adina R; Wele, Mamadou; Chen, Qijun; Deitsch, Kirk W

    2015-05-01

    Mutually exclusive gene expression, whereby only one member of a multi-gene family is selected for activation, is used by the malaria parasite Plasmodium falciparum to escape the human immune system and perpetuate long-term, chronic infections. A family of genes called var encodes the chief antigenic and virulence determinant of P. falciparum malaria. var genes are transcribed in a mutually exclusive manner, with switching between active genes resulting in antigenic variation. While recent work has shed considerable light on the epigenetic basis for var gene activation and silencing, how switching is controlled remains a mystery. In particular, switching seems not to be random, but instead appears to be coordinated to result in timely activation of individual genes leading to sequential waves of antigenically distinct parasite populations. The molecular basis for this apparent coordination is unknown. Here we show that var2csa, an unusual and highly conserved var gene, occupies a unique position within the var gene switching hierarchy. Induction of switching through the destabilization of var specific chromatin using both genetic and chemical methods repeatedly led to the rapid and exclusive activation of var2csa. Additional experiments demonstrated that these represent "true" switching events and not simply de-silencing of the var2csa promoter, and that activation is limited to the unique locus on chromosome 12. Combined with translational repression of var2csa transcripts, frequent "default" switching to this locus and detection of var2csa untranslated transcripts in non-pregnant individuals, these data suggest that var2csa could play a central role in coordinating switching, fulfilling a prediction made by mathematical models derived from population switching patterns. These studies provide the first insights into the mechanisms by which var gene switching is coordinated as well as an example of how a pharmacological agent can disrupt antigenic variation in

  14. A Unique Virulence Gene Occupies a Principal Position in Immune Evasion by the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Heinberg, Adina R.; Wele, Mamadou; Chen, Qijun; Deitsch, Kirk W.

    2015-01-01

    Mutually exclusive gene expression, whereby only one member of a multi-gene family is selected for activation, is used by the malaria parasite Plasmodium falciparum to escape the human immune system and perpetuate long-term, chronic infections. A family of genes called var encodes the chief antigenic and virulence determinant of P. falciparum malaria. var genes are transcribed in a mutually exclusive manner, with switching between active genes resulting in antigenic variation. While recent work has shed considerable light on the epigenetic basis for var gene activation and silencing, how switching is controlled remains a mystery. In particular, switching seems not to be random, but instead appears to be coordinated to result in timely activation of individual genes leading to sequential waves of antigenically distinct parasite populations. The molecular basis for this apparent coordination is unknown. Here we show that var2csa, an unusual and highly conserved var gene, occupies a unique position within the var gene switching hierarchy. Induction of switching through the destabilization of var specific chromatin using both genetic and chemical methods repeatedly led to the rapid and exclusive activation of var2csa. Additional experiments demonstrated that these represent “true” switching events and not simply de-silencing of the var2csa promoter, and that activation is limited to the unique locus on chromosome 12. Combined with translational repression of var2csa transcripts, frequent “default” switching to this locus and detection of var2csa untranslated transcripts in non-pregnant individuals, these data suggest that var2csa could play a central role in coordinating switching, fulfilling a prediction made by mathematical models derived from population switching patterns. These studies provide the first insights into the mechanisms by which var gene switching is coordinated as well as an example of how a pharmacological agent can disrupt antigenic variation

  15. Effects of mannose-binding lectin on pulmonary gene expression and innate immune inflammatory response to ozone.

    PubMed

    Ciencewicki, Jonathan M; Verhein, Kirsten C; Gerrish, Kevin; McCaw, Zachary R; Li, Jianying; Bushel, Pierre R; Kleeberger, Steven R

    2016-08-01

    Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl(+/+)) and MBL-deficient (Mbl(-/-)) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl(-/-) than Mbl(+/+) mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl(+/+) and Mbl(-/-) mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS(2) data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at

  16. Comparison of host cell gene expression in cowpox, monkeypox or vaccinia virus-infected cells reveals virus-specific regulation of immune response genes

    PubMed Central

    2013-01-01

    Background Animal-borne orthopoxviruses, like monkeypox, vaccinia and the closely related cowpox virus, are all capable of causing zoonotic infections in humans, representing a potential threat to human health. The disease caused by each virus differs in terms of symptoms and severity, but little is yet know about the reasons for these varying phenotypes. They may be explained by the unique repertoire of immune and host cell modulating factors encoded by each virus. In this study, we analysed the specific modulation of the host cell’s gene expression profile by cowpox, monkeypox and vaccinia virus infection. We aimed to identify mechanisms that are either common to orthopoxvirus infection or specific to certain orthopoxvirus species, allowing a more detailed description of differences in virus-host cell interactions between individual orthopoxviruses. To this end, we analysed changes in host cell gene expression of HeLa cells in response to infection with cowpox, monkeypox and vaccinia virus, using whole-genome gene expression microarrays, and compared these to each other and to non-infected cells. Results Despite a dominating non-responsiveness of cellular transcription towards orthopoxvirus infection, we could identify several clusters of infection-modulated genes. These clusters are either commonly regulated by orthopoxvirus infection or are uniquely regulated by infection with a specific orthopoxvirus, with major differences being observed in immune response genes. Most noticeable was an induction of genes involved in leukocyte migration and activation in cowpox and monkeypox virus-infected cells, which was not observed following vaccinia virus infection. Conclusion Despite their close genetic relationship, the expression profiles induced by infection with different orthopoxviruses vary significantly. It may be speculated that these differences at the cellular level contribute to the individual characteristics of cowpox, monkeypox and vaccinia virus

  17. Transcriptome analysis to identify genes for peptides and proteins involved in immunity and reproduction from male accessory glands and ejaculatory duct of Bactrocera dorsalis.

    PubMed

    Wei, Dong; Tian, Chuan-Bei; Liu, Shi-Huo; Wang, Tao; Smagghe, Guy; Jia, Fu-Xian; Dou, Wei; Wang, Jin-Jun

    2016-06-01

    In the male reproductive system of insects, the male accessory glands and ejaculatory duct (MAG/ED) are important organs and their primary function is to enhance the fertility of spermatozoa. Proteins secreted by the MAG/ED are also known to induce post-mating changes and immunity responses in the female insect. To understand the gene expression profile in the MAG/ED of the oriental fruit fly Bactrocera dorsalis (Hendel), that is an important pest in fruits, we performed an Illumina-based deep sequencing of mRNA. This yielded 54,577,630 clean reads corresponding to 4.91Gb total nucleotides that were assembled and clustered to 30,669 unigenes (average 645bp). Among them, 20,419 unigenes were functionally annotated to known proteins/peptides in Gene Orthology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes pathway databases. Typically, many genes were involved in immunity and these included microbial recognition proteins and antimicrobial peptides. Subsequently, the inducible expression of these immunity-related genes was confirmed by qRT-PCR analysis when insects were challenged with immunity-inducible factors, suggesting their function in guaranteeing fertilization success. Besides, we identified some important reproductive genes such as juvenile hormone- and ecdysteroid-related genes in this de novo assembly. In conclusion, this transcriptomic sequencing of B. dorsalis MAG/ED provides insights to facilitate further functional research of reproduction, immunity and molecular evolution of reproductive proteins in this important agricultural pest.

  18. Adenovirus vector induced Innate Immune responses: Impact upon efficacy and toxicity in gene therapy and vaccine applications

    PubMed Central

    Hartman, Zachary C.; Appledorn, Daniel M.; Amalfitano, Andrea

    2013-01-01

    Extensively characterized, modified, and employed for a variety of purposes, Adenovirus (Ad) vectors are generally regarded as having great potential by many applied virologists who wish to manipulate and use viral biology to achieve beneficial clinical outcomes. Despite widespread functional prominence and utility, (i.e.: Ad based clinical trials have begun to progress to critical Phase III levels, it has recently become apparent that investigations regarding the innate immune response to Ads may reveal not only reasons behind previous failures, but also reveal novel insights that will allow for safer, more efficacious uses of this important gene transfer platform. Insights gained by the exploration of Ad induced innate immune responses will likely be most important to the fields of vaccine development, since Ad based vaccines are highly acknowledged as one of the more promising vaccine platforms in development today. Adenovirus is currently known to interact with several different extracellular, intracellular, and membrane bound innate immune sensing systems. Past and recent studies involving manipulation of the Ad infectious cycle as well as use of different mutants have shed light on some of the initiation mechanisms underlying Ad induced immune responses. More recent studies using microarray based analyses, genetically modified cell lines and/or mouse mutants, and advanced generation Ad vectors have revealed important new insights into the scope and mechanism of this cellular defensive response. This review is an attempt to synthesize these studies, update Ad biologists to the current knowledge surrounding these increasingly important issues, as well point areas where future research should be directed. It should also serve as a sobering reality to researchers exploring the use of any gene transfer vector, as to the complexities potentially involved when contemplating use of such vectors for human applications. PMID:18036698

  19. Massively Parallel RNA Sequencing Identifies a Complex Immune Gene Repertoire in the lophotrochozoan Mytilus edulis

    PubMed Central

    Philipp, Eva E. R.; Kraemer, Lars; Melzner, Frank; Poustka, Albert J.; Thieme, Sebastian; Findeisen, Ulrike; Schreiber, Stefan; Rosenstiel, Philip

    2012-01-01

    The marine mussel Mytilus edulis and its closely related sister species are distributed world-wide and play an important role in coastal ecology and economy. The diversification in different species and their hybrids, broad ecological distribution, as well as the filter feeding mode of life has made this genus an attractive model to investigate physiological and molecular adaptations and responses to various biotic and abiotic environmental factors. In the present study we investigated the immune system of Mytilus, which may contribute to the ecological plasticity of this species. We generated a large Mytilus transcriptome database from different tissues of immune challenged and stress treated individuals from the Baltic Sea using 454 pyrosequencing. Phylogenetic comparison of orthologous groups of 23 species demonstrated the basal position of lophotrochozoans within protostomes. The investigation of immune related transcripts revealed a complex repertoire of innate recognition receptors and downstream pathway members including transcripts for 27 toll-like receptors and 524 C1q domain containing transcripts. NOD-like receptors on the other hand were absent. We also found evidence for sophisticated TNF, autophagy and apoptosis systems as well as for cytokines. Gill tissue and hemocytes showed highest expression of putative immune related contigs and are promising tissues for further functional studies. Our results partly contrast with findings of a less complex immune repertoire in ecdysozoan and other lophotrochozoan protostomes. We show that bivalves are interesting candidates to investigate the evolution of the immune system from basal metazoans to deuterostomes and protostomes and provide a basis for future molecular work directed to immune system functioning in Mytilus. PMID:22448234

  20. Unraveling the effects of selection and demography on immune gene variation in free-ranging plains zebra (Equus quagga) populations.

    PubMed

    Kamath, Pauline L; Getz, Wayne M

    2012-01-01

    Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC), play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga) populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations.

  1. Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression.

    PubMed

    Elling, Roland; Chan, Jennie; Fitzgerald, Katherine A

    2016-03-01

    The innate immune system represents the first line of defense during infection and is initiated by the detection of conserved microbial products by germline-encoded pattern recognition receptors (PRRs). Sensing through PRRs induces broad transcriptional changes that elicit powerful inflammatory responses. Tight regulation of these processes depends on multiple regulatory checkpoints, including noncoding RNA species such as microRNAs. In addition, long noncoding RNAs (lncRNAs) have recently gained attention as important regulators of gene expression acting through versatile interactions with DNA, RNA, or proteins. As such, these RNAs have a multitude of mechanisms to modulate gene expression. Here, we summarize recent advances in this rapidly moving and evolving field. We highlight the contribution of lncRNAs to both the development and activation of innate immune cells, whether it is in the nucleus, where lncRNAs alter the transcription of target genes through interaction with transcription factors, chromatin-modifying complexes or heterogeneous ribonucleoprotein complexes, or in the cytosol where they can control the stability of target mRNAs. In addition, we discuss experimental approaches required to comprehensively investigate the function of a candidate noncoding RNA locus, including loss-of-function approaches encompassing genomic deletions, RNA interference, locked nucleic acids, and various adaptions of the CRISPR/Cas9 technology. PMID:26820238

  2. Unraveling the Effects of Selection and Demography on Immune Gene Variation in Free-Ranging Plains Zebra (Equus quagga) Populations

    PubMed Central

    Kamath, Pauline L.; Getz, Wayne M.

    2012-01-01

    Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC), play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga) populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations. PMID:23251409

  3. High-throughput DNA analysis shows the importance of methylation in the control of immune inflammatory gene transcription in chronic periodontitis

    PubMed Central

    2014-01-01

    Background Chronic periodontitis represents a complex disease that is hard to control and is not completely understood. Evidence from past studies suggests that there is a key role for DNA methylation in the pathogenesis of periodontitis. However, all reports have applied technologies that investigate genes in a low throughput. In order to advance in the knowledge of the disease, we analyzed DNA methylation variations associated with gene transcription using a high-throughput assay. Infinium® HumanMethylation450 (Illumina) was performed on gingival samples from 12 periodontitis cases and 11 age-matched healthy individuals. Methylation data of 1,284 immune-related genes and 1,038 cell cycle-related genes from Gene Ontology (GO) and 575 genes from a dataset of stably expressed genes (genes with consistent expression in different physiological states and tissues) were extracted from a microarray dataset and analyzed using bioinformatics tools. DNA methylation variations ranging from −2,000 to +2,000 bp from the transcription start site (TSS) were analyzed, and the results were tested against a differential expression microarray dataset between healthy and periodontitis gingival tissues. Differences were evaluated using tests from the R Statistical Project. Results The comparison of probes between periodontitis and normal gingival tissues showed that the mean methylation scores and the frequency of methylated probes were significantly lower in genes related to the immune process. In the immune group, these parameters were negatively correlated with gene expression (Mann-Whitney test, p < 2.2e − 16). Conclusions Our results show that variations in DNA methylation between healthy and periodontitis cases are higher in genes related to the immune-inflammatory process. Thus, DNA methylation must be modulating chromatin regions and, consequently, modulating the mRNA transcription of immune-inflammatory genes related with periodontitis, impacting the prognosis of

  4. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase

    SciTech Connect

    Iri-Sofla, Farnoush Jafari; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Rasaee, Mohammad J.

    2011-11-01

    The crucial role of T lymphocytes in anti-tumor immunity has led to the development of novel strategies that can target and activate T cells against tumor cells. Recombinant DNA technology has been used to generate non-MHC-restricted chimeric antigen receptors (CARs). Here, we constructed a panel of recombinant CAR that harbors the anti-MUC1 nanobody and the signaling and co-signaling moieties (CD3{zeta}/CD28) with different spacer regions derived from human IgG3 with one or two repeats of the hinge sequence or the hinge region of Fc{gamma}RII. The PhiC31 integrase system was employed to investigate if the recombination efficiency could be recruited for high and stable expression of T cell chimeric receptor genes. The effect of nuclear localization signal (NLS) and two different promoters (CMV and CAG) on efficacy of PhiC31 integrase in human T cell lines was evaluated. The presence of integrase in combination with NLS, mediated up to 7.6 and 8.5 fold increases in CAR expression in ZCHN-attB and ZCHHN-attB cassette integrated T cells, respectively. Our results showed that highly efficient and stable transduction of the Jurkat cell line by PhiC31 integrase is a feasible modality for generating anti-cancer chimeric T cells for use in cancer immunotherapy.

  5. Genetic susceptibility to Chagas disease cardiomyopathy: involvement of several genes of the innate immunity and chemokine-dependent migration pathways

    PubMed Central

    2013-01-01

    Background Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is, by far, the most important clinical consequence of T. cruzi infection. The others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Migration of Th1-type T cells play a major role in myocardial damage. Methods Our genetic analysis focused on CCR5, CCL2 and MAL/TIRAP genes. We used the Tag SNPs based approach, defined to catch all the genetic information from each gene. The study was conducted on a large Brazilian population including 315 CCC cases and 118 ASY subjects. Results The CCL2rs2530797A/A and TIRAPrs8177376A/A were associated to an increase susceptibility whereas the CCR5rs3176763C/C genotype is associated to protection to CCC. These associations were confirmed when we restricted the analysis to severe CCC, characterized by a left ventricular ejection fraction under 40%. Conclusions Our data show that polymorphisms affecting key molecules involved in several immune parameters (innate immunity signal transduction and T cell/monocyte migration) play a role in genetic susceptibility to CCC development. This also points out to the multigenic character of CCC, each polymorphism imparting a small contribution. The identification of genetic markers for CCC will provide information for pathogenesis as well as therapeutic targets. PMID:24330528

  6. RNA-seq Profiles of Immune Related Genes in the Spleen of Necrotic Enteritis-afflicted Chicken Lines

    PubMed Central

    Truong, Anh Duc; Hong, Yeong Ho; Lillehoj, Hyun S.

    2015-01-01

    The study aimed to compare the necrotic enteritis (NE)-induced transcriptome differences between the spleens of Marek’s disease resistant chicken line 6.3 and susceptible line 7.2 co-infected with Eimeria maxima/Clostridium perfringens using RNA-Seq. Total RNA from the spleens of two chicken lines were used to make libraries, generating 42,736,296 and 42,617,720 usable reads, which were assembled into groups of 29,897 and 29,833 mRNA genes, respectively. The transcriptome changes were investigated using the differentially expressed genes (DEGs) package, which indicated 3,255, 2,468 and 2,234 DEGs of line 6.3, line 7.2, and comparison between two lines, respectively (fold change ≥2, p<0.01). The transcription levels of 14 genes identified were further examined using qRT-PCR. The results of qRT-PCR were consistent with the RNA-seq data. All of the DEGs were analysed using gene ontology terms, the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the DEGs in each term were found to be more highly expressed in line 6.3 than in line 7.2. RNA-seq analysis indicated 139 immune related genes, 44 CD molecular genes and 150 cytokines genes which were differentially expressed among chicken lines 6.3 and 7.2 (fold change ≥2, p<0.01). Novel mRNA analysis indicated 15,518 novel genes, for which the expression was shown to be higher in line 6.3 than in line 7.2 including some immune-related targets. These findings will help to understand host-pathogen interaction in the spleen and elucidate the mechanism of host genetic control of NE, and provide basis for future studies that can lead to the development of marker-based selection of highly disease-resistant chickens. PMID:26323406

  7. Cotesia vestalis teratocytes express a diversity of genes and exhibit novel immune functions in parasitism.

    PubMed

    Gao, Fei; Gu, Qi-Juan; Pan, Jing; Wang, Ze-Hua; Yin, Chuan-Lin; Li, Fei; Song, Qi-Sheng; Strand, Michael R; Chen, Xue-Xin; Shi, Min

    2016-01-01

    Some endoparasitoid wasps lay eggs that produce cells called teratocytes. In this study, we sequenced and analyzed the transcriptome of teratocytes from the solitary endoparasitoid Cotesia vestalis (Braconidae), which parasitizes larval stage Plutella xylostella (Plutellidae). Results identified many teratocyte transcripts with potential functions in affecting host immune defenses, growth or metabolism. Characterization of teratocyte-secreted venom-like protein 8 (TSVP-8) indicated it inhibits melanization of host hemolymph in vitro, while two predicted anti-microbial peptides (CvT-def 1 and 3) inhibited the growth of bacteria. Results also showed the parasitized hosts lacking teratocytes experienced higher mortality after immune challenge by pathogens than hosts with teratocytes. Taken together, these findings indicate that C. vestalis teratocytes secrete products that alter host immune functions while also producing anti-microbial peptides with functions that help protect the host from infection by other organisms. PMID:27254821

  8. Cotesia vestalis teratocytes express a diversity of genes and exhibit novel immune functions in parasitism.

    PubMed

    Gao, Fei; Gu, Qi-Juan; Pan, Jing; Wang, Ze-Hua; Yin, Chuan-Lin; Li, Fei; Song, Qi-Sheng; Strand, Michael R; Chen, Xue-Xin; Shi, Min

    2016-06-02

    Some endoparasitoid wasps lay eggs that produce cells called teratocytes. In this study, we sequenced and analyzed the transcriptome of teratocytes from the solitary endoparasitoid Cotesia vestalis (Braconidae), which parasitizes larval stage Plutella xylostella (Plutellidae). Results identified many teratocyte transcripts with potential functions in affecting host immune defenses, growth or metabolism. Characterization of teratocyte-secreted venom-like protein 8 (TSVP-8) indicated it inhibits melanization of host hemolymph in vitro, while two predicted anti-microbial peptides (CvT-def 1 and 3) inhibited the growth of bacteria. Results also showed the parasitized hosts lacking teratocytes experienced higher mortality after immune challenge by pathogens than hosts with teratocytes. Taken together, these findings indicate that C. vestalis teratocytes secrete products that alter host immune functions while also producing anti-microbial peptides with functions that help protect the host from infection by other organisms.

  9. Cotesia vestalis teratocytes express a diversity of genes and exhibit novel immune functions in parasitism

    PubMed Central

    Gao, Fei; Gu, Qi-juan; Pan, Jing; Wang, Ze-hua; Yin, Chuan-lin; Li, Fei; Song, Qi-sheng; Strand, Michael R.; Chen, Xue-xin; Shi, Min

    2016-01-01

    Some endoparasitoid wasps lay eggs that produce cells called teratocytes. In this study, we sequenced and analyzed the transcriptome of teratocytes from the solitary endoparasitoid Cotesia vestalis (Braconidae), which parasitizes larval stage Plutella xylostella (Plutellidae). Results identified many teratocyte transcripts with potential functions in affecting host immune defenses, growth or metabolism. Characterization of teratocyte-secreted venom-like protein 8 (TSVP-8) indicated it inhibits melanization of host hemolymph in vitro, while two predicted anti-microbial peptides (CvT-def 1 and 3) inhibited the growth of bacteria. Results also showed the parasitized hosts lacking teratocytes experienced higher mortality after immune challenge by pathogens than hosts with teratocytes. Taken together, these findings indicate that C. vestalis teratocytes secrete products that alter host immune functions while also producing anti-microbial peptides with functions that help protect the host from infection by other organisms. PMID:27254821

  10. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles.

    PubMed

    Tuomela, Soile; Autio, Reija; Buerki-Thurnherr, Tina; Arslan, Osman; Kunzmann, Andrea; Andersson-Willman, Britta; Wick, Peter; Mathur, Sanjay; Scheynius, Annika; Krug, Harald F; Fadeel, Bengt; Lahesmaa, Riitta

    2013-01-01

    A comprehensive in vitro assessment of two commercial metal oxide nanoparticles, TiO2 and ZnO, was performed using human monocyte-derived macrophages (HMDM), monocyte-derived dendritic cells (MDDC), and Jurkat T cell leukemia-derived cell line. TiO2 nanoparticles were found to be non-toxic whereas ZnO nanoparticles caused dose-dependent cell death. Subsequently, global gene expression profiling was performed to identify transcriptional response underlying the cytotoxicity caused by ZnO nanoparticles. Analysis was done with doses 1 µg/ml and 10 µg/ml after 6 and 24 h of exposure. Interestingly, 2703 genes were significantly differentially expressed in HMDM upon exposure to 10 µg/ml ZnO nanoparticles, while in MDDCs only 12 genes were affected. In Jurkat cells, 980 genes were differentially expressed. It is noteworthy that only the gene expression of metallothioneins was upregulated in all the three cell types and a notable proportion of the genes were regulated in a cell type-specific manner. Gene ontology analysis revealed that the top biological processes disturbed in HMDM and Jurkat cells were regulating cell death and growth. In addition, genes controlling immune system development were affected. Using a panel of modified ZnO nanoparticles, we obtained an additional support that the cellular response to ZnO nanoparticles is largely dependent on particle dissolution and show that the ligand used to modify ZnO nanoparticles modulates Zn(2+) leaching. Overall, the study provides an extensive resource of transcriptional markers for mediating ZnO nanoparticle-induced toxicity for further mechanistic studies, and demonstrates the value of assessing nanoparticle responses through a combined transcriptomics and bioinformatics approach.

  11. Thyroid active agents T3 and PTU differentially affect immune gene transcripts in the head kidney of rainbow trout (Oncorynchus mykiss).

    PubMed

    Quesada-García, Alba; Encinas, Paloma; Valdehita, Ana; Baumann, Lisa; Segner, Helmut; Coll, Julio M; Navas, José M

    2016-05-01

    In mammals, numerous reports describe an immunomodulating effect of thyroid-active compounds. In contrast, only few reports have been published on this subject in fish. We previously demonstrated that immune cells of rainbow trout (Oncorhynchus mykiss) possess thyroid hormone receptors (THRs) and that exposure of trout to the thyroid hormone 3,3',5-triiodo-l-thyronine (T3) or the antithyroid drug propylthiouracil (PTU) alters immune cell transcript levels of THR and several immune genes. The present study aims to further characterize the immunomodulating action of thyroid-active compounds in trout immune cells. We report here the use of a custom-designed 60-mer oligo immune-targeted microarray for rainbow trout to analyze the gene expression profiles induced in the head kidney by T3 and PTU. Morphometric analyses of the thyroid showed that PTU exposure increased the size of the epithelial cells, whereas T3 induced no significant effects. Both T3 and PTU had diverse and partly contrasting effects on immune transcript profiles. The strongest differential effects of T3 and PTU on gene expressions were those targeting the Mitogen Associated Protein Kinase (MAPK), NFkB, Natural Killer (NK) and Toll-Like Receptor (TLR) pathways, a number of multipath genes (MPG) such as those encoding pleiotropic transcription factors (atf1, junb, myc), as well as important pro-inflammatory genes (tnfa, tnf6, il1b) and interferon-related genes (ifng, irf10). With these results we show for the first time in a fish species that the in vivo thyroidal status modulates a diversity of immune genes and pathways. This knowledge provides the basis to investigate both mechanisms and consequences of thyroid hormone- and thyroid disruptor-mediated immunomodulation for the immunocompetence of fish. PMID:26963519

  12. Thyroid active agents T3 and PTU differentially affect immune gene transcripts in the head kidney of rainbow trout (Oncorynchus mykiss).

    PubMed

    Quesada-García, Alba; Encinas, Paloma; Valdehita, Ana; Baumann, Lisa; Segner, Helmut; Coll, Julio M; Navas, José M

    2016-05-01

    In mammals, numerous reports describe an immunomodulating effect of thyroid-active compounds. In contrast, only few reports have been published on this subject in fish. We previously demonstrated that immune cells of rainbow trout (Oncorhynchus mykiss) possess thyroid hormone receptors (THRs) and that exposure of trout to the thyroid hormone 3,3',5-triiodo-l-thyronine (T3) or the antithyroid drug propylthiouracil (PTU) alters immune cell transcript levels of THR and several immune genes. The present study aims to further characterize the immunomodulating action of thyroid-active compounds in trout immune cells. We report here the use of a custom-designed 60-mer oligo immune-targeted microarray for rainbow trout to analyze the gene expression profiles induced in the head kidney by T3 and PTU. Morphometric analyses of the thyroid showed that PTU exposure increased the size of the epithelial cells, whereas T3 induced no significant effects. Both T3 and PTU had diverse and partly contrasting effects on immune transcript profiles. The strongest differential effects of T3 and PTU on gene expressions were those targeting the Mitogen Associated Protein Kinase (MAPK), NFkB, Natural Killer (NK) and Toll-Like Receptor (TLR) pathways, a number of multipath genes (MPG) such as those encoding pleiotropic transcription factors (atf1, junb, myc), as well as important pro-inflammatory genes (tnfa, tnf6, il1b) and interferon-related genes (ifng, irf10). With these results we show for the first time in a fish species that the in vivo thyroidal status modulates a diversity of immune genes and pathways. This knowledge provides the basis to investigate both mechanisms and consequences of thyroid hormone- and thyroid disruptor-mediated immunomodulation for the immunocompetence of fish.

  13. The raspberry Gene Is Involved in the Regulation of the Cellular Immune Response in Drosophila melanogaster

    PubMed Central

    Kari, Beáta; Csordás, Gábor; Honti, Viktor; Cinege, Gyöngyi; Williams, Michael J.; Andó, István; Kurucz, Éva

    2016-01-01

    Drosophila is an extremely useful model organism for understanding how innate immune mechanisms defend against microbes and parasitoids. Large foreign objects trigger a potent cellular immune response in Drosophila larva. In the case of endoparasitoid wasp eggs, this response includes hemocyte proliferation, lamellocyte differentiation and eventual encapsulation of the egg. The encapsulation reaction involves the attachment and spreading of hemocytes around the egg, which requires cytoskeletal rearrangements, changes in adhesion properties and cell shape, as well as melanization of the capsule. Guanine nucleotide metabolism has an essential role in the regulation of pathways necessary for this encapsulation response. Here, we show that the Drosophila inosine 5'-monophosphate dehydrogenase (IMPDH), encoded by raspberry (ras), is centrally important for a proper cellular immune response against eggs from the parasitoid wasp Leptopilina boulardi. Notably, hemocyte attachment to the egg and subsequent melanization of the capsule are deficient in hypomorphic ras mutant larvae, which results in a compromised cellular immune response and increased survival of the parasitoid. PMID:26942456

  14. Temperature stress affects the expression of immune response genes in the alfalfa leafcutting bee (Megachile rotundata)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alfalfa leafcutting bee (Megachile rotundata) is affected by a fungal disease called chalkbrood. In several species of bees, chalkbrood is more likely to occur in larvae kept at 25-30 C than at 35 C. We found that both high and low temperature stress increased the expression of immune response g...

  15. The raspberry Gene Is Involved in the Regulation of the Cellular Immune Response in Drosophila melanogaster.

    PubMed

    Kari, Beáta; Csordás, Gábor; Honti, Viktor; Cinege, Gyöngyi; Williams, Michael J; Andó, István; Kurucz, Éva

    2016-01-01

    Drosophila is an extremely useful model organism for understanding how innate immune mechanisms defend against microbes and parasitoids. Large foreign objects trigger a potent cellular immune response in Drosophila larva. In the case of endoparasitoid wasp eggs, this response includes hemocyte proliferation, lamellocyte differentiation and eventual encapsulation of the egg. The encapsulation reaction involves the attachment and spreading of hemocytes around the egg, which requires cytoskeletal rearrangements, changes in adhesion properties and cell shape, as well as melanization of the capsule. Guanine nucleotide metabolism has an essential role in the regulation of pathways necessary for this encapsulation response. Here, we show that the Drosophila inosine 5'-monophosphate dehydrogenase (IMPDH), encoded by raspberry (ras), is centrally important for a proper cellular immune response against eggs from the parasitoid wasp Leptopilina boulardi. Notably, hemocyte attachment to the egg and subsequent melanization of the capsule are deficient in hypomorphic ras mutant larvae, which results in a compromised cellular immune response and increased survival of the parasitoid. PMID:26942456

  16. Characterization of M gene-deficient rabies virus with advantages of effective immunization and safety as a vaccine strain.

    PubMed

    Ito, Naoto; Sugiyama, Makoto; Yamada, Kentaro; Shimizu, Kenta; Takayama-Ito, Mutsuyo; Hosokawa, Junji; Minamoto, Nobuyuki

    2005-01-01

    Matrix (M) protein of rabies virus is known to play an important role in assembly and budding of the progeny virus. We generated an M gene-deficient rabies virus, RC-HLDeltaM, using a reverse genetics system of rabies virus RC-HL strain to develop a novel type of vaccine. RC-HLDeltaM infection was confined within a single cell in mouse neuroblastoma cells. This deficient virus failed to generate the progeny virus in the cells. In contrast, RC-HLDeltaM propagated in BHK cells inductively expressing M protein. Suckling and adult mice inoculated intracerebrally with the parental RC-HL strain showed lethal infection and transient body weight loss, respectively, whereas both suckling and adult mice inoculated with RC-HLDeltaM showed no symptoms. The neutralizing antibody against rabies virus was successfully induced by intramuscular immunization with 10(5) focus-forming units of RC-HLDeltaM but not UV-inactivated RC-HL. Intranasal immunization with RC-HLDeltaM resulted in almost the same antibody titer to rabies virus as that in the case of immunization with live RC-HL strain. These findings indicate that RC-HLDeltaM is a candidate for a novel rabies vaccine that is safer and more effective than are current vaccines.

  17. Identification of genes potentially related to biomineralization and immunity by transcriptome analysis of pearl sac in pearl oyster Pinctada martensii.

    PubMed

    Zhao, Xiaoxia; Wang, Qingheng; Jiao, Yu; Huang, Ronglian; Deng, Yuewen; Wang, Huan; Du, Xiaodong

    2012-12-01

    Pearl oyster Pinctada martensii is cultured for production of pearl in China. It needs to implant a mantle graft cut from a donor oyster and a seed nucleus into the gonad of the host oyster to produce a pearl. Pearl sac surrounding the nucleus is formed by the proliferation of the implanted mantle graft from the outer mantle epithelial cells in the host oyster. The pearl sac is responsible for production of a cultured pearl. A comprehensive transcriptome analysis on pearl sac will help to understand the mechanism on pearl formation and immune response of host oyster after nucleus implantation. In the present study, 39,400,004 reads were produced from the pearl sac using RNA-sequence technology and then assembled into 102,762 unigenes. More than 22.4% of these unigenes were possibly involved in approximately 219 known signaling pathways. A total of 37,188 unigenes were annotated based on sequences similarities with known proteins. Fifty-one biomineralization-related unigenes and 268 immune-related unigenes were not previously detected in P. martensii. The un-annotated unigenes may be some genes specifically existed in P. martensii. These annotated or un-annotated unigenes in the present studies were valuable for the future investigation on molecular mechanism of pearl formation and immune response of the species.

  18. Protection against Vibrio alginolyticus in crimson snapper Lutjanus erythropterus immunized with a DNA vaccine containing the ompW gene.

    PubMed

    Cai, Shuang-Hu; Lu, Yi-Shan; Jian, Ji-Chang; Wang, Bei; Huang, Yu-Cong; Tang, Ju-Fen; Ding, Yu; Wu, Zao-He

    2013-09-24

    The outer membrane proteins of Vibrio alginolyticus play an important role in the virulence of the bacterium and are potential candidates for vaccine development. In the present study, the ompW gene was cloned, expressed and purified. A DNA vaccine was constructed by inserting the ompW gene into a pcDNA plasmid. Crimson snapper Lutjanus erythropterus (Bloch) were injected intramuscularly with the recombinant plasmid pcDNA-ompW. The expression of the DNA vaccine was detected in gill, head kidney, heart, liver, spleen and injection site muscle of crimson snapper by RT-PCR 7 and 28 d post-vaccination. The ELISA results demonstrated that the DNA vaccine produced an observable antibody response in all sera of the vaccinated fish. In addition, crimson snapper immunized with the DNA vaccine showed a relative percentage survival (RPS) of 92.53%, indicating effective protection against V. alginolyticus infection.

  19. Identification, expression, and innate immune responses of two insulin-like peptide genes in the razor clam Sinonovacula constricta.

    PubMed

    Niu, Donghong; Wang, Fei; Zhao, Honggang; Wang, Ze; Xie, Shumei; Li, Jiale

    2016-04-01

    Insulin-like peptide (ILP) has emerged as a cell regulatory factor with multiple functions in vertebrates and invertebrates. In the present study, we identified and characterized two ILP genes, ILP1 and ILP2, in the razor clam Sinonovacula constricta. Both ILPs have a signal peptide and a mature domain consisting of six strictly conserved cysteines. The tertiary structure is divided into three main α-helices with a C-domain loop that separates helix 1 from helix 2. Both of ILPs were found to be regulated according to tissue type and developmental stage. After challenge with Vibrio anguillarum, Vibrio parahaemolyticus and Micrococcus lysodeikticus, the expression of two ILP genes was significantly up-regulated in the liver, hemocytes and mantle tissues, suggesting that the ILPs may play roles in the innate immunity in the razor clam Sinonovacula constricta. PMID:26980611

  20. Sequence Polymorphism and Expression Variability of Crassostrea gigas Immune Related Genes Discriminate Two Oyster Lines Contrasted in Term of Resistance to Summer Mortalities

    PubMed Central

    Schmitt, Paulina; Santini, Adrien; Vergnes, Agnès; Degremont, Lionel; de Lorgeril, Julien

    2013-01-01

    Summer mortalities of Crassostreagigas are a major concern in oyster aquaculture. They are the result of a complex interaction between the host, pathogens and environmental factors. Oyster genetics have been identified as an essential determinant of oyster susceptibility to summer mortalities. As the capability of oysters to circumvent diseases depends in part on their immune defenses, we aimed to analyze the gene expression and sequence polymorphism of 42 immune related genes in two oyster lines selected for their “High” (H) and “Low” (L) survival to summer mortalities. Results showed that the variability of gene expression and the sequence polymorphism acting on particular genes could enable the discrimination between H and L oyster lines. Besides, a higher sequence polymorphism was observed on the L line affecting 11 of the 42 analyzed genes. By analyzing gene expression, sequence polymorphism and gene copy number of two antimicrobial peptide families (Cg-Defs and Cg-Prp), and an antimicrobial protein (Cg-BPI) on individual oysters, we showed that gene expression and/or sequence polymorphism could also discriminate H and L oyster lines. Finally, we observed a positive correlation between the gene expression and the gene copy number of antimicrobials and that sequence polymorphism could be encoded in the genome. Overall, this study gives new insights in the relationship between oyster immunity and divergent phenotypes, and discusses the potential implication of antimicrobial diversity in oyster survival to summer mortalities. PMID:24086661

  1. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke.

    PubMed

    Martin, Elizabeth M; Clapp, Phillip W; Rebuli, Meghan E; Pawlak, Erica A; Glista-Baker, Ellen; Benowitz, Neal L; Fry, Rebecca C; Jaspers, Ilona

    2016-07-01

    Exposure to cigarette smoke is known to result in impaired host defense responses and immune suppressive effects. However, the effects of new and emerging tobacco products, such as e-cigarettes, on the immune status of the respiratory epithelium are largely unknown. We conducted a clinical study collecting superficial nasal scrape biopsies, nasal lavage, urine, and serum from nonsmokers, cigarette smokers, and e-cigarette users and assessed them for changes in immune gene expression profiles. Smoking status was determined based on a smoking history and a 3- to 4-wk smoking diary and confirmed using serum cotinine and urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels. Total RNA from nasal scrape biopsies was analyzed using the nCounter Human Immunology v2 Expression panel. Smoking cigarettes or vaping e-cigarettes resulted in decreased expression of immune-related genes. All genes with decreased expression in cigarette smokers (n = 53) were also decreased in e-cigarette smokers. Additionally, vaping e-cigarettes was associated with suppression of a large number of unique genes (n = 305). Furthermore, the e-cigarette users showed a greater suppression of genes common with those changed in cigarette smokers. This was particularly apparent for suppressed expression of transcription factors, such as EGR1, which was functionally associated with decreased expression of 5 target genes in cigarette smokers and 18 target genes in e-cigarette users. Taken together, these data indicate that vaping e-cigarettes is associated with decreased expression of a large number of immune-related genes, which are consistent with immune suppression at the level of the nasal mucosa.

  2. Increased expression of immune-related genes in leukocytes of patients with diagnosed gestational diabetes mellitus (GDM).

    PubMed

    Wojcik, Marzena; Zieleniak, Andrzej; Zurawska-Klis, Monika; Cypryk, Katarzyna; Wozniak, Lucyna Alicja

    2016-03-01

    Compelling evidence indicates that the immune system is linked to metabolism in gestational diabetes mellitus (GDM), but factors participating in these processes still are awaiting identification. Inducible nitric oxide synthase, encoded by the NOS2 gene, and surfactant protein D, encoded by the SFTPD gene, have been implicated in diabetes. We investigated NOS2 and SFTPD mRNA levels in leukocytes obtained from 125 pregnant women with (n = 87) or without (control group; n = 38) GDM, and, in turn, correlated their expression with clinical parameters of subjects. Leukocytes were isolated from the blood of pregnant women and NOS2 and SFTPD expression in these cells was determined by quantitative real time PCR (qRT-PCR). Univariate correlation analyses were performed to assess an association between leukocyte NOS2 and SFTPD expression and clinical characteristics of patients. qRT-PCR experiments disclosed significantly increased leukocyte NOS2 and SFTPD mRNA levels in hyperglycemic GDM patients (P < 0.05). In the entire study group, there were significant positive associations of leukocyte NOS2 and SFTPD mRNAs with C-reactive protein. Additionally, transcript level of SFTPD also correlated positively with fasting glycemia and insulin resistance. This study demonstrates that an impaired glucose metabolism in GDM may be predominant predictor of leukocyte NOS2 and SFTPD overexpression in diabetic patients. Furthermore, alterations in the expression of these genes are associated with glucose metabolism dysfunction and/or inflammation during pregnancy. In addition, these findings support the utilization of leukocytes as good experimental model to study a relationship between immune-related genes and metabolic changes in women with GDM, as well as to assess the potential mechanisms underlying these alterations.

  3. Association of Variants in Genes Related to the Immune Response and Obesity with Benign Prostatic Hyperplasia in CLUE II

    PubMed Central

    Lopez, David S.; Peskoe, Sarah B.; Tsilidis, Konstantinos K.; Hoffman-Bolton, Judy; Helzlsouer, Kathy J.; Isaacs, William B.; Smith, Michael W.; Platz, Elizabeth A.

    2014-01-01

    BACKGROUND Chronic inflammation and obesity may contribute to the genesis or progression of benign prostatic hyperplasia (BPH) and BPH-associated lower urinary tract symptoms (LUTS). The influence of variants in genes related to these states on BPH has not been studied extensively. Thus, we evaluated the association of 17 single nucleotide polymorphisms (SNPs) in immune response genes (IL1B, IL6, IL8, IL10, TNF, CRP, TLR4, RNASEL) and genes involved in obesity, including insulin regulation (LEP, ADIPOQ, PPARG, TCF7L2), with BPH. METHODS BPH cases (N=568) and age-frequency matched controls (N=568) were selected from among adult male CLUE II cohort participants who responded in 2000 to a mailed questionnaire. BPH was defined as BPH surgery, use of BPH medications, or symptomatic BPH (American Urological Association Symptom Index Score ≥15). Controls were men who had not had BPH surgery, did not use BPH medications, and whose symptom score was ≤7. Age-adjusted odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression. RESULTS None of the candidate SNPs was statistically significantly associated with BPH. However, we could not rule out possible weak associations for CRP rs1205 (1082C>T), ADIPOQ rs1501299 (276C>A), PPARG rs1801282 (-49C>G), and TCF7L2 rs7903146 (47833T>C). After summing risk alleles, men with ≥4 had an increased BPH risk compared with those with ≤1 (OR, 1.78; 95% CI, 1.10-2.89; Ptrend=0.006). CONCLUSION SNPs in genes related to immune response and obesity, especially in combination, may be associated with BPH. PMID:25224558

  4. Increased expression of immune-related genes in leukocytes of patients with diagnosed gestational diabetes mellitus (GDM)

    PubMed Central

    Zieleniak, Andrzej; Zurawska-Klis, Monika; Cypryk, Katarzyna; Wozniak, Lucyna Alicja

    2015-01-01

    Compelling evidence indicates that the immune system is linked to metabolism in gestational diabetes mellitus (GDM), but factors participating in these processes still are awaiting identification. Inducible nitric oxide synthase, encoded by the NOS2 gene, and surfactant protein D, encoded by the SFTPD gene, have been implicated in diabetes. We investigated NOS2 and SFTPD mRNA levels in leukocytes obtained from 125 pregnant women with (n = 87) or without (control group; n = 38) GDM, and, in turn, correlated their expression with clinical parameters of subjects. Leukocytes were isolated from the blood of pregnant women and NOS2 and SFTPD expression in these cells was determined by quantitative real time PCR (qRT-PCR). Univariate correlation analyses were performed to assess an association between leukocyte NOS2 and SFTPD expression and clinical characteristics of patients. qRT-PCR experiments disclosed significantly increased leukocyte NOS2 and SFTPD mRNA levels in hyperglycemic GDM patients (P < 0.05). In the entire study group, there were significant positive associations of leukocyte NOS2 and SFTPD mRNAs with C-reactive protein. Additionally, transcript level of SFTPD also correlated positively with fasting glycemia and insulin resistance. This study demonstrates that an impaired glucose metabolism in GDM may be predominant predictor of leukocyte NOS2 and SFTPD overexpression in diabetic patients. Furthermore, alterations in the expression of these genes are associated with glucose metabolism dysfunction and/or inflammation during pregnancy. In addition, these findings support the utilization of leukocytes as good experimental model to study a relationship between immune-related genes and metabolic changes in women with GDM, as well as to assess the potential mechanisms underlying these alterations. PMID:26568332

  5. The Association of the Immune Response Genes to Human Papillomavirus-Related Cervical Disease in a Brazilian Population

    PubMed Central

    Marangon, Amanda Vansan; Guelsin, Gláucia Andreia Soares; Visentainer, Jeane Eliete Laguila; Borelli, Sueli Donizete; Watanabe, Maria Angélica Ehara; Consolaro, Márcia Edilaine Lopes; Caleffi-Ferracioli, Katiany Rizzieri; Rudnick, Cristiane Conceição Chagas; Sell, Ana Maria

    2013-01-01

    The genetic variability of the host contributes to the risk of human papillomavirus (HPV)-related cervical disease. Immune response genes to HPV must be investigated to define patients with the highest risk of developing malignant disease. The aim of this study was to investigate the association of polymorphic immune response genes, namely KIR, HLA class I and II, and single-nucleotide polymorphisms (SNPs) of cytokines with HPV-related cervical disease. We selected 79 non-related, admixed Brazilian women from the state of Paraná, southern region of Brazil, who were infected with high carcinogenic risk HPV and present cervical intraepithelial neoplasia grade 3 (CIN3), and 150 HPV-negative women from the same region matched for ethnicity. KIR genes were genotyped using an in-house PCR-SSP. HLA alleles were typed using a reverse sequence-specific oligonucleotide technique. SNPs of TNF −308G>A, IL6 −174G>C, IFNG +874T>A, TGFB1 +869T>C +915G>C, and IL10 −592C>A −819C>T −1082G>A were evaluated using PCR-SSP. The KIR genes were not associated with HPV, although some pairs of i(inhibitory)KIR-ligands occurred more frequently in patients, supporting a role for NK in detrimental chronic inflammatory and carcinogenesis. Some HLA haplotypes were associated with HPV. The associations of INFG and IL10 SNPs potentially reflect impaired or invalid responses in advanced lesions. PMID:23936772

  6. Psychological factors and DNA methylation of genes related to immune/inflammatory system markers: the VA Normative Aging Study

    PubMed Central

    Kim, Daniel; Kubzansky, Laura D; Baccarelli, Andrea; Sparrow, David; Spiro, Avron; Tarantini, Letizia; Cantone, Laura; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    Objectives Although psychological factors have been associated with chronic diseases such as coronary heart disease (CHD), the underlying pathways for these associations have yet to be elucidated. DNA methylation has been posited as a mechanism linking psychological factors to CHD risk. In a cohort of community-dwelling elderly men, we explored the associations between positive and negative psychological factors with DNA methylation in promoter regions of multiple genes involved in immune/inflammatory processes related to atherosclerosis. Design Prospective cohort study. Setting Greater Boston, Massachusetts area. Participants Samples of 538 to 669 men participating in the Normative Aging Study cohort with psychological measures and DNA methylation measures, collected on 1–4 visits between 1999 and 2006 (mean age=72.7 years at first visit). Outcome measures We examined anxiety, depression, hostility and life satisfaction as predictors of leucocyte gene-specific DNA methylation. We estimated repeated measures linear mixed models, controlling for age, smoking, education, history of heart disease, stroke or diabetes, % lymphocytes, % monocytes and plasma folate. Results Psychological distress measured by anxiety, depression and hostility was positively associated, and happiness and life satisfaction were inversely associated with average Intercellular Adhesion Molecule-1 (ICAM-1) and coagulation factor III (F3) promoter methylation levels. There was some evidence that hostility was positively associated with toll-like receptor 2 (TLR-2) promoter methylation, and that life satisfaction was inversely associated with TLR-2 and inducible nitric oxide synthase (iNOS) promoter methylation. We observed less consistent and significant associations between psychological factors and average methylation for promoters of the genes for glucocorticoid receptor (NR3C1), interferon-γ (IFN-γ) and interleukin 6 (IL-6). Conclusions These findings suggest that positive and negative

  7. Determination of the kappa anti-alpha(1,3) dextran immune response difference by A gene(s) in the VKappa-locus of mice

    PubMed Central

    1979-01-01

    Mice lacking the V(alpha(1,3) (h gamma1)-gene do not produce a gamma1 anti-alpha(1,3) dextran response. However, on hyperimmunization some strains mount a kappa-anti-alpha(1,3) dextran response, whereas other remain nonresponder. Responsiveness in dominant. The kappa-anti- alpha(1,3) response difference is linked to the Ly-3 locus on chromosone 6 and is likely the result of a structural Vkappa-gene(s). In conjunction with previous work, three Vkappa-allogroups can now be distinguished. At present, this is the only example of an immune responsiveness difference associated with the Vkappa-locus. PMID:109565

  8. West Nile Virus Challenge Alters the Transcription Profiles of Innate Immune Genes in Rabbit Peripheral Blood Mononuclear Cells

    PubMed Central

    Uddin, Muhammad J.; Suen, Willy W.; Prow, Natalie A.; Hall, Roy A.; Bielefeldt-Ohmann, Helle

    2015-01-01

    The peripheral innate immune response to West Nile virus (WNV) is crucial for control of virus spread to the central nervous system. Therefore, transcriptomes encoding the innate immune response proteins against WNV were investigated in peripheral blood mononuclear cells (PBMCs) of New Zealand White rabbits, a recently established novel rabbit model for WNV pathogenesis studies. PBMCs were challenged with an Australian WNV strain, WNVNSW2011, in vitro, and mRNA expression of selected immune response genes were quantified at 2-, 6-, 12-, and 24-h post-infection (pi) using qRT-PCR. Compared to mock-inoculated PBMCs, WNV-stimulated PBMCs expressed high levels of interferon (IFN) alpha (IFNA), gamma (IFNG), IL6, IL12, IL22, CXCL10, and pentraxin 3 (PTX3) mRNA. Likewise, TLR1, 2, 3, 4, 6, and 10 mRNA became up-regulated with the highest expression seen for TLR3, 4, and 6. TLRs-signaling downstream genes (MyD88, STAT1, TRAF3, IRF7, and IRF9) subsequently became up-regulated. The high expression of IFNs, TLR3, TLR4, TRAF3, STAT1, IRF7, and IRF9 are in accordance with antiviral activities, while expression of TNFA, HO1, iNOS, caspase 3, and caspase 9 transcripts suggests the involvement of oxidative stress and apoptosis in WNV-stimulated rabbit PBMCs, respectively. The level of WNVNSW2011 RNA increased at 24-h pi in PBMCs challenged with virus in vitro compared to input virus. The expression dynamics of selected genes were validated in PBMCs from rabbits experimentally infected with WNV in vivo. Higher expression of IFNA, IFN beta (IFNB), IFNG, TNFA, IL6, IL22, PTX3, TLR3 and TLR4, IRF7, IRF9, STST1, TRAF3, caspase 3, and caspase 9 were seen in PBMCs from WNV-infected rabbits on day 3 post-intradermal virus inoculation compared to PBMCs from uninfected control rabbits. This study highlights the array of cytokines and TLRs involved in the host innate immune response to WNV in the rabbit leukocytes and suggests that these cells may be a useful in vitro model for WNV

  9. Zearalenone Mycotoxin Affects Immune Mediators, MAPK Signalling Molecules, Nuclear Receptors and Genome-Wide Gene Expression in Pig Spleen

    PubMed Central

    Pistol, Gina Cecilia; Braicu, Cornelia; Motiu, Monica; Gras, Mihail Alexandru; Marin, Daniela Eliza; Stancu, Mariana; Calin, Loredana; Israel-Roming, Florentina; Berindan-Neagoe, Ioana; Taranu, Ionelia

    2015-01-01

    The toxicity of zearalenone (ZEA) was evaluated in swine spleen, a key organ for the innate and adaptative immune response. Weaned pigs were fed for 18 days with a control or a ZEA contaminated diet. The effect of ZEA was assessed on wide genome expression, pro- (TNF-α, IL-8, IL-6, IL-1β, IFN-γ) and anti-inflammatory (IL-10, IL-4) cytokines, other molecules involved in inflammatory processes (MMPs/TIMPs), as well as signaling molecules, (p38/JNK1/JNK2-MAPKs) and nuclear receptors (PPARγ/NFkB/AP-1/STAT3/c-JUN). Microarray analysis showed that 46% of total number of differentially expressed genes was involved in cellular signaling pathway, 13% in cytokine network and 10% in the inflammatory response. ZEA increased expression and synthesis of pro- inflammatory (TNF-α, IL-8, IL-6, IL-1β) and had no effect on IFN-γ, IL-4 and IL-10 cytokines in spleen. The inflammatory stimulation might be a consequence of JNK pathway activation rather than of p-38MAPK and NF-kB involvement whose gene and protein expression were suppressed by ZEA action. In summary, our findings indicated the role of ZEA as an immune disruptor at spleen level. PMID:26011631

  10. Long-term effects of di-octyl phthalate on the expression of immune-related genes in Tegillarca granosa

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Li, Ye; Dai, Juan; Su, Xiurong; Li, Chenghua; Shen, Lingling

    2016-05-01

    Di-octyl phthalate (DOP) is widely used as a plasticizer in the plastics industry. As a result, DOP is often found in marine water ecosystems where many species are exposed to it. Our objective was to evaluate the effect of long-term (14 d) DOP exposure (2.6, 7.8, or 31.2 mg/L) on the expression of immunerelated genes in Tegillarca granosa. The expression of small heat shock protein (sHSPs) and tissue inhibitor of metalloproteinase (TIMP) were highest in clams exposed to 31.2 mg/L DOP on days 7 and 14. The relative expression of Tg-ferritin, superoxide dismutase (SOD), and metallothionein (MT) increased initially then decreased as the concentration of DOP increased. The hemoglobin of T. granosa (Tg-HbI) exhibited two distinct expression patterns at two time points. Our results suggest that the immune response of T. granosa against DOP pollution varies depending on the dose. Additionally, we identified some immune-related genes that are promising candidates for biomarkers of DOP.

  11. Differential viral levels and immune gene ex